WO2022095058A1 - 检测方法、检测装置、运动***及可读存储介质 - Google Patents

检测方法、检测装置、运动***及可读存储介质 Download PDF

Info

Publication number
WO2022095058A1
WO2022095058A1 PCT/CN2020/127620 CN2020127620W WO2022095058A1 WO 2022095058 A1 WO2022095058 A1 WO 2022095058A1 CN 2020127620 W CN2020127620 W CN 2020127620W WO 2022095058 A1 WO2022095058 A1 WO 2022095058A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
measurement device
silo
pressure
motion
Prior art date
Application number
PCT/CN2020/127620
Other languages
English (en)
French (fr)
Inventor
颜勋
吴帆
马泽豪
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/127620 priority Critical patent/WO2022095058A1/zh
Publication of WO2022095058A1 publication Critical patent/WO2022095058A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups

Definitions

  • the present application relates to the field of detection technology, and in particular, to a detection method, a detection device, a motion system, and a computer-readable storage medium.
  • silo detection equipment such as platform scales, material level switches, radar/capacitance level gauges, etc.
  • a motion system such as a UAV
  • the airborne silo is mounted on the UAV and the UAV is in the flying state, the airborne silo is prone to tilt and vibration during the flight. etc., which makes the traditional silo inspection equipment unsuitable for moving platforms, such as drones.
  • the present application provides improved detection methods, detection devices, motion systems, and computer-readable storage media.
  • a detection method for detecting materials mounted on a silo of a moving body, the detection method includes: acquiring motion state information of the moving body; The pressure F n of the material; and according to the motion state information and the pressure F n , determine the mass m of the material in the silo.
  • a detection device for detecting materials mounted in a silo of a moving body comprising: a motion detection device for acquiring motion state information of the moving body; a measuring device, used to obtain the pressure F n of the material on the bottom surface of the silo; a controller, connected to the motion detection device and the measuring device, used for determining according to the motion state information and the pressure F n The mass m of the material in the silo.
  • a motion system comprising: a motion body; a silo mounted on the motion body; and a detection device mounted on the motion body, including a motion detection device, a measurement device, and a detection device.
  • the controller the silo is carried on the measuring device, the motion detection device is used to obtain the motion state information of the moving body, and the measuring device is used to obtain the pressure F n of the material on the bottom surface of the silo , the controller is connected with the motion detection device and the measurement device, and is used for determining the mass m of the material in the silo according to the motion state information and the pressure Fn .
  • the detection method of the embodiment of the present application can determine the mass m of the material in the silo according to the motion state information of the moving body and the pressure F n of the material on the bottom of the silo, obtain more accurate measurement results, and improve the accuracy of material detection and reliability.
  • FIG. 1 shows a flow chart of the detection method of the present application.
  • FIG. 2 shows the mathematical model of the embodiment of the present application.
  • FIG. 3 shows another flowchart of the detection method of the present application.
  • FIG. 4 shows another flow chart of the detection method of the present application.
  • FIG. 5 is a schematic diagram of the motion system of the present application.
  • FIG. 6 is a schematic diagram showing the distribution of a plurality of measurement devices of the present application.
  • FIG. 7 is another schematic diagram showing the distribution of a plurality of measurement devices of the present application.
  • FIG. 8 is another schematic diagram showing the distribution of a plurality of measurement devices of the present application.
  • FIG. 9 is a schematic circuit diagram of the detection device of the present application.
  • Figure 10 shows a block diagram of one embodiment of a motion system.
  • FIG. 1 is a flowchart of a detection method according to an embodiment of the present application.
  • the detection method of the embodiment of the present application is used to detect the material carried in the silo of the moving body, and the detection objects include but are not limited to information such as the weight of the material, the volume of the material, and the material level of the material.
  • the detection method includes steps S100 to S104.
  • Step S100 acquiring motion state information of the moving subject.
  • the moving subject is not limited, for example, it may be an unmanned aerial vehicle (unmanned aerial vehicle), an unmanned vehicle, and an unmanned boat, but it is not limited thereto.
  • the motion state information may include acceleration and angle information.
  • the angle information may include pitch angle and/or roll angle.
  • the motion state information may include vibration information.
  • the vibration information includes vibration amplitude and/or vibration acceleration.
  • the moving body may be equipped with an inertial measurement unit, and the motion state information may be acquired by the inertial measurement unit, but not limited to this.
  • Step S102 acquiring the pressure Fn of the material on the bottom surface of the silo.
  • the pressure F n of the material can be measured by a measuring device such as a pressure sensor.
  • the measuring device is assembled at the bottom of the silo, and the silo is supported on the measuring surface of the measuring device, thereby measuring the pressure F n of the material.
  • the action line of the pressure F n of the material is perpendicular to the measuring surface of the measuring device.
  • the measuring device is not limited to the use of pressure sensors.
  • Step S104 according to the motion state information and the pressure Fn , determine the mass m of the material in the silo.
  • the mass m of the material in the silo is determined through the motion state information and the pressure Fn , which can make the mass m more accurate, thereby improving the accuracy and reliability of detection.
  • the silo is mounted on the moving body. During the movement of the moving body, the silo cannot be stably maintained in a horizontal state, but moves with the moving body. For example, the silo moves up, down or left and right with the moving body. . Therefore, the detection method provided by this application is based on the situation that the posture of the silo changes at any time with the movement of the moving subject, and compensates the measurement value according to the movement state information of the moving subject and the pressure F n to obtain a more accurate measurement result, The measurement result can reflect the real information of the material in the silo, such as the quality, weight, volume, material level, etc. of the material, which improves the accuracy and reliability of the detection.
  • the motion state information includes acceleration and angle information.
  • the acceleration and angle information of the moving body will directly affect the accuracy of material detection. Therefore, the mass m of the material in the silo can be determined according to the acceleration, angle information and the pressure F n . That is to say, data fusion of acceleration, angle information and the pressure F n is performed to determine the mass m of the material in the silo, so that the measured value can be compensated to a large extent, and a more accurate measurement result can be obtained.
  • FIG. 2 is a mathematical model of an embodiment of the present application.
  • F n The pressure of the material on the bottom of the silo is F n
  • the frictional force on the bottom of the silo is f
  • the gravity of the material in the silo is G
  • the resultant force of the three is zero.
  • the moving body has an acceleration a during the movement, so the friction force f, the gravity G, and the pressure Fn will all change according to the acceleration a.
  • G m*(g+a).
  • the pressure F n and the acceleration a and the angle information theta of the material on the bottom surface of the silo are obtained, and the mass m of the material in the silo is determined according to the gravitational acceleration g, the acceleration a, the angle information theta and the pressure F n .
  • m Fn /[(g+a)*cos(theta)].
  • the angle information may include at least one of a pitch angle alpha and a roll angle beta.
  • the angle information includes the pitch angle alpha and the roll angle beta, so as to realize the measurement of the pitch angle and the roll angle in the three-dimensional space, so that the measurement result is more accurate.
  • the angle information can also include the yaw angle gamma, which further increases the accuracy of the measurement results. The method of determining the mass by the yaw angle is similar to the above-mentioned method, and will not be repeated here.
  • the manner of determining the mass according to the motion state information and the pressure F n is not limited to the above description, and other manners may also be used.
  • FIG. 3 is another flowchart of the detection method according to an embodiment of the present application.
  • the detection method includes steps S200 to S206.
  • Step S200 acquiring motion state information of the moving subject
  • Step S202 obtaining the pressure F n of the material received on the bottom surface of the silo;
  • Step S204 according to the motion state information and the pressure F n , determine the mass m of the material in the silo;
  • Step S206 Determine the volume V and/or the material level h of the material in the silo according to the mass m.
  • steps S200 to S204 are basically similar to steps S100 to S104, and will not be repeated here.
  • the volume V and/or the material level h of the material in the silo may be determined according to the mass m of the material.
  • the volume V of the pesticide in the silo can be determined according to the mass m of the pesticide.
  • the material is not limited to pesticides.
  • the material level h of the material in the silo can also be determined according to the mass m of the material in the silo.
  • the material level h can be determined by the mass m, material type, material density and the length, width and height of the silo. According to the mass m, more other information about the material in the silo can be determined, which makes the test results more diverse and the test content more abundant and detailed.
  • FIG. 4 is another flowchart of the detection method according to an embodiment of the present application.
  • the detection method includes steps S300 to S304.
  • Step S300 acquiring motion state information of the motion subject
  • Step S302 acquiring multiple components of the pressure of the material on the bottom surface of the silo measured by multiple measuring devices.
  • Step S304 according to the motion state information and the multiple components, determine the mass m of the material.
  • step S300 is basically similar to step S100, and details are not repeated here.
