WO2022099873A1 - 运输***的安全保护***、方法和机群管理设备 - Google Patents

运输***的安全保护***、方法和机群管理设备 Download PDF

Info

Publication number
WO2022099873A1
WO2022099873A1 PCT/CN2020/138610 CN2020138610W WO2022099873A1 WO 2022099873 A1 WO2022099873 A1 WO 2022099873A1 CN 2020138610 W CN2020138610 W CN 2020138610W WO 2022099873 A1 WO2022099873 A1 WO 2022099873A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned vehicle
equipment
unloading area
auxiliary
fleet management
Prior art date
Application number
PCT/CN2020/138610
Other languages
English (en)
French (fr)
Inventor
赵斌
杨超
唐建林
Original Assignee
江苏徐工工程机械研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏徐工工程机械研究院有限公司 filed Critical 江苏徐工工程机械研究院有限公司
Priority to PCT/CN2020/138610 priority Critical patent/WO2022099873A1/zh
Priority to AU2020476749A priority patent/AU2020476749A1/en
Publication of WO2022099873A1 publication Critical patent/WO2022099873A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • the present disclosure relates to the technical field of unmanned driving, and in particular, to a safety protection system, method and fleet management device of a transportation system.
  • Open-pit mines are usually located in remote areas and the environment is harsh, and the aging trend of the drivers of transport vehicles in mining areas is obvious. Safety accidents caused by the negligence of transport drivers often occur, which will lead to the economic burden of future mining areas in terms of production safety and personnel investment. Increase. Driven by the urgent needs of mining areas and the development of modern science and technology, the unmanned transportation solution for open-pit mines has received more and more attention.
  • a safety protection system for a transportation system including: an unmanned vehicle configured to send its own position information and driving direction to a fleet management device; auxiliary operation equipment, located in an unloading area, is configured to send its own location information to a fleet management device; and the fleet management device is configured to set a protection circle of the auxiliary operation equipment according to the location information of the auxiliary operation equipment, the protection circle including all
  • the inner protective ring centered on the auxiliary operation equipment and the outer protective ring surrounding the inner protective ring are determined when a part of the unmanned vehicle enters the In the case of the outer protective ring, the alarm processing is executed, and the unmanned vehicle is sent to the unmanned vehicle when it is determined that a part of the driverless vehicle enters the inner protective ring according to the position information and the driving direction of the driverless vehicle.
  • the driving vehicle sends a stop command to stop the unmanned vehicle from traveling.
  • the auxiliary work equipment is further configured to send its own travel direction to the fleet management device;
  • the unmanned vehicle is further configured to send a request message to the fleet management device requesting access to the unloading area , after receiving the response message returned by the fleet management device, enter the unloading area according to the travel path planned by the fleet management device;
  • the fleet management device is further configured to, after receiving the request message, send to the unloading area
  • the unmanned vehicle returns a response message to approve the unmanned vehicle to enter the unloading area, and sends a travel path to the unmanned vehicle and sets a path buffer for the unmanned vehicle, the unmanned vehicle
  • the route buffer zone is an area extending a predetermined distance to both sides of the travel route with the travel route as the center, and whether at least a part of the auxiliary work equipment is determined in real time according to the position information, the travel direction and the size of the auxiliary work equipment Entering the route buffer zone, executing an alarm process when at least a part of the auxiliary work equipment enters the route buffer
  • the fleet management device is further configured to transmit the unmanned vehicle to the unmanned vehicle in the event that the location information of the auxiliary work device cannot be received or the location information of the auxiliary work device is lost.
  • a parking instruction is sent, and a locking instruction is sent to the unmanned vehicle outside the unloading area so that the unmanned vehicle outside the unloading area does not enter the unloading area.
  • the auxiliary operation equipment is further configured to bind with the unloading area, and after binding, send a heartbeat signal of a fixed frequency to the fleet management equipment; the fleet management equipment is further configured to In the case where the heartbeat signal cannot be received, it is determined that the network of the auxiliary work equipment is disconnected, and a parking instruction is sent to the unmanned vehicle within the unloading area, and to the unmanned vehicle in the unloading area adjacent to the unloading area.
  • the unmanned vehicle at the entry point of the waiting area sends a waiting instruction to keep the unmanned vehicle at the entry point in the waiting state, and after re-receiving the heartbeat signal, it is determined that the auxiliary operation equipment is restarted. After connecting to the network and rebinding the unloading area, a recovery instruction is sent to the unmanned vehicle.
  • the unmanned vehicle is further configured to stop driving if the unmanned vehicle is disconnected from the network while the unmanned vehicle is in the unloading area, where In the case where the unmanned vehicle is located at the entry point of the waiting area, if the network of the unmanned vehicle is disconnected, the waiting state will remain unchanged. In the case of an adjacent driving area, if the network of the unmanned vehicle is disconnected, reduce the driving speed and stop to the closest distance to the unmanned vehicle in the driving direction of the unmanned vehicle. node.
  • the fleet management device is provided with a first display configured to display the guard circle and the path buffer, and to display an alarm when the fleet management device performs an alarm process information.
  • the auxiliary work equipment is provided with a second display, the second display is configured to display the protection ring and the path buffer, and display an alarm message after receiving an alarm signal, wherein, The fleet management device transmits the alarm signal to the second display when performing alarm processing.
  • the auxiliary work equipment is configured to send a stop instruction to the unmanned vehicle via the fleet management equipment to cause the unmanned vehicle to stop traveling in response to a stop operation instruction; or in response to a stop operation instruction; locking an operation instruction, sending a parking instruction to the unmanned vehicle within the unloading area via the fleet management apparatus to stop the unmanned vehicle within the unloading area, and via the fleet management apparatus
  • a waiting instruction is sent to the unmanned vehicle at the entry point of the waiting area adjacent to the unloading area, so that the unmanned vehicle at the entry point keeps the waiting state unchanged.
  • a safety protection method for a transportation system comprising: receiving position information and driving direction of an unmanned vehicle and position information of auxiliary operation equipment in an unloading area; according to the auxiliary operation equipment According to the position information of the auxiliary operation equipment, the protection ring of the auxiliary operation equipment is set, and the protection ring includes an inner protection ring centered on the auxiliary operation equipment and an outer protection ring surrounding the inner protection ring; The location information and the driving direction of the driverless vehicle determine that a part of the driverless vehicle enters the outer protective circle and perform an alarm process; and determining the driverless vehicle based on the location information and the driving direction of the driverless vehicle When a part of the unmanned vehicle enters the inner protective circle, a parking instruction is sent to the unmanned vehicle to stop the unmanned vehicle from running.
  • the safety protection method further includes: receiving a travel direction of the auxiliary operating equipment and a request message of the unmanned vehicle requesting to enter the unloading area; after receiving the request message, sending a request to the The unmanned vehicle returns a response message to approve the unmanned vehicle to enter the unloading area; sends a driving path to the unmanned vehicle, and sets a path buffer zone for the unmanned vehicle, and the path buffers
  • the belt is an area extending a predetermined distance to both sides of the driving path with the driving path as the center; it is judged in real time whether at least a part of the auxiliary operating equipment enters the driving path according to the position information, driving direction and size of the auxiliary operating equipment executing an alarm process when at least a part of the auxiliary work equipment enters the path buffer; and judging whether the part of the auxiliary work equipment entering the path buffer is located in the unmanned vehicle If it is ahead of the driving direction, send a deceleration instruction or the parking instruction to the unmanned vehicle, otherwise, do not send the de
  • the safety protection method further comprises: sending the parking to the unmanned vehicle if the location information of the auxiliary work equipment cannot be received or the location information of the auxiliary work equipment is lost instruction, and send a locking instruction to the unmanned vehicle outside the unloading area so that the unmanned vehicle outside the unloading area does not enter the unloading area.
  • the security protection method further comprises: determining that the network of the auxiliary operation equipment is disconnected under the condition that the heartbeat signal from the auxiliary operation equipment cannot be received, and reporting to the unloading area
  • the unmanned vehicle inside sends a parking instruction, and sends a waiting instruction to the unmanned vehicle at the entry point of the waiting area adjacent to the unloading area to keep the unmanned vehicle at the entry point waiting.
  • the state remains unchanged; and after re-receiving the heartbeat signal, it is determined that the auxiliary operation equipment reconnects to the network and re-binds the unloading area, and then sends a recovery instruction to the unmanned vehicle.
  • a fleet management apparatus comprising: a receiving unit configured to receive position information and driving direction of an unmanned vehicle and position information of auxiliary work equipment in an unloading area; a setting unit, is configured to set a protective ring of the auxiliary working equipment according to the position information of the auxiliary working equipment, the protective ring includes an inner protective ring centered on the auxiliary working equipment and an outer protective ring surrounding the inner protective ring a layer protection circle; an alarm unit configured to perform an alarm process in the case where it is determined that a part of the unmanned vehicle enters the outer protection circle according to the position information and the driving direction of the unmanned vehicle; and a sending unit is configured to send a parking instruction to the unmanned vehicle so as to make all The unmanned vehicle is stopped.
  • the receiving unit is further configured to receive a travel direction of the auxiliary work equipment and a request message for the unmanned vehicle to enter an unloading area;
  • the setting unit is further configured to provide the The unmanned vehicle sets a travel path and a path buffer zone, the route buffer zone is an area extending a predetermined distance to both sides of the travel path with the travel path as the center;
  • the sending unit is further configured to receive the After the request message, a response message is returned to the unmanned vehicle to approve the unmanned vehicle to enter the unloading area, and the driving route is sent to the unmanned vehicle, and the auxiliary operation equipment enters the unmanned vehicle.
  • a deceleration command or the stop command is sent to the unmanned vehicle, and the auxiliary work equipment enters the route buffer belt.
  • the deceleration instruction and the stop instruction are not sent to the unmanned vehicle if the part is not located in front of the driving direction of the unmanned vehicle;
  • the alarm unit is further configured to operate the auxiliary operation
  • the alarm processing is performed when at least a part of the equipment enters the route buffer zone;
  • the fleet management equipment further includes: a judgment unit configured to judge the auxiliary work equipment in real time according to the position information, driving direction and size of the auxiliary work equipment Whether or not at least a portion of work equipment enters the path buffer, and it is determined whether or not the portion of the auxiliary work equipment that enters the path buffer is located forward in the travel direction of the unmanned vehicle.
  • the sending unit is further configured to send the unmanned vehicle to the unmanned vehicle if the receiving unit fails to receive the position information of the auxiliary work equipment or loses the position information of the auxiliary work equipment
  • the parking instruction is sent, and a locking instruction is sent to the unmanned vehicle outside the unloading area so that the unmanned vehicle outside the unloading area does not enter the unloading area.
  • the sending unit is further configured to determine that the network of the auxiliary working equipment is disconnected when the receiving unit cannot receive the heartbeat signal from the auxiliary working equipment, and send the information to the The unmanned vehicle within the unloading area sends a parking instruction, and sends a waiting instruction to the unmanned vehicle at the entry point of the waiting area adjacent to the unloading area, so that the unmanned vehicle at the entry point is The driving vehicle remains in the waiting state, and after the receiving unit re-receives the heartbeat signal, it is determined that the auxiliary operation equipment reconnects to the network and re-binds the unloading area, and sends a resume to the unmanned vehicle instruction.
