WO2022092877A1 - Soft sensor having multi-sensing function - Google Patents

Soft sensor having multi-sensing function Download PDF

Info

Publication number
WO2022092877A1
WO2022092877A1 PCT/KR2021/015362 KR2021015362W WO2022092877A1 WO 2022092877 A1 WO2022092877 A1 WO 2022092877A1 KR 2021015362 W KR2021015362 W KR 2021015362W WO 2022092877 A1 WO2022092877 A1 WO 2022092877A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
sensor
cover
fabric
ion
Prior art date
Application number
PCT/KR2021/015362
Other languages
French (fr)
Korean (ko)
Inventor
박용래
김태경
이수동
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2022092877A1 publication Critical patent/WO2022092877A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/04Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands
    • G01L5/10Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring tension in flexible members, e.g. ropes, cables, wires, threads, belts or bands using electrical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/16Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes for measuring several components of force

Definitions

  • the present invention relates to a soft sensor having a multi-sensing function, and more particularly, to a soft sensor having a multi-sensing function capable of individually detecting a physical deformation such as bending, stretching or compression.
  • Soft robots refer to robots manufactured using flexible and soft materials such as polymers and rubbers instead of hard materials such as metals used in conventional robots.
  • the soft robot mainly applies pneumatic pressure to the actuator to generate movement by using the phenomenon that the structure inflates like a balloon and the difference in the characteristics of the material.
  • a soft sensor for example, pneumatic pressure is applied to an elastic body surrounded by Kelvin yarns including microchannels, and the resistance of the microchannels.
  • a conductive yarn having conductivity is knitted in the knitting layer of the artificial muscle, so that the conductive yarn provides different conductivity according to the contraction and expansion of the artificial muscle in the longitudinal direction. That is, by comparing the electrical conductivity before and after contraction of the conductive yarn, the electrical resistance is measured, and the length of contraction of the artificial muscle is sensed according to the measurement result.
  • These conventional soft sensors are basically based on a single sensing mechanism capable of sensing only one deformation mode at a time.
  • the conductive yarn can sense only the contract length of the artificial muscle by using the change in electrical resistance before and after the contraction, so there is a problem in that various physical deformations of the soft robot cannot be accurately detected.
  • An object of the present invention to solve the problems of the prior art as described above is a multi-sensing function that can detect deformation such as bending, stretching or compression applied to a sensor individually as well as distinguishing and detecting these modes at the same time
  • a soft sensor having
  • the present invention includes: a channel formed of a flexible material and formed in a long shape and having an empty space therein; an optical sensor having a light emitting unit mounted on one end of the channel and a light receiving unit mounted on the other end of the channel; an ion sensor having an ionic liquid filled in the channel and an ion sensing unit configured to sense a change in electrical resistance of the ionic liquid filled in the channel; and a cover formed of a flexible material and formed to cover the channel, wherein when the light receiving unit receives the light emitted by the light emitting unit, the amount of light received by the light receiving unit changes according to the deformation of the channel and the cover When the ion sensing unit detects a change in the electrical resistance of the ionic liquid filled in the channel, it provides a multifunctional soft sensor, characterized in that the electrical resistance sensed by the ion sensing unit is changed according to the deformation of the channel .
  • a soft sensor having a multi-sensing function, characterized in that the channel is formed of a transparent waveguide.
  • the ion sensing unit generates an alternating current waveform to the channel, and the ion sensing unit is configured to detect a change in electrical resistance of the ionic liquid according to the compression deformation of the channel.
  • a soft sensor having a multi-sensing function to provide.
  • the cover provides a soft sensor having a multi-sensing function, characterized in that formed of an opaque material for blocking light.
  • a fabric sensor having a conductive fabric layer mounted along one longitudinal side of the channel, and a fabric sensing unit for detecting a change in electrical conductivity of the conductive fabric layer, the electrical resistance change of the conductive fabric layer to the fabric
  • a soft sensor having a multi-sensing function, characterized in that the electrical resistance sensed by the fabric sensing unit is changed according to the stretching deformation of the channel.
  • the channel is formed in a polyhedron
  • the conductive fabric layer provides a soft sensor having a multi-sensing function, characterized in that it is configured in plurality so as to be all mounted on each surface formed along the longitudinal direction of the channel.
  • the conductive fabric layer includes a fabric part formed to cover one side in the longitudinal direction of the channel, and conductive yarn knitted to have a pattern on the fabric part, and when a stretching deformation is applied to the fabric part, the conductive yarn
  • a soft sensor having a multi-sensing function, characterized in that the contact area between the two is deformed so that the conductivity of the conductive yarn is deformed.
  • the present invention is provided with an optical sensor, an ion sensor, and a fabric sensor inside the cover, it is possible to individually detect deformation such as bending, stretching or compression, as well as to distinguish and detect these various modes at the same time.
  • the optical sensor, the ion sensor and the fabric sensor are all provided inside the cover, there is an effect that the entire structure can be manufactured in a compact size.
  • the optical sensor, the ion sensor, and the fabric sensor do not interfere with each other in the process of detecting the deformation of the cover, the reliability of the results detected by the optical sensor, the ion sensor, and the fabric sensor is improved.
  • the conductive fabric layer is mounted so as to surround all surfaces of the channel, the conductive fabric layer has an effect of more easily detecting the shape deformation of the channel.
  • FIG. 1 is a diagram schematically illustrating a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG. 2 is a diagram illustrating an optical sensor, an ion sensor, and a fabric sensor mounted on a channel of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG 3 is a partially cutaway view of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • Fig. 4 (a) is a diagram illustrating an optical sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention
  • Fig. 4 (b) is a multi-purpose sensor according to a preferred embodiment of the present invention. It is a diagram illustrating an ion sensor of a soft sensor having a detection function
  • FIG. 4 (c) is a diagram illustrating a fabric sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a control member of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a state in which individual signals generated by deformation of a light receiving unit, an ion sensing unit, and a fabric sensing unit of a soft sensor having a multi-sensing function are transmitted to a control unit according to a preferred embodiment of the present invention.
  • FIG. 7 (a) is a diagram illustrating a state in which no external stimulus is applied to the soft sensor having a multi-sensing function according to a preferred embodiment of the present invention
  • FIG. 7 (b) is a diagram of the present invention
  • It is a diagram illustrating a state in which a bending stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment
  • FIG. 7 (c) is a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG. 7 (d) is a diagram illustrating a state in which a compressive stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention .
  • FIGS. 8 to 9 are diagrams illustrating a process of manufacturing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG. 10 is a diagram illustrating a state in which a soft sensor having a multi-sensing function is worn on a user's hand according to a preferred embodiment of the present invention.
  • FIG. 1 is a diagram schematically showing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention
  • FIG. 2 is an optical mounted in a channel of the soft sensor having a multi-sensing function according to a preferred embodiment of the present invention
  • It is a diagram illustrating a sensor, an ion sensor, and a fabric sensor
  • FIG. 3 is a view showing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, partially cut away.
  • the soft sensor 100 having a multi-sensing function is applied to, for example, a wearable soft robot, artificial muscle, etc.
  • it includes a channel 110 , an optical sensor 120 , an ion sensor 130 , a fabric sensor 140 , and a cover 150 .
  • the channel 110 is formed of a flexible material, is formed in a long shape, and an empty space is formed along the inner longitudinal direction.
  • the channel 110 is formed of a transparent optical waveguide material or a transparent silicone material having elasticity, which is optically well reflective, and reflects the light emitted from the light emitting unit 122 to be described later by the principle of total reflection. can
  • the channel 110 provides a smooth surface so that the conductive fabric layer 142 to be described later can be easily attached thereto.
  • the cover 150 is formed of a flexible material and is formed to cover the channel 110 .
  • the cover 150 includes a central cover 154 formed to cover the entire channel 110 , and a pair of holder covers 152 formed on both sides of the central cover 154 . Since the central cover 154 covers the entire channel 110 , it is possible to physically protect the channel 110 and the conductive fabric layer 142 .
