WO2022095371A1 - I/q域调制方法、双域调制方法和多址通信方法 - Google Patents

I/q域调制方法、双域调制方法和多址通信方法 Download PDF

Info

Publication number
WO2022095371A1
WO2022095371A1 PCT/CN2021/090976 CN2021090976W WO2022095371A1 WO 2022095371 A1 WO2022095371 A1 WO 2022095371A1 CN 2021090976 W CN2021090976 W CN 2021090976W WO 2022095371 A1 WO2022095371 A1 WO 2022095371A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
signal
dimensional
phase
dimension
Prior art date
Application number
PCT/CN2021/090976
Other languages
English (en)
French (fr)
Inventor
岳光荣
余代中
杨霖
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US18/033,379 priority Critical patent/US11936468B2/en
Publication of WO2022095371A1 publication Critical patent/WO2022095371A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0638Clock or time synchronisation among nodes; Internode synchronisation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0682Clock or time synchronisation in a network by delay compensation, e.g. by compensation of propagation delay or variations thereof, by ranging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/02Protecting privacy or anonymity, e.g. protecting personally identifiable information [PII]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0018Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0024Carrier regulation at the receiver end

Definitions

  • the invention belongs to the technical field of communication, and in particular relates to a spatial position-dependent I/Q domain modulation method, a dual-domain modulation method and a multiple access communication method.
  • Channel feedback technology also has inevitable problems: high-precision channel feedback needs to occupy the reverse channel bandwidth and consume a lot of bandwidth resources. Insufficient channel accuracy will seriously affect the security performance of the system.
  • the biggest problem with channel feedback is that an eavesdropper can listen to the channel state information of the legitimate communication party by eavesdropping on the reverse channel, thereby cracking the secure communication method that relies on the channel state information.
  • any traditional communication has a delay, and different systems have different delays. Time delay will have an important impact on the signal (fading, frequency offset, phase rotation, etc.).
  • the signal processing at the receiving end is used to compensate for the influence of the time delay on the signal, rather than the safety of the time delay itself. value.
  • the communication delay has a high security value.
  • the time delay is reciprocal. Due to the reversibility of the optical path, the forward propagation delay of electromagnetic waves is equal to the reverse propagation delay.
  • the communication delay is non-eavesdropping, different systems have different delays, and different locations also have different delays. In trans-horizon propagation, or when a large number of scatterers exist, the radio wave does not propagate in a straight line, and the time delay is even more unpredictable. The non-eavesdropping of the communication delay ensures the security of the communication system.
  • SDMA Spatial Division Multiple Access
  • SDMA divides the space to obtain more addresses. Under the same time, frequency and code domain resources, different users can be distinguished according to different signal propagation paths in the space, so higher efficiency can be achieved. transmission.
  • traditional SDMA can only distinguish users in the angular domain. When multiple users are located in the same sector, the spatial beams cannot be used to distinguish multiple users.
  • the purpose of the present invention is to overcome the above-mentioned defects of the prior art, and to provide an I/Q domain modulation method, a dual-domain modulation method and a multiple access communication method depending on the spatial position.
  • a spatial position-dependent I/Q domain modulation method based on a transmitter, a receiver and multiple channel resources, the transmitter is used to process and transmit the original signal, the receiver is used to recover the original signal, and the channel resources are used for transmission used by receivers and receivers, where channel resources include time domain, frequency domain, space domain and code domain resources;
  • the method of the present invention comprises the following steps:
  • S1 The transmitter and the receiver perform time synchronization to obtain the synchronization time
  • the transmitter performs an I/Q domain precoding operation on the original signal to obtain an I/Q domain precoded signal; the transmitter uses multiple channel resources to send the I/Q domain precoded signal to the receiver;
  • the receiver receives the precoded signal in the I/Q domain, obtains an initial received signal in the I/Q domain, and performs an I/Q domain matching operation on the initial received signal in the I/Q domain to obtain an estimate of the original signal.
  • the I/Q domain precoding operation includes the following steps:
  • the transmitter generates a high-dimensional precoding signal ⁇ (t+ ⁇ ) in the I/Q domain according to the synchronization time t and the transmission delay ⁇ to the receiver:
  • the dimension of the high-dimensional original signal is M, where s i (t) represents the i-th dimension of the high-dimensional original signal;
  • S2-3 Process the high-dimensional original signal according to the high-dimensional precoding signal to obtain the precoded signal x(t) in the I/Q domain:
  • x i (t) represents the i-th dimension of the precoded signal in the I/Q domain.
  • n i (t) is the random bias signal in the i-th I/Q domain, satisfying [n 1 (t) n 2 (t)...n M (t)] T lies in the equation in the solution space.
  • the transmitter adopts a narrow beam antenna, which is aimed at the receiver.
  • a dual-domain modulation method dependent on spatial position based on a transmitter, a receiver and multiple channel resources, the transmitter is used to process and transmit the original signal, the receiver is used to restore the original signal, and the channel resources Used by transmitters and receivers, where channel resources include time domain, frequency domain, space domain and code domain resources;
  • the method of the present invention comprises the following steps:
  • S1 The transmitter and the receiver perform time synchronization to obtain the synchronization time
  • the transmitter performs the I/Q domain precoding operation on the original signal to obtain the I/Q domain precoded signal; the transmitter performs the phase domain precoding operation on the I/Q domain precoded signal to obtain the phase domain precoded signal signal; the transmitter uses multiple channel resources to send the phase-domain precoded signal to the receiver;
  • the receiver receives the precoded signal in the phase domain, obtains the initial received signal in the phase domain, performs the phase domain matching operation on the initial received signal in the phase domain, and obtains the matched signal in the phase domain; the receiver performs I/Q domain matching on the matched signal in the phase domain operation to obtain an estimate of the original signal.
  • the I/Q domain precoding operation includes the following steps:
  • the transmitter generates a high-dimensional precoded signal ⁇ (t+ ⁇ ) in the I/Q domain according to the synchronization time t and the transmission delay ⁇ to the receiver:
  • the dimension of the high-dimensional original signal is M, where s i (t) represents the i-th dimension of the high-dimensional original signal;
  • S2-3 Process the high-dimensional original signal according to the high-dimensional precoding signal in the I/Q domain to obtain the precoded signal x(t) in the I/Q domain:
  • x i (t) represents the i-th dimension of the signal after I/Q domain precoding
  • the phase domain precoding operation includes the following steps:
  • the transmitter generates a phase-domain high-dimensional precoding signal ⁇ (t+ ⁇ ) according to the synchronization time t and the transmission delay ⁇ to the receiver:
  • the number of domain precoding branches, satisfying N 1 ⁇ N 2 ⁇ ... ⁇ N T N, ⁇ f p represents the frequency increment of the p-th layer; Represents the amplitude of the precoded signal on the npth branch in the phase domain precoding branch of the pth layer;
  • S2-6 Process the i-th high-dimensional phase signal according to the phase-domain high-dimensional precoding signal to obtain the i-th phase-domain precoded signal ⁇ i (t):
  • ⁇ i, k (t) represents the k-th dimension of the signal after the i-th phase domain precoding
  • the transmitter combines the i-th phase-domain precoded signal into a phase-domain precoded signal:
  • phase-domain matching signal in, represents the initial received signal in the phase domain, and the superscript T represents the transposition; ⁇ j (t) represents the matching signal corresponding to ⁇ j (t+ ⁇ ), and its value satisfies Represents the i-th dimension of the phase-domain matching signal, and the phase-domain matching signal is
  • n i (t) is the random bias signal in the i-th I/Q domain, satisfying [n 1 (t) n 2 (t)...n M (t)] T lies in the equation in the solution space;
  • phase domain high-dimensional mapping method is:
  • the transmitter adopts a narrow beam antenna, which is aimed at the receiver.
  • a location-based multiple access communication method based on a transmitter, a receiver and multiple channel resources, the transmitter is used to process and transmit an original signal, the receiver is used to recover the original signal, and the channel resources are used by the transmitter and the The receiver uses, wherein the channel resources include time domain, frequency domain, spatial domain and code domain resources;
  • the method of the present invention comprises the following steps:
  • S1 The transmitter performs time synchronization with several users to obtain the synchronization time t;