  • a fleet management device comprising: a memory; and a processor coupled to the memory, the processor configured to execute as previously described based on instructions stored in the memory method described.
  • a safety protection system for a transportation system including: an unmanned vehicle, an auxiliary operation device, and the aforementioned fleet management device.
  • a computer-readable storage medium having computer program instructions stored thereon which, when executed by a processor, implement the aforementioned method.
  • FIG. 1 is a schematic diagram illustrating the operation of an unmanned transportation system of an open pit mine in an unloading area according to some embodiments of the present disclosure
  • FIG. 2 is a schematic structural diagram illustrating a safety protection system of a transportation system according to some embodiments of the present disclosure
  • FIG. 3 is a schematic diagram illustrating the operation of a safety protection system of a transportation system according to some embodiments of the present disclosure
  • FIG. 4 is a schematic working diagram illustrating a safety protection system of a transportation system according to other embodiments of the present disclosure
  • FIG. 5 is a flowchart illustrating a security protection method of a transportation system according to some embodiments of the present disclosure
  • FIG. 6 is a flowchart illustrating a security protection method of a transportation system according to other embodiments of the present disclosure
  • FIG. 7 is a flowchart illustrating a security protection method of a transportation system according to other embodiments of the present disclosure.
  • FIG. 8 is a schematic structural diagram illustrating a fleet management device according to some embodiments of the present disclosure.
  • FIG. 9 is a schematic structural diagram illustrating a fleet management device according to other embodiments of the present disclosure.
  • FIG. 10 is a schematic structural diagram illustrating a fleet management device according to other embodiments of the present disclosure.
  • FIG. 11 is a schematic structural diagram illustrating an unmanned vehicle according to some embodiments of the present disclosure.
  • FIG. 12 is a schematic structural diagram illustrating an auxiliary work device according to some embodiments of the present disclosure.
  • first,” “second,” and similar words do not denote any order, quantity, or importance, but are merely used to distinguish the different parts.
  • “Comprising” or “comprising” and similar words mean that the element preceding the word covers the elements listed after the word, and does not exclude the possibility that other elements are also covered.
  • “Up”, “Down”, “Left”, “Right”, etc. are only used to represent the relative positional relationship, and when the absolute position of the described object changes, the relative positional relationship may also change accordingly.
  • a specific device when a specific device is described as being located between the first device and the second device, there may or may not be an intervening device between the specific device and the first device or the second device.
  • the specific device When it is described that a specific device is connected to other devices, the specific device may be directly connected to the other device without intervening devices, or may not be directly connected to the other device but have intervening devices.
  • a technical problem solved by the present disclosure is to provide a safety protection system for a transportation system to improve the safety of open-pit mine operations.
  • the security protection system according to some embodiments of the present disclosure will be described in detail below with reference to the accompanying drawings.
  • FIG. 1 is a schematic diagram illustrating the operation of an unmanned transportation system of an open pit mine in an unloading area according to some embodiments of the present disclosure.
  • the open pit mine area may include an unloading area 110 , a waiting area 120 and a driving area 130 .
  • the fully loaded unmanned vehicle (for example, unmanned mining truck) 20 travels from the driving area 130 to the waiting area 120, and then enters the unloading area 110 from the waiting area 120.
  • the empty The loaded unmanned vehicle 20 returns to the waiting area 120 and then returns to the driving area 130 .
  • auxiliary work equipment 30 for example, a loader or a bulldozer, etc.
  • auxiliary work equipment 30 may be manned equipment.
  • the operation process of the unmanned vehicle may be as follows:
  • the unmanned vehicle 20 receives the driving instruction issued by the group management device (not shown in FIG. 1 , which will be described in detail later), and automatically travels along the driving road to the entry point 121 of the waiting area 120 , and stops and waits.
  • the group management device not shown in FIG. 1 , which will be described in detail later
  • the fleet management equipment is automatically calculated based on the entry point (feedback by the unmanned vehicle to the fleet management equipment through the high-precision positioning device and wireless communication device) and the unloading point (for example, the unloading point can be obtained by automatic assignment or manual assignment)
  • An unloading route (including an entry route and an exit route) is generated and issued to the unmanned vehicle 20 through the wireless communication device.
  • the unmanned vehicle operation management unit of the unmanned vehicle 20 After receiving the entry path, transmits the information to the unmanned unit of the unmanned vehicle 20, and after the unmanned unit makes a decision, controls the unmanned vehicle to enter the site according to the The path (eg, the entry path may include a turnaround point 112 ) travels to a designated unloading point 111 .
  • the unmanned unit of the unmanned vehicle 20 controls the unmanned vehicle to unload at the designated unloading point 111 .
  • the unmanned vehicle operation management unit of the unmanned vehicle 20 After receiving the exit path, the unmanned vehicle operation management unit of the unmanned vehicle 20 transmits the information to the unmanned unit, and after making a decision by the unmanned unit, controls the unmanned vehicle to drive out of the unloading area according to the exit path, and passes through the exit. Point 122 enters the waiting area 120 and then returns to the driving area 130 .
  • the operation process of the auxiliary operation equipment 30 in the unloading area may include: the operator drives the auxiliary operation equipment 30 into the unloading area 110 , clears the materials thrown by the unmanned vehicle, and trims the retaining wall according to the site conditions.
  • FIG. 2 is a schematic structural diagram illustrating a safety protection system of a transportation system according to some embodiments of the present disclosure.
  • the safety protection system includes an unmanned vehicle (eg, an unmanned mining truck) 20 , auxiliary operation equipment 30 and fleet management equipment 40 .
  • the fleet management device 40 is connected in communication with the unmanned vehicle 20 and the auxiliary work device 30 , respectively.
  • the unmanned vehicle 20 and the auxiliary work equipment 30 may also communicate with each other.
  • FIG. 3 is a schematic diagram illustrating the operation of a safety protection system of a transportation system according to some embodiments of the present disclosure.
  • the unmanned vehicle 20 is configured to transmit its own position information and traveling direction to the fleet management device 40 .
  • the auxiliary work equipment 30 is in the unloading area 110 .
  • the auxiliary work device 30 is configured to transmit its own position information to the fleet management device 40 .
  • the fleet management apparatus 40 is configured to set the protective ring of the auxiliary work equipment 30 according to the position information of the auxiliary work equipment.
  • the protection ring includes an inner protection ring 113 centered on the auxiliary work equipment 30 and an outer protection ring 114 surrounding the inner protection ring 113 .
  • the radius R1 of the inner protection ring 113 is in the range of 4 meters to 8 meters
  • the radius R2 of the outer protection ring is in the range of 16 meters to 20 meters.
  • the numerical values of the radii of the inner protection ring and the outer protection ring here are only exemplary, and the scope of the present disclosure is not limited thereto.
  • the radius of the inner protection ring and the outer protection ring can be set according to the specific size of the equipment.
  • the shapes of the inner protection ring and the outer protection ring shown in FIG. 3 are circular, the scope of the present disclosure is not limited thereto.
  • the shape of the inner protection ring and the outer protection ring can also be other shapes, such as polygons such as square or hexagon.
  • the fleet management device 40 is further configured to perform an alarm process in the case where it is determined that a part of the unmanned vehicle 20 enters the outer protective circle 114 according to the position information and the driving direction of the unmanned vehicle 20, The location information and the driving direction of 20 determine that a stop instruction is sent to the unmanned vehicle to stop the unmanned vehicle when a part of the unmanned vehicle enters the inner protective circle 113 .
  • the fleet management device 40 is provided with a first display 410 .
  • the first display 410 is configured to display the protective circles 113 and 114 and to display alarm information when the fleet management device performs alarm processing.
  • the shape of the cooperative work protection circle of the auxiliary work equipment 30 and its parameters are set by the fleet management apparatus 40.
  • the protection ring is divided into two layers of protection rings with the geometric center of the auxiliary operation equipment as the center, namely the inner protection ring (also called emergency stop protection ring) and the outer protection ring (also called alarm protection ring).
  • the inner protection ring also called emergency stop protection ring
  • the outer protection ring also called alarm protection ring
  • the color of the inner protection circle can turn red
  • the first display shows the alarm information
  • the fleet management equipment emits an alarm sound And sending the parking instruction to the unmanned vehicle 20 through the wireless communication device, so that the unmanned vehicle 20 is stopped in an emergency.
  • the auxiliary work equipment 30 is provided with a second display (not shown in FIG. 2 ).
  • the second display is configured to display the protective ring and display alarm information after receiving the alarm signal.
  • the fleet management apparatus transmits an alarm signal to the second display when executing the alarm process.
  • the fleet management device can send a first alarm signal to the second display, so that the second display of the auxiliary operation equipment can display the outer protective circle.
  • the color changes to red; when any part of the unmanned vehicle in the unloading area enters the inner protection circle, the fleet management device can send a second alarm signal to the second display, so that the second display of the auxiliary operation equipment can display the inner layer.
  • the color of the layer protector changes to red. This can act as a reminder to the operator on the auxiliary work equipment to prevent accidents.
  • the safety protection system includes: an unmanned vehicle, configured to send its own position information and driving direction to the fleet management equipment; auxiliary operation equipment, located in the unloading area, configured to send its own position information to the fleet management equipment; and a fleet management device configured to set a protective ring of the auxiliary operating equipment according to the position information of the auxiliary operating equipment, the protective ring comprising an inner protective ring centered on the auxiliary operating equipment and an outer protective ring surrounding the inner protective ring, Execute the alarm processing when it is determined that a part of the unmanned vehicle enters the outer protective circle according to the position information and the driving direction of the unmanned vehicle, and the part of the unmanned vehicle is determined according to the position information and the driving direction of the unmanned vehicle.
  • a parking instruction is sent to the unmanned vehicle to stop the unmanned vehicle. This can prevent unmanned vehicles from colliding with auxiliary operation equipment as much as possible,
  • the auxiliary operation equipment can drive into the safe area. After the danger is removed, the system returns to normal working state, and the unmanned vehicle continues the unloading operation. .
  • FIG. 4 is a working schematic diagram illustrating a safety protection system of a transportation system according to other embodiments of the present disclosure.
  • auxiliary work equipment 30 is also configured to send its own travel direction to fleet management equipment 40 .
  • the unmanned vehicle 20 is further configured to send a request message to the fleet management device 40 for requesting to enter the unloading area, and after receiving the response message returned by the fleet management device 40, according to the fleet management device 40 The travel path 115 planned by the management device 40 enters the unloading area 110 .
  • the fleet management device 40 is further configured to, upon receiving the request message, return a response message to the unmanned vehicle 20 to approve the unmanned vehicle 20 to enter the unloading area 110, and to send a response message to the unmanned vehicle 20.
  • the unmanned vehicle 20 sends a travel path 115 and a path buffer 116 is provided for the unmanned vehicle 20 .
  • the route buffer 116 is an area extending a predetermined distance on both sides of the travel route with the travel route 115 as the center.
  • the predetermined distance ranges from 3 meters to 5 meters.
  • the predetermined distance may be set according to the specific size of the device.
