WO2022095037A1 - Method, device and computer storage medium of communication - Google Patents

Method, device and computer storage medium of communication Download PDF

Info

Publication number
WO2022095037A1
WO2022095037A1 PCT/CN2020/127561 CN2020127561W WO2022095037A1 WO 2022095037 A1 WO2022095037 A1 WO 2022095037A1 CN 2020127561 W CN2020127561 W CN 2020127561W WO 2022095037 A1 WO2022095037 A1 WO 2022095037A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
priority
dai
harq
feedback information
Prior art date
Application number
PCT/CN2020/127561
Other languages
French (fr)
Inventor
Gang Wang
Yukai GAO
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to PCT/CN2020/127561 priority Critical patent/WO2022095037A1/en
Publication of WO2022095037A1 publication Critical patent/WO2022095037A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1268Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of uplink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/56Allocation or scheduling criteria for wireless resources based on priority criteria
    • H04W72/566Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient
    • H04W72/569Allocation or scheduling criteria for wireless resources based on priority criteria of the information or information source or recipient of the traffic information

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media of communication for multiplexing hybrid automatic repeat request (HARQ) feedback information of different priorities on an uplink data channel transmission.
  • HARQ hybrid automatic repeat request
  • the third generation partnership project (3GPP) Release 16 first resolves collision between uplink transmissions with same priority by multiplexing uplink control information (UCI) , e.g., HARQ-acknowledgement (HARQ-ACK) information in an uplink data channel transmission, and then resolves collision between uplink transmissions with different priorities by dropping an uplink transmission with a lower priority.
  • UCI uplink control information
  • HARQ-ACK HARQ-acknowledgement
  • the dropping of the uplink transmission with the lower priority ensures low latency and high reliability requirements of an uplink transmission with a higher priority.
  • performance of a service associated with the uplink transmission having the lower priority will be degraded.
  • embodiments of the present disclosure provide methods, devices and computer storage media for communication.
  • a method of communication comprises: in accordance with a determination that uplink transmissions are overlapped in time domain, determining an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmissions comprising at least one uplink control channel transmission used for transmitting uplink control information associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority; and transmitting the uplink transmission multiplexed with the uplink control information associated with the first priority.
  • a method of communication comprises: receiving, at a terminal device and from a network device, downlink assignment index (DAI) information in downlink control information (DCI) scheduling an uplink data channel transmission, the DAI information being associated with at least one of a first priority or a second priority higher than the first priority; and in accordance with a determination that the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first HARQ feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority, multiplexing, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
  • DAI downlink assignment index
  • DCI downlink control information
  • a method of communication comprises: generating, at a network device, DAI information associated with at least one of a first priority or a second priority higher than the first priority; and transmitting, to a terminal device, the DAI information in DCI scheduling an uplink data channel transmission, for use in multiplexing, on the uplink data channel transmission, at least one of first HARQ feedback information having the first priority or second HARQ feedback information having the second priority.
  • a terminal device comprising a processor and a memory coupled to the processor.
  • the memory stores instructions that when executed by the processor, cause the terminal device to perform the method according to the first aspect of the present disclosure.
  • a terminal device comprising a processor and a memory coupled to the processor.
  • the memory stores instructions that when executed by the processor, cause the terminal device to perform the method according to the second aspect of the present disclosure.
  • a network device comprising a processor and a memory coupled to the processor.
  • the memory stores instructions that when executed by the processor, cause the network device to perform the method according to the third aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the first aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the second aspect of the present disclosure.
  • a computer readable medium having instructions stored thereon.
  • the instructions when executed on at least one processor, cause the at least one processor to perform the method according to the third aspect of the present disclosure.
  • FIG. 1 illustrates an example communication network in which some embodiments of the present disclosure can be implemented
  • FIG. 2 illustrates a schematic diagram illustrating a process for communication upon overlapping among uplink transmissions in time domain according to embodiments of the present disclosure
  • FIG. 3 illustrates a schematic diagram illustrating an example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure
  • FIG. 4 illustrates a schematic diagram illustrating another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure
  • FIG. 5 illustrates a schematic diagram illustrating a yet another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure
  • FIG. 6 illustrates a schematic diagram illustrating a still another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure
  • FIG. 7 illustrates a schematic diagram illustrating a still another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure
  • FIG. 8 illustrates a schematic diagram illustrating an example process for multiplexing HARQ feedback information of different priorities on an uplink data channel transmission according to embodiments of the present disclosure
  • FIG. 9 illustrates an example method of communication implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 10 illustrates another example method of communication implemented at a terminal device in accordance with some embodiments of the present disclosure
  • FIG. 11 illustrates an example method of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • FIG. 12 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
  • terminal device refers to any device having wireless or wired communication capabilities.
  • the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • UE user equipment
  • PDAs personal digital assistants
  • IoT internet of things
  • IoE Internet of Everything
  • MTC machine type communication
  • X means pedestrian, vehicle, or infrastructure/network
  • image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like.
  • terminal device can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device.
  • network device refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate.
  • Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a Transmission Reception Point (TRP) , a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like.
  • NodeB Node B
  • eNodeB or eNB Evolved NodeB
  • gNB next generation NodeB
  • TRP Transmission Reception Point
  • RRU Remote Radio Unit
  • RH radio head
  • RRH remote radio head
  • a low power node such as a femto node, a pico node, and the like.
  • the terminal device may be connected with a first network device and a second network device.
  • One of the first network device and the second network device may be a master node and the other one may be a secondary node.
  • the first network device and the second network device may use different radio access technologies (RATs) .
  • the first network device may be a first RAT device and the second network device may be a second RAT device.
  • the first RAT device is eNB and the second RAT device is gNB.
  • Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device.
  • first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device.
  • information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device.
  • Information related with reconfiguration for the terminal device configured by the second network device may be transmitted to the terminal device from the second network device directly or via the first network device.
  • the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise.
  • the term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’
  • the term ‘based on’ is to be read as ‘at least in part based on. ’
  • the term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’
  • the term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’
  • the terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
  • values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
  • 3GPP Release 17 has approved intra-UE multiplexing/prioritization enhancements so as to improve the performance of the service having the lower priority.
  • it is highly concerned how to multiplex HARQ feedback information of different priorities on an uplink data channel transmission so as to improve performance of an uplink transmission with a lower priority upon overlapping with one or more other uplink transmissions with a higher priority in time domain.
  • one aspect of embodiments of the present disclosure provides a solution for resolving the overlapping among uplink transmissions in time domain.
  • the uplink transmissions comprise at least one uplink control channel transmission used for transmitting uplink control information associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority.
  • an uplink transmission multiplexed with the uplink control information is determined by resolving the overlapping among the uplink transmissions and then is transmitted. In this way, at least a part of information in the at least one uplink control channel transmission with a lower priority is remained without being dropped, and thus performance of a service with the lower priority can be improved.
  • DAI information in DCI scheduling an uplink data channel transmission is redefined for HARQ feedback information with different priorities, in particular, the DAI information is defined in association with at least one of the different priorities.
  • Embodiments of the present disclosure may be applied to any suitable scenarios.
  • embodiments of the present disclosure may be implemented at URLLC.
  • embodiments of the present disclosure can be implemented in one of the followings: reduced capability new radio (NR) devices, NR multiple-input and multiple-output (MIMO) , NR sidelink enhancements, NR systems with frequency above 52.6GHz, an extending NR operation up to 71GHz, narrow band-Internet of Thing (NB-IOT) /enhanced Machine Type Communication (eMTC) over non-terrestrial networks (NTN) , NTN, UE power saving enhancements, NR coverage enhancement, NB-IoT and LTE-MTC, Integrated Access and Backhaul (IAB) , NR Multicast and Broadcast Services, or enhancements on Multi-Radio Dual-Connectivity.
  • NR reduced capability new radio
  • MIMO multiple-input and multiple-output
  • NR sidelink enhancements NR systems with frequency above 52.6GHz, an extending NR operation up to
  • FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented.
  • the communication network 100 may include a terminal device 110 and a network device 120.
  • the terminal device 110 may be served by the network device 120.
  • the communication network 100 may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
  • the terminal device 110 may communicate with the network device 120 via a channel such as a wireless communication channel.
  • the communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like.
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GERAN GSM EDGE Radio Access Network
  • MTC Machine Type Communication
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
  • the terminal device 110 may transmit uplink data information to the network device 120 via an uplink data channel transmission.
  • the uplink data channel transmission may be a physical uplink shared channel (PUSCH) transmission.
  • PUSCH physical uplink shared channel
  • the terminal device 110 may transmit uplink control information (UCI) , e.g., HACK feedback information to the network device 120 via an uplink control channel transmission.
  • UCI uplink control information
  • the uplink control channel transmission may be a physical uplink control channel (PUCCH) transmission.
  • PUCCH physical uplink control channel
  • the network device 120 may support a plurality of services have different priorities for the terminal device 110. Accordingly, the terminal device 110 may perform respective uplink data and/or control channel transmission for the different services.
  • the network device 120 may provide a plurality of serving cells (not shown herein) for the terminal device 110, for example, a primary cell (PCell) , a primary secondary cell (PSCell) , a secondary cell (SCell) , a special cell (sPCell) or the like. Each of the serving cells may correspond to one carrier component (CC) .
  • the terminal device 110 may perform transmission with the network device via the CCs. In some embodiments, the terminal device 110 may perform transmission associated with different services via different CCs. Of course, the terminal device 110 may also perform transmission associated with the same service via different CCs.
  • the terminal device 110 may have more than one uplink transmission to be scheduled or configured in the same slot or sub-slot. That is, these uplink transmissions are overlapped or collided in time domain. In this case, the terminal device 110 needs to resolve the overlapping or collision.
  • FIG. 2 illustrates a schematic diagram illustrating a process 200 for communication upon overlapping among uplink transmissions in time domain according to embodiments of the present disclosure.
  • the process 200 may involve the terminal device 110 and the network device 120 as illustrated in FIG. 1.
  • the terminal device 110 may determine 201 whether uplink transmissions to be performed are overlapped in time domain. When more than one uplink transmission is to be performed on one slot or sub-slot, the terminal device 110 may determine that the overlapping occurs, and the overlapping should be resolved.
  • the uplink transmissions may have different priorities.
  • the terminal device 110 may have at least one uplink control channel transmission used for transmitting UCI associated with a first priority and at least one other uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority to be performed in the same slot or sub-slot.
  • the at least one other uplink transmission may comprise an uplink control channel transmission, and the uplink information may be UCI.
  • the at least one other uplink transmission may comprise an uplink data channel transmission, and the uplink information may be uplink data.
  • the terminal device 110 may determine 202 an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmission being multiplexed with the UCI associated with the first priority.
  • the overlapping may be first resolved for the same channel type (data channel or control channel) .
  • the overlapping may be first resolved for the data channel type.
  • the terminal device 110 resolves at least the overlapping among data channel transmissions.
  • the terminal device 110 may first resolve only the overlapping among data channel transmissions in the same cell.
  • the terminal device 110 may resolve both the overlapping among data channel transmissions and that among control channel transmissions. In this way, the terminal device 110 may determine a portion or subset of the uplink transmissions.
  • the terminal device 110 may resolve the overlapping among the determined portion of the uplink transmissions. In this way, at least a part of information with the lower priority in the uplink control channel transmission can be multiplexed in the uplink data channel transmission, so that at least a part of information having the lower priority can be remained without being dropped.
  • the terminal device 110 may continue to resolve the overlapping between control channel transmission and data channel transmission with the same priority, and then resolve the overlapping between control channel transmission and data channel transmission with different priorities. In some embodiments wherein the terminal device 110 first resolves both the overlapping among data channel transmissions in the same cell and that among control channel transmissions, the terminal device 110 may then resolve the overlapping between a control channel transmission and a data channel transmission.
  • the overlapping may be first resolved for the same priority.
  • the terminal device 110 may determine an uplink transmission associated with the first priority by resolving the overlapping among uplink transmissions associated with the first priority in the uplink transmissions and determine an uplink transmission associated with the second priority by resolving the overlapping among multiple uplink transmissions associated with the second priority in the uplink transmissions. Then the terminal device 110 may resolve the overlapping between the uplink transmission associated with the first priority and the uplink transmission associated with the second priority. In this way, at least a part of information in the at least one uplink control channel transmission with the lower priority can be remained without being dropped.
  • the terminal device 110 may drop one of the data channel transmissions that has a lower priority, and remain one of the data channel transmissions that has a higher priority. In some embodiments, as a solution to resolve the overlapping among control channel transmissions, the terminal device 110 may multiplex at least a part of information (for example, HARQ feedback information such as HARQ-ACK codebook, etc. ) in the control channel transmissions that has a lower priority on the control channel transmissions that has a higher priority, and cancel the control channel transmissions that has the lower priority.
  • information for example, HARQ feedback information such as HARQ-ACK codebook, etc.
  • the terminal device 110 may multiplex, on the data channel transmission, at least a part of information (for example, HARQ feedback information such as HARQ-ACK codebook, etc. ) in the control channel transmission, and cancel the control channel transmission.
  • information for example, HARQ feedback information such as HARQ-ACK codebook, etc.
  • the terminal device 110 may transmit 203 the uplink transmission to the network device 120.
  • FIG. 3 illustrates a schematic diagram illustrating an example process 300 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure.
  • this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions.
  • simultaneous PUCCH/PUSCH transmissions on different serving cells is disabled.
  • the UE when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUSCH transmissions. Then, the UE resolves the overlapping for PUCCH and/or PUSCH transmissions.
  • reference sign 301 denotes PUSCH transmission for URLLC
  • reference sign 302 denotes PUSCH transmission for eMBB
  • reference sign 303 denotes PUCCH transmission for URLLC
  • reference sign 304 denotes PUCCH transmission for eMBB.
  • Transmissions 301 and 303 will have a higher priority of URLLC
  • transmissions 302 and 304 will have a lower priority of eMBB.
  • the transmissions 301-304 are to be scheduled on one slot, i.e., overlapped in time domain.
  • the transmission 303 carries HARQ-ACK information for URLLC
  • the transmission 304 carries HARQ-ACK information for eMBB.
  • the process 300 may comprise a step 310 of first resolving the overlapping for data channel transmissions, i.e., the overlapping between the transmission 301 and the transmission 302.
  • the terminal device 110 may drop the transmission 302 and remain the transmission 301.
  • the process 300 may further comprise a step 320 of resolving the overlapping for remaining transmissions, i.e., the overlapping among the transmissions 301, 303 and 304.
  • the step 320 comprises steps 321 and 322.
  • the terminal device 110 may resolve the overlapping for control channel transmissions, i.e., the overlapping between the transmission 303 and the transmission 304.
  • the terminal device 110 may multiplex the HARQ-ACK information in the transmission 304 on the transmission 303, and cancel the transmission 304.
  • the multiplexing can be performed in various ways, and the present application does not make limitation for this.
  • the transmission 303 will carry both the HARQ-ACK information for eMBB and HARQ-ACK information for URLLC.
  • the terminal device 110 may resolve the overlapping between data channel transmission and control channel transmission, i.e., the overlapping between the transmission 301 and the transmission 303.
  • the terminal device 110 may multiplex, on the transmission 301, the multiplexed HARQ-ACK information for eMBB and URLLC in the transmission 303, and cancel the transmission 303.
  • the multiplexing can be performed in various ways, and the present application does not make limitation for this. So far, the resolving of the overlapping is completed, and the HARQ-ACK information for both eMBB and URLLC can be carried on the data channel transmission 301 and transmitted to the network device 120. Compared with dropping the HARQ-ACK information for eMBB in conventional solution, the performance of eMBB can be improved.
  • FIG. 4 illustrates a schematic diagram illustrating an example process 400 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure.
  • this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions.
  • CA carrier aggregation
  • the UE when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUSCH transmissions with different priorities. Then, the UE resolves the overlapping for PUCCH and PUSCH transmissions with same priority. At last, the UE resolves the overlapping for PUCCH and PUCCH/PUSCH transmissions with different priorities.
  • reference sign 401 denotes PUSCH transmission for URLLC on CC#1
  • reference sign 402 denotes PUSCH transmission for eMBB on CC#1
  • reference sign 403 denotes PUCCH transmission for URLLC on CC#2
  • reference sign 404 denotes PUCCH transmission for eMBB on CC#2.
  • Transmissions 401 and 403 will have a higher priority of URLLC, and transmissions 402 and 404 will have a lower priority of eMBB. Assuming that the transmissions 401-404 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 403 carries HARQ-ACK information for URLLC, and the transmission 404 carries HARQ-ACK information for eMBB.
  • the process 400 may comprise a step 410 of first resolving the overlapping for data channel transmissions, i.e., the overlapping between the transmission 401 and the transmission 402.
  • the terminal device 110 may drop the transmission 402 and remain the transmission 401.
  • the process 400 may further comprise a step 420 of resolving the overlapping for remaining transmissions, i.e., the overlapping among the transmissions 401, 403 and 404.
  • the step 420 comprises steps 421 and 422.
  • the terminal device 110 may resolve the overlapping for uplink transmissions with the same priority, i.e., the overlapping between the transmission 401 and the transmission 403.
  • the terminal device 110 may multiplex the HARQ-ACK information in the transmission 403 on the transmission 401, and cancel the transmission 403.
  • the multiplexing can be performed in various ways, and the present application does not make limitation for this.
  • the transmission 401 will carry HARQ-ACK information for URLLC.
  • the terminal device 110 may resolve the overlapping between uplink transmissions with different priorities, i.e., the overlapping between the transmission 401 and the transmission 404.
  • the transmission 401 on CC#1 for URLLC data and URLLC HARQ-ACK and the transmission 404 for eMBB HARQ-ACK on CC#2 can be simultaneously transmitted.
  • FIG. 5 illustrates a schematic diagram illustrating an example process 500 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure.
  • this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions.
  • this example also assuming that only simultaneous PUCCH/PUSCH transmissions with different priorities on different serving cells for CA is enabled.
  • the UE when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUCCH transmissions and/or overlapping for PUSCH transmissions. Then, the UE resolves the overlapping for PUCCH and PUSCH transmissions.
  • reference sign 501 denotes PUSCH transmission for URLLC on CC#1
  • reference sign 502 denotes PUSCH transmission for eMBB on CC#1
  • reference sign 503 denotes PUCCH transmission for URLLC on CC#2
  • reference sign 504 denotes PUCCH transmission for eMBB on CC#2.
  • Transmissions 501 and 503 will have a higher priority of URLLC, and transmissions 502 and 504 will have a lower priority of eMBB.
  • the transmissions 501-504 are to be scheduled on one slot, i.e., overlapped in time domain.
  • the transmission 503 carries HARQ-ACK information for URLLC
  • the transmission 504 carries HARQ-ACK information for eMBB.
  • the process 500 may comprise a step 510 of first resolving the overlapping for transmissions having the same channel type, i.e., the overlapping between the transmission 501 and the transmission 502, and that between the transmission 503 and the transmission 504.
  • the terminal device 110 may drop the transmission 502 and remain 501, and multiplex the HARQ-ACK information in the transmission 504 on the transmission 503 while cancelling the transmission 504.
  • the process 500 may further comprise a step 520 of resolving the overlapping for transmissions having different channel types, i.e., the overlapping among the transmissions 501 and 503.
  • the terminal device 110 may multiplex the HARQ-ACK information in the transmission 503 on the transmission 501, and cancel the transmission 503.
  • the multiplexing can be performed in various ways, and the present application does not make limitation for this.
  • the transmission 501 will carry the HARQ-ACK information for both URLLC and eMBB.
  • FIG. 6 illustrates a schematic diagram illustrating an example process 600 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure.
  • this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions.
  • this example also assuming that only simultaneous PUCCH/PUSCH transmissions with different priorities on different serving cells for CA is enabled.
  • the UE when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUCCH and/or PUSCH transmissions with same priority. Then, the UE resolves the overlapping for PUCCH and/or PUSCH transmissions with different priorities.
  • reference sign 601 denotes PUSCH transmission for URLLC on CC#1
  • reference sign 602 denotes PUSCH transmission for eMBB on CC#1
  • reference sign 603 denotes PUCCH transmission for URLLC on CC#2
  • reference sign 604 denotes PUCCH transmission for eMBB on CC#2.
  • Transmissions 601 and 603 will have a higher priority of URLLC, and transmissions 602 and 604 will have a lower priority of eMBB. Assuming that the transmissions 601-604 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 603 carries HARQ-ACK information for URLLC, and the transmission 604 carries HARQ-ACK information for eMBB.
  • the process 600 may comprise a step 610 of first resolving the overlapping for transmissions having the same priority, i.e., the overlapping between the transmission 601 and the transmission 603, and that between the transmission 602 and the transmission 604.
  • the terminal device 110 may multiplex HARQ-ACK information for URLLC in the transmission 603 onto the transmission 601 and cancel the transmission 603.
  • the terminal device 110 may multiplex the HARQ-ACK information for eMBB in the transmission 604 on the transmission 602 and cancel the transmission 604.
  • the process 600 may further comprise a step 620 of resolving the overlapping for transmissions having different priorities, i.e., the overlapping among the transmissions 601 and 602.
  • the terminal device 110 may drop the transmission 602 having a lower priority, and remain the transmission 601 having a higher priority.
  • this solution can reuse the multiplexing rule in Release 16 and has no impact on URLLC uplink transmission for UCI.
  • FIG. 7 illustrates a schematic diagram illustrating an example process 700 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure.
  • this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions.
  • simultaneous PUCCH/PUSCH transmissions with both same and different priorities on different serving cells is enabled.
  • the UE when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUCCH transmissions and/or overlapping for PUSCH transmissions. Then, the UE resolves the overlapping for PUCCH and PUSCH transmissions.
  • reference sign 701 denotes PUSCH transmission for URLLC on CC#1
  • reference sign 702 denotes PUSCH transmission for eMBB on CC#1
  • reference sign 703 denotes PUCCH transmission for URLLC on CC#2
  • reference sign 704 denotes PUCCH transmission for eMBB on CC#2.
  • Transmissions 701 and 703 will have a higher priority of URLLC, and transmissions 702 and 704 will have a lower priority of eMBB. Assuming that the transmissions 701-704 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 703 carries HARQ-ACK information for URLLC, and the transmission 704 carries HARQ-ACK information for eMBB.
  • the process 700 may comprise a step 710 of first resolving the overlapping for transmissions having the same channel type, i.e., the overlapping between the transmission 701 and the transmission 702, and that between the transmission 703 and the transmission 704.
  • the terminal device 110 may drop the transmission 702 and remain 701, and multiplex the HARQ-ACK information in the transmission 704 on the transmission 703 while cancelling the transmission 704.
  • the process 700 may further comprise a step 720 of resolving the overlapping for transmissions having different channel types, i.e., the overlapping among the transmissions 701 and 703.
  • the terminal device 110 may multiplex the HARQ-ACK information in the transmission 703 on the transmission 701, and cancel the transmission 703.
  • the multiplexing can be performed in various ways, and the present application does not make limitation for this.
  • the transmission 701 will carry the HARQ-ACK information for both URLLC and eMBB.
  • FIGs. 3-7 are merely for illustration, and do not make limitation for the present disclosure.
  • the HARQ-ACK codebook type for two HARQ-ACK codebooks with different priorities for eMBB and URLLC can be separately configured (Type-1 codebook or Type-2 codebook) .
  • Type-1 codebook or Type-2 codebook only HARQ-ACK with one priority can be multiplexed on PUSCH.
  • HARQ-ACK for eMBB is multiplexed on PUSCH for eMBB
  • HARQ-ACK for URLLC is multiplexed on PUSCH for URLLC.
  • the DAI value is used to align the common understanding between a network device and a terminal device on the number of multiplexed HARQ-ACK bits in case PDCCH miss detection happens.
