WO2022095324A1 - 一种列车高压***及列车 - Google Patents

一种列车高压***及列车 Download PDF

Info

Publication number
WO2022095324A1
WO2022095324A1 PCT/CN2021/082593 CN2021082593W WO2022095324A1 WO 2022095324 A1 WO2022095324 A1 WO 2022095324A1 CN 2021082593 W CN2021082593 W CN 2021082593W WO 2022095324 A1 WO2022095324 A1 WO 2022095324A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
power supply
train
transformer
supply unit
Prior art date
Application number
PCT/CN2021/082593
Other languages
English (en)
French (fr)
Inventor
蒋欣
许万涛
王天宇
武丛
侯小强
Original Assignee
中车青岛四方机车车辆股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中车青岛四方机车车辆股份有限公司 filed Critical 中车青岛四方机车车辆股份有限公司
Priority to EP21888028.4A priority Critical patent/EP4242053A4/en
Publication of WO2022095324A1 publication Critical patent/WO2022095324A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/32Control or regulation of multiple-unit electrically-propelled vehicles
    • B60L15/38Control or regulation of multiple-unit electrically-propelled vehicles with automatic control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/42Adaptation of control equipment on vehicle for actuation from alternative parts of the vehicle or from alternative vehicles of the same vehicle train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles

