WO2022092833A1 - Method for in-situ preparation of organic sulfur compound - Google Patents

Method for in-situ preparation of organic sulfur compound Download PDF

Info

Publication number
WO2022092833A1
WO2022092833A1 PCT/KR2021/015274 KR2021015274W WO2022092833A1 WO 2022092833 A1 WO2022092833 A1 WO 2022092833A1 KR 2021015274 W KR2021015274 W KR 2021015274W WO 2022092833 A1 WO2022092833 A1 WO 2022092833A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfur compound
situ
organic sulfur
compound
reaction
Prior art date
Application number
PCT/KR2021/015274
Other languages
French (fr)
Korean (ko)
Inventor
이아랑
박정근
이석종
박희근
정광주
하종진
Original Assignee
솔브레인 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 솔브레인 주식회사 filed Critical 솔브레인 주식회사
Publication of WO2022092833A1 publication Critical patent/WO2022092833A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D327/00Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D327/10Heterocyclic compounds containing rings having oxygen and sulfur atoms as the only ring hetero atoms two oxygen atoms and one sulfur atom, e.g. cyclic sulfates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D497/00Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms
    • C07D497/02Heterocyclic compounds containing in the condensed system at least one hetero ring having oxygen and sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D497/10Spiro-condensed systems

Definitions

  • the present invention relates to an in situ manufacturing method of an organic sulfur compound, and more particularly, to an in situ method for producing an organic sulfur compound with a high yield of an organic sulfur compound and excellent reaction stability due to few side reactions while securing economic efficiency and fairness using a single reactor It relates to a manufacturing method.
  • An organic sulfur compound starting from a sulfite-based compound can produce a sulfate-based compound (sulfate, RO-SO 2 -O-R') through a redox reaction. there is.
  • the produced sulfate-based compound (sulfate, RO-SO 2 -O-R') commonly includes a -SO 2 form and is used as a multipurpose functional material such as a fuel additive in an industrial process and an electrolyte solution for a lithium ion battery.
  • sodium hydrogen periodate NaIO 4
  • a sulfoxide-based compound sulfoxide, R-SO-R'
  • a sulfite-based compound sulfite, RO-SO-O-R'
  • sodium hypochlorite NaOCl
  • calcium hypochlorite Ca(OCl) 2
  • hydrogen peroxide HOOH
  • calcium permanganate KMnO 4
  • an object of the present invention is to provide a method for preparing an organic sulfur compound in situ.
  • Oxidation step including,
  • the solvent-free cyclization step and the oxidation step provide an in situ manufacturing method of an organic sulfur compound, characterized in that it proceeds without a separation process in a single reactor.
  • the cyclized compound obtained in the solvent-free cyclization step may be a compound represented by the following Chemical Formulas 1-1 to 1-2.
  • X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen
  • n is an integer from 0 to 3
  • R 2 , R 3 , R 1 ', R 2 ' and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1 to C 10 alkyl group, and when n is an integer of 1 to 3
  • R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently a bond, substituted or unsubstituted alkylene having 1 to 10 carbon atoms, including at least one carbon.
  • the dihalogen-based cyclizing agent may be thionyl chloride (SOCl 2 ).
  • the dihalogen-based cyclizing agent may be added in an amount of 1 to 2 equivalents based on 1 equivalent of the alkylene glycol.
  • the aprotic organic solvent having a boiling point of 40 to 90° C. may be at least one selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, trichloromethane and acetonitrile.
  • the aprotic organic solvent having a boiling point of 40 to 90° C. is acetonitrile; And it may be a mixture of one or more selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride and trichloromethane.
  • the amount of the aprotic organic solvent having a boiling point of 40 to 90° C. may be 900 to 1200 parts by weight based on 100 parts by weight of the alkylene glycol.
  • the weak base aqueous solution is added in an amount to maintain the pH of the oxidation reaction at 7 to 9, wherein the content of water constituting the weak base aqueous solution is 1:0.8 to 1:3 with the aprotic organic solvent (water: organic solvent) ) may be included in the weight ratio.
  • the ruthenium catalyst may be ruthenium chloride.
  • the ruthenium catalyst may be added in an amount of 0.0001 to 0.0006 equivalents based on 1 equivalent of the alkylene glycol.