  • multiple measuring devices may be assembled at different parts of the bottom of the silo, and the multiple measuring devices jointly carry the silo, so that one component can be obtained by each measuring device, and multiple measuring devices can obtain multiple measuring devices. weight. Due to the change of the posture of the moving body during the movement, the materials in the silo are in a dynamic state. For example, when the moving body leans down, the materials in the silo accumulate to the front side; when the moving body lifts up, the materials in the silo are Stacked to the rear. Therefore, setting up multiple measuring devices can sense the components of the material pressure on different parts of the bottom of the silo, and obtain multiple components, so that the obtained pressure F n of the material on the bottom of the silo is more accurate.
  • step S304 by acquiring multiple components, the data of the pressure F n of the material on the bottom surface of the silo can be made more accurate. Therefore, the mass m of the material determined according to the motion state information and the multiple components is also more accurate. precise.
  • step S304 the sum of the multiple components may be determined first, and then the mass m of the material may be determined according to the motion state information and the sum of the multiple components. In this embodiment, determining the sum of the multiple components can make the calculation simple, ie, the sum of the multiple components is equal to the pressure Fn .
  • step S302 multiple components of the pressure of the material on the bottom surface of the silo may be acquired through multiple measuring devices. Because the moving subject is in the motion state, the reliability of the measuring device is correspondingly reduced, based on this, the accuracy of the measurement result can be further guaranteed by redundant design, that is, the detection method provided by the application can also include:
  • the measurement value of the failed measurement device is determined according to the measurement value of at least one other measurement device of the plurality of measurement devices.
  • the method can ensure that when any measurement device fails, the measurement value of the failed measurement device can be compensated by the measurement value of at least one other measurement device, thereby effectively avoiding causing a large measurement deviation.
  • the number of the plurality of measuring devices is not limited.
  • the plurality of measurement devices include a first measurement device and a second measurement device distributed in a first direction
  • the detection method includes: when the movement of the moving body changes along the first direction , if the first measurement device fails, it is determined that the measurement value of the first measurement device is equal to the measurement value of the second measurement device. For example, when the moving body leans down in the first direction, the material in the silo moves toward the side where the first measuring device is located. At this time, the measured value of the first measuring device increases, and the measured value of the second measuring device decreases. , the variation of the measurement value of the first measurement device is equal to the variation of the measurement value of the second measurement device.
  • the moving body when the moving body is tilted up in the first direction, the material in the silo moves toward the side where the second measuring device is located. At this time, the measured value of the first measuring device decreases, and the measured value of the second measuring device increases. If large, the amount of change in the measured value of the first measuring device is equal to the amount of change in the measured value of the second measuring device.
  • the first measuring device fails, the measured value of the first measuring device can be compensated by the measured value of the second measuring device.
  • the second measuring device fails, the measured value of the second measuring device can be compensated by the measured value of the first measuring device.
  • the plurality of measurement devices further include third measurement devices and fourth measurement devices distributed in a second direction perpendicular to the first direction, and the detection method includes: when the movement of the moving body changes along the second direction, If the third measurement device fails, it is determined that the measurement value of the third measurement device is equal to the measurement value of the fourth measurement device. For example, when the moving body leans down in the second direction, the material in the silo moves toward the side where the third measuring device is located. At this time, the measured value of the third measuring device increases and the measured value of the fourth measuring device decreases. , the variation of the measurement value of the third measurement device is equal to the variation of the measurement value of the fourth measurement device.
  • the material in the silo moves toward the side where the fourth measuring device is located.
  • the measured value of the third measuring device decreases, and the measured value of the fourth measuring device increases. If it is large, the amount of change in the measured value of the third measuring device is equal to the amount of change in the measured value of the fourth measuring device.
  • the third measuring device fails, the measured value of the third measuring device can be compensated by the measured value of the fourth measuring device.
  • the measurement value of the fourth measurement device can be compensated by the measurement value of the third measurement device.
  • the measurement device comprises a temperature compensated measurement device.
  • the temperature-compensated measuring device is greatly affected by the external ambient temperature, and the temperature calibration parameters of the temperature-compensated measuring device will change with the temperature. to compensate. Based on this, the detection method further includes:
  • the ambient temperature of the environment in which the moving body is located is collected, and the temperature calibration parameters of the temperature-compensated measuring device are compensated according to the ambient temperature.
  • the compensation algorithm of the temperature calibration parameter is not limited, and can be selected according to the actual situation of the temperature compensation measuring device, for example, a linear compensation algorithm, an exponential compensation algorithm or a table look-up method can be used.
  • the temperature calibration parameter of the temperature-compensated measuring device is compensated according to the ambient temperature, which can This makes the obtained pressure F n more accurate.
  • the temperature calibration parameter can also be compensated after acquiring the pressure F n of the material on the bottom surface of the silo, so that the pressure F n is more accurate.
  • FIG. 5 is a schematic diagram of a motion system 100 according to an embodiment of the present application.
  • the motion system 100 includes a motion body 10 , a bin 20 and a detection device 30 .
  • the silo 20 is mounted on the moving body 10, and the silo 20 is used for loading materials, and the types of materials are not limited, for example, seeds, fertilizers, or pesticides.
  • the moving subject 10 is not limited, and may be an unmanned aerial vehicle, an unmanned vehicle or an unmanned boat, but is not limited to this.
  • the detection device 30 is mounted on the moving body 10 , and is used for detecting the materials mounted on the silo 20 of the moving body 10 .
  • the detection device 30 includes a motion detection device 301 , a measurement device 302 and a controller 303 , and the silo 20 is carried on the measurement device 302 .
  • the motion detection device 301 is used to obtain the motion state information of the moving body 10
  • the measurement device 302 is used to obtain the pressure F n of the material on the bottom surface of the silo 20
  • the controller 303 is connected to the motion state.
  • the detection device 301 is connected to the measurement device 302, and is used for determining the mass m of the material in the silo 20 according to the motion state information and the pressure Fn .
  • the motion detection device 301 includes an inertial measurement unit 301 a mounted on the moving body, and the inertial measurement unit 301 a is used to acquire motion state information of the moving body 10 .
  • the inertial measurement unit 301a can be used to obtain acceleration and angle information of the moving body 10 .
  • the angle information includes the pitch angle alpha and/or the roll angle beta of the moving body 10 .
  • the motion state information may include vibration information.
  • the moving body 10 will generate small amplitude and high frequency vibration during the movement, which makes the noise of the measurement value very large, and this noise may cause the data of the measurement device 302 to be inaccurate.
  • the motion state information may include vibration information including the vibration amplitude and/or vibration acceleration of the moving body 10, and the measurement result is compensated by the vibration amplitude and/or vibration acceleration to improve the accuracy of the measurement result .
  • the detection device 30 may include a plurality of the measurement devices 302, the plurality of measurement devices 302 are connected to the controller 303, and the plurality of measurement devices 302 are used to be assembled in the material At different positions on the bottom of the bin 20 , the plurality of measuring devices 302 are used to obtain multiple components of the pressure of the material on the bottom surface of the bin 20 .
  • the controller 303 determines the failed measurement device according to the measurement value of at least one other measurement device 302 of the plurality of measurement devices 302 302, whereby the measurement of the failed measuring device 302 can be compensated.
  • FIG. 6 is a schematic diagram of the distribution of a plurality of measurement devices according to an embodiment of the present application.
  • the plurality of measurement devices 302 include a first measurement device 302-1 and a second measurement device 302-2 distributed in a first direction (X direction), when the moving body moves along the
  • first direction X direction
  • the first measurement device 302-1 fails, it is determined that the measurement value 302-1 of the first measurement device is equal to the measurement value of the second measurement device 302-2.
  • the material in the silo moves toward the side where the first measuring device 302-1 is located.
  • the measured value of the first measuring device 302-1 increases, and the The measurement value of the second measurement device 302-2 decreases, and the change amount of the measurement value of the first measurement device 302-1 is equal to the change amount of the measurement value of the second measurement device 302-2.
  • the material in the silo moves toward the side where the second measuring device 302-2 is located.
