WO2022097338A1 - Brushless motor - Google Patents

Brushless motor Download PDF

Info

Publication number
WO2022097338A1
WO2022097338A1 PCT/JP2021/029566 JP2021029566W WO2022097338A1 WO 2022097338 A1 WO2022097338 A1 WO 2022097338A1 JP 2021029566 W JP2021029566 W JP 2021029566W WO 2022097338 A1 WO2022097338 A1 WO 2022097338A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
brushless motor
dielectric
silicone gel
plate
Prior art date
Application number
PCT/JP2021/029566
Other languages
French (fr)
Japanese (ja)
Inventor
隆紘 酒井
翔 中野
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202180075272.6A priority Critical patent/CN116420299A/en
Publication of WO2022097338A1 publication Critical patent/WO2022097338A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • This disclosure relates to brushless motors.
  • the brushless motor is required to have less electromagnetic noise flowing out of the brushless motor. Therefore, a brushless motor having a structure for suppressing the outflow of electromagnetic noise to the outside of the brushless motor has been proposed.
  • the brushless motor described in Patent Document 1 passes through a rotor housing, a shaft, a bearing, a bearing holder portion, and a conductive portion in order to suppress electromagnetic noise generated from the stator from flowing out to the outside of the brushless motor. It has a first ground path and a second ground path through the rotor housing, shaft, bearings, and conductive parts.
  • a switching element that drives a stator is mounted on the circuit board of a brushless motor. It is known that this switching element generates electromagnetic noise during the switching operation. Therefore, in order to improve the EMC performance of the brushless motor, it is desired to suppress the electromagnetic noise generated from the switching element from flowing out to the outside of the brushless motor.
  • the present disclosure has been made in view of the above problems, and one aspect of the present invention is to provide a brushless motor capable of suppressing electromagnetic noise generated from a switching element from flowing out to the outside of the brushless motor.
  • the purpose is to provide a brushless motor capable of suppressing electromagnetic noise generated from a switching element from flowing out to the outside of the brushless motor.
  • the brushless motor is a brushless motor provided with a noise reduction structure for reducing electromagnetic noise
  • the noise reduction structure has a switching element and an electrolytic capacitor on the first surface. Is connected to the circuit board on which the circuit board is mounted, the conductive member facing the second surface opposite to the first surface of the circuit board, and the cathode terminal of the electrolytic capacitor which is a conductive pattern formed on the circuit board.
  • the conductive connection portion connecting the conductive pattern and the conductive member is interposed between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and the switching element and the switching element. It has a dielectric arranged at a position where it is electrostatically coupled.
  • FIG. 3 is an arrow view of the circuit board shown in FIG. 1 as viewed from the side of arrow A2 in FIG. It is an arrow view which saw the plate-shaped part of the center piece shown in FIG. 1 from the side of arrow A2 of FIG.
  • FIG. 6 is an arrow view of the plate-shaped portion of the centerpiece in the modified example shown in FIG. 6 as viewed from the side of arrow A2 in FIG.
  • FIG. 1 is a vertical sectional view of a brushless motor 10 according to an embodiment of the present disclosure.
  • the brushless motor 10 according to the embodiment of the present disclosure includes a rotor 12, a stator 14, a shaft 16, a centerpiece 18, a circuit board 20, a board case 22, and a connector member. 24 and.
  • Arrow A1 indicates one side of the brushless motor 10 in the axial direction
  • arrow A2 indicates the other side of the brushless motor 10 in the axial direction.
  • the rotor 12 has a rotor housing 26 and a rotor magnet 28.
  • the rotor housing 26 is formed in a celestial cylindrical shape, and a tubular bearing accommodating portion 30 (inner cylinder portion) is formed in the central portion of the top wall portion of the rotor housing 26.
  • the bearing accommodating portion 30 is located inside the outer cylinder portion of the rotor housing 26 in the radial direction.
  • a pair of bearings 32 are housed in the bearing accommodating portion 30, and the rotor 12 is rotatably supported by the shaft 16 via the pair of bearings 32.
  • the rotor magnet 28 is fixed to the inner peripheral surface of the outer cylinder portion of the rotor housing 26.
  • the rotor housing 26 is provided in an annular shape along the circumferential direction of the rotor 12, and has a configuration in which N poles and S poles are alternately provided in the circumferential direction of the rotor 12.
  • the brushless motor 10 is a so-called outer rotor type, and the rotor magnet 28 is arranged so as to face the stator 14 on the radial outer side of the stator 14, which will be described later.
  • the stator 14 is housed inside the rotor housing 26.
  • the stator 14 is formed in an annular shape as a whole, and is arranged coaxially with the shaft 16.
  • the bearing accommodating portion 30 and the shaft 16 described above are arranged inside the stator 14.
  • the stator 14 has a stator core 34, an insulator 36, and a plurality of windings 38.
  • a plurality of teeth 40 extending radially around the shaft 16 are formed on the stator core 34, and the plurality of windings 38 are wound around the plurality of teeth 40 via the insulator 36.
  • the centerpiece 18 is made of a metal such as iron or aluminum.
  • the centerpiece 18 has a plate-shaped portion 42.
  • the plate-shaped portion 42 is arranged on the other side in the axial direction of the rotor 12 and the stator 14, and faces the opening 44 of the rotor housing 26.
  • the stator 14 is fixed to the plate-shaped portion 42 by screwing or the like, whereby the stator 14 is held by the plate-shaped portion 42.
  • a shaft support portion 46 is formed in the central portion of the plate-shaped portion 42.
  • the shaft support portion 46 is formed in a concave shape that opens toward the stator 14.
  • the shaft 16 is fixed to the shaft support portion 46 in a state of being inserted, whereby the shaft 16 is supported by the shaft support portion 46.
  • the circuit board 20 has a control circuit 48 that drives the stator 14.
  • the control circuit 48 includes electric components such as a plurality of switching elements 50 and a plurality of electrolytic capacitors 52, which will be described later.
  • FIG. 1 shows a part of the plurality of switching elements 50. Further, FIG. 1 shows one of a plurality of electrolytic capacitors 52.
  • the circuit board 20 is arranged on the opposite side of the rotor 12 with respect to the plate-shaped portion 42 so as to face the plate-shaped portion 42.
  • the circuit board 20 is provided along the plate-shaped portion 42.
  • the circuit board 20 is fixed to the plate-shaped portion 42 by a screw 54 or the like.
  • the board case 22 is made of a metal such as iron or aluminum.
  • the board case 22 is fixed to the plate-shaped portion 42 from the side opposite to the rotor 12.
  • the circuit board 20 is housed inside the board case 22.
  • the connector member 24 has a connector case 56 and a connector terminal 58.
  • the connector case 56 is made of resin and is fixed to the plate-shaped portion 42 by screwing or the like.
  • the connector terminal 58 is provided inside the connector case 56.
  • the connector terminal 58 is electrically connected to the control circuit 48 formed on the circuit board 20.
  • the current flowing through the plurality of windings 38 is switched by the switching operation of the plurality of switching elements 50, and the stator 14 forms a rotating magnetic field.
  • the stator 14 forms a rotating magnetic field, an attractive force and a repulsive force are generated between the stator 14 and the rotor magnet 28, whereby the rotor 12 rotates.
  • the brushless motor 10 includes a noise reduction structure 60 that reduces electromagnetic noise.
  • FIG. 2 is a cross-sectional view schematically showing the noise reduction structure 60 of the brushless motor 10 shown in FIG.
  • the noise reduction structure 60 has a conductive connection portion 62, a first silicone gel 64, and a second silicone gel 66 in addition to the circuit board 20 and the plate-shaped portion 42 described above.
  • the plate-shaped portion 42 is an example of a "conductive member”
  • the first silicone gel 64 is an example of a “dielectric” and a “first dielectric”
  • the second silicone gel 66 is a "second dielectric”. Is an example.
  • the circuit board 20 has a first surface 20A and a second surface 20B.
  • the first surface 20A is a surface on one side of the circuit board 20 in the plate thickness direction, and is a surface located on the opposite side to the plate-shaped portion 42.
  • the second surface 20B is a surface on the other side of the circuit board 20 in the plate thickness direction, and is a surface located on the side of the plate-shaped portion 42.
  • FIG. 2 shows one of the plurality of switching elements 50. Similarly, FIG. 2 shows one of a plurality of electrolytic capacitors 52.
  • the plurality of electrolytic capacitors 52 have an anode terminal 52A and a cathode terminal 52B, respectively.
  • a conductive pattern 68 connected to the cathode terminals 52B of a plurality of electrolytic capacitors 52 is formed on the first surface 20A of the circuit board 20.
  • the conductive pattern 68 is shown by an imaginary line (dashed-dotted line).
  • the plate-shaped portion 42 faces the second surface 20B of the circuit board 20.
  • the plate-shaped portion 42 is formed with a boss portion 70 projecting toward the circuit board 20.
  • the boss portion 70 has a screw hole 72.
  • the screw hole 72 is formed along the axial direction of the boss portion 70, and is open to the side of the circuit board 20.
  • the conductive connection portion 62 has the above-mentioned screw 54 and a through hole 74. Both the screw 54 and the through hole 74 are made of metal and have conductivity.
  • the through hole 74 is formed in the circuit board 20 and penetrates in the plate thickness direction of the circuit board 20.
  • the inner peripheral surface of the through hole 74 and the peripheral portions of the openings on both sides of the through hole 74 in the axial direction are formed by a plating layer and are electrically connected to each other.
  • the through hole 74 is located coaxially with the boss portion 70.
  • a screw 54 is inserted inside the through hole 74, and the tip of the screw 54 is screwed into the screw hole 72 of the boss portion 70.
  • the above-mentioned conductive pattern 68 and the plate-shaped portion 42 are electrically connected by the conductive connecting portion 62 having the through hole 74 and the screw 54. That is, the conductive pattern 68 is connected to the peripheral portion of the opening on one side in the axial direction of the through hole 74, and the peripheral portion of the opening on the other side in the axial direction of the through hole 74 is in contact with the top surface of the boss portion 70. Further, the head portion of the screw 54 is in contact with the peripheral portion of the opening on one side in the axial direction of the through hole 74, and the tip portion of the screw 54 is in contact with the inner peripheral surface of the screw hole 72.
  • a plurality of signal lines 76 are connected to the circuit board 20.
  • the plurality of signal lines 76 are connected to the conductive pattern 68 of the circuit board 20 via the connector terminal 58 (see FIG. 1) of the connector member 24 described above.
  • the first silicone gel 64 and the second silicone gel 66 are each formed of a silicone gel.
  • the first silicone gel 64 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42.
  • the second silicone gel 66 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42.
  • the first silicone gel 64 is arranged at a position corresponding to each of the plurality of switching elements 50, and the second silicone gel 66 is arranged at a position corresponding to each of the plurality of electrolytic capacitors 52. ing.
  • FIG. 3 is an arrow view of the circuit board 20 shown in FIG. 1 as viewed from the arrow A2 side of FIG. As shown in FIG. 3, a plurality of switching elements 50 and a plurality of electrolytic capacitors 52 are distributed and arranged on the first surface 20A of the circuit board 20.
  • the plurality of electrolytic capacitors 52 have an anode terminal 52A and a cathode terminal 52B, respectively.
  • FIG. 4 is an arrow view of the plate-shaped portion 42 of the centerpiece 18 shown in FIG. 1 as viewed from the arrow A2 side of FIG.
  • FIG. 4 shows a state in which the first silicone gel 64 and the second silicone gel 66 are applied to the surface of the plate-shaped portion 42 on the circuit board 20 side.
  • circuit board 20 the plurality of switching elements 50, and the plurality of electrolytic capacitors 52 when the circuit board 20 is assembled to the plate-shaped portion 42 are shown by an imaginary line (dashed-dotted line).
  • the first silicone gel 64 and the second silicone gel 64 and the second silicone gel 66 are assembled.
  • the silicone gel 66 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42.
  • the noise reduction structure 60 has a first silicone gel 64 arranged at three locations corresponding to the distribution of a plurality of switching elements 50.
  • first silicone gels 64 arranged at the three locations are distinguished, the first silicone gels 64 arranged at the three locations are referred to as the first silicone gels 64-1 to 3, respectively.
  • the first silicone gel 64-1 and the first silicone gel 64-2 are integrally formed with the second silicone gel 66.
  • the first silicone gel 64-1 is continuously formed with one end of the second silicone gel 66
  • the first silicone gel 64-2 is continuously formed with the other end of the second silicone gel 66. Has been done.
  • the first silicone gel 64-1, 2 and the second silicone gel 66 are all formed linearly.
  • the first silicone gel 64-3 is independent of the first silicone gels 64-1, 2 and the second silicone gel 66, and is formed linearly.
  • the first silicone gel 64-1 is arranged at a position where it is electrostatically coupled to each of the plurality of switching elements 50-1 and 2. Specifically, a part of the first silicone gel 64-1 is arranged at a position where it overlaps with each of the plurality of switching elements 50-1 and 2 in the plan view of the circuit board 20.
  • the plan view of the circuit board 20 corresponds to viewing the circuit board 20 from the arrow A2 side in FIG.
  • the first silicone gel 64-2 is arranged at a position where it is electrostatically coupled to each of the plurality of switching elements 50-3 to 5. Specifically, a part of the first silicone gel 64-2 is arranged at a position where it overlaps with each of the plurality of switching elements 50-3 to 5 in the plan view of the circuit board 20.
  • the first silicone gel 64-3 is arranged at a position where it is electrostatically coupled to a plurality of switching elements 50-6. Specifically, a part of the first silicone gel 64-3 is arranged at a position where it overlaps with a plurality of switching elements 50-6 in a plan view of the circuit board 20.
  • the first silicone gels 64-1 to 3 are arranged at positions overlapping with a part of each of the plurality of switching elements 50-1 to 6, respectively, whereas the first silicone gels 64-1 to 3 are arranged at positions overlapping each other.
  • Each of the plurality of switching elements 50-1 to 6 may be arranged at a position overlapping with all of them.
  • the second silicone gel 66 is arranged at a position where it is electrostatically coupled to each of the plurality of electrolytic capacitors 52. Specifically, a part of the second silicone gel 66 overlaps with each of the cathode terminals 52B of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and all of them are electrolyzed in the plan view of the circuit board 20. It is arranged at a position that does not overlap with the anode terminal 52A of the capacitor 52.