  • an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution, and a ruthenium catalyst are added to the cyclized compound at the 2-1 temperature condition, the 2-2 temperature condition, and the 2-3 temperature. It may be to perform the reaction while sequentially input under the conditions.
  • the 2-1 temperature condition may be 0 to 20° C.
  • the 2-2 temperature condition may be 0 to 10° C.
  • the 2-3 temperature condition may be -1 to 3° C.
  • the metal hypohalite may be at least one selected from calcium hypochlorite and sodium hypochlorite.
  • the metal hypohalite may be added in an amount of 0.5 to 1.1 equivalents based on 1 equivalent of the cyclized compound.
  • the reaction temperature of the cyclized compound and the metal hypohalite may be -5 to 5 °C.
  • the SO 2 sulfur compound including a terminal group may be a compound represented by the following Chemical Formulas 2-1 to 2-2.
  • X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen
  • n is an integer from 0 to 3
  • R 2 , R 3 , R 1 ', R 2 ' and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1 to C 10 alkyl group, and when n is an integer of 1 to 3
  • R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently a bond, substituted or unsubstituted alkylene having 1 to 10 carbon atoms, including at least one carbon.
  • the oxidation step may be terminated by adding a quench reagent.
  • the termination reagent may be hydrogen peroxide.
  • the present inventors use a low-cost alkylene glycol compound as a starting material to synthesize a sulfur compound containing a desired SO 2 terminal group, a dihalogen-based cyclizing agent, an aprotic having a boiling point of 40 to 90 °C
  • a sulfur compound containing a desired SO 2 terminal group a dihalogen-based cyclizing agent
  • an aprotic having a boiling point of 40 to 90 °C When an organic solvent and a ruthenium catalyst are used and the in situ cyclization step and the in situ oxidation step are continuously performed, mass production with high purity and high yield is possible, and the reaction process is simple and economical, and based on this, the present invention came to completion.
  • alkyl includes a straight-chain, branched-chain or cyclic hydrocarbon radical
  • alkylene refers to a divalent radical derived from alkyl.
  • the alkylene includes methylene, ethylene, isobutylene, cyclohexylene, cyclopentylethylene, 2-propenylene, 3-butynylene, and the like.
  • substituted means that one or more hydrogen atoms in a hydrocarbon are each, independently of each other, replaced with the same or different substituents.
  • the substituent may use a conventionally used kind, and for example, it is among halo, alkyl, aryl and arylalkyl.
  • situ refers to performing a solvent-free cyclization step and an oxidation step using a single reactor, unless otherwise specified.
  • halogen used in the present invention includes, for example, fluorine (F), bromine (Br), chlorine (Cl), iodine (I), and the like.
  • the organic sulfur compound in situ production method of the present invention includes, for example, an in situ cyclization step of reacting an alkylene glycol with a dihalogen-based cyclizing agent to synthesize a cyclized compound; and an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution, a ruthenium catalyst, and a metal hypohalite by sequentially reacting the product of the in situ cyclization step to react SO 2
  • a sulfur compound containing a terminal group Including an in situ oxidation step of synthesizing, characterized in that the in situ cyclization step and the in situ oxidation step are performed continuously, in this case, the reaction stability is excellent, the reaction time is shortened, and there are few side reactions. It has the effect of providing a given output.
  • the first reaction step is a step of preparing a cyclized compound under solvent-free conditions.
  • a dihalogen-based cyclizing agent is added to alkylene glycol and stirred to synthesize a cyclized compound, and the order of introduction If you change it, a side reaction may occur, which may cause a problem of lowering the yield.
  • the alkylene glycol may be, for example, ethylene glycol, propylene glycol, or butylene glycol, preferably ethylene glycol or propylene glycol; More preferably, it may be ethylene glycol.
  • the dihalogen-based cyclizing agent used to cyclize the compound represented by Formula 1 may use a reactive halide, and thionyl chloride (SOCl 2 ) may be used as a representative example.
  • the dihalogen-based cyclizing agent is based on 1 equivalent of the alkylene glycol, for example, 1 to 2 equivalents, preferably 1 to 1.5 equivalents, more preferably 1 to 1.3 equivalents equivalent, more preferably 1 to 1.2 equivalents may be added.
  • 1 equivalent of the alkylene glycol for example, 1 to 2 equivalents, preferably 1 to 1.5 equivalents, more preferably 1 to 1.3 equivalents equivalent, more preferably 1 to 1.2 equivalents may be added.