  • the measured value of the first measuring device 302-1 decreases, The measurement value of the second measurement device 302-2 increases, and the change amount of the measurement value of the first measurement device 302-1 is equal to the change amount of the measurement value of the second measurement device 302-2.
  • the measurement value of the measurement value 20-1 of the first measurement device can be compensated by the measurement value of the second measurement device 302-2.
  • the measurement value of the measurement value 302-2 of the second measurement device can be compensated by the measurement value of the first measurement device 302-1.
  • FIG. 7 is another schematic diagram of the distribution of a plurality of measurement devices according to an embodiment of the present application.
  • the plurality of measurement devices 302 further include a third measurement device 302-3 and a fourth measurement device 302-4 distributed in a second direction (Y direction) perpendicular to the first direction (X direction), when the moving body 10
  • a third measurement device 302-3 fails, it is determined that the measurement value of the third measurement device 302-3 is equal to the measurement value of the fourth measurement device 302-4.
  • the material in the silo moves toward the side where the third measuring device 302-3 is located.
  • the measured value of the third measuring device 302-3 increases, and the first The measurement value of the fourth measurement device 302-4 decreases, and the change amount of the measurement value of the third measurement device 302-3 is equal to the change amount of the measurement value of the fourth measurement device 302-4.
  • the material in the silo moves toward the side where the fourth measuring device 302-4 is located.
  • the measured value of the third measuring device 302-3 decreases.
  • the measurement value of the fourth measurement device 302-4 increases, and the amount of change in the measurement value of the third measurement device 302-3 is equal to the amount of change in the measurement value of the fourth measurement device 302-4.
  • the measurement value of the third measurement device 302-3 can be compensated by the measurement value of the fourth measurement device 302-4, and vice versa.
  • the measurement value of the fourth measurement device 302-4 can be compensated by the measurement value of the third measurement device 302-3.
  • FIG. 8 is another schematic diagram of the distribution of a plurality of measurement devices according to an embodiment of the present application.
  • four measuring devices 302a, 302b, 302c and 302d are arranged at the bottom of the silo 20.
  • the four measuring devices 302a, 302b, 302c and 302d are arranged in the first direction (X direction) and the second direction. (Y direction) are opposed to each other in pairs, and are spaced apart in the first direction and the second direction, and the four measuring devices 302a, 302b, 302c, and 302d are respectively used to obtain a component of the pressure Fn .
  • the pressure Fn Fa+Fb+Fc+Fd.
  • Fa is the measurement value of the measurement device 302a
  • Fb is the measurement value of the measurement device 302b
  • Fc is the measurement value of the measurement device 302c
  • Fd is the measurement value of the measurement device 302d.
  • the change amounts of the measurement devices 302a and 302b are the same, and the change amounts of the measurement devices 302c and 302d are the same.
  • the change amounts of the measuring devices 302a and 302c are the same, and the change amounts of the measuring devices 302b and 302d are the same.
  • the Z direction may be a change in the movement of the moving body 10 in the height direction.
  • the Z direction is the direction in which the unmanned aerial vehicle ascends or descends.
  • FIG. 9 is a schematic circuit diagram of a detection device according to an embodiment of the present application.
  • the number of measurement devices 302 is not limited, and may be one or more. In the embodiment shown in FIG. 9 , there are four measuring devices 302 , all of which are electrically connected to the controller 303 .
  • the controller 303 collects the electrical signals output by the measuring device 302 corresponding to the respective components of the pressure Fn .
  • the measuring device 302 includes a pressure sensor.
  • the pressure sensor is assembled at the bottom of the silo 20 and is used to carry the weight of the silo 20.
  • the pressure sensor can acquire the material received on the bottom of the silo 20 pressure Fn .
  • Using multiple pressure sensors can acquire multiple components of the pressure F n respectively, and use the multiple components to determine the pressure F n .
  • the measurement device 302 includes a temperature-compensated measurement device 302a, and the temperature calibration parameters of the temperature-compensated measurement device 302a are greatly affected by the ambient temperature.
  • the temperature compensated measurement device 302a may include a temperature compensated pressure sensor.
  • the detection device 100 includes a temperature sensor 40, the temperature sensor 40 is used to collect the ambient temperature of the environment where the moving body 10 is located, and the temperature-compensated measurement device 302a is electrically connected to the temperature sensor 40, Compensate its own temperature calibration parameters according to the ambient temperature, so that the temperature compensation measuring device 302a obtains the data of the pressure F n of the material on the bottom surface of the silo 20 more accurately.
  • the temperature sensor 40 and the temperature-compensated measuring device 302a are respectively electrically connected to the controller 303, and the controller 303 analyzes the silo obtained by the temperature-compensated measuring device 302a according to the ambient temperature.
  • the pressure F n of the material received by the bottom surface is compensated, so that the data of the pressure F n of the material is more accurate.
  • a plurality of temperature-compensated measuring devices 302a are used to obtain a plurality of components of the pressure Fn of the material on the bottom surface of the silo 20, and transmit them to the corresponding signal amplification unit and calibration unit, after the electrical signals corresponding to the multiple components are amplified and calibrated, they are input to the controller 303, and the controller 303 uses the ambient temperature collected by the temperature sensor 40 to compensate the temperature calibration parameters of the temperature-compensated measuring device 302a, and then according to the inertial
  • the motion state information of the moving subject 10 obtained by the measuring unit IMU and the pressure Fn obtained by the measuring device 302 determine the mass m, so as to obtain an accurate measurement result, which can be output to an external controller such as a host through a bus such as a CAN bus. machine PHY.
  • the motion state information includes acceleration and angle information.
  • the angle information includes at least one of a pitch angle and a roll angle.
  • the angle information includes pitch angle and roll angle
  • the controller is configured to determine the mass m by at least gravitational acceleration, acceleration, pressure F n , pitch angle and roll angle.
  • the controller is configured to determine the volume V and/or the material level h of the material in the silo according to the mass m.
  • the detection device includes a plurality of measurement devices for acquiring a plurality of components of the pressure of the material on the bottom surface of the silo; the controller is configured to obtain a plurality of pressure components according to the motion state information and the plurality of component, to determine the mass m of the material.
  • the controller is configured to determine the sum of the plurality of pressure components, and determine the mass m of the material according to the motion state information and the sum of the plurality of components.
  • the controller is configured to, if one of the plurality of measurement devices fails, determine the measurement of the failed measurement device according to the measurement value of at least one other measurement device in the plurality of measurement devices value.
  • the plurality of measurement devices include a first measurement device and a second measurement device distributed in a first direction, and the controller is configured to: when the movement of the moving body changes along the first direction, If the first measurement device fails, it is determined that the measurement value of the first measurement device is equal to the measurement value of the second measurement device.
  • the plurality of measurement devices include third measurement devices and fourth measurement devices distributed in a second direction perpendicular to the first direction, and the controller is configured to move the moving body along the first direction.
  • the controller is configured to move the moving body along the first direction.
  • the motion state information includes vibration information of the moving subject.
  • the vibration information includes at least one of vibration amplitude and vibration acceleration.
  • FIG. 10 shows a block diagram of one embodiment of the exercise system 100 .
  • the motion system 100 includes one or more processors 501 for implementing the detection method.
  • the processor 501 of the motion system 100 may implement the detection method described above.
  • the exercise system 100 may include a computer-readable storage medium 504, which may store programs that may be called by the processor 501, and may include a non-volatile storage medium.
  • exercise system 100 may include memory 503 and interface 502 .
  • the exercise system 100 may also include other hardware depending on the actual application.
  • the computer-readable storage medium 504 in the embodiment of the present application stores a program thereon, and when the program is executed by the processor 501, the detection method of the present application is implemented.
  • the application may take the form of a computer program product embodied on one or more storage media (including, but not limited to, disk storage, CD-ROM, optical storage, etc.) having program code embodied therein.
  • Computer-readable storage media includes both persistent and non-permanent, removable and non-removable media, and storage of information can be implemented by any method or technology.
  • Information may be computer readable instructions, data structures, modules of programs, or other data.
  • Examples of computer-readable storage media include, but are not limited to, phase-change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only memory Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Flash Memory or other memory technology, Compact Disc Read Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical storage , magnetic tape cartridges, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission medium that can be used to store information that can be accessed by a computing device.
  • PRAM phase-change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only memory Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • Flash Memory or other memory technology
  • CD-ROM Compact Disc Read Only Memory
  • CD-ROM Compact Disc Read Only Memory
  • DVD Digital Versatile Disc
  • magnetic tape cartridges magnetic tape magnetic disk storage or other magnetic