  • a plurality of electrolytic capacitors 52 are arranged in a row and arranged in the same direction with each other.
  • the cathode terminal 52B of the plurality of electrolytic capacitors 52 is located on the opposite side of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52.
  • the cathode terminals 52B of the plurality of electrolytic capacitors 52 are located on one side B1 of the virtual line L1.
  • a plurality of switching elements 50 are located on the other side B2 of the virtual line L1.
  • the circuit board 20 is fixed to the plate-shaped portion 42 by a plurality of screws 54.
  • the plurality of screws 54 are distinguished, the plurality of screws 54 are referred to as screws 54-1 to 3, respectively.
  • the screws 54-1 and 2 form the above-mentioned conductive connection portion 62, and the screws 54-1 and 2 have a conductive pattern (conducting pattern 68 shown in FIG. 2) (not shown). It is connected to the cathode terminals 52B of the plurality of electrolytic capacitors 52 by (corresponding to).
  • the conductive connection portions 62 corresponding to the screws 54-1 and 2 may be referred to as conductive connection portions 62-1 and 2.
  • the above-mentioned second silicone gel 66 is arranged between the first silicone gels 64-1 to 3 and the conductive connecting portions 62-1 and 2. That is, in the plan view of the circuit board 20, the conductive connection portions 62-1 and 2 are located on one side B1 of the second silicone gel 66 extending linearly, and the conductive connection portions 62-1 and 2 are located on the other side B2 of the second silicone gel 66. The first silicone gels 64-1 to 3 are located.
  • the noise reduction structure 60 includes a first noise propagation path 78 and a second noise propagation path 80 according to the above configuration.
  • the electromagnetic noise of the plurality of switching elements 50 is transmitted from the plurality of switching elements 50 via the first silicone gel 64, the plate-shaped portion 42, the conductive connection portion 62, and the conductive pattern 68, and a plurality of electrolytic capacitors. It is propagated to the cathode terminal 52B of 52.
  • the electromagnetic noise of the plurality of switching elements 50 passes from the plurality of switching elements 50 via the first silicone gel 64, the plate-shaped portion 42, and the second silicone gel 66, and the cathodes of the plurality of electrolytic capacitors 52. It is propagated to the terminal 52B.
  • FIG. 5 is an equivalent circuit diagram of the brushless motor 10 shown in FIG.
  • the inverter circuit 82 is formed by a plurality of switching elements 50 (see FIGS. 3 and 4).
  • the second silicone gel 66 overlaps with the cathode terminals 52B of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and the entire second silicone gel 66 is the plane of the circuit board 20.
  • the second silicone gel 66 and the plurality of electrolytic capacitors 52 are electrostatically coupled. That is, the second silicone gel 66, which is a dielectric, is connected between the conductive pattern 68 on the cathode side to which the cathode terminals 52B of the plurality of electrolytic capacitors 52 are connected and the plate-shaped portion 42.
  • At least a part of the second silicone gel 66 overlaps with the anode terminals 52A of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and all of the second silicone gel 66 overlaps with the plurality of electrolytic capacitors in the plan view of the circuit board 20.
  • the second silicone gel 66 and the plurality of electrolytic capacitors 52 are not electrostatically coupled as shown by an imaginary line (two-point chain line) in FIG. That is, in this case, the second silicone gel 66 is in a state of being connected between the conductive pattern 84 on the anode side to which the anode terminals 52A of the plurality of electrolytic capacitors 52 are connected and the plate-shaped portion 42.
  • the brushless motor 10 includes a noise reduction structure 60 that reduces electromagnetic noise.
  • the noise reduction structure 60 as shown in FIG. 2, the conductive pattern 68 formed on the circuit board 20 is connected to the cathode terminals 52B of the plurality of electrolytic capacitors 52, and the conductive pattern 68 and the plate-shaped portion are connected to each other. It is connected to 42 by a conductive connection portion 62.
  • the first silicone gel 64 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42. The first silicone gel 64 is arranged at a position where it is electrostatically coupled to a plurality of switching elements 50.
  • the electromagnetic noise of the plurality of switching elements 50 is transmitted from the plurality of switching elements 50 via the first silicone gel 64, the plate-shaped portion 42, the conductive connection portion 62, and the conductive pattern 68.
  • the first noise propagation path 78 propagated to the cathode terminal 52B of the electrolytic capacitor 52 is formed.
  • the electromagnetic noise of the plurality of switching elements 50 can be absorbed by the plurality of electrolytic capacitors 52, so that the electromagnetic noise generated from the plurality of switching elements 50 flows out to the outside of the brushless motor 10 through, for example, the plurality of signal lines 76. Can be suppressed.
  • the second silicone gel 66 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state where the circuit board 20 and the plate-shaped portion 42 are in contact with each other.
  • the second silicone gel 66 is arranged at a position where it is electrostatically coupled to a plurality of electrolytic capacitors 52.
  • the electromagnetic noise of the plurality of switching elements 50 causes the first silicone gel 64, the plate-shaped portion 42, and the second silicone gel 66 from the plurality of switching elements 50.
  • a second noise propagation path 80 propagated to the cathode terminals 52B of the plurality of electrolytic capacitors 52 via the plurality of electrolytic capacitors 52 is formed.
  • electromagnetic noise can be propagated to the plurality of electrolytic capacitors 52 not only by the first noise propagation path 78 but also by the second noise propagation path 80. Therefore, for example, only the first noise propagation path 78 can be transmitted to the plurality of electrolytic capacitors 52.
  • the absorption efficiency of electromagnetic noise in the plurality of electrolytic capacitors 52 can be improved.
  • first silicone gel 64 is arranged at a position where it overlaps with a plurality of switching elements 50 in a plan view of the circuit board 20.
  • first silicone gel 64 can be appropriately electrostatically coupled to the plurality of switching elements 50.
  • the second silicone gel 66 overlaps with the cathode terminals 52B of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and all of them overlap with the anode terminals of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20. It is arranged at a position that does not overlap with 52A. As a result, the second silicone gel 66 can be appropriately electrostatically coupled to the plurality of electrolytic capacitors 52.
  • the second silicone gel 66 is arranged between the first silicone gel 64 and the conductive connection portion 62. Therefore, the path length of the second noise propagation path 80 is shorter than the path length of the first noise propagation path 78. Therefore, for example, when the path length of the second noise propagation path 80 is equal to or longer than the path length of the first noise propagation path 78. Compared with a certain case, it is possible to improve the absorption efficiency of electromagnetic noise in a plurality of electrolytic capacitors 52.
  • the first silicone gel 64-1 is formed linearly and overlaps with a plurality of switching elements 50-1, 2 in a plan view of the circuit board 20, and the first silicone gel 64-1 is formed.
  • Reference numeral 2 is formed in a linear shape and overlaps with a plurality of switching elements 50-3 to 5 in a plan view of the circuit board 20. Therefore, for example, the coating process of the first silicone gel 64 can be simplified as compared with the case where the first silicone gel 64 is arranged for each of the plurality of switching elements 50.
  • the second silicone gel 66 is formed linearly and overlaps with the cathode terminals 52B of the plurality of electrolytic capacitors 52 in a plan view of the circuit board 20. Therefore, for example, the coating process of the second silicone gel 66 can be simplified as compared with the case where the second silicone gel 66 is arranged for each of the plurality of electrolytic capacitors 52.
  • the noise reduction structure 60 uses the plate-shaped portion 42 of the center piece 18 as a conductive member for propagating electromagnetic noise. Therefore, for example, the configuration of the noise reduction structure 60 can be simplified as compared with the case of using a dedicated conductive member for propagating electromagnetic noise.
  • FIG. 6 is a diagram showing a modified example of the noise reduction structure 60 shown in FIG. 2, and FIG. 7 shows a plate-shaped portion 42 of the centerpiece 18 in the modified example shown in FIG. 6 from the arrow A2 side of FIG. It is an arrow view that I saw.
  • the first silicone gel 64 and the second silicone gel 66 are used as preferable examples. However, for example, if the first silicone gel 64 is sufficient, the second silicone gel 66 (see FIGS. 2 and 4) may be omitted, as shown in FIGS. 6 and 7.
  • the cathode terminals 52B of the plurality of electrolytic capacitors 52 are located on the opposite sides of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52, but the cathodes of the plurality of electrolytic capacitors 52.
  • the terminal 52B may be located on the side of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52.
  • the noise reduction structure 60 is configured to include the plate-shaped portion 42 of the center piece 18, but may be configured to include the substrate case 22 instead of the plate-shaped portion 42.
  • the substrate case 22 corresponds to an example of the “conductive member”.
  • first silicone gel 64 and the second silicone gel 66 which are silicone gels
  • first dielectric and the second dielectric are used as examples of the "first dielectric” and the "second dielectric", but other than the silicone gel.
  • a first dielectric and a second dielectric may be used.
  • the first dielectric and the second dielectric which are dielectric greases, may be used.
  • the arrangement of the plurality of switching elements 50 and the plurality of electrolytic capacitors 52 is an example, and may be other than the above.
  • the arrangement and shape of the first silicone gel 64 and the second silicone gel 66 are examples, and may be other than the above.
  • a part of the first silicone gel 64 is arranged at a position where it overlaps with each of the plurality of switching elements 50 in the plan view of the circuit board 20, but for example, the plurality of first silicone gels. 64 is used, and all of each of the plurality of first silicone gels 64 may overlap with each of the plurality of switching elements 50 in a plan view of the circuit board 20.
  • a part of the second silicone gel 66 is arranged at a position where it overlaps with each of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, but for example, a plurality of second silicone gels. 66 is used, and all of each of the plurality of second silicone gels 66 may overlap each of the plurality of electrolytic capacitors 52 in a plan view of the circuit board 20.
  • the first silicone gel 64 is provided corresponding to all the switching elements 50 mounted on the circuit board 20, but all the switching elements mounted on the circuit board 20.
  • the first silicone gel 64 may be provided corresponding to only a part of 50.
  • the second silicone gel 66 is provided corresponding to all the electrolytic capacitors 52 mounted on the circuit board 20, but all the electrolytic capacitors mounted on the circuit board 20 are provided.
  • the second silicone gel 66 may be provided corresponding to only a part of 52.
  • the screw 54 and the through hole 74 are used as an example of the "conductive connection portion", but a configuration other than the screw 54 and the through hole 74 may be used.
  • the noise reduction structure is A circuit board on which a switching element and an electrolytic capacitor are mounted on the first surface, A conductive member facing the second surface opposite to the first surface of the circuit board, A conductive pattern formed on the circuit board, which is connected to the cathode terminal of the electrolytic capacitor, and a conductive connection portion connecting the conductive member.
  • the brushless motor according to Appendix 1 At least a part of the dielectric is arranged at a position where it overlaps with the switching element in a plan view of the circuit board.
  • the brushless motor according to Appendix 1. (Appendix 3)
  • the noise reduction structure is The first dielectric as the dielectric and A second dielectric, which is interposed between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and is arranged at a position where it is electrostatically coupled to the electrolytic capacitor.
  • At least a part of the second dielectric is arranged at a position where it overlaps with the cathode terminal of the electrolytic capacitor in the plan view of the circuit board, and the whole thereof does not overlap with the anode terminal of the electrolytic capacitor in the plan view of the circuit board.
  • the brushless motor according to Appendix 3. (Appendix 5)
  • the second dielectric is arranged between the first dielectric and the conductive connection.
  • a plurality of the switching elements are mounted on the first surface of the circuit board.
  • the first dielectric is formed in a linear shape and overlaps with a plurality of the switching elements in a plan view of the circuit board.
  • the brushless motor according to any one of Supplementary note 3 to Supplementary note 5. (Appendix 7) A plurality of the electrolytic capacitors are mounted on the first surface of the circuit board. The second dielectric is formed in a linear shape and overlaps with the cathode terminals of the plurality of electrolytic capacitors in a plan view of the circuit board.
  • the brushless motor according to any one of Supplementary note 3 to Supplementary note 6. (Appendix 8) The first dielectric and the second dielectric are integrally formed.
  • the brushless motor according to any one of Supplementary note 3 to Supplementary note 7. (Appendix 9) The first dielectric and the second dielectric are silicone gels.
  • the cathode terminal of the electrolytic capacitor is located on the opposite side of the switching element with respect to the anode terminal of the electrolytic capacitor.
  • the brushless motor according to any one of Supplementary note 1 to Supplementary note 9. (Appendix 11)
  • the cathode terminal of the electrolytic capacitor is located on the side of the switching element with respect to the anode terminal of the electrolytic capacitor.
  • the brushless motor is With a rotor having a topped cylinder-shaped rotor housing, The stator housed inside the rotor housing and A centerpiece having a plate-like portion facing the opening of the rotor housing and holding the stator, Equipped with The circuit board is arranged on the opposite side of the plate-shaped portion from the rotor so as to face the plate-shaped portion.
  • the conductive member is the plate-shaped portion.
  • the brushless motor is With a rotor having a topped cylinder-shaped rotor housing, The stator housed inside the rotor housing and A centerpiece having a plate-like portion facing the opening of the rotor housing and holding the stator, Equipped with The circuit board is arranged on the opposite side of the plate-shaped portion from the rotor so as to face the plate-shaped portion.
  • the conductive member is a substrate case for accommodating the circuit board.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Inverter Devices (AREA)