  • the fleet management device 40 is further configured to determine in real time whether at least a part of the auxiliary work equipment 30 enters the route according to the position information, the driving direction and the size of the auxiliary work equipment 30 (for example, the fleet management device may store the size of the auxiliary work equipment in advance).
  • the buffer belt 116 performs alarm processing when at least a part of the auxiliary work equipment enters the path buffer belt, and determines whether the part of the auxiliary work equipment entering the path buffer belt is located in front of the driving direction of the unmanned vehicle 20, and if If yes, send a deceleration command or a stop command to the unmanned vehicle 20 , otherwise, do not send a deceleration command and a stop command to the unmanned vehicle 20 .
  • the unmanned vehicle after the application of the unmanned vehicle to enter the unloading area is approved by the fleet management device, the unmanned vehicle enters the unloading area along the travel path planned by the fleet management device.
  • the fleet management device can automatically calculate and generate the driving path of the unmanned vehicle according to the location information of the unmanned vehicle and the unloading point. Then, the fleet management device sets a route buffer zone, which is centered on the travel route and extends to the left and right sides of the travel route by a predetermined distance L.
  • the first display is also configured to display the path buffer. In the unloading map interface of the first display, the color of the buffer band can be displayed as green.
  • auxiliary operation equipment As the auxiliary operation equipment enters the unloading area, its position will be uploaded to the fleet management equipment in real time, and the fleet management equipment will make a safety judgment based on the location information, driving direction, actual size and running speed of the auxiliary operation equipment. If any part of the auxiliary operation equipment enters the route buffer zone, the color of the route buffer zone displayed on the first display can be changed to red, thereby displaying an alarm message and sounding an alarm.
  • a second display of the auxiliary work equipment is also configured to display the path buffer. The fleet management equipment sends an alarm signal to the auxiliary operation equipment through the wireless communication device, so that the color of the path buffer displayed on the second display also turns red, which plays an alarming role.
  • the fleet management device sends a deceleration command or a stop instruction to the unmanned vehicle through the wireless communication device. If it is determined that the auxiliary operation equipment If the part that breaks into the route buffer zone is behind the driving direction of the unmanned vehicle, the fleet management device may not handle it. This can prevent unmanned vehicles from colliding with auxiliary operation equipment as much as possible, thereby improving the safety of open-pit mine operations.
  • the fleet management device 40 is further configured to send a stop instruction to the unmanned vehicle 20 and to the unmanned vehicle 20 in the event that the location information of the auxiliary work equipment cannot be received or the location information of the auxiliary work equipment is lost
  • the unmanned vehicle outside the unloading area sends a locking instruction so that the unmanned vehicle outside the unloading area does not enter the unloading area 110 .
  • the auxiliary operation equipment needs to upload its location information to the fleet management equipment in real time. If the location information of the auxiliary operation equipment is lost, In order to ensure the safety of auxiliary operation equipment and operators, unmanned vehicles are immediately stopped in an emergency regardless of the current state.
  • the auxiliary operation equipment 30 is further configured to bind with the unloading area, and send a fixed-frequency heartbeat signal to the fleet management device 40 after binding.
  • the fleet management device 40 is also configured to determine that the network of the auxiliary work equipment 30 is disconnected if the heartbeat signal cannot be received, and to send a stop instruction to the unmanned vehicle within the unloading area 110, and to the unmanned vehicle in the unloading area and the unloading area. 110
  • the unmanned vehicle at the entry point 121 of the adjacent waiting area 120 sends a waiting instruction to keep the unmanned vehicle at the entry point 121 in the waiting state, and determines the auxiliary operation equipment after receiving the heartbeat signal again.
  • a recovery instruction is sent to the unmanned vehicle.
  • the auxiliary operation equipment needs to be bound to the unloading area designated by the auxiliary operation equipment.
  • the auxiliary operation equipment continuously sends a heartbeat signal of a fixed frequency to the fleet management equipment through the wireless communication device. If the fleet management equipment cannot receive the heartbeat signal, it determines that the network of the auxiliary operation equipment is disconnected, and immediately performs the following processing: send a parking instruction to the unmanned vehicle in the unloading area to make it stop immediately; lock the unloading area so that All unmanned vehicles outside the unloading area are prohibited from entering the unloading area regardless of whether they apply to enter the unloading area. After the auxiliary operation equipment network comes back online and matches the bound unloading area, the fleet management equipment sends a recovery instruction so that the unmanned vehicle continues the original process (ie, the process before being locked). This increases the safety of open pit mine operations.
  • the unmanned vehicle 20 is further configured to stop driving if the unmanned vehicle is disconnected from the network if the unmanned vehicle is located in the unloading area 110, and the unmanned vehicle is located in the unmanned vehicle In the case of the entry point 121 of the waiting area 120, if the network of the unmanned vehicle is disconnected, the waiting state will remain unchanged, and if the unmanned vehicle is located in the driving area 130 adjacent to the waiting area 120 , if the network of the unmanned vehicle is disconnected, reduce the driving speed and stop to the closest node to the unmanned vehicle in the driving direction of the unmanned vehicle.
  • auxiliary work equipment 30 is configured to send a stop instruction to unmanned vehicle 20 via fleet management equipment 40 to stop the unmanned vehicle from traveling in response to a stop operation instruction; or in response to a lock operation instruction, Sending a stop instruction to the unmanned vehicle within the unloading area via the fleet management device 40 to stop the unmanned vehicle within the unloading area, and sending a parking instruction to the waiting area adjacent to the unloading area via the fleet management device 40
  • the unmanned vehicle at the entry point sends a waiting instruction so that the unmanned vehicle at the entry point keeps the waiting state unchanged.
  • the auxiliary work equipment has an emergency stop function.
  • a parking instruction can be sent to the fleet management device through the wireless communication device, and then the fleet management device will forward the parking instruction to the unmanned vehicle to make the unmanned vehicle stop in an emergency.
  • the auxiliary operation equipment also has an area locking function. When the "lock" button is pressed, it will send parking instructions and waiting instructions to the fleet management equipment, and the fleet management equipment will forward the parking instructions to the unmanned vehicles in the unloading area. And forward the waiting instruction to the driverless vehicle at the entry point. In this way, the auxiliary operation equipment can lock the area, so that the operator on the auxiliary operation equipment can lock the area in case of special circumstances, thereby improving the safety of the open-pit mine operation.
  • FIG. 5 is a flowchart illustrating a security protection method of a transportation system according to some embodiments of the present disclosure. As shown in FIG. 5 , the security protection method includes steps S502 to S508.
  • step S502 the position information and driving direction of the unmanned vehicle and the position information of the auxiliary work equipment in the unloading area are received.
  • a protective ring of the auxiliary operating equipment is set according to the position information of the auxiliary operating equipment, and the protective ring includes an inner protective ring centered on the auxiliary operating equipment and an outer protective ring surrounding the inner protective ring.
  • step S506 an alarm process is performed in the case where it is determined that a part of the unmanned vehicle enters the outer protective circle according to the position information and the driving direction of the unmanned vehicle.
  • step S508 a parking instruction is sent to the unmanned vehicle to stop the unmanned vehicle when it is determined according to the location information and the driving direction of the unmanned vehicle that a part of the unmanned vehicle enters the inner protective circle.
  • the security protection method of the transportation system according to some embodiments of the present disclosure has been provided.
  • the protective circle of the auxiliary operation equipment in the unloading area is set, and the operation safety is ensured by analyzing whether the unmanned vehicle and the auxiliary operation equipment have contact or the possibility of collision. This can prevent unmanned vehicles from colliding with auxiliary operation equipment as much as possible, thereby improving the safety of open-pit mine operations.
  • FIG. 6 is a flowchart illustrating a security protection method of a transportation system according to other embodiments of the present disclosure. As shown in FIG. 6 , the security protection method includes steps S602 to S616
  • step S602 the location information and driving direction of the auxiliary work equipment, the location information and driving direction of the unmanned vehicle, and the request message of the unmanned vehicle for entering the unloading area are received.
  • step S604 after receiving the request message, a response message is returned to the unmanned vehicle to approve the unmanned vehicle to enter the unloading area.
  • a driving route is sent to the unmanned vehicle, and a route buffer zone is set for the unmanned vehicle.
  • the route buffer zone is an area extending a predetermined distance to both sides of the driving route with the driving route as the center.
  • step S608 it is determined in real time whether at least a part of the auxiliary work equipment enters the path buffer zone according to the position information, the driving direction and the size of the auxiliary work equipment.
  • step S610 an alarm process is performed in a case where at least a part of the auxiliary work equipment enters the route buffer zone.
  • step S612 it is determined whether or not the portion of the auxiliary work equipment entering the route buffer zone is located ahead of the traveling direction of the unmanned vehicle. If so, the process proceeds to step S614, otherwise the process proceeds to step S616.
  • step S614 a deceleration command or a stop command is sent to the unmanned vehicle. In this way, deceleration processing or parking processing of the driverless vehicle is realized.
  • step S616 the deceleration command and the stop command are not sent to the unmanned vehicle.
  • the method realizes the safety protection of the open-pit mine transportation system by setting the path buffer zone. This can prevent unmanned vehicles from colliding with auxiliary operation equipment as much as possible, thereby improving the safety of open-pit mine operations.
  • the safety protection method further includes: sending a parking instruction to the unmanned vehicle when the location information of the auxiliary working equipment cannot be received or the location information of the auxiliary working equipment is lost, and the unmanned vehicle is located outside the unloading area.
  • the unmanned vehicle sends a locking instruction so that the unmanned vehicle outside the unloading area does not enter the unloading area.
  • the safety protection method further includes: determining that the network of the auxiliary operation equipment is disconnected in the case that the heartbeat signal from the auxiliary operation equipment cannot be received, and sending the transmission to the unmanned vehicle in the unloading area a parking instruction, and sending a waiting instruction to the unmanned vehicle at the entry point of the waiting area adjacent to the unloading area so that the unmanned vehicle at the entry point remains in the waiting state; and after re-receiving the heartbeat signal After it is determined that the auxiliary operation equipment is reconnected to the network and the unloading area is re-bound, a recovery instruction is sent to the unmanned vehicle.
  • FIG. 7 is a flowchart illustrating a security protection method of a transportation system according to other embodiments of the present disclosure. As shown in FIG. 7 , the security protection method includes steps S702 to S726. The auxiliary operation equipment sends a fixed frequency network heartbeat signal to the fleet management equipment.
  • step S702 it is determined by the fleet management device whether the network of the auxiliary operation equipment is interrupted. If yes, the process goes to step S704; otherwise, the process goes to step S714.
  • step S704 the fleet management device determines whether there are unmanned vehicles in the unloading area. If yes, the process goes to step S706; otherwise, the process goes to step S708.
  • step S706 the fleet management device sends a parking instruction to the unmanned vehicle.
  • step S708 the fleet management device locks the unloading area and prohibits other vehicles from entering the unloading area.
  • step S710 it is determined whether the network of the auxiliary work equipment is restored. If so, the process proceeds to step S712; otherwise, the process returns to step S708.
  • step S712 the fleet management device sends a recovery instruction to the unmanned vehicle, so that the unmanned vehicle continues the process before locking.
  • step S714 the auxiliary work equipment continues the flow.