  • 1 equivalent of the alkylene glycol for example, 1 to 2 equivalents, preferably 1 to 1.5 equivalents, more preferably 1 to 1.3 equivalents equivalent, more preferably 1 to 1.2 equivalents may be added.
  • the reaction temperature in the solvent-free cyclization step is, for example, 10 to 40 °C, preferably 20 to 40 °C, more preferably 25 to 40 °C is suitable for improving the cyclization reactivity.
  • the cyclized compound obtained in the solvent-free cyclization step may be a compound represented by the following Chemical Formulas 1-1 to 1-2.
  • X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen
  • n is an integer from 0 to 3
  • R 1 , R when n is 0 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1-10 alkyl group, and when n is an integer of 1 to 3
  • R 1 , R 2 , R 3 , R 1 ′, R 2 ′, and R 3 ′ are independently a bond, substituted or unsubstituted C 1 to C 10 alkylene, and include at least one carbon.
  • R 1 and R 1 ′ may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
  • n is an integer of 1 to 3
  • R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms.
  • R 1 and R 1 ' may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
  • n is an integer of 1 to 3
  • R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms.
  • R 2 , R 3 , R 2 ' and R 3 ' are independently bonded or substituted or It may be an unsubstituted C1-C10 alkylene.
  • the compound represented by Formulas 1-1 to 1-2 may be at least one selected from the group consisting of compounds represented by Formulas 3-1 to 3-5 below.
  • the compound represented by Formula 1-1 is 1,3,2-dioxathiolane 2-oxide, 1,3,2-dioxathiane 2-oxide, or 4-methyl-1,3,2- It may be dioxacyanide 2-oxide.
  • the second reaction step is an oxidation step, for example, an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous solution of a weak base, and ruthenium in the cyclized compound in the reactor in which the above-described first reaction step is performed.
  • the reaction may be performed while sequentially adding the catalyst. If the order of the weak base aqueous solution and the organic solvent is changed, the reaction conversion may not be performed well and the yield may deteriorate.
  • the optimal input order may be in the order of organic solvent -> weak base aqueous solution -> ruthenium catalyst, and in this case, both the reaction yield and purity can be effectively improved.
  • the solvent effect is very important, and even if all other conditions are the same, some reactions may not proceed depending on the solvent, and some reactions may proceed close to 100%. Therefore, in the method for in situ production of the organic sulfur compound according to the present disclosure, the selection of the solvent is very important.
  • an aprotic organic solvent having a boiling point of 40 to 90° C. because it may cause less side reactions in the oxidation reaction step.
  • protic organic solvents such as methanol and ethanol, hypohalite, which will be described later, oxidizes the organic solvent to generate a byproduct rather than a target material, which may cause a decrease in yield and purity.
  • the aprotic organic solvent having a boiling point of 40 to 90° C. may be, for example, at least one selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, trichloromethane and acetonitrile.
  • the aprotic organic solvent having a boiling point of 40 to 90 ° C. is acetonitrile, methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, and trichloromethane using a mixture of at least one selected from the group consisting of It is preferable that the polar aprotic organic solvent, acetonitrile, can improve the reaction yield by facilitating the interfacial reaction between water and the non-polar aprotic organic solvent.
  • the non-polar aprotic organic solvent and acetonitrile may be combined, for example, in a weight ratio of 1:0.5 to 10, preferably 1:0.5 to 5, and more preferably 1:0.5 to 3 by weight.
  • a weight ratio of 1:0.5 to 10 preferably 1:0.5 to 5, and more preferably 1:0.5 to 3 by weight.
  • the amount of the aprotic organic solvent having a boiling point of 40 to 90° C. is preferably 900 to 1200 parts by weight based on 100 parts by weight of the alkylene glycol to provide solubility of the resulting sulfur compound.
  • the product is precipitated during the reaction and the reaction conversion is not complete, so both purity and yield can be reduced.
  • the pH of the oxidation reaction is preferably maintained at 7 to 9, preferably 7 to 8, due to the addition of an appropriate weak base to optimize the reaction efficiency.
  • the pH may be measured by a commonly known method, for example, using a pH meter.