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Or Calibration Of Command Recording Devices (AREA)

Abstract

一种检测方法、检测装置(30)及运动***(100)。检测方法包括以下步骤:获取运动主体(10)的运动状态信息(S100);获取料仓(20)底面受到的物料的压力Fn(S102);以及根据运动状态信息和压力Fn,确定料仓(20)内物料的质量m(S104)。运动***(100)包括检测装置(30),检测方法应用于检测装置(30)。采用检测方法可以将运动主体(10)的运动状态信息以及压力Fn进行数据融合,从而能够对测量结果进行补偿,得到的测量结果更加准确,且能够反映料仓(20)内物料的真实信息,例如物料的质量、重量、体积、料位等,提高了运动***(100)中料仓(20)内物料检测的准确度。

Description

检测方法、检测装置、运动***及可读存储介质 技术领域
本申请涉及检测技术领域,尤其涉及一种检测方法、检测装置、运动***及计算机可读存储介质。
背景技术
传动的料仓检测设备,例如台秤、料位开关、雷达/电容料位计等,一般适用于稳定状态下对物料重量、料位等方面的检测。然而,在运动***(例如无人机)机载料仓的检测场景中,由于机载料仓搭载在无人机上,无人机处于飞行状态,飞行过程中容易发生机载料仓倾斜、震动等情况,这使得传统的料仓检测设备无法适用于运动平台,例如无人机。
发明内容
本申请提供改进的检测方法、检测装置、运动***及计算机可读存储介质。
根据本申请实施例的一个方面,提供一种检测方法,用于检测搭载于运动主体的料仓的物料,该检测方法包括:获取所述运动主体的运动状态信息;获取所述料仓底面受到的物料的压力F n;及根据所述运动状态信息和所述压力F n,确定所述料仓内物料的质量m。
根据本申请实施例的另一个方面,提供一种检测装置,用于检测搭载于运动主体的料仓的物料,该检测装置包括:运动检测装置,用于获取所述运动主体的运动状态信息;测量装置,用于获取所述料仓底面受到的物料 的压力F n;控制器,与所述运动检测装置和所述测量装置连接,用于根据所述运动状态信息和所述压力F n确定所述料仓内物料的质量m。
根据本申请实施例的另一个方面,提供一种运动***,包括:运动主体;料仓,搭载于所述运动主体;及检测装置,搭载于所述运动主体,包括运动检测装置、测量装置及控制器,所述料仓承载于所述测量装置,所述运动检测装置用于获取所述运动主体的运动状态信息,所述测量装置用于获取所述料仓底面受到的物料的压力F n,所述控制器与所述运动检测装置和所述测量装置连接,用于根据所述运动状态信息和所述压力F n确定所述料仓内物料的质量m。
本申请实施例的检测方法能够根据运动主体的运动状态信息和料仓底面受到的物料的压力F n,确定料仓内物料的质量m,得到更加准确的测量结果,提高了物料检测的准确性和可靠性。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1所示为本申请检测方法的流程图。
图2所示为本申请实施例的数学模型。
图3所示为本申请检测方法的又一流程图。
图4所示为本申请检测方法的再一流程图。
图5所示为本申请运动***的示意图。
图6所示为本申请多个测量装置分布的示意图。
图7所示为本申请多个测量装置分布的又一示意图。
图8所示为本申请多个测量装置分布的再一示意图。
图9所示为本申请检测装置的电路原理图。
图10所示为运动***的一个实施例的模块框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多 个”或者“若干”等类似词语表示至少两个。
请参考图1,图1为本申请实施例的检测方法的流程图。
本申请实施例的检测方法用于检测搭载于运动主体的料仓的物料,检测对象包括但不限于物料的重量、物料的体积以及物料的料位等信息。
具体的,该检测方法包括步骤S100~步骤S104。
步骤S100,获取所述运动主体的运动状态信息。
本步骤中,运动主体不限,例如可以是无人机(无人飞行器)、无人车、无人船,但不仅限于此。所述运动状态信息可以包括加速度和角度信息。角度信息可以包括俯仰角和/或滚转角。在其他一些实施例中,所述运动状态信息可以包括振动信息。振动信息包括振动幅值和/或振动加速度。运动主体上可以搭载有惯性测量单元,运动状态信息可以通过惯性测量单元获取,但不仅限于此。
步骤S102,获取所述料仓底面受到的物料的压力F n
物料的压力F n可以通过测量装置例如压力传感器测量,测量装置组装于料仓的底部,料仓承载在测量装置的测量面上,由此测得物料的压力F n。其中,物料的压力F n的作用线与测量装置的测量面垂直。测量装置不仅限于采用压力传感器。
步骤S104,根据所述运动状态信息和所述压力F n,确定所述料仓内物料的质量m。
本步骤中,通过运动状态信息和压力F n确定所述料仓内物料的质量m,可以使得质量m更加准确,由此提高检测的准确性和可靠性。
料仓搭载于运动主体,在运动主体运动的过程中,料仓无法稳定地保持在水平状态,而是随着运动主体一起运动,例如料仓随着运动主体上仰、下俯或左右偏摆。因此,本申请提供的检测方法基于料仓的姿态随着 运动主体的运动随时发生改变这一情况,根据运动主体的运动状态信息以及压力F n对测量值进行补偿,得到更加准确的测量结果,使得该测量结果能够反映料仓内物料的真实信息,例如物料的质量、重量、体积、料位等,提高了检测的准确性和可靠性。
在一个实施例中,运动状态信息包括加速度和角度信息。在运动主体运动的过程中,运动主体的加速度以及角度信息都会直接影响物料检测的准确性,因此,可以根据加速度、角度信息以及所述压力F n,确定所述料仓内物料的质量m。也就是说,将加速度、角度信息以及所述压力F n进行数据融合,确定料仓内物料的质量m,从而可以在很大程度上对测量值进行补偿,得到更加准确的测量结果。
请参考图2,图2为本申请实施例的数学模型。
料仓底面受到的物料的压力为F n,料仓底面受到的摩擦力为f,料仓内物料的重力为G,三者的合力为零。F n通过测量装置获取,其中,F n与G的关系为:F n=G*cos(theta),其中theta为运动主体的角度信息,例如,姿态倾角。
运动主体在运动过程中存在加速度a,因此,摩擦力f、重力G、以及压力F n都会根据加速度a变化。其中,G=m*(g+a)。
在一个实施例中,获取料仓底面受到的物料的压力F n以及加速度a、角度信息theta,根据重力加速度g、加速度a、角度信息theta以及压力F n确定料仓内物料的质量m,质量m=F n/[(g+a)*cos(theta)]。如此可以对测量结果进行补偿,补偿料仓在随着运动主体运动时由于加速度以及姿态倾角等因素对测量结果的影响,提高测量结果的准确性。
进一步,角度信息可以包括俯仰角alpha和滚转角beta中的至少一个。本实施例中,角度信息包括俯仰角alpha和滚转角beta,以实现三维空间内俯仰角和滚转角的测量,使得测量结果更加准确。此时,料仓内物 料的质量m可以通过重力加速度g、加速度a、压力F n、俯仰角alpha和滚转角beta确定,质量m=F n/[(g+a)*cos(alpha)*cos(beta)]。其中,cos(theta)=cos(alpha)*cos(beta)。此外,可以令角度信息还包括偏航角gamma,进一步增加测量结果的准确性。通过偏航角确定质量的方法与上述方法类似,在此不再赘述。
需要说明的是,在其它一些实施例中,根据运动状态信息和压力F n确定质量的方式不仅限于以上所描述的,还可以采用其他方式。
请参考图3,图3为本申请实施例的检测方法的又一流程图。
该检测方法包括步骤S200~步骤S206。
步骤S200,获取所述运动主体的运动状态信息;
步骤S202,获取所述料仓底面受到的物料的压力F n
步骤S204,根据所述运动状态信息和所述压力F n,确定所述料仓内物料的质量m;
步骤S206,根据质量m确定所述料仓内物料的体积V和/或料位h。
上述检测方法中,步骤S200~步骤S204与步骤S100~步骤S104基本类似,此处不再赘述。