  • 2-bits DAI field is configured in DCI format 0_1/0_2 scheduling PUSCH.
  • 1-bit DAI field is configured in DCI format 0_1/0_2 scheduling PUSCH.
  • FIG. 8 illustrates a schematic diagram illustrating an example process 800 for multiplexing HARQ feedback information of different priorities on an uplink data channel transmission according to embodiments of the present disclosure.
  • the process 800 may involve the terminal device 110 and the network device 120 as illustrated in FIG. 1. Assuming that first HARQ feedback information having a first priority and second HARQ feedback information having a second priority higher than the first priority is to be multiplexed.
  • the network device 120 generates 801 DAI information (also referred to as DAI field herein) associated with at least one of the first priority or the second priority.
  • DAI information also referred to as DAI field herein
  • the DAI information is redefined for HARQ-ACK with different priorities multiplexed on PUSCH. It will be described below in connection with Embodiments 1-4.
  • the value of the DAI field may be only applicable for multiplexing single HARQ feedback information with one given priority on an uplink data channel transmission.
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a priority of an uplink data channel transmission which is to be scheduled by the DCI.
  • the value of the DAI information may be only applicable for multiplexing HARQ feedback information with the same priority of the uplink data channel transmission. For example, if a PUSCH is of low priority for eMBB, then the value of the DAI field is only applicable for multiplexing a HARQ-ACK codebook with low priority on the PUSCH. If the PUSCH is of high priority for URLLC, then the value of the DAI field is only applicable for multiplexing a HARQ-ACK codebook with high priority on the PUSCH.
  • the value of the DAI field is only applicable for multiplexing HARQ-ACK information with same priority of PUSCH.
  • a UE would multiplex HARQ-ACK information in a PUSCH transmission that is not scheduled by a DCI format or is scheduled by a DCI format that does not include a DAI field or in a PUSCH transmission with different priority of HARQ-ACK information is scheduled by a DCI format that includes a DAI field , then
  • the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.2.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH, unless the UE receives only a SPS PDSCH release, or only SPS PDSCH reception, or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2.
  • a UE sets to NACK value in the HARQ-ACK codebook any HARQ-ACK information corresponding to PDSCH reception or SPS PDSCH release that the UE detects in a PDCCH monitoring occasion that starts after a PDCCH monitoring occasion where the UE detects a DCI format scheduling the PUSCH transmission.
  • a UE does not expect to detect a DCI format switching a DL BWP within N 2 symbols prior to a first symbol of a PUSCH transmission where the UE multiplexes HARQ-ACK information, where N 2 is defined in [6, TS 38.214] .
  • a UE multiplexes HARQ-ACK information in a PUSCH transmission with same priority of HARQ-ACK information that is scheduled by DCI format that includes a DAI field
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.2.1 when a value of the DAI field is except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • the UE does not generate a HARQ-ACK codebook for multiplexing in the PUSCH transmission when unless the UE receives only a SPS PDSCH release, or only SPS PDSCH (s) , or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2. if the PUSCH is scheduled by a DCI format that includes a DAI field and the DAI field is set to '0' ; otherwise,
  • a UE would multiplex HARQ-ACK information in a PUSCH transmission that is not scheduled by a DCI format or is scheduled by a DCI format that does not include a DAI field or in a PUSCH transmission with different priority of HARQ-ACK information is scheduled by a DCI format that includes a DAI field , then
  • the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • a UE multiplexes HARQ-ACK information in a PUSCH transmission with same priority of HARQ-ACK that is scheduled by DCI format that includes a DAI field
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, with the following modifications:
  • DCI format 0_1 includes a first DAI field corresponding to the first HARQ-ACK sub-codebook and a second DAI field corresponding to the second HARQ-ACK sub-codebook
  • a UE If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission with same priority of HARQ-ACK information by DCI format that includes a DAI field with value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information in the PUSCH transmission.
  • a UE If a UE is provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission with same priority of HARQ-ACK by DCI format that includes a DAI field with first value or with second value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy, on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information for the first sub-codebook or for the second sub-codebook, respectively, in the PUSCH transmission.
  • the value of the DAI field may be predefined to be only applicable for multiplexing HARQ-ACK codebook with low priority or high priority.
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a lower one of the first and second priorities. For example, when the two HARQ-ACK cookbooks are Type-2 codebook, the value of the DAI field is only applicable for multiplexing Type-2 HARQ-ACK codebook with low priority on the PUSCH regardless of the PUSCH is for eMBB or URLLC. If the bit number of eMBB HARQ-ACK codebook is 6 bits, the bit number of URLLC HARQ-ACK codebook is 3 bits, the DAI value will be 2 (6 mod 4) .
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a higher one of the first and second priorities.
  • the value of the DAI field is only applicable for multiplexing Type-2 HARQ-ACK codebook with high priority on the PUSCH regardless of the PUSCH is for eMBB or URLLC. If the bit number of eMBB HARQ-ACK codebook is 6 bits and the bit number of URLLC HARQ-ACK codebook is 3 bits, the DAI value will be 3 (3 mod 4) .
  • a UE would multiplex HARQ-ACK information of different priorities in a PUSCH transmission is scheduled by a DCI format that includes a DAI field, for the Type-1 HARQ-ACK codebook with high priority, then
  • the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.2.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH, unless the UE receives only a SPS PDSCH release, or only SPS PDSCH reception, or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2.
  • a UE sets to NACK value in the HARQ-ACK codebook any HARQ-ACK information corresponding to PDSCH reception or SPS PDSCH release that the UE detects in a PDCCH monitoring occasion that starts after a PDCCH monitoring occasion where the UE detects a DCI format scheduling the PUSCH transmission.
  • a UE does not expect to detect a DCI format switching a DL BWP within N 2 symbols prior to a first symbol of a PUSCH transmission where the UE multiplexes HARQ-ACK information, where N 2 is defined in [6, TS 38.214] .
  • a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field
  • the UE generates the HARQ-ACK codebook with low priority as described in Clause 9.1.2.1 when a value of the DAI field is except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • the UE does not generate a HARQ-ACK codebook for multiplexing in the PUSCH transmission when unless the UE receives only a SPS PDSCH release, or only SPS PDSCH (s) , or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2. if the PUSCH is scheduled by a DCI format that includes a DAI field and the DAI field is set to '0' ; otherwise,
  • a UE would multiplex HARQ-ACK information of different priorities in a PUSCH transmission is scheduled by a DCI format that includes a DAI field, for the Type-2 HARQ-ACK codebook with high priority, then
  • the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field
  • the UE generates the HARQ-ACK codebook with low priority as described in Clause 9.1.3.1, with the following modifications:
  • DCI format 0_1 includes a first DAI field corresponding to the first HARQ-ACK sub-codebook and a second DAI field corresponding to the second HARQ-ACK sub-codebook
  • a UE If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information of low priority in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of low priority in the PUSCH transmission.
  • a UE If a UE is provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with first value or with second value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy, on any serving cell c and the UE does not have HARQ-ACK information of low priority in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of low priority for the first sub-codebook or for the second sub-codebook, respectively, in the PUSCH transmission.
  • the network device 120 may transmit, to the terminal device 110, an indication indicating whether the DAI information is applied to HARQ feedback information associated with the first priority or the second priority.
  • the network device 120 may transmit the indication via a radio resource control (RRC) signaling.
  • RRC radio resource control
  • a RRC parameter may be introduced in PUSCH-Config/PUCCH-Config, e.g., the DAIofHarqPirorityOnPUSCH.
  • the indication may also be transmitted in other suitable ways.
  • the value of the DAI field is only applicable for multiplexing HARQ-ACK information with the priority indicated by DAIofHarqPirorityOnPUSCH.
  • a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field
  • the UE generates the HARQ-ACK codebook with the priority indicated by DAIofHarqPirorityOnPUSCH as described in Clause 9.1.2.1 when a value of the DAI field is except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • the UE does not generate a HARQ-ACK codebook for multiplexing in the PUSCH transmission when unless the UE receives only a SPS PDSCH release, or only SPS PDSCH (s) , or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2. if the PUSCH is scheduled by a DCI format that includes a DAI field and the DAI field is set to '0' ; otherwise,
  • a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field
  • the UE generates the HARQ-ACK codebook with the priority indicated by DAIofHarqPirorityOnPUSCH as described in Clause 9.1.3.1, with the following modifications:
  • DCI format 0_1 includes a first DAI field corresponding to the first HARQ-ACK sub-codebook and a second DAI field corresponding to the second HARQ-ACK sub-codebook
  • a UE If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in the PUSCH transmission.
  • a UE If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in the PUSCH transmission.
  • a UE is provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with first value or with second value and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy, on any serving cell c and the UE does not have HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH for the first sub-codebook or for the second sub-codebook, respectively, in the PUSCH transmission.
  • the value of the DAI field may be applicable for the multiplexed HARQ-ACK information with first and second priorities (also referred to as mixed priorities herein) on an uplink data channel transmission.
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with third HARQ feedback information (i.e., the multiplexed HARQ-ACK information) indicating both the first and second HARQ feedback information.
  • the third HARQ feedback information may be the first and second HARQ feedback information themselves.
  • the third HARQ feedback information may be an indication for the first and second HARQ feedback information.
  • the third HARQ feedback information may be a codebook indicating different combinations of the first and second HARQ feedback information.
  • the network device 120 may cause an indication for the number of bits in the third HARQ feedback information to be comprised in the DAI information.
  • the value of the DAI field can indicate the number of multiplexed HARQ-ACK bit on PUSCH. For example, DAI value is 0 when the number of multiplexed bit ⁇ 2 bits. Otherwise, the DAI value is 1.
  • the number of multiplexed HARQ-ACK bits is not larger than 2 if the DAI field is set to '0' ; otherwise, DAI field is set to ‘1' ; .
  • the network device 120 may cause the number of bits in the third HARQ feedback information to be comprised in the DAI information.
  • the value of the DAI field is the total DAI value for the multiplexed HARQ-ACK codebook with mixed priorities.
  • the number of eMBB HARQ-ACK codebook bit is 6 bits and the number of URLLC HARQ-ACK codebook bit is 3 bits, eMBB HARQ-ACK codebook will be bundled as 1 bit and appended with URLLC HARQ-ACK codebook, and the DAI value will be 4. It can help the terminal device 110 to determine the multiplexed HARQ-ACK codebook size.
  • the number of eMBB HARQ-ACK codebook bit is 6 bits and the number of URLLC HARQ-ACK codebook bit is 3 bits, the DAI value will be 1 (9 mod 4) . It can help the terminal device 110 to identify whether there is PDCCH miss detection or not. If there is PDCCH miss detection, the terminal device 110 may only transmit URLLC HARQ-ACK and drop eMBB HARQ-ACK. In this way, the reliability of URLLC will be improved.
  • a UE would multiplex HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by a DCI format that includes a DAI field, for each Type-2 HARQ-ACK codebook with low or high priority, then
  • the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
  • the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
  • the value of the DAI field in the UL DCI format is the total number of multiplexed HARQ bits mod N. N is 2 or 4.
  • the value of DAI field became invalid for the multiplexed HARQ-ACK information on an uplink data channel transmission.
  • the network device 120 may cause the DAI information to indicate whether the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission.
  • 1-bit or 2-bits DAI field may be re-interpreted whether multiplex HARQ-ACK on the PUSCH.
  • 2-bits DAI field may be re-interpreted as follows: 00 denotes that HARQ-ACK bits will be not allowed transmitted on PUSCH; 01 denotes that HARQ-ACK bits with high-priority will be transmitted on PUSCH; 10 denotes that HARQ-ACK bits with low-priority will be transmitted on PUSCH; 11 denotes that both HARQ-ACK bits with low and high priority will be transmitted on PUSCH. It should be noted that this is merely an example, other suitable ways are also feasible.
  • Table 1 shows an example of the value of DAI.
  • the network device 120 may set the DAI information to be invalid for multiplexing of the first and second HARQ feedback information on an uplink data channel transmission. For example, the network device 120 may directly set the value of the DAI field to be 0.
  • the bit width of DAI field in DCI format 0_1 /0_2 is extended for two HARQ-ACK codebooks with different priorities.
  • the network device 120 may generate first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information, and cause the first and second DAI information to be comprised in the DAI information.
  • 4-bits will be configured if two transmission block (TB) based Type-2 codebooks will be multiplexed on PUSCH, the first 2-bits are the t-DAI value for the high priority codebook, the second 2-bits are the t-DAI value for the low priority codebook.
  • 2-bits will be configured if two TB based Type-1 codebooks will be multiplexed on PUSCH, the first 1-bits are the DAI value for the high priority codebook, the second 1-bits are the t-DAI value for the low priority codebook.
  • the 1 MSB bits are total DAI for HARQ-ACK codebook of low priority
  • the 1 LSB bits are total DAI for HARQ-ACK codebook of high priority
  • the 2 MSB bits are total DAI for HARQ-ACK codebook of low priority
  • the 2 LSB bits are total DAI for HARQ-ACK codebook of high priority
  • the network device 120 transmits 802 the DAI information to the terminal device 110 in DCI scheduling the uplink data channel transmission.
  • the terminal device 110 Upon receipt of the DCI, the terminal device 110 determines 803 whether the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first HARQ feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority.
  • the terminal device 110 may multiplex 804, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
  • the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. If the priority of the uplink data channel transmission is the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. If the indication indicates that the DAI information is used for the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may generate, based on the DAI information, the third HARQ feedback information indicating both the first and second HARQ feedback information. In some embodiments, if both the first and second HARQ feedback information are of a Type-1 HARQ-ACK codebook, the terminal device 110 may determine that the DAI information comprises an indication for the number of bits in the third HARQ feedback information. If both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, the terminal device 110 may determine that the DAI information comprises the number of bits in the third HARQ feedback information. In this way, the terminal device 110 may multiplex the third HARQ feedback information on the uplink data channel transmission.
  • the terminal device 110 may determine, based on the DAI information, whether the first HARQ feedback information is to be multiplexed on the uplink data channel transmission. If determining that the first HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission. If determining that the second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission. If determining that both the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the first and second HARQ feedback information on the uplink data channel transmission.
  • the terminal device 110 may perform the multiplexing with the DAI information omitted.
  • the DAI information is invalid for the multiplexing of HARQ feedback information with different priorities on the uplink data channel transmission.
  • the terminal device 110 may determine, from the DAI information, first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information. Then the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the first DAI information, and multiplex the second HARQ feedback information on the uplink data channel transmission based on the second DAI information.
  • the terminal device 110 may transmit the uplink data channel transmission to the network device 120.
  • the first and second HARQ feedback information with low and high priorities is both transmitted.
  • the performance of a service with a low priority can be improved.
  • embodiments of the present disclosure provide methods of communication implemented at a terminal device and a network device. These methods will be described below with reference to FIGs. 9 to 11.
  • FIG. 9 illustrates an example method 900 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 900 may be performed at the terminal device 110 as shown in FIG. 1.
  • the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 determines whether uplink transmissions are overlapped in time domain.
  • the uplink transmissions may comprise at least one uplink control channel transmission used for transmitting UCI associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority.
  • the process proceeds to block 920.
  • the terminal device 110 determines an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmission being multiplexed with the UCI associated with the first priority. In this way, at least a part of information in the at least one uplink control channel transmission is remained.
  • the terminal device 110 transmits, to the network device 120, the uplink transmission multiplexed with the UCI associated with the first priority.
  • the terminal device 110 may determine the uplink transmission by determining a first data channel transmission by resolving the overlapping among data channel transmissions in the uplink transmissions, determining a first control channel transmission by resolving the overlapping among control channel transmissions in the uplink transmissions, and resolving the overlapping between the first data channel transmission and the first control channel transmission. In this way, at least a part of information in control channel transmission with a low priority can be remained in a relatively simple way, and the performance of the service with the low priority can be enhanced.
  • the terminal device 110 may determine the uplink transmission by determining a first data channel transmission by resolving the overlapping among data channel transmissions in the uplink transmissions; resolving the overlapping between the first data channel transmission and a control channel transmission in the uplink transmissions that has the same priority as that of the first data channel transmission; and resolving the overlapping between the first data channel transmission and a control channel transmission in the uplink transmissions that has a different priority from that of the first data channel transmission.
  • the terminal device 110 may determine the uplink transmission by determining an uplink transmission associated with the first priority by resolving the overlapping among uplink transmissions associated with the first priority in the uplink transmissions, determining an uplink transmission associated with the second priority by resolving the overlapping among multiple uplink transmissions associated with the second priority in the uplink transmissions, and resolving the overlapping between the uplink transmission associated with the first priority and the uplink transmission associated with the second priority.
  • the terminal device 110 may determine the uplink transmission by determining an uplink transmission associated with the first priority by resolving the overlapping among uplink transmissions associated with the first priority in the uplink transmissions, determining an uplink transmission associated with the second priority by resolving the overlapping among multiple uplink transmissions associated with the second priority in the uplink transmissions, and resolving the overlapping between the uplink transmission associated with the first priority and the uplink transmission associated with the second priority.
  • FIG. 10 illustrates another example method 1000 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure.
  • the method 1000 may be performed at the terminal device 110 as shown in FIG. 1.
  • the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the terminal device 110 receives, from the network device 120, DAI information in DCI scheduling an uplink data channel transmission.
  • the DAI information is associated with at least one of a first priority or a second priority higher than the first priority.
  • the terminal device 110 determines whether the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first HARQ feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority. If determining that the uplink data channel transmission is overlapped with the first and second uplink control channel transmissions, the process proceeds to block 1030.
  • the terminal device 110 may multiplex, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
  • the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. If the priority of the uplink data channel transmission is the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may further receive, from the network device 120, an indication indicating whether the DAI information is used for HARQ feedback information associated with the first priority or the second priority. In some embodiments where the indication indicates that the DAI information is used for the first priority, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. In some embodiments where the indication indicates that the DAI information is used for the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  • the terminal device 110 may generate, based on the DAI information, third HARQ feedback information indicating both the first and second HARQ feedback information, and multiplex the third HARQ feedback information on the uplink data channel transmission.
  • the terminal device 110 may determine that the DAI information comprises an indication for the number of bits in the third HARQ feedback information.
  • both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook
  • the terminal device 110 may determine that the DAI information comprises the number of bits in the third HARQ feedback information.
  • the terminal device 110 may determine, based on the DAI information, whether the first HARQ feedback information is to be multiplexed on the uplink data channel transmission. If determining that the first HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission. If determining that the second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission. If determining that both the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex both the first and second HARQ feedback information on the uplink data channel transmission.
  • the terminal device 110 may perform the multiplexing with the DAI information omitted. In other words, the DAI information is not considered in the multiplexing.
  • the terminal device 110 may determine, from the DAI information, first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information; multiplex the first HARQ feedback information on the uplink data channel transmission based on the first DAI information; and multiplex the second HARQ feedback information on the uplink data channel transmission based on the second DAI information.
  • the DAI information in DCI can be used for the multiplexing of the HARQ feedback information with different priorities on an uplink data channel transmission.
  • FIG. 11 illustrates an example method 1100 of communication implemented at a network device in accordance with some embodiments of the present disclosure.
  • the method 1100 may be performed at the network device 120 as shown in FIG. 1.
  • the method 1100 will be described with reference to FIG. 1. It is to be understood that the method 1100 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
  • the network device 120 generates DAI information associated with at least one of a first priority or a second priority higher than the first priority.
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a priority of the uplink data channel transmission.
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a lower one of the first and second priorities. In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a higher one of the first and second priorities.
  • the network device 120 may further transmit, to the terminal device 110, an indication indicating whether the DAI information is applied to HARQ feedback information associated with the first priority or the second priority.
  • the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with third HARQ feedback information indicating both the first and second HARQ feedback information.
  • the network device 120 may cause an indication for the number of bits in the third HARQ feedback information to be comprised in the DAI information.
  • the network device 120 may cause the number of bits in the third HARQ feedback information to be comprised in the DAI information.
  • the network device 120 may cause the DAI information to indicate whether the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission.
  • the network device 120 may set the DAI information to be invalid for multiplexing of the first and second HARQ feedback information on an uplink data channel transmission.
  • the network device 120 may generate first DAI information for the first HARQ feedback information, generate second DAI information for the second HARQ feedback information, and cause the first and second DAI information to be comprised in the DAI information.
  • the network device 120 transmits, to the terminal device 110, the DAI information in DCI scheduling the uplink data channel transmission, for use in multiplexing, on the uplink data channel transmission, at least one of first HARQ feedback information having the first priority or second HARQ feedback information having the second priority.
  • the DAI information in DCI can be redefined for the multiplexing of the HARQ feedback information with different priorities on an uplink data channel transmission.
  • FIG. 12 is a simplified block diagram of a device 1200 that is suitable for implementing embodiments of the present disclosure.
  • the device 1200 can be considered as a further example implementation of the terminal device 110 or the network device 120 as shown in FIG. 1. Accordingly, the device 1200 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
  • the device 1200 includes a processor 1210, a memory 1220 coupled to the processor 1210, a suitable transmitter (TX) and receiver (RX) 1240 coupled to the processor 1210, and a communication interface coupled to the TX/RX 1240.
  • the memory 1210 stores at least a part of a program 1230.
  • the TX/RX 1240 is for bidirectional communications.
  • the TX/RX 1240 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones.
  • the communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
  • MME Mobility Management Entity
  • AMF Access and Mobility Management Function
  • RN relay node
  • Uu interface for communication between the eNB/gNB and a terminal device.
  • the program 1230 is assumed to include program instructions that, when executed by the associated processor 1210, enable the device 1200 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1 to 8.
  • the embodiments herein may be implemented by computer software executable by the processor 1210 of the device 1200, or by hardware, or by a combination of software and hardware.
  • the processor 1210 may be configured to implement various embodiments of the present disclosure.
  • a combination of the processor 1210 and memory 1220 may form processing means 1250 adapted to implement various embodiments of the present disclosure.
  • the memory 1220 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1220 is shown in the device 1200, there may be several physically distinct memory modules in the device 1200.
  • the processor 1210 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGs. 2 to 11.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device.
  • the machine readable medium may be a machine readable signal medium or a machine readable storage medium.
  • a machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing.
  • machine readable storage medium More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read-only memory
  • EPROM or Flash memory erasable programmable read-only memory
  • CD-ROM portable compact disc read-only memory
  • magnetic storage device or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to methods, devices and computer readable media for communication. When at least one uplink control channel transmission used for transmitting uplink control information associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority are overlapped in time domain, a terminal device determines, by resolving overlapping among uplink transmissions, an uplink transmission that is multiplexed with the uplink control information associated with the first priority. The terminal device then transmits the uplink transmission to a network device. In this way, performance of a service having the lower priority can be improved.