  • the weak base is not limited as long as it does not affect the reaction, and for example, sodium carbonate (hydrogen), ammonium carbonate, potassium carbonate, ammonium phosphate, sodium phosphate, etc. may be used, and in consideration of performance and manufacturing cost, carbonic acid ( Hydrogen) sodium is preferably used.
  • the amount of the weak base is, for example, 0.1 to 1 equivalent, preferably 0.1 to 0.5 equivalent, preferably 0.1 to 0.2 equivalent, based on 1 equivalent of the compound represented by Formula 1, to improve reaction efficiency and react It is preferable because it can optimize the required pH.
  • the weak base is added as an aqueous solution.
  • the aqueous solution heat generation is reduced, thereby shortening the process time and providing the effect of stability of the reaction.
  • the content (by weight) of water constituting the weak base aqueous solution is, for example, 1:1 to 1:4 (water:organic solvent), preferably 1:0.9 to 1:3.2 (water: organic solvent), more preferably 1:1.5 to 1:2.2 (water:organic solvent) because it is possible to optimize the reaction rate and reaction efficiency.
  • the water may serve as an activator for activating and promoting the overall redox reaction by oxidizing the ruthenium catalyst, which is the above-described redox catalyst.
  • the ruthenium catalyst is converted to RuO 2 , 3HCl, and H + by reacting with water, and among the conversions, RuO 2 is further reacted with water to be converted to RuO 4 , a route that directly reacts with an oxidizing agent to be described later including metal hypohalite can proceed, thereby shortening the reaction time, improving the reaction yield without side reactions, as well as providing reaction stability.
  • the amount of water provided as an aqueous solution of the weak base is, for example, 300 to 1000 parts by weight, preferably 300 to 800 parts by weight, more preferably 300 to 600 parts by weight, based on 100 parts by weight of the compound represented by Formula 1 above. It is preferable because it can optimize the reaction conversion rate and purity.
  • the dropwise addition temperature of the weak base aqueous solution is, for example, 0 to 10 °C, more preferably 0 to 5 °C is suitable for imparting reaction stability.
  • a ruthenium series is added as a catalyst.
  • a catalyst increases the reaction rate because less activation energy is required.
  • Any catalyst capable of increasing the reaction rate of the redox reaction may be used without limitation, but preferably a platinum group catalyst mainly used as a catalyst for the redox reaction may be used, and more preferably a ruthenium series may be used, Most preferably, ruthenium chloride may be used.
  • the ruthenium chloride may be used in the form of anhydrous or hydrate, and the amount used may be, for example, 0.0001 to 0.0006 equivalents, preferably 0.0002 to 0.0005 equivalents, based on 1 equivalent of the compound represented by Formula 1 It may be added in an amount, in this case
  • an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution and a ruthenium catalyst are added to the cyclized compound under the 2-1 temperature condition, the 2-2 temperature condition and the second 2-
  • the reaction may be carried out while sequentially added under 3 temperature conditions, and in this case, the 2-1 temperature condition is, for example, 0 to 20° C., preferably 0 to 15° C. It is suitable for imparting reaction stability.
  • the 2-2 temperature condition is, for example, 0 to 10 °C, preferably 0 to 5 °C is suitable to provide the reaction buffer.
  • the 2-3 temperature condition is, for example, -1 to 3 °C, preferably -1 to 2 °C is suitable to provide the reaction buffer.
  • Metal hypohalite is added to the reactant solution to which the above-described ruthenium catalyst is added, and the reaction is performed.
  • the above-described solvent-free cyclization step and oxidation step is characterized in that it proceeds without a separation process in a single reactor.
  • the oxidation reaction may be performed using an oxidizing agent including metal hypohalite.
  • suitable metal hypohalites include hypohalites of alkali metals or alkaline earth metals, for example 2 moles of OCl per mole compared to 1 mole per mole of alkali metal hypohalites . Since 1 is released, the oxidation reaction can be efficiently caused even with a molar amount.
  • the above-mentioned metal hypohalite may be, for example, calcium hypochlorite or sodium hypochlorite in a solid state at room temperature.
  • the amount of the metal hypohalite to be added is, for example, 1.0 to 1.1 equivalents in the case of alkali hypohalite, and 0.5 to 0.6 equivalents in the case of alkaline earth hypohalite based on 1 equivalent of the compound represented by Formula 1 above. proper.