  • step S716 the unmanned vehicle determines whether its network is interrupted. If so, the process proceeds to step S718; otherwise, the process proceeds to step S726.
  • step S7108 it is determined whether the unmanned vehicle is in the unloading area. If yes, the process goes to step S720; otherwise, the process goes to step S722.
  • step S720 the unmanned vehicle makes an emergency stop.
  • step S722 the unmanned vehicle slows down according to the existing strategy.
  • step S724 it is determined whether the network of the unmanned vehicle is restored. If so, the process proceeds to step S726; otherwise, the process returns to step S720.
  • step S726 the unmanned vehicle continues the process.
  • safety protection methods for transportation systems according to other embodiments of the present disclosure are provided.
  • the above method achieves the purpose of protecting the transportation system according to whether the network of the auxiliary operation equipment is interrupted and whether the network of the unmanned vehicle is interrupted, thereby improving the safety of the open-pit mine operation.
  • the safety protection method of the embodiment of the present disclosure realizes the safety protection control for the unmanned transportation system of the open-pit mine, and designs three safety protection mechanisms, such as the safety protection mechanism of the equipment protection circle, the safety protection mechanism of the driving path, and the safety protection mechanism of the network disconnection. It can effectively ensure the safety of auxiliary operating equipment (for example, loaders or bulldozers, etc.) and operators located in the unloading area.
  • auxiliary operating equipment for example, loaders or bulldozers, etc.
  • FIG. 8 is a schematic structural diagram illustrating a fleet management device according to some embodiments of the present disclosure. As shown in FIG. 8 , the fleet management device includes a receiving unit 802 , a setting unit 804 , an alarming unit 806 and a sending unit 808 .
  • the receiving unit 802 is configured to receive the position information and driving direction of the unmanned vehicle and the position information of the auxiliary work equipment in the unloading area.
  • the setting unit 804 is configured to set the protective ring of the auxiliary work equipment according to the position information of the auxiliary work equipment.
  • the protection ring includes an inner protection ring centered on the auxiliary work equipment and an outer protection ring surrounding the inner protection ring.
  • the alarm unit 806 is configured to perform an alarm process when it is determined that a part of the unmanned vehicle enters the outer protective circle according to the position information and the traveling direction of the unmanned vehicle.
  • the sending unit 808 is configured to send a parking instruction to the unmanned vehicle to stop the unmanned vehicle when it is determined that a part of the unmanned vehicle enters the inner protective circle according to the position information and the driving direction of the unmanned vehicle.
  • the fleet management equipment realizes the safety protection of the open-pit mine transportation system by setting the protection circle. This can prevent unmanned vehicles from colliding with auxiliary operation equipment as much as possible, thereby improving the safety of open-pit mine operations.
  • the receiving unit 802 is further configured to receive a travel direction of the auxiliary work equipment and a request message for the unmanned vehicle to enter the unloading area.
  • the setting unit 804 is also configured to set a traveling path and a path buffer for the unmanned vehicle, the path buffer being an area extending a predetermined distance to both sides of the traveling path centered on the traveling path.
  • the sending unit 808 is further configured to, after receiving the request message, return a response message to the unmanned vehicle to approve the unmanned vehicle to enter the unloading area, send the driving path to the unmanned vehicle, and send the driving path to the unmanned vehicle, and the auxiliary operation equipment enters the path buffer zone.
  • a deceleration command or a stop command is sent to the unmanned vehicle, and the part where the auxiliary work equipment enters the route buffer zone is not located in front of the driving direction of the unmanned vehicle. In the following cases, the deceleration command and stop command are not sent to the unmanned vehicle.
  • the alert unit 806 is also configured to perform alert processing if at least a portion of the auxiliary work equipment enters the path buffer.
  • the fleet management device further includes a determination unit 810 .
  • the judging unit 810 is configured to judge in real time whether at least a part of the auxiliary working equipment enters the path buffer zone according to the position information, the driving direction and the size of the auxiliary working equipment, and whether the part of the auxiliary working equipment entering the path buffer zone is located in the unmanned vehicle ahead of the direction of travel.
  • the sending unit 808 is further configured to send a parking instruction to the unmanned vehicle in the event that the receiving unit 802 cannot receive the location information of the auxiliary work equipment or the location information of the auxiliary work equipment is lost, and to the unmanned vehicle in the unloading state
  • the unmanned vehicle outside the area sends a locking instruction so that the unmanned vehicle outside the unloading area does not enter the unloading area.
  • the sending unit 808 is further configured to determine that the network of the auxiliary operating equipment is disconnected under the condition that the receiving unit 802 cannot receive the heartbeat signal from the auxiliary operating equipment, and to notify the unmanned personnel in the unloading area to
  • the driving vehicle sends a parking instruction, and sends a waiting instruction to the unmanned vehicle at the entry point of the waiting area adjacent to the unloading area so that the unmanned vehicle at the entry point remains in the waiting state, and at the receiving unit 802 After receiving the heartbeat signal again, it is determined that the auxiliary operation equipment reconnects to the network and re-binds the unloading area, and then sends a recovery instruction to the unmanned vehicle.
  • the fleet management equipment is the control center, data center and decision center of the entire open-pit mine unmanned transportation system, which can realize path planning, task management, map management, vehicle scheduling, safety protection, traffic control, and real-time monitoring. and data analysis and other functions, and realize information exchange with unmanned vehicles and auxiliary operation equipment through wireless communication devices.
  • FIG. 9 is a schematic structural diagram illustrating a fleet management device according to other embodiments of the present disclosure.
  • the fleet management device includes a memory 910 and a processor 920 . in:
  • Memory 910 may be a magnetic disk, flash memory, or any other non-volatile storage medium.
  • the memory is used to store instructions in at least one of the embodiments corresponding to FIGS. 5 , 6 and 7 .
  • the processor 920 is coupled to the memory 910 and may be implemented as one or more integrated circuits, such as a microprocessor or microcontroller.
  • the processor 920 is used to execute the instructions stored in the memory, so as to prevent the unmanned vehicle from colliding with the auxiliary operation equipment as much as possible, thereby improving the safety of the open-pit mine operation.
  • the fleet management device 1000 includes a memory 1010 and a processor 1020 .
  • Processor 1020 is coupled to memory 1010 through BUS 1030 .
  • the cluster management device 1000 can also be connected to the external storage device 1050 through the storage interface 1040 to call external data, and can also be connected to the network or another computer system (not shown) through the network interface 1060, which will not be described in detail here. .
  • FIG. 11 is a schematic structural diagram illustrating an unmanned vehicle according to some embodiments of the present disclosure.
  • the unmanned vehicle is an unmanned mining truck.
  • the unmanned vehicle 20 includes an unmanned unit 210 and an unmanned vehicle operation management unit 220, so that the functions of unmanned and automatic operation can be realized.
  • the unmanned vehicle operation management unit 220 is a terminal system of the fleet management device running on the unmanned vehicle, and is configured to receive the instruction of the fleet management device and forward it to the unmanned unit 210, and to transmit the request of the unmanned unit 210. Messages and sensor data from driverless vehicles are passed to fleet management equipment.
  • the unmanned unit 210 may include an environment perception module 211 , a navigation and positioning module 212 , a mission planning module 213 , a motion control module 214 and a communication module (eg, a wireless communication module) 215 .
  • the environment perception module 211 may include at least one of a single-line lidar, a multi-line lidar, a millimeter-wave radar, a vision sensor, and the like.
  • the environment perception module 211 is configured to obtain information about the surrounding environment of the unmanned vehicle, and to detect whether there are obstacles in front of and behind the unmanned vehicle.
  • the navigation and positioning module 212 may include at least one of a GPS (Global Positioning System, global positioning system) navigation system and an inertial navigation system.
  • the navigation and positioning module 212 is configured to obtain location information (eg, real-time location information) and driving directions of the unmanned vehicle.
  • Mission planning module 213 is configured to perform planning and decision-making of paths and missions for the unmanned vehicle.
  • the motion control module 214 is configured to perform lateral and longitudinal control of the vehicle for the unmanned vehicle.
  • lateral control refers to controlling the steering of the vehicle
  • longitudinal control refers to controlling the speed of the vehicle.
  • the communication module 215 is configured to perform data interaction between the unmanned vehicle and the fleet management device.
  • the communication mode of the communication module may include but is not limited to WIFI MESH (wireless mesh network), 4G network (the 4th generation mobile communication technology, fourth generation mobile communication technology) or 5G (the 5th generation mobile communication technology, the first Wireless communication technologies such as the fifth generation mobile communication technology) network.
  • unmanned vehicles according to some embodiments of the present disclosure have been provided.
  • the unmanned vehicle can be used in the safety protection system of the open-pit mine transportation system.
  • FIG. 12 is a schematic structural diagram illustrating an auxiliary work device according to some embodiments of the present disclosure.
  • the auxiliary work equipment 30 may be a loader, a bulldozer, or the like.
  • the auxiliary operation equipment 30 can clear the thrown materials and trim retaining walls in the unloading area, and includes an industrial computer 310 with an operation management module 312 in the unloading area, a display (ie, the aforementioned second display) 320, a positioning device (such as , a high-precision positioning device) 330 and a communication device (eg, a wireless communication device) 340.
  • the industrial computer 310 is configured to coordinately manage the unloading area operation process by running the unloading area operation management module, so that the unmanned vehicle can normally complete the work of entering, unloading and leaving the site.
  • the unloading area operation management module 312 is a terminal system of the cluster management device running on the industrial computer 310 .
  • the display 320 is configured to perform man-machine interaction with the operator, and display information such as the login interface of the unloading area operation management module, the unloading area map, the protection circle, the driving path, the path buffer zone, and the speed of the auxiliary operation equipment.
  • the positioning device 330 is configured to obtain position information (eg, real-time position information) and travel direction of the auxiliary work equipment.
  • the communication device 340 is configured to perform data interaction between the auxiliary work equipment and the fleet management equipment.
  • the communication mode of the communication device 340 may include, but is not limited to, wireless communication technologies such as WIFI MESH, 4G network, and 5G network.
  • the auxiliary operation equipment can be used in the safety protection system of the open-pit mine transportation system.
  • a safety protection system for a transportation system includes: an unmanned vehicle (for example, as shown in FIG. 11 ), auxiliary operation equipment (for example, as shown in FIG. 12 ), and fleet management equipment (for example, as shown in FIG. 12 ) 8.
  • the fleet management device shown in Figure 9 or Figure 10).
  • the present disclosure also provides a computer-readable storage medium on which computer program instructions are stored, and when the instructions are executed by a processor, implement the implementation corresponding to at least one of FIG. 5 , FIG. 6 and FIG. 7
  • FIG. 5 , FIG. 6 and FIG. 7 The steps of the method in the example.
  • embodiments of the present disclosure may be provided as a method, apparatus, or computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects.
  • the present disclosure may take the form of a computer program product embodied on one or more computer-usable non-transitory storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein .
  • computer-usable non-transitory storage media including, but not limited to, disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to function in a particular manner, such that the instructions stored in the computer-readable memory result in an article of manufacture comprising instruction means, the instructions
  • the apparatus implements the functions specified in the flow or flow of the flowcharts and/or the block or blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Emergency Alarm Devices (AREA)