Description

METHOD, DEVICE AND COMPUTER STORAGE MEDIUM OF COMMUNICATION TECHNICAL FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication, and in particular, to methods, devices and computer storage media of communication for multiplexing hybrid automatic repeat request (HARQ) feedback information of different priorities on an uplink data channel transmission.
BACKGROUND
Typically, for a user equipment (UE) with different services such as enhanced mobile broadband (eMBB) and ultra-reliable and low latency communication (URLLC) , more than one uplink channel transmission may be overlapped in time domain. In this regard, the third generation partnership project (3GPP) Release 16 first resolves collision between uplink transmissions with same priority by multiplexing uplink control information (UCI) , e.g., HARQ-acknowledgement (HARQ-ACK) information in an uplink data channel transmission, and then resolves collision between uplink transmissions with different priorities by dropping an uplink transmission with a lower priority. The dropping of the uplink transmission with the lower priority ensures low latency and high reliability requirements of an uplink transmission with a higher priority. However, performance of a service associated with the uplink transmission having the lower priority will be degraded.
SUMMARY
In general, embodiments of the present disclosure provide methods, devices and computer storage media for communication.
In a first aspect, there is provided a method of communication. The method comprises: in accordance with a determination that uplink transmissions are overlapped in time domain, determining an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmissions comprising at least one uplink control channel transmission used for transmitting uplink control information associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority; and transmitting the uplink  transmission multiplexed with the uplink control information associated with the first priority.
In a second aspect, there is provided a method of communication. The method comprises: receiving, at a terminal device and from a network device, downlink assignment index (DAI) information in downlink control information (DCI) scheduling an uplink data channel transmission, the DAI information being associated with at least one of a first priority or a second priority higher than the first priority; and in accordance with a determination that the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first HARQ feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority, multiplexing, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
In a third aspect, there is provided a method of communication. The method comprises: generating, at a network device, DAI information associated with at least one of a first priority or a second priority higher than the first priority; and transmitting, to a terminal device, the DAI information in DCI scheduling an uplink data channel transmission, for use in multiplexing, on the uplink data channel transmission, at least one of first HARQ feedback information having the first priority or second HARQ feedback information having the second priority.
In a fourth aspect, there is provided a terminal device. The terminal device comprises a processor and a memory coupled to the processor. The memory stores instructions that when executed by the processor, cause the terminal device to perform the method according to the first aspect of the present disclosure.
In a fifth aspect, there is provided a terminal device. The terminal device comprises a processor and a memory coupled to the processor. The memory stores instructions that when executed by the processor, cause the terminal device to perform the method according to the second aspect of the present disclosure.
In a sixth aspect, there is provided a network device. The network device comprises a processor and a memory coupled to the processor. The memory stores instructions that when executed by the processor, cause the network device to perform the method according to the third aspect of the present disclosure.
In a seventh aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the first aspect of the present disclosure.
In an eighth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the second aspect of the present disclosure.
In a ninth aspect, there is provided a computer readable medium having instructions stored thereon. The instructions, when executed on at least one processor, cause the at least one processor to perform the method according to the third aspect of the present disclosure.
Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Through the more detailed description of some embodiments of the present disclosure in the accompanying drawings, the above and other objects, features and advantages of the present disclosure will become more apparent, wherein:
FIG. 1 illustrates an example communication network in which some embodiments of the present disclosure can be implemented;
FIG. 2 illustrates a schematic diagram illustrating a process for communication upon overlapping among uplink transmissions in time domain according to embodiments of the present disclosure;
FIG. 3 illustrates a schematic diagram illustrating an example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure;
FIG. 4 illustrates a schematic diagram illustrating another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure;
FIG. 5 illustrates a schematic diagram illustrating a yet another example process  for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure;
FIG. 6 illustrates a schematic diagram illustrating a still another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure;
FIG. 7 illustrates a schematic diagram illustrating a still another example process for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure;
FIG. 8 illustrates a schematic diagram illustrating an example process for multiplexing HARQ feedback information of different priorities on an uplink data channel transmission according to embodiments of the present disclosure;
FIG. 9 illustrates an example method of communication implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 10 illustrates another example method of communication implemented at a terminal device in accordance with some embodiments of the present disclosure;
FIG. 11 illustrates an example method of communication implemented at a network device in accordance with some embodiments of the present disclosure; and
FIG. 12 is a simplified block diagram of a device that is suitable for implementing embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitations as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of  ordinary skills in the art to which this disclosure belongs.
As used herein, the term “terminal device” refers to any device having wireless or wired communication capabilities. Examples of the terminal device include, but not limited to, user equipment (UE) , personal computers, desktops, mobile phones, cellular phones, smart phones, personal digital assistants (PDAs) , portable computers, tablets, wearable devices, internet of things (IoT) devices, Internet of Everything (IoE) devices, machine type communication (MTC) devices, device on vehicle for V2X communication where X means pedestrian, vehicle, or infrastructure/network, or image capture devices such as digital cameras, gaming devices, music storage and playback appliances, or Internet appliances enabling wireless or wired Internet access and browsing and the like. The term “terminal device” can be used interchangeably with a UE, a mobile station, a subscriber station, a mobile terminal, a user terminal or a wireless device. In addition, the term “network device” refers to a device which is capable of providing or hosting a cell or coverage where terminal devices can communicate. Examples of a network device include, but not limited to, a Node B (NodeB or NB) , an Evolved NodeB (eNodeB or eNB) , a next generation NodeB (gNB) , a Transmission Reception Point (TRP) , a Remote Radio Unit (RRU) , a radio head (RH) , a remote radio head (RRH) , a low power node such as a femto node, a pico node, and the like.
In one embodiment, the terminal device may be connected with a first network device and a second network device. One of the first network device and the second network device may be a master node and the other one may be a secondary node. The first network device and the second network device may use different radio access technologies (RATs) . In one embodiment, the first network device may be a first RAT device and the second network device may be a second RAT device. In one embodiment, the first RAT device is eNB and the second RAT device is gNB. Information related with different RATs may be transmitted to the terminal device from at least one of the first network device or the second network device. In one embodiment, first information may be transmitted to the terminal device from the first network device and second information may be transmitted to the terminal device from the second network device directly or via the first network device. In one embodiment, information related with configuration for the terminal device configured by the second network device may be transmitted from the second network device via the first network device. Information related with reconfiguration for the terminal device configured by the second network device may be  transmitted to the terminal device from the second network device directly or via the first network device.
As used herein, the singular forms ‘a’ , ‘an’ and ‘the’ are intended to include the plural forms as well, unless the context clearly indicates otherwise. The term ‘includes’ and its variants are to be read as open terms that mean ‘includes, but is not limited to. ’ The term ‘based on’ is to be read as ‘at least in part based on. ’ The term ‘one embodiment’ and ‘an embodiment’ are to be read as ‘at least one embodiment. ’ The term ‘another embodiment’ is to be read as ‘at least one other embodiment. ’ The terms ‘first, ’ ‘second, ’ and the like may refer to different or same objects. Other definitions, explicit and implicit, may be included below.
In some examples, values, procedures, or apparatus are referred to as ‘best, ’ ‘lowest, ’ ‘highest, ’ ‘minimum, ’ ‘maximum, ’ or the like. It will be appreciated that such descriptions are intended to indicate that a selection among many used functional alternatives can be made, and such selections need not be better, smaller, higher, or otherwise preferable to other selections.
As mentioned above, in Release 16 technology, performance of a service associated with the uplink transmission having the lower priority will be degraded. 3GPP Release 17 has approved intra-UE multiplexing/prioritization enhancements so as to improve the performance of the service having the lower priority. In this case, it is highly concerned how to multiplex HARQ feedback information of different priorities on an uplink data channel transmission so as to improve performance of an uplink transmission with a lower priority upon overlapping with one or more other uplink transmissions with a higher priority in time domain.
In view of this, one aspect of embodiments of the present disclosure provides a solution for resolving the overlapping among uplink transmissions in time domain. The uplink transmissions comprise at least one uplink control channel transmission used for transmitting uplink control information associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority. In the solution, an uplink transmission multiplexed with the uplink control information is determined by resolving the overlapping among the uplink transmissions and then is transmitted. In this way, at least a part of information in the at least one uplink control channel transmission with a lower priority is remained  without being dropped, and thus performance of a service with the lower priority can be improved.
Another aspect of embodiments of the present disclosure provides a solution for multiplexing HARQ feedback information of different priorities on an uplink data channel transmission. In the solution, DAI information in DCI scheduling an uplink data channel transmission is redefined for HARQ feedback information with different priorities, in particular, the DAI information is defined in association with at least one of the different priorities. Thereby, upon overlapping of the uplink data channel transmission with uplink control channel transmissions for HARQ feedback information having different priorities in time domain, at least a part of the HARQ feedback information in the uplink control channel transmissions can be multiplexed on the scheduled uplink data channel transmission based on the DAI information. In this way, the DAI information is adapted for multiplexing of HARQ feedback information with different priorities on an uplink data channel transmission.
Embodiments of the present disclosure may be applied to any suitable scenarios. For example, embodiments of the present disclosure may be implemented at URLLC. Alternatively, embodiments of the present disclosure can be implemented in one of the followings: reduced capability new radio (NR) devices, NR multiple-input and multiple-output (MIMO) , NR sidelink enhancements, NR systems with frequency above 52.6GHz, an extending NR operation up to 71GHz, narrow band-Internet of Thing (NB-IOT) /enhanced Machine Type Communication (eMTC) over non-terrestrial networks (NTN) , NTN, UE power saving enhancements, NR coverage enhancement, NB-IoT and LTE-MTC, Integrated Access and Backhaul (IAB) , NR Multicast and Broadcast Services, or enhancements on Multi-Radio Dual-Connectivity.
Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
EXAMPLE OF COMMUNICATION NETWORK
FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented. As shown in FIG. 1, the communication network 100 may include a terminal device 110 and a network device 120. In some embodiments, the terminal device 110 may be served by the network device 120. It is to be understood that the number of devices in FIG. 1 is given for the  purpose of illustration without suggesting any limitations to the present disclosure. The communication network 100 may include any suitable number of network devices and/or terminal devices adapted for implementing implementations of the present disclosure.
As shown in FIG. 1, the terminal device 110 may communicate with the network device 120 via a channel such as a wireless communication channel. The communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like. Furthermore, the communications may be performed according to any generation communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) communication protocols.
In some embodiments, the terminal device 110 may transmit uplink data information to the network device 120 via an uplink data channel transmission. For example, the uplink data channel transmission may be a physical uplink shared channel (PUSCH) transmission. Of course, any other suitable forms are also feasible.
In some embodiments, the terminal device 110 may transmit uplink control information (UCI) , e.g., HACK feedback information to the network device 120 via an uplink control channel transmission. For example, the uplink control channel transmission may be a physical uplink control channel (PUCCH) transmission. Of course, any other suitable forms are also feasible.
In some embodiments, the network device 120 may support a plurality of services have different priorities for the terminal device 110. Accordingly, the terminal device 110 may perform respective uplink data and/or control channel transmission for the different services. In some embodiments, the network device 120 may provide a plurality of serving cells (not shown herein) for the terminal device 110, for example, a primary cell (PCell) , a primary secondary cell (PSCell) , a secondary cell (SCell) , a special cell (sPCell) or the like. Each of the serving cells may correspond to one carrier component (CC) . The terminal device 110 may perform transmission with the network device via the CCs.  In some embodiments, the terminal device 110 may perform transmission associated with different services via different CCs. Of course, the terminal device 110 may also perform transmission associated with the same service via different CCs.
In some scenarios, the terminal device 110 may have more than one uplink transmission to be scheduled or configured in the same slot or sub-slot. That is, these uplink transmissions are overlapped or collided in time domain. In this case, the terminal device 110 needs to resolve the overlapping or collision.
EXAMPLE IMPLEMENTATION OF RESOLVING THE OVERLAPPING
Embodiments of the present application provide improve solutions for resolving the overlapping among uplink transmissions in time domain. It will be described below with reference to FIGs. 2 to 7. FIG. 2 illustrates a schematic diagram illustrating a process 200 for communication upon overlapping among uplink transmissions in time domain according to embodiments of the present disclosure. For the purpose of discussion, the process 200 will be described with reference to FIG. 1. The process 200 may involve the terminal device 110 and the network device 120 as illustrated in FIG. 1.
As shown in FIG. 2, the terminal device 110 may determine 201 whether uplink transmissions to be performed are overlapped in time domain. When more than one uplink transmission is to be performed on one slot or sub-slot, the terminal device 110 may determine that the overlapping occurs, and the overlapping should be resolved. The uplink transmissions may have different priorities. In some embodiments, the terminal device 110 may have at least one uplink control channel transmission used for transmitting UCI associated with a first priority and at least one other uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority to be performed in the same slot or sub-slot. In some embodiments, the at least one other uplink transmission may comprise an uplink control channel transmission, and the uplink information may be UCI. In some embodiments, the at least one other uplink transmission may comprise an uplink data channel transmission, and the uplink information may be uplink data.
If determining that the uplink transmissions are overlapped in time domain, the terminal device 110 may determine 202 an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmission being multiplexed with the UCI associated with the first priority. In some embodiments, the overlapping  may be first resolved for the same channel type (data channel or control channel) . In some embodiments, the overlapping may be first resolved for the data channel type. Thus at least a part of information in the at least one uplink control channel transmission with the lower priority can be remained without being dropped.
For example, the terminal device 110 resolves at least the overlapping among data channel transmissions. In some embodiments, the terminal device 110 may first resolve only the overlapping among data channel transmissions in the same cell. Alternatively, the terminal device 110 may resolve both the overlapping among data channel transmissions and that among control channel transmissions. In this way, the terminal device 110 may determine a portion or subset of the uplink transmissions.
Then the terminal device 110 may resolve the overlapping among the determined portion of the uplink transmissions. In this way, at least a part of information with the lower priority in the uplink control channel transmission can be multiplexed in the uplink data channel transmission, so that at least a part of information having the lower priority can be remained without being dropped.
In some embodiments where the terminal device 110 first resolves only the overlapping among data channel transmissions in the same cell, the terminal device 110 may continue to resolve the overlapping between control channel transmission and data channel transmission with the same priority, and then resolve the overlapping between control channel transmission and data channel transmission with different priorities. In some embodiments wherein the terminal device 110 first resolves both the overlapping among data channel transmissions in the same cell and that among control channel transmissions, the terminal device 110 may then resolve the overlapping between a control channel transmission and a data channel transmission.
In some embodiments, the overlapping may be first resolved for the same priority. In some embodiments, the terminal device 110 may determine an uplink transmission associated with the first priority by resolving the overlapping among uplink transmissions associated with the first priority in the uplink transmissions and determine an uplink transmission associated with the second priority by resolving the overlapping among multiple uplink transmissions associated with the second priority in the uplink transmissions. Then the terminal device 110 may resolve the overlapping between the uplink transmission associated with the first priority and the uplink transmission associated  with the second priority. In this way, at least a part of information in the at least one uplink control channel transmission with the lower priority can be remained without being dropped.