Abstract

A noise reduction structure of this brushless motor has: a circuit board mounted with a switching element and an electrolytic capacitor on a first surface; a conductive member facing a second surface on the opposite side to the first surface of the circuit board; a conductive connection portion for connecting a conductive pattern and the conductive member to each other, said conductive pattern being formed on the circuit board and connected to the cathode terminal of the electrolytic capacitor; and a dielectric body interposed between the circuit board and the conductive member in a state of making contact with the circuit board and the conductive member and disposed at a position where the dielectric body is electrostatically connected to the switching element.

Description

ブラシレスモータBrushless motor
 本開示は、ブラシレスモータに関する。 This disclosure relates to brushless motors.
 一般に、ブラシレスモータは、ブラシレスモータの外部に流出する電磁ノイズが少ないことが要求される。そこで、ブラシレスモータの外部への電磁ノイズの流出を抑制する構造を備えたブラシレスモータが提案されている。 Generally, the brushless motor is required to have less electromagnetic noise flowing out of the brushless motor. Therefore, a brushless motor having a structure for suppressing the outflow of electromagnetic noise to the outside of the brushless motor has been proposed.
 例えば、特許文献1に記載のブラシレスモータは、ステータから発生する電磁ノイズがブラシレスモータの外部に流出することを抑制するために、ロータハウジング、シャフト、ベアリング、ベアリングホルダ部、及び、導電部を通る第一アース経路と、ロータハウジング、シャフト、ベアリング、及び、導電部を通る第二アース経路とを有する。 For example, the brushless motor described in Patent Document 1 passes through a rotor housing, a shaft, a bearing, a bearing holder portion, and a conductive portion in order to suppress electromagnetic noise generated from the stator from flowing out to the outside of the brushless motor. It has a first ground path and a second ground path through the rotor housing, shaft, bearings, and conductive parts.
 このブラシレスモータによれば、ステータから電磁ノイズが発生した場合でも、ロータ及びシャフトに誘起される電位を回路基板のグラウンド部に効率的に誘導することができるので、ブラシレスモータのEMC(Electromagnetic Compatibility)性能を向上させることができる。 According to this brushless motor, even when electromagnetic noise is generated from the stator, the potential induced in the rotor and the shaft can be efficiently guided to the ground portion of the circuit board, so that the EMC (Electromagnetic Compatibility) of the brushless motor can be induced. Performance can be improved.
特許6648619号公報Japanese Patent No. 6648619
 一般に、ブラシレスモータの回路基板には、ステータを駆動させるスイッチング素子が実装されている。このスイッチング素子は、切替動作時に電磁ノイズを発生することが知られている。したがって、ブラシレスモータのEMC性能を向上させるためには、スイッチング素子から発生した電磁ノイズがブラシレスモータの外部へ流出することを抑制することが望まれる。 Generally, a switching element that drives a stator is mounted on the circuit board of a brushless motor. It is known that this switching element generates electromagnetic noise during the switching operation. Therefore, in order to improve the EMC performance of the brushless motor, it is desired to suppress the electromagnetic noise generated from the switching element from flowing out to the outside of the brushless motor.
 本開示は、上記課題に鑑みてなされたものであって、一つの側面として、スイッチング素子から発生した電磁ノイズがブラシレスモータの外部へ流出することを抑制することができるブラシレスモータを提供することを目的とする。 The present disclosure has been made in view of the above problems, and one aspect of the present invention is to provide a brushless motor capable of suppressing electromagnetic noise generated from a switching element from flowing out to the outside of the brushless motor. The purpose.
 上記目的を達成するために、本開示の一態様に係るブラシレスモータは、電磁ノイズを低減するノイズ低減構造を備えるブラシレスモータであって、前記ノイズ低減構造は、第一面にスイッチング素子及び電解コンデンサが実装された回路基板と、前記回路基板における前記第一面と反対側の第二面と対向する導電部材と、前記回路基板に形成された導電パターンであって前記電解コンデンサのカソード端子と接続された導電パターンと前記導電部材とを接続する導電接続部と、前記回路基板と前記導電部材とに接触した状態で前記回路基板と前記導電部材との間に介在され、かつ、前記スイッチング素子と静電結合される位置に配置された誘電体と、を有する。 In order to achieve the above object, the brushless motor according to one aspect of the present disclosure is a brushless motor provided with a noise reduction structure for reducing electromagnetic noise, and the noise reduction structure has a switching element and an electrolytic capacitor on the first surface. Is connected to the circuit board on which the circuit board is mounted, the conductive member facing the second surface opposite to the first surface of the circuit board, and the cathode terminal of the electrolytic capacitor which is a conductive pattern formed on the circuit board. The conductive connection portion connecting the conductive pattern and the conductive member is interposed between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and the switching element and the switching element. It has a dielectric arranged at a position where it is electrostatically coupled.
 このブラシレスモータによれば、スイッチング素子から発生した電磁ノイズがブラシレスモータの外部へ流出することを抑制することができる。 According to this brushless motor, it is possible to suppress the electromagnetic noise generated from the switching element from flowing out to the outside of the brushless motor.
本開示の一実施形態に係るブラシレスモータの縦断面図である。It is a vertical sectional view of the brushless motor which concerns on one Embodiment of this disclosure. 図1に示されるブラシレスモータのノイズ低減構造を模式的に示す断面図である。It is sectional drawing which shows typically the noise reduction structure of the brushless motor shown in FIG. 図1に示される回路基板を図1の矢印A2側から見た矢視図である。FIG. 3 is an arrow view of the circuit board shown in FIG. 1 as viewed from the side of arrow A2 in FIG. 図1に示されるセンターピースの板状部を図1の矢印A2側から見た矢視図である。It is an arrow view which saw the plate-shaped part of the center piece shown in FIG. 1 from the side of arrow A2 of FIG. 図1に示されるブラシレスモータの等価回路図である。It is an equivalent circuit diagram of the brushless motor shown in FIG. 図2に示されるノイズ低減構造の変形例を示す図である。It is a figure which shows the modification of the noise reduction structure shown in FIG. 図6に示される変形例におけるセンターピースの板状部を図1の矢印A2側から見た矢視図である。FIG. 6 is an arrow view of the plate-shaped portion of the centerpiece in the modified example shown in FIG. 6 as viewed from the side of arrow A2 in FIG.
 以下、図面を参照しながら、本開示の一実施形態について説明する。 Hereinafter, an embodiment of the present disclosure will be described with reference to the drawings.
 図1は、本開示の一実施形態に係るブラシレスモータ10の縦断面図である。図1に示されるように、本開示の一実施形態に係るブラシレスモータ10は、ロータ12と、ステータ14と、シャフト16と、センターピース18と、回路基板20と、基板ケース22と、コネクタ部材24とを備える。 FIG. 1 is a vertical sectional view of a brushless motor 10 according to an embodiment of the present disclosure. As shown in FIG. 1, the brushless motor 10 according to the embodiment of the present disclosure includes a rotor 12, a stator 14, a shaft 16, a centerpiece 18, a circuit board 20, a board case 22, and a connector member. 24 and.
 矢印A1は、ブラシレスモータ10の軸方向一方側を示し、矢印A2は、ブラシレスモータ10の軸方向他方側を示している。後述するロータ12及びステータ14の軸方向は、ブラシレスモータ10の軸方向と一致する。 Arrow A1 indicates one side of the brushless motor 10 in the axial direction, and arrow A2 indicates the other side of the brushless motor 10 in the axial direction. The axial directions of the rotor 12 and the stator 14, which will be described later, coincide with the axial directions of the brushless motor 10.
 ロータ12は、ロータハウジング26と、ロータマグネット28とを有する。ロータハウジング26は、有天円筒状に形成されており、ロータハウジング26の天壁部の中央部には、筒状の軸受収容部30(内筒部)が形成されている。軸受収容部30は、ロータハウジング26の外筒部の径方向内側に位置する。この軸受収容部30には、一対の軸受32が収容されており、ロータ12は、一対の軸受32を介してシャフト16に回転可能に支持されている。 The rotor 12 has a rotor housing 26 and a rotor magnet 28. The rotor housing 26 is formed in a celestial cylindrical shape, and a tubular bearing accommodating portion 30 (inner cylinder portion) is formed in the central portion of the top wall portion of the rotor housing 26. The bearing accommodating portion 30 is located inside the outer cylinder portion of the rotor housing 26 in the radial direction. A pair of bearings 32 are housed in the bearing accommodating portion 30, and the rotor 12 is rotatably supported by the shaft 16 via the pair of bearings 32.
 ロータマグネット28は、ロータハウジング26の外筒部の内周面に固定されている。このロータハウジング26は、ロータ12の周方向に沿って環状に設けられており、ロータ12の周方向にN極とS極とを交互に有する構成とされている。ブラシレスモータ10は、いわゆるアウタロータ型とされており、ロータマグネット28は、後述するステータ14の径方向外側にステータ14と対向して配置されている。 The rotor magnet 28 is fixed to the inner peripheral surface of the outer cylinder portion of the rotor housing 26. The rotor housing 26 is provided in an annular shape along the circumferential direction of the rotor 12, and has a configuration in which N poles and S poles are alternately provided in the circumferential direction of the rotor 12. The brushless motor 10 is a so-called outer rotor type, and the rotor magnet 28 is arranged so as to face the stator 14 on the radial outer side of the stator 14, which will be described later.
 ステータ14は、ロータハウジング26の内側に収容されている。ステータ14は、全体として円環状に形成されており、シャフト16と同軸に配置されている。ステータ14の内側には、上述の軸受収容部30及びシャフト16が配置されている。 The stator 14 is housed inside the rotor housing 26. The stator 14 is formed in an annular shape as a whole, and is arranged coaxially with the shaft 16. The bearing accommodating portion 30 and the shaft 16 described above are arranged inside the stator 14.
 ステータ14は、ステータコア34と、インシュレータ36と、複数の巻線38を有している。ステータコア34には、シャフト16を中心にして放射状に延びる複数のティース40が形成されており、複数の巻線38は、インシュレータ36を介して複数のティース40に巻回されている。 The stator 14 has a stator core 34, an insulator 36, and a plurality of windings 38. A plurality of teeth 40 extending radially around the shaft 16 are formed on the stator core 34, and the plurality of windings 38 are wound around the plurality of teeth 40 via the insulator 36.
 センターピース18は、例えば鉄やアルミニウム等の金属製とされている。このセンターピース18は、板状部42を有する。板状部42は、ロータ12及びステータ14の軸方向他方側に配置されており、ロータハウジング26の開口44と対向している。板状部42には、ステータ14がネジ止め等により固定されており、これにより、ステータ14は、板状部42に保持されている。 The centerpiece 18 is made of a metal such as iron or aluminum. The centerpiece 18 has a plate-shaped portion 42. The plate-shaped portion 42 is arranged on the other side in the axial direction of the rotor 12 and the stator 14, and faces the opening 44 of the rotor housing 26. The stator 14 is fixed to the plate-shaped portion 42 by screwing or the like, whereby the stator 14 is held by the plate-shaped portion 42.
 板状部42の中央部には、シャフト支持部46が形成されている。シャフト支持部46は、ステータ14側に開口する凹状に形成されている。シャフト支持部46には、シャフト16が挿入された状態で固定されており、これにより、シャフト16は、シャフト支持部46に支持されている。 A shaft support portion 46 is formed in the central portion of the plate-shaped portion 42. The shaft support portion 46 is formed in a concave shape that opens toward the stator 14. The shaft 16 is fixed to the shaft support portion 46 in a state of being inserted, whereby the shaft 16 is supported by the shaft support portion 46.
 回路基板20は、ステータ14を駆動する制御回路48を有する。制御回路48は、後述する複数のスイッチング素子50や複数の電解コンデンサ52等の電気部品を含む。図1には、複数のスイッチング素子50のうちの一部が示されている。また、図1には、複数の電解コンデンサ52のうちの一つが示されている。 The circuit board 20 has a control circuit 48 that drives the stator 14. The control circuit 48 includes electric components such as a plurality of switching elements 50 and a plurality of electrolytic capacitors 52, which will be described later. FIG. 1 shows a part of the plurality of switching elements 50. Further, FIG. 1 shows one of a plurality of electrolytic capacitors 52.
 回路基板20は、板状部42に対するロータ12と反対側に板状部42と対向して配置されている。この回路基板20は、板状部42に沿って設けられている。回路基板20は、ネジ54等によって板状部42に固定されている。 The circuit board 20 is arranged on the opposite side of the rotor 12 with respect to the plate-shaped portion 42 so as to face the plate-shaped portion 42. The circuit board 20 is provided along the plate-shaped portion 42. The circuit board 20 is fixed to the plate-shaped portion 42 by a screw 54 or the like.
 基板ケース22は、例えば鉄やアルミニウム等の金属製とされている。基板ケース22は、ロータ12と反対側から板状部42に固定されている。この基板ケース22の内側には、回路基板20が収容されている。 The board case 22 is made of a metal such as iron or aluminum. The board case 22 is fixed to the plate-shaped portion 42 from the side opposite to the rotor 12. The circuit board 20 is housed inside the board case 22.
 コネクタ部材24は、コネクタケース56と、コネクタ端子58とを有する。コネクタケース56は、樹脂製とされており、ネジ止め等により板状部42に固定されている。コネクタ端子58は、コネクタケース56の内部に設けられている。このコネクタ端子58は、回路基板20に形成された制御回路48と電気的に接続されている。 The connector member 24 has a connector case 56 and a connector terminal 58. The connector case 56 is made of resin and is fixed to the plate-shaped portion 42 by screwing or the like. The connector terminal 58 is provided inside the connector case 56. The connector terminal 58 is electrically connected to the control circuit 48 formed on the circuit board 20.
 このブラシレスモータ10では、複数のスイッチング素子50の切替動作により複数の巻線38に流れる電流が切り替えられ、ステータ14が回転磁界を形成する。ステータ14が回転磁界を形成すると、ステータ14とロータマグネット28との間に吸引力及び反発力が発生し、これにより、ロータ12が回転する。 In this brushless motor 10, the current flowing through the plurality of windings 38 is switched by the switching operation of the plurality of switching elements 50, and the stator 14 forms a rotating magnetic field. When the stator 14 forms a rotating magnetic field, an attractive force and a repulsive force are generated between the stator 14 and the rotor magnet 28, whereby the rotor 12 rotates.
 ところで、複数のスイッチング素子50は、切替動作時に電磁ノイズを発生する。したがって、ブラシレスモータ10のEMC性能を向上させるためには、複数のスイッチング素子50から発生した電磁ノイズがブラシレスモータ10の外部へ流出することを抑制することが望まれる。そこで、ブラシレスモータ10は、電磁ノイズを低減するノイズ低減構造60を備える。 By the way, the plurality of switching elements 50 generate electromagnetic noise during the switching operation. Therefore, in order to improve the EMC performance of the brushless motor 10, it is desired to suppress the electromagnetic noise generated from the plurality of switching elements 50 from flowing out to the outside of the brushless motor 10. Therefore, the brushless motor 10 includes a noise reduction structure 60 that reduces electromagnetic noise.