  • the cover 150 is formed of an opaque material for blocking light, it is possible to prevent an optical obstruction from the surrounding light.
  • 4A is a diagram illustrating an optical sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • the optical sensor 120 includes a light emitting unit 122 and a light receiving unit 124 .
  • the light emitting unit 122 is mounted on one end of the channel 110 in the longitudinal direction to emit light.
  • the light emitting unit 122 may include, for example, an LED that emits infrared light.
  • the light receiving unit 124 is mounted on the other end of the channel 110 in the longitudinal direction and detects the light emitted by the light emitting unit 122 .
  • the channel 110 serves as a waveguide through which light travels.
  • the light receiving unit 124 detects the light emitted by the light emitting unit 122 , when the channel 110 is physically deformed, that is, when the channel 110 is bent, the channel 110 is bent according to the bending angle of the channel. (110) The amount of light reflected inside is reduced, so that the amount of light received by the light receiving unit 124 is changed.
  • FIG. 4B is a diagram illustrating an ion sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • the ion sensor 130 is an ionic liquid 132 filled in the interior of the channel 110, and the ionic liquid 132 filled in the channel 110. It includes an ion sensing unit 134 (shown in FIG. 5 ) for detecting a change in electrical resistance.
  • the ionic liquid 132 is optically transparent and does not interfere with the propagation of light emitted by the light emitting unit 122 .
  • the ion sensing unit 134 detects a change in electrical resistance of the ionic liquid 132 filled in the channel 110 , for example, an external pressure is locally applied to a portion of the cover 150 to thereby detect the change in the channel 110 . ), the electrical resistance sensed by the ion sensing unit 134 is changed according to the compression or stretching deformation of the channel 110 .
  • the ion sensing unit 134 generates an AC waveform to the channel 110 , and the ion sensing unit 134 detects a change in electrical resistance of the ionic liquid 132 according to the compression deformation of the channel 110 .
  • DC direct current
  • FIG. 4C is a diagram illustrating a fabric sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • the fabric sensor 140 is a conductive fabric layer 142 mounted along one side of the longitudinal direction of the channel 110, and electrical conductivity of the conductive fabric layer 142 is measured. It includes a fabric sensing unit 144 (shown in FIG. 5) for sensing.
  • the channel 110 is formed of a polyhedron, for example, a hexahedron, and the conductive fabric layer 142 may be formed of four to be mounted on all four surfaces formed along the longitudinal direction of the channel 110 .
  • the conductive fabric layer 142 since the conductive fabric layer 142 is mounted to cover all surfaces of the channel 110 , the conductive fabric layer 142 has the effect of more easily detecting the shape deformation of the channel 110 .
  • the conductive fabric layer 142 includes a fabric part formed to cover one side of the channel 110 in the longitudinal direction 150 and a conductive yarn knitted to have a predetermined pattern on the fabric part.
  • the conductive yarn may be configured to have conductivity, for example, by coating silver on nylon.
  • the fabric sensing unit 144 detects a change in electrical resistance of the conductive fabric layer 142 , and the electrical resistance sensed by the fabric sensing unit 144 is changed according to the stretching deformation of the channel 110 . That is, when a stretching deformation is applied so that the cover 150 and the channel 110 are expanded in both longitudinal directions, the angle of the conductive yarn decreases, which increases the contact area between the conductive yarns, thereby increasing the overall thickness of the conductive fabric layer 142 . electrical resistance is reduced. The fabric sensing unit 144 senses this decrease in electrical resistance and transmits it to the control unit 162 .
  • the optical sensor 120, the ion sensor 130, and the fabric sensor 140 are provided inside the cover 150, it is possible to individually detect deformation such as bending, stretching or compression, as well as these various It has the effect of being able to distinguish and detect modes at the same time.
  • the optical sensor 120, the ion sensor 130, and the fabric sensor 140 are all provided inside the cover 150, there is an effect that the entire structure can be manufactured in a compact size.
  • the optical sensor 120, the ion sensor 130 and the fabric sensor 140 do not interfere with each other in the process of detecting the deformation of the cover 150, the optical sensor 120, the ion sensor 130 and There is an effect that the reliability of the result sensed by the fabric sensor 140 is improved.
  • FIG. 5 is a diagram illustrating a control member of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention
  • FIG. 6 is a light receiving unit of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • the control unit 160 includes a control unit 162 and a display unit 164 .
  • the control unit 162 shows the change in the amount of light received from the light receiving unit 124, the change in electrical resistance transmitted from the ion sensing unit 134, and the change in electrical resistance transmitted from the fabric sensing unit 144 to the display unit 164 as a line graph, Output as bar graphs, numbers, etc.
  • control unit 162 compares the result values received from the light receiving unit 124, the ion sensing unit 134, and the fabric sensing unit 144, and in this case, the control unit 162 is, for example, based on the threshold value. It is possible to use a result value analysis method or a result value analysis method using artificial neural network-based machine learning. And the control unit 162 determines whether bending, stretching, or compression is applied to the current cover 150 according to the comparison result, and when bending, stretching or compression is applied, how much compared to the reference value It can be judged whether
  • FIG. 7 (a) is a diagram illustrating a state in which no external stimulus is applied to the soft sensor having a multi-sensing function according to a preferred embodiment of the present invention
  • FIG. 7 (b) is a diagram of the present invention
  • It is a diagram illustrating a state in which a bending stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment
  • FIG. 7 (c) is a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • FIG. 7 (d) is a diagram illustrating a state in which a compressive stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention .
  • FIGS. 8 to 9 are diagrams illustrating a process of manufacturing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
  • the channel 110 is first cast using a 3D printing mold. Thereafter, as shown in FIG. 8(b), the light emitting unit 122 and the light receiving unit 124 are mounted on both ends of the channel 110, respectively, and then, as shown in FIG. 8(c), using a syringe or the like. An ionic liquid 132 is injected into the channel 110 . Thereafter, a wire is connected into the channel 110 in order to transmit a signal for the ionic liquid 132 to the ion sensing unit 134 as shown in FIG. 8(d).
  • the conductive fabric layer 142 is mounted on the outside of the channel 110 .
  • a mold (M) for forming the cover (150) The mold M is provided with a first groove M1 for forming the holder cover 152 and a second groove M2 for forming the center cover 154 .
  • the holder cover 152 is formed by filling the first groove M1 with the molten first resin and black pigment and curing it.
  • the first resin may be composed of, for example, Sorta Clear 40 silicone having a hardness of 40. Black pigments are configured to absorb most of the visible light.
  • the second groove M2 is filled with the molten second resin and black pigment, and then cured to form the central cover 154 .
  • the second resin may be composed of, for example, Ecoflex 0030 silicone.
  • FIG. 10 is a diagram illustrating a state in which a soft sensor having a multi-sensing function is worn on a user's hand according to a preferred embodiment of the present invention.
  • the soft sensor 100 having a multi-sensing function may be worn on the user's hand while being mounted on a glove.
  • the cover 150 is stretched downward, and the control unit 162 may detect that the user has stretched the cover 150 downward.
  • the control unit 162 may sense that the user has stretched and bent the cover 150 downward.
  • control unit 162 when the control unit 162 is interlocked with the arm of the robot (not shown), the control unit 162 inputs a state in which the cover 150 is moved downward to the arm of the robot so that the arm of the robot moves downward. It can be controlled to move.
  • the control unit 162 can detect that the user has the cover 150 bent sideways. . Accordingly, the control unit 162 may input a state in which the cover 150 is bent sideways to the arm of the robot to control the arm of the robot to move sideways.
  • the control unit 162 may detect that the user applies pressure to the cover 150 . Accordingly, the controller 162 may control the end-effector of the robot to descend or rise by inputting the state in which the pressure is applied to the cover 150 to the arm of the robot.
  • the cover 150 will be applicable to various devices that can be deformed in shape other than gloves.
  • the control unit 162 to control the arm of the robot may be variously designed and modified according to the use environment of the robot.
  • the controller 162 may control various devices that require input, such as a drone, in addition to the robot.
  • channel 120 optical sensor
  • ion sensing unit 140 fabric sensor
  • center cover 160 control material
  • control unit 164 display unit

Abstract

The present invention relates to a soft sensor having a multi-sensing function that enables the sensor to separately detect various physical deformations. The soft sensor has an optical sensor, an ion sensor, and a fabric sensor provided inside a cover, and thus can not only detect deformations, such as bending, stretching, or compression, separately, but can also discriminately detect such various modes simultaneously.