在步骤S206中,在料仓内物料的质量m确定后,可以根据物料的质量m确定所述料仓内物料的体积V和/或料位h。例如,当料仓内盛装的物料为农药时,可以根据农药的质量m确定所述料仓内农药的体积V。一种实施例,农药的体积V可以通过农药的密度ρ、质量m共同确定,计算模型为V=m/ρ。当然,物料不仅限于农药,在确定物料的体积时,可以通过程序进行物料密度或物料种类的选择。又如,还可以根据料仓内物料的质量m确定料仓内物料的料位h。料位h可以通过质量m、物料种类、物料密度以及料仓的长、宽、高确定。根据质量m可以确定更多有关料仓内物料的其它信息,使得检测结果更加多样化和检测内容更加丰富、详细。
请参考图4,图4为本申请实施例的检测方法的再一流程图。
该检测方法包括步骤S300~步骤S304。
步骤S300,获取所述运动主体的运动状态信息;
步骤S302,获取多个测量装置测量的所述料仓底面受到的物料的压力的多个分量;及
步骤S304,根据所述运动状态信息和所述多个分量,确定所述物料的质量m。
其中,步骤S300与步骤S100基本类似,此处不再赘述。
在步骤S302中,可以在料仓底部的不同部位处组装多个测量装置,多个测量装置共同承载料仓,由此可以通过每个测量装置获取一个分量,多个测量装置即可获取多个分量。由于运动主体在运动中的姿态的变化,料仓内的物料处于动态,例如,当运动主体下俯时,料仓内的物料向前侧堆积;当运动主体上仰时,料仓内的物料向后侧堆积。因此,设置多个测量装置可以感知料仓底面不同部位处受到的物料的压力的分量,并获取多个分量,使得获取的料仓底面受到的物料的压力F n更加准确。
在步骤S304中,通过获取多个分量,可以使得料仓底面受到的物料的压力F n的数据更加准确,因此,根据运动状态信息和所述多个分量确定的所述物料的质量m也更加准确。
在一个实施例中,在步骤S304中,可以先确定所述多个分量的和,然后根据所述运动状态信息和所述多个分量的和,确定所述物料的质量m。在此实施例中,确定多个分量的和可以使得计算方式简单,即,多个分量的和等于压力F n
在步骤S302中,通过多个测量装置可以获取所述料仓底面受到的物料的压力的多个分量。由于运动主体处于运动状态,测量装置的可靠性相应降低,基于此,可以通过冗余设计进一步保证测量结果的准确性,即本 申请提供的检测方法还可以包括:
若所述多个测量装置中的一个失效,根据所述多个测量装置中的其他至少一个测量装置的测量值,确定失效的所述测量装置的测量值。该方法可以确保任一测量装置失效时,失效的测量装置的测量值可以由其他至少一个测量装置的测量值进行补偿,从而可以有效避免造成较大的测量偏差。其中,多个测量装置的数量不限。
在一个具体的实施例中,多个测量装置包括在第一方向上分布的第一测量装置和第二测量装置,所述检测方法包括:在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。例如,当运动主体沿第一方向下俯时,料仓内物料朝第一测量装置所在的一侧移动,此时,第一测量装置的测量值增大,第二测量装置的测量值减小,第一测量装置的测量值的变化量与第二测量装置的测量值的变化量相等。又如,当运动主体沿第一方向上仰时,料仓内物料朝第二测量装置所在的一侧移动,此时,第一测量装置的测量值减小,第二测量装置的测量值增大,第一测量装置的测量值的变化量与第二测量装置的测量值的变化量相等。当第一测量装置失效时,第一测量装置的测量值可以通过第二测量装置的测量值补偿。当第二测量装置失效时,第二测量装置的测量值可以通过第一测量装置的测量值补偿。
多个测量装置还包括在垂直于第一方向的第二方向上分布的第三测量装置和第四测量装置,所述检测方法包括:在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装置的测量值。例如,当运动主体沿第二方向下俯时,料仓内物料朝第三测量装置所在的一侧移动,此时,第三测量装置的测量值增大,第四测量装置的测量值减小,第三测量装置的测量值的变化量与第四测量装置的测量值的变化量相等。又如,当运动主体沿第二方向 上仰时,料仓内物料朝第四测量装置所在的一侧移动,此时,第三测量装置的测量值减小,第四测量装置的测量值增大,第三测量装置的测量值的变化量与第四测量装置的测量值的变化量相等。当第三测量装置失效时,第三测量装置的测量值可以通过第四测量装置的测量值补偿。当第四测量装置失效时,第四测量装置的测量值可以通过第三测量装置的测量值补偿。
在一个实施例中,测量装置包括温度补偿式测量装置。温度补偿式测量装置受外界环境温度影响较大,温度补偿式测量装置的温度校准参数会随着温度的变化而变化,如果想到得到准确的测量结果,需要根据当前的环境温度,对温度校准参数进行补偿。基于此,所述检测方法还包括:
采集所述运动主体所处环境的环境温度,且根据所述环境温度对所述温度补偿式测量装置的温度校准参数进行补偿。温度校准参数的补偿算法不限,具体可以根据温度补偿式测量装置实际情况选择,例如可以采用线性补偿算法、指数补偿算法或查表法等等。
在一个可选择的实施例中,在所述获取所述料仓底面受到的物料的压力F n之前,对根据所述环境温度对所述温度补偿式测量装置的温度校准参数进行补偿,这样可以使得获取到的压力F n更准确一些。
在另一个实施例中,也可以在获取所述料仓底面受到的物料的压力F n之后对温度校准参数进行补偿,使得压力F n更准确一些。
请参考图5,图5为本申请实施例的运动***100的示意图。
运动***100包括运动主体10、料仓20以及检测装置30。料仓20搭载于所述运动主体10,料仓20内用于装载物料,物料种类不限,例如可以是种子、化肥、或农药。运动主体10不限,可以是无人机、无人车或无人船,但不仅限于此。
检测装置30搭载于所述运动主体10,用于检测搭载于运动主体10的料仓20的物料。检测装置30包括运动检测装置301、测量装置302及 控制器303,所述料仓20承载于所述测量装置302。所述运动检测装置301用于获取所述运动主体10的运动状态信息,所述测量装置302用于获取所述料仓20底面受到的物料的压力F n,所述控制器303与所述运动检测装置301和所述测量装置302连接,用于根据所述运动状态信息和所述压力F n确定所述料仓20内物料的质量m。
在一个实施例中,所述运动检测装置301包括用于搭载于所述运动主体的惯性测量单元301a,所述惯性测量单元301a用于获取运动主体10的运动状态信息。例如,惯性测量单元301a可以用于获取运动主体10的加速度、角度信息。其中,角度信息包括运动主体10的俯仰角alpha和/或滚转角beta。
在其他一些实施例中,运动状态信息可以包括振动信息。运动主体10在运动过程中会产生小幅度以及高频的振动,使得测量值的噪声很大,这个噪声会导致测量装置302的数据失准。基于此,运动状态信息可以包括振动信息,该振动信息包括运动主体10的振动幅值和/或振动加速度,并利用振动幅值和/或振动加速度对测量结果进行补偿,提高测量结果的准确度。
在一个实施例中,所述检测装置30可以包括多个所述测量装置302,所述多个测量装置302与所述控制器303连接,所述多个测量装置302用于组装于所述料仓20底部的不同部位处,所述多个测量装置302用于获取所述料仓20底面受到的物料的压力的多个分量。
在上述实施例中,若所述多个测量装置302中的一个失效,则控制器303根据所述多个测量装置302中的其他至少一个测量装置302的测量值,确定失效的所述测量装置302的测量值,由此可以对失效的所述测量装置302的测量值进行补偿。
请参考图6,图6为本申请实施例的多个测量装置分布的示意图。
在图6所示出的实施例中,多个测量装置302包括在第一方向(X方向)分布的第一测量装置302-1和第二测量装置302-2,当所述运动主体沿所述第一方向运动变化时,若所述第一测量装置302-1失效,确定所述第一测量装置的测量值302-1等于所述第二测量装置302-2的测量值。例如,当运动主体沿第一方向运动下俯变化时,料仓内物料朝第一测量装置302-1所在的一侧移动,此时,第一测量装置302-1的测量值增大,第二测量装置302-2的测量值减小,第一测量装置302-1的测量值的变化量与第二测量装置302-2的测量值的变化量相等。又如,当运动主体沿第一方向运动上仰变化时,料仓内物料朝第二测量装置302-2所在的一侧移动,此时,第一测量装置302-1的测量值减小,第二测量装置302-2的测量值增大,第一测量装置302-1的测量值的变化量与第二测量装置302-2的测量值的变化量相等。在上述两种情况下,当第一测量装置302-1失效时,第一测量装置的测量值20-1的测量值可以通过第二测量装置302-2的测量值补偿,反之,当第二测量装置302-2失效时,第二测量装置的测量值302-2的测量值可以通过第一测量装置302-1的测量值补偿。