  • the transmitter maps the original signal of the u-th user to the u-th high-dimensional original signal, and the u-th high-dimensional original signal is:
  • s 0 (u, t) is the original signal of the u-th user
  • M is the ith dimension
  • u is the dimension of the high-dimensional original signal, whose value is equal to the number of channel resources
  • the transmitter performs I/Q domain precoding on the u-th high-dimensional original signal to generate the u-th high-dimensional transmission signal.
  • the I/Q domain precoding process is:
  • x(u, t) represents the u-th high-dimensional transmitted signal
  • x i (u, t) represents the i-th dimension of the u-th high-dimensional transmitted signal
  • ⁇ i (u, t+ ⁇ ) represents the u-th precoded signal
  • U represents the number of users; the transmitter uses multiple channel resources to broadcast the high-dimensional total transmitted signal to multiple users, and each channel resource transmits one dimension of the high-dimensional total transmitted signal;
  • the u-th user receives the high-dimensional total transmitted signal, obtains the high-dimensional total received signal, and performs I/Q domain matching operation on the high-dimensional total received signal to obtain the estimation of the u-th original signal
  • the u-th precoded signal is:
  • the i-th dimension of the u-th precoded signal is:
  • the uth matching signal is:
  • the i-th dimension of the u-th matched signal is:
  • the method of the invention eliminates the dependence of the physical layer security communication on the channel state information, and realizes that the receiver at the expected position can communicate normally, while the eavesdropper at other positions cannot receive the signal or can only receive the wrong signal.
  • the security capability of the wireless communication system is improved in the dimension of space.
  • the multiple-access communication method of the present invention can realize the distinction of multiple users according to the precise spatial location points. Even when multiple users are located in the same angle domain sector, as long as the spatial positions of these users are different, the method proposed by the invention can be used for multiple access communication, thereby further improving the spatial reuse rate of the system and increasing the system capacity. .
  • FIG. 1 is a schematic flowchart of the method described in the second embodiment.
  • This embodiment provides an I/Q domain modulation method that depends on a spatial position. Based on a transmitter, a receiver and multiple channel resources, the transmitter is used to process and transmit the original signal, and the receiver is used to restore the original signal.
  • Channel resources are used by transmitters and receivers, wherein channel resources include time domain, frequency domain, space domain and code domain resources;
  • S1 The transmitter and the receiver perform time synchronization to obtain the synchronization time
  • the transmitter performs an I/Q domain precoding operation on the original signal to obtain an I/Q domain precoded signal; the transmitter uses multiple channel resources to send the I/Q domain precoded signal to the receiver;
  • the receiver receives the precoded signal in the I/Q domain, obtains an initial received signal in the I/Q domain, and performs an I/Q domain matching operation on the initial received signal in the I/Q domain to obtain an estimate of the original signal.
  • the I/Q domain precoding operation includes the following steps:
  • the transmitter generates a high-dimensional precoding signal ⁇ (t+ ⁇ ) in the I/Q domain according to the synchronization time t and the transmission delay ⁇ to the receiver:
  • the dimension of the high-dimensional original signal is M, where s i (t) represents the i-th dimension of the high-dimensional original signal;
  • S2-3 Process the high-dimensional original signal according to the high-dimensional precoding signal to obtain the precoded signal x(t) in the I/Q domain:
  • x i (t) represents the i-th dimension of the precoded signal in the I/Q domain.
  • n i (t) is the random bias signal in the i-th I/Q domain, satisfying [n 1 (t) n 2 (t)...n M (t)] T lies in the equation in the solution space.
  • the transmitter adopts a narrow beam antenna, which is aimed at the receiver.
  • This embodiment provides a dual-domain modulation method that depends on spatial location. Based on a transmitter, a receiver and multiple channel resources, the transmitter is used to process and transmit an original signal, and the receiver is used to process and transmit the original signal. Recovery, channel resources are used by transmitters and receivers, wherein channel resources include time domain, frequency domain, space domain and code domain resources;
  • FIG. 1 A schematic flowchart of the method described in this embodiment is shown in FIG. 1 , and includes the following steps:
  • S1 The transmitter and the receiver perform time synchronization to obtain the synchronization time
  • the transmitter performs an I/Q domain precoding operation on the original signal to obtain an I/Q domain precoded signal; the transmitter performs a phase domain precoding operation on the I/Q domain precoded signal to obtain a phase domain precoded signal signal; the transmitter uses multiple channel resources to send the phase-domain precoded signal to the receiver;
  • the receiver receives the precoded signal in the phase domain, obtains the initial received signal in the phase domain, performs the phase domain matching operation on the initial received signal in the phase domain, and obtains the matched signal in the phase domain; the receiver performs I/Q domain matching on the matched signal in the phase domain operation to obtain an estimate of the original signal.
  • the I/Q domain precoding operation includes the following steps:
  • the transmitter generates a high-dimensional precoding signal ⁇ (t+ ⁇ ) in the I/Q domain according to the synchronization time t and the transmission delay ⁇ to the receiver:
  • the dimension of the high-dimensional original signal is M, where s i (t) represents the i-th dimension of the high-dimensional original signal;
  • S2-3 Process the high-dimensional original signal according to the high-dimensional precoding signal in the I/Q domain to obtain the precoded signal x(t) in the I/Q domain:
  • x i (t) represents the i-th dimension of the precoded signal in the I/Q domain.
  • the phase domain precoding operation includes the following steps:
  • the transmitter generates a phase-domain high-dimensional precoding signal ⁇ (t+ ⁇ ) according to the synchronization time t and the transmission delay ⁇ to the receiver:
  • the number of domain precoding branches, satisfying N 1 ⁇ N 2 ⁇ ... ⁇ M T N, ⁇ f p represents the pre-determined p-th layer frequency increment; represents the amplitude of the precoded signal on the npth branch in the phase domain precoding branch of the pth layer, and its value is determined in advance;
  • S2-6 Process the i-th high-dimensional phase signal according to the phase-domain high-dimensional precoding signal to obtain the i-th phase-domain precoded signal ⁇ i (t):
  • ⁇ i, k (t) represents the k-th dimension of the signal after the i-th phase domain precoding
  • the transmitter combines the i-th phase-domain precoded signal into a phase-domain precoded signal:
  • phase-domain matching signal in, represents the initial received signal in the phase domain, and the superscript T represents the transposition; ⁇ j (t) represents the matching signal corresponding to ⁇ j (t+ ⁇ ), and its value satisfies Represents the i-th dimension of the phase-domain matching signal, and the phase-domain matching signal is
  • n i (t) is the random bias signal in the i-th I/Q domain, satisfying [n 1 (t) n 2 (t)...n M (t)] T lies in the equation in the solution space;
  • phase domain high-dimensional mapping method is:
  • the transmitter adopts a narrow beam antenna, which is aimed at the receiver.
  • This embodiment provides a location-based multiple access communication method. Based on a transmitter, a receiver and multiple channel resources, the transmitter is used to process and transmit an original signal, the receiver is used to restore the original signal, and the channel resource is used to process and transmit an original signal. Used by transmitters and receivers, where channel resources include time domain, frequency domain, space domain and code domain resources;
  • S1 The transmitter performs time synchronization with several users to obtain the synchronization time t;
  • the transmitter maps the original signal of the u-th user to the u-th high-dimensional original signal, and the u-th high-dimensional original signal is:
  • s 0 (u, t) is the original signal of the u-th user
  • M is the ith dimension
  • u is the dimension of the high-dimensional original signal, whose value is equal to the number of channel resources
  • the transmitter performs I/Q domain precoding on the u-th high-dimensional original signal to generate the u-th high-dimensional transmission signal.
  • the I/Q domain precoding process is:
  • x(u, t) represents the u-th high-dimensional transmitted signal
  • x i (u, t) represents the i-th dimension of the u-th high-dimensional transmitted signal
  • ⁇ i (u, t+ ⁇ ) represents the u-th precoded signal
  • U represents the number of users; the transmitter uses multiple channel resources to broadcast the high-dimensional total transmitted signal to multiple users, and each channel resource transmits one dimension of the high-dimensional total transmitted signal;
  • the u-th user receives the high-dimensional total transmitted signal, obtains the high-dimensional total received signal, and performs I/Q domain matching operation on the high-dimensional total received signal to obtain the estimation of the u-th original signal
  • the u-th precoded signal is:
  • the i-th dimension of the u-th precoded signal is:
  • the uth matching signal is:
  • the i-th dimension of the u-th matched signal is:

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本发明公开了一种依赖于空间位置的I/Q域调制方法、双域调制方法和多址通信方法,属于通信技术领域。本发明所述方法消除物理层安全通信对信道状态信息的依赖,并且实现在预期位置处的接收机能够正常通信,而在其他位置处的窃听者不能接收到信号或者只能接收到错误信号的功能。在空间的维度上提升了无线通信***的安全能力。本发明所述多址通信方法,可以实现依据空间精确位置点对多个用户进行区分。即便当多个用户位于同一个角度域扇区内,只要这些用户所在的空间位置不同,即可利用该发明所提出的方法进行多址通信,从而进一步提高***的空间复用率,提升***容量。

Description

I/Q域调制方法、双域调制方法和多址通信方法 技术领域
本发明属于通信技术领域,具体涉及一种依赖于空间位置的I/Q域调制方法、双域调制方法和多址通信方法。
背景技术
传统的无线通信时时面临着被窃听截获的风险。传统抗窃听截获的方法是上层加密和认证,然而随着计算能力的与日俱增,上层加密和认证技术的安全性面临着前所未有的挑战。因此,学术界和工业界提出物理层安全通信的概念,将安全关口前移至物理层,利用物理层丰富的随机性,结合物理层固有的调制编码技术,在新的维度上开展安全通信***设计,提升***安全性能。
在传统物理层安全通信中,常利用一些物理层的特有因素:例如信道噪声和干扰来实现安全通信目的。但是,在具体实现过程中,噪声和干扰等因素的不确定性大,难以控制利用。大多传统物理层安全通信技术还通过利用无线信道的随机性和空间差异性来实现安全通信目的,但是这通常建立在信道的互易性和信道反馈技术的基础上。然而通常情况下,信道的互易性很难得到严格的满足。例如,在频分双工(FDD)***中,由于往返信道位于不同的频点,因此通常不满足信道互易性。即便是在时分双工(TDD)***中,信道的快衰落特性也会破坏信道的互易性。即便是在TDD慢衰落信道中,当大量散射体存在时,由于散射体从不同方向入射会表现出不同的散射特性,因此,信道的互易性也难以得到满足。信道反馈技术也存在着不可避免的问题:高精度的信道反馈需要占用反向信道带宽,消耗大量带宽资源。信道精度不足又会严重影响***的安全性能。信道反馈最大的问题在于窃听者可以通过窃听反向信道侦听合法通信方的信道状态信息,从而破解依赖于信道状态信息的安全通信方法。
众所周知,任何传统通信都具有时延,并且不同***具有不同的时延。时延会对信号产生重要的影响(衰落、频偏、相位旋转等),传统通信方式中,都是通过接收端信号处理,以补偿时延对信号的影响,而没有利用时延本身的安全价值。实际上,通信时延具有很高的安全价值。首先,时延具有互易性,由光路可逆特性,电磁波正向传播时延与其反向传播时延相等。再者,通信时延具有不可窃听性,不同的***具有不同的时延,不同的位置也会具有不同的时延。在超视距传播,或者大量散射体存在时,电波不延直线传播,时延则更不可预知。通信时延的不可窃听性确保了通信***的安全性。
传统抗截获和反欺骗手段依赖于网络层以上的加密和认证技术,然而随着计算能力的提升,上层加密和认证技术面临着严峻的挑战。例如:秘钥管理、分配和维护困难;长秘钥造 成高运算开销和资源浪费;窃听能力提升使得基于计算复杂度的上层加密方法面临威胁。为了应对这些问题,国内外提出物理层安全通信,将安全关口前移,利用物理层本身存在随机性(干扰、噪声等)来摆脱对长秘钥的依赖性。然而,现有大多物理层安全通信技术依赖于无线信道的互易性,可是信道的互易性很难得到严格的满足。现有空域物理层安全技术,例如空间波束赋形和方向调制虽可摆脱信道互易性的限制,但是仅仅能够提供角度域的安全性能,若窃听者和我方接收机位于同一方向角时,则不具有安全性。
空分多址(SDMA)通过标记不同方位相同频率的天线波束来实现频率资源复用。SDMA对通信***性能有多方面的改善,例如,SDMA可以降低信道间干扰和多径衰落。更重要的是SDMA***可以使***容量成倍增加,使得***在有限的频谱内可以支持更多的用户,从而成倍地提高频谱使用效率。结合智能天线技术,SDMA将空间进行划分,取得更多的地址,在相同时间、频率和码域资源的情况下,根据信号在空间内传播路径不同来区分不同的用户,因此可以达到更高效率的传输。然而传统SDMA只能实现角度域用户的区分,当多个用户位于同一个扇区内时,并不能通过空间波束来对多个用户进行区分。
发明内容
本发明的目的是克服上述现有技术的缺陷,提供一种依赖于空间位置的I/Q域调制方法、双域调制方法和多址通信方法。
本发明所提出的技术问题是这样解决的:
一种依赖于空间位置的I/Q域调制方法,基于发射机、接收机和多个信道资源,发射机用于处理和发射原始信号,接收机用于对原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
本发明所述方法包括以下步骤:
S1:发射机和接收机进行时间同步,得到同步时间;
S2:发射机对原始信号进行I/Q域预编码操作,得到I/Q域预编码后信号;发射机利用多个信道资源将I/Q域预编码后信号发送至接收机;
S3:接收机接收I/Q域预编码后信号,得到I/Q域初始接收信号,对I/Q域初始接收信号进行I/Q域匹配操作,得到对原始信号的估计。
S2中,I/Q域预编码操作包括以下步骤:
S2-1:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生I/Q域高维预编码信号α(t+Δτ):
Figure PCTCN2021090976-appb-000001
其中,α i(t+Δτ)表示I/Q域高维预编码信号的第i维,i=1,2,…,M,M表示I/Q域高维预编码信号的维数,M不超过信道资源的个数;
Figure PCTCN2021090976-appb-000002
其中,
Figure PCTCN2021090976-appb-000003
L表示I/Q域预编码层数,L≥1;k m表示第m层I/Q域预编码支路索引,1≤k m≤M m,M m表示第m层I/Q域预编码支路数,满足M 1×M 2×…×M L=M,
Figure PCTCN2021090976-appb-000004
Δf m表示第m层频率增量;
S2-2:对原始信号s 0(t)进行高维映射,得到高维原始信号s(t):
Figure PCTCN2021090976-appb-000005
高维原始信号的维数为M,其中,s i(t)表示高维原始信号的第i维;
S2-3:依据高维预编码信号对高维原始信号进行处理,得到I/Q域预编码后信号x(t):
Figure PCTCN2021090976-appb-000006
其中,x i(t)表示I/Q域预编码后信号的第i维。
S3中,I/Q域匹配操作的具体过程为:
Figure PCTCN2021090976-appb-000007
其中,
Figure PCTCN2021090976-appb-000008
表示I/Q域初始接收信号,上标T表示转置;
Figure PCTCN2021090976-appb-000009
*表示共轭,
Figure PCTCN2021090976-appb-000010
表示对原始信号的估计。
S2-2中,高维映射方法为:
方法一:
Figure PCTCN2021090976-appb-000011
方法二:
Figure PCTCN2021090976-appb-000012
其中n i(t)为第iI/Q域随机偏置信号,满足[n 1(t) n 2(t)…n M(t)] T位于方程
Figure PCTCN2021090976-appb-000013
的解空间中。
进一步地,发射机采用窄波束天线,对准接收机。
一种依赖于空间位置的双域调制方法,基于发射机、接收机和多个信道资源,发射机用于对原始信号进行处理和发射,接收机用于对所述原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
本发明所述方法包括以下步骤:
S1:发射机和接收机进行时间同步,得到同步时间;
S2:发射机对原始信号进行I/Q域预编码操作,得到I/Q域预编码后信号;发射机对I/Q域预编码后信号进行相位域预编码操作,得到相位域预编码后信号;发射机利用多个信道资源将相位域预编码后信号发送至接收机;
S3:接收机接收相位域预编码后信号,得到相位域初始接收信号,对相位域初始接收信号进行相位域匹配操作,得到相位域匹配信号;接收机对相位域匹配信号进行I/Q域匹配操作,得到对原始信号的估计。
S2中,I/Q域预编码操作包括以下步骤:
S2-1:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生I/Q域高维预编码信 号α(t+Δτ):
Figure PCTCN2021090976-appb-000014
其中,α i(t+Δτ)表示高维预编码信号的第i维,i=1,2,…,M,M表示高维预编码信号的维数,M不超过信道资源的个数;
Figure PCTCN2021090976-appb-000015
其中,
Figure PCTCN2021090976-appb-000016
L表示I/Q域预编码层数,L≥1;k m表示第m层I/Q域预编码支路索引,1≤k m≤M m,M m表示第m层I/Q域预编码支路数,满足M 1×M 2×…×M L=M,
Figure PCTCN2021090976-appb-000017
Δf m表示第m层频率增量;
S2-2:对原始信号s 0(t)进行高维映射,得到高维原始信号s(t):
Figure PCTCN2021090976-appb-000018
高维原始信号的维数为M,其中,s i(t)表示高维原始信号的第i维;