Description

멀티 감지 기능을 갖는 소프트 센서Soft sensor with multi-sensing function
본 발명은 멀티 감지 기능을 갖는 소프트 센서에 관한 것으로, 보다 상세하게는 벤딩, 스트레칭 또는 압축과 같은 물리적 변형을 개별적으로 감지할 수 있도록 하는 멀티 감지 기능을 갖는 소프트 센서에 관한 것이다.The present invention relates to a soft sensor having a multi-sensing function, and more particularly, to a soft sensor having a multi-sensing function capable of individually detecting a physical deformation such as bending, stretching or compression.
소프트 로봇은 기존의 로봇에 사용되는 금속과 같은 단단한 재료 대신 폴리머, 고무와 같은 유연하고 부드러운 재료를 이용하여 제작된 로봇을 일컫는다. 소프트 로봇은 주로 공압을 액추에이터에 인가하여 구조가 마치 풍선처럼 부풀어 오르는 현상 및 소재의 특성 차이를 이용하여 움직임을 생성한다. Soft robots refer to robots manufactured using flexible and soft materials such as polymers and rubbers instead of hard materials such as metals used in conventional robots. The soft robot mainly applies pneumatic pressure to the actuator to generate movement by using the phenomenon that the structure inflates like a balloon and the difference in the characteristics of the material.
한편, 소포트 로봇의 움직임을 감지하기 위해서는 소프트 센서를 이용하여 액추에이터의 변형 또는 수축을 감지해야 하는데, 예를 들면, 마이크로 채널을 포함하는 켈빈 원사로 둘러싸인 탄성 몸체에 공압을 가하고, 마이크로 채널의 저항의 변화를 측정하여, 액추에이터의 수축을 예측하는 방법이 있다. 다른 방법으로는 인공근육의 편물층에 전도성을 가지는 전도성 원사가 니팅(knitting)되도록 하여, 인공근육의 길이 방향으로의 수축 및 팽창에 따라 전도성 원사가 서로 다른 전도성을 제공하도록 한다. 즉, 전도성 원사의 수축 전과 후의 전기 전도성을 비교하여, 전기 저항을 측정하고, 측정 결과에 따라 인공근육의 수축 길이를 감지하는 것이다.On the other hand, in order to detect the movement of the Sopot robot, it is necessary to detect deformation or contraction of the actuator using a soft sensor. For example, pneumatic pressure is applied to an elastic body surrounded by Kelvin yarns including microchannels, and the resistance of the microchannels There is a method of predicting the contraction of the actuator by measuring the change in As another method, a conductive yarn having conductivity is knitted in the knitting layer of the artificial muscle, so that the conductive yarn provides different conductivity according to the contraction and expansion of the artificial muscle in the longitudinal direction. That is, by comparing the electrical conductivity before and after contraction of the conductive yarn, the electrical resistance is measured, and the length of contraction of the artificial muscle is sensed according to the measurement result.
이러한 종래 소프트 센서는 기본적으로 한 번에 하나의 변형 모드만 감지할 수 있는 단일 감지 메커니즘에 기반을 두고 있다. 예를 들면, 전도성 원사는 수축 전, 후에 따른 전기저항 변화를 이용하여 인공 근육의 수축 길이만을 감지할 수 있어, 소프트 로봇의 다양한 물리적 변형을 정확하게 감지할 수 없는 문제점이 있다.These conventional soft sensors are basically based on a single sensing mechanism capable of sensing only one deformation mode at a time. For example, the conductive yarn can sense only the contract length of the artificial muscle by using the change in electrical resistance before and after the contraction, so there is a problem in that various physical deformations of the soft robot cannot be accurately detected.
상기와 같은 종래기술의 문제점을 해결하기 위한 본 발명의 목적은 센서에 가해지는 밴딩, 스트레칭 또는 압축과 같은 변형을 개별적으로 감지할 수 있을 뿐만 아니라 이러한 모드를 동시에 구분하여 감지할 수 있는 멀티 감지 기능을 갖는 소프트 센서를 제공하는 것이다.An object of the present invention to solve the problems of the prior art as described above is a multi-sensing function that can detect deformation such as bending, stretching or compression applied to a sensor individually as well as distinguishing and detecting these modes at the same time To provide a soft sensor having
상기 목적을 달성하기 위하여 본 발명은 가요성 재질로 형성되고 긴 형상으로 형성되며 내부에 빈 공간이 형성되는 채널; 상기 채널의 일단부에 장착되는 발광부와 상기 채널의 타단부에 장착되는 수광부를 갖는 광학센서; 상기 채널의 내부에 채워지는 이온성 액체와, 상기 채널 내부에 채워진 이온성 액체의 전기저항 변화를 감지하는 이온감지부를 갖는 이온센서; 및 가요성 재질로 형성되고 상기 채널을 덮도록 형성되는 커버를 포함하고, 상기 발광부가 발광하는 광을 상기 수광부가 수광할 때, 상기 채널 및 상기 커버의 변형에 따라 상기 수광부가 수광하는 광량이 변화되고, 상기 채널 내부에 채워진 이온성 액체의 전기저항 변화를 상기 이온감지부가 감지할 때, 상기 채널의 변형에 따라 상기 이온감지부가 감지하는 전기 저항이 변화되는 것을 특징으로 하는 다기능 소프트 센서를 제공한다.In order to achieve the above object, the present invention includes: a channel formed of a flexible material and formed in a long shape and having an empty space therein; an optical sensor having a light emitting unit mounted on one end of the channel and a light receiving unit mounted on the other end of the channel; an ion sensor having an ionic liquid filled in the channel and an ion sensing unit configured to sense a change in electrical resistance of the ionic liquid filled in the channel; and a cover formed of a flexible material and formed to cover the channel, wherein when the light receiving unit receives the light emitted by the light emitting unit, the amount of light received by the light receiving unit changes according to the deformation of the channel and the cover When the ion sensing unit detects a change in the electrical resistance of the ionic liquid filled in the channel, it provides a multifunctional soft sensor, characterized in that the electrical resistance sensed by the ion sensing unit is changed according to the deformation of the channel .
또한, 상기 채널은 투명한 도파관으로 형성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서를 제공한다.In addition, there is provided a soft sensor having a multi-sensing function, characterized in that the channel is formed of a transparent waveguide.
또한, 상기 이온감지부는 상기 채널로 교류 파형을 발생시키고, 상기 채널의 압축 변형에 따른 이온성 액체의 전기저항 변화를 상기 이온감지부가 감지하도록 구성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서를 제공한다.In addition, the ion sensing unit generates an alternating current waveform to the channel, and the ion sensing unit is configured to detect a change in electrical resistance of the ionic liquid according to the compression deformation of the channel. A soft sensor having a multi-sensing function to provide.
또한, 상기 커버는 빛을 차단하기 위한 불투명 재질로 형성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서를 제공한다.In addition, the cover provides a soft sensor having a multi-sensing function, characterized in that formed of an opaque material for blocking light.
또한, 상기 채널의 길이방향 일측을 따라 장착되는 전도성 직물층과, 상기 전도성 직물층의 전기 전도성 변화를 감지하는 직물감지부를 갖는 직물센서를 더 포함하고, 상기 전도성 직물층의 전기 저항 변화를 상기 직물감지부가 감지할 때, 상기 채널의 스트레칭 변형에 따라 상기 직물감지부가 감지하는 전기 저항이 변화되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서를 제공한다.In addition, further comprising a fabric sensor having a conductive fabric layer mounted along one longitudinal side of the channel, and a fabric sensing unit for detecting a change in electrical conductivity of the conductive fabric layer, the electrical resistance change of the conductive fabric layer to the fabric When the sensing unit senses, there is provided a soft sensor having a multi-sensing function, characterized in that the electrical resistance sensed by the fabric sensing unit is changed according to the stretching deformation of the channel.
또한, 상기 채널은 다면체로 형성되고, 상기 전도성 직물층은 상기 채널의 길이방향을 따라 형성되는 각각의 면에 모두 장착되도록 복수 개로 구성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서를 제공한다.In addition, the channel is formed in a polyhedron, and the conductive fabric layer provides a soft sensor having a multi-sensing function, characterized in that it is configured in plurality so as to be all mounted on each surface formed along the longitudinal direction of the channel.
또한, 상기 전도성 직물층은 상기 채널의 길이방향 일측을 커버하도록 형성되는 직물부와, 상기 직물부에 패턴을 갖도록 니팅되는 전도성 원사를 포함하고, 상기 직물부에 스트레칭 변형이 가해지면, 상기 전도성 원사 간의 접촉 면적이 변형되어 상기 전도성 원사의 전도성이 변형되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서를 제공한다.In addition, the conductive fabric layer includes a fabric part formed to cover one side in the longitudinal direction of the channel, and conductive yarn knitted to have a pattern on the fabric part, and when a stretching deformation is applied to the fabric part, the conductive yarn Provided is a soft sensor having a multi-sensing function, characterized in that the contact area between the two is deformed so that the conductivity of the conductive yarn is deformed.
본 발명은 커버 내부에 광학센서, 이온센서 및 직물센서가 구비되므로, 벤딩, 스트레칭 또는 압축과 같은 변형을 개별적으로 감지할 수 있을 뿐만 아니라 이러한 다양한 모드를 동시에 구분하여 감지할 수 있는 효과가 있다.Since the present invention is provided with an optical sensor, an ion sensor, and a fabric sensor inside the cover, it is possible to individually detect deformation such as bending, stretching or compression, as well as to distinguish and detect these various modes at the same time.
또한, 커버 내부에 광학센서, 이온센서 및 직물센서가 모두 구비되므로, 전체 구조를 컴팩트하게 소형으로 제조 가능한 효과가 있다.In addition, since the optical sensor, the ion sensor and the fabric sensor are all provided inside the cover, there is an effect that the entire structure can be manufactured in a compact size.
또한, 광학센서, 이온센서 및 직물센서는 커버의 변형을 감지하는 과정에서 상호 간에 간섭을 주지 않아, 광학센서, 이온센서 및 직물센서가 감지하는 결과의 신뢰도가 향상되는 효과가 있다.In addition, since the optical sensor, the ion sensor, and the fabric sensor do not interfere with each other in the process of detecting the deformation of the cover, the reliability of the results detected by the optical sensor, the ion sensor, and the fabric sensor is improved.