请参考图7,图7为本申请实施例的多个测量装置分布的又一示意图。
多个测量装置302还包括在垂直于第一方向(X方向)的第二方向(Y方向)上分布的第三测量装置302-3和第四测量装置302-4,当所述运动主体10沿所述第二方向运动变化时,若所述第三测量装置302-3失效,确定所述第三测量装置302-3的测量值等于所述第四测量装置302-4的测量值。例如,当运动主体沿第二方向运动下俯变化时,料仓内物料朝第三测量装置302-3所在的一侧移动,此时,第三测量装置302-3的测量值增大,第四测量装置302-4的测量值减小,第三测量装置302-3的测量值的变化量与第四测量装置302-4的测量值的变化量相等。又如,当运动主体沿第二方向运动上仰变化时,料仓内物料朝向第四测量装置302-4所在的 一侧移动,此时,第三测量装置302-3的测量值减小,第四测量装置302-4的测量值增大,第三测量装置302-3的测量值的变化量与第四测量装置302-4的测量值的变化量相等。在上述两种情况下,当第三测量装置302-3失效时,第三测量装置302-3的测量值可以通过第四测量装置302-4的测量值补偿,反之。当第四测量装置302-4失效时,第四测量装置302-4的测量值可以通过第三测量装置302-3的测量值补偿。
请参考图8,图8为本申请实施例的多个测量装置分布的再一示意图。
在一实际应用场景中,料仓20的底部设有置四个测量装置302a、302b、302c和302d,四个测量装置302a、302b、302c、302d在第一方向(X方向)和第二方向(Y方向)上两两相对,且在第一方向和第二方向上间隔分布,四个测量装置302a、302b、302c、302d分别用于获取压力F n的一个分量。在一个实施例中,压力F n=Fa+Fb+Fc+Fd。其中,Fa为测量装置302a的测量值,Fb为测量装置302b的测量值,Fc为测量装置302c的测量值,Fd为测量装置302d的测量值。
根据以上描述,当所述运动主体10沿所述第一方向运动变化时,测量装置302a、302b的变化量相同,测量装置302c、302d的变化量相同。当所述运动主体10沿所述第二方向运动变化时,测量装置302a、302c的变化量相同,测量装置302b、302d的变化量相同。在此应用场景中,若运动主体10沿第二方向运动变化时,且当测量装置302a失效时,则确定测量装置302a的测量值等于测量装置302c的测量值,即,压力F n=Fc+Fb+Fc+Fd,由此实现对测量装置302a的测量值的补偿,以便后续通过计算模型进行数据融合,从而有效确定物料的质量m。又如,若运动主体10沿第一方向运动变化时,且当测量装置302b失效时,则确定测量装置302b的测量值等于测量装置302c的测量值,即,压力F n=Fa+Fa+Fc+Fd。
在图6至图8所示出的示例中,若运动主体10沿Z方向运动变化时, 测量装置302a、302b、302c、302d的测量值基本保持不变。其中Z方向可以是运动主体10在高度方向运动的变化,例如对无人机而言,Z方向为无人机上升或下降的方向。
请参考图9,图9是本申请实施例的检测装置的电路原理图。
测量装置302的数量不限,可以是一个或多个。在图9所示出的实施例中,测量装置302设有四个,均与控制器303电连接。控制器303采集测量装置302输出的与压力F n的各个分量对应的电信号。
在一个实施例中,所述测量装置302包括压力传感器,压力传感器组装于料仓20的底部,用于承载料仓20的重量,所述压力传感器可以获取所述料仓20底面受到的物料的压力F n。采用多个压力传感器可以获取分别获取压力F n的多个分量,利用多个分量确定压力F n
在一个实施例中,所述测量装置302包括温度补偿式测量装置302a,温度补偿式测量装置302a的温度校准参数受环境温度的影响较大。温度补偿式测量装置302a可以包括温度补偿式压力传感器。基于此,所述检测装置100包括温度传感器40,所述温度传感器40用于采集所述运动主体10所处环境的环境温度,所述温度补偿式测量装置302a与所述温度传感器40电连接,根据所述环境温度对自身的温度校准参数进行补偿,使得温度补偿式测量装置302a获取所述料仓20底面受到的物料的压力F n的数据更加准确。
在另一个实施例中,温度传感器40和温度补偿式测量装置302a分别与控制器303电连接,所述控制器303根据所述环境温度对所述温度补偿式测量装置302a获取的所述料仓底面受到的物料的压力F n进行补偿,使得物料的压力F n的数据更加准确。
在图9所示出的实施例中,多个温度补偿式测量装置302a用于获取所述料仓20底面受到的物料的压力F n的多个分量,并传输到相应的信号放 大单元和校准单元,与多个分量对应的电信号经过放大和校准后,输入控制器303,控制器303利用温度传感器40采集到的环境温度对温度补偿式测量装置302a的温度校准参数进行补偿,进而根据惯性测量单元IMU获取的运动主体10的运动状态信息、测量装置302获取的压力F n确定质量m,从而得到一个准确的测量结果,该测量结果可以通过例如CAN总线等总线输出给外部控制器例如上位机PHY。
在一个实施例中,所述运动状态信息包括加速度和角度信息。
在一个实施例中,所述角度信息包括俯仰角和滚转角中的至少一个。
在一个实施例中,所述角度信息包括俯仰角和滚转角,所述控制器用于至少通过重力加速度、加速度、压力F n、俯仰角和滚转角确定所述质量m。
在一个实施例中,所述控制器用于根据质量m确定所述料仓内物料的体积V和/或料位h。
在一个实施例中,所述检测装置包括多个测量装置,用于获取所述料仓底面受到的物料的压力的多个分量;所述控制器用于根据所述运动状态信息和所述多个分量,确定所述物料的质量m。
在一个实施例中,所述控制器用于确定所述多个压力分量的和,且根据所述运动状态信息和所述多个分量的和,确定所述物料的质量m。
在一个实施例中,所述控制器用于若所述多个测量装置中的一个失效,根据所述多个测量装置中的其他至少一个测量装置的测量值,确定失效的所述测量装置的测量值。
在一个实施例中,所述多个测量装置包括在第一方向上分布的第一测量装置和第二测量装置,所述控制器用于在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。
在一个实施例中,所述多个测量装置包括在垂直于第一方向的第二 方向上分布的第三测量装置和第四测量装置,所述控制器用于在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装置的测量值。
在一个实施例中,所述运动状态信息包括运动主体的振动信息。
在一个实施例中,所述振动信息包括振动幅值和振动加速度中的至少一者。
对于方法实施例而言,由于其基本对应于装置实施例,所以相关之处参见装置实施例的部分说明即可。方法实施例和装置实施例互为补充。
图10所示为运动***100的一个实施例的模块框图。运动***100包括一个或多个处理器501,用于实现检测方法。运动***100的处理器501可以实现上文所述的检测方法。在一些实施例中,运动***100可以包括计算机可读存储介质504,计算机可读存储介质可以存储有可被处理器501调用的程序,可以包括非易失性存储介质。在一些实施例中,运动***100可以包括内存503和接口502。在一些实施例中,运动***100还可以根据实际应用包括其他硬件。
本申请实施例的计算机可读存储介质504,其上存储有程序,该程序被处理器501执行时,实现本申请的检测方法。
本申请可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机可读存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存 技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (56)