Abstract

本公开提供了一种运输***的安全保护***、方法和机群管理设备。安全保护***包括:无人驾驶车辆,用于将自身的位置信息和行驶方向发送到机群管理设备;辅助作业设备,用于将自身的位置信息发送到机群管理设备;和机群管理设备,用于根据辅助作业设备的位置信息设置辅助作业设备的保护圈,保护圈包括以辅助作业设备为中心的内层保护圈和包围内层保护圈的外层保护圈,在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入外层保护圈的情况下执行报警处理,在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入内层保护圈的情况下向无人驾驶车辆发送停车指令。

Description

运输***的安全保护***、方法和机群管理设备 技术领域
本公开涉及无人驾驶技术领域,特别涉及一种运输***的安全保护***、方法和机群管理设备。
背景技术
露天矿山通常处于偏远地区且环境恶劣,而且矿区运输车辆作业司机的老龄化趋势明显,由运输司机疏忽导致的安全事故经常出现,这导致未来矿区在生产安全和人员投入等方面的经济负担将日益增加。露天矿山的无人化运输解决方案在矿区的迫切需求和现代科技发展的推动下越来越受到重视。
然而,由于用于露天矿山的作业管理任务的特殊性和复杂性,导致露天矿山无人化***的实现面临诸多问题。在卸载区,负责运输的矿山卡车是无人操控的,但是负责卸载区的辅助作业设备(例如,装载机或推土机等)则是有人操控的。因此,需要尽可能地确保整个露天矿山无人化运输***中在卸载区的辅助作业设备和操作人员的安全,这样才能保证整个矿山作业的平稳运行,最大限度地减少人员伤亡及事故损失,从而提高生产效率。
发明内容
根据本公开的一个方面,提供了一种运输***的安全保护***,包括:无人驾驶车辆,被配置为将自身的位置信息和行驶方向发送到机群管理设备;辅助作业设备,处于卸载区,被配置为将自身的位置信息发送到机群管理设备;以及所述机群管理设备,被配置为根据所述辅助作业设备的位置信息设置所述辅助作业设备的保护圈,所述保护圈包括以所述辅助作业设备为中心的内层保护圈和包围所述内层保护圈的外层保护圈,在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述外层保护圈的情况下执行报警处理,在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述内层保护圈的情况下向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶。
在一些实施例中,所述辅助作业设备还被配置为将自身的行驶方向发送到机群管理设备;所述无人驾驶车辆还被配置为向所述机群管理设备发送请求进入卸载区的请 求消息,在收到所述机群管理设备返回的响应消息后,按照所述机群管理设备规划的行驶路径进入所述卸载区;所述机群管理设备还被配置为在接收到所述请求消息后,向所述无人驾驶车辆返回响应消息以批准所述无人驾驶车辆进入所述卸载区,并且向所述无人驾驶车辆发送行驶路径,并为所述无人驾驶车辆设置路径缓冲带,所述路径缓冲带为以所述行驶路径为中心向所述行驶路径的两侧扩展预定距离的区域,根据所述辅助作业设备的位置信息、行驶方向和尺寸实时判断所述辅助作业设备的至少一部分是否进入所述路径缓冲带,在所述辅助作业设备的至少一部分进入所述路径缓冲带的情况下执行报警处理,并判断所述辅助作业设备进入所述路径缓冲带的部分是否位于所述无人驾驶车辆的行驶方向的前方,如果是,则向所述无人驾驶车辆发送减速指令或所述停车指令,否则,不向所述无人驾驶车辆发送所述减速指令和所述停车指令。
在一些实施例中,所述机群管理设备还被配置为在不能接收到所述辅助作业设备的位置信息或丢失所述辅助作业设备的位置信息的情况下向所述无人驾驶车辆发送所述停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入所述卸载区。
在一些实施例中,所述辅助作业设备还被配置为与所述卸载区绑定,并在绑定后向所述机群管理设备发送固定频率的心跳信号;所述机群管理设备还被配置为在不能接收到所述心跳信号的情况下确定所述辅助作业设备的网络断开,并向处于所述卸载区之内的无人驾驶车辆发送停车指令,以及向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变,在重新接收到所述心跳信号后确定所述辅助作业设备重新连接网络并重新绑定所述卸载区,则向所述无人驾驶车辆发送恢复指令。
在一些实施例中,所述无人驾驶车辆还被配置为在所述无人驾驶车辆位于所述卸载区的情况下,如果所述无人驾驶车辆的网络断开,则停止行驶,在所述无人驾驶车辆位于所述等待区的入场点的情况下,如果所述无人驾驶车辆的网络断开,则保持等待状态不变,在所述无人驾驶车辆位于与所述等待区相邻的行驶区的情况下,如果所述无人驾驶车辆的网络断开,则降低行驶速度并停止到在所述无人驾驶车辆的行驶方向上的与所述无人驾驶车辆距离最近的节点。
在一些实施例中,所述机群管理设备设置有第一显示器,所述第一显示器被配置为显示所述保护圈和所述路径缓冲带,并在所述机群管理设备执行报警处理时显示报警信息。
在一些实施例中,所述辅助作业设备设置有第二显示器,所述第二显示器被配置为显示所述保护圈和所述路径缓冲带,并在接收到报警信号后显示报警信息,其中,所述机群管理设备在执行报警处理时向所述第二显示器发送所述报警信号。
在一些实施例中,所述辅助作业设备被配置为响应于停车操作指令,经由所述机群管理设备向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶;或者响应于锁定操作指令,经由所述机群管理设备向处于所述卸载区之内的无人驾驶车辆发送停车指令以使得处于所述卸载区之内的无人驾驶车辆停止行驶,以及经由所述机群管理设备向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变。
根据本公开的另一个方面,提供了一种运输***的安全保护方法,包括:接收无人驾驶车辆的位置信息和行驶方向以及处于卸载区的辅助作业设备的位置信息;根据所述辅助作业设备的位置信息设置所述辅助作业设备的保护圈,所述保护圈包括以所述辅助作业设备为中心的内层保护圈和包围所述内层保护圈的外层保护圈;在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述外层保护圈的情况下执行报警处理;以及在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述内层保护圈的情况下向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶。
在一些实施例中,所述安全保护方法还包括:接收所述辅助作业设备的行驶方向和所述无人驾驶车辆的请求进入卸载区的请求消息;在接收到所述请求消息后,向所述无人驾驶车辆返回响应消息以批准所述无人驾驶车辆进入所述卸载区;向所述无人驾驶车辆发送行驶路径,并为所述无人驾驶车辆设置路径缓冲带,所述路径缓冲带为以所述行驶路径为中心向所述行驶路径的两侧扩展预定距离的区域;根据所述辅助作业设备的位置信息、行驶方向和尺寸实时判断所述辅助作业设备的至少一部分是否进入所述路径缓冲带;在所述辅助作业设备的至少一部分进入所述路径缓冲带的情况下执行报警处理;以及判断所述辅助作业设备进入所述路径缓冲带的部分是否位于所述无人驾驶车辆的行驶方向的前方,如果是,则向所述无人驾驶车辆发送减速指令或所述停车指令,否则,不向所述无人驾驶车辆发送所述减速指令和所述停车指令。
在一些实施例中,所述安全保护方法还包括:在不能接收到所述辅助作业设备的位置信息或丢失所述辅助作业设备的位置信息的情况下向所述无人驾驶车辆发送所述停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区 之外的无人驾驶车辆不进入所述卸载区。
在一些实施例中,所述安全保护方法还包括:在不能接收到来自于所述辅助作业设备的心跳信号的情况下确定所述辅助作业设备的网络断开,并向处于所述卸载区之内的无人驾驶车辆发送停车指令,以及向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变;以及在重新接收到所述心跳信号后确定所述辅助作业设备重新连接网络并重新绑定所述卸载区,则向所述无人驾驶车辆发送恢复指令。
根据本公开的另一个方面,提供了一种机群管理设备,包括:接收单元,被配置为接收无人驾驶车辆的位置信息和行驶方向以及处于卸载区的辅助作业设备的位置信息;设置单元,被配置为根据所述辅助作业设备的位置信息设置所述辅助作业设备的保护圈,所述保护圈包括以所述辅助作业设备为中心的内层保护圈和包围所述内层保护圈的外层保护圈;报警单元,被配置为在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述外层保护圈的情况下执行报警处理;以及发送单元,被配置为在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述内层保护圈的情况下向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶。
在一些实施例中,所述接收单元还被配置为接收所述辅助作业设备的行驶方向和所述无人驾驶车辆的请求进入卸载区的请求消息;所述设置单元还被配置为为所述无人驾驶车辆设置行驶路径和路径缓冲带,所述路径缓冲带为以所述行驶路径为中心向所述行驶路径的两侧扩展预定距离的区域;所述发送单元还被配置为在接收到所述请求消息后,向所述无人驾驶车辆返回响应消息以批准所述无人驾驶车辆进入所述卸载区,向所述无人驾驶车辆发送行驶路径,在所述辅助作业设备进入所述路径缓冲带的部分位于所述无人驾驶车辆的行驶方向的前方的情况下,向所述无人驾驶车辆发送减速指令或所述停车指令,在所述辅助作业设备进入所述路径缓冲带的部分不位于所述无人驾驶车辆的行驶方向的前方的情况下,不向所述无人驾驶车辆发送所述减速指令和所述停车指令;所述报警单元还被配置为在所述辅助作业设备的至少一部分进入所述路径缓冲带的情况下执行报警处理;所述机群管理设备还包括:判断单元,被配置为根据所述辅助作业设备的位置信息、行驶方向和尺寸实时判断所述辅助作业设备的至少一部分是否进入所述路径缓冲带,以及判断所述辅助作业设备进入所述路径缓冲带的部分是否位于所述无人驾驶车辆的行驶方向的前方。
在一些实施例中,所述发送单元还被配置为在所述接收单元不能接收到所述辅助作业设备的位置信息或丢失所述辅助作业设备的位置信息的情况下向所述无人驾驶车辆发送所述停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入所述卸载区。
在一些实施例中,所述发送单元还被配置为在所述接收单元不能接收到来自于所述辅助作业设备的心跳信号的情况下确定所述辅助作业设备的网络断开,并向处于所述卸载区之内的无人驾驶车辆发送停车指令,以及向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变,以及在所述接收单元重新接收到所述心跳信号后确定所述辅助作业设备重新连接网络并重新绑定所述卸载区,则向所述无人驾驶车辆发送恢复指令。
根据本公开的另一个方面,提供了一种机群管理设备,包括:存储器;以及耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如前所述的方法。
根据本公开的另一个方面,提供了一种运输***的安全保护***,包括:无人驾驶车辆、辅助作业设备以及如前所述的机群管理设备。
根据本公开的另一个方面,提供了一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现如前所述的方法。
通过以下参照附图对本公开的示例性实施例的详细描述,本公开的其它特征及其优点将会变得清楚。
附图说明
构成说明书的一部分的附图描述了本公开的实施例,并且连同说明书一起用于解释本公开的原理。
参照附图,根据下面的详细描述,可以更加清楚地理解本公开,其中:
图1是示出根据本公开一些实施例的露天矿山的无人化运输***在卸载区作业的示意图;
图2是示出根据本公开一些实施例的运输***的安全保护***的结构示意图;
图3是示出根据本公开一些实施例的运输***的安全保护***的工作示意图;
图4是示出根据本公开另一些实施例的运输***的安全保护***的工作示意图;
图5是示出根据本公开一些实施例的运输***的安全保护方法的流程图;
图6是示出根据本公开另一些实施例的运输***的安全保护方法的流程图;
图7是示出根据本公开另一些实施例的运输***的安全保护方法的流程图;
图8是示出根据本公开一些实施例的机群管理设备的结构示意图;
图9是示出根据本公开另一些实施例的机群管理设备的结构示意图;
图10是示出根据本公开另一些实施例的机群管理设备的结构示意图;
图11是示出根据本公开一些实施例的无人驾驶车辆的结构示意图;
图12是示出根据本公开一些实施例的辅助作业设备的结构示意图。
应当明白,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。此外,相同或类似的参考标号表示相同或类似的构件。
具体实施方式
现在将参照附图来详细描述本公开的各种示例性实施例。对示例性实施例的描述仅仅是说明性的,决不作为对本公开及其应用或使用的任何限制。本公开可以以许多不同的形式实现,不限于这里所述的实施例。提供这些实施例是为了使本公开透彻且完整,并且向本领域技术人员充分表达本公开的范围。应注意到:除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、材料的组分、数字表达式和数值应被解释为仅仅是示例性的,而不是作为限制。
本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的部分。“包括”或者“包含”等类似的词语意指在该词前的要素涵盖在该词后列举的要素,并不排除也涵盖其他要素的可能。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在本公开中,当描述到特定器件位于第一器件和第二器件之间时,在该特定器件与第一器件或第二器件之间可以存在居间器件,也可以不存在居间器件。当描述到特定器件连接其它器件时,该特定器件可以与所述其它器件直接连接而不具有居间器件,也可以不与所述其它器件直接连接而具有居间器件。