 図2は、図1に示されるブラシレスモータ10のノイズ低減構造60を模式的に示す断面図である。図2に示されるように、ノイズ低減構造60は、上述の回路基板20及び板状部42に加えて、導電接続部62と、第一シリコーンゲル64と、第二シリコーンゲル66とを有する。 FIG. 2 is a cross-sectional view schematically showing the noise reduction structure 60 of the brushless motor 10 shown in FIG. As shown in FIG. 2, the noise reduction structure 60 has a conductive connection portion 62, a first silicone gel 64, and a second silicone gel 66 in addition to the circuit board 20 and the plate-shaped portion 42 described above.
 板状部42は、「導電部材」の一例であり、第一シリコーンゲル64は、「誘電体」及び「第一誘電体」の一例であり、第二シリコーンゲル66は、「第二誘電体」の一例である。 The plate-shaped portion 42 is an example of a "conductive member", the first silicone gel 64 is an example of a "dielectric" and a "first dielectric", and the second silicone gel 66 is a "second dielectric". Is an example.
 回路基板20は、第一面20A及び第二面20Bを有する。第一面20Aは、回路基板20の板厚方向一方側の面であって、板状部42と反対側に位置する面である。第二面20Bは、回路基板20の板厚方向他方側の面であって、板状部42の側に位置する面である。 The circuit board 20 has a first surface 20A and a second surface 20B. The first surface 20A is a surface on one side of the circuit board 20 in the plate thickness direction, and is a surface located on the opposite side to the plate-shaped portion 42. The second surface 20B is a surface on the other side of the circuit board 20 in the plate thickness direction, and is a surface located on the side of the plate-shaped portion 42.
 第一面20Aには、複数のスイッチング素子50及び複数の電解コンデンサ52等の電気部品が実装されている。図2には、複数のスイッチング素子50のうちの一つが示されている。同様に、図2には、複数の電解コンデンサ52のうちの一つが示されている。 Electrical components such as a plurality of switching elements 50 and a plurality of electrolytic capacitors 52 are mounted on the first surface 20A. FIG. 2 shows one of the plurality of switching elements 50. Similarly, FIG. 2 shows one of a plurality of electrolytic capacitors 52.
 複数の電解コンデンサ52は、それぞれアノード端子52A及びカソード端子52Bを有する。回路基板20の第一面20Aには、複数の電解コンデンサ52のカソード端子52Bと接続された導電パターン68が形成されている。図1では、導電パターン68が想像線(二点鎖線)で示されている。 The plurality of electrolytic capacitors 52 have an anode terminal 52A and a cathode terminal 52B, respectively. A conductive pattern 68 connected to the cathode terminals 52B of a plurality of electrolytic capacitors 52 is formed on the first surface 20A of the circuit board 20. In FIG. 1, the conductive pattern 68 is shown by an imaginary line (dashed-dotted line).
 板状部42は、回路基板20の第二面20Bと対向している。板状部42には、回路基板20の側に突出するボス部70が形成されている。ボス部70は、ネジ穴72を有する。ネジ穴72は、ボス部70の軸方向に沿って形成されており、回路基板20の側に開口している。 The plate-shaped portion 42 faces the second surface 20B of the circuit board 20. The plate-shaped portion 42 is formed with a boss portion 70 projecting toward the circuit board 20. The boss portion 70 has a screw hole 72. The screw hole 72 is formed along the axial direction of the boss portion 70, and is open to the side of the circuit board 20.
 導電接続部62は、上述のネジ54と、スルーホール74とを有する。ネジ54及びスルーホール74は、いずれも金属製とされており、導電性を有している。スルーホール74は、回路基板20に形成されており、回路基板20の板厚方向に貫通している。 The conductive connection portion 62 has the above-mentioned screw 54 and a through hole 74. Both the screw 54 and the through hole 74 are made of metal and have conductivity. The through hole 74 is formed in the circuit board 20 and penetrates in the plate thickness direction of the circuit board 20.
 スルーホール74の内周面と、スルーホール74の軸方向両側の開口周辺部とは、メッキ層によって形成されており、互いに電気的に接続されている。このスルーホール74は、ボス部70と同軸上に位置する。スルーホール74の内側には、ネジ54が挿入されており、ネジ54の先端部は、ボス部70のネジ穴72に螺入されている。 The inner peripheral surface of the through hole 74 and the peripheral portions of the openings on both sides of the through hole 74 in the axial direction are formed by a plating layer and are electrically connected to each other. The through hole 74 is located coaxially with the boss portion 70. A screw 54 is inserted inside the through hole 74, and the tip of the screw 54 is screwed into the screw hole 72 of the boss portion 70.
 このスルーホール74とネジ54とを有する導電接続部62により、上述の導電パターン68と板状部42とが電気的に接続されている。すなわち、導電パターン68は、スルーホール74の軸方向一方側の開口周辺部と繋がっており、スルーホール74の軸方向他方側の開口周辺部は、ボス部70の天面と接触している。また、ネジ54の頭部は、スルーホール74の軸方向一方側の開口周辺部と接触しており、ネジ54の先端部は、ネジ穴72の内周面と接触している。 The above-mentioned conductive pattern 68 and the plate-shaped portion 42 are electrically connected by the conductive connecting portion 62 having the through hole 74 and the screw 54. That is, the conductive pattern 68 is connected to the peripheral portion of the opening on one side in the axial direction of the through hole 74, and the peripheral portion of the opening on the other side in the axial direction of the through hole 74 is in contact with the top surface of the boss portion 70. Further, the head portion of the screw 54 is in contact with the peripheral portion of the opening on one side in the axial direction of the through hole 74, and the tip portion of the screw 54 is in contact with the inner peripheral surface of the screw hole 72.
 なお、回路基板20には、複数の信号線76が接続される。この複数の信号線76は、上述のコネクタ部材24のコネクタ端子58(図1参照)を介して回路基板20の導電パターン68に接続される。 A plurality of signal lines 76 are connected to the circuit board 20. The plurality of signal lines 76 are connected to the conductive pattern 68 of the circuit board 20 via the connector terminal 58 (see FIG. 1) of the connector member 24 described above.
 第一シリコーンゲル64及び第二シリコーンゲル66は、それぞれシリコーンゲルによって形成されている。第一シリコーンゲル64は、回路基板20と板状部42とに接触した状態で回路基板20と板状部42との間に介在されている。同様に、第二シリコーンゲル66は、回路基板20と板状部42とに接触した状態で回路基板20と板状部42との間に介在されている。 The first silicone gel 64 and the second silicone gel 66 are each formed of a silicone gel. The first silicone gel 64 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42. Similarly, the second silicone gel 66 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42.
 後述するように、第一シリコーンゲル64は、複数のスイッチング素子50の各々と対応する位置に配置されており、第二シリコーンゲル66は、複数の電解コンデンサ52の各々と対応する位置に配置されている。 As will be described later, the first silicone gel 64 is arranged at a position corresponding to each of the plurality of switching elements 50, and the second silicone gel 66 is arranged at a position corresponding to each of the plurality of electrolytic capacitors 52. ing.
 図3は、図1に示される回路基板20を図1の矢印A2側から見た矢視図である。図3に示されるように、回路基板20の第一面20Aには、複数のスイッチング素子50及び複数の電解コンデンサ52が分布して配置されている。 FIG. 3 is an arrow view of the circuit board 20 shown in FIG. 1 as viewed from the arrow A2 side of FIG. As shown in FIG. 3, a plurality of switching elements 50 and a plurality of electrolytic capacitors 52 are distributed and arranged on the first surface 20A of the circuit board 20.
 以降、複数のスイッチング素子50を区別する場合には、複数のスイッチング素子50をそれぞれスイッチング素子50-1~6と称する。複数の電解コンデンサ52は、それぞれアノード端子52A及びカソード端子52Bを有する。 Hereinafter, when the plurality of switching elements 50 are distinguished, the plurality of switching elements 50 are referred to as switching elements 50-1 to 6, respectively. The plurality of electrolytic capacitors 52 have an anode terminal 52A and a cathode terminal 52B, respectively.
 図4は、図1に示されるセンターピース18の板状部42を図1の矢印A2側から見た矢視図である。図4には、板状部42における回路基板20側の面に、第一シリコーンゲル64及び第二シリコーンゲル66が塗布された状態が示されている。 FIG. 4 is an arrow view of the plate-shaped portion 42 of the centerpiece 18 shown in FIG. 1 as viewed from the arrow A2 side of FIG. FIG. 4 shows a state in which the first silicone gel 64 and the second silicone gel 66 are applied to the surface of the plate-shaped portion 42 on the circuit board 20 side.
 また、図4には、板状部42に回路基板20が組み付けられた場合の回路基板20、複数のスイッチング素子50及び複数の電解コンデンサ52が想像線(二点鎖線)で示されている。 Further, in FIG. 4, the circuit board 20, the plurality of switching elements 50, and the plurality of electrolytic capacitors 52 when the circuit board 20 is assembled to the plate-shaped portion 42 are shown by an imaginary line (dashed-dotted line).
 板状部42における回路基板20側の面に第一シリコーンゲル64及び第二シリコーンゲル66が塗布された状態から回路基板20が板状部42に組み付けられることにより、第一シリコーンゲル64及び第二シリコーンゲル66は、回路基板20と板状部42とに接触した状態で回路基板20と板状部42との間に介在される。 By assembling the circuit board 20 to the plate-shaped portion 42 from the state where the first silicone gel 64 and the second silicone gel 66 are applied to the surface of the plate-shaped portion 42 on the circuit board 20 side, the first silicone gel 64 and the second silicone gel 64 and the second silicone gel 66 are assembled. (Ii) The silicone gel 66 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42.
 一例として、ノイズ低減構造60は、複数のスイッチング素子50の分布に対応して三か所に配置された第一シリコーンゲル64を有する。以降、この三カ所に配置された第一シリコーンゲル64を区別する場合には、三カ所に配置された第一シリコーンゲル64をそれぞれ第一シリコーンゲル64-1~3と称する。 As an example, the noise reduction structure 60 has a first silicone gel 64 arranged at three locations corresponding to the distribution of a plurality of switching elements 50. Hereinafter, when the first silicone gels 64 arranged at the three locations are distinguished, the first silicone gels 64 arranged at the three locations are referred to as the first silicone gels 64-1 to 3, respectively.
 第一シリコーンゲル64-1及び第一シリコーンゲル64-2は、第二シリコーンゲル66と一体に形成されている。一例として、第一シリコーンゲル64-1は、第二シリコーンゲル66の一端と連続して形成されており、第一シリコーンゲル64-2は、第二シリコーンゲル66の他端と連続して形成されている。 The first silicone gel 64-1 and the first silicone gel 64-2 are integrally formed with the second silicone gel 66. As an example, the first silicone gel 64-1 is continuously formed with one end of the second silicone gel 66, and the first silicone gel 64-2 is continuously formed with the other end of the second silicone gel 66. Has been done.
 第一シリコーンゲル64-1、2及び第二シリコーンゲル66は、いずれも線状に形成されている。第一シリコーンゲル64-3は、第一シリコーンゲル64-1、2及び第二シリコーンゲル66とは独立しており、線状に形成されている。 The first silicone gel 64-1, 2 and the second silicone gel 66 are all formed linearly. The first silicone gel 64-3 is independent of the first silicone gels 64-1, 2 and the second silicone gel 66, and is formed linearly.
 第一シリコーンゲル64-1は、複数のスイッチング素子50-1、2の各々と静電結合される位置に配置されている。具体的には、第一シリコーンゲル64-1は、その一部が回路基板20の平面視で複数のスイッチング素子50-1、2の各々と重なる位置に配置されている。回路基板20の平面視とは、図1の矢印A2側から回路基板20を見ることに相当する。 The first silicone gel 64-1 is arranged at a position where it is electrostatically coupled to each of the plurality of switching elements 50-1 and 2. Specifically, a part of the first silicone gel 64-1 is arranged at a position where it overlaps with each of the plurality of switching elements 50-1 and 2 in the plan view of the circuit board 20. The plan view of the circuit board 20 corresponds to viewing the circuit board 20 from the arrow A2 side in FIG.
 第一シリコーンゲル64-2は、複数のスイッチング素子50-3~5の各々と静電結合される位置に配置されている。具体的には、第一シリコーンゲル64-2は、その一部が回路基板20の平面視で複数のスイッチング素子50-3~5の各々と重なる位置に配置されている。 The first silicone gel 64-2 is arranged at a position where it is electrostatically coupled to each of the plurality of switching elements 50-3 to 5. Specifically, a part of the first silicone gel 64-2 is arranged at a position where it overlaps with each of the plurality of switching elements 50-3 to 5 in the plan view of the circuit board 20.
 第一シリコーンゲル64-3は、複数のスイッチング素子50-6と静電結合される位置に配置されている。具体的には、第一シリコーンゲル64-3は、その一部が回路基板20の平面視で複数のスイッチング素子50-6と重なる位置に配置されている。 The first silicone gel 64-3 is arranged at a position where it is electrostatically coupled to a plurality of switching elements 50-6. Specifically, a part of the first silicone gel 64-3 is arranged at a position where it overlaps with a plurality of switching elements 50-6 in a plan view of the circuit board 20.
 一例として、第一シリコーンゲル64-1~3は、それぞれ複数のスイッチング素子50-1~6の各々の一部と重なる位置に配置されているが、第一シリコーンゲル64-1~3は、それぞれ複数のスイッチング素子50-1~6の各々の全部と重なる位置に配置されていてもよい。 As an example, the first silicone gels 64-1 to 3 are arranged at positions overlapping with a part of each of the plurality of switching elements 50-1 to 6, respectively, whereas the first silicone gels 64-1 to 3 are arranged at positions overlapping each other. Each of the plurality of switching elements 50-1 to 6 may be arranged at a position overlapping with all of them.
 第二シリコーンゲル66は、複数の電解コンデンサ52の各々と静電結合される位置に配置されている。具体的には、第二シリコーンゲル66は、その一部が回路基板20の平面視で複数の電解コンデンサ52のカソード端子52Bの各々と重なり、その全部が回路基板20の平面視で複数の電解コンデンサ52のアノード端子52Aと重ならない位置に配置されている。 The second silicone gel 66 is arranged at a position where it is electrostatically coupled to each of the plurality of electrolytic capacitors 52. Specifically, a part of the second silicone gel 66 overlaps with each of the cathode terminals 52B of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and all of them are electrolyzed in the plan view of the circuit board 20. It is arranged at a position that does not overlap with the anode terminal 52A of the capacitor 52.
 一例として、複数の電解コンデンサ52は、一列に並んでおり、互いに同じ向きで配置されている。複数の電解コンデンサ52のカソード端子52Bは、複数の電解コンデンサ52のアノード端子52Aに対して複数のスイッチング素子50と反対側に位置する。 As an example, a plurality of electrolytic capacitors 52 are arranged in a row and arranged in the same direction with each other. The cathode terminal 52B of the plurality of electrolytic capacitors 52 is located on the opposite side of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52.
 つまり、回路基板20の平面視で複数の電解コンデンサ52のアノード端子52Aを通る仮想線L1を設定した場合に、仮想線L1の一方側B1には、複数の電解コンデンサ52のカソード端子52Bが位置し、仮想線L1の他方側B2には、複数のスイッチング素子50が位置する。 That is, when the virtual line L1 passing through the anode terminals 52A of the plurality of electrolytic capacitors 52 is set in the plan view of the circuit board 20, the cathode terminals 52B of the plurality of electrolytic capacitors 52 are located on one side B1 of the virtual line L1. However, a plurality of switching elements 50 are located on the other side B2 of the virtual line L1.