Definitions

  • the present application relates to the technical field of rail transportation, and in particular, to a high-voltage train system and a train.
  • the high-voltage power supply system is the power source of rail vehicles and a vital part of the train.
  • the high-voltage power supply system obtains AC25kV high-voltage alternating current from the high-voltage catenary, which provides power for vehicle traction equipment and other auxiliary facilities, and performs detection and protection.
  • the safety and reliability of its operation is directly related to the normal operation of the train.
  • embodiments of the present application provide a high-voltage train system and a train.
  • an embodiment of the present application provides a high-voltage train system, wherein the high-voltage power supply unit includes: a pantograph, a main circuit breaker, and a first traction transformer;
  • the pantograph is connected to the first traction transformer through the main circuit breaker;
  • the connection power supply unit includes: a first high-voltage isolation switch and a second traction transformer; wherein, the first high-voltage isolation switch is a three-point high-voltage isolation switch;
  • One port of the first high-voltage isolation switch is connected to the primary side of the second traction transformer
  • the other two ports of the first high-voltage isolation switch are respectively connected with the primary sides of the first traction transformers in the two high-voltage power supply units.
  • the connecting power supply unit further includes: a second high-voltage isolation switch and a first current transformer; wherein, the second high-voltage isolation switch is a two-point high-voltage isolation switch;
  • One end of the second high-voltage isolation switch is connected to the first high-voltage isolation switch, and the other end is connected to the second traction transformer through the first current transformer.
  • connection power supply unit further includes: two second current transformers;
  • the two second current transformers are respectively connected between the first high-voltage isolation switch and the first traction transformers in the two high-voltage power supply units.
  • the high-voltage power supply unit further includes: a grounding protection switch;
  • the grounding protection switch is connected in parallel with the main circuit breaker, and is connected between the pantograph and the first traction transformer.
  • the high-voltage power supply unit further includes: a transient inductance
  • the transient inductance is connected between the main circuit breaker and the first traction transformer.
  • the high-voltage power supply unit further includes: a third current transformer
  • the third current transformer is connected between the main circuit breaker and the pantograph.
  • the high-voltage power supply unit further includes: a first arrester and a second arrester;
  • the first arrester is connected between the pantograph and the third current transformer
  • the second arrester is connected between the transient inductor and the first traction transformer.
  • the high-voltage power supply unit further includes: a first voltage transformer and a second voltage transformer;
  • the first voltage transformer is connected between the third current transformer and the main circuit breaker;
  • the second voltage transformer is connected between the second arrester and the first traction transformer.
  • the two high-voltage power supply units are mutually redundant;
  • the pantograph corresponding to the faulty high-voltage power supply unit is lowered to be isolated from the catenary, and the pantograph of the other high-voltage power supply unit is raised and connected to the catenary to work.
  • the embodiments of the present application provide a train
  • the train is loaded with the above-mentioned train high-voltage system.
  • the train high-voltage system and the train provided by the embodiments of the present application have the ability to supply power to three transformers by connecting a three-point high-voltage isolation switch, realize the conversion and isolation between different high-voltage power supply units, ensure the normal operation of the train, and improve the train's reliability.
  • the operation safety and reliability meet the design requirements of "six movements and two trailers" for eight-group vehicles.
  • the system configuration is simple and the control is convenient.
  • FIG. 1 is a schematic structural diagram of a train high-voltage system provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a train high-voltage system according to another embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a high-voltage train system provided by an embodiment of the present application.
  • the high-voltage train system provided by an embodiment of the present application includes: two high-voltage power supply units and one connection power supply unit;
  • the high-voltage power supply unit includes: a pantograph 1, a main circuit breaker 2 and a first traction transformer 3;
  • the pantograph 1 is connected to the first traction transformer 3 through the main circuit breaker 2;
  • the connection power supply unit includes: a first high-voltage isolation switch 4 and a second traction transformer 5; wherein, the first high-voltage isolation switch 4 is a three-point high-voltage isolation switch;
  • One port of the first high-voltage isolation switch 4 is connected to the primary side of the second traction transformer 5;
  • the other two ports of the first high-voltage isolation switch 4 are respectively connected to the primary side of the first traction transformer 3 in the two high-voltage power supply units.
  • the train high-voltage system provided by the embodiment of the present application includes: two high-voltage power supply units and one connection power supply unit, wherein the two high-voltage power supply units have the same structure and are redundant with each other.
  • Each train is provided with a high-voltage power supply unit in car 02 and car 07.
  • the high-voltage power supply unit includes: a pantograph 1, a main circuit breaker 2 and a first traction transformer 3, wherein the pantograph 1 passes through the main circuit breaker 2 and the first traction transformer. 3-phase connection.
  • connection power supply unit is set in the 04 car, and the connection power supply unit includes: a first high-voltage isolation switch 4 and a second traction transformer 5, wherein the first high-voltage isolation switch 4 is a three-point high-voltage isolation switch.
  • One port of the first high-voltage isolation switch 4 is connected to the primary side of the second traction transformer 5 , and the other two ports of the first high-voltage isolation switch 4 are respectively connected to the primary sides of the two first traction transformers 3 .
  • Cable assemblies with high-voltage cable terminals are laid on the roof between cars 02 and 07.
  • the cable assemblies are used for the connection between high-voltage equipment, and the insulators are used for For the insulation support between the AC25kV and the car body, the workshop jumper is used for the high-voltage electrical jumper between the car and the car.
  • the workshop uses workshop jumpers to penetrate the high-voltage cables.
  • the pantograph 1 receives AC25kV alternating current from the catenary, and transmits the electric energy to the first traction transformer 3 and the second traction transformer 5 under the vehicle of the 02, 04 and 07 vehicles through the high-voltage cables on the roof and the vehicle end.
  • the two high-voltage power supply units are redundant with each other.
  • a single-bow current receiving method is adopted, and the other pantograph is used as a backup.
  • the pantograph introduces the high-voltage alternating current into the train from the catenary, and the pneumatic control is used to receive the power.
  • the bow is raised or lowered to connect or disconnect the train from the power grid.
  • each high-voltage power supply unit is provided with a main circuit breaker corresponding to the pantograph.
  • the main circuit breaker acts as the main switch of the high-voltage main circuit of the vehicle to switch and isolate the main circuit, which corresponds to the working mode of the pantograph under normal circumstances. , a single working, the other standby. It is set in the circuit behind the pantograph, and its function is to isolate the corresponding faulty pantograph, and it is used to quickly disconnect the main circuit in the case of vehicle failure to avoid the expansion of the fault.
  • a three-point first high-voltage isolating switch 4 (busbar high-voltage isolating switch) is set in the intermediate car (04 car) to isolate the faulty unit.
  • bus high-voltage isolating switch 4 busbar high-voltage isolating switch
  • all three points are turned on to supply power to the three transformers .
  • the conversion and isolation between different high-voltage power supply units can be realized according to the location of the fault.
  • the design of "six movements and two trailers" for eight-group vehicles is used, and two high-voltage power supply units are respectively set in car 02 and car 07, and the connection power supply unit is set in car 04 as an example, only as one A specific example will describe the train high-voltage system provided by the present application.
  • the high-voltage power supply unit and the location of the connection power supply unit in the train may also be adjusted according to the actual situation, which is not limited in the present application.
  • the train high-voltage system provided by the embodiment of the present application, by connecting a three-point high-voltage isolation switch, realizes the ability to supply power to three transformers, realizes the conversion and isolation between different high-voltage power supply units, ensures the normal operation of the train, and improves the operation safety of the train. It has high performance and reliability, and meets the design requirements of "six movements and two trailers" for eight-group vehicles.
  • the system configuration is simple and the control is convenient.
  • FIG. 2 is a schematic structural diagram of a train high-voltage system provided by another embodiment of the present application. As shown in FIG. 2 , in the train high-voltage system provided by another embodiment of the present application, based on the above embodiment, optionally, in the train high-voltage system middle,
  • connection power supply unit further includes: a second high-voltage isolation switch 11 and a first current transformer 12; wherein, the second high-voltage isolation switch 11 is a two-point high-voltage isolation switch;
  • One end of the second high-voltage isolation switch 11 is connected to the first high-voltage isolation switch 4 , and the other end is connected to the second traction transformer 5 through the first current transformer 12 .
  • connection power supply unit further includes: a two-point second high-voltage isolation switch 11 and a first current transformer 12 .
  • One end of the second high-voltage isolation switch 11 is connected to the first high-voltage isolation switch 4 , and the other end is connected to the second traction transformer 5 through the first current transformer 12 .
  • the first current transformer 12 is used to detect the overcurrent of the high-voltage bus corresponding to the second traction transformer 5, and cooperates with the second high-voltage isolating switch 11 to isolate the second traction transformer 5 when a fault occurs at the transformer end of the intermediate car (04 car).