In some embodiments, as a solution to resolve the overlapping among data channel transmissions in the same cell, the terminal device 110 may drop one of the data channel transmissions that has a lower priority, and remain one of the data channel transmissions that has a higher priority. In some embodiments, as a solution to resolve the overlapping among control channel transmissions, the terminal device 110 may multiplex at least a part of information (for example, HARQ feedback information such as HARQ-ACK codebook, etc. ) in the control channel transmissions that has a lower priority on the control channel transmissions that has a higher priority, and cancel the control channel transmissions that has the lower priority. In some embodiments, as a solution to resolve the overlapping between a data channel transmission and a control channel transmission, the terminal device 110 may multiplex, on the data channel transmission, at least a part of information (for example, HARQ feedback information such as HARQ-ACK codebook, etc. ) in the control channel transmission, and cancel the control channel transmission.
It is to be understood that the above solutions are merely for illustration, and are not for limitation. Other suitable solutions are also feasible to resolve the overlapping among data channel transmissions or the overlapping among control channel transmissions or the overlapping between a data channel transmission and control channel transmission.
Upon determination of the uplink transmission multiplexed with the UCI associated with the first priority, the terminal device 110 may transmit 203 the uplink transmission to the network device 120.
For illustration, more detailed embodiments will be described below with reference to FIGs. 3-6. FIG. 3 illustrates a schematic diagram illustrating an example process 300 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure. For convenience, this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions. In this example, assuming that simultaneous PUCCH/PUSCH transmissions on different serving cells is disabled. In this example, when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUSCH transmissions. Then, the UE resolves the  overlapping for PUCCH and/or PUSCH transmissions.
As shown in FIG. 3, reference sign 301 denotes PUSCH transmission for URLLC, reference sign 302 denotes PUSCH transmission for eMBB, reference sign 303 denotes PUCCH transmission for URLLC, and reference sign 304 denotes PUCCH transmission for eMBB.  Transmissions  301 and 303 will have a higher priority of URLLC, and  transmissions  302 and 304 will have a lower priority of eMBB. Assuming that the transmissions 301-304 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 303 carries HARQ-ACK information for URLLC, and the transmission 304 carries HARQ-ACK information for eMBB.
The process 300 may comprise a step 310 of first resolving the overlapping for data channel transmissions, i.e., the overlapping between the transmission 301 and the transmission 302. For example, the terminal device 110 may drop the transmission 302 and remain the transmission 301.
The process 300 may further comprise a step 320 of resolving the overlapping for remaining transmissions, i.e., the overlapping among the  transmissions  301, 303 and 304. In some embodiments, the step 320 comprises  steps  321 and 322. In the step 321, the terminal device 110 may resolve the overlapping for control channel transmissions, i.e., the overlapping between the transmission 303 and the transmission 304. For example, the terminal device 110 may multiplex the HARQ-ACK information in the transmission 304 on the transmission 303, and cancel the transmission 304. The multiplexing can be performed in various ways, and the present application does not make limitation for this. Then the transmission 303 will carry both the HARQ-ACK information for eMBB and HARQ-ACK information for URLLC.
In the step 322, the terminal device 110 may resolve the overlapping between data channel transmission and control channel transmission, i.e., the overlapping between the transmission 301 and the transmission 303. For example, the terminal device 110 may multiplex, on the transmission 301, the multiplexed HARQ-ACK information for eMBB and URLLC in the transmission 303, and cancel the transmission 303. The multiplexing can be performed in various ways, and the present application does not make limitation for this. So far, the resolving of the overlapping is completed, and the HARQ-ACK information for both eMBB and URLLC can be carried on the data channel transmission 301 and transmitted to the network device 120. Compared with dropping the  HARQ-ACK information for eMBB in conventional solution, the performance of eMBB can be improved.
FIG. 4 illustrates a schematic diagram illustrating an example process 400 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure. For convenience, this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions. In this example, assuming that only simultaneous PUCCH/PUSCH transmissions with different priorities on different serving cells for carrier aggregation (CA) is enabled. In this example, when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUSCH transmissions with different priorities. Then, the UE resolves the overlapping for PUCCH and PUSCH transmissions with same priority. At last, the UE resolves the overlapping for PUCCH and PUCCH/PUSCH transmissions with different priorities.
As shown in FIG. 4, reference sign 401 denotes PUSCH transmission for URLLC on CC#1, reference sign 402 denotes PUSCH transmission for eMBB on CC#1, reference sign 403 denotes PUCCH transmission for URLLC on CC#2, and reference sign 404 denotes PUCCH transmission for eMBB on CC#2.  Transmissions  401 and 403 will have a higher priority of URLLC, and  transmissions  402 and 404 will have a lower priority of eMBB. Assuming that the transmissions 401-404 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 403 carries HARQ-ACK information for URLLC, and the transmission 404 carries HARQ-ACK information for eMBB.
The process 400 may comprise a step 410 of first resolving the overlapping for data channel transmissions, i.e., the overlapping between the transmission 401 and the transmission 402. For example, the terminal device 110 may drop the transmission 402 and remain the transmission 401.
The process 400 may further comprise a step 420 of resolving the overlapping for remaining transmissions, i.e., the overlapping among the  transmissions  401, 403 and 404. In some embodiments, the step 420 comprises steps 421 and 422. In the step 421, the terminal device 110 may resolve the overlapping for uplink transmissions with the same priority, i.e., the overlapping between the transmission 401 and the transmission 403. For example, the terminal device 110 may multiplex the HARQ-ACK information in the  transmission 403 on the transmission 401, and cancel the transmission 403. The multiplexing can be performed in various ways, and the present application does not make limitation for this. Then the transmission 401 will carry HARQ-ACK information for URLLC.
In the step 422, the terminal device 110 may resolve the overlapping between uplink transmissions with different priorities, i.e., the overlapping between the transmission 401 and the transmission 404. For example, the transmission 401 on CC#1 for URLLC data and URLLC HARQ-ACK and the transmission 404 for eMBB HARQ-ACK on CC#2 can be simultaneously transmitted.
So far, the resolving of the overlapping is completed, and the HARQ-ACK information for eMBB and HARQ-ACK for URLLC are separately carried on the control channel transmission 404 and data channel transmission 401 and transmitted to the network device 120. This solution is not complicated and the performance of eMBB is less impacted.
FIG. 5 illustrates a schematic diagram illustrating an example process 500 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure. For convenience, this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions. In this example, also assuming that only simultaneous PUCCH/PUSCH transmissions with different priorities on different serving cells for CA is enabled. In this example, when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUCCH transmissions and/or overlapping for PUSCH transmissions. Then, the UE resolves the overlapping for PUCCH and PUSCH transmissions.
As shown in FIG. 5, reference sign 501 denotes PUSCH transmission for URLLC on CC#1, reference sign 502 denotes PUSCH transmission for eMBB on CC#1, reference sign 503 denotes PUCCH transmission for URLLC on CC#2, and reference sign 504 denotes PUCCH transmission for eMBB on CC#2.  Transmissions  501 and 503 will have a higher priority of URLLC, and transmissions 502 and 504 will have a lower priority of eMBB. Assuming that the transmissions 501-504 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 503 carries HARQ-ACK information for URLLC, and the transmission 504 carries HARQ-ACK  information for eMBB.
The process 500 may comprise a step 510 of first resolving the overlapping for transmissions having the same channel type, i.e., the overlapping between the transmission 501 and the transmission 502, and that between the transmission 503 and the transmission 504. For example, the terminal device 110 may drop the transmission 502 and remain 501, and multiplex the HARQ-ACK information in the transmission 504 on the transmission 503 while cancelling the transmission 504.
The process 500 may further comprise a step 520 of resolving the overlapping for transmissions having different channel types, i.e., the overlapping among the  transmissions  501 and 503. For example, the terminal device 110 may multiplex the HARQ-ACK information in the transmission 503 on the transmission 501, and cancel the transmission 503. The multiplexing can be performed in various ways, and the present application does not make limitation for this. Then the transmission 501 will carry the HARQ-ACK information for both URLLC and eMBB.
So far, the resolving of the overlapping is completed, and the HARQ-ACK information for both eMBB and URLLC is carried on the data channel transmission 501 and transmitted to the network device 120. Compared with the example in FIG. 4, this solution has less negative impact on eMBB performance, but it is complicated.
FIG. 6 illustrates a schematic diagram illustrating an example process 600 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure. For convenience, this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions. In this example, also assuming that only simultaneous PUCCH/PUSCH transmissions with different priorities on different serving cells for CA is enabled. In this example, when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUCCH and/or PUSCH transmissions with same priority. Then, the UE resolves the overlapping for PUCCH and/or PUSCH transmissions with different priorities.
As shown in FIG. 6, reference sign 601 denotes PUSCH transmission for URLLC on CC#1, reference sign 602 denotes PUSCH transmission for eMBB on CC#1, reference sign 603 denotes PUCCH transmission for URLLC on CC#2, and reference sign 604 denotes PUCCH transmission for eMBB on CC#2.  Transmissions  601 and 603 will have  a higher priority of URLLC, and  transmissions  602 and 604 will have a lower priority of eMBB. Assuming that the transmissions 601-604 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 603 carries HARQ-ACK information for URLLC, and the transmission 604 carries HARQ-ACK information for eMBB.
The process 600 may comprise a step 610 of first resolving the overlapping for transmissions having the same priority, i.e., the overlapping between the transmission 601 and the transmission 603, and that between the transmission 602 and the transmission 604. For example, the terminal device 110 may multiplex HARQ-ACK information for URLLC in the transmission 603 onto the transmission 601 and cancel the transmission 603. Similarly, the terminal device 110 may multiplex the HARQ-ACK information for eMBB in the transmission 604 on the transmission 602 and cancel the transmission 604.
The process 600 may further comprise a step 620 of resolving the overlapping for transmissions having different priorities, i.e., the overlapping among the  transmissions  601 and 602. For example, the terminal device 110 may drop the transmission 602 having a lower priority, and remain the transmission 601 having a higher priority.
So far, the resolving of the overlapping is completed, and the HARQ-ACK information for URLLC is carried on the data channel transmission 601 and transmitted to the network device 120. Compared with the examples as described previously, this solution can reuse the multiplexing rule in Release 16 and has no impact on URLLC uplink transmission for UCI.
FIG. 7 illustrates a schematic diagram illustrating an example process 700 for resolving the overlapping among uplink transmissions according to embodiments of the present disclosure. For convenience, this example will be described in connection with eMBB and URLLC services and PUCCH and PUSCH transmissions. In this example, assuming that simultaneous PUCCH/PUSCH transmissions with both same and different priorities on different serving cells is enabled. In this example, when a UE determines overlapping for one or more PUCCH and one or more PUSCH transmissions of different priority indexes, the UE first resolves the overlapping for PUCCH transmissions and/or overlapping for PUSCH transmissions. Then, the UE resolves the overlapping for PUCCH and PUSCH transmissions.
As shown in FIG. 7, reference sign 701 denotes PUSCH transmission for URLLC  on CC#1, reference sign 702 denotes PUSCH transmission for eMBB on CC#1, reference sign 703 denotes PUCCH transmission for URLLC on CC#2, and reference sign 704 denotes PUCCH transmission for eMBB on CC#2.  Transmissions  701 and 703 will have a higher priority of URLLC, and  transmissions  702 and 704 will have a lower priority of eMBB. Assuming that the transmissions 701-704 are to be scheduled on one slot, i.e., overlapped in time domain. In addition, assuming that the transmission 703 carries HARQ-ACK information for URLLC, and the transmission 704 carries HARQ-ACK information for eMBB.
The process 700 may comprise a step 710 of first resolving the overlapping for transmissions having the same channel type, i.e., the overlapping between the transmission 701 and the transmission 702, and that between the transmission 703 and the transmission 704. For example, the terminal device 110 may drop the transmission 702 and remain 701, and multiplex the HARQ-ACK information in the transmission 704 on the transmission 703 while cancelling the transmission 704.
The process 700 may further comprise a step 720 of resolving the overlapping for transmissions having different channel types, i.e., the overlapping among the  transmissions  701 and 703. For example, the terminal device 110 may multiplex the HARQ-ACK information in the transmission 703 on the transmission 701, and cancel the transmission 703. The multiplexing can be performed in various ways, and the present application does not make limitation for this. Then the transmission 701 will carry the HARQ-ACK information for both URLLC and eMBB.
So far, the resolving of the overlapping is completed, and the HARQ-ACK information for both eMBB and URLLC is carried on the data channel transmission 701 and transmitted to the network device 120. This solution is similar with the example in FIG. 5 except that it does a different assumption of enabling simultaneous PUCCH/PUSCH transmissions with both same and different priorities on different serving cells. In this way, intra-UE multiplexing/prioritization order can be clearly defined.
It is to be understood that the above examples in FIGs. 3-7 are merely for illustration, and do not make limitation for the present disclosure.
EXAMPLE IMPLEMENTATION OF MULTIPLEXING HARQ FEEDBACK INFORMATION
In Release 16, for a terminal device with multiple services, e.g., eMBB and URLLC, the HARQ-ACK codebook type for two HARQ-ACK codebooks with different  priorities for eMBB and URLLC can be separately configured (Type-1 codebook or Type-2 codebook) . Further, in Release 16, only HARQ-ACK with one priority can be multiplexed on PUSCH. For example, HARQ-ACK for eMBB is multiplexed on PUSCH for eMBB, and HARQ-ACK for URLLC is multiplexed on PUSCH for URLLC.
When the PUSCH is scheduled by DCI format 0_1/0_2 with a DAI field, the DAI value is used to align the common understanding between a network device and a terminal device on the number of multiplexed HARQ-ACK bits in case PDCCH miss detection happens. When at least one of the two HARQ-ACK codebooks is Type-2 codebook, 2-bits DAI field is configured in DCI format 0_1/0_2 scheduling PUSCH. When both two HARQ-ACK codebooks are Type-1 codebook, 1-bit DAI field is configured in DCI format 0_1/0_2 scheduling PUSCH.
However, in Release 17, when multiplexing for both low-priority HARQ-ACK and high-priority HARQ-ACK on the PUSCH which is scheduled by DCI format 0_1/0_2 with DAI field, whether and how to apply the one DAI field for two HARQ-ACK codebooks with different priorities need to be clarified.
In view of this, embodiments of the present application provide improve solutions for multiplexing HARQ feedback information of different priorities on an uplink data channel transmission. It will be described below with reference to FIG. 8. FIG. 8 illustrates a schematic diagram illustrating an example process 800 for multiplexing HARQ feedback information of different priorities on an uplink data channel transmission according to embodiments of the present disclosure. For the purpose of discussion, the process 800 will be described with reference to FIG. 1. The process 800 may involve the terminal device 110 and the network device 120 as illustrated in FIG. 1. Assuming that first HARQ feedback information having a first priority and second HARQ feedback information having a second priority higher than the first priority is to be multiplexed.
As shown in FIG. 8, the network device 120 generates 801 DAI information (also referred to as DAI field herein) associated with at least one of the first priority or the second priority. In other words, the DAI information is redefined for HARQ-ACK with different priorities multiplexed on PUSCH. It will be described below in connection with Embodiments 1-4.
Embodiment 1
In this embodiment, the value of the DAI field may be only applicable for  multiplexing single HARQ feedback information with one given priority on an uplink data channel transmission.
In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a priority of an uplink data channel transmission which is to be scheduled by the DCI. In this case, the value of the DAI information may be only applicable for multiplexing HARQ feedback information with the same priority of the uplink data channel transmission. For example, if a PUSCH is of low priority for eMBB, then the value of the DAI field is only applicable for multiplexing a HARQ-ACK codebook with low priority on the PUSCH. If the PUSCH is of high priority for URLLC, then the value of the DAI field is only applicable for multiplexing a HARQ-ACK codebook with high priority on the PUSCH.
For these embodiments, the modification for 3GPP specification of 38.213 would be as below.
When two HARQ-ACK codebooks with different priorities are multiplexed on the PUSCH, if the PUSCH transmission is scheduled by a DCI format that includes a DAI field, the value of the DAI field is only applicable for multiplexing HARQ-ACK information with same priority of PUSCH.
[…] 
9.1.2.2 Type-1 HARQ-ACK codebook in physical uplink shared channel
If a UE would multiplex HARQ-ACK information in a PUSCH transmission that is not scheduled by a DCI format or is scheduled by a DCI format that does not include a DAI field or in a PUSCH transmission with different priority of HARQ-ACK information is scheduled by a DCI format that includes a DAI field , then
- if the UE has not received any PDSCH or SPS PDSCH release that the UE transmits corresponding HARQ-ACK information in the PUSCH, based on a value of a respective PDSCH-to-HARQ_feedback timing indicator field in a DCI format scheduling the PDSCH reception or the SPS PDSCH release or on the value of dl-DataToUL-ACK if the PDSCH-to-HARQ_feedback timing indicator field is not present in DCI format 1_1 or on the value of dl-DataToUL-ACK-ForDCI-Format1-2-r16 if the PDSCH-to-HARQ_feedback timing indicator field is not present in DCI format 1_2, in any of the M c occasions for candidate PDSCH receptions by a DCI format or SPS PDSCH on any serving cell c, as described in Clause 9.1.2.1, the UE does not multiplex HARQ-ACK  information in the PUSCH transmission;