  • the reaction temperature of the cyclized compound and the metal hypohalite is, for example, -5 to 5 ° C., more preferably -3 to 5 ° C. It is preferable to impart reaction stability and improve the yield. At this time, the yield varies greatly depending on the reaction temperature.
  • the dropwise addition time of the metal hypohalite may be, for example, 180 minutes or less, preferably 10 to 150 minutes, more preferably 30 to 120 minutes.
  • reaction temperature of the cyclized compound and the metal hypohalite is, for example, less than 5 °C, preferably -5 to 5 °C, more preferably -3 to 3 °C is suitable for imparting reaction stability, It has the effect of improving the yield.
  • reaction time may be, for example, 1 hour or less.
  • the sulfur compound including the SO 2 terminal group obtained through the second reaction step may be a product prepared by using the compounds represented by Chemical Formulas 1-1 to 1-2 described above in an oxidation reaction.
  • the obtained SO 2 sulfur compound including a terminal group may be, for example, a compound represented by the following Chemical Formulas 2-1 to 2-2.
  • X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen
  • n is an integer from 0 to 3
  • R 1 , R when n is 0 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1-10 alkyl group, and when n is an integer of 1 to 3
  • R 1 , R 2 , R 3 , R 1 ′, R 2 ′, and R 3 ′ are independently a bond, substituted or unsubstituted C 1 to C 10 alkylene, and include at least one carbon.
  • R 1 and R 1 ' may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
  • n is an integer of 1 to 3
  • R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms.
  • R 1 and R 1 ' may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
  • n is an integer of 1 to 3
  • R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms.
  • R 3 , R 4 , R 3 ' and R 4 ' are independently bonded or substituted or It may be an unsubstituted C1-C10 alkylene.
  • the compound represented by Chemical Formulas 2-1 to 2-2 may be at least one selected from the group consisting of compounds represented by the following Chemical Formulas 4-1 to 4-5.
  • the compound represented by Formula 2-1 is 1,3,2-dioxathiolane 2,2-oxide, 1,3,2-dioxathiane 2,2-oxide, or 4-methyl-1,3 It may be ,2-dioxacyanine 2,2-oxide.
  • the purity of the compounds represented by Formulas 2-1 to 2-2 within 1 hour of reaction time is, for example, 90% by weight or more, preferably 95% by weight or more. or more, more preferably 99% by weight or more, and most preferably 100% by weight or more.
  • the yield of the compound represented by Formulas 2-1 to 2-2 within 1 hour of reaction time is, for example, 79% by weight or more, preferably 80% by weight. or more, more preferably 82% by weight or more, more preferably 85% by weight or more, and most preferably 90% by weight or more.
  • the product is obtained with a high purity of 100% or close to it, and does not contain insoluble impurities, so a reaction termination reagent (quench reagent) without post-processes such as filter treatment and filtration purification can be added to terminate the reaction.
  • a reaction termination reagent quench reagent
  • hydrogen peroxide may be used as the reaction termination reagent.
  • the single reactor used in the present invention is not limited thereto, but a G/L reactor must be used in consideration of the range of the temperature conditions of the first and second reaction temperatures and the point that acid is generated in the first step.
  • a condenser, a pressure reducing device, and a dropping device are required for the low-temperature cooling jacket reactor, a heating device for heating during concentration, and a scrubber device for removing by-products (acid gas) generated in the first reaction step are used. It is preferable
  • thermometer was installed in a 2L 4-neck low-temperature cooling jacket reaction vessel, and 100 g of ethylene glycol (hereinafter also referred to as a starting material) as a compound represented by Formula 1 was added at 25° C. and stirred.
  • ethylene glycol hereinafter also referred to as a starting material
  • the solution obtained in the first reaction step was cooled to 10° C. (corresponding to the 2-1 temperature condition among the second temperature conditions), and 1100 g of methylene chloride was added thereto.
  • reaction termination reagent 0.1 equivalent of hydrogen peroxide was added based on 1 equivalent of the ethylene glycol, stirred for 30 minutes, and then layer separation was performed. The separated filtrate was filtered using a Celite filter, and the reaction solution was concentrated and recrystallized to obtain a solid product.
  • Example 2 The same process as in Example 1 was repeated except that, in the ⁇ Second Reaction Step> section of Example 1, sodium hypochlorite was replaced with calcium hypochlorite in a solid state at room temperature.