  • the embodiment of the present application realizes real-time monitoring of the fault of the transformer terminal of the intermediate vehicle by adding a second high-voltage isolating switch and a first current transformer in the connection power supply unit, so that when a fault occurs, the To achieve fault isolation, ensure that the train's high-voltage system can still operate stably when a fault occurs, and improve the safety and reliability of the train.
  • connection power supply unit further includes: two second current transformers 13;
  • the two second current transformers 13 are respectively connected between the first high-voltage isolation switch 4 and the first traction transformer 3 in the two high-voltage power supply units.
  • connection power supply unit it also includes: two second current transformers 13, and the two second current transformers 13 are respectively connected to the first high-voltage isolation switch 4 and the first traction of the two corresponding high-voltage power supply units. between transformers 3. And the distance between the position where the second current transformer 13 is arranged and the first high-voltage isolation switch 4 is as small as possible.
  • the embodiment of the present application can cooperate with the first current transformer 12 to detect the overcurrent condition of the high-voltage bus by adding two second current transformers in the connection power supply unit, and locate the specific current situation according to the logical relationship.
  • the fault unit can quickly isolate the fault when the fault occurs, ensure that the high-voltage system of the train can still operate stably in the event of a fault, and improve the operating safety and reliability of the train. Compared with only using the first current mutual inductance alone The technical scheme of the device improves the accuracy of the location of the faulty unit.
  • the high-voltage power supply unit further includes: a grounding protection switch 14;
  • the grounding protection switch 14 is connected in parallel with the main circuit breaker 2 and is connected between the pantograph 1 and the first traction transformer 3 .
  • the high-voltage power supply unit further includes: a grounding protection switch 14, the grounding protection switch 14 is connected in parallel with the main circuit breaker 2, and is connected between the pantograph 1 and the first traction transformer 3.
  • the grounding protection switch 14 is used for the safe grounding of the vehicle during maintenance and repair work to ensure the safety of the operator.
  • the high-voltage power supply unit further includes: a transient inductance 15;
  • the transient inductor 15 is connected between the main circuit breaker 2 and the first traction transformer 3 .
  • the high-voltage power supply unit further includes: a transient inductance 15 , and the transient inductance 15 is connected between the main circuit breaker 2 and the first traction transformer 3 .
  • Disposing the transient inductance 15 in the front-end circuit of the first traction transformer 3 can effectively protect the traction system and the auxiliary power system from the impact of the transient voltage generated by the main circuit breaker 2 during the switching operation. Avoid situations such as loss of system components due to excessively high transient voltages generated by the main circuit breaker 2 during the closing operation.
  • the high-voltage power supply unit further includes: a third current transformer 16;
  • the third current transformer 16 is connected between the main circuit breaker 2 and the pantograph 1 .
  • the high-voltage power supply unit further includes: a third current transformer 16 , and the third current transformer 16 is connected between the main circuit breaker 2 and the pantograph 1 .
  • the third current transformer 16 is arranged on the high-voltage main line of the high-voltage power supply unit, and is used to collect the current signal on the catenary side to realize monitoring and protection in the event of a vehicle failure, and cooperate with other current transformers in the system to realize the failure of the overcurrent fault.
  • the pantograph ensures that in the event of a fault, the high-voltage system of the train can still operate stably, improving the operating safety and reliability of the train.
  • the current transformer is used to measure the current in the circuit, and is classified according to the working principle: electromagnetic current transformer and electronic current transformer.
  • the selected current transformer may be selected according to the actual situation, which is not limited in this embodiment.
  • the high-voltage power supply unit further includes: a first arrester 17 and a second arrester 18;
  • the first arrester 17 is connected between the pantograph 1 and the third current transformer 16;
  • the second arrester 18 is connected between the transient inductor 15 and the first traction transformer 3 .
  • the high-voltage power supply unit further includes: a first arrester 17 and a second arrester 18 .
  • the first arrester 17 is connected between the pantograph 1 and the third current transformer 16
  • the second arrester 18 is connected between the transient inductor 15 and the first traction transformer 3 .
  • the first arrester 17 is used to suppress the impact of overvoltage (such as lightning strikes, etc.) from the power supply network on high-voltage equipment, and protect the impact of lightning surges from the catenary or the overvoltage caused by circuit opening and closing on the insulation of vehicles such as transformers.
  • the second surge arrester 18 is used to restrain the impact of the vehicle's own operating overvoltage on the equipment.
  • the arrester has an automatic recovery function.
  • the insulation gap between the pressurized part of the high-voltage equipment and the earth can be adjusted, which can not only ensure the insulation gap requirements, but also achieve the purpose of miniaturization and light weight of the equipment box.
  • the high-voltage power supply unit further includes: a first voltage transformer 19 and a second voltage transformer 20;
  • the first voltage transformer 19 is connected between the third current transformer 16 and the main circuit breaker 2;
  • the second voltage transformer 20 is connected between the second arrester 18 and the first traction transformer 3 .
  • the high-voltage power supply unit further includes: a first voltage transformer 19 and a second voltage transformer 20 .
  • the first voltage transformer 19 is connected between the third current transformer 16 and the main circuit breaker 2
  • the second voltage transformer 20 is connected between the second arrester 18 and the first traction transformer 3 .
  • the first voltage transformer 19 is used to measure the grid-side voltage, and convert the value of the 25kV grid-side voltage into a grid-side voltage signal, which is used for the display of the grid voltage meter and the judgment and control of the main circuit breaker.
  • the second voltage transformer 20 is used for the logic protection control of the traction system, and is used for detecting the voltage of the main circuit. Further, according to the detected voltage and current value of the main circuit, it can be judged whether there is a fault.
  • the voltage transformers can be divided into multiple categories according to functions, filling materials and sealing levels.
  • the selected voltage transformers can be selected according to the actual situation, which is not limited in this embodiment. .
  • a current transformer and a voltage transformer it is necessary to use a current transformer and a voltage transformer to monitor the current and voltage in the circuit, and determine whether problems such as overcurrent occur.
  • the maximum current and voltage (alarm threshold) of the can be adjusted according to the actual situation, which is not limited in this embodiment.
  • the two high-voltage power supply units are mutually redundant;
  • the pantograph corresponding to the faulty high-voltage power supply unit is lowered to be isolated from the catenary, and the pantograph of the other high-voltage power supply unit is lifted up and connected to the catenary to work.
  • the high-voltage system of the train includes: two high-voltage power supply units and one connection power supply unit, wherein the two high-voltage power supply units are mutually redundant.
  • the structures of the two high-voltage power supply units are exactly the same.
  • the pantograph corresponding to the faulty high-voltage power supply unit is lowered and isolated from the catenary, and the first high-voltage isolation switch is used to isolate the faulty unit.
  • the pantograph corresponding to the other high-voltage power supply unit is raised and connected to the catenary to work. It can ensure the normal operation of the EMU when a high-voltage power supply unit fails to work normally.
  • the embodiment of the present application involves three traction transformers for power supply
  • the first high-voltage isolation switch and the second high-voltage isolation switch are used to realize the power supply to the second traction transformer.
  • the unit where it is located is isolated to avoid the expansion of the fault.
  • Another embodiment of the present application provides a train loaded with the above-mentioned train high-voltage system.
  • the overcurrent signal in the circuit can be collected in real time through the current transformer and the voltage transformer to determine whether there is a fault. If there is a fault, locate and isolate the faulty unit in time. Realize the ability to supply power to three transformers, realize the conversion and isolation between different high-voltage power supply units, ensure the normal operation of the train, and improve the operation safety of the train.
  • the specific implementation is the same as the control method above, and will not be repeated here.
  • the vehicle equipment configuration table is as follows:
  • the train provided by the embodiment of the present application by connecting a three-point high-voltage isolation switch, realizes the ability to supply power to three transformers, realizes the conversion and isolation between different high-voltage power supply units, ensures the normal operation of the train, and improves the operation safety of the train. Reliability, meets the design requirements of "six movements and two trailers" for eight-group vehicles, the system configuration is simple, and the control is convenient.
  • the device embodiments described above are only illustrative, wherein the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in One place, or it can be distributed over multiple network elements. Some or all of the modules may be selected according to actual needs to achieve the purpose of the solution in this embodiment. Those of ordinary skill in the art can understand and implement it without creative effort.
  • each embodiment can be implemented by means of software plus a necessary general hardware platform, and certainly can also be implemented by hardware.
  • the above-mentioned technical solutions can be embodied in the form of software products in essence or the parts that make contributions to the prior art, and the computer software products can be stored in computer-readable storage media, such as ROM/RAM, magnetic A disc, an optical disc, etc., includes several instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments or some parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