本公开使用的所有术语(包括技术术语或者科学术语)与本公开所属领域的普通技术人员理解的含义相同,除非另外特别定义。还应当理解,在诸如通用字典中定义的术语应当被解释为具有与它们在相关技术的上下文中的含义相一致的含义,而不应用理想化或极度形式化的意义来解释,除非这里明确地这样定义。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为说明书的一部分。
本公开解决的一个技术问题是:提供一种运输***的安全保护***,以提高露天矿山作业的安全性。下面结合附图详细描述根据本公开一些实施例的安全保护***。
图1是示出根据本公开一些实施例的露天矿山的无人化运输***在卸载区作业的示意图。
如图1所示,露天矿山区域可以包括卸载区110、等待区120和行驶区130。在作业过程中,满载的无人驾驶车辆(例如无人驾驶矿山卡车)20从行驶区130行驶到等待区120,然后由等待区120进入卸载区110,在卸载点111完成卸载任务后,空载的无人驾驶车辆20返回等待区120,然后返回行驶区130。
在卸载区110,除了存在无人驾驶车辆20,还存在辅助作业设备(例如装载机或推土机等)30和操作人员等。例如,辅助作业设备30可以是有人驾驶的设备。
具体地,无人驾驶车辆的作业流程可以如下:
(1)等待
无人驾驶车辆20接收机群管理设备(图1中未示出,后面将详细描述)下发的行驶指令,沿着行驶道路自动行驶到达等待区120的入场点121,停车等待。
(2)入场
机群管理设备根据入场点(由无人驾驶车辆通过高精度定位装置和无线通信装置反馈到机群管理设备)和卸载点(例如,该卸载点可以通过自动指派或手动指派的方式获得)自动计算生成一条卸载路径(包括入场路径和出场路径),并通过无线通信装置下发给无人驾驶车辆20。无人驾驶车辆20的无人车辆作业管理单元接收到入场路径后,将信息传输给无人驾驶车辆20的无人驾驶单元,经由无人驾驶单元决策后,控制无人驾驶车辆按照入场路径(例如该入场路径可以包括折返点112)行驶到指定卸载点111。
(3)卸载
无人驾驶车辆20的无人驾驶单元控制无人驾驶车辆在指定卸载点111卸载。
(4)出场
无人驾驶车辆20的无人车辆作业管理单元接收到出场路径后,将信息传输给无人驾驶单元,经由无人驾驶单元决策后,控制无人驾驶车辆按照出场路径行驶出卸载区,经过出场点122进入等待区120,然后返回行驶区130。
在卸载区的辅助作业设备30的作业流程可以包括:由操作人员驾驶辅助作业设备30进入卸载区110,清理无人驾驶车辆抛洒的物料,并根据现场情况修整挡土墙等。
图2是示出根据本公开一些实施例的运输***的安全保护***的结构示意图。
如图2所示,该安全保护***包括无人驾驶车辆(例如无人驾驶矿山卡车)20、辅助作业设备30和机群管理设备40。该机群管理设备40分别与该无人驾驶车辆20和该辅助作业设备30通信连接。在一些实施例中,该无人驾驶车辆20与该辅助作业设备30也可以互相通信。
图3是示出根据本公开一些实施例的运输***的安全保护***的工作示意图。
下面结合图2和图3详细描述根据本公开一些实施例的运输***的安全保护***。
无人驾驶车辆20被配置为将自身的位置信息和行驶方向发送到机群管理设备40。
如图3所示,辅助作业设备30处于卸载区110。辅助作业设备30被配置为将自身的位置信息发送到机群管理设备40。
如图2和图3所示,机群管理设备40被配置为根据辅助作业设备30的位置信息设置该辅助作业设备的保护圈。该保护圈包括以辅助作业设备30为中心的内层保护圈113和包围该内层保护圈113的外层保护圈114。例如,该内层保护圈113的半径R1的范围为4米至8米,该外层保护圈的半径R2的范围为16米至20米。当然,本领域技术人员能够理解,这里的内层保护圈和外层保护圈的半径的数值仅是示例性的,本公开的范围并不仅限于此。该内层保护圈和该外层保护圈的半径可以根据设备的具体尺寸来设定。
需要说明的是,虽然图3中示出的内层保护圈和外层保护圈的形状为圆形,但是本公开的范围并不仅限于此。该内层保护圈和该外层保护圈的形状也可以是其他形状,例如正方形或六边形等多边形。
该机群管理设备40还被配置为在根据无人驾驶车辆20的位置信息和行驶方向确定该无人驾驶车辆的一部分进入外层保护圈114的情况下执行报警处理,在根据该无人驾驶车辆20的位置信息和行驶方向确定该无人驾驶车辆的一部分进入内层保护圈113的情况下向无人驾驶车辆发送停车指令以使得该无人驾驶车辆停止行驶。
在一些实施例中,如图2所示,机群管理设备40设置有第一显示器410。该第一显示器410被配置为显示保护圈113和114,并在机群管理设备执行报警处理时显示报警信息。
例如,通过机群管理设备40设置辅助作业设备30的协同作业保护圈的形状及其 参数。保护圈以辅助作业设备的几何中心为圆心,分为两层保护圈,分别是内层保护圈(也可以称为急停保护圈)和外层保护圈(也可以称为警报保护圈)。当处于卸载区的无人驾驶车辆的任何部分进入外层保护圈(即无人驾驶车辆与辅助作业设备的几何中心的距离R小于R2)时,第一显示器可以显示出外层保护圈的颜色变为红色,从而显示报警信息,机群管理设备40通过无线通信装置将报警信号发送给无人驾驶车辆20,从而执行报警。当处于卸载区的无人驾驶车辆的任何部分进入内层保护圈(即R<R1)时,内层保护圈的颜色可以变成红色,第一显示器显示报警信息,并且机群管理设备发出报警声音以及通过无线通信装置将停车指令发送给无人驾驶车辆20,使得无人驾驶车辆20紧急停车。
在另一些实施例中,辅助作业设备30设置有第二显示器(图2中未示出)。该第二显示器被配置为显示保护圈,并在接收到报警信号后显示报警信息。这里,机群管理设备在执行报警处理时向第二显示器发送报警信号。例如,当处于卸载区的无人驾驶车辆的任何部分进入外层保护圈时,机群管理设备可以向第二显示器发送第一报警信号,使得辅助作业设备的第二显示器可以显示出外层保护圈的颜色变为红色;当处于卸载区的无人驾驶车辆的任何部分进入内层保护圈时,机群管理设备可以向第二显示器发送第二报警信号,使得辅助作业设备的第二显示器可以显示出内层保护圈的颜色变为红色。这样可以起到提醒辅助作业设备上的操作人员的作用,防止出现事故。
至此,提供了根据本公开一些实施例的运输***的安全保护***。该安全保护***包括:无人驾驶车辆,被配置为将自身的位置信息和行驶方向发送到机群管理设备;辅助作业设备,处于卸载区,被配置为将自身的位置信息发送到机群管理设备;以及机群管理设备,被配置为根据辅助作业设备的位置信息设置辅助作业设备的保护圈,该保护圈包括以辅助作业设备为中心的内层保护圈和包围内层保护圈的外层保护圈,在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入外层保护圈的情况下执行报警处理,在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入内层保护圈的情况下向无人驾驶车辆发送停车指令以使得无人驾驶车辆停止行驶。这样可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
在一些实施例中,当无人驾驶车辆进入内层保护圈并触发紧急停车后,辅助作业设备可以驶入安全区域,待危险解除后,***恢复正常工作状态,无人驾驶车辆继续进行卸载作业。
图4是示出根据本公开另一些实施例的运输***的安全保护***的工作示意图。
在一些实施例中,辅助作业设备30还被配置为将自身的行驶方向发送到机群管理设备40。
在一些实施例中,如图4所示,无人驾驶车辆20还被配置为向机群管理设备40发送请求进入卸载区的请求消息,在收到机群管理设备40返回的响应消息后,按照机群管理设备40规划的行驶路径115进入卸载区110。
在一些实施例中,如图4所示,机群管理设备40还被配置为在接收到请求消息后,向无人驾驶车辆20返回响应消息以批准无人驾驶车辆20进入卸载区110,并且向无人驾驶车辆20发送行驶路径115,并为无人驾驶车辆20设置路径缓冲带116。该路径缓冲带116为以行驶路径115为中心向该行驶路径的两侧扩展预定距离的区域。例如,该预定距离的范围为3米至5米。当然,本领域技术人员能够理解,这里的预定距离的数值仅是示例性的,本公开的范围并不仅限于此。该预定距离可以根据设备的具体尺寸来设定。
该机群管理设备40还被配置为根据辅助作业设备30的位置信息、行驶方向和尺寸(例如机群管理设备可以预先存储有辅助作业设备的尺寸)实时判断该辅助作业设备30的至少一部分是否进入路径缓冲带116,在该辅助作业设备的至少一部分进入该路径缓冲带的情况下执行报警处理,并判断辅助作业设备进入该路径缓冲带的部分是否位于无人驾驶车辆20的行驶方向的前方,如果是,则向无人驾驶车辆20发送减速指令或停车指令,否则,不向无人驾驶车辆20发送减速指令和停车指令。
在上述实施例中,无人驾驶车辆进入卸载区的申请获得机群管理设备批准后,无人驾驶车辆沿着机群管理设备规划的行驶路径进入卸载区。这里,机群管理设备可以根据无人驾驶车辆的位置信息和卸载点自动计算生成无人驾驶车辆的行驶路径。然后,机群管理设备设置一条路径缓冲带,该路径缓冲带以行驶路径为中心,向行驶路径的左右两侧各扩展预定距离L的区域。第一显示器还被配置为显示该路径缓冲带。在第一显示器的卸载地图界面中可以将该缓冲带的颜色显示为绿色。随着辅助作业设备进入卸载区,其位置会实时上传给机群管理设备,机群管理设备根据辅助作业设备的位置信息、行驶方向、实际大小尺寸和运行速度等做出安全判断。如果辅助作业设备的任何部位进入路径缓冲带,第一显示器显示的路径缓冲带的颜色可以变成红色,从而显示报警信息,并且发出报警声音。另外,辅助作业设备的第二显示器也被配置为显示该路径缓冲带。机群管理设备通过无线通信装置将报警信号发送给辅助作业设备, 使得第二显示器显示的路径缓冲带的颜色也变成红色,起到报警的作用。
如果确定辅助作业设备闯入路径缓冲带的部分是在无人驾驶车辆的行驶方向的前方,则机群管理设备通过无线通信装置给无人驾驶车辆下发减速指令或停车指令,如果确定辅助作业设备闯入路径缓冲带的部分是无人驾驶车辆的行驶方向的后方,则机群管理设备可以不作处理。这样可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
在一些实施例中,机群管理设备40还被配置为在不能接收到辅助作业设备的位置信息或丢失辅助作业设备的位置信息的情况下向无人驾驶车辆20发送停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入卸载区110。
在该实施例中,无人驾驶车辆进入卸载区的申请获得机群管理设备批准并进入卸载区后,辅助作业设备需要实时将其位置信息上传给机群管理设备,若辅助作业设备的位置信息丢失,为了确保辅助作业设备及操作人员的安全,无人驾驶车辆不论当前处于什么状态,立即紧急停止。
在一些实施例中,辅助作业设备30还被配置为与卸载区绑定,并在绑定后向机群管理设备40发送固定频率的心跳信号。
机群管理设备40还被配置为在不能接收到心跳信号的情况下确定辅助作业设备30的网络断开,并向处于卸载区110之内的无人驾驶车辆发送停车指令,以及向在与卸载区110相邻的等待区120的入场点121的无人驾驶车辆发送等待指令以使得处于该入场点121的无人驾驶车辆保持等待状态不变,在重新接收到心跳信号后确定辅助作业设备30重新连接网络并重新绑定卸载区,则向无人驾驶车辆发送恢复指令。
在上述实施例中,辅助作业设备需要与其指定要进入的卸载区绑定,绑定后辅助作业设备通过无线通信装置向机群管理设备持续不断地发送固定频率的心跳信号。机群管理设备如果不能接收到心跳信号,则确定辅助作业设备的网络断开,立即做出如下处理:向处于卸载区内的无人驾驶车辆发送停车指令以使其立即停车;锁定卸载区,使得处于卸载区外的无人驾驶车辆无论其是否申请进入卸载区,全部禁止入场。在辅助作业设备网络重新上线并匹配绑定卸载区后,机群管理设备发送恢复指令以使得无人驾驶车辆继续原流程(即在被锁定前的流程)。这样可以提高露天矿山作业的安全性。
在一些实施例中,无人驾驶车辆20还被配置为在无人驾驶车辆位于卸载区110 的情况下,如果该无人驾驶车辆的网络断开,则停止行驶,在该无人驾驶车辆位于等待区120的入场点121的情况下,如果该无人驾驶车辆的网络断开,则保持等待状态不变,在该无人驾驶车辆位于与等待区120相邻的行驶区130的情况下,如果该无人驾驶车辆的网络断开,则降低行驶速度并停止到在该无人驾驶车辆的行驶方向上的与该无人驾驶车辆距离最近的节点。
在上述实施例中,当位于卸载区的无人驾驶车辆的网络断开时,立即停车;当位于卸载区之外的入场点等待的无人驾驶车辆的网络断开时,保持其等待状态不变;当位于行驶区的无人驾驶车辆的网络断开时,按照已有策略降速慢行并停到前方道路节点。在无人驾驶车辆的网络恢复重新上线后,继续原流程。这样可以提高露天矿山作业的安全性。
在一些实施例中,辅助作业设备30被配置为响应于停车操作指令,经由机群管理设备40向无人驾驶车辆20发送停车指令以使得该无人驾驶车辆停止行驶;或者响应于锁定操作指令,经由机群管理设备40向处于卸载区之内的无人驾驶车辆发送停车指令以使得处于卸载区之内的无人驾驶车辆停止行驶,以及经由机群管理设备40向在与卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于该入场点的无人驾驶车辆保持等待状态不变。
在上述实施例中,辅助作业设备具有紧急停车功能。可以通过点击显示界面上的急停按钮,通过无线通信装置向机群管理设备发送停车指令,然后机群管理设备将停车指令转发给无人驾驶车辆以使得无人驾驶车辆紧急停车。此外,辅助作业设备还具有区域锁定功能,当被按下“锁定”按钮后,向机群管理设备发送停车指令和等待指令等,机群管理设备向处于卸载区之内的无人驾驶车辆转发停车指令以及向在入场点的无人驾驶车辆转发等待指令。这样实现了辅助作业设备对区域的锁定,这样可以在出现特殊情况时可以由辅助作业设备上的操作人员来锁定区域,从而提高露天矿山作业的安全性。
图5是示出根据本公开一些实施例的运输***的安全保护方法的流程图。如图5所示,该安全保护方法包括步骤S502至S508。
在步骤S502,接收无人驾驶车辆的位置信息和行驶方向以及处于卸载区的辅助作业设备的位置信息。
在步骤S504,根据辅助作业设备的位置信息设置辅助作业设备的保护圈,该保护圈包括以辅助作业设备为中心的内层保护圈和包围内层保护圈的外层保护圈。