  • Example 2 The same process as in Example 1 was repeated except that in the ⁇ Second Reaction Step> section of Example 1, the organic solvent was replaced with a mixture of acetonitrile and methylene chloride in a 1:1 weight ratio.
  • Example 1 The same process as in Example 1 was repeated except that no organic solvent was used in the ⁇ Second Reaction Step> of Example 1.
  • Example 2 The same process as in Example 1 was repeated, except that in the ⁇ second reaction step> item of Example 1, the organic solvent was replaced with methanol and methylene chloride was added to proceed with layer separation by adding methylene chloride to the step before layer separation.
  • Example 2 The same process as in Example 1 was repeated except that in the ⁇ Second Reaction Step> item of Example 1, the calcium hypochlorite input temperature condition was replaced with 10°C.
  • Example 2 The same process as in Example 1 was repeated except that the order of ethylene glycol and chlorine sulfide was replaced with the order of chlorine sulfide and ethylene glycol in the ⁇ first reaction step> of Example 1 .
  • Example 1 the reactant obtained in the ⁇ First Reaction Step> item was cooled, neutralized using an organic solvent (dimethyl chloride) and a saturated aqueous solution of a weak base (NaHCO 3 ), and then the layers were separated. The organic solvent layer was concentrated.
  • Example 2 the same process as in Example 1, except that it was put into a low-temperature cooling jacketed reactor separate from the reactor used in the ⁇ first reaction step>, and the ⁇ second reaction step> and ⁇ the third reaction step> were performed. was repeated.
  • the cyclization step and the oxidation step were performed in a single reactor, but in Examples 1 to 3 using an aprotic organic solvent having a specific boiling point in the oxidation step, the reaction conversion was improved to 85 weight It was confirmed to provide a yield of % or more and a purity of 99.9 wt%.
  • Example 3 in which two types of different boiling points were used in combination as the aforementioned organic solvent, more improved yield compared to Examples 1 and 2 in which the organic solvent was used alone.
  • the cyclization step and the oxidation step are performed in a single reactor, but when a specific organic solvent is used, the type of material used for each reaction step and the input sequence, especially when the reaction temperature condition is specified, the improved output is reduced due to the small number of side reactions. It was confirmed that the reaction stability was excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a method for in-situ preparation of an organic sulfur compound, the method comprising: a solventless cyclization step in which dihalogen-based cyclization agent is fed to alkylene glycol, followed by stirring to synthesize a cyclic compound; and an oxidation step in which the cyclic compound is reacted with metal hypohalite in the presence of a ruthenium catalyst in an aprotic organic solvent having a boiling point of 40 to 90℃ and a weak alkaline aqueous solution to synthesize a sulfur compound bearing a SO2 terminal group, wherein the solventless cyclization step and the oxidation step are performed without a separation process in a single reactor. The method for in-situ preparation of an organic sulfur compound, provided according to the present invention, employs a single reactor to secure an economical benefit and processability and is less prone to provoking side reactions, thus yielding a high output of the organic sulfur compound and guaranteeing excellent reaction stability.

Description

유기 황 화합물의 인시츄 제조방법In situ manufacturing method of organic sulfur compounds
본 발명은 유기 황 화합물의 인시츄 제조방법에 관한 것으로, 보다 상세하게는 단일 반응기를 사용하여 경제성과 공정성을 확보하면서도 부반응이 적어 유기 황 화합물의 산출량이 높고 반응 안정성이 우수한 유기 황 화합물의 인시츄 제조방법에 관한 것이다. The present invention relates to an in situ manufacturing method of an organic sulfur compound, and more particularly, to an in situ method for producing an organic sulfur compound with a high yield of an organic sulfur compound and excellent reaction stability due to few side reactions while securing economic efficiency and fairness using a single reactor It relates to a manufacturing method.
설파이트계 화합물(sulfite, R-O-SO-O-R')을 출발물질로 하는 유기 황 화합물은 산화환원반응을 통해 설페이트계 화합물(sulfate, R-O-SO2-O-R')을 생성할 수 있다. An organic sulfur compound starting from a sulfite-based compound (sulfite, RO-SO-O-R') can produce a sulfate-based compound (sulfate, RO-SO 2 -O-R') through a redox reaction. there is.