또한, 전도성 직물층이 채널의 모든 면을 감싸도록 장착되므로, 전도성 직물층은 채널의 형태 변형을 더욱 용이하게 감지할 수 있는 효과가 있다.In addition, since the conductive fabric layer is mounted so as to surround all surfaces of the channel, the conductive fabric layer has an effect of more easily detecting the shape deformation of the channel.
도 1은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 개략적으로 도시한 도면이다.1 is a diagram schematically illustrating a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 채널에 장착되는 광학센서, 이온센서 및 직물센서를 설명하기 위하여 도시한 도면이다.2 is a diagram illustrating an optical sensor, an ion sensor, and a fabric sensor mounted on a channel of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 일부 절개하여 도시한 도면이다.3 is a partially cutaway view of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 4의 (a)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 광학센서를 설명하기 위하여 도시한 도면이고, 도 4의 (b)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 이온센서를 설명하기 위하여 도시한 도면이며, 도 4의 (c)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 직물센서를 설명하기 위하여 도시한 도면이다.Fig. 4 (a) is a diagram illustrating an optical sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, and Fig. 4 (b) is a multi-purpose sensor according to a preferred embodiment of the present invention. It is a diagram illustrating an ion sensor of a soft sensor having a detection function, and FIG. 4 (c) is a diagram illustrating a fabric sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention. am.
도 5는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 제어부재를 설명하기 위하여 도시한 도면이다.5 is a diagram illustrating a control member of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 6은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 수광부, 이온감지부 및 직물감지부의 변형에 의해 발생하는 개별적 신호가 제어부로 전달되는 상태를 도시한 도면이다.6 is a diagram illustrating a state in which individual signals generated by deformation of a light receiving unit, an ion sensing unit, and a fabric sensing unit of a soft sensor having a multi-sensing function are transmitted to a control unit according to a preferred embodiment of the present invention.
도 7의 (a)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 어떠한 외부 자극도 가해지지 않은 상태를 설명하기 위하여 도시한 도면이고, 도 7의 (b)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 밴딩 자극이 가해진 상태를 설명하기 위하여 도시한 도면이며, 도 7의 (c)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 스트레칭 자극이 가해진 상태를 설명하기 위하여 도시한 도면이고, 도 7의 (d)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 압축 자극이 가해진 상태를 설명하기 위하여 도시한 도면이다.7 (a) is a diagram illustrating a state in which no external stimulus is applied to the soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, and FIG. 7 (b) is a diagram of the present invention It is a diagram illustrating a state in which a bending stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment, and FIG. 7 (c) is a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention. It is a diagram illustrating a state in which a stretching stimulus is applied, and FIG. 7 (d) is a diagram illustrating a state in which a compressive stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention .
도 8 내지 도 9는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 제조하는 과정을 설명하기 위하여 도시한 도면이다.8 to 9 are diagrams illustrating a process of manufacturing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 10은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서가 사용자의 손에 착용된 상태를 도시한 도면이다.10 is a diagram illustrating a state in which a soft sensor having a multi-sensing function is worn on a user's hand according to a preferred embodiment of the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 더욱 상세히 설명한다.Hereinafter, a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention will be described in more detail with reference to the accompanying drawings.
도 1은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 개략적으로 도시한 도면이고, 도 2는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 채널에 장착되는 광학센서, 이온센서 및 직물센서를 설명하기 위하여 도시한 도면이고, 도 3은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 일부 절개하여 도시한 도면이다.1 is a diagram schematically showing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, and FIG. 2 is an optical mounted in a channel of the soft sensor having a multi-sensing function according to a preferred embodiment of the present invention It is a diagram illustrating a sensor, an ion sensor, and a fabric sensor, and FIG. 3 is a view showing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, partially cut away.
도 1 내지 도 3을 참조하면, 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서(100)는 예를 들면 착용 가능한 소프트 로봇, 인공 근육 등에 적용되어, 밴딩, 스트레칭 또는 압축과 같은 물리적 변형을 감지하기 위한 것으로, 채널(110), 광학센서(120), 이온센서(130), 직물센서(140) 및 커버(150)를 포함한다.1 to 3, the soft sensor 100 having a multi-sensing function according to a preferred embodiment of the present invention is applied to, for example, a wearable soft robot, artificial muscle, etc. For detecting deformation, it includes a channel 110 , an optical sensor 120 , an ion sensor 130 , a fabric sensor 140 , and a cover 150 .
채널(110)은 가요성 재질로 형성되고 긴 형상으로 형성되며 내부 길이방향을 따라 빈 공간이 형성된다. 이러한 채널(110)은 광학적으로 반사가 잘 되는 투명한 도파관(Optical Waveguide) 재질 또는 탄성을 갖는 투명 실리콘 재질 등으로 형성되며, 전반사의 원리에 의하여 후술하는 발광부(122)에서 방출되는 빛을 반사시킬 수 있다. 또한, 채널(110)은 후술하는 전도성 직물층(142)이 용이하게 부착될 수 있도록 부드러운 표면을 제공한다.The channel 110 is formed of a flexible material, is formed in a long shape, and an empty space is formed along the inner longitudinal direction. The channel 110 is formed of a transparent optical waveguide material or a transparent silicone material having elasticity, which is optically well reflective, and reflects the light emitted from the light emitting unit 122 to be described later by the principle of total reflection. can In addition, the channel 110 provides a smooth surface so that the conductive fabric layer 142 to be described later can be easily attached thereto.
커버(150)는 가요성 재질로 형성되고 채널(110)을 덮도록 형성된다. 이러한 커버(150)는 채널(110) 전체를 덮도록 형성되는 중앙커버(154)와, 중앙커버(154)의 양측에 형성되는 한 쌍의 홀더커버(152)를 포함한다. 중앙커버(154)는 채널(110) 전체를 덮으므로, 채널(110)과 전도성 직물층(142)을 물리적으로 보호할 수 있다. 또한, 커버(150)는 빛을 차단하기 위한 불투명 재질로 형성되어, 주변 광선으로부터의 광학적 장애를 방지할 수 있다.The cover 150 is formed of a flexible material and is formed to cover the channel 110 . The cover 150 includes a central cover 154 formed to cover the entire channel 110 , and a pair of holder covers 152 formed on both sides of the central cover 154 . Since the central cover 154 covers the entire channel 110 , it is possible to physically protect the channel 110 and the conductive fabric layer 142 . In addition, the cover 150 is formed of an opaque material for blocking light, it is possible to prevent an optical obstruction from the surrounding light.
도 4의 (a)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 광학센서를 설명하기 위하여 도시한 도면이다.4A is a diagram illustrating an optical sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 2 및 도 4의 (a)를 참조하면, 광학센서(120)는 발광부(122) 및 수광부(124)를 포함한다. 발광부(122)는 채널(110)의 길이방향 일단부에 장착되어 광을 발광시킨다. 발광부(122)는 예를 들면 적외선을 발광시키는 LED 등을 포함할 수 있다. 수광부(124)는 채널(110)의 길이방향 타단부에 장착되며 발광부(122)가 발광하는 광을 감지한다. 여기서 채널(110)은 광이 이동되는 도파관 역할을 한다. 그리고 발광부(122)가 발광하는 광을 수광부(124)가 감지할 때, 채널(110)이 물리적으로 변형 즉, 채널(110)이 밴딩되면, 채널(110)의 밴딩되는 변형 각도에 따라 채널(110) 내부에서 반사되는 광의 양이 줄어들게 되어, 수광부(124)가 수광하는 광량이 변화된다. Referring to FIGS. 2 and 4A , the optical sensor 120 includes a light emitting unit 122 and a light receiving unit 124 . The light emitting unit 122 is mounted on one end of the channel 110 in the longitudinal direction to emit light. The light emitting unit 122 may include, for example, an LED that emits infrared light. The light receiving unit 124 is mounted on the other end of the channel 110 in the longitudinal direction and detects the light emitted by the light emitting unit 122 . Here, the channel 110 serves as a waveguide through which light travels. And when the light receiving unit 124 detects the light emitted by the light emitting unit 122 , when the channel 110 is physically deformed, that is, when the channel 110 is bent, the channel 110 is bent according to the bending angle of the channel. (110) The amount of light reflected inside is reduced, so that the amount of light received by the light receiving unit 124 is changed.
도 4의 (b)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 이온센서를 설명하기 위하여 도시한 도면이다.FIG. 4B is a diagram illustrating an ion sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 2 및 도 4의 (b)를 참조하면, 이온센서(130)는 채널(110)의 내부에 채워지는 이온성 액체(132)와, 채널(110) 내부에 채워진 이온성 액체(132)의 전기저항 변화를 감지하는 이온감지부(134: 도 5 도시)를 포함한다. 이온성 액체(132)는 광학적으로 투명하여 발광부(122)가 발광시키는 광의 진행을 간섭하지 않는다. 2 and 4 (b), the ion sensor 130 is an ionic liquid 132 filled in the interior of the channel 110, and the ionic liquid 132 filled in the channel 110. It includes an ion sensing unit 134 (shown in FIG. 5 ) for detecting a change in electrical resistance. The ionic liquid 132 is optically transparent and does not interfere with the propagation of light emitted by the light emitting unit 122 .