在步骤S506,在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入外层保护圈的情况下执行报警处理。
在步骤S508,在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入内层保护圈的情况下向无人驾驶车辆发送停车指令以使得无人驾驶车辆停止行驶。
至此,提供了根据本公开一些实施例的运输***的安全保护方法。在该方法中,设定处于卸载区的辅助作业设备的保护圈,通过分析无人驾驶车辆与辅助作业设备是否有接触或产生碰撞的可能性来保障作业安全。这可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
图6是示出根据本公开另一些实施例的运输***的安全保护方法的流程图。如图6所示,该安全保护方法包括步骤S602至S616
在步骤S602,接收辅助作业设备的位置信息和行驶方向、无人驾驶车辆的位置信息和行驶方向以及无人驾驶车辆的请求进入卸载区的请求消息。
在步骤S604,在接收到请求消息后,向无人驾驶车辆返回响应消息以批准无人驾驶车辆进入卸载区。
在步骤S606,向无人驾驶车辆发送行驶路径,并为无人驾驶车辆设置路径缓冲带,该路径缓冲带为以行驶路径为中心向行驶路径的两侧扩展预定距离的区域。
在步骤S608,根据辅助作业设备的位置信息、行驶方向和尺寸实时判断辅助作业设备的至少一部分是否进入路径缓冲带。
在步骤S610,在辅助作业设备的至少一部分进入路径缓冲带的情况下执行报警处理。
在步骤S612,判断辅助作业设备进入路径缓冲带的部分是否位于无人驾驶车辆的行驶方向的前方。如果是,则过程进入步骤S614,否则过程进入步骤S616。
在步骤S614,向无人驾驶车辆发送减速指令或停车指令。这样实现对无人驾驶车辆的减速处理或停车处理。
在步骤S616,不向无人驾驶车辆发送减速指令和停车指令。
至此,提供了根据本公开另一些实施例的运输***的安全保护方法。该方法通过设置路径缓冲带的方式实现了露天矿山运输***的安全保护。这可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
在一些实施例中,该安全保护方法还包括:在不能接收到辅助作业设备的位置信 息或丢失辅助作业设备的位置信息的情况下向无人驾驶车辆发送停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入卸载区。
在一些实施例中,该安全保护方法还包括:在不能接收到来自于辅助作业设备的心跳信号的情况下确定辅助作业设备的网络断开,并向处于卸载区之内的无人驾驶车辆发送停车指令,以及向在与卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于入场点的无人驾驶车辆保持等待状态不变;以及在重新接收到心跳信号后确定辅助作业设备重新连接网络并重新绑定卸载区,则向无人驾驶车辆发送恢复指令。
图7是示出根据本公开另一些实施例的运输***的安全保护方法的流程图。如图7所示,该安全保护方法包括步骤S702至S726。辅助作业设备向机群管理设备发送固定频率的网络心跳信号。
在步骤S702,由机群管理设备判断辅助作业设备的网络是否中断。如果是,则过程进入步骤S704;否则,过程进入步骤S714。
在步骤S704,由机群管理设备判断卸载区内是否有无人驾驶车辆。如果是,则过程进入步骤S706;否则,过程进入步骤S708。
在步骤S706,机群管理设备向无人驾驶车辆发送停车指令。
在步骤S708,机群管理设备锁定卸载区,禁止其他车辆进入卸载区。
在步骤S710,判断辅助作业设备的网络是否恢复。如果是,则过程进入步骤S712;否则,过程返回步骤S708。
在步骤S712,机群管理设备向无人驾驶车辆发送恢复指令,从而使得无人驾驶车辆继续锁定前的流程。
在步骤S714,辅助作业设备继续流程。
至此,实现了根据辅助作业设备的网络是否中断来对运输***进行安全保护的目的。
在步骤S716,无人驾驶车辆判断其网络是否中断。如果是,则过程进入步骤S718;否则,过程进入步骤S726。
在步骤S718,判断无人驾驶车辆是否在卸载区内。如果是,则过程进入步骤S720;否则,过程进入步骤S722。
在步骤S720,无人驾驶车辆紧急停车。
在步骤S722,无人驾驶车辆按照已有策略降速慢行。
在步骤S724,判断无人驾驶车辆的网络是否恢复。如果是,则过程进入步骤S726;否则,过程返回步骤S720。
在步骤S726,无人驾驶车辆继续流程。
至此,实现了根据无人驾驶车辆的网络是否中断来对运输***进行安全保护的目的。
在上述实施例中,提供了根据本公开另一些实施例的运输***的安全保护方法。上述方法实现了根据辅助作业设备的网络是否中断和根据无人驾驶车辆的网络是否中断来对运输***进行安全保护的目的,从而提高露天矿山作业的安全性。
本公开实施例的安全保护方法实现了针对露天矿山无人化运输***的安全保护控制,设计了设备保护圈安全保护机制、行驶路径安全保护机制和网络断开安全保护机制等三重安全保护机制,可以有效保证位于卸载区的辅助作业设备(例如,装载机或推土机等)以及操作人员的安全。
图8是示出根据本公开一些实施例的机群管理设备的结构示意图。如图8所示,该机群管理设备包括接收单元802、设置单元804、报警单元806和发送单元808。
接收单元802被配置为接收无人驾驶车辆的位置信息和行驶方向以及处于卸载区的辅助作业设备的位置信息。
设置单元804被配置为根据辅助作业设备的位置信息设置辅助作业设备的保护圈。该保护圈包括以辅助作业设备为中心的内层保护圈和包围内层保护圈的外层保护圈。
报警单元806被配置为在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入外层保护圈的情况下执行报警处理。
发送单元808被配置为在根据无人驾驶车辆的位置信息和行驶方向确定无人驾驶车辆的一部分进入内层保护圈的情况下向无人驾驶车辆发送停车指令以使得无人驾驶车辆停止行驶。
至此,提供了根据本公开一些实施例的机群管理设备。该机群管理设备通过设置保护圈的方式实现了露天矿山运输***的安全保护。这可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
在一些实施例中,接收单元802还被配置为接收辅助作业设备的行驶方向和无人驾驶车辆的请求进入卸载区的请求消息。
设置单元804还被配置为为无人驾驶车辆设置行驶路径和路径缓冲带,该路径缓 冲带为以行驶路径为中心向该行驶路径的两侧扩展预定距离的区域。
发送单元808还被配置为在接收到请求消息后,向无人驾驶车辆返回响应消息以批准无人驾驶车辆进入卸载区,向无人驾驶车辆发送行驶路径,在辅助作业设备进入路径缓冲带的部分位于无人驾驶车辆的行驶方向的前方的情况下,向无人驾驶车辆发送减速指令或停车指令,在辅助作业设备进入路径缓冲带的部分不位于无人驾驶车辆的行驶方向的前方的情况下,不向无人驾驶车辆发送减速指令和停车指令。
报警单元806还被配置为在辅助作业设备的至少一部分进入路径缓冲带的情况下执行报警处理。
在一些实施例中,如图8所示,机群管理设备还包括判断单元810。该判断单元810被配置为根据辅助作业设备的位置信息、行驶方向和尺寸实时判断辅助作业设备的至少一部分是否进入路径缓冲带,以及判断辅助作业设备进入路径缓冲带的部分是否位于无人驾驶车辆的行驶方向的前方。
在一些实施例中,发送单元808还被配置为在接收单元802不能接收到辅助作业设备的位置信息或丢失辅助作业设备的位置信息的情况下向无人驾驶车辆发送停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入卸载区。
在一些实施例中,发送单元808还被配置为在接收单元802不能接收到来自于辅助作业设备的心跳信号的情况下确定辅助作业设备的网络断开,并向处于卸载区之内的无人驾驶车辆发送停车指令,以及向在与卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于入场点的无人驾驶车辆保持等待状态不变,以及在接收单元802重新接收到心跳信号后确定辅助作业设备重新连接网络并重新绑定卸载区,则向无人驾驶车辆发送恢复指令。
在上述实施例中,机群管理设备是整个露天矿山无人化运输***的控制中心、数据中心和决策中心,能够实现路径规划、任务管理、地图管理、车辆调度、安全保护、交通控制、实时监控和数据分析等功能,通过无线通信装置实现与无人驾驶车辆、辅助作业设备之间的信息交互。
图9是示出根据本公开另一些实施例的机群管理设备的结构示意图。该机群管理设备包括存储器910和处理器920。其中:
存储器910可以是磁盘、闪存或其它任何非易失性存储介质。存储器用于存储图5、图6和图7中的至少一个所对应实施例中的指令。
处理器920耦接至存储器910,可以作为一个或多个集成电路来实施,例如微处理器或微控制器。该处理器920用于执行存储器中存储的指令,可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
在一些实施例中,还可以如图10所示,该机群管理设备1000包括存储器1010和处理器1020。处理器1020通过BUS总线1030耦合至存储器1010。该机群管理设备1000还可以通过存储接口1040连接至外部存储装置1050以便调用外部数据,还可以通过网络接口1060连接至网络或者另外一台计算机***(未标出),此处不再进行详细介绍。
在该实施例中,通过存储器存储数据指令,再通过处理器处理上述指令,可以尽量防止无人驾驶车辆与辅助作业设备相撞,从而提高露天矿山作业的安全性。
图11是示出根据本公开一些实施例的无人驾驶车辆的结构示意图。例如,该无人驾驶车辆为无人驾驶矿山卡车。
如图11所示,该无人驾驶车辆20包括无人驾驶单元210和无人车辆作业管理单元220,从而能够实现无人驾驶和自动作业的功能。
该无人车辆作业管理单元220是机群管理设备运行在无人驾驶车辆上的终端***,被配置为接收机群管理设备的指令并转发给无人驾驶单元210,以及将无人驾驶单元210的请求消息和无人驾驶车辆的传感器数据传递到机群管理设备。
如图11所示,该无人驾驶单元210可以包括环境感知模块211、导航定位模块212、任务规划模块213、运动控制模块214和通信模块(例如,无线通信模块)215。
环境感知模块211可以包括单线激光雷达、多线激光雷达、毫米波雷达和视觉传感器等中的至少一个。环境感知模块211被配置为获取无人驾驶车辆的周围环境信息,检测无人驾驶车辆的前方和后方是否存在障碍物。
导航定位模块212可以包括GPS(Global Positioning System,全球定位***)导航***和惯性导航***中的至少一个。导航定位模块212被配置为获得无人驾驶车辆的位置信息(例如,实时位置信息)和行驶方向。
任务规划模块213被配置为对无人驾驶车辆执行路径和任务的规划和决策。
运动控制模块214被配置为对无人驾驶车辆执行车辆的横向控制和纵向控制。这里,横向控制是指控制车辆的转向,纵向控制是指控制车辆的速度。
通信模块215被配置为执行无人驾驶车辆与机群管理设备之间的数据交互。例如,该通信模块的通信方式可以包括但不局限于WIFI MESH(无线mesh网络)、4G网 络(the 4th generation mobile communication technology,***移动通信技术)或5G(the 5th generation mobile communication technology,第五代移动通信技术)网络等无线通信技术。
至此,提供了根据本公开一些实施例的无人驾驶车辆。该无人驾驶车辆可以应用在露天矿山运输***的安全保护***中。
图12是示出根据本公开一些实施例的辅助作业设备的结构示意图。
例如,辅助作业设备30可以为装载机或推土机等。该辅助作业设备30可以在卸载区清理抛洒的物料和修整挡土墙,其包括具有卸载区作业管理模块312的工控机310、显示器(即前面所述的第二显示器)320、定位装置(例如,高精度定位装置)330和通信装置(例如,无线通信装置)340。
工控机310被配置为通过运行卸载区作业管理模块,对卸载区作业流程进行协同管理,以使无人驾驶车辆能够正常完成入场、卸载与离场等工作。
卸载区作业管理模块312为机群管理设备运行在工控机310上的终端***。
显示器320被配置为与操作人员进行人机交互,并显示卸载区作业管理模块的登录界面、卸载区地图、保护圈、行驶路径、路径缓冲带以及辅助作业设备的速度等信息。
定位装置330被配置为获得辅助作业设备的位置信息(例如,实时位置信息)和行驶方向。
通信装置340被配置为执行辅助作业设备与机群管理设备之间的数据交互。该通信装置340的通信方式可以包括但不局限于WIFI MESH、4G网络、5G网络等无线通信技术。
至此,提供了根据本公开一些实施例的辅助作业设备。该辅助作业设备可以应用在露天矿山运输***的安全保护***中。
在本公开的一些实施例中,提供一种运输***的安全保护***。该安全保护***包括:无人驾驶车辆(例如,如图11所示的无人驾驶车辆)、辅助作业设备(例如,如图12所示的辅助作业设备)以及机群管理设备(例如,如图8、图9或图10所示的机群管理设备)。
在一些实施例中,本公开还提供了一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现图5、图6和图7中的至少一个所对应实施例中的方法的步骤。本领域内的技术人员应明白,本公开的实施例可提供为方法、装置、 或计算机程序产品。因此,本公开可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开可采用在一个或多个其中包含有计算机可用程序代码的计算机可用非瞬时性存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开是参照根据本公开实施例的方法、设备(***)和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
至此,已经详细描述了本公开。为了避免遮蔽本公开的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
虽然已经通过示例对本公开的一些特定实施例进行了详细说明,但是本领域的技术人员应该理解,以上示例仅是为了进行说明,而不是为了限制本公开的范围。本领域的技术人员应该理解,可在不脱离本公开的范围和精神的情况下,对以上实施例进行修改。本公开的范围由所附权利要求来限定。