- else the UE generates the HARQ-ACK codebook as described in Clause 9.1.2.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH, unless the UE receives only a SPS PDSCH release, or only SPS PDSCH reception, or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2.
A UE sets to NACK value in the HARQ-ACK codebook any HARQ-ACK information corresponding to PDSCH reception or SPS PDSCH release that the UE detects in a PDCCH monitoring occasion that starts after a PDCCH monitoring occasion where the UE detects a DCI format scheduling the PUSCH transmission.
A UE does not expect to detect a DCI format switching a DL BWP within N 2 symbols prior to a first symbol of a PUSCH transmission where the UE multiplexes HARQ-ACK information, where N 2 is defined in [6, TS 38.214] .
If a UE multiplexes HARQ-ACK information in a PUSCH transmission with same priority of HARQ-ACK information that is scheduled by DCI format that includes a DAI field, the UE generates the HARQ-ACK codebook as described in Clause 9.1.2.1 when a value of the DAI field is
Figure PCTCN2020127561-appb-000001
except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH. The UE does not generate a HARQ-ACK codebook for multiplexing in the PUSCH transmission when
Figure PCTCN2020127561-appb-000002
unless the UE receives only a SPS PDSCH release, or only SPS PDSCH (s) , or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2. 
Figure PCTCN2020127561-appb-000003
if the PUSCH is scheduled by a DCI format that includes a DAI field and the DAI field is set to '0' ; otherwise, 
Figure PCTCN2020127561-appb-000004
9.1.3.2 Type-2 HARQ-ACK codebook in physical uplink shared channel
If a UE would multiplex HARQ-ACK information in a PUSCH transmission that is not scheduled by a DCI format or is scheduled by a DCI format that does not include a DAI field or in a PUSCH transmission with different priority of HARQ-ACK information is scheduled by a DCI format that includes a DAI field , then
- if the UE has not received any PDCCH within the monitoring occasions for DCI formats scheduling PDSCH receptions, or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception, or in response to a detection of a DCI format 1_1 indicating SCell dormancy, to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
- else, the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
If a UE multiplexes HARQ-ACK information in a PUSCH transmission with same priority of HARQ-ACK that is scheduled by DCI format that includes a DAI field, the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, with the following modifications:
- For the pseudo-code for the HARQ-ACK codebook generation in Clause 9.1.3.1, after the completion of the c and m loops, the UE sets
Figure PCTCN2020127561-appb-000005
where
Figure PCTCN2020127561-appb-000006
is the value of the DAI field according to Table 9.1.3-2
- For the case of first and second HARQ-ACK sub-codebooks, DCI format 0_1 includes a first DAI field corresponding to the first HARQ-ACK sub-codebook and a second DAI field corresponding to the second HARQ-ACK sub-codebook
- harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission with same priority of HARQ-ACK information by DCI format that includes a DAI field with value
Figure PCTCN2020127561-appb-000007
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information in the PUSCH transmission.
If a UE is provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission with same priority of HARQ-ACK by DCI format that includes a  DAI field with first value
Figure PCTCN2020127561-appb-000008
or with second value
Figure PCTCN2020127561-appb-000009
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy, on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information for the first sub-codebook or for the second sub-codebook, respectively, in the PUSCH transmission.
In some alternative embodiments, the value of the DAI field may be predefined to be only applicable for multiplexing HARQ-ACK codebook with low priority or high priority. In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a lower one of the first and second priorities. For example, when the two HARQ-ACK cookbooks are Type-2 codebook, the value of the DAI field is only applicable for multiplexing Type-2 HARQ-ACK codebook with low priority on the PUSCH regardless of the PUSCH is for eMBB or URLLC. If the bit number of eMBB HARQ-ACK codebook is 6 bits, the bit number of URLLC HARQ-ACK codebook is 3 bits, the DAI value will be 2 (6 mod 4) . It is suitable for multiplexing schemes that not bundle eMBB HARQ-ACK, since the reliability of URLLC PDCCH is high and the DAI value is used for eMBB HARQ-ACK to minimize the impact of the eMBB PDCCH miss detection.
In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a higher one of the first and second priorities. For example, when the two HARQ-ACK codebooks are Type-2 codebook, the value of the DAI field is only applicable for multiplexing Type-2 HARQ-ACK codebook with high priority on the PUSCH regardless of the PUSCH is for eMBB or URLLC. If the bit number of eMBB HARQ-ACK codebook is 6 bits and the bit number of URLLC HARQ-ACK codebook is 3 bits, the DAI value will be 3 (3 mod 4) . It is suitable for multiplexing schemes that bundle eMBB HARQ-ACK as one bit and append in the URLLC HARQ-ACK codebook, and the DAI value is used for URLLC HARQ-ACK to minimize the impact of the URLLC PDCCH miss detection and improve the reliability.
For these embodiments, the modification for 3GPP specification of 38.213 would be as below.
When two HARQ-ACK codebooks with different priorities are multiplexed on the  PUSCH, if the PUSCH transmission is scheduled by a DCI format that includes a DAI field, the value of the DAI field is only applicable for multiplexing HARQ-ACK information with low priority.
[…] 
9.1.2.2 Type-1 HARQ-ACK codebook in physical uplink shared channel
If a UE would multiplex HARQ-ACK information of different priorities in a PUSCH transmission is scheduled by a DCI format that includes a DAI field, for the Type-1 HARQ-ACK codebook with high priority, then
- if the UE has not received any PDSCH or SPS PDSCH release that the UE transmits corresponding HARQ-ACK information in the PUSCH, based on a value of a respective PDSCH-to-HARQ_feedback timing indicator field in a DCI format scheduling the PDSCH reception or the SPS PDSCH release or on the value of dl-DataToUL-ACK if the PDSCH-to-HARQ_feedback timing indicator field is not present in DCI format 1_1 or on the value of dl-DataToUL-ACK-ForDCI-Format1-2-r16 if the PDSCH-to-HARQ_feedback timing indicator field is not present in DCI format 1_2, in any of the M c occasions for candidate PDSCH receptions by a DCI format or SPS PDSCH on any serving cell c, as described in Clause 9.1.2.1, the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
- else the UE generates the HARQ-ACK codebook as described in Clause 9.1.2.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH, unless the UE receives only a SPS PDSCH release, or only SPS PDSCH reception, or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2.
A UE sets to NACK value in the HARQ-ACK codebook any HARQ-ACK information corresponding to PDSCH reception or SPS PDSCH release that the UE detects in a PDCCH monitoring occasion that starts after a PDCCH monitoring occasion where the UE detects a DCI format scheduling the PUSCH transmission.
A UE does not expect to detect a DCI format switching a DL BWP within N 2 symbols prior to a first symbol of a PUSCH transmission where the UE multiplexes HARQ-ACK information, where N 2 is defined in [6, TS 38.214] .
If a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field, the UE generates the HARQ-ACK codebook with low priority as described in Clause 9.1.2.1 when a value of the DAI field is
Figure PCTCN2020127561-appb-000010
except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH. The UE does not generate a HARQ-ACK codebook for multiplexing in the PUSCH transmission when
Figure PCTCN2020127561-appb-000011
unless the UE receives only a SPS PDSCH release, or only SPS PDSCH (s) , or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2. 
Figure PCTCN2020127561-appb-000012
if the PUSCH is scheduled by a DCI format that includes a DAI field and the DAI field is set to '0' ; otherwise, 
Figure PCTCN2020127561-appb-000013
9.1.3.2 Type-2 HARQ-ACK codebook in physical uplink shared channel
If a UE would multiplex HARQ-ACK information of different priorities in a PUSCH transmission is scheduled by a DCI format that includes a DAI field, for the Type-2 HARQ-ACK codebook with high priority, then
- if the UE has not received any PDCCH within the monitoring occasions for DCI formats scheduling PDSCH receptions, or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception, or in response to a detection of a DCI format 1_1 indicating SCell dormancy, to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
- else, the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
If a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field, the UE generates the HARQ-ACK codebook with low priority as described in Clause 9.1.3.1, with the following modifications:
- For the pseudo-code for the HARQ-ACK codebook generation in Clause 9.1.3.1, after the completion of the c and m loops, the UE sets
Figure PCTCN2020127561-appb-000014
where
Figure PCTCN2020127561-appb-000015
is the  value of the DAI field according to Table 9.1.3-2
- For the case of first and second HARQ-ACK sub-codebooks, DCI format 0_1 includes a first DAI field corresponding to the first HARQ-ACK sub-codebook and a second DAI field corresponding to the second HARQ-ACK sub-codebook
- harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with value 
Figure PCTCN2020127561-appb-000016
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information of low priority in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of low priority in the PUSCH transmission.
If a UE is provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with first value 
Figure PCTCN2020127561-appb-000017
or with second value
Figure PCTCN2020127561-appb-000018
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy, on any serving cell c and the UE does not have HARQ-ACK information of low priority in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of low priority for the first sub-codebook or for the second sub-codebook, respectively, in the PUSCH transmission.
In some alternative embodiments, the network device 120 may transmit, to the terminal device 110, an indication indicating whether the DAI information is applied to HARQ feedback information associated with the first priority or the second priority. In some embodiments, the network device 120 may transmit the indication via a radio resource control (RRC) signaling. For example, a RRC parameter may be introduced in PUSCH-Config/PUCCH-Config, e.g., the DAIofHarqPirorityOnPUSCH. As an example, when the value of the RRC parameter is 0, the value of DAI field may be applicable for low priority HARQ-ACK codebook, and when the value of the RRC parameter is 1, the value of DAI field may be applicable for high priority HARQ-ACK codebook. Of course, the  indication may also be transmitted in other suitable ways.
For these embodiments, the modification for 3GPP specification of 38.213 would be as below.
When two HARQ-ACK codebooks with different priorities are multiplexed on the PUSCH, if the PUSCH transmission is scheduled by a DCI format that includes a DAI field, the value of the DAI field is only applicable for multiplexing HARQ-ACK information with the priority indicated by DAIofHarqPirorityOnPUSCH.
[…] 
9.1.2.2 Type-1 HARQ-ACK codebook in physical uplink shared channel
If a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field, the UE generates the HARQ-ACK codebook with the priority indicated by DAIofHarqPirorityOnPUSCH as described in Clause 9.1.2.1 when a value of the DAI field is
Figure PCTCN2020127561-appb-000019
except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH. The UE does not generate a HARQ-ACK codebook for multiplexing in the PUSCH transmission when
Figure PCTCN2020127561-appb-000020
unless the UE receives only a SPS PDSCH release, or only SPS PDSCH (s) , or only a PDSCH that is scheduled by DCI format 1_0 with a counter DAI field value of 1 on the PCell in the M c occasions for candidate PDSCH receptions in which case the UE generates HARQ-ACK information only for the SPS PDSCH release or only for the PDSCH reception as described in Clause 9.1.2. 
Figure PCTCN2020127561-appb-000021
if the PUSCH is scheduled by a DCI format that includes a DAI field and the DAI field is set to '0' ; otherwise, 
Figure PCTCN2020127561-appb-000022
9.1.3.2 Type-2 HARQ-ACK codebook in physical uplink shared channel
If a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field, the UE generates the HARQ-ACK codebook with the priority indicated by DAIofHarqPirorityOnPUSCH as described in Clause 9.1.3.1, with the following modifications:
- For the pseudo-code for the HARQ-ACK codebook generation in Clause 9.1.3.1, after the completion of the c and m loops, the UE sets
Figure PCTCN2020127561-appb-000023
where
Figure PCTCN2020127561-appb-000024
is the value of the DAI field according to Table 9.1.3-2
- For the case of first and second HARQ-ACK sub-codebooks, DCI format 0_1 includes a first DAI field corresponding to the first HARQ-ACK sub-codebook and a second DAI field corresponding to the second HARQ-ACK sub-codebook
- harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with value 
Figure PCTCN2020127561-appb-000025
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in the PUSCH transmission.
If a UE is not provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with value 
Figure PCTCN2020127561-appb-000026
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release on any serving cell c and the UE does not have HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in the PUSCH transmission.
If a UE is provided PDSCH-CodeBlockGroupTransmission and the UE is scheduled for a PUSCH transmission by DCI format that includes a DAI field with first value 
Figure PCTCN2020127561-appb-000027
or with second value
Figure PCTCN2020127561-appb-000028
and the UE has not received any PDCCH within the monitoring occasions for PDCCH with DCI format scheduling PDSCH receptions or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy, on any serving cell c and the UE does not have HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH in response to a SPS PDSCH reception to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information of the priority indicated by DAIofHarqPirorityOnPUSCH for the first  sub-codebook or for the second sub-codebook, respectively, in the PUSCH transmission.
Embodiment 2
In this embodiment, the value of the DAI field may be applicable for the multiplexed HARQ-ACK information with first and second priorities (also referred to as mixed priorities herein) on an uplink data channel transmission. In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with third HARQ feedback information (i.e., the multiplexed HARQ-ACK information) indicating both the first and second HARQ feedback information. In some embodiments, the third HARQ feedback information may be the first and second HARQ feedback information themselves. In some embodiments, the third HARQ feedback information may be an indication for the first and second HARQ feedback information. For example, the third HARQ feedback information may be a codebook indicating different combinations of the first and second HARQ feedback information.
In some embodiments, if both the first and second HARQ feedback information are of a Type-1 HARQ-ACK codebook, the network device 120 may cause an indication for the number of bits in the third HARQ feedback information to be comprised in the DAI information. In other words, when the two HARQ-ACK codebooks with lower and higher priority are both Type-1 HARQ-ACK codebooks, the value of the DAI field can indicate the number of multiplexed HARQ-ACK bit on PUSCH. For example, DAI value is 0 when the number of multiplexed bit ≤2 bits. Otherwise, the DAI value is 1.
For these embodiments, the modification for 3GPP specification of 38.213 would be as below.
9.1.2.2 Type-1 HARQ-ACK codebook in physical uplink shared channel
[…] 
If a UE multiplexes HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by DCI format that includes a DAI field , the number of multiplexed HARQ-ACK bits is not larger than 2 if the DAI field is set to '0' ; otherwise, DAI field is set to ‘1' ; .
In some embodiments, if both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, the network device 120 may cause the number of bits in the third HARQ feedback information to be comprised in the DAI information. In  other words, when the two HARQ-ACK codebooks with lower and higher priority are both Type-2 HARQ-ACK codebooks, the value of the DAI field is the total DAI value for the multiplexed HARQ-ACK codebook with mixed priorities.
For example, the number of eMBB HARQ-ACK codebook bit is 6 bits and the number of URLLC HARQ-ACK codebook bit is 3 bits, eMBB HARQ-ACK codebook will be bundled as 1 bit and appended with URLLC HARQ-ACK codebook, and the DAI value will be 4. It can help the terminal device 110 to determine the multiplexed HARQ-ACK codebook size. As another example, the number of eMBB HARQ-ACK codebook bit is 6 bits and the number of URLLC HARQ-ACK codebook bit is 3 bits, the DAI value will be 1 (9 mod 4) . It can help the terminal device 110 to identify whether there is PDCCH miss detection or not. If there is PDCCH miss detection, the terminal device 110 may only transmit URLLC HARQ-ACK and drop eMBB HARQ-ACK. In this way, the reliability of URLLC will be improved.
For these embodiments, the modification for 3GPP specification of 38.213 would be as below.
9.1.3.2 Type-2 HARQ-ACK codebook in physical uplink shared channel
If a UE would multiplex HARQ-ACK information of different priorities in a PUSCH transmission that is scheduled by a DCI format that includes a DAI field, for each Type-2 HARQ-ACK codebook with low or high priority, then
- if the UE has not received any PDCCH within the monitoring occasions for DCI formats scheduling PDSCH receptions, or SPS PDSCH release, or DCI format 1_1 indicating SCell dormancy on any serving cell c and the UE does not have HARQ-ACK information in response to a SPS PDSCH reception, or in response to a detection of a DCI format 1_1 indicating SCell dormancy, to multiplex in the PUSCH, as described in Clause 9.1.3.1, the UE does not multiplex HARQ-ACK information in the PUSCH transmission;
- else, the UE generates the HARQ-ACK codebook as described in Clause 9.1.3.1, except that harq-ACK-SpatialBundlingPUCCH is replaced by harq-ACK-SpatialBundlingPUSCH.
The value of the DAI field in the UL DCI format is the total number of multiplexed HARQ bits mod N. N is 2 or 4.
Embodiment 3
In this embodiment, the value of DAI field became invalid for the multiplexed HARQ-ACK information on an uplink data channel transmission.
In some embodiments, the network device 120 may cause the DAI information to indicate whether the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission. In other words, 1-bit or 2-bits DAI field may be re-interpreted whether multiplex HARQ-ACK on the PUSCH. For example, 2-bits DAI field may be re-interpreted as follows: 00 denotes that HARQ-ACK bits will be not allowed transmitted on PUSCH; 01 denotes that HARQ-ACK bits with high-priority will be transmitted on PUSCH; 10 denotes that HARQ-ACK bits with low-priority will be transmitted on PUSCH; 11 denotes that both HARQ-ACK bits with low and high priority will be transmitted on PUSCH. It should be noted that this is merely an example, other suitable ways are also feasible.
For these embodiments, the modification for 3GPP specification of 38.212 would be as below.
Format 0_1/0_2
0 bit if the higher layer parameter downlinkAssignmentIndexForDCI-Format0-2 is not configured;
- 1, 2 or 4 bits otherwise,
- 1 st downlink assignment index –1 or 2 bits:
- 1 bit for semi-static HARQ-ACK codebook;
- 2 bits for dynamic HARQ-ACK codebook.
- 2 bits for two HARQ-ACK codebook with different priorities;
Table 1 shows an example of the value of DAI.
Figure PCTCN2020127561-appb-000029
Figure PCTCN2020127561-appb-000030
In some alternative embodiments, the network device 120 may set the DAI information to be invalid for multiplexing of the first and second HARQ feedback information on an uplink data channel transmission. For example, the network device 120 may directly set the value of the DAI field to be 0.
Embodiment 4
In this embodiment, the bit width of DAI field in DCI format 0_1 /0_2 is extended for two HARQ-ACK codebooks with different priorities. In some embodiments, the network device 120 may generate first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information, and cause the first and second DAI information to be comprised in the DAI information.
For example, 4-bits will be configured if two transmission block (TB) based Type-2 codebooks will be multiplexed on PUSCH, the first 2-bits are the t-DAI value for the high priority codebook, the second 2-bits are the t-DAI value for the low priority codebook. As another example, 2-bits will be configured if two TB based Type-1 codebooks will be multiplexed on PUSCH, the first 1-bits are the DAI value for the high priority codebook, the second 1-bits are the t-DAI value for the low priority codebook.