S2-3:依据I/Q域高维预编码信号对高维原始信号进行处理,得到I/Q域预编码后信号x(t):
Figure PCTCN2021090976-appb-000019
其中,x i(t)表示I/Q域预编码后信号第i维;
相位域预编码操作包括以下步骤:
S2-4:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生相位域高维预编码信号β(t+Δτ):
Figure PCTCN2021090976-appb-000020
其中,β j(t+Δτ)表示高维预编码信号的第j维,j=1,2,…,N,N表示高维预编码信号的维数,M×N不超过信道资源的个数;
Figure PCTCN2021090976-appb-000021
其中,T表示相位域预编码层数,T≥1,1≤p≤T;n p表示第p层相位域预编码支路索引,1≤n p≤N p,N p表示第p层相位域预编码支路数,满足N 1×N 2×…×N T=N,
Figure PCTCN2021090976-appb-000022
Δf p表示第p层频率增量;
Figure PCTCN2021090976-appb-000023
表示第p层相位域预编码支路中的第n p个支路上的预编码信号幅度;δ为发射机和接收机事先协定的正常数,其取值满足
Figure PCTCN2021090976-appb-000024
S2-5:对I/Q域预编码后信号第i维x i(t)的相位∠x i(t)进行相位域高维映射,得到第i高维相位信号∠x i(t):
Figure PCTCN2021090976-appb-000025
高维相位信号的维数为N,其中,∠x i,k(t)表示第i高维相位信号的第k维,k=1,2,…,N,mod为求余函数;
S2-6:依据相位域高维预编码信号对第i高维相位信号进行处理,得到第i相位域预编码后信号ξ i(t):
Figure PCTCN2021090976-appb-000026
其中,ξ i,k(t)表示第i相位域预编码后信号第k维;
发射机将第i相位域预编码后信号组合成相位域预编码后信号:
Figure PCTCN2021090976-appb-000027
S3中,相位域匹配操作的具体过程为:
Figure PCTCN2021090976-appb-000028
Figure PCTCN2021090976-appb-000029
其中,
Figure PCTCN2021090976-appb-000030
表示相位域初始接收信号,上标T表示转置;γ j(t)表示与β j(t+Δτ)相对应的匹配信号,其值满足
Figure PCTCN2021090976-appb-000031
表示相位域匹配信号的第i维,相位域匹配信号为
Figure PCTCN2021090976-appb-000032
I/Q域匹配操作的具体过程为:
Figure PCTCN2021090976-appb-000033
其中,
Figure PCTCN2021090976-appb-000034
*表示共轭,
Figure PCTCN2021090976-appb-000035
表示对原始信号的估计。
S2-2中,高维映射方法为:
方法一:
Figure PCTCN2021090976-appb-000036
方法二:
Figure PCTCN2021090976-appb-000037
其中n i(t)为第iI/Q域随机偏置信号,满足[n 1(t) n 2(t)…n M(t)] T位于方程
Figure PCTCN2021090976-appb-000038
的解空间中;
S2-5中,相位域高维映射方法为:
方法一:
Figure PCTCN2021090976-appb-000039
方法二:
Figure PCTCN2021090976-appb-000040
其中θ k(t)为第k相位域随机偏置信号,满足[θ 1(t) θ 2(t)…θ N(t)] T位于方程
Figure PCTCN2021090976-appb-000041
的解空间中。
进一步地,发射机采用窄波束天线,对准接收机。
一种基于位置的多址通信方法,基于发射机、接收机和多个信道资源,发射机用于处理和发射原始信号,接收机用于对所述原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
本发明所述方法包括以下步骤:
S1:发射机和若干个用户进行时间同步,得到同步时间t;
S2:发射机将第u个用户的原始信号映射为第u高维原始信号,第u高维原始信号为:
Figure PCTCN2021090976-appb-000042
其中,s 0(u,t)为第u个用户的原始信号,s i(u,t)为第u高维原始信号的第i维,i=1,2,…,M,M为第u高维原始信号的维度,其值等于信道资源的数目;
S3:发射机对第u高维原始信号进行I/Q域预编码,产生第u高维发射信号,I/Q域预编码过程为:
Figure PCTCN2021090976-appb-000043
其中,x(u,t)表示第u高维发射信号,x i(u,t)表示第u高维发射信号的第i维,α i(u,t+Δτ)表示第u预编码信号的第i维,i=1,2,…,M,Δτ u表示发射机到第u 个用户的传输时延;
S4:发射机将所有第u高维发射信号求和得到高维总发射信号:
Figure PCTCN2021090976-appb-000044
其中,U表示用户数目;发射机利用多个信道资源将高维总发射信号广播给多个用户,每个信道资源传输高维总发射信号的一维;
S5:第u个用户接收高维总发射信号,得到高维总接收信号,并对高维总接收信号进行I/Q域匹配操作,得到第u原始信号的估计
Figure PCTCN2021090976-appb-000045
S3中,第u预编码信号为:
Figure PCTCN2021090976-appb-000046
第u预编码信号的第i维为:
Figure PCTCN2021090976-appb-000047
S5中,I/Q域匹配的过程为:
Figure PCTCN2021090976-appb-000048
Figure PCTCN2021090976-appb-000049
其中,
Figure PCTCN2021090976-appb-000050
表示第u匹配信号的第i维,
Figure PCTCN2021090976-appb-000051
表示高维总接收信号,
Figure PCTCN2021090976-appb-000052
表示高维总接收信号的第i维。
S5中,第u匹配信号为:
Figure PCTCN2021090976-appb-000053
第u匹配信号的第i维为:
Figure PCTCN2021090976-appb-000054
本发明的有益效果是:
本发明所述方法消除物理层安全通信对信道状态信息的依赖,并且实现在预期位置处的接收机能够正常通信,而在其他位置处的窃听者不能接收到信号或者只能接收到错误信号的功能。在空间的维度上提升了无线通信***的安全能力。
本发明所述多址通信方法,可以实现依据空间精确位置点对多个用户进行区分。即便当多个用户位于同一个角度域扇区内,只要这些用户所在的空间位置不同,即可利用该发明所提出的方法进行多址通信,从而进一步提高***的空间复用率,提升***容量。
附图说明
图1为实施例二所述方法的流程示意图。
具体实施方式
下面结合附图和实施例对本发明进行进一步的说明。
实施例一
本实施例提供一种依赖于空间位置的I/Q域调制方法,基于发射机、接收机和多个信道资源,发射机用于处理和发射原始信号,接收机用于对原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
本实施例所述方法包括以下步骤:
S1:发射机和接收机进行时间同步,得到同步时间;
S2:发射机对原始信号进行I/Q域预编码操作,得到I/Q域预编码后信号;发射机利用多个信道资源将I/Q域预编码后信号发送至接收机;
S3:接收机接收I/Q域预编码后信号,得到I/Q域初始接收信号,对I/Q域初始接收信号进行I/Q域匹配操作,得到对原始信号的估计。
S2中,I/Q域预编码操作包括以下步骤:
S2-1:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生I/Q域高维预编码信号α(t+Δτ):
Figure PCTCN2021090976-appb-000055
其中,α i(t+Δτ)表示I/Q域高维预编码信号的第i维,i=1,2,…,M,M表示I/Q域高维预编码信号的维数,M不超过信道资源的个数;
Figure PCTCN2021090976-appb-000056
其中,
Figure PCTCN2021090976-appb-000057
L表示I/Q域预编码层数,L≥1;k m表示第m层I/Q域预编码支路索引,1≤k m≤M m,M m表示第m层I/Q域预编码支路数,满足M 1×M 2×…×M L=M,
Figure PCTCN2021090976-appb-000058
Δf m表示事先决定的第m层频率增量;
S2-2:对原始信号s 0(t)进行高维映射,得到高维原始信号s(t):
Figure PCTCN2021090976-appb-000059
高维原始信号的维数为M,其中,s i(t)表示高维原始信号的第i维;
S2-3:依据高维预编码信号对高维原始信号进行处理,得到I/Q域预编码后信号x(t):
Figure PCTCN2021090976-appb-000060
其中,x i(t)表示I/Q域预编码后信号的第i维。
S3中,I/Q域匹配操作的具体过程为:
Figure PCTCN2021090976-appb-000061
其中,