  1. 一种检测方法,用于检测搭载于运动主体的料仓的物料,其特征在于,包括:
    获取所述运动主体的运动状态信息;
    获取所述料仓底面受到的物料的压力F n;及
    根据所述运动状态信息和所述压力F n,确定所述料仓内物料的质量m。
  2. 根据权利要求1所述的检测方法,其特征在于,所述运动状态信息包括加速度和角度信息。
  3. 根据权利要求2所述的检测方法,其特征在于,所述角度信息包括俯仰角和滚转角中的至少一个。
  4. 根据权利要求2所述的检测方法,其特征在于,所述角度信息包括俯仰角和滚转角,所述质量m至少通过重力加速度、加速度、压力F n、俯仰角和滚转角确定。
  5. 根据权利要求1至4任一项所述的检测方法,其特征在于,所述检测方法还包括:根据质量m确定所述料仓内物料的体积V和/或料位h。
  6. 根据权利要求1至4任一项所述的检测方法,其特征在于,
    所述获取所述料仓底面受到的物料的压力F n,包括:
    获取多个测量装置测量的所述料仓底面受到的物料的压力的多个分量;
    所述根据所述运动状态信息和所述压力F n确定所述物料的质量m,包括:
    根据所述运动状态信息和所述多个分量,确定所述物料的质量m。
  7. 根据权利要求6所述的检测方法,其特征在于,所述根据所述运动状态信息和所述多个分量,确定所述物料的质量m,包括:
    确定所述多个压力分量的和;
    根据所述运动状态信息和所述多个分量的和,确定所述物料的质量m。
  8. 根据权利要求6所述的检测方法,其特征在于,包括:
    若所述多个测量装置中的一个失效,根据所述多个测量装置中的其他至少一个测量装置的测量值,确定失效的所述测量装置的测量值。
  9. 根据权利要求8所述的检测方法,其特征在于,所述多个测量装置包括在第一方向上分布的第一测量装置和第二测量装置,
    所述检测方法包括:
    在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。
  10. 根据权利要求9所述的检测方法,其特征在于,所述多个测量装置包括在垂直于第一方向的第二方向上分布的第三测量装置和第四测量装置,
    所述检测方法包括:在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装置的测量值。
  11. 根据权利要求1至4任一项所述的检测方法,其特征在于,所述运动状态信息包括运动主体的振动信息。
  12. 根据权利要求11所述的检测方法,其特征在于,所述振动信息包括振动幅值和振动加速度中的至少一者。
  13. 根据权利要求1至4任一项所述的检测方法,其特征在于,所述获取所述料仓底面受到的物料的压力F n,包括:
    获取温度补偿式测量装置测量的所述料仓底面受到的物料的压力F n
    所述检测方法还包括:
    采集所述运动主体所处环境的环境温度,且根据所述环境温度对所述温度补偿式测量装置的温度校准参数进行补偿。
  14. 根据权利要求1至4任一项所述的检测方法,其特征在于,所述运动主体搭载有惯性测量单元,
    所述获取所述运动主体的运动状态信息,包括:
    获取所述惯性测量单元测量的所述运动状态信息。
  15. 一种检测装置,用于检测搭载于运动主体的料仓的物料,其特征在于,包括:
    运动检测装置,用于获取所述运动主体的运动状态信息;
    测量装置,用于获取所述料仓底面受到的物料的压力F n;及
    控制器,与所述运动检测装置和所述测量装置连接,用于根据所述运动状态信息和所述压力F n确定所述料仓内物料的质量m。
  16. 根据权利要求15所述的检测装置,其特征在于,所述运动检测装置包括用于搭载于所述运动主体的惯性测量单元,所述惯性测量单元用于获取运动主体的运动状态信息。
  17. 根据权利要求15所述的检测装置,其特征在于,所述检测装置包括多个所述测量装置,所述多个测量装置与所述控制器连接,所述多个测量装置用于对应地设置在所述料仓底面的不同部位处,且用于共同承载所述料仓,所述多个测量装置用于获取所述料仓底面受到的物料的压力的多个分量。
  18. 根据权利要求17所述的检测装置,其特征在于,所述多个测量装置包括第一测量装置和第二测量装置,所述第一测量装置和所述第二测量装置用于承载所述料仓,且用于在所述料仓底面沿第一方向间隔分布,
    所述控制器用于在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。
  19. 根据权利要求18所述的检测装置,其特征在于,所述多个测量装置包括第三测量装置和第四测量装置,所述第三测量装置和所述第四测量装置用于承载所述料仓,且在所述料仓底面沿垂直于所述第一方向的第二方向间隔分布,
    所述控制器用于在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装 置的测量值。
  20. 根据权利要求15至19任一项所述的检测装置,其特征在于,所述测量装置包括压力传感器,所述压力传感器用于获取所述料仓底面受到的物料的压力F n
  21. 根据权利要求15至19任一项所述的检测装置,其特征在于,所述检测装置包括温度传感器,所述温度传感器用于采集所述运动主体所处环境的环境温度,所述测量装置包括温度补偿式测量装置,所述温度补偿式测量装置与所述温度传感器电连接。
  22. 根据权利要求21所述的检测装置,其特征在于,所述温度补偿式测量装置用于根据所述环境温度对自身的温度校准参数进行补偿。
  23. 根据权利要求21所述的检测装置,其特征在于,所述控制器用于根据所述环境温度对所述温度补偿式测量装置获取的所述料仓底面受到的物料的压力F n进行补偿。
  24. 根据权利要求15至19任一项所述的检测装置,其特征在于,所述运动状态信息包括加速度和角度信息。
  25. 根据权利要求24所述的检测装置,其特征在于,所述角度信息包括俯仰角和滚转角中的至少一个。
  26. 根据权利要求24所述的检测装置,其特征在于,所述角度信息包括俯仰角和滚转角,所述控制器用于至少通过重力加速度、加速度、压力F n、俯仰角和滚转角确定所述质量m。
  27. 根据权利要求15至19任一项所述的检测装置,其特征在于,所述控制器用于根据质量m确定所述料仓内物料的体积V和/或料位h。
  28. 根据权利要求15至19任一项所述的检测装置,其特征在于,
    所述检测装置包括多个测量装置,用于获取所述料仓底面受到的物料的压力的多个分量;
    所述控制器用于根据所述运动状态信息和所述多个分量,确定所述物料的质量m。
  29. 根据权利要求28所述的检测装置,其特征在于,所述控制器用于确定所述多个压力分量的和,且根据所述运动状态信息和所述多个分量的和,确定所述物料的质量m。
  30. 根据权利要求28所述的检测装置,其特征在于,
    所述控制器用于若所述多个测量装置中的一个失效,根据所述多个测量装置中的其他至少一个测量装置的测量值,确定失效的所述测量装置的测量值。
  31. 根据权利要求28所述的检测装置,其特征在于,所述多个测量装置包括在第一方向上分布的第一测量装置和第二测量装置,
    所述控制器用于在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。
  32. 根据权利要求31所述的检测装置,其特征在于,所述多个测量装置包括在垂直于第一方向的第二方向上分布的第三测量装置和第四测量装置,
    所述控制器用于在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装置的测量值。
  33. 根据权利要求15至19任一项所述的检测装置,其特征在于,所述运动状态信息包括运动主体的振动信息。
  34. 根据权利要求33所述的检测装置,其特征在于,所述振动信息包括振动幅值和振动加速度中的至少一者。
  35. 一种运动***,其特征在于,包括:
    运动主体;
    料仓,搭载于所述运动主体;及
    检测装置,搭载于所述运动主体,包括运动检测装置、测量装置及控制器,所述料仓承载于所述测量装置,所述运动检测装置用于获取所述运动主 体的运动状态信息,所述测量装置用于获取所述料仓底面受到的物料的压力F n,所述控制器与所述运动检测装置和所述测量装置连接,用于根据所述运动状态信息和所述压力F n确定所述料仓内物料的质量m。
  36. 根据权利要求35所述的运动***,其特征在于,所述运动检测装置包括用于搭载于所述运动主体的惯性测量单元,所述惯性测量单元用于获取所述运动主体的运动状态信息。
  37. 根据权利要求35所述的运动***,其特征在于,所述检测装置包括多个所述测量装置,所述多个测量装置与所述控制器连接,所述多个测量装置组装于所述料仓的底部,共同承载所述料仓,所述多个测量装置用于获取所述料仓底面受到的物料的压力的多个分量。
  38. 根据权利要求37所述的运动***,其特征在于,所述多个测量装置包括第一测量装置和第二测量装置,所述第一测量装置和第二测量装置组装于所述料仓的底部,在所述料仓底面沿第一方向间隔分布,
    所述控制器用于在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。
  39. 根据权利要求38所述的运动***,其特征在于,所述多个测量装置包括第三测量装置和第四测量装置,所述第三测量装置和第四测量装置组装于所述料仓的底部,在所述料仓底面沿垂直于所述第一方向的第二方向间隔分布,
    所述控制器用于在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装置的测量值。
  40. 根据权利要求35至39任一项所述的运动***,其特征在于,所述测量装置包括压力传感器,所述压力传感器用于获取所述料仓底面受到的物料的压力F n
  41. 根据权利要求35至39任一项所述的运动***,其特征在于,所述检测装置包括温度传感器,所述温度传感器用于采集所述运动主体所处环境的环境温度,所述测量装置包括温度补偿式测量装置,所述温度补偿式测量装置与所述温度传感器电连接。
  42. 根据权利要求41所述的运动***,所述温度补偿式测量装置用于根据所述环境温度对自身的温度校准参数进行补偿。
  43. 根据权利要求41所述的运动***,其特征在于,所述控制器用于根据所述环境温度对所述温度补偿式测量装置获取的所述料仓底面受到的物料的压力F n进行补偿。
  44. 根据权利要求35至39任一项所述的运动***,其特征在于,所述运动状态信息包括加速度和角度信息。
  45. 根据权利要求44所述的运动***,其特征在于,所述角度信息包括俯仰角和滚转角中的至少一个。
  46. 根据权利要求44所述的运动***,其特征在于,所述角度信息包括俯仰角和滚转角,所述控制器用于至少通过重力加速度、加速度、压力F n、俯仰角和滚转角确定所述质量m。
  47. 根据权利要求35至39任一项所述的运动***,其特征在于,所述控制器用于根据质量m确定所述料仓内物料的体积V和/或料位h。
  48. 根据权利要求35至39任一项所述的运动***,其特征在于,
    所述检测装置包括多个测量装置,用于获取所述料仓底面受到的物料的压力的多个分量;
    所述控制器用于根据所述运动状态信息和所述多个分量,确定所述物料的质量m。
  49. 根据权利要求48所述的运动***,其特征在于,所述控制器用于确定所述多个压力分量的和,且根据所述运动状态信息和所述多个分量的和,确定所述物料的质量m。
  50. 根据权利要求48所述的运动***,其特征在于,
    所述控制器用于若所述多个测量装置中的一个失效,根据所述多个测量装置中的其他至少一个测量装置的测量值,确定失效的所述测量装置的测量值。
  51. 根据权利要求48所述的运动***,其特征在于,所述多个测量装置包括在第一方向上分布的第一测量装置和第二测量装置,
    所述控制器用于在所述运动主体沿所述第一方向运动变化时,若所述第一测量装置失效,确定所述第一测量装置的测量值等于所述第二测量装置的测量值。
  52. 根据权利要求51所述的运动***,其特征在于,所述多个测量装置包括在垂直于第一方向的第二方向上分布的第三测量装置和第四测量装置,
    所述控制器用于在所述运动主体沿所述第二方向运动变化时,若所述第三测量装置失效,确定所述第三测量装置的测量值等于所述第四测量装置的测量值。
  53. 根据权利要求35至39任一项所述的运动***,其特征在于,所述运动状态信息包括运动主体的振动信息。
  54. 根据权利要求53所述的运动***,其特征在于,所述振动信息包括振动幅值和振动加速度中的至少一者。
  55. 一种运动***,其特征在于,包括一个或多个处理器,单独的或共同的工作,用于实现如权利要求1-14中任一项所述的检测方法。
  56. 一种计算机可读存储介质,其特征在于,其上存储有程序,该程序被处理器执行时,实现如权利要求1-14中任意一项所述的检测方法。
PCT/CN2020/127620 2020-11-09 2020-11-09 检测方法、检测装置、运动***及可读存储介质 WO2022095058A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127620 WO2022095058A1 (zh) 2020-11-09 2020-11-09 检测方法、检测装置、运动***及可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127620 WO2022095058A1 (zh) 2020-11-09 2020-11-09 检测方法、检测装置、运动***及可读存储介质