이온감지부(134)는 채널(110) 내부에 채워진 이온성 액체(132)의 전기저항 변화를 감지하는데, 예를 들면 커버(150)의 일 부분에 국소적으로 외부 압력이 가해져서 채널(110)에 압축 변형 또는 스트레칭 변형이 발생되면, 채널(110)의 압축 변형 또는 스트레칭 변형에 따라 이온감지부(134)가 감지하는 전기 저항이 변화된다. The ion sensing unit 134 detects a change in electrical resistance of the ionic liquid 132 filled in the channel 110 , for example, an external pressure is locally applied to a portion of the cover 150 to thereby detect the change in the channel 110 . ), the electrical resistance sensed by the ion sensing unit 134 is changed according to the compression or stretching deformation of the channel 110 .
예를 들면, 이온감지부(134)는 채널(110)로 교류 파형을 발생시키고, 채널(110)의 압축 변형에 따른 이온성 액체(132)의 전기저항 변화를 이온감지부(134)가 감지하게 된다. 만일, 이온감지부(134)가 채널(110)에 직류(DC)를 적용하면 용액 내 이온의 움직임에 의해 이온성 액체(132)의 전도성이 형성되기 때문에 금속 전극에서 양극화가 발생하여, 전도성의 상실을 초래할 것이다. 따라서 이러한 전기분해를 방지하기 위해 이온감지부(134)는 채널(110)에 교류 파형을 발생시키는 것이다.For example, the ion sensing unit 134 generates an AC waveform to the channel 110 , and the ion sensing unit 134 detects a change in electrical resistance of the ionic liquid 132 according to the compression deformation of the channel 110 . will do If the ion sensing unit 134 applies direct current (DC) to the channel 110 , since the conductivity of the ionic liquid 132 is formed by the movement of ions in the solution, polarization occurs in the metal electrode, will lead to loss Therefore, in order to prevent such electrolysis, the ion sensing unit 134 generates an AC waveform in the channel 110 .
도 4의 (c)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 직물센서를 설명하기 위하여 도시한 도면이다.FIG. 4C is a diagram illustrating a fabric sensor of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 2 및 도 4의 (c)를 참조하면, 직물센서(140)는 채널(110)의 길이방향 일측을 따라 장착되는 전도성 직물층(142)과, 전도성 직물층(142)의 전기 전도성 변화를 감지하는 직물감지부(144: 도 5 도시)를 포함한다. 여기서 채널(110)은 다면체, 예를 들면 육면체로 형성되고, 전도성 직물층(142)은 채널(110)의 길이방향을 따라 형성되는 4개의 면에 모두 장착되도록 4개로 구성될 수 있다. 이처럼 전도성 직물층(142)이 채널(110)의 모든 면을 감싸도록 장착되므로, 전도성 직물층(142)은 채널(110)의 형태 변형을 더욱 용이하게 감지할 수 있는 효과가 있다.2 and 4 (c), the fabric sensor 140 is a conductive fabric layer 142 mounted along one side of the longitudinal direction of the channel 110, and electrical conductivity of the conductive fabric layer 142 is measured. It includes a fabric sensing unit 144 (shown in FIG. 5) for sensing. Here, the channel 110 is formed of a polyhedron, for example, a hexahedron, and the conductive fabric layer 142 may be formed of four to be mounted on all four surfaces formed along the longitudinal direction of the channel 110 . As such, since the conductive fabric layer 142 is mounted to cover all surfaces of the channel 110 , the conductive fabric layer 142 has the effect of more easily detecting the shape deformation of the channel 110 .
전도성 직물층(142)은 채널(110)의 길이방향 일측을 커버(150)하도록 형성되는 직물부와, 직물부에 일정 패턴을 갖도록 니팅되는 전도성 원사를 포함한다. 전도성 원사는 예를 들면 나일론에 은이 코팅되어, 전도성을 갖도록 구성될 수 있다.The conductive fabric layer 142 includes a fabric part formed to cover one side of the channel 110 in the longitudinal direction 150 and a conductive yarn knitted to have a predetermined pattern on the fabric part. The conductive yarn may be configured to have conductivity, for example, by coating silver on nylon.
직물감지부(144)는 전도성 직물층(142)의 전기 저항 변화를 감지하는 것으로, 채널(110)의 스트레칭 변형에 따라 직물감지부(144)가 감지하는 전기 저항이 변화된다. 즉, 커버(150) 및 채널(110)이 길이방향 양쪽으로 팽창되도록 스트레칭 변형이 가해지면, 전도성 원사의 각도가 감소하고, 이는 전도성 원사 간의 접촉 면적이 늘어나게 되어, 전도성 직물층(142)의 전반적인 전기 저항이 감소된다. 직물감지부(144)는 이러한 전기 저항 감소를 감지하여 제어부(162)로 전달한다. The fabric sensing unit 144 detects a change in electrical resistance of the conductive fabric layer 142 , and the electrical resistance sensed by the fabric sensing unit 144 is changed according to the stretching deformation of the channel 110 . That is, when a stretching deformation is applied so that the cover 150 and the channel 110 are expanded in both longitudinal directions, the angle of the conductive yarn decreases, which increases the contact area between the conductive yarns, thereby increasing the overall thickness of the conductive fabric layer 142 . electrical resistance is reduced. The fabric sensing unit 144 senses this decrease in electrical resistance and transmits it to the control unit 162 .
이처럼 본 발명은 커버(150) 내부에 광학센서(120), 이온센서(130) 및 직물센서(140)가 구비되므로, 벤딩, 스트레칭 또는 압축과 같은 변형을 개별적으로 감지할 수 있을 뿐만 아니라 이러한 다양한 모드를 동시에 구분하여 감지할 수 있는 효과가 있다.As such, in the present invention, since the optical sensor 120, the ion sensor 130, and the fabric sensor 140 are provided inside the cover 150, it is possible to individually detect deformation such as bending, stretching or compression, as well as these various It has the effect of being able to distinguish and detect modes at the same time.
또한, 커버(150) 내부에 광학센서(120), 이온센서(130) 및 직물센서(140)가 모두 구비되므로, 전체 구조를 컴팩트하게 소형으로 제조 가능한 효과가 있다.In addition, since the optical sensor 120, the ion sensor 130, and the fabric sensor 140 are all provided inside the cover 150, there is an effect that the entire structure can be manufactured in a compact size.
또한, 광학센서(120), 이온센서(130) 및 직물센서(140)는 커버(150)의 변형을 감지하는 과정에서 상호 간에 간섭을 주지 않아, 광학센서(120), 이온센서(130) 및 직물센서(140)가 감지하는 결과의 신뢰도가 향상되는 효과가 있다.In addition, the optical sensor 120, the ion sensor 130 and the fabric sensor 140 do not interfere with each other in the process of detecting the deformation of the cover 150, the optical sensor 120, the ion sensor 130 and There is an effect that the reliability of the result sensed by the fabric sensor 140 is improved.
도 5는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 제어부재를 설명하기 위하여 도시한 도면이고, 도 6은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서의 수광부, 이온감지부 및 직물감지부의 변형에 의해 발생하는 개별적 신호가 제어부로 전달되는 상태를 도시한 도면이다.5 is a diagram illustrating a control member of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, and FIG. 6 is a light receiving unit of a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention. , a diagram illustrating a state in which individual signals generated by deformation of the ion sensing unit and the fabric sensing unit are transmitted to the control unit.
도 1 내지 도 6을 참조하면, 제어부재(160)는 제어부(162) 및 디스플레이부(164)를 포함한다. 제어부(162)는 수광부(124)로부터 전달받은 광량 변화, 이온감지부(134)로부터 전달받은 전기 저항 변화 및 직물감지부(144)로부터 전달받은 전기 저항 변화를 디스플레이부(164)에 선 그래프, 막대그래프, 숫자 등으로 출력한다. 1 to 6 , the control unit 160 includes a control unit 162 and a display unit 164 . The control unit 162 shows the change in the amount of light received from the light receiving unit 124, the change in electrical resistance transmitted from the ion sensing unit 134, and the change in electrical resistance transmitted from the fabric sensing unit 144 to the display unit 164 as a line graph, Output as bar graphs, numbers, etc.
또한, 제어부(162)는 이들 수광부(124), 이온감지부(134) 및 직물감지부(144)로부터 전달받은 결과값을 비교하며, 이때, 제어부(162)는 예를 들면 Threshold 값을 바탕으로한 결과값 분석, 또는 Artificial Neural Network 기반의 머신러닝 사용한 결과값 분석 방법 등을 이용할 수 있을 것이다. 그리고 제어부(162)는 비교 결과에 따라 현재 커버(150)에 밴딩이 가해졌는지, 스트레칭이 가해졌는지 또는 압축이 가해졌는지 여부를 판단하고, 밴딩, 스트레칭 또는 압축이 가해진 경우, 기준치와 비교하여 얼마만큼 가해졌는지를 판단할 수 있다. In addition, the control unit 162 compares the result values received from the light receiving unit 124, the ion sensing unit 134, and the fabric sensing unit 144, and in this case, the control unit 162 is, for example, based on the threshold value. It is possible to use a result value analysis method or a result value analysis method using artificial neural network-based machine learning. And the control unit 162 determines whether bending, stretching, or compression is applied to the current cover 150 according to the comparison result, and when bending, stretching or compression is applied, how much compared to the reference value It can be judged whether
도 7의 (a)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 어떠한 외부 자극도 가해지지 않은 상태를 설명하기 위하여 도시한 도면이고, 도 7의 (b)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 밴딩 자극이 가해진 상태를 설명하기 위하여 도시한 도면이며, 도 7의 (c)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 스트레칭 자극이 가해진 상태를 설명하기 위하여 도시한 도면이고, 도 7의 (d)는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서에 압축 자극이 가해진 상태를 설명하기 위하여 도시한 도면이다.7 (a) is a diagram illustrating a state in which no external stimulus is applied to the soft sensor having a multi-sensing function according to a preferred embodiment of the present invention, and FIG. 7 (b) is a diagram of the present invention It is a diagram illustrating a state in which a bending stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment, and FIG. 7 (c) is a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention. It is a diagram illustrating a state in which a stretching stimulus is applied, and FIG. 7 (d) is a diagram illustrating a state in which a compressive stimulus is applied to a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention .
도 7의 (a) 및 도 7의 (b)를 참조하면, 커버(150)에 밴딩 압력이 가해지면, 수광부(124)가 수광하는 광량이 변화되어 제어부(162)는 커버(150)에 아무런 자극이 가해지지 않은 상태와 비교하여 현재 커버(150)에 밴딩 압력이 가해진 상태임을 알 수 있다.Referring to FIGS. 7A and 7B , when a bending pressure is applied to the cover 150 , the amount of light received by the light receiving unit 124 is changed so that the control unit 162 has no effect on the cover 150 . It can be seen that the current state in which the bending pressure is applied to the cover 150 compared to the state in which no stimulation is applied.
도 7의 (a) 및 도 7의 (c)를 참조하면, 커버(150)에 스트레칭 압력이 가해지면, 수광부(124)가 수광하는 광량이 변화되고, 직물감지부(144)가 감지하는 전기 저항이 변화되며, 이온감지부(134)가 감지하는 전기 저항이 변화되어, 제어부(162)는 커버(150)에 아무런 자극이 가해지지 않은 상태와 비교하여 현재 커버(150)에 스트레칭 압력이 가해진 상태임을 알 수 있다.7 (a) and 7 (c), when a stretching pressure is applied to the cover 150, the amount of light received by the light receiving unit 124 is changed, and the electricity sensed by the fabric sensing unit 144 The resistance is changed, the electrical resistance sensed by the ion sensing unit 134 is changed, and the control unit 162 compares the current cover 150 with a state in which no stimulus is applied to the current cover 150. state can be seen.
도 7의 (a) 및 도 7의 (d)를 참조하면, 커버(150)에 압축 압력이 가해지면, 수광부(124)가 수광하는 광량이 변화되고, 이온감지부(134)가 감지하는 전기 저항이 변화되어 제어부(162)는 커버(150)에 아무런 자극이 가해지지 않은 상태와 비교하여 현재 커버(150)에 압축 압력이 가해진 상태임을 알 수 있다.7A and 7D , when a compressive pressure is applied to the cover 150, the amount of light received by the light receiving unit 124 is changed, and the electricity sensed by the ion sensing unit 134 is changed. As the resistance is changed, the control unit 162 can see that the current compression pressure is applied to the cover 150 compared to the state in which no stimulus is applied to the cover 150 .
도 8 내지 도 9는 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서를 제조하는 과정을 설명하기 위하여 도시한 도면이다.8 to 9 are diagrams illustrating a process of manufacturing a soft sensor having a multi-sensing function according to a preferred embodiment of the present invention.
도 8의 (a)를 참조하면, 멀티 감지 기능을 갖는 소프트 센서(100)를 제조하기 위하여 먼저, 3D 프린팅 금형을 이용하여 채널(110)을 주조한다. 그 후, 도 8의 (b)와 같이, 채널(110)의 양 단부에 발광부(122)와 수광부(124)를 각각 장착한 후, 도 8의 (c)와 같이, 주사기 등을 이용하여 채널(110) 내부로 이온성 액체(132)를 주입한다. 그 후, 도 8의 (d)와 같이 이온성 액체(132)에 대한 신호를 이온감지부(134)로 전달하기 위하여 채널(110) 안으로 전선을 연결한다.Referring to FIG. 8A , in order to manufacture the soft sensor 100 having a multi-sensing function, the channel 110 is first cast using a 3D printing mold. Thereafter, as shown in FIG. 8(b), the light emitting unit 122 and the light receiving unit 124 are mounted on both ends of the channel 110, respectively, and then, as shown in FIG. 8(c), using a syringe or the like. An ionic liquid 132 is injected into the channel 110 . Thereafter, a wire is connected into the channel 110 in order to transmit a signal for the ionic liquid 132 to the ion sensing unit 134 as shown in FIG. 8(d).
그 후, 도 9의 (a)와 같이, 채널(110)의 외측에 전도성 직물층(142)을 장착시킨다. 그리고 도 9의 (b)와 같이, 커버(150)를 형성하기 위한 성형틀(M)을 준비한다. 성형틀(M)에는 홀더커버(152)를 형성하기 위한 제 1 홈(M1) 및 중앙커버(154)를 형성하기 위한 제 2 홈(M2)이 구비된다. 그리고 도 9의 (c)와 같이, 제 1 홈(M1)에 용융된 제 1 수지와 흑색안료를 채운 후 경화시켜서 홀더커버(152)를 형성한다. 제 1 수지는 예를 들면 경도가 40인 Sorta Clear 40 실리콘으로 구성될 수 있다. 흑색안료는 가시 광선을 대부분 흡수하도록 구성된다. 그 후 도 9의 (d)와 같이, 제 2 홈(M2)에 용융된 제 2 수지와 흑색안료를 채운 후 경화시켜서 중앙커버(154)를 형성한다. 제 2 수지는 예를 들면 Ecoflex 0030 실리콘으로 구성될 수 있다.Thereafter, as shown in (a) of FIG. 9 , the conductive fabric layer 142 is mounted on the outside of the channel 110 . And as shown in Figure 9 (b), to prepare a mold (M) for forming the cover (150). The mold M is provided with a first groove M1 for forming the holder cover 152 and a second groove M2 for forming the center cover 154 . And, as shown in FIG. 9(c), the holder cover 152 is formed by filling the first groove M1 with the molten first resin and black pigment and curing it. The first resin may be composed of, for example, Sorta Clear 40 silicone having a hardness of 40. Black pigments are configured to absorb most of the visible light. Thereafter, as shown in FIG. 9D , the second groove M2 is filled with the molten second resin and black pigment, and then cured to form the central cover 154 . The second resin may be composed of, for example, Ecoflex 0030 silicone.
도 10은 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서가 사용자의 손에 착용된 상태를 도시한 도면이다.10 is a diagram illustrating a state in which a soft sensor having a multi-sensing function is worn on a user's hand according to a preferred embodiment of the present invention.
도 10의 (a)를 참조하면, 본 발명의 바람직한 실시예에 따른 멀티 감지 기능을 갖는 소프트 센서(100)는 장갑에 장착된 상태로 사용자의 손에 착용될 수 있다. 이 상태에서, 사용자가 손을 아래로 내리게 되면, 커버(150)가 하방으로 스트레칭되어, 제어부(162)는 사용자가 커버(150)를 하방으로 스트레칭하였음을 감지할 수 있다. 또한, 사용자가 손을 아래로 내리게 되면, 커버(150)가 하방으로 스트레칭 및 밴딩되어, 제어부(162)는 사용자가 커버(150)를 하방으로 스트레칭 및 밴딩하였음을 감지할 수도 있을 것이다.Referring to FIG. 10A , the soft sensor 100 having a multi-sensing function according to a preferred embodiment of the present invention may be worn on the user's hand while being mounted on a glove. In this state, when the user lowers his/her hand, the cover 150 is stretched downward, and the control unit 162 may detect that the user has stretched the cover 150 downward. In addition, when the user lowers his hand, the cover 150 is stretched and bent downward, and the control unit 162 may sense that the user has stretched and bent the cover 150 downward.
이에 따라 예를 들면 제어부(162)가 로봇(미도시)의 팔과 연동된 경우, 제어부(162)는 커버(150)가 하방으로 이동된 상태를 로봇의 팔에 입력하여 로봇의 팔이 하방으로 이동되도록 제어할 수 있다.Accordingly, for example, when the control unit 162 is interlocked with the arm of the robot (not shown), the control unit 162 inputs a state in which the cover 150 is moved downward to the arm of the robot so that the arm of the robot moves downward. It can be controlled to move.
도 10의 (b)를 참조하면, 사용자가 손을 옆으로 꺾으면, 커버(150)가 옆으로 밴딩되어, 제어부(162)는 사용자가 커버(150)를 옆으로 밴딩하였음을 감지할 수 있다. 이에 따라 제어부(162)는 커버(150)가 옆으로 밴딩된 상태를 로봇의 팔에 입력하여 로봇의 팔이 옆으로 이동되도록 제어할 수 있다.Referring to (b) of FIG. 10 , when the user bends his hand sideways, the cover 150 is bent sideways, and the control unit 162 can detect that the user has the cover 150 bent sideways. . Accordingly, the control unit 162 may input a state in which the cover 150 is bent sideways to the arm of the robot to control the arm of the robot to move sideways.
도 10의 (c)를 참조하면, 사용자가 커버(150)를 누르면, 제어부(162)는 사용자가 커버(150)에 압력을 가했음을 감지할 수 있다. 이에 따라 제어부(162)는 커버(150)에 압력이 가해진 상태를 로봇의 팔에 입력하여 로봇의 엔드 이펙터(End-effector)가 하강 또는 상승되도록 제어할 수 있다.Referring to FIG. 10C , when the user presses the cover 150 , the control unit 162 may detect that the user applies pressure to the cover 150 . Accordingly, the controller 162 may control the end-effector of the robot to descend or rise by inputting the state in which the pressure is applied to the cover 150 to the arm of the robot.
한편, 커버(150)는 장갑 이외에 형태 변형이 가능한 다양한 장치에도 적용 가능할 것이다. 또한, 커버(150)의 형태 변형에 따라 제어부(162)가 로봇의 팔을 제어하는 것은 로봇의 사용 환경에 따라 다양하게 설계 변형 가능할 것이다. 또한, 제어부(162)는 로봇 이외에 드론 등 입력이 필요한 다양한 장치를 제어할 수도 있을 것이다.On the other hand, the cover 150 will be applicable to various devices that can be deformed in shape other than gloves. In addition, according to the shape deformation of the cover 150, the control unit 162 to control the arm of the robot may be variously designed and modified according to the use environment of the robot. In addition, the controller 162 may control various devices that require input, such as a drone, in addition to the robot.
본 발명은 상기 실시예에서 상세히 설명되었지만, 본 발명을 이로 한정하지 않음은 당연하고, 본 발명의 기술사상 범위 내에서 다양한 변형 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 청구범위의 범주에 속하는 것이라면 그 기술사상 역시 본 발명에 속하는 것으로 보아야 한다.Although the present invention has been described in detail in the above embodiments, it goes without saying that the present invention is not limited thereto, and it is apparent to those skilled in the art that various changes and modifications can be made within the scope of the technical spirit of the present invention. If it falls within the scope of the claims, the technical idea should also be regarded as belonging to the present invention.
[부호의 설명][Explanation of code]
100: 멀티 감지 기능을 갖는 소프트 센서100: soft sensor with multi-sensing function
110: 채널 120: 광학센서110: channel 120: optical sensor
122: 발광부 124: 수광부122: light emitting unit 124: light receiving unit
130: 이온센서 132: 이온성 액체130: ion sensor 132: ionic liquid
134: 이온감지부 140: 직물센서134: ion sensing unit 140: fabric sensor
142: 전도성 직물층 144: 직물감지부142: conductive fabric layer 144: fabric sensing unit
150: 커버 152: 홀더커버150: cover 152: holder cover
154: 중앙커버 160: 제어부재154: center cover 160: control material
162: 제어부 164: 디스플레이부162: control unit 164: display unit