Figure PCTCN2021090976-appb-000062
表示I/Q域初始接收信号,上标T表示转置;
Figure PCTCN2021090976-appb-000063
*表示共轭,
Figure PCTCN2021090976-appb-000064
表示对原始信号的估计。
S2-2中,高维映射方法为:
方法一:
Figure PCTCN2021090976-appb-000065
方法二:
Figure PCTCN2021090976-appb-000066
其中n i(t)为第iI/Q域随机偏置信号,满足[n 1(t) n 2(t)…n M(t)] T位于方程
Figure PCTCN2021090976-appb-000067
的解空间中。
进一步地,发射机采用窄波束天线,对准接收机。
实施例二
本实施例提供一种依赖于空间位置的双域调制方法,基于发射机、接收机和多个信道资源,发射机用于对原始信号进行处理和发射,接收机用于对所述原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
本实施例所述方法的流程示意图如图1所示,包括以下步骤:
S1:发射机和接收机进行时间同步,得到同步时间;
S2:发射机对原始信号进行I/Q域预编码操作,得到I/Q域预编码后信号;发射机对I/Q 域预编码后信号进行相位域预编码操作,得到相位域预编码后信号;发射机利用多个信道资源将相位域预编码后信号发送至接收机;
S3:接收机接收相位域预编码后信号,得到相位域初始接收信号,对相位域初始接收信号进行相位域匹配操作,得到相位域匹配信号;接收机对相位域匹配信号进行I/Q域匹配操作,得到对原始信号的估计。
S2中,I/Q域预编码操作包括以下步骤:
S2-1:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生I/Q域高维预编码信号α(t+Δτ):
Figure PCTCN2021090976-appb-000068
其中,α i(t+Δτ)表示高维预编码信号的第i维,i=1,2,…,M,M表示高维预编码信号的维数,M不超过信道资源的个数;
Figure PCTCN2021090976-appb-000069
其中,
Figure PCTCN2021090976-appb-000070
L表示I/Q域预编码层数,L≥1;k m表示第m层I/Q域预编码支路索引,1≤k m≤M m,M m表示第m层I/Q域预编码支路数,满足M 1×M 2×…×M L=M,
Figure PCTCN2021090976-appb-000071
Δf m表示事先决定的第m层频率增量;
S2-2:对原始信号s 0(t)进行高维映射,得到高维原始信号s(t):
Figure PCTCN2021090976-appb-000072
高维原始信号的维数为M,其中,s i(t)表示高维原始信号的第i维;
S2-3:依据I/Q域高维预编码信号对高维原始信号进行处理,得到I/Q域预编码后信号x(t):
Figure PCTCN2021090976-appb-000073
其中,x i(t)表示I/Q域预编码后信号第i维。
相位域预编码操作包括以下步骤:
S2-4:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生相位域高维预编码信号β(t+Δτ):
Figure PCTCN2021090976-appb-000074
其中,β j(t+Δτ)表示高维预编码信号的第j维,j=1,2,…,N,N表示高维预编码信号的维数,M×N不超过信道资源的个数;
Figure PCTCN2021090976-appb-000075
其中,T表示相位域预编码层数,T≥1,1≤p≤T;n p表示第p层相位域预编码支路索引,1≤n p≤N p,N p表示第p层相位域预编码支路数,满足N 1×N 2×…×M T=N,
Figure PCTCN2021090976-appb-000076
Δf p表示事先确定的第p层频率增量;
Figure PCTCN2021090976-appb-000077
表示第p层相位域预编码支路中的第n p个支路上的预编码信号幅度, 其值在事先确定;δ为发射机和接收机事先协定的正常数,其取值满足
Figure PCTCN2021090976-appb-000078
S2-5:对I/Q域预编码后信号第i维x i(t)的相位∠x i(t)进行相位域高维映射,得到第i高维相位信号∠x i(t):
Figure PCTCN2021090976-appb-000079
高维相位信号的维数为N,其中,∠x i,k(t)表示第i高维相位信号的第k维,k=1,2,…,N,mod为求余函数;
S2-6:依据相位域高维预编码信号对第i高维相位信号进行处理,得到第i相位域预编码后信号ξ i(t):
Figure PCTCN2021090976-appb-000080
其中,ξ i,k(t)表示第i相位域预编码后信号第k维;
发射机将第i相位域预编码后信号组合成相位域预编码后信号:
Figure PCTCN2021090976-appb-000081
S3中,相位域匹配操作的具体过程为:
Figure PCTCN2021090976-appb-000082
Figure PCTCN2021090976-appb-000083
其中,
Figure PCTCN2021090976-appb-000084
表示相位域初始接收信号,上标T表示转置;γ j(t)表示与β j(t+Δτ)相对应的匹配信号,其值满足
Figure PCTCN2021090976-appb-000085
表示相位域匹配信号的第i维,相位域匹配信号为
Figure PCTCN2021090976-appb-000086
I/Q域匹配操作的具体过程为:
Figure PCTCN2021090976-appb-000087
其中,
Figure PCTCN2021090976-appb-000088
*表示共轭,
Figure PCTCN2021090976-appb-000089
表示对原始信号的估计。
S2-2中,高维映射方法为:
方法一:
Figure PCTCN2021090976-appb-000090
方法二:
Figure PCTCN2021090976-appb-000091
其中n i(t)为第iI/Q域随机偏置信号,满足 [n 1(t) n 2(t)…n M(t)] T位于方程
Figure PCTCN2021090976-appb-000092
的解空间中;
S2-5中,相位域高维映射方法为:
方法一:
Figure PCTCN2021090976-appb-000093
方法二:
Figure PCTCN2021090976-appb-000094
其中θ k(t)为第k相位域随机偏置信号,满足[θ 1(t) θ 2(t)…θ N(t)] T位于方程
Figure PCTCN2021090976-appb-000095
的解空间中。
进一步地,发射机采用窄波束天线,对准接收机。
实施例三
本实施例提供一种基于位置的多址通信方法,基于发射机、接收机和多个信道资源,发射机用于处理和发射原始信号,接收机用于对所述原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
本实施例所述方法包括以下步骤:
S1:发射机和若干个用户进行时间同步,得到同步时间t;
S2:发射机将第u个用户的原始信号映射为第u高维原始信号,第u高维原始信号为:
Figure PCTCN2021090976-appb-000096
其中,s 0(u,t)为第u个用户的原始信号,s i(u,t)为第u高维原始信号的第i维,i=1,2,…,M,M为第u高维原始信号的维度,其值等于信道资源的数目;
S3:发射机对第u高维原始信号进行I/Q域预编码,产生第u高维发射信号,I/Q域预编码过程为:
Figure PCTCN2021090976-appb-000097
其中,x(u,t)表示第u高维发射信号,x i(u,t)表示第u高维发射信号的第i维,α i(u,t+Δτ)表示第u预编码信号的第i维,i=1,2,…,M,Δτ u表示发射机到第u个用户的传输时延;
S4:发射机将所有第u高维发射信号求和得到高维总发射信号:
Figure PCTCN2021090976-appb-000098
其中,U表示用户数目;发射机利用多个信道资源将高维总发射信号广播给多个用户,每个信道资源传输高维总发射信号的一维;
S5:第u个用户接收高维总发射信号,得到高维总接收信号,并对高维总接收信号进行I/Q域匹配操作,得到第u原始信号的估计
Figure PCTCN2021090976-appb-000099
S3中,第u预编码信号为:
Figure PCTCN2021090976-appb-000100
第u预编码信号的第i维为:
Figure PCTCN2021090976-appb-000101
S5中,I/Q域匹配的过程为:
Figure PCTCN2021090976-appb-000102
Figure PCTCN2021090976-appb-000103
其中,
Figure PCTCN2021090976-appb-000104
表示第u匹配信号的第i维,
Figure PCTCN2021090976-appb-000105
表示高维总接收信号,
Figure PCTCN2021090976-appb-000106
表示高维总接收信号的第i维。
S5中,第u匹配信号为:
Figure PCTCN2021090976-appb-000107
第u匹配信号的第i维为:
Figure PCTCN2021090976-appb-000108