For this embodiment, the modification for 3GPP specification of 38.212 would be as below.
Format 0_1/0_2
1st downlink assignment index –1, 2 or 4 bits:
- 1 bit for semi-static HARQ-ACK codebook;
- 2 bits for semi-static HARQ-ACK codebook with mixed priorities, the 1 MSB bits are total DAI for HARQ-ACK codebook of low priority, the 1 LSB bits are total DAI for HARQ-ACK codebook of high priority,
- 2 bits for dynamic HARQ-ACK codebook, or for enhanced dynamic  HARQ-ACK codebook without UL-TotalDAI-Included-r16 configured;
- 4 bits for dynamic HARQ-ACK codebook with mixed priorities, the 2 MSB bits are total DAI for HARQ-ACK codebook of low priority, the 2 LSB bits are total DAI for HARQ-ACK codebook of high priority,
- 4 bits for enhanced dynamic HARQ-ACK codebook and with UL-TotalDAI-Included-r16 = "enable" ..
…..
Return to FIG. 8, upon generation of the DAI information, the network device 120 transmits 802 the DAI information to the terminal device 110 in DCI scheduling the uplink data channel transmission.
Upon receipt of the DCI, the terminal device 110 determines 803 whether the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first HARQ feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority.
If determining that the uplink data channel transmission is overlapped with the first and second uplink control channel transmissions, the terminal device 110 may multiplex 804, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
In some embodiments where the DAI information is applied to HARQ feedback information associated with a priority of the uplink data channel transmission, if the priority of the uplink data channel transmission is the first priority, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. If the priority of the uplink data channel transmission is the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the DAI information is applied to HARQ feedback information associated with a lower one of the first and second priorities, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the DAI information is applied to HARQ feedback  information associated with a higher one of the first and second priorities, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the terminal device 110 receives, from the network device 120, an indication indicating whether the DAI information is used for HARQ feedback information associated with the first priority or the second priority, if the indication indicates that the DAI information is used for the first priority, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. If the indication indicates that the DAI information is used for the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the DAI information is applied to multiplexed HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may generate, based on the DAI information, the third HARQ feedback information indicating both the first and second HARQ feedback information. In some embodiments, if both the first and second HARQ feedback information are of a Type-1 HARQ-ACK codebook, the terminal device 110 may determine that the DAI information comprises an indication for the number of bits in the third HARQ feedback information. If both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, the terminal device 110 may determine that the DAI information comprises the number of bits in the third HARQ feedback information. In this way, the terminal device 110 may multiplex the third HARQ feedback information on the uplink data channel transmission.
In some embodiments where the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may determine, based on the DAI information, whether the first HARQ feedback information is to be multiplexed on the uplink data channel transmission. If determining that the first HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission. If determining that the second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data  channel transmission. If determining that both the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the first and second HARQ feedback information on the uplink data channel transmission.
In some embodiments where the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may perform the multiplexing with the DAI information omitted. In this case, the DAI information is invalid for the multiplexing of HARQ feedback information with different priorities on the uplink data channel transmission.
In some embodiments where the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may determine, from the DAI information, first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information. Then the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the first DAI information, and multiplex the second HARQ feedback information on the uplink data channel transmission based on the second DAI information.
Return to FIG. 8 again, upon multiplexing of the first and second HARQ feedback information on the uplink data channel transmission, the terminal device 110 may transmit the uplink data channel transmission to the network device 120. Thereby, the first and second HARQ feedback information with low and high priorities is both transmitted. Thus, compared with that in Release 16, the performance of a service with a low priority can be improved.
EXAMPLE IMPLEMENTATION OF METHODS
Accordingly, embodiments of the present disclosure provide methods of communication implemented at a terminal device and a network device. These methods will be described below with reference to FIGs. 9 to 11.
FIG. 9 illustrates an example method 900 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. For example, the method 900 may be performed at the terminal device 110 as shown in FIG. 1. For the purpose of discussion, in the following, the method 900 will be described with reference to FIG. 1. It is to be understood that the method 900 may include additional  blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 910, the terminal device 110 determines whether uplink transmissions are overlapped in time domain. In some embodiments, the uplink transmissions may comprise at least one uplink control channel transmission used for transmitting UCI associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority.
If determining that the uplink transmissions are overlapped in time domain, the process proceeds to block 920. At block 920, the terminal device 110 determines an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmission being multiplexed with the UCI associated with the first priority. In this way, at least a part of information in the at least one uplink control channel transmission is remained.
At block 930, the terminal device 110 transmits, to the network device 120, the uplink transmission multiplexed with the UCI associated with the first priority.
In some embodiments, the terminal device 110 may determine the uplink transmission by determining a first data channel transmission by resolving the overlapping among data channel transmissions in the uplink transmissions, determining a first control channel transmission by resolving the overlapping among control channel transmissions in the uplink transmissions, and resolving the overlapping between the first data channel transmission and the first control channel transmission. In this way, at least a part of information in control channel transmission with a low priority can be remained in a relatively simple way, and the performance of the service with the low priority can be enhanced.
In some embodiments, the terminal device 110 may determine the uplink transmission by determining a first data channel transmission by resolving the overlapping among data channel transmissions in the uplink transmissions; resolving the overlapping between the first data channel transmission and a control channel transmission in the uplink transmissions that has the same priority as that of the first data channel transmission; and resolving the overlapping between the first data channel transmission and a control channel transmission in the uplink transmissions that has a different priority from that of the first data channel transmission.
In some embodiments, the terminal device 110 may determine the uplink transmission by determining an uplink transmission associated with the first priority by resolving the overlapping among uplink transmissions associated with the first priority in the uplink transmissions, determining an uplink transmission associated with the second priority by resolving the overlapping among multiple uplink transmissions associated with the second priority in the uplink transmissions, and resolving the overlapping between the uplink transmission associated with the first priority and the uplink transmission associated with the second priority. In this way, at least a part of information in control channel transmission with a low priority also can be remained, and the performance of the service with the low priority can be enhanced.
FIG. 10 illustrates another example method 1000 of communication implemented at a terminal device in accordance with some embodiments of the present disclosure. For example, the method 1000 may be performed at the terminal device 110 as shown in FIG. 1. For the purpose of discussion, in the following, the method 1000 will be described with reference to FIG. 1. It is to be understood that the method 1000 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
At block 1010, the terminal device 110 receives, from the network device 120, DAI information in DCI scheduling an uplink data channel transmission. According to embodiments of the present disclosure, the DAI information is associated with at least one of a first priority or a second priority higher than the first priority.
At block 1020, the terminal device 110 determines whether the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first HARQ feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority. If determining that the uplink data channel transmission is overlapped with the first and second uplink control channel transmissions, the process proceeds to block 1030.
At block 1030, the terminal device 110 may multiplex, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
In some embodiments where the DAI information is applied to HARQ feedback information associated with a priority of the uplink data channel transmission, if the priority  of the uplink data channel transmission is the first priority, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. If the priority of the uplink data channel transmission is the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the DAI information is applied to HARQ feedback information associated with a lower one of the first and second priorities, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the DAI information is applied to HARQ feedback information associated with a higher one of the first and second priorities, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments, the terminal device 110 may further receive, from the network device 120, an indication indicating whether the DAI information is used for HARQ feedback information associated with the first priority or the second priority. In some embodiments where the indication indicates that the DAI information is used for the first priority, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission based on the DAI information. In some embodiments where the indication indicates that the DAI information is used for the second priority, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
In some embodiments where the DAI information is applied to multiplexed HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may generate, based on the DAI information, third HARQ feedback information indicating both the first and second HARQ feedback information, and multiplex the third HARQ feedback information on the uplink data channel transmission. In some embodiments where both the first and second HARQ feedback information are of a Type-1 HARQ-ACK codebook, the terminal device 110 may determine that the DAI information comprises an indication for the number of bits in the third HARQ feedback information. In some embodiments where both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, the terminal device 110 may determine that the DAI  information comprises the number of bits in the third HARQ feedback information.
In some embodiments where the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may determine, based on the DAI information, whether the first HARQ feedback information is to be multiplexed on the uplink data channel transmission. If determining that the first HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the first HARQ feedback information on the uplink data channel transmission. If determining that the second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex the second HARQ feedback information on the uplink data channel transmission. If determining that both the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission, the terminal device 110 may multiplex both the first and second HARQ feedback information on the uplink data channel transmission.
In some embodiments where the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may perform the multiplexing with the DAI information omitted. In other words, the DAI information is not considered in the multiplexing.
In some embodiments where the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, the terminal device 110 may determine, from the DAI information, first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information; multiplex the first HARQ feedback information on the uplink data channel transmission based on the first DAI information; and multiplex the second HARQ feedback information on the uplink data channel transmission based on the second DAI information.
In this way, the DAI information in DCI can be used for the multiplexing of the HARQ feedback information with different priorities on an uplink data channel transmission.
FIG. 11 illustrates an example method 1100 of communication implemented at a network device in accordance with some embodiments of the present disclosure. For example, the method 1100 may be performed at the network device 120 as shown in FIG. 1. For the purpose of discussion, in the following, the method 1100 will be described with  reference to FIG. 1. It is to be understood that the method 1100 may include additional blocks not shown and/or may omit some blocks as shown, and the scope of the present disclosure is not limited in this regard.
As shown in FIG. 11, at block 1110, the network device 120 generates DAI information associated with at least one of a first priority or a second priority higher than the first priority. In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a priority of the uplink data channel transmission.
In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a lower one of the first and second priorities. In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with a higher one of the first and second priorities.
In some embodiments, the network device 120 may further transmit, to the terminal device 110, an indication indicating whether the DAI information is applied to HARQ feedback information associated with the first priority or the second priority.
In some embodiments, the network device 120 may cause the DAI information to be applied to HARQ feedback information associated with third HARQ feedback information indicating both the first and second HARQ feedback information. In some embodiments where both the first and second HARQ feedback information are of a Type-1 HARQ-acknowledgement (HARQ-ACK) codebook, the network device 120 may cause an indication for the number of bits in the third HARQ feedback information to be comprised in the DAI information. In some embodiments where both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, the network device 120 may cause the number of bits in the third HARQ feedback information to be comprised in the DAI information.
In some embodiments, the network device 120 may cause the DAI information to indicate whether the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission.
In some embodiments, the network device 120 may set the DAI information to be invalid for multiplexing of the first and second HARQ feedback information on an uplink data channel transmission.
In some embodiments, the network device 120 may generate first DAI information for the first HARQ feedback information, generate second DAI information for the second HARQ feedback information, and cause the first and second DAI information to be comprised in the DAI information.
At block 1120, the network device 120 transmits, to the terminal device 110, the DAI information in DCI scheduling the uplink data channel transmission, for use in multiplexing, on the uplink data channel transmission, at least one of first HARQ feedback information having the first priority or second HARQ feedback information having the second priority.
In this way, the DAI information in DCI can be redefined for the multiplexing of the HARQ feedback information with different priorities on an uplink data channel transmission.
EXAMPLE IMPLEMENTATION OF DEVICE
FIG. 12 is a simplified block diagram of a device 1200 that is suitable for implementing embodiments of the present disclosure. The device 1200 can be considered as a further example implementation of the terminal device 110 or the network device 120 as shown in FIG. 1. Accordingly, the device 1200 can be implemented at or as at least a part of the terminal device 110 or the network device 120.
As shown, the device 1200 includes a processor 1210, a memory 1220 coupled to the processor 1210, a suitable transmitter (TX) and receiver (RX) 1240 coupled to the processor 1210, and a communication interface coupled to the TX/RX 1240. The memory 1210 stores at least a part of a program 1230. The TX/RX 1240 is for bidirectional communications. The TX/RX 1240 has at least one antenna to facilitate communication, though in practice an Access Node mentioned in this application may have several ones. The communication interface may represent any interface that is necessary for communication with other network elements, such as X2/Xn interface for bidirectional communications between eNBs/gNBs, S1/NG interface for communication between a Mobility Management Entity (MME) /Access and Mobility Management Function (AMF) /SGW/UPF and the eNB/gNB, Un interface for communication between the eNB/gNB and a relay node (RN) , or Uu interface for communication between the eNB/gNB and a terminal device.
The program 1230 is assumed to include program instructions that, when executed  by the associated processor 1210, enable the device 1200 to operate in accordance with the embodiments of the present disclosure, as discussed herein with reference to FIGs. 1 to 8. The embodiments herein may be implemented by computer software executable by the processor 1210 of the device 1200, or by hardware, or by a combination of software and hardware. The processor 1210 may be configured to implement various embodiments of the present disclosure. Furthermore, a combination of the processor 1210 and memory 1220 may form processing means 1250 adapted to implement various embodiments of the present disclosure.
The memory 1220 may be of any type suitable to the local technical network and may be implemented using any suitable data storage technology, such as a non-transitory computer readable storage medium, semiconductor based memory devices, magnetic memory devices and systems, optical memory devices and systems, fixed memory and removable memory, as non-limiting examples. While only one memory 1220 is shown in the device 1200, there may be several physically distinct memory modules in the device 1200. The processor 1210 may be of any type suitable to the local technical network, and may include one or more of general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1200 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representation, it will be appreciated that the blocks, apparatus, systems, techniques or methods described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in  program modules, being executed in a device on a target real or virtual processor, to carry out the process or method as described above with reference to FIGs. 2 to 11. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
The above program code may be embodied on a machine readable medium, which may be any tangible medium that may contain, or store a program for use by or in connection with an instruction execution system, apparatus, or device. The machine readable medium may be a machine readable signal medium or a machine readable storage medium. A machine readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the machine readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in  the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in language specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (30)