 回路基板20は、一例として、複数のネジ54によって板状部42に固定される。以降、複数のネジ54を区別する場合には、複数のネジ54をそれぞれネジ54-1~3と称する。 As an example, the circuit board 20 is fixed to the plate-shaped portion 42 by a plurality of screws 54. Hereinafter, when the plurality of screws 54 are distinguished, the plurality of screws 54 are referred to as screws 54-1 to 3, respectively.
 ネジ54-1~3のうちネジ54-1、2は、上述の導電接続部62を形成しており、このネジ54-1、2は、図示しない導電パターン(図2に示される導電パターン68に相当)によって複数の電解コンデンサ52のカソード端子52Bと接続されている。以降、このネジ54-1、2に対応する導電接続部62を導電接続部62-1、2と称する場合がある。 Of the screws 54-1 to 3, the screws 54-1 and 2 form the above-mentioned conductive connection portion 62, and the screws 54-1 and 2 have a conductive pattern (conducting pattern 68 shown in FIG. 2) (not shown). It is connected to the cathode terminals 52B of the plurality of electrolytic capacitors 52 by (corresponding to). Hereinafter, the conductive connection portions 62 corresponding to the screws 54-1 and 2 may be referred to as conductive connection portions 62-1 and 2.
 上述の第二シリコーンゲル66は、第一シリコーンゲル64-1~3と導電接続部62-1、2との間に配置されている。つまり、回路基板20の平面視で、線状に延びる第二シリコーンゲル66の一方側B1には、導電接続部62-1、2が位置し、第二シリコーンゲル66の他方側B2には、第一シリコーンゲル64-1~3が位置する。 The above-mentioned second silicone gel 66 is arranged between the first silicone gels 64-1 to 3 and the conductive connecting portions 62-1 and 2. That is, in the plan view of the circuit board 20, the conductive connection portions 62-1 and 2 are located on one side B1 of the second silicone gel 66 extending linearly, and the conductive connection portions 62-1 and 2 are located on the other side B2 of the second silicone gel 66. The first silicone gels 64-1 to 3 are located.
 図2に示されるように、ノイズ低減構造60は、上記構成により、第一ノイズ伝播経路78と、第二ノイズ伝播経路80とを備える。 As shown in FIG. 2, the noise reduction structure 60 includes a first noise propagation path 78 and a second noise propagation path 80 according to the above configuration.
 第一ノイズ伝播経路78では、複数のスイッチング素子50の電磁ノイズが複数のスイッチング素子50から第一シリコーンゲル64、板状部42、導電接続部62及び導電パターン68を経由して複数の電解コンデンサ52のカソード端子52Bに伝播される。 In the first noise propagation path 78, the electromagnetic noise of the plurality of switching elements 50 is transmitted from the plurality of switching elements 50 via the first silicone gel 64, the plate-shaped portion 42, the conductive connection portion 62, and the conductive pattern 68, and a plurality of electrolytic capacitors. It is propagated to the cathode terminal 52B of 52.
 第二ノイズ伝播経路80では、複数のスイッチング素子50の電磁ノイズが複数のスイッチング素子50から第一シリコーンゲル64、板状部42及び第二シリコーンゲル66を経由して複数の電解コンデンサ52のカソード端子52Bに伝播される。 In the second noise propagation path 80, the electromagnetic noise of the plurality of switching elements 50 passes from the plurality of switching elements 50 via the first silicone gel 64, the plate-shaped portion 42, and the second silicone gel 66, and the cathodes of the plurality of electrolytic capacitors 52. It is propagated to the terminal 52B.
 図5は、図1に示されるブラシレスモータ10の等価回路図である。インバータ回路82は、複数のスイッチング素子50(図3、図4参照)によって形成される。 FIG. 5 is an equivalent circuit diagram of the brushless motor 10 shown in FIG. The inverter circuit 82 is formed by a plurality of switching elements 50 (see FIGS. 3 and 4).
 上述のノイズ低減構造60では、第二シリコーンゲル66の少なくとも一部が回路基板20の平面視で複数の電解コンデンサ52のカソード端子52Bと重なり、第二シリコーンゲル66の全部が回路基板20の平面視で複数の電解コンデンサ52のアノード端子52Aと重ならないことにより、第二シリコーンゲル66と複数の電解コンデンサ52とが静電結合される。つまり、複数の電解コンデンサ52のカソード端子52Bが接続された陰極側の導電パターン68と板状部42との間に誘電体である第二シリコーンゲル66が接続された状態となる。 In the noise reduction structure 60 described above, at least a part of the second silicone gel 66 overlaps with the cathode terminals 52B of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and the entire second silicone gel 66 is the plane of the circuit board 20. By not overlapping with the anode terminals 52A of the plurality of electrolytic capacitors 52 visually, the second silicone gel 66 and the plurality of electrolytic capacitors 52 are electrostatically coupled. That is, the second silicone gel 66, which is a dielectric, is connected between the conductive pattern 68 on the cathode side to which the cathode terminals 52B of the plurality of electrolytic capacitors 52 are connected and the plate-shaped portion 42.
 なお、第二シリコーンゲル66の少なくとも一部が回路基板20の平面視で複数の電解コンデンサ52のアノード端子52Aと重なり、第二シリコーンゲル66の全部が回路基板20の平面視で複数の電解コンデンサ52のカソード端子52Bと重ならない場合には、図5において想像線(二点鎖線)で示されるように、第二シリコーンゲル66と複数の電解コンデンサ52とが静電結合されない。つまり、この場合、第二シリコーンゲル66は、複数の電解コンデンサ52のアノード端子52Aが接続された陽極側の導電パターン84と板状部42との間に接続された状態となる。 At least a part of the second silicone gel 66 overlaps with the anode terminals 52A of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and all of the second silicone gel 66 overlaps with the plurality of electrolytic capacitors in the plan view of the circuit board 20. When it does not overlap with the cathode terminal 52B of 52, the second silicone gel 66 and the plurality of electrolytic capacitors 52 are not electrostatically coupled as shown by an imaginary line (two-point chain line) in FIG. That is, in this case, the second silicone gel 66 is in a state of being connected between the conductive pattern 84 on the anode side to which the anode terminals 52A of the plurality of electrolytic capacitors 52 are connected and the plate-shaped portion 42.
 次に、本開示の一実施形態の作用及び効果について説明する。 Next, the operation and effect of one embodiment of the present disclosure will be described.
 以上詳述した通り、本開示の一実施形態に係るブラシレスモータ10は、電磁ノイズを低減するノイズ低減構造60を備える。このノイズ低減構造60では、図2に示されるように、回路基板20に形成された導電パターン68が、複数の電解コンデンサ52のカソード端子52Bと接続されており、この導電パターン68と板状部42とは導電接続部62によって接続されている。また、回路基板20と板状部42との間には、回路基板20と板状部42とに接触した状態で第一シリコーンゲル64が介在されている。この第一シリコーンゲル64は、複数のスイッチング素子50と静電結合される位置に配置されている。 As described in detail above, the brushless motor 10 according to the embodiment of the present disclosure includes a noise reduction structure 60 that reduces electromagnetic noise. In the noise reduction structure 60, as shown in FIG. 2, the conductive pattern 68 formed on the circuit board 20 is connected to the cathode terminals 52B of the plurality of electrolytic capacitors 52, and the conductive pattern 68 and the plate-shaped portion are connected to each other. It is connected to 42 by a conductive connection portion 62. Further, the first silicone gel 64 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state of being in contact with the circuit board 20 and the plate-shaped portion 42. The first silicone gel 64 is arranged at a position where it is electrostatically coupled to a plurality of switching elements 50.
 したがって、この第一シリコーンゲル64によって、複数のスイッチング素子50の電磁ノイズが複数のスイッチング素子50から第一シリコーンゲル64、板状部42、導電接続部62及び導電パターン68を経由して複数の電解コンデンサ52のカソード端子52Bに伝播される第一ノイズ伝播経路78が形成される。これにより、複数のスイッチング素子50の電磁ノイズを複数の電解コンデンサ52で吸収することができるので、複数のスイッチング素子50から発生した電磁ノイズが例えば複数の信号線76を通じてブラシレスモータ10の外部へ流出することを抑制することができる。 Therefore, due to the first silicone gel 64, the electromagnetic noise of the plurality of switching elements 50 is transmitted from the plurality of switching elements 50 via the first silicone gel 64, the plate-shaped portion 42, the conductive connection portion 62, and the conductive pattern 68. The first noise propagation path 78 propagated to the cathode terminal 52B of the electrolytic capacitor 52 is formed. As a result, the electromagnetic noise of the plurality of switching elements 50 can be absorbed by the plurality of electrolytic capacitors 52, so that the electromagnetic noise generated from the plurality of switching elements 50 flows out to the outside of the brushless motor 10 through, for example, the plurality of signal lines 76. Can be suppressed.
 また、回路基板20と板状部42との間には、回路基板20と板状部42とに接触した状態で第二シリコーンゲル66が介在されている。この第二シリコーンゲル66は、複数の電解コンデンサ52と静電結合される位置に配置されている。 Further, the second silicone gel 66 is interposed between the circuit board 20 and the plate-shaped portion 42 in a state where the circuit board 20 and the plate-shaped portion 42 are in contact with each other. The second silicone gel 66 is arranged at a position where it is electrostatically coupled to a plurality of electrolytic capacitors 52.
 したがって、この第二シリコーンゲル66及び上述の第一シリコーンゲル64によって、複数のスイッチング素子50の電磁ノイズが複数のスイッチング素子50から第一シリコーンゲル64、板状部42及び第二シリコーンゲル66を経由して複数の電解コンデンサ52のカソード端子52Bに伝播される第二ノイズ伝播経路80が形成される。これにより、第一ノイズ伝播経路78に加えて、第二ノイズ伝播経路80によっても複数の電解コンデンサ52に電磁ノイズを伝播できるので、例えば、第一ノイズ伝播経路78のみで複数の電解コンデンサ52に電磁ノイズを伝播する構造に比して、複数の電解コンデンサ52における電磁ノイズの吸収効率を向上させることができる。 Therefore, due to the second silicone gel 66 and the above-mentioned first silicone gel 64, the electromagnetic noise of the plurality of switching elements 50 causes the first silicone gel 64, the plate-shaped portion 42, and the second silicone gel 66 from the plurality of switching elements 50. A second noise propagation path 80 propagated to the cathode terminals 52B of the plurality of electrolytic capacitors 52 via the plurality of electrolytic capacitors 52 is formed. As a result, electromagnetic noise can be propagated to the plurality of electrolytic capacitors 52 not only by the first noise propagation path 78 but also by the second noise propagation path 80. Therefore, for example, only the first noise propagation path 78 can be transmitted to the plurality of electrolytic capacitors 52. Compared with the structure that propagates electromagnetic noise, the absorption efficiency of electromagnetic noise in the plurality of electrolytic capacitors 52 can be improved.
 また、第一シリコーンゲル64は、その一部が回路基板20の平面視で複数のスイッチング素子50と重なる位置に配置されている。これにより、第一シリコーンゲル64を複数のスイッチング素子50と適切に静電結合させることができる。 Further, a part of the first silicone gel 64 is arranged at a position where it overlaps with a plurality of switching elements 50 in a plan view of the circuit board 20. As a result, the first silicone gel 64 can be appropriately electrostatically coupled to the plurality of switching elements 50.
 また、第二シリコーンゲル66は、その一部が回路基板20の平面視で複数の電解コンデンサ52のカソード端子52Bと重なり、その全部が回路基板20の平面視で複数の電解コンデンサ52のアノード端子52Aと重ならない位置に配置されている。これにより、第二シリコーンゲル66を複数の電解コンデンサ52と適切に静電結合させることができる。 Further, a part of the second silicone gel 66 overlaps with the cathode terminals 52B of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, and all of them overlap with the anode terminals of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20. It is arranged at a position that does not overlap with 52A. As a result, the second silicone gel 66 can be appropriately electrostatically coupled to the plurality of electrolytic capacitors 52.
 また、第二シリコーンゲル66は、第一シリコーンゲル64と導電接続部62との間に配置されている。したがって、第二ノイズ伝播経路80の経路長が第一ノイズ伝播経路78の経路長よりも短くなるので、例えば、第二ノイズ伝播経路80の経路長が第一ノイズ伝播経路78の経路長以上である場合に比して、複数の電解コンデンサ52における電磁ノイズの吸収効率を向上させることができる。 Further, the second silicone gel 66 is arranged between the first silicone gel 64 and the conductive connection portion 62. Therefore, the path length of the second noise propagation path 80 is shorter than the path length of the first noise propagation path 78. Therefore, for example, when the path length of the second noise propagation path 80 is equal to or longer than the path length of the first noise propagation path 78. Compared with a certain case, it is possible to improve the absorption efficiency of electromagnetic noise in a plurality of electrolytic capacitors 52.
 また、図4に示されるように、第一シリコーンゲル64-1は、線状に形成され、回路基板20の平面視で複数のスイッチング素子50-1、2と重なり、第一シリコーンゲル64-2は、線状に形成され、回路基板20の平面視で複数のスイッチング素子50-3~5と重なる。したがって、例えば、複数のスイッチング素子50毎に第一シリコーンゲル64を配置する場合に比して、第一シリコーンゲル64の塗布工程を簡略化することができる。 Further, as shown in FIG. 4, the first silicone gel 64-1 is formed linearly and overlaps with a plurality of switching elements 50-1, 2 in a plan view of the circuit board 20, and the first silicone gel 64-1 is formed. Reference numeral 2 is formed in a linear shape and overlaps with a plurality of switching elements 50-3 to 5 in a plan view of the circuit board 20. Therefore, for example, the coating process of the first silicone gel 64 can be simplified as compared with the case where the first silicone gel 64 is arranged for each of the plurality of switching elements 50.
 また、第二シリコーンゲル66は、線状に形成され、回路基板20の平面視で複数の電解コンデンサ52のカソード端子52Bと重なる。したがって、例えば、複数の電解コンデンサ52毎に第二シリコーンゲル66を配置する場合に比して、第二シリコーンゲル66の塗布工程を簡略化することができる。 Further, the second silicone gel 66 is formed linearly and overlaps with the cathode terminals 52B of the plurality of electrolytic capacitors 52 in a plan view of the circuit board 20. Therefore, for example, the coating process of the second silicone gel 66 can be simplified as compared with the case where the second silicone gel 66 is arranged for each of the plurality of electrolytic capacitors 52.
 また、ノイズ低減構造60は、センターピース18の板状部42を、電磁ノイズを伝播させる導電部材として利用している。したがって、例えば、電磁ノイズを伝播させる専用の導電部材を利用する場合に比して、ノイズ低減構造60の構成を簡素化することができる。 Further, the noise reduction structure 60 uses the plate-shaped portion 42 of the center piece 18 as a conductive member for propagating electromagnetic noise. Therefore, for example, the configuration of the noise reduction structure 60 can be simplified as compared with the case of using a dedicated conductive member for propagating electromagnetic noise.
 次に、本開示の一実施形態の変形例について説明する。 Next, a modified example of one embodiment of the present disclosure will be described.