Claims (10)

  1. 一种依赖于空间位置的I/Q域调制方法,基于发射机、接收机和多个信道资源,发射机用于处理和发射原始信号,接收机用于对原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
    其特征在于,包括以下步骤:
    S1:发射机和接收机进行时间同步,得到同步时间;
    S2:发射机对原始信号进行I/Q域预编码操作,得到I/Q域预编码后信号;发射机利用多个信道资源将I/Q域预编码后信号发送至接收机;
    S3:接收机接收I/Q域预编码后信号,得到I/Q域初始接收信号,对I/Q域初始接收信号进行I/Q域匹配操作,得到对原始信号的估计。
  2. 根据权利要求1所述的依赖于空间位置的I/Q域调制方法,其特征在于,S2中,I/Q域预编码操作包括以下步骤:
    S2-1:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生I/Q域高维预编码信号α(t+Δτ):
    Figure PCTCN2021090976-appb-100001
    其中,α i(t+Δτ)表示I/Q域高维预编码信号的第i维,i=1,2,…,M,M表示I/Q域高维预编码信号的维数,M不超过信道资源的个数;
    Figure PCTCN2021090976-appb-100002
    其中,
    Figure PCTCN2021090976-appb-100003
    L表示I/Q域预编码层数,L≥1;k m表示第m层I/Q域预编码支路索引,1≤k m≤M m,M m表示第m层I/Q域预编码支路数,满足M 1×M 2×…×M L=M,
    Figure PCTCN2021090976-appb-100004
    Δf m表示第m层频率增量;
    S2-2:对原始信号s 0(t)进行高维映射,得到高维原始信号s(t):
    Figure PCTCN2021090976-appb-100005
    高维原始信号的维数为M,其中,s i(t)表示高维原始信号的第i维;
    S2-3:依据高维预编码信号对高维原始信号进行处理,得到I/Q域预编码后信号x(t):
    Figure PCTCN2021090976-appb-100006
    其中,x i(t)表示I/Q域预编码后信号的第i维。
  3. 根据权利要求2所述的依赖于空间位置的I/Q域调制方法,其特征在于,S3中,I/Q域匹配操作的具体过程为:
    Figure PCTCN2021090976-appb-100007
    其中,
    Figure PCTCN2021090976-appb-100008
    表示I/Q域初始接收信号,上标T表示转置;
    Figure PCTCN2021090976-appb-100009
    *表示共轭,
    Figure PCTCN2021090976-appb-100010
    表示对原始信号的估计。
  4. 根据权利要求2所述的依赖于空间位置的I/Q域调制方法,其特征在于,S2-2中,高维映射方法为:
    方法一:
    Figure PCTCN2021090976-appb-100011
    方法二:
    Figure PCTCN2021090976-appb-100012
    其中n i(t)为第iI/Q域随机偏置信号,满足 [n 1(t) n 2(t) … n M(t)] T位于方程
    Figure PCTCN2021090976-appb-100013
    的解空间中。
  5. 一种依赖于空间位置的双域调制方法,基于发射机、接收机和多个信道资源,发射机用于对原始信号进行处理和发射,接收机用于对所述原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
    其特征在于,包括以下步骤:
    S1:发射机和接收机进行时间同步,得到同步时间;
    S2:发射机对原始信号进行I/Q域预编码操作,得到I/Q域预编码后信号;发射机对I/Q域预编码后信号进行相位域预编码操作,得到相位域预编码后信号;发射机利用多个信道资源将相位域预编码后信号发送至接收机;
    S3:接收机接收相位域预编码后信号,得到相位域初始接收信号,对相位域初始接收信号进行相位域匹配操作,得到相位域匹配信号;接收机对相位域匹配信号进行I/Q域匹配操作,得到对原始信号的估计。
  6. 根据权利要求5所述的依赖于空间位置的双域调制方法,其特征在于,S2中,I/Q域预编码操作包括以下步骤:
    S2-1:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生I/Q域高维预编码信号α(t+Δτ):
    Figure PCTCN2021090976-appb-100014
    其中,α i(t+Δτ)表示高维预编码信号的第i维,i=1,2,…,M,M表示高维预编码信号的维数,M不超过信道资源的个数;
    Figure PCTCN2021090976-appb-100015
    其中,
    Figure PCTCN2021090976-appb-100016
    L表示I/Q域预编码层数,L≥1;k m表示第m层I/Q域预编码支路索引,1≤k m≤M m,M m表示第m层I/Q域预编码支路数,满足 M 1×M 2×…×M L=M,
    Figure PCTCN2021090976-appb-100017
    Δf m表示第m层频率增量;
    S2-2:对原始信号s 0(t)进行高维映射,得到高维原始信号s(t):
    Figure PCTCN2021090976-appb-100018
    高维原始信号的维数为M,其中,s i(t)表示高维原始信号的第i维;
    S2-3:依据I/Q域高维预编码信号对高维原始信号进行处理,得到I/Q域预编码后信号x(t):
    Figure PCTCN2021090976-appb-100019
    其中,x i(t)表示I/Q域预编码后信号第i维;
    相位域预编码操作包括以下步骤:
    S2-4:发射机依据同步时间t,以及到接收机的传输时延Δτ,产生相位域高维预编码信号β(t+Δτ):
    Figure PCTCN2021090976-appb-100020
    其中,β j(t+Δτ)表示高维预编码信号的第j维,j=1,2,…,N,N表示高维预编码信号的维数,M×N不超过信道资源的个数;
    Figure PCTCN2021090976-appb-100021
    其中,T表示相位域预编码层数,T≥1,1≤p≤T;n p表示第p层相位域预编码支路索引,1≤n p≤N p,N p表示第p层相位域预编码支路数,满足N 1×N 2×…×N T=N,
    Figure PCTCN2021090976-appb-100022
    Δf p表示第p层频率增量;
    Figure PCTCN2021090976-appb-100023
    表示第p层相位域预编码支路中的第n p个支路上的预编码信号幅度;δ为发射机和接收机事先协定的正常数,其取值满足