  1. A method of communication, comprising:
    in accordance with a determination that uplink transmissions are overlapped in time domain, determining an uplink transmission by resolving the overlapping among the uplink transmissions, the uplink transmissions comprising at least one uplink control channel transmission used for transmitting uplink control information associated with a first priority and at least one uplink transmission used for transmitting uplink information associated with a second priority higher than the first priority; and
    transmitting the uplink transmission multiplexed with the uplink control information associated with the first priority.
  2. The method of claim 1, wherein resolving the overlapping among the uplink transmissions comprises:
    determining a first data channel transmission by resolving the overlapping among data channel transmissions in the uplink transmissions;
    determining a first control channel transmission by resolving the overlapping among control channel transmissions in the uplink transmissions; and
    resolving the overlapping between the first data channel transmission and the first control channel transmission.
  3. The method of claim 1, wherein resolving the overlapping among the uplink transmissions comprises:
    determining a first data channel transmission by resolving the overlapping among data channel transmissions in the uplink transmissions;
    resolving the overlapping between the first data channel transmission and a control channel transmission in the uplink transmissions that has the same priority as that of the first data channel transmission; and
    resolving the overlapping between the first data channel transmission and a control channel transmission in the uplink transmissions that has a different priority from that of the first data channel transmission.
  4. The method of claim 1, wherein resolving the overlapping among the uplink transmissions comprises:
    determining an uplink transmission associated with the first priority by resolving the overlapping among uplink transmissions associated with the first priority in the uplink transmissions;
    determining an uplink transmission associated with the second priority by resolving the overlapping among multiple uplink transmissions associated with the second priority in the uplink transmissions; and
    resolving the overlapping between the uplink transmission associated with the first priority and the uplink transmission associated with the second priority.
  5. A method of communication, comprising:
    receiving, at a terminal device and from a network device, downlink assignment index (DAI) information in downlink control information (DCI) scheduling an uplink data channel transmission, the DAI information being associated with at least one of a first priority or a second priority higher than the first priority; and
    in accordance with a determination that the uplink data channel transmission is overlapped with a first uplink control channel transmission for a first hybrid automatic repeat request (HARQ) feedback information having the first priority and a second uplink control channel transmission for a second HARQ feedback information having the second priority, multiplexing, based on the DAI information, at least one of the first HARQ feedback information or the second HARQ feedback information on the uplink data channel transmission.
  6. The method of claim 5, wherein the DAI information is applied to HARQ feedback information associated with a priority of the uplink data channel transmission, and
    wherein the multiplexing comprises:
    in accordance with a determination that the priority of the uplink data channel transmission is the first priority, multiplexing the first HARQ feedback information on the uplink data channel transmission based on the DAI information; and
    in accordance with a determination that the priority of the uplink data channel transmission is the second priority, multiplexing the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  7. The method of claim 5, wherein the DAI information is applied to HARQ feedback information associated with a lower one of the first and second priorities, and
    wherein the multiplexing comprises:
    multiplexing the first HARQ feedback information on the uplink data channel transmission based on the DAI information.
  8. The method of claim 5, wherein the DAI information is applied to HARQ feedback information associated with a higher one of the first and second priorities, and
    wherein the multiplexing comprises:
    multiplexing the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  9. The method of claim 5, further comprising:
    receiving, from the network device, an indication indicating whether the DAI information is used for HARQ feedback information associated with the first priority or the second priority,
    wherein the multiplexing comprises:
    in accordance with a determination that the indication indicates that the DAI information is used for the first priority, multiplexing the first HARQ feedback information on the uplink data channel transmission based on the DAI information; and
    in accordance with a determination that the indication indicates that the DAI information is used for the second priority, multiplexing the second HARQ feedback information on the uplink data channel transmission based on the DAI information.
  10. The method of claim 5, wherein the DAI information is applied to multiplexed HRAQ feedback information associated with both the first and second priorities, and
    wherein the multiplexing comprises:
    generating, based on the DAI information, third HARQ feedback information indicating both the first and second HARQ feedback information; and
    multiplexing the third HARQ feedback information on the uplink data channel transmission.
  11. The method of claim 10, wherein the generating comprises:
    in accordance with a determination that both the first and second HARQ feedback information are of a Type-1 HARQ-acknowledgement (HARQ-ACK) codebook, determining that the DAI information comprises an indication for the number of bits in the  third HARQ feedback information; and
    in accordance with a determination that both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, determining that the DAI information comprises the number of bits in the third HARQ feedback information.
  12. The method of claim 5, wherein the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, and
    wherein the multiplexing comprises:
    determining, based on the DAI information, whether the first HARQ feedback information is to be multiplexed on the uplink data channel transmission;
    in accordance with a determination that the first HARQ feedback information is to be multiplexed on the uplink data channel transmission, multiplexing the first HARQ feedback information on the uplink data channel transmission;
    in accordance with a determination that the second HARQ feedback information is to be multiplexed on the uplink data channel transmission, multiplexing the second HARQ feedback information on the uplink data channel transmission; and
    in accordance with a determination that both the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission, multiplexing the first and second HARQ feedback information on the uplink data channel transmission.
  13. The method of claim 5, wherein the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, and
    wherein the multiplexing is performed with the DAI information omitted.
  14. The method of claim 5, wherein the DAI information is applied to HRAQ feedback information associated with both the first and second priorities, and
    wherein the multiplexing comprises:
    determining, from the DAI information, first DAI information for the first HARQ feedback information and second DAI information for the second HARQ feedback information;
    multiplexing the first HARQ feedback information on the uplink data channel transmission based on the first DAI information; and
    multiplexing the second HARQ feedback information on the uplink data  channel transmission based on the second DAI information.
  15. A method of communication, comprising:
    generating, at a network device, downlink assignment index (DAI) information associated with at least one of a first priority or a second priority higher than the first priority; and
    transmitting, to a terminal device, the DAI information in downlink control information (DCI) scheduling an uplink data channel transmission, for use in multiplexing, on the uplink data channel transmission, at least one of first hybrid automatic repeat request (HARQ) feedback information having the first priority or second HARQ feedback information having the second priority.
  16. The method of claim 15, wherein generating the DAI information comprises:
    causing the DAI information to be applied to HARQ feedback information associated with a priority of the uplink data channel transmission.
  17. The method of claim 15, wherein generating the DAI information comprises:
    causing the DAI information to be applied to HARQ feedback information associated with a lower one of the first and second priorities.
  18. The method of claim 15, wherein generating the DAI information comprises:
    causing the DAI information to be applied to HARQ feedback information associated with a higher one of the first and second priorities.
  19. The method of claim 15, further comprising:
    transmitting, to the terminal device, an indication indicating whether the DAI information is applied to HARQ feedback information associated with the first priority or the second priority.
  20. The method of claim 15, wherein generating the DAI information comprises:
    causing the DAI information to be applied to HARQ feedback information associated with third HARQ feedback information indicating both the first and second HARQ feedback information.
  21. The method of claim 20, wherein the causing comprises:
    in accordance with a determination that both the first and second HARQ feedback information are of a Type-1 HARQ-acknowledgement (HARQ-ACK) codebook, causing an indication for the number of bits in the third HARQ feedback information to be comprised in the DAI information; and
    in accordance with a determination that both the first and second HARQ feedback information are of a Type-2 HARQ-ACK codebook, causing the number of bits in the third HARQ feedback information to be comprised in the DAI information.
  22. The method of claim 15, wherein generating the DAI information comprises:
    causing the DAI information to indicate whether the first and second HARQ feedback information is to be multiplexed on the uplink data channel transmission.
  23. The method of claim 15, wherein generating the DAI information comprises:
    setting the DAI information to be invalid for multiplexing of the first and second HARQ feedback information on an uplink data channel transmission.
  24. The method of claim 15, wherein generating the DAI information comprises:
    generating first DAI information for the first HARQ feedback information;
    generating second DAI information for the second HARQ feedback information; and
    causing the first and second DAI information to be comprised in the DAI information.
  25. A terminal device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method according to any of claims 1 to 4.
  26. A terminal device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the terminal device to perform the method  according to any of claims 5 to 14.
  27. A network device comprising:
    a processor; and
    a memory coupled to the processor and storing instructions thereon, the instructions, when executed by the processor, causing the network device to perform the method according to any of claims 15 to 24.
  28. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 1 to 4.
  29. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 5 to 14.
  30. A computer readable medium having instructions stored thereon, the instructions, when executed on at least one processor, causing the at least one processor to perform the method according to any of claims 15 to 24.
PCT/CN2020/127561 2020-11-09 2020-11-09 Method, device and computer storage medium of communication WO2022095037A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127561 WO2022095037A1 (en) 2020-11-09 2020-11-09 Method, device and computer storage medium of communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/127561 WO2022095037A1 (en) 2020-11-09 2020-11-09 Method, device and computer storage medium of communication