Claims (19)

  1. 一种运输***的安全保护***,包括:
    无人驾驶车辆,被配置为将自身的位置信息和行驶方向发送到机群管理设备;
    辅助作业设备,处于卸载区,被配置为将自身的位置信息发送到机群管理设备;以及
    所述机群管理设备,被配置为根据所述辅助作业设备的位置信息设置所述辅助作业设备的保护圈,所述保护圈包括以所述辅助作业设备为中心的内层保护圈和包围所述内层保护圈的外层保护圈,在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述外层保护圈的情况下执行报警处理,在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述内层保护圈的情况下向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶。
  2. 根据权利要求1所述的安全保护***,其中,
    所述辅助作业设备还被配置为将自身的行驶方向发送到机群管理设备;
    所述无人驾驶车辆还被配置为向所述机群管理设备发送请求进入卸载区的请求消息,在收到所述机群管理设备返回的响应消息后,按照所述机群管理设备规划的行驶路径进入所述卸载区;
    所述机群管理设备还被配置为在接收到所述请求消息后,向所述无人驾驶车辆返回响应消息以批准所述无人驾驶车辆进入所述卸载区,并且向所述无人驾驶车辆发送行驶路径,并为所述无人驾驶车辆设置路径缓冲带,所述路径缓冲带为以所述行驶路径为中心向所述行驶路径的两侧扩展预定距离的区域,根据所述辅助作业设备的位置信息、行驶方向和尺寸实时判断所述辅助作业设备的至少一部分是否进入所述路径缓冲带,在所述辅助作业设备的至少一部分进入所述路径缓冲带的情况下执行报警处理,并判断所述辅助作业设备进入所述路径缓冲带的部分是否位于所述无人驾驶车辆的行驶方向的前方,如果是,则向所述无人驾驶车辆发送减速指令或所述停车指令,否则,不向所述无人驾驶车辆发送所述减速指令和所述停车指令。
  3. 根据权利要求1或2所述的安全保护***,其中,
    所述机群管理设备还被配置为在不能接收到所述辅助作业设备的位置信息或丢 失所述辅助作业设备的位置信息的情况下向所述无人驾驶车辆发送所述停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入所述卸载区。
  4. 根据权利要求1或2所述的安全保护***,其中,
    所述辅助作业设备还被配置为与所述卸载区绑定,并在绑定后向所述机群管理设备发送固定频率的心跳信号;
    所述机群管理设备还被配置为在不能接收到所述心跳信号的情况下确定所述辅助作业设备的网络断开,并向处于所述卸载区之内的无人驾驶车辆发送停车指令,以及向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变,在重新接收到所述心跳信号后确定所述辅助作业设备重新连接网络并重新绑定所述卸载区,则向所述无人驾驶车辆发送恢复指令。
  5. 根据权利要求4所述的安全保护***,其中,
    所述无人驾驶车辆还被配置为在所述无人驾驶车辆位于所述卸载区的情况下,如果所述无人驾驶车辆的网络断开,则停止行驶,在所述无人驾驶车辆位于所述等待区的入场点的情况下,如果所述无人驾驶车辆的网络断开,则保持等待状态不变,在所述无人驾驶车辆位于与所述等待区相邻的行驶区的情况下,如果所述无人驾驶车辆的网络断开,则降低行驶速度并停止到在所述无人驾驶车辆的行驶方向上的与所述无人驾驶车辆距离最近的节点。
  6. 根据权利要求2所述的安全保护***,其中,
    所述机群管理设备设置有第一显示器,所述第一显示器被配置为显示所述保护圈和所述路径缓冲带,并在所述机群管理设备执行报警处理时显示报警信息。
  7. 根据权利要求2所述的安全保护***,其中,
    所述辅助作业设备设置有第二显示器,所述第二显示器被配置为显示所述保护圈和所述路径缓冲带,并在接收到报警信号后显示报警信息,其中,所述机群管理设备在执行报警处理时向所述第二显示器发送所述报警信号。
  8. 根据权利要求1所述的安全保护***,其中,
    所述辅助作业设备被配置为响应于停车操作指令,经由所述机群管理设备向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶;或者响应于锁定操作指令,经由所述机群管理设备向处于所述卸载区之内的无人驾驶车辆发送停车指令以使得处于所述卸载区之内的无人驾驶车辆停止行驶,以及经由所述机群管理设备向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变。
  9. 一种运输***的安全保护方法,包括:
    接收无人驾驶车辆的位置信息和行驶方向以及处于卸载区的辅助作业设备的位置信息;
    根据所述辅助作业设备的位置信息设置所述辅助作业设备的保护圈,所述保护圈包括以所述辅助作业设备为中心的内层保护圈和包围所述内层保护圈的外层保护圈;
    在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述外层保护圈的情况下执行报警处理;以及
    在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述内层保护圈的情况下向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶。
  10. 根据权利要求9所述的安全保护方法,还包括:
    接收所述辅助作业设备的行驶方向和所述无人驾驶车辆的请求进入卸载区的请求消息;
    在接收到所述请求消息后,向所述无人驾驶车辆返回响应消息以批准所述无人驾驶车辆进入所述卸载区;
    向所述无人驾驶车辆发送行驶路径,并为所述无人驾驶车辆设置路径缓冲带,所述路径缓冲带为以所述行驶路径为中心向所述行驶路径的两侧扩展预定距离的区域;
    根据所述辅助作业设备的位置信息、行驶方向和尺寸实时判断所述辅助作业设备的至少一部分是否进入所述路径缓冲带;
    在所述辅助作业设备的至少一部分进入所述路径缓冲带的情况下执行报警处理; 以及
    判断所述辅助作业设备进入所述路径缓冲带的部分是否位于所述无人驾驶车辆的行驶方向的前方,如果是,则向所述无人驾驶车辆发送减速指令或所述停车指令,否则,不向所述无人驾驶车辆发送所述减速指令和所述停车指令。
  11. 根据权利要求9或10所述的安全保护方法,还包括:
    在不能接收到所述辅助作业设备的位置信息或丢失所述辅助作业设备的位置信息的情况下向所述无人驾驶车辆发送所述停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入所述卸载区。
  12. 根据权利要求9或10所述的安全保护方法,还包括:
    在不能接收到来自于所述辅助作业设备的心跳信号的情况下确定所述辅助作业设备的网络断开,并向处于所述卸载区之内的无人驾驶车辆发送停车指令,以及向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变;以及
    在重新接收到所述心跳信号后确定所述辅助作业设备重新连接网络并重新绑定所述卸载区,则向所述无人驾驶车辆发送恢复指令。
  13. 一种机群管理设备,包括:
    接收单元,被配置为接收无人驾驶车辆的位置信息和行驶方向以及处于卸载区的辅助作业设备的位置信息;
    设置单元,被配置为根据所述辅助作业设备的位置信息设置所述辅助作业设备的保护圈,所述保护圈包括以所述辅助作业设备为中心的内层保护圈和包围所述内层保护圈的外层保护圈;
    报警单元,被配置为在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述外层保护圈的情况下执行报警处理;以及
    发送单元,被配置为在根据所述无人驾驶车辆的位置信息和行驶方向确定所述无人驾驶车辆的一部分进入所述内层保护圈的情况下向所述无人驾驶车辆发送停车指令以使得所述无人驾驶车辆停止行驶。
  14. 根据权利要求13所述的机群管理设备,其中,
    所述接收单元还被配置为接收所述辅助作业设备的行驶方向和所述无人驾驶车辆的请求进入卸载区的请求消息;
    所述设置单元还被配置为为所述无人驾驶车辆设置行驶路径和路径缓冲带,所述路径缓冲带为以所述行驶路径为中心向所述行驶路径的两侧扩展预定距离的区域;
    所述发送单元还被配置为在接收到所述请求消息后,向所述无人驾驶车辆返回响应消息以批准所述无人驾驶车辆进入所述卸载区,向所述无人驾驶车辆发送行驶路径,在所述辅助作业设备进入所述路径缓冲带的部分位于所述无人驾驶车辆的行驶方向的前方的情况下,向所述无人驾驶车辆发送减速指令或所述停车指令,在所述辅助作业设备进入所述路径缓冲带的部分不位于所述无人驾驶车辆的行驶方向的前方的情况下,不向所述无人驾驶车辆发送所述减速指令和所述停车指令;
    所述报警单元还被配置为在所述辅助作业设备的至少一部分进入所述路径缓冲带的情况下执行报警处理;
    所述机群管理设备还包括:
    判断单元,被配置为根据所述辅助作业设备的位置信息、行驶方向和尺寸实时判断所述辅助作业设备的至少一部分是否进入所述路径缓冲带,以及判断所述辅助作业设备进入所述路径缓冲带的部分是否位于所述无人驾驶车辆的行驶方向的前方。
  15. 根据权利要求13或14所述的机群管理设备,其中,
    所述发送单元还被配置为在所述接收单元不能接收到所述辅助作业设备的位置信息或丢失所述辅助作业设备的位置信息的情况下向所述无人驾驶车辆发送所述停车指令,并向处于卸载区之外的无人驾驶车辆发送锁定指令以使得该处于卸载区之外的无人驾驶车辆不进入所述卸载区。
  16. 根据权利要求13或14所述的机群管理设备,其中,
    所述发送单元还被配置为在所述接收单元不能接收到来自于所述辅助作业设备的心跳信号的情况下确定所述辅助作业设备的网络断开,并向处于所述卸载区之内的无人驾驶车辆发送停车指令,以及向在与所述卸载区相邻的等待区的入场点的无人驾驶车辆发送等待指令以使得处于所述入场点的无人驾驶车辆保持等待状态不变,以及在所述接收单元重新接收到所述心跳信号后确定所述辅助作业设备重新连接网络并 重新绑定所述卸载区,则向所述无人驾驶车辆发送恢复指令。
  17. 一种机群管理设备,包括:
    存储器;以及
    耦接至所述存储器的处理器,所述处理器被配置为基于存储在所述存储器的指令执行如权利要求9至12任意一项所述的方法。
  18. 一种运输***的安全保护***,包括:
    无人驾驶车辆、辅助作业设备以及如权利要求13至17任意一项所述的机群管理设备。
  19. 一种计算机可读存储介质,其上存储有计算机程序指令,该指令被处理器执行时实现如权利要求9至12任意一项所述的方法。
PCT/CN2020/138610 2020-12-23 2020-12-23 运输***的安全保护***、方法和机群管理设备 WO2022099873A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/138610 WO2022099873A1 (zh) 2020-12-23 2020-12-23 运输***的安全保护***、方法和机群管理设备
AU2020476749A AU2020476749A1 (en) 2020-12-23 2020-12-23 Safety protection system and method for transportation system and cluster management device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/138610 WO2022099873A1 (zh) 2020-12-23 2020-12-23 运输***的安全保护***、方法和机群管理设备

Publications (1)

Publication Number Publication Date
WO2022099873A1 true WO2022099873A1 (zh) 2022-05-19

Family

ID=81600725

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/138610 WO2022099873A1 (zh) 2020-12-23 2020-12-23 运输***的安全保护***、方法和机群管理设备

Country Status (2)

Country Link
AU (1) AU2020476749A1 (zh)
WO (1) WO2022099873A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190373476A1 (en) * 2018-05-29 2019-12-05 Walmart Apollo, Llc Unmanned retail delivery vehicle protection systems and methods of protection
CN110979315A (zh) * 2019-12-24 2020-04-10 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输***的车辆保护圈安全控制方法及***
CN110985127A (zh) * 2019-12-24 2020-04-10 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输***的移动终端工作方法及***
CN111260913A (zh) * 2020-01-16 2020-06-09 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输***的矿用卡车卸载方法及***
CN111552291A (zh) * 2020-05-08 2020-08-18 江苏徐工工程机械研究院有限公司 露天矿无人化运输控制***、方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190373476A1 (en) * 2018-05-29 2019-12-05 Walmart Apollo, Llc Unmanned retail delivery vehicle protection systems and methods of protection
CN110979315A (zh) * 2019-12-24 2020-04-10 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输***的车辆保护圈安全控制方法及***
CN110985127A (zh) * 2019-12-24 2020-04-10 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输***的移动终端工作方法及***
CN111260913A (zh) * 2020-01-16 2020-06-09 江苏徐工工程机械研究院有限公司 一种露天矿山无人化运输***的矿用卡车卸载方法及***
CN111552291A (zh) * 2020-05-08 2020-08-18 江苏徐工工程机械研究院有限公司 露天矿无人化运输控制***、方法及装置

Also Published As

Publication number Publication date
AU2020476749A1 (en) 2023-07-06

Similar Documents

Publication Publication Date Title
CN112590817B (zh) 运输***的安全保护***、方法和机群管理设备
JP5369339B2 (ja) 車両の走行制御装置および方法
JP3743582B2 (ja) 無人車両と有人車両混走時のフリート制御装置及び制御方法
CN109074076B (zh) 管制控制装置和车载通信终端装置
JP4463757B2 (ja) 車両の走行制御装置
JP2018063615A (ja) 無人運転システムの遠隔操作方法と遠隔操作装置
US9483056B2 (en) Vehicle control system
JP6391536B2 (ja) 車載装置、車両衝突防止方法
CN110979315B (zh) 一种露天矿山无人化运输***的车辆保护圈安全控制方法及***
JP6325655B2 (ja) 交通管制サーバ及びシステム
CN113282090A (zh) 工程车辆无人驾驶控制方法、装置、工程车辆及电子设备
JP2018060450A (ja) 無人運転システムの車外操作方法と車外操作装置
WO1997026589A1 (fr) Procede et appareil permettant d&#39;interdire l&#39;entree d&#39;un camion a benne sans equipage a l&#39;interieur d&#39;une zone de travail
AU2011244950A1 (en) Machine control system implementing intention mapping
CN111882474B (zh) 一种用于自动驾驶车辆集群调度的fds功能设计方法
DE112022003223T5 (de) Komplementäres steuersystem für ein autonomes fahrzeug
US20240012428A1 (en) Mine vehicle autonomous drive control
WO2022099873A1 (zh) 运输***的安全保护***、方法和机群管理设备
CN115220436A (zh) 远程接管安全保障方法和***、计算机设备和存储介质
AU2020204206A1 (en) A system for controlling a plurality of autonomous vehicles on a mine site
CN114326469B (zh) 一种无人矿山智能辅助作业安全控制方法及***
US20230244246A1 (en) Systems, methods, and computer-program products for collaborative path planning of mobile machines in unstructured area
CN118082813A (zh) 一种基于云协同的无人驾驶矿卡自动绕障***及方法
WO2022158081A1 (ja) 安全制御装置および安全ルール調整方法
JP2023108288A (ja) 管理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20961426

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020476749

Country of ref document: AU

Date of ref document: 20201223

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20961426

Country of ref document: EP

Kind code of ref document: A1