 図6は、図2に示されるノイズ低減構造60の変形例を示す図であり、図7は、図6に示される変形例におけるセンターピース18の板状部42を図1の矢印A2側から見た矢視図である。上記実施形態では、好ましい例として、第一シリコーンゲル64及び第二シリコーンゲル66が用いられている。しかしながら、例えば、第一シリコーンゲル64で足りる場合には、図6、図7に示されるように、第二シリコーンゲル66(図2、図4参照)は省かれてもよい。 FIG. 6 is a diagram showing a modified example of the noise reduction structure 60 shown in FIG. 2, and FIG. 7 shows a plate-shaped portion 42 of the centerpiece 18 in the modified example shown in FIG. 6 from the arrow A2 side of FIG. It is an arrow view that I saw. In the above embodiment, the first silicone gel 64 and the second silicone gel 66 are used as preferable examples. However, for example, if the first silicone gel 64 is sufficient, the second silicone gel 66 (see FIGS. 2 and 4) may be omitted, as shown in FIGS. 6 and 7.
 また、上記実施形態では、複数の電解コンデンサ52のカソード端子52Bが、複数の電解コンデンサ52のアノード端子52Aに対して複数のスイッチング素子50と反対側に位置するが、複数の電解コンデンサ52のカソード端子52Bは、複数の電解コンデンサ52のアノード端子52Aに対して複数のスイッチング素子50の側に位置してもよい。 Further, in the above embodiment, the cathode terminals 52B of the plurality of electrolytic capacitors 52 are located on the opposite sides of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52, but the cathodes of the plurality of electrolytic capacitors 52. The terminal 52B may be located on the side of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52.
 このように構成されていると、例えば、複数の電解コンデンサ52のカソード端子52Bが複数の電解コンデンサ52のアノード端子52Aに対して複数のスイッチング素子50と反対側に位置する場合(図4参照)に比して、複数の電解コンデンサ52のカソード端子52Bと複数のスイッチング素子50との間の距離が短くなる。これにより、図2に示される第二ノイズ伝播経路80の長さが短くなるので、第二ノイズ伝播経路80を通じて電磁ノイズを複数の電解コンデンサ52に効率よく伝播することができる。 With this configuration, for example, when the cathode terminal 52B of the plurality of electrolytic capacitors 52 is located on the opposite side of the plurality of switching elements 50 with respect to the anode terminals 52A of the plurality of electrolytic capacitors 52 (see FIG. 4). In comparison with the above, the distance between the cathode terminals 52B of the plurality of electrolytic capacitors 52 and the plurality of switching elements 50 is shortened. As a result, the length of the second noise propagation path 80 shown in FIG. 2 is shortened, so that electromagnetic noise can be efficiently propagated to the plurality of electrolytic capacitors 52 through the second noise propagation path 80.
 また、上記実施形態において、ノイズ低減構造60は、センターピース18の板状部42を備える構成であるが、板状部42の代わりに基板ケース22を備える構成でもよい。この場合には、基板ケース22が「導電部材」の一例に相当する。 Further, in the above embodiment, the noise reduction structure 60 is configured to include the plate-shaped portion 42 of the center piece 18, but may be configured to include the substrate case 22 instead of the plate-shaped portion 42. In this case, the substrate case 22 corresponds to an example of the “conductive member”.
 また、上記実施形態では、「第一誘電体」及び「第二誘電体」の一例として、シリコーンゲルである第一シリコーンゲル64及び第二シリコーンゲル66が用いられているが、シリコーンゲル以外の第一誘電体及び第二誘電体が用いられてもよい。また、「第一誘電体」及び「第二誘電体」の一例として、誘電体グリスである第一誘電体及び第二誘電体が用いられてもよい。 Further, in the above embodiment, the first silicone gel 64 and the second silicone gel 66, which are silicone gels, are used as examples of the "first dielectric" and the "second dielectric", but other than the silicone gel. A first dielectric and a second dielectric may be used. Further, as an example of the "first dielectric" and the "second dielectric", the first dielectric and the second dielectric, which are dielectric greases, may be used.
 また、上記実施形態において、複数のスイッチング素子50及び複数の電解コンデンサ52の配置は、一例であり、上記以外でもよい。また、第一シリコーンゲル64及び第二シリコーンゲル66の配置及び形状は、一例であり、上記以外でもよい。 Further, in the above embodiment, the arrangement of the plurality of switching elements 50 and the plurality of electrolytic capacitors 52 is an example, and may be other than the above. Further, the arrangement and shape of the first silicone gel 64 and the second silicone gel 66 are examples, and may be other than the above.
 また、上記実施形態において、第一シリコーンゲル64は、その一部が回路基板20の平面視で複数のスイッチング素子50の各々と重なる位置に配置されているが、例えば、複数の第一シリコーンゲル64が用いられ、この複数の第一シリコーンゲル64の各々の全部が回路基板20の平面視で複数のスイッチング素子50の各々と重なっていてもよい。 Further, in the above embodiment, a part of the first silicone gel 64 is arranged at a position where it overlaps with each of the plurality of switching elements 50 in the plan view of the circuit board 20, but for example, the plurality of first silicone gels. 64 is used, and all of each of the plurality of first silicone gels 64 may overlap with each of the plurality of switching elements 50 in a plan view of the circuit board 20.
 また、上記実施形態において、第二シリコーンゲル66は、その一部が回路基板20の平面視で複数の電解コンデンサ52の各々と重なる位置に配置されているが、例えば、複数の第二シリコーンゲル66が用いられ、この複数の第二シリコーンゲル66の各々の全部が回路基板20の平面視で複数の電解コンデンサ52の各々と重なっていてもよい。 Further, in the above embodiment, a part of the second silicone gel 66 is arranged at a position where it overlaps with each of the plurality of electrolytic capacitors 52 in the plan view of the circuit board 20, but for example, a plurality of second silicone gels. 66 is used, and all of each of the plurality of second silicone gels 66 may overlap each of the plurality of electrolytic capacitors 52 in a plan view of the circuit board 20.
 また、上記実施形態では、好ましい例として、回路基板20に実装された全てのスイッチング素子50に対応して第一シリコーンゲル64が設けられているが、回路基板20に実装された全てのスイッチング素子50のうちの一部のみに対応して第一シリコーンゲル64が設けられてもよい。 Further, in the above embodiment, as a preferred example, the first silicone gel 64 is provided corresponding to all the switching elements 50 mounted on the circuit board 20, but all the switching elements mounted on the circuit board 20. The first silicone gel 64 may be provided corresponding to only a part of 50.
 また、上記実施形態では、好ましい例として、回路基板20に実装された全ての電解コンデンサ52に対応して第二シリコーンゲル66が設けられているが、回路基板20に実装された全ての電解コンデンサ52のうちの一部のみに対応して第二シリコーンゲル66が設けられてもよい。 Further, in the above embodiment, as a preferred example, the second silicone gel 66 is provided corresponding to all the electrolytic capacitors 52 mounted on the circuit board 20, but all the electrolytic capacitors mounted on the circuit board 20 are provided. The second silicone gel 66 may be provided corresponding to only a part of 52.
 また、上記実施形態では、「導電接続部」の一例として、ネジ54及びスルーホール74が用いられているが、ネジ54及びスルーホール74以外の構成が用いられてもよい。 Further, in the above embodiment, the screw 54 and the through hole 74 are used as an example of the "conductive connection portion", but a configuration other than the screw 54 and the through hole 74 may be used.
 以上、本開示の一実施形態について説明したが、本開示は、上記に限定されるものでなく、上記以外にも、その主旨を逸脱しない範囲内において種々変形して実施可能であることは勿論である。 Although one embodiment of the present disclosure has been described above, the present disclosure is not limited to the above, and it is of course possible to carry out various modifications other than the above within a range not deviating from the gist thereof. Is.
 なお、日本国特許特願2020-186784の開示はその全体が参照により本明細書に取り込まれる。 The entire disclosure of Japanese Patent Application No. 2020-186784 is incorporated herein by reference in its entirety.
 また、本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。 Also, all documents, patent applications, and technical standards described herein are to the same extent as if the individual documents, patent applications, and technical standards were specifically and individually stated to be incorporated by reference. Is incorporated herein by reference.
 上述の本開示の一実施形態に関し、さらに以下の付記を開示する。 Regarding one embodiment of the above-mentioned disclosure, the following additional notes will be further disclosed.
 (付記1)
 電磁ノイズを低減するノイズ低減構造を備えるブラシレスモータであって、
 前記ノイズ低減構造は、
 第一面にスイッチング素子及び電解コンデンサが実装された回路基板と、
 前記回路基板における前記第一面と反対側の第二面と対向する導電部材と、
 前記回路基板に形成された導電パターンであって前記電解コンデンサのカソード端子と接続された導電パターンと前記導電部材とを接続する導電接続部と、
 前記回路基板と前記導電部材とに接触した状態で前記回路基板と前記導電部材との間に介在され、かつ、前記スイッチング素子と静電結合される位置に配置された誘電体と、
 を有する、
 ブラシレスモータ。
 (付記2)
 前記誘電体は、その少なくとも一部が前記回路基板の平面視で前記スイッチング素子と重なる位置に配置されている、
 付記1に記載のブラシレスモータ。
 (付記3)
 前記ノイズ低減構造は、
 前記誘電体としての第一誘電体と、
 前記回路基板と前記導電部材とに接触した状態で前記回路基板と前記導電部材との間に介在され、かつ、前記電解コンデンサと静電結合される位置に配置された第二誘電体と、
 を有する、
 付記1又は付記2に記載のブラシレスモータ。
 (付記4)
 前記第二誘電体は、その少なくとも一部が前記回路基板の平面視で前記電解コンデンサのカソード端子と重なり、その全部が前記回路基板の平面視で前記電解コンデンサのアノード端子と重ならない位置に配置されている、
 付記3に記載のブラシレスモータ。
 (付記5)
 前記第二誘電体は、前記第一誘電体と前記導電接続部との間に配置されている、
 付記3又は付記4に記載のブラシレスモータ。
 (付記6)
 前記回路基板の第一面には、複数の前記スイッチング素子が実装され、
 前記第一誘電体は、線状に形成され、前記回路基板の平面視で複数の前記スイッチング素子と重なる、
 付記3~付記5のいずれか一項に記載のブラシレスモータ。
 (付記7)
 前記回路基板の第一面には、複数の前記電解コンデンサが実装され、
 前記第二誘電体は、線状に形成され、前記回路基板の平面視で複数の前記電解コンデンサのカソード端子と重なる、
 付記3~付記6のいずれか一項に記載のブラシレスモータ。
 (付記8)
 前記第一誘電体及び前記第二誘電体は、一体に形成されている、
 付記3~付記7のいずれか一項に記載のブラシレスモータ。
 (付記9)
 前記第一誘電体及び前記第二誘電体は、シリコーンゲルである、
 付記3~付記8のいずれか一項に記載のブラシレスモータ。
 (付記10)
 前記電解コンデンサのカソード端子は、前記電解コンデンサのアノード端子に対して前記スイッチング素子と反対側に位置する、
 付記1~付記9のいずれか一項に記載のブラシレスモータ。
 (付記11)
 前記電解コンデンサのカソード端子は、前記電解コンデンサのアノード端子に対して前記スイッチング素子の側に位置する、
 付記1~付記10のいずれか一項に記載のブラシレスモータ。
 (付記12)
 前記ブラシレスモータは、
 有天筒状のロータハウジングを有するロータと、
 前記ロータハウジングの内側に収容されたステータと、
 前記ロータハウジングの開口と対向する板状部を有し、前記ステータを保持するセンターピースと、
 を備え、
 前記回路基板は、前記板状部に対する前記ロータと反対側に前記板状部と対向して配置され、
 前記導電部材は、前記板状部である、
 付記1~付記11のいずれか一項に記載のブラシレスモータ。
 (付記13)
 前記ブラシレスモータは、
 有天筒状のロータハウジングを有するロータと、
 前記ロータハウジングの内側に収容されたステータと、
 前記ロータハウジングの開口と対向する板状部を有し、前記ステータを保持するセンターピースと、
 を備え、
 前記回路基板は、前記板状部に対する前記ロータと反対側に前記板状部と対向して配置され、
 前記導電部材は、前記回路基板を収容する基板ケースである、
 付記1~付記11のいずれか一項に記載のブラシレスモータ。
(Appendix 1)
A brushless motor with a noise reduction structure that reduces electromagnetic noise.
The noise reduction structure is
A circuit board on which a switching element and an electrolytic capacitor are mounted on the first surface,
A conductive member facing the second surface opposite to the first surface of the circuit board,
A conductive pattern formed on the circuit board, which is connected to the cathode terminal of the electrolytic capacitor, and a conductive connection portion connecting the conductive member.
A dielectric arranged between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and arranged at a position where the switching element is electrostatically coupled.
Have,
Brushless motor.
(Appendix 2)
At least a part of the dielectric is arranged at a position where it overlaps with the switching element in a plan view of the circuit board.
The brushless motor according to Appendix 1.
(Appendix 3)
The noise reduction structure is
The first dielectric as the dielectric and
A second dielectric, which is interposed between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and is arranged at a position where it is electrostatically coupled to the electrolytic capacitor.
Have,
The brushless motor according to Appendix 1 or Appendix 2.
(Appendix 4)
At least a part of the second dielectric is arranged at a position where it overlaps with the cathode terminal of the electrolytic capacitor in the plan view of the circuit board, and the whole thereof does not overlap with the anode terminal of the electrolytic capacitor in the plan view of the circuit board. Has been,
The brushless motor according to Appendix 3.
(Appendix 5)
The second dielectric is arranged between the first dielectric and the conductive connection.
The brushless motor according to Appendix 3 or Appendix 4.
(Appendix 6)
A plurality of the switching elements are mounted on the first surface of the circuit board.
The first dielectric is formed in a linear shape and overlaps with a plurality of the switching elements in a plan view of the circuit board.
The brushless motor according to any one of Supplementary note 3 to Supplementary note 5.
(Appendix 7)
A plurality of the electrolytic capacitors are mounted on the first surface of the circuit board.
The second dielectric is formed in a linear shape and overlaps with the cathode terminals of the plurality of electrolytic capacitors in a plan view of the circuit board.
The brushless motor according to any one of Supplementary note 3 to Supplementary note 6.
(Appendix 8)
The first dielectric and the second dielectric are integrally formed.
The brushless motor according to any one of Supplementary note 3 to Supplementary note 7.
(Appendix 9)
The first dielectric and the second dielectric are silicone gels.
The brushless motor according to any one of Supplementary note 3 to Supplementary note 8.
(Appendix 10)
The cathode terminal of the electrolytic capacitor is located on the opposite side of the switching element with respect to the anode terminal of the electrolytic capacitor.
The brushless motor according to any one of Supplementary note 1 to Supplementary note 9.
(Appendix 11)
The cathode terminal of the electrolytic capacitor is located on the side of the switching element with respect to the anode terminal of the electrolytic capacitor.
The brushless motor according to any one of Supplementary note 1 to Supplementary note 10.
(Appendix 12)
The brushless motor is
With a rotor having a topped cylinder-shaped rotor housing,
The stator housed inside the rotor housing and
A centerpiece having a plate-like portion facing the opening of the rotor housing and holding the stator,
Equipped with
The circuit board is arranged on the opposite side of the plate-shaped portion from the rotor so as to face the plate-shaped portion.
The conductive member is the plate-shaped portion.
The brushless motor according to any one of Supplementary note 1 to Supplementary note 11.
(Appendix 13)
The brushless motor is
With a rotor having a topped cylinder-shaped rotor housing,
The stator housed inside the rotor housing and
A centerpiece having a plate-like portion facing the opening of the rotor housing and holding the stator,
Equipped with
The circuit board is arranged on the opposite side of the plate-shaped portion from the rotor so as to face the plate-shaped portion.
The conductive member is a substrate case for accommodating the circuit board.
The brushless motor according to any one of Supplementary note 1 to Supplementary note 11.