Publications (1)

Publication Number Publication Date
WO2022095058A1 true WO2022095058A1 (zh) 2022-05-12

Family

ID=81458581

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127620 WO2022095058A1 (zh) 2020-11-09 2020-11-09 检测方法、检测装置、运动***及可读存储介质

Country Status (1)

Country Link
WO (1) WO2022095058A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115628797A (zh) * 2022-11-18 2023-01-20 北京锐达仪表有限公司 基于3d雷达扫描仪的高精度物料质量检测***

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027375A1 (en) * 2010-08-23 2012-03-01 Right Weigh, Inc. Portable load scale systems
CN204085785U (zh) * 2014-09-01 2015-01-07 深圳市大疆创新科技有限公司 重心测量装置
CN107300407A (zh) * 2017-05-16 2017-10-27 浙江美通筑路机械股份有限公司 一种用于固态粘结剂撒布车的实时称重撒布控制***及其控制方法
CN107750542A (zh) * 2017-10-11 2018-03-06 华南农业大学 一种用于物料流量控制的无人机撒播装置及其控制方法
CN108475069A (zh) * 2017-05-22 2018-08-31 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、飞行控制器及农业无人机
CN110406822A (zh) * 2019-08-23 2019-11-05 东莞市巴赫精密机械有限公司 料仓
CN210338298U (zh) * 2019-04-11 2020-04-17 福州职业技术学院 一种智能自动撒播无人机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012027375A1 (en) * 2010-08-23 2012-03-01 Right Weigh, Inc. Portable load scale systems
CN204085785U (zh) * 2014-09-01 2015-01-07 深圳市大疆创新科技有限公司 重心测量装置
CN107300407A (zh) * 2017-05-16 2017-10-27 浙江美通筑路机械股份有限公司 一种用于固态粘结剂撒布车的实时称重撒布控制***及其控制方法
CN108475069A (zh) * 2017-05-22 2018-08-31 深圳市大疆创新科技有限公司 农业无人飞行器的控制方法、飞行控制器及农业无人机
CN107750542A (zh) * 2017-10-11 2018-03-06 华南农业大学 一种用于物料流量控制的无人机撒播装置及其控制方法
CN210338298U (zh) * 2019-04-11 2020-04-17 福州职业技术学院 一种智能自动撒播无人机
CN110406822A (zh) * 2019-08-23 2019-11-05 东莞市巴赫精密机械有限公司 料仓

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115628797A (zh) * 2022-11-18 2023-01-20 北京锐达仪表有限公司 基于3d雷达扫描仪的高精度物料质量检测***
CN115628797B (zh) * 2022-11-18 2023-03-21 北京锐达仪表有限公司 基于3d雷达扫描仪的高精度物料质量检测***

Similar Documents

Publication Publication Date Title
US9550561B1 (en) Determining center of gravity of an automated aerial vehicle and a payload
CN103307976B (zh) 粮仓中粮食存储量的监测方法
US8300048B2 (en) Three-dimensional shape data recording/display method and device, and three-dimensional shape measuring method and device
CN103814279B (zh) 质量测量装置
US20080264141A1 (en) Weighing scale
CN104597289B (zh) 加速度传感器三轴同时测试的测试方法
WO2022095058A1 (zh) 检测方法、检测装置、运动***及可读存储介质
CN110286144B (zh) 一种粮堆结露预测方法
CN110196201B (zh) 高精度称重***和称重方法,热重分析仪及存储介质
CN106996768A (zh) 用于无人机的高度估计器
CN104807475A (zh) 动中通卫星天线倾角校准过程中零点漂移值的测量方法
CN108709956B (zh) 基于落球定位信息的大气参数测量方法和设备
CN110346605A (zh) 用于基于静压误差修正进行飞机空速校准的方法以及***
CN108312496A (zh) 3d打印机检测方法、3d打印喷头、平台和3d打印机
CN111121938A (zh) 一种实时监测车辆载重的方法、终端设备及计算机可读存储介质
CN108663095A (zh) 基于角位感应的液位高度修正检测方法
CN111025032A (zh) 一种基于升空平台的天线波束测量***及方法
CN108614308A (zh) 一种确定大气参数的方法和设备
CN106164627A (zh) 借助表面拓扑确定及旋转中心校正的物位测量
US20100282520A1 (en) System and Methods for Monitoring Multiple Storage Units
CN108318000A (zh) 一种通信铁塔倾角测量方法
FR3100919A1 (fr) Dispositifs et procédés d’inspection pour des plateaux de précision à isolation antivibratoire
CN111947607A (zh) 平面度测量方法、装置、电子设备及存储介质
CN116279510A (zh) 一种道路纵向坡度和横向坡度联合估计方法
CN206019710U (zh) 可自动测量物体外观尺寸和重量的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960515

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960515

Country of ref document: EP

Kind code of ref document: A1