    Figure PCTCN2021090976-appb-100024
    S2-5:对I/Q域预编码后信号第i维x i(t)的相位∠x i(t)进行相位域高维映射,得到第i高维相位信号∠x i(t):
    Figure PCTCN2021090976-appb-100025
    高维相位信号的维数为N,其中,∠x i,k(t)表示第i高维相位信号的第k维,k=1,2,…,N,mod为求余函数;
    S2-6:依据相位域高维预编码信号对第i高维相位信号进行处理,得到第i相位域预编码后信号ξ i(t):
    Figure PCTCN2021090976-appb-100026
    其中,ξ i,k(t)表示第i相位域预编码后信号第k维;
    发射机将第i相位域预编码后信号组合成相位域预编码后信号:
    Figure PCTCN2021090976-appb-100027
  7. 根据权利要求6所述的依赖于空间位置的双域调制方法,其特征在于,S3中,相位域匹配操作的具体过程为:
    Figure PCTCN2021090976-appb-100028
    Figure PCTCN2021090976-appb-100029
    其中,
    Figure PCTCN2021090976-appb-100030
    表示相位域初始接收信号,上标T表示转置;γ j(t)表示与β j(t+Δτ)相对应的匹配信号,其值满足
    Figure PCTCN2021090976-appb-100031
    表示相位域匹配信号的第i维,相位域匹配信号为
    Figure PCTCN2021090976-appb-100032
    I/Q域匹配操作的具体过程为:
    Figure PCTCN2021090976-appb-100033
    其中,
    Figure PCTCN2021090976-appb-100034
    *表示共轭,
    Figure PCTCN2021090976-appb-100035
    表示对原始信号的估计;
    S2-2中,高维映射方法为:
    方法一:
    Figure PCTCN2021090976-appb-100036
    方法二:
    Figure PCTCN2021090976-appb-100037
    其中n i(t)为第iI/Q域随机偏置信号,满足[n 1(t) n 2(t) … n M(t)] T位于方程
    Figure PCTCN2021090976-appb-100038
    的解空间中;
    S2-5中,相位域高维映射方法为:
    方法一:
    Figure PCTCN2021090976-appb-100039
    方法二:
    Figure PCTCN2021090976-appb-100040
    其中θ k(t)为第k相位域随机偏置信号,满足[θ 1(t) θ 2(t) … θ N(t)] T位于方程
    Figure PCTCN2021090976-appb-100041
    的解空间中。
  8. 一种基于位置的多址通信方法,基于发射机、接收机和多个信道资源,发射机用于处理和发射原始信号,接收机用于对所述原始信号进行恢复,信道资源供发射机和接收机使用,其中信道资源包括时域、频域、空域和码域资源;
    其特征在于,包括以下步骤:
    S1:发射机和若干个用户进行时间同步,得到同步时间t;
    S2:发射机将第u个用户的原始信号映射为第u高维原始信号,第u高维原始信号为:
    Figure PCTCN2021090976-appb-100042
    其中,s 0(u,t)为第u个用户的原始信号,s i(u,t)为第u高维原始信号的第i维,i=1,2,…,M,M为第u高维原始信号的维度,其值等于信道资源的数目;
    S3:发射机对第u高维原始信号进行I/Q域预编码,产生第u高维发射信号,I/Q域预编码过程为:
    Figure PCTCN2021090976-appb-100043
    其中,x(u,t)表示第u高维发射信号,x i(u,t)表示第u高维发射信号的第i维,α i(u,t+Δτ)表示第u预编码信号的第i维,i=1,2,…,M,Δτ u表示发射机到第u个用户的传输时延;
    S4:发射机将所有第u高维发射信号求和得到高维总发射信号:
    Figure PCTCN2021090976-appb-100044
    其中,U表示用户数目;发射机利用多个信道资源将高维总发射信号广播给多个用户,每个信道资源传输高维总发射信号的一维;
    S5:第u个用户接收高维总发射信号,得到高维总接收信号,并对高维总接收信号进行I/Q域匹配操作,得到第u原始信号的估计
    Figure PCTCN2021090976-appb-100045
  9. 根据权利要求8所述的基于位置的多址通信方法,其特征在于,S3中,第u预编码信号为:
    Figure PCTCN2021090976-appb-100046
    第u预编码信号的第i维为:
    Figure PCTCN2021090976-appb-100047
  10. 根据权利要求9所述的基于位置的多址通信方法,其特征在于,S5中,I/Q域匹配的过程为:
    Figure PCTCN2021090976-appb-100048
    Figure PCTCN2021090976-appb-100049
    其中,
    Figure PCTCN2021090976-appb-100050
    表示第u匹配信号的第i维,
    Figure PCTCN2021090976-appb-100051
    表示高维总接收信号,
    Figure PCTCN2021090976-appb-100052
    表示高维总接收信号的第i维;
    第u匹配信号为:
    Figure PCTCN2021090976-appb-100053
    第u匹配信号的第i维为:
    Figure PCTCN2021090976-appb-100054
PCT/CN2021/090976 2020-11-09 2021-04-29 I/q域调制方法、双域调制方法和多址通信方法 WO2022095371A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/033,379 US11936468B2 (en) 2020-11-09 2021-04-29 I/Q domain modulation method, dual domain modulation method, and multiple access communication method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011235680.7 2020-11-09
CN202011235680.7A CN112104582B (zh) 2020-11-09 2020-11-09 I/q域调制方法、双域调制方法和多址通信方法