Claims (7)

  1. 가요성 재질로 형성되고 긴 형상으로 형성되며 내부에 빈 공간이 형성되는 채널;a channel formed of a flexible material, formed in a long shape, and having an empty space therein;
    상기 채널의 일단부에 장착되는 발광부와 상기 채널의 타단부에 장착되는 수광부를 갖는 광학센서;an optical sensor having a light emitting unit mounted on one end of the channel and a light receiving unit mounted on the other end of the channel;
    상기 채널의 내부에 채워지는 이온성 액체와, 상기 채널 내부에 채워진 이온성 액체의 전기저항 변화를 감지하는 이온감지부를 갖는 이온센서; 및an ion sensor having an ionic liquid filled in the channel and an ion sensing unit configured to sense a change in electrical resistance of the ionic liquid filled in the channel; and
    가요성 재질로 형성되고 상기 채널을 덮도록 형성되는 커버를 포함하고,and a cover formed of a flexible material and formed to cover the channel,
    상기 발광부가 발광하는 광을 상기 수광부가 수광할 때, 상기 채널 및 상기 커버의 변형에 따라 상기 수광부가 수광하는 광량이 변화되고,When the light receiving unit receives the light emitted by the light emitting unit, the amount of light received by the light receiving unit is changed according to the deformation of the channel and the cover,
    상기 채널 내부에 채워진 이온성 액체의 전기저항 변화를 상기 이온감지부가 감지할 때, 상기 채널의 변형에 따라 상기 이온감지부가 감지하는 전기 저항이 변화되는 것을 특징으로 하는 다기능 소프트 센서.When the ion sensing unit detects a change in the electrical resistance of the ionic liquid filled in the channel, the multifunctional soft sensor, characterized in that the electrical resistance sensed by the ion sensing unit is changed according to the deformation of the channel.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 채널은 투명한 도파관으로 형성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서.The channel is a soft sensor having a multi-sensing function, characterized in that formed of a transparent waveguide.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 이온감지부는 상기 채널로 교류 파형을 발생시키고, 상기 채널의 압축 변형에 따른 이온성 액체의 전기저항 변화를 상기 이온감지부가 감지하도록 구성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서.The ion sensing unit generates an AC waveform to the channel, and the ion sensing unit is configured to detect a change in electrical resistance of the ionic liquid according to the compression deformation of the channel.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 커버는 빛을 차단하기 위한 불투명 재질로 형성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서.The soft sensor having a multi-sensing function, characterized in that the cover is formed of an opaque material for blocking light.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 채널의 길이방향 일측을 따라 장착되는 전도성 직물층과, 상기 전도성 직물층의 전기 전도성 변화를 감지하는 직물감지부를 갖는 직물센서를 더 포함하고,A conductive fabric layer mounted along one longitudinal side of the channel, and a fabric sensor having a fabric sensing unit for detecting a change in electrical conductivity of the conductive fabric layer,
    상기 전도성 직물층의 전기 저항 변화를 상기 직물감지부가 감지할 때, 상기 채널의 스트레칭 변형에 따라 상기 직물감지부가 감지하는 전기 저항이 변화되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서.A soft sensor having a multi-sensing function, characterized in that when the fabric sensing unit detects a change in the electrical resistance of the conductive fabric layer, the electrical resistance sensed by the fabric sensing unit is changed according to the stretching deformation of the channel.
  6. 제 5 항에 있어서,6. The method of claim 5,
    상기 채널은 다면체로 형성되고, The channel is formed of a polyhedron,
    상기 전도성 직물층은 상기 채널의 길이방향을 따라 형성되는 각각의 면에 모두 장착되도록 복수 개로 구성되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서.The soft sensor having a multi-sensing function, characterized in that the conductive fabric layer is configured in plurality so as to be all mounted on each surface formed along the longitudinal direction of the channel.
  7. 제 5 항에 있어서,6. The method of claim 5,
    상기 전도성 직물층은 상기 채널의 길이방향 일측을 커버하도록 형성되는 직물부와, 상기 직물부에 패턴을 갖도록 니팅되는 전도성 원사를 포함하고,The conductive fabric layer includes a fabric part formed to cover one longitudinal side of the channel, and a conductive yarn knitted to have a pattern on the fabric part,
    상기 직물부에 스트레칭 변형이 가해지면, 상기 전도성 원사 간의 접촉 면적이 변형되어 상기 전도성 원사의 전도성이 변형되는 것을 특징으로 하는 멀티 감지 기능을 갖는 소프트 센서.When a stretching deformation is applied to the fabric part, a contact area between the conductive yarns is deformed, so that the conductivity of the conductive yarns is deformed. A soft sensor with a multi-sensing function.
PCT/KR2021/015362 2020-11-02 2021-10-28 Soft sensor having multi-sensing function WO2022092877A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200144246A KR102384623B1 (en) 2020-11-02 2020-11-02 Soft sensor with multi-sensing function
KR10-2020-0144246 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022092877A1 true WO2022092877A1 (en) 2022-05-05