Claims (8)

  1.  電磁ノイズを低減するノイズ低減構造を備えるブラシレスモータであって、
     前記ノイズ低減構造は、
     第一面にスイッチング素子及び電解コンデンサが実装された回路基板と、
     前記回路基板における前記第一面と反対側の第二面と対向する導電部材と、
     前記回路基板に形成された導電パターンであって前記電解コンデンサのカソード端子と接続された導電パターンと前記導電部材とを接続する導電接続部と、
     前記回路基板と前記導電部材とに接触した状態で前記回路基板と前記導電部材との間に介在され、かつ、前記スイッチング素子と静電結合される位置に配置された誘電体と、
     を有する、
     ブラシレスモータ。
    A brushless motor with a noise reduction structure that reduces electromagnetic noise.
    The noise reduction structure is
    A circuit board on which a switching element and an electrolytic capacitor are mounted on the first surface,
    A conductive member facing the second surface opposite to the first surface of the circuit board,
    A conductive pattern formed on the circuit board, which is connected to the cathode terminal of the electrolytic capacitor, and a conductive connection portion connecting the conductive member.
    A dielectric arranged between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and arranged at a position where the switching element is electrostatically coupled.
    Have,
    Brushless motor.
  2.  前記誘電体は、その少なくとも一部が前記回路基板の平面視で前記スイッチング素子と重なる位置に配置されている、
     請求項1に記載のブラシレスモータ。
    At least a part of the dielectric is arranged at a position where it overlaps with the switching element in a plan view of the circuit board.
    The brushless motor according to claim 1.
  3.  前記ノイズ低減構造は、
     前記誘電体としての第一誘電体と、
     前記回路基板と前記導電部材とに接触した状態で前記回路基板と前記導電部材との間に介在され、かつ、前記電解コンデンサと静電結合される位置に配置された第二誘電体と、
     を有する、
     請求項1又は請求項2に記載のブラシレスモータ。
    The noise reduction structure is
    The first dielectric as the dielectric and
    A second dielectric, which is interposed between the circuit board and the conductive member in a state of being in contact with the circuit board and the conductive member, and is arranged at a position where it is electrostatically coupled to the electrolytic capacitor.
    Have,
    The brushless motor according to claim 1 or 2.
  4.  前記第二誘電体は、その少なくとも一部が前記回路基板の平面視で前記電解コンデンサのカソード端子と重なり、その全部が前記回路基板の平面視で前記電解コンデンサのアノード端子と重ならない位置に配置されている、
     請求項3に記載のブラシレスモータ。
    At least a part of the second dielectric is arranged at a position where it overlaps with the cathode terminal of the electrolytic capacitor in the plan view of the circuit board, and the whole thereof does not overlap with the anode terminal of the electrolytic capacitor in the plan view of the circuit board. Has been,
    The brushless motor according to claim 3.
  5.  前記第二誘電体は、前記第一誘電体と前記導電接続部との間に配置されている、
     請求項3又は請求項4に記載のブラシレスモータ。
    The second dielectric is arranged between the first dielectric and the conductive connection.
    The brushless motor according to claim 3 or 4.
  6.  前記回路基板の第一面には、複数の前記スイッチング素子が実装され、
     前記第一誘電体は、線状に形成され、前記回路基板の平面視で複数の前記スイッチング素子と重なる、
     請求項3~請求項5のいずれか一項に記載のブラシレスモータ。
    A plurality of the switching elements are mounted on the first surface of the circuit board.
    The first dielectric is formed in a linear shape and overlaps with a plurality of the switching elements in a plan view of the circuit board.
    The brushless motor according to any one of claims 3 to 5.
  7.  前記回路基板の第一面には、複数の前記電解コンデンサが実装され、
     前記第二誘電体は、線状に形成され、前記回路基板の平面視で複数の前記電解コンデンサのカソード端子と重なる、
     請求項3~請求項6のいずれか一項に記載のブラシレスモータ。
    A plurality of the electrolytic capacitors are mounted on the first surface of the circuit board.
    The second dielectric is formed in a linear shape and overlaps with the cathode terminals of the plurality of electrolytic capacitors in a plan view of the circuit board.
    The brushless motor according to any one of claims 3 to 6.
  8.  前記ブラシレスモータは、
     有天筒状のロータハウジングを有するロータと、
     前記ロータハウジングの内側に収容されたステータと、
     前記ロータハウジングの開口と対向する板状部を有し、前記ステータを保持するセンターピースと、
     を備え、
     前記回路基板は、前記板状部に対する前記ロータと反対側に前記板状部と対向して配置され、
     前記導電部材は、前記板状部である、
     請求項1~請求項7のいずれか一項に記載のブラシレスモータ。
    The brushless motor is
    With a rotor having a topped cylinder-shaped rotor housing,
    The stator housed inside the rotor housing and
    A centerpiece having a plate-like portion facing the opening of the rotor housing and holding the stator,
    Equipped with
    The circuit board is arranged on the opposite side of the plate-shaped portion from the rotor so as to face the plate-shaped portion.
    The conductive member is the plate-shaped portion.
    The brushless motor according to any one of claims 1 to 7.
PCT/JP2021/029566 2020-11-09 2021-08-10 Brushless motor WO2022097338A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180075272.6A CN116420299A (en) 2020-11-09 2021-08-10 Brushless motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020186784A JP7484670B2 (en) 2020-11-09 2020-11-09 Brushless motor
JP2020-186784 2020-11-09