Publications (1)

Publication Number Publication Date
WO2022095371A1 true WO2022095371A1 (zh) 2022-05-12

Family

ID=73785161

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/090976 WO2022095371A1 (zh) 2020-11-09 2021-04-29 I/q域调制方法、双域调制方法和多址通信方法

Country Status (3)

Country Link
US (1) US11936468B2 (zh)
CN (1) CN112104582B (zh)
WO (1) WO2022095371A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112104582B (zh) 2020-11-09 2021-02-05 电子科技大学 I/q域调制方法、双域调制方法和多址通信方法
CN112104585B (zh) 2020-11-09 2021-03-26 电子科技大学 依赖于空间位置的相位域调制方法
CN112073156B (zh) 2020-11-11 2021-03-26 电子科技大学 一种高维非正交传输方法
CN112887244B (zh) * 2021-04-29 2021-08-06 电子科技大学 一种基于空间位置点的安全通信***
CN113381956B (zh) * 2021-08-13 2021-12-03 电子科技大学 一种基于运动状态空间位置点的安全通信方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107026810A (zh) * 2017-03-17 2017-08-08 西南电子技术研究所(中国电子科技集团公司第十研究所) 突发直扩***及其突发直扩波形的伪码同步方法
CN108768912A (zh) * 2018-04-12 2018-11-06 哈尔滨工程大学 基于稀疏正交循环变换多路复用调制的相干光纤通信***
US10601625B2 (en) * 2015-01-05 2020-03-24 Lg Electronics Inc. Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, broadcast signal transmitting method, and broadcast signal receiving method
CN112104582A (zh) * 2020-11-09 2020-12-18 电子科技大学 I/q域调制方法、双域调制方法和多址通信方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1679290B (zh) * 2002-08-28 2010-06-02 Nxp股份有限公司 在tmda发射机和相应的调制器中产生i/q信号的方法
US7633994B2 (en) * 2004-07-30 2009-12-15 Rearden, LLC. System and method for distributed input-distributed output wireless communications
EP1776816B1 (en) * 2004-07-29 2008-11-19 Nxp B.V. Modulator with instantaneous modulation scheme switching in multi-time slot and multi-mode operation, for a wireless communication equipment
CN100446559C (zh) * 2004-12-30 2008-12-24 电子科技大学 一种用于地面数字电视传输***的双域数据同构组帧方法
CN101227213A (zh) * 2007-01-15 2008-07-23 北京三星通信技术研究有限公司 在无线通信***中对多个用户实现空分多址传输的方法
CN101702695A (zh) * 2009-10-10 2010-05-05 姜永权 Sdma-ofdm和mimo-ofdm信道估计及下行预先处理技术
CN102752260B (zh) * 2012-07-13 2014-11-19 中国空间技术研究院 一种卫星cmmb***ofdm体制的时频估计方法
CN103312640B (zh) * 2013-06-30 2015-10-21 电子科技大学 一种联合信道估计与iq不平衡补偿的方法
US9800272B2 (en) * 2013-12-20 2017-10-24 Texas Instruments Incorporated Circuits and methods for transmitting signals
US10212719B2 (en) * 2015-02-12 2019-02-19 Hitachi Kokusai Electric Inc. Communication timing control method, communication service system and wireless communication terminal
CN107431684B (zh) * 2015-03-09 2020-08-18 Lg 电子株式会社 无线通信***中发送和接收信号的方法及和执行该方法的装置
CN105007106B (zh) * 2015-06-15 2019-03-12 大唐移动通信设备有限公司 一种信号压缩方法、bbu及其分布式基站***
CN106941471A (zh) * 2017-05-22 2017-07-11 电子科技大学 一种用于差分编码ofdm***的iq不平衡补偿方法
CN107147596A (zh) * 2017-06-06 2017-09-08 电子科技大学 一种基于格雷序列的单载波***iq不平衡的补偿方法
IL255600B (en) * 2017-11-12 2019-01-31 Satixfy Israel Ltd A system and method for renewable satellite communication
CN108199805A (zh) * 2018-01-09 2018-06-22 电子科技大学 一种降低稀疏码多址***译码复杂度的方法
KR102556490B1 (ko) * 2018-06-04 2023-07-17 삼성전자주식회사 무선 통신 시스템에서 암호화 및 복호화 처리를 가속화하는 방법 및 장치
KR102586755B1 (ko) * 2018-06-11 2023-10-10 삼성전자 주식회사 비직교 다중 접속 시스템에서 코드북 결정 방법 및 이를 위한 장치
CN109639325B (zh) * 2019-01-24 2021-07-09 电子科技大学 一种基于通信距离的多载波相控通信方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10601625B2 (en) * 2015-01-05 2020-03-24 Lg Electronics Inc. Broadcast signal transmitting apparatus, broadcast signal receiving apparatus, broadcast signal transmitting method, and broadcast signal receiving method
CN107026810A (zh) * 2017-03-17 2017-08-08 西南电子技术研究所(中国电子科技集团公司第十研究所) 突发直扩***及其突发直扩波形的伪码同步方法
CN108768912A (zh) * 2018-04-12 2018-11-06 哈尔滨工程大学 基于稀疏正交循环变换多路复用调制的相干光纤通信***
CN112104582A (zh) * 2020-11-09 2020-12-18 电子科技大学 I/q域调制方法、双域调制方法和多址通信方法

Also Published As

Publication number Publication date
CN112104582A (zh) 2020-12-18
US20230421281A1 (en) 2023-12-28
CN112104582B (zh) 2021-02-05
US11936468B2 (en) 2024-03-19

Similar Documents

Publication Publication Date Title
WO2022095371A1 (zh) I/q域调制方法、双域调制方法和多址通信方法
CN110518947B (zh) 一种基于毫米波通信的主动窃听环境下波束成形优化方法
CN110492996B (zh) 一种应用于多用户大规模mimo***中的密钥生成方法
Zhang et al. Detection of pilot contamination attack based on uncoordinated frequency shifts
Wang et al. A wireless secret key generation method based on Chinese remainder theorem in FDD systems
CN112688758B (zh) 基于随机频率阵列和智能反射面的无线安全传输方法
CN103181115A (zh) 用于确保无线通信安全的***和方法
WO2022095372A1 (zh) 依赖于空间位置的相位域调制方法
CN115278727A (zh) 不准确信道状态信息条件下智能反射表面辅助的物理层安全优化方法
CN110635832B (zh) 基于方向调制的无线网络最大化安全速率功率分配方法
CN113572602A (zh) 利用智能反射面加强密钥生成速率的***与方法
Liang et al. Index-modulation embedded mode hopping for antijamming
Zhu et al. Quadrature spatial scattering modulation for mmWave transmission
CN111970696B (zh) 一种基于功率分配和波束调度的多用户高效密钥生成方法
Ke et al. A leakage-based directional modulation scheme for frequency diverse array in robot swarm networks
CN110071748B (zh) 一种多发单收***的人工噪声功率分配方法
Tang et al. Secure multiple-mode OFDM with index modulation
US20230421284A1 (en) Random phase modulation method depending on communication distance
Shu et al. Secure directional modulation to enhance physical layer security in IoT networks
Zeinali et al. Shared secret key generation protocol in wireless networks based on the phase of MIMO fading channels
Tang et al. Secret key attaches in MIMO IoT communications by using self-injection artificial noise
Ranstrom et al. Physical Layer Security using Chaotic Antenna Arrays in Point-to-Point Wireless Communications
Zhang et al. Wireless Communication Physical Layer Sensing Antenna Array Construction and Information Security Analysis
CN113055347B (zh) 一种基于随机自干扰实现物理层密钥分发的通信方法
Zhu et al. Position‐sensitivity security transmission with orbital angular momentum directional modulation based on frequency diverse array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888075

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18033379

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21888075

Country of ref document: EP

Kind code of ref document: A1