本申请实施例提供一种列车高压***及列车,其中,列车高压***,包括:两个高压供电单元和一个连接供电单元;高压供电单元包括:受电弓、主断路器和第一牵引变压器;受电弓通过主断路器和第一牵引变压器相连接;连接供电单元包括:第一高压隔离开关和第二牵引变压器;其中,第一高压隔离开关为三点式高压隔离开关;第一高压隔离开关的一个端口与第二牵引变压器的一次侧相连接;第一高压隔离开关的另外两个端口分别与两个高压供电单元中的第一牵引变压器的一次侧相连接。通过连接三点式高压隔离开关,实现具备给三台变压器供电的能力,实现不同高压供电单元之间的转换及隔离,保证列车的正常运行,提高列车的运行安全性、可靠性。

Description

一种列车高压***及列车
相关申请的交叉引用
本申请要求于2020年11月03日提交的申请号为2020112117469,发明名称为“一种列车高压***及列车”的中国专利申请的优先权,其通过引用方式全部并入本公开。
技术领域
本申请涉及轨道交通技术领域,尤其涉及一种列车高压***及列车。
背景技术
高压供电***是轨道车辆的动力源泉,是列车至关重要的一部分。国内电气化铁路,亦或城际干线铁路,通常采用AC25kV牵引供电制式供电。
高压供电***从高压接触网获得AC25kV高压交流电,为车辆牵引设备和其它辅助设施提供动力并进行检测和保护,其运行的安全可靠性直接关乎列车的正常运营。
随着城轨市域轨道车辆特别是随着国内城际、市域轨道交通的快速发展,为保证轨道车辆的安全、高效、可靠运行,对于轨道车辆部件性能的可靠性要求也不断提高,特别是对于车辆启动性能的要求不断提高,以往的八编组车辆“四动四拖”的设计可能满足不了车辆的启动性能要求,因此需要采用“六动两拖”甚至以上的设计配置,要求高压***具备给三台变压器供电的能力。
因此,如何提供一种列车高压***及列车,具备给三台变压器供电的能力,实现不同高压供电单元之间的转换及隔离,保证列车的正常运行,提高列车的运行安全性、可靠性,成为亟待解决的问题。
发明内容
针对现有技术中的缺陷,本申请实施例提供一种列车高压***及列车。
第一方面,本申请实施例提供一种列车高压***,所述高压供电单元包括:受电弓、主断路器和第一牵引变压器;
所述受电弓通过所述主断路器和所述第一牵引变压器相连接;
所述连接供电单元包括:第一高压隔离开关和第二牵引变压器;其中,所述第一高压隔离开关为三点式高压隔离开关;
所述第一高压隔离开关的一个端口与所述第二牵引变压器的一次侧相连接;
所述第一高压隔离开关的另外两个端口分别与所述两个高压供电单元中的第一牵引变压器的一次侧相连接。
根据本申请的实施例,在所述列车高压***中,
所述连接供电单元,还包括:第二高压隔离开关和第一电流互感器;其中,所述第二高压隔离开关为两点式高压隔离开关;
所述第二高压隔离开关一端连接所述第一高压隔离开关,另一端通过所述第一电流互感器连接所述第二牵引变压器。
根据本申请的实施例,在所述列车高压***中,
所述连接供电单元,还包括:两个第二电流互感器;
所述两个第二电流互感器分别对应连接于所述第一高压隔离开关与所述两个高压供电单元中的第一牵引变压器之间。
根据本申请的实施例,在所述列车高压***中,
所述高压供电单元,还包括:接地保护开关;
所述接地保护开关与所述主断路器并联,连接于所述受电弓和所述第一牵引变压器之间。
根据本申请的实施例,在所述列车高压***中,
所述高压供电单元,还包括:瞬态电感;
所述瞬态电感连接于所述主断路器和所述第一牵引变压器之间。
根据本申请的实施例,在所述列车高压***中,
所述高压供电单元,还包括:第三电流互感器;
所述第三电流互感器连接于所述主断路器和所述受电弓之间。
根据本申请的实施例,在所述列车高压***中,
所述高压供电单元,还包括:第一避雷器和第二避雷器;
所述第一避雷器连接于所述受电弓和所述第三电流互感器之间;
所述第二避雷器连接于所述瞬态电感和所述第一牵引变压器之间。
根据本申请的实施例,在所述列车高压***中,
所述高压供电单元,还包括:第一电压互感器和第二电压互感器;
所述第一电压互感器连接于所述第三电流互感器和所述主断路器之间;
所述第二电压互感器连接于所述第二避雷器和所述第一牵引变压器之间。
根据本申请的实施例,在所述列车高压***中,
两个所述高压供电单元互备冗余;
当其中一个高压供电单元出现故障时,故障的高压供电单元对应的受电弓降下与接触网隔离,另一个高压供电单元的受电弓升起与接触网连接进行工作。
第二方面,本申请实施例提供一种列车,
所述列车装载上述列车高压***。
本申请实施例提供的列车高压***及列车,通过连接三点式高压隔离开关,实现具备给三台变压器供电的能力,实现不同高压供电单元之间的转换及隔离,保证列车的正常运行,提高列车的运行安全性、可靠性,满足八编组车辆“六动两拖”的设计要求,***配置简单,控制方便。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的列车高压***结构示意图;
图2为本申请另一实施例提供的列车高压***结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为本申请实施例提供的列车高压***结构示意图,如图1所示,本申请实施例提供的列车高压***,包括:两个高压供电单元和一个连接供电单元;
所述高压供电单元包括:受电弓1、主断路器2和第一牵引变压器3;
所述受电弓1通过所述主断路器2和所述第一牵引变压器3相连接;
所述连接供电单元包括:第一高压隔离开关4和第二牵引变压器5;其中,所述第一高压隔离开关4为三点式高压隔离开关;
所述第一高压隔离开关4的一个端口与所述第二牵引变压器5的一次侧相连接;
所述第一高压隔离开关4的另外两个端口分别与所述两个高压供电单元中的第一牵引变压器3的一次侧相连接。