Publications (1)

Publication Number Publication Date
WO2022095037A1 true WO2022095037A1 (en) 2022-05-12

Family

ID=81458537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/127561 WO2022095037A1 (en) 2020-11-09 2020-11-09 Method, device and computer storage medium of communication

Country Status (1)

Country Link
WO (1) WO2022095037A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192007A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Collision handling for csi reporting on pusch
WO2020164477A1 (en) * 2019-02-13 2020-08-20 电信科学技术研究院有限公司 Harq feedback method, and terminal
US20200314900A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Uplink collision handling

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019192007A1 (en) * 2018-04-05 2019-10-10 Qualcomm Incorporated Collision handling for csi reporting on pusch
WO2020164477A1 (en) * 2019-02-13 2020-08-20 电信科学技术研究院有限公司 Harq feedback method, and terminal
US20200314900A1 (en) * 2019-03-29 2020-10-01 Qualcomm Incorporated Uplink collision handling

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Correction on timeline check for uplink physical channel overlapping", 3GPP DRAFT; R1-1906297 CORRECTION ON TIMELINE CHECK FOR UPLINK PHYSICAL CHANNEL OVERLAPPING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20190513 - 20190517, 13 May 2019 (2019-05-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051727747 *

Similar Documents

Publication Publication Date Title
WO2021007862A1 (en) Report of harq feedback in sidelink transmission
US20220303985A1 (en) Methods for communication, devices, and computer readable medium
WO2022021426A1 (en) Method, device and computer storage medium for communication
WO2022067677A1 (en) Method, device and computer storage medium for communication
CA3144238C (en) Report of harq feedback in sidelink transmission
WO2022061533A1 (en) Methods for communications, terminal device, network device and computer readable media
US20230156699A1 (en) Method, device and computer storage medium for communication
WO2022205451A1 (en) Method, device and computer readable medium for communication
WO2022141647A1 (en) Method, device and computer storage medium of communication
WO2022027645A1 (en) Computer readable medium, methods, and devices for communication
US12015485B2 (en) Methods, devices, and medium for communication
US11996943B2 (en) Method, device and computer storage medium for communication using physical downlink control channel candidates
WO2022095037A1 (en) Method, device and computer storage medium of communication
WO2023272723A1 (en) Method, device and computer storage medium of communication
US20240146468A1 (en) Method, device and computer storage medium of communication
WO2022151065A1 (en) Method, device and computer storage medium of communication
WO2022261942A1 (en) Method, device and computer storage medium of communication
WO2022217606A1 (en) Communication methods, terminal device, network device, and computer-readable media
WO2023272741A1 (en) Method, device and computer storage medium of communication
WO2022193252A1 (en) Communication methods, terminal device, network device and computer-readable medium
US20240048292A1 (en) Method, device and computer storage medium of communication
WO2024011453A1 (en) Method, device and computer storage medium of communication
WO2023004596A1 (en) Method, device and computer storage medium of communication
WO2023279346A1 (en) Method, device and computer storage medium of communication
WO2021226874A1 (en) Method, device and computer readable medium for communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20960494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20960494

Country of ref document: EP

Kind code of ref document: A1