Family

ID=81210131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015362 WO2022092877A1 (en) 2020-11-02 2021-10-28 Soft sensor having multi-sensing function

Country Status (2)

Country Link
KR (1) KR102384623B1 (en)
WO (1) WO2022092877A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085957A (en) * 2005-09-26 2007-04-05 Fumihito Kato Gyro sensor
KR20100116621A (en) * 2008-01-28 2010-11-01 가부시키가이샤 구라레 Flexible deformation sensor
KR101998250B1 (en) * 2018-01-30 2019-07-11 주식회사 필더세임 Soft sensor and manufacturing method of the same
KR20200075224A (en) * 2018-12-18 2020-06-26 한양대학교 에리카산학협력단 Detection sensor for artificial muscle length and testing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046377B1 (en) * 2011-09-24 2019-11-19 프레지던트 앤드 펠로우즈 오브 하바드 칼리지 Artificial skin and elastic strain sensor
US20170350774A1 (en) * 2016-06-02 2017-12-07 Mark B. Woodbury Direct light bend sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007085957A (en) * 2005-09-26 2007-04-05 Fumihito Kato Gyro sensor
KR20100116621A (en) * 2008-01-28 2010-11-01 가부시키가이샤 구라레 Flexible deformation sensor
KR101998250B1 (en) * 2018-01-30 2019-07-11 주식회사 필더세임 Soft sensor and manufacturing method of the same
KR20200075224A (en) * 2018-12-18 2020-06-26 한양대학교 에리카산학협력단 Detection sensor for artificial muscle length and testing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JUNG ET AL.: "Optically sensorized elastomer air chamber for proprioceptive sensing of soft pneumatic actuators", IEEE ROBOTICS AND AUTOMATION LETTERS, vol. 5, no. 2, April 2020 (2020-04-01), pages 2333 - 2340, XP011772782, DOI: 10.1109/LRA.2020.2970984 *

Also Published As

Publication number Publication date
KR102384623B1 (en) 2022-04-11

Similar Documents

Publication Publication Date Title
WO2017039401A1 (en) Pressure sensor
JP3433235B2 (en) Optical displacement sensor
KR101618301B1 (en) Wearable device and information input method using the same
WO1990012412A1 (en) Optical attenuator movement detection system
WO2017039350A1 (en) Deformation sensing sensor having improved sensitivity
CN112513558B (en) Mechanical equipment's casing, casing subassembly, arm and robot
WO2022092877A1 (en) Soft sensor having multi-sensing function
KR20020011812A (en) Optical fiber curvature sensor for measuring body motion and its adhesive method
Yoshikai et al. Development of soft stretchable knit sensor for humanoids' whole-body tactile sensibility
WO2012157930A2 (en) Touch panel sensor devicedevice for a touch panel sensor having improved accuracy in detecting a touch position
KR20190092777A (en) Glove-type Motion Recognizing Apparatus and Recognizing Method thereof
KR101554125B1 (en) Wearable device and information input method using the same
WO2017082613A1 (en) Pressure sensing insole
US10884504B2 (en) Wearable wrist device and method of detecting a physical change in the epidermis and wirelessly inputting sensor information using the same
WO2018101667A2 (en) Inter-finger joint worn ring-type device for sensing user manipulation
WO2022131715A1 (en) Integrated self-monitoring soft actuator and self-monitoring method of soft actuator
Pan et al. Flexible full‐body tactile sensor of low cost and minimal output connections for service robot
WO2020017748A1 (en) Touch sensor in which pcap method and emr method are combined
WO2019146839A1 (en) Human body sensing mat
WO2019224994A1 (en) Motion detecting device
WO2019212085A1 (en) Highly stretchable piezoresistive wire sensor and manufacturing method therefor
Begej Fingertip-shaped optical tactile sensor for robotic applications
CN114636503A (en) Three-dimensional touch sensor based on photosensitive element
CN108436977A (en) A kind of industrial machinery arm safety guard
WO2019103435A1 (en) Sensor for recognizing hand gesture and sensor array using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886871

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886871

Country of ref document: EP

Kind code of ref document: A1