具体的,本申请实施例提供的列车高压***,包括:两个高压供电单元和一个连接供电单元,其中两高压供电单元结构相同,互为冗余。
以下结合八编组车辆“六动两拖”的设计进行说明:
每列车在02车和07车设置高压供电单元,高压供电单元包括:受电弓1、主断路器2和第一牵引变压器3,其中,受电弓1通过主断路器2和第一牵引变压器3相连接。
在04车设置连接供电单元,连接供电单元包括:第一高压隔离开关4和第二牵引变压器5,其中,第一高压隔离开关4为三点式高压隔离开关。
第一高压隔离开关4的一个端口与第二牵引变压器5的一次侧相连接,第一高压隔离开关4的另外两个端口分别与两个第一牵引变压器3的一次侧相连接。
02车至07车之间的车顶铺设带高压电缆终端的电缆组件(包含带电缆终端的电缆组件、电缆终端支撑绝缘子及车间跳线),电缆组件用于高压设备之间的连接,绝缘子用于AC25kV与车体之间的绝缘支撑,车间跳线用于车与车之间的高压电跨接。
车间采用车间跳线将高压电缆贯穿。受电弓1从接触网接收AC25kV的交流电,通过车顶和车端的高压电缆将电能输送到02车、04车及07车置于车下的第一牵引变压器3和第二牵引变压器5。
在本申请实施例中,两高压供电单元互为冗余,一般情况采用单弓受 流的方式,另一台受电弓备用,受电弓从接触网将高压交流电导入列车,气动控制受电弓升起或降下,可使列车与供电网连接或断开。
相应的,每一个高压供电单元中设置有与受电弓对应的主断路器,主断路器作为车辆高压主电路总开关,对主回路进行开关和隔离,正常情况下与受电弓工作方式对应,单台工作,另一台备用。设置在受电弓后方电路,其作用是用于隔离对应故障受电弓,车辆故障情况下用于快速断开主回路,避免故障扩大化。
在中间车(04车)设置三点式的第一高压隔离开关4(母线高压隔离开关),用于实现故障单元的隔离,在高压***正常无故障时,三点均导通,给三台变压器供电。在高压***出现故障时,可以根据故障出现的位置,实现不同高压供电单元之间的转换及隔离。
需要说明的是,本申请实施例以八编组车辆“六动两拖”的设计,将两个高压供电单元分别设置于02车和07车,连接供电单元设置于04车为例,仅作为一个具体的实例对本申请提供的列车高压***进行说明,除此之外,还可根据实际情况调整高压供电单元、连接供电单元在列车中设置的位置,本申请对此不做限定。
本申请实施例提供的列车高压***,通过连接三点式高压隔离开关,实现具备给三台变压器供电的能力,实现不同高压供电单元之间的转换及隔离,保证列车的正常运行,提高列车的运行安全性、可靠性,满足八编组车辆“六动两拖”的设计要求,***配置简单,控制方便。
图2为本申请另一实施例提供的列车高压***结构示意图,如图2所示,本申请另一实施例提供的列车高压***,基于上述实施例,可选的,在所述列车高压***中,
所述连接供电单元,还包括:第二高压隔离开关11和第一电流互感器12;其中,所述第二高压隔离开关11为两点式高压隔离开关;
所述第二高压隔离开关11一端连接所述第一高压隔离开关4,另一端通过所述第一电流互感器12连接所述第二牵引变压器5。
具体的,在连接供电单元中,还包括:两点式的第二高压隔离开关11和第一电流互感器12。其中,第二高压隔离开关11一端连接第一高压隔离开关4,另一端通过第一电流互感器12连接第二牵引变压器5。
第一电流互感器12用于检测第二牵引变压器5对应高压母线过流情况,配合第二高压隔离开关11,能够在中间车(04车)变压器端出现故障时,隔离第二牵引变压器5。
在上述实施例的基础上,本申请实施例通过在连接供电单元中增添第二高压隔离开关和第一电流互感器,实现对中间车变压器端故障的实时监测,能够在故障出现时,迅速的实现故障的隔离,确保在出现故障时,列车高压***仍旧能够稳定的运行,提高列车的运行安全性和可靠性。
基于上述实施例,可选的,在所述列车高压***中,
所述连接供电单元,还包括:两个第二电流互感器13;
所述两个第二电流互感器13分别对应连接于所述第一高压隔离开关4与所述两个高压供电单元中的第一牵引变压器3之间。
具体的,在连接供电单元中,还包括:两个第二电流互感器13,两个第二电流互感器13分别连接于第一高压隔离开关4与两个对应的高压供电单元的第一牵引变压器3之间。并且第二电流互感器13设置的位置与第一高压隔离开关4之间的距离尽可能的小。
通过设置两个第二电流互感器13,配合第一电流互感器12,对高压母线过流情况进行检测,能够有效的根据逻辑关系定位具体故障单元,根据确定的故障单元,进一步实现对故障单元的隔离与处理,确定是否需要更换工作的受电弓。
在上述实施例的基础上,本申请实施例通过在连接供电单元中增添两个第二电流互感器,能够配合第一电流互感器12,对高压母线过流情况进行检测,根据逻辑关系定位具体故障单元,能够在故障出现时,迅速的实现故障的隔离,确保在出现故障时,列车高压***仍旧能够稳定的运行,提高列车的运行安全性和可靠性,相比仅单独使用第一电流互感器的技术方案,提高了故障单元定位的精度。
基于上述实施例,可选的,在所述列车高压***中,
所述高压供电单元,还包括:接地保护开关14;
所述接地保护开关14与所述主断路器2并联,连接于所述受电弓1和所述第一牵引变压器3之间。
具体的,在高压供电单元中,还包括:接地保护开关14,接地保护开 关14与所述主断路器2并联,连接于受电弓1和第一牵引变压器3之间。
接地保护开关14用于检修维修工作时的车辆安全接地,保证操作人员安全。
基于上述实施例,可选的,在所述列车高压***中,
所述高压供电单元,还包括:瞬态电感15;
所述瞬态电感15连接于所述主断路器2和所述第一牵引变压器3之间。
具体的,在高压供电单元中,还包括:瞬态电感15,瞬态电感15连接于主断路器2和第一牵引变压器3之间。