Publications (1)

Publication Number Publication Date
WO2022097338A1 true WO2022097338A1 (en) 2022-05-12

Family

ID=81457673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029566 WO2022097338A1 (en) 2020-11-09 2021-08-10 Brushless motor

Country Status (3)

Country Link
JP (1) JP7484670B2 (en)
CN (1) CN116420299A (en)
WO (1) WO2022097338A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135213A (en) * 2012-04-13 2012-07-12 Mitsubishi Electric Corp Brushless dc motor and apparatus
JP2020072500A (en) * 2018-10-29 2020-05-07 株式会社デンソー Rotary electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012135213A (en) * 2012-04-13 2012-07-12 Mitsubishi Electric Corp Brushless dc motor and apparatus
JP2020072500A (en) * 2018-10-29 2020-05-07 株式会社デンソー Rotary electric machine

Also Published As

Publication number Publication date
CN116420299A (en) 2023-07-11
JP2022076387A (en) 2022-05-19
JP7484670B2 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
JP5885179B2 (en) Mechanical and electric rotating machine
JP2018011501A (en) Permanent magnet direct current motor and hvac system using the same
JP2017189092A (en) Brush assembly and motor using the same
KR20140074835A (en) Motor
JP2018068101A (en) Electric motor and armature thereof
JP2014176111A (en) Motor
JPWO2018051988A1 (en) motor
JP2008206310A (en) Electric motor
CN101312312A (en) Electric motor
WO2022097338A1 (en) Brushless motor
CN114825780A (en) Rotating electrical machine
JP2007288840A (en) Motor with brush
JP2011198753A (en) Connection structure for electric cable and electric apparatus
US10958124B2 (en) Motor
JP2019180139A (en) motor
JP7119648B2 (en) motor
CN112564425A (en) Motor and motor assembling method
JP2021175338A (en) Axial gap motor
JP2020072500A (en) Rotary electric machine
JP2017033877A (en) Mechatronic device
US11239735B2 (en) Motor unit and motor unit manufacturing method
JP7309515B2 (en) circuit board
US20240154491A1 (en) Motor
JP7442745B2 (en) Circuit connection device, rotating electric machine device, and manufacturing method of circuit connection device
US11784522B2 (en) Rotor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888891

Country of ref document: EP

Kind code of ref document: A1