在第一牵引变压器3的前端电路设置瞬态电感15,能够有效保护牵引***和辅助电源***免受主断路器2在合断操作期间产生的瞬态电压的冲击。避免由于主断路器2在合断操作期间产生的瞬态电压太高导致***元件损失等情况。
基于上述实施例,可选的,在所述列车高压***中,
所述高压供电单元,还包括:第三电流互感器16;
所述第三电流互感器16连接于所述主断路器2和所述受电弓1之间。
具体的,在高压供电单元中,还包括:第三电流互感器16,第三电流互感器16连接于所述主断路器2和所述受电弓1之间。
第三电流互感器16设置于高压供电单元的高压干线上,用于采集接触网侧电流信号,实现整车故障时的监测和保护,与***中其他电流互感器相互配合实现过流故障时故障单元的逻辑定位,并能够与第一高压隔离开关4相互配合,有效的实现在某一侧高压干线出现故障时,断开高压隔离开关对应触点,在损失一定车辆动力的条件下更换工作的受电弓,确保在出现故障时,列车高压***仍旧能够稳定的运行,提高列车的运行安全性和可靠性。
需要说明的是,电流互感器用于测量电路中的电流,按照工作原理分类包括:电磁式电流互感器和电子式电流互感器。在本申请实施例中,选用的电流互感器可根据实际情况进行选择,本实施例对此不做限定。
基于上述实施例,可选的,在所述列车高压***中,
所述高压供电单元,还包括:第一避雷器17和第二避雷器18;
所述第一避雷器17连接于所述受电弓1和所述第三电流互感器16之间;
所述第二避雷器18连接于所述瞬态电感15和所述第一牵引变压器3之间。
具体的,在高压供电单元中,还包括:第一避雷器17和第二避雷器18。其中,第一避雷器17连接于受电弓1和第三电流互感器16之间,第二避雷器18连接于瞬态电感15和第一牵引变压器3之间。
第一避雷器17用于抑制从供电网过来的过电压(如雷击等)对高压设备的冲击,保护从接触网发生的雷电涌或电路开闭引起的过电压对车辆变压器等机器绝缘的影响。第二避雷器18用于抑制车辆本身操作过电压对设备的冲击。
避雷器具有自动恢复功能,通过调整避雷器的限制电压,能够将高压设备加压部分与大地的绝缘间隙进行调整,既能确保绝缘间隙要求,又达到了设备箱小型化、轻量化的目的。
基于上述实施例,可选的,在所述列车高压***中,
所述高压供电单元,还包括:第一电压互感器19和第二电压互感器20;
所述第一电压互感器19连接于所述第三电流互感器16和所述主断路器2之间;
所述第二电压互感器20连接于所述第二避雷器18和所述第一牵引变压器3之间。
具体的,在高压供电单元中,还包括:第一电压互感器19和第二电压互感器20。第一电压互感器19连接于第三电流互感器16和主断路器2之间,第二电压互感器20连接于第二避雷器18和第一牵引变压器3之间。
第一电压互感器19用于测量网侧电压,将25kV的网侧电压的值转换成网侧电压信号,用于网压表显示和主断路器合断判断控制。第二电压互感器20用于牵引***逻辑保护控制,用于检测主电路的电压。进一步可根据检测到的主电路的电压和电流值,判断是否出现故障。
需要说明的是,电压互感器按功能、填充材料以及照封闭等级可以分为多类,在本申请实施例中,选用的电压互感器可根据实际情况进行选择, 本实施例对此不做限定。
进一步的,在本申请实施例中,需要使用电流互感器和电压互感器进行电路中电流和电压的监测,判断是否出现过流等问题,在进行判断时,电流互感器和电压互感器能够承受的最大电流和电压(报警阈值)可根据实际情况进行调整,本实施例对此不做限定。
基于上述实施例,可选的,在所述列车高压***中,
两个所述高压供电单元互备冗余;
当其中一个高压供电单元出现故障时,故障的高压供电单元对应的受电弓降下与接触网隔离,另一个高压供电单元的受电弓升起与接触网连接进行工作。
具体的,列车高压***,包括:两个高压供电单元和一个连接供电单元,其中两高压供电单元互为冗余。两个高压供电单元的结构完全相同,在其中一个高压供电单元出现故障时,故障的高压供电单元对应的受电弓降下与接触网隔离,并使用第一高压隔离开关实现对故障单元的隔离,另一个高压供电单元对应的受电弓升起与接触网连接进行工作。能够在一个高压供电单元发生故障无法正常工作时,保证动车组的正常运行。
进一步的,由于本申请实施例涉及到三个牵引变压器供电,在位于连接供电单元的第二牵引变压器所在的单元故障时,使用第一高压隔离开关和第二高压隔离开关实现对第二牵引变压器所在单元进行隔离,避免故障扩大化。
本申请实施例通过设置两个互备冗余的高压供电单元,实现在一个高压供电单元发生故障无法正常工作时,及时对故障部分进行切断和替换,保证动车组的正常运行。
本申请另一实施例提供的列车装载上述列车高压***。
具体的,列车装载上述列车高压***,可以通过电流互感器、电压互感器实时采集电路中的过流信号,判断是否存在故障,若存在故障及时定位并隔离故障单元,通过连接三点式高压隔离开关,实现具备给三台变压器供电的能力,实现不同高压供电单元之间的转换及隔离,保证列车的正常运行,提高列车的运行安全性。其具体的实施方式与上文中控制方式一致,此处不再赘述。
以八编组车辆“六动两拖”的设计为例进行说明,车辆设备配置表如下:
表1设备配置表
Figure PCTCN2021082593-appb-000001
本申请实施例提供的列车,通过连接三点式高压隔离开关,实现具备给三台变压器供电的能力,实现不同高压供电单元之间的转换及隔离,保证列车的正常运行,提高列车的运行安全性、可靠性,满足八编组车辆“六动两拖”的设计要求,***配置简单,控制方便。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通 过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (10)

  1. 一种列车高压***,其特征在于,包括:两个高压供电单元和一个连接供电单元;
    所述高压供电单元包括:受电弓(1)、主断路器(2)和第一牵引变压器(3);
    所述受电弓(1)通过所述主断路器(2)和所述第一牵引变压器(3)相连接;
    所述连接供电单元包括:第一高压隔离开关(4)和第二牵引变压器(5);其中,所述第一高压隔离开关(4)为三点式高压隔离开关;
    所述第一高压隔离开关(4)的一个端口与所述第二牵引变压器(5)的一次侧相连接;
    所述第一高压隔离开关(4)的另外两个端口分别与所述两个高压供电单元中的第一牵引变压器(3)的一次侧相连接。
  2. 根据权利要求1所述的列车高压***,其特征在于,
    所述连接供电单元,还包括:第二高压隔离开关(11)和第一电流互感器(12);其中,所述第二高压隔离开关(11)为两点式高压隔离开关;
    所述第二高压隔离开关(11)一端连接所述第一高压隔离开关(4),另一端通过所述第一电流互感器(12)连接所述第二牵引变压器(5)。
  3. 根据权利要求1或2所述的列车高压***,其特征在于,
    所述连接供电单元,还包括:两个第二电流互感器(13);
    所述两个第二电流互感器(13)分别对应连接于所述第一高压隔离开关(4)与所述两个高压供电单元中的第一牵引变压器(3)之间。
  4. 根据权利要求3所述的列车高压***,其特征在于,
    所述高压供电单元,还包括:接地保护开关(14);
    所述接地保护开关(14)与所述主断路器(2)并联,连接于所述受电弓(1)和所述第一牵引变压器(3)之间。
  5. 根据权利要求4所述的列车高压***,其特征在于,
    所述高压供电单元,还包括:瞬态电感(15);
    所述瞬态电感(15)连接于所述主断路器(2)和所述第一牵引变压器(3)之间。
  6. 根据权利要求5所述的列车高压***,其特征在于,
    所述高压供电单元,还包括:第三电流互感器(16);
    所述第三电流互感器(16)连接于所述主断路器(2)和所述受电弓(1)之间。
  7. 根据权利要求6所述的列车高压***,其特征在于,
    所述高压供电单元,还包括:第一避雷器(17)和第二避雷器(18);
    所述第一避雷器(17)连接于所述受电弓(1)和所述第三电流互感器(16)之间;
    所述第二避雷器(18)连接于所述瞬态电感(15)和所述第一牵引变压器(3)之间。
  8. 根据权利要求7所述的列车高压***,其特征在于,
    所述高压供电单元,还包括:第一电压互感器(19)和第二电压互感器(20);
    所述第一电压互感器(19)连接于所述第三电流互感器(16)和所述主断路器(2)之间;
    所述第二电压互感器(20)连接于所述第二避雷器(18)和所述第一牵引变压器(3)之间。
  9. 根据权利要求4-8任一项所述的列车高压***,其特征在于,
    两个所述高压供电单元互备冗余;
    当其中一个高压供电单元出现故障时,故障的高压供电单元对应的受电弓(1)降下与接触网隔离,另一个高压供电单元的受电弓(1)升起与接触网连接进行工作。
  10. 一种列车,其特征在于,
    所述列车装载权利要求1-9任一项所述的列车高压***。
PCT/CN2021/082593 2020-11-03 2021-03-24 一种列车高压***及列车 WO2022095324A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21888028.4A EP4242053A4 (en) 2020-11-03 2021-03-24 HIGH VOLTAGE TRAIN AND TRAIN SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011211746.9A CN112297963B (zh) 2020-11-03 2020-11-03 一种列车高压***及列车
CN202011211746.9 2020-11-03

Publications (1)

Publication Number Publication Date
WO2022095324A1 true WO2022095324A1 (zh) 2022-05-12

Family

ID=74333142

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082593 WO2022095324A1 (zh) 2020-11-03 2021-03-24 一种列车高压***及列车

Country Status (4)

Country Link
EP (1) EP4242053A4 (zh)
CN (1) CN112297963B (zh)
AR (1) AR124753A1 (zh)
WO (1) WO2022095324A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112297963B (zh) * 2020-11-03 2022-05-27 中车青岛四方机车车辆股份有限公司 一种列车高压***及列车
CN114523885B (zh) * 2022-03-03 2024-05-17 中车青岛四方机车车辆股份有限公司 一种高压供电回路保护***、保护方法及车辆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381198A (zh) * 2011-11-29 2012-03-21 南车株洲电力机车有限公司 一种电力机车组高压电路
US20160101709A1 (en) * 2014-10-09 2016-04-14 The Boeing Company Hybrid electrically powered transportation system utilizing renewable energy stored in supercapacitors
CN106427673A (zh) * 2016-10-08 2017-02-22 中国科学院电工研究所 无断电过分相供电装置
CN112297963A (zh) * 2020-11-03 2021-02-02 中车青岛四方机车车辆股份有限公司 一种列车高压***及列车

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201193029Y (zh) * 2008-08-15 2009-02-11 铁道部运输局 两端驾驶且自带动力的动车组
CN102490618B (zh) * 2011-11-29 2013-08-14 南车株洲电力机车有限公司 一种电力机车组网侧电路
CN103395377B (zh) * 2013-06-24 2015-12-02 南车株洲电力机车有限公司 一种电力机车组主断电路及主断控制方法
CN110920470B (zh) * 2019-12-13 2020-08-07 西南交通大学 一种电力牵引机车操作过电压抑制控制***及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102381198A (zh) * 2011-11-29 2012-03-21 南车株洲电力机车有限公司 一种电力机车组高压电路
US20160101709A1 (en) * 2014-10-09 2016-04-14 The Boeing Company Hybrid electrically powered transportation system utilizing renewable energy stored in supercapacitors
CN106427673A (zh) * 2016-10-08 2017-02-22 中国科学院电工研究所 无断电过分相供电装置
CN112297963A (zh) * 2020-11-03 2021-02-02 中车青岛四方机车车辆股份有限公司 一种列车高压***及列车

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4242053A4 *

Also Published As

Publication number Publication date
CN112297963A (zh) 2021-02-02
CN112297963B (zh) 2022-05-27
AR124753A1 (es) 2023-05-03
EP4242053A1 (en) 2023-09-13
EP4242053A4 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
CN101609124B (zh) 一种列车供电***的接地检测方法
CN102424004B (zh) 一种动车组网侧电路及其控制方法
CN102490618B (zh) 一种电力机车组网侧电路
WO2022095324A1 (zh) 一种列车高压***及列车
CN103419643B (zh) 一种高压配电控制方法及其装置
CN110606002B (zh) 一种适用于高速列车的工作与安全接地独立分布方法
CN110605999B (zh) 贯通式同相供电网络的测控保护***及其方法
CN103412239A (zh) 地铁交流供电***中母联闪络故障的检测定位方法
CN109927574A (zh) 一种城轨车主电路
CN112526253A (zh) 一种过流故障检测***、方法及轨道车辆
CN206493850U (zh) 一种电力动车组供电电路及该电力动车组
CN111347943A (zh) 一种轨道交通车辆接地***
CN108656954B (zh) 高压箱、高压***及电力动车组
CN105896466A (zh) 一种列车辅助***接地保护装置及接地保护方法
CN112977482B (zh) 一种跨座式单轨车辆
CN110297139B (zh) 一种轨道车辆网侧故障点检测装置及方法
CN110979015B (zh) 一种轨道车辆
KR20130063702A (ko) 전기철도 피뢰기를 이용한 전기철도 전력선 통신 시스템
CN113437795B (zh) 一种具有输入电压自动切换功能的移动箱变车
CN106004448A (zh) 一种电力机车高压回路自然隔离与双主断冗余电路***
CN211166464U (zh) 一种轨道车辆
CN202264649U (zh) 一种动车组网侧电路
CN111638471A (zh) 一种故障判断方法、装置及列车
CN208045949U (zh) 一种高压配电装置主接线***
CN112757970A (zh) 一种地铁牵引交流供电***及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21888028

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023007900

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023007900

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230426

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021888028

Country of ref document: EP

Effective date: 20230605