생성된 설페이트계 화합물(sulfate, R-O-SO2-O-R')은 공통적으로 -SO2 형태를 포함하고 산업공정에서 연료 첨가제, 리튬이온전지를 위한 전해질 용액 등 다용도의 기능성 물질로서 사용되고 있다.The produced sulfate-based compound (sulfate, RO-SO 2 -O-R') commonly includes a -SO 2 form and is used as a multipurpose functional material such as a fuel additive in an industrial process and an electrolyte solution for a lithium ion battery.
그러므로 설페이트 화합물의 효율적이고 고수율의 합성법이 활발히 연구되고 있다.Therefore, efficient and high-yield synthesis methods for sulfate compounds are being actively studied.
일례로, 설폭사이드계 화합물(sulfoxide, R-SO-R')과 설파이트계 화합물(sulfite, R-O-SO-O-R')을 출발 물질로 하여 산화제로서 과요오드산수소나트륨(NaIO4), 차아염소산나트륨(NaOCl), 차아염소산칼슘(Ca(OCl)2), 과산화수소(HOOH), 과망간산 칼슘(KMnO4) 등을 사용하는 기술이 공지되어 있다. For example, sodium hydrogen periodate (NaIO 4 ) as an oxidizing agent using a sulfoxide-based compound (sulfoxide, R-SO-R') and a sulfite-based compound (sulfite, RO-SO-O-R') as a starting material, Techniques using sodium hypochlorite (NaOCl), calcium hypochlorite (Ca(OCl) 2 ), hydrogen peroxide (HOOH), calcium permanganate (KMnO 4 ), and the like are known.
상기 산화제들의 경우 물에 대한 용해성이 높아 수용액 상태로 간편하게 보관 및 사용하는 기술이 제안되었으나, 반응 안정성이 불량하거나 생성물이 물에 취약하여 순도와 수율이 급격히 감소하거나 또는 불균일계 (two phase) 반응으로 재현성이 떨어지는 문제가 있다. In the case of the oxidizing agents, a technique for conveniently storing and using an aqueous solution state has been proposed due to their high solubility in water. There is a problem of poor reproducibility.
이에 물의 사용을 배제하도록 유기용매 하에 산화제를 고체 상태로 투입하는 기술이 한국등록특허 제10-2080198호에서 시도되었으나, 80% 이상의 수율을 얻기 위해서 최소 하루 이상 반응을 진행해야 하는 등 양산에 적합한 기술개발이 여전히 필요한 실정이다. In order to exclude the use of water, a technology of injecting an oxidizing agent in a solid state under an organic solvent was attempted in Korean Patent No. 10-2080198, but it is a technology suitable for mass production, such as having to carry out the reaction for at least one day to obtain a yield of 80% or more Development is still needed.
상기와 같은 종래기술의 문제점을 해결하고자, 본 발명은 유기 황 화합물의 인시츄 제조방법을 제공하는 것을 목적으로 한다. In order to solve the problems of the prior art as described above, an object of the present invention is to provide a method for preparing an organic sulfur compound in situ.
본 발명의 상기 목적 및 기타 목적들은 하기 설명된 본 발명에 의하여 모두 달성될 수 있다.The above and other objects of the present invention can all be achieved by the present invention described below.
상기의 목적을 달성하기 위하여, 본 발명은In order to achieve the above object, the present invention
알킬렌 글라이콜에 디할로겐계 고리화제를 투입하여 반응시켜 고리화 화합물을 합성하는 무용매 고리화단계; 및A solvent-free cyclization step of synthesizing a cyclized compound by adding a dihalogen-based cyclizing agent to the alkylene glycol; and
비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액 및 루테늄 촉매 하에, 상기 고리화 화합물과 금속 하이포할라이트를 반응시켜 SO2 말단기를 포함하는 황 화합물을 합성하는 산화단계를 포함하되,In the presence of an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution, and a ruthenium catalyst, the cyclized compound and the metal hypohalite are reacted to synthesize a sulfur compound containing SO 2 terminal groups. Oxidation step including,
상기 무용매 고리화단계 및 산화단계는 단일 반응기에서 분리공정없이 진행되는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법을 제공한다. The solvent-free cyclization step and the oxidation step provide an in situ manufacturing method of an organic sulfur compound, characterized in that it proceeds without a separation process in a single reactor.
상기 무용매 고리화단계에서 수득된 고리화 화합물은 하기 화학식 1-1 내지 1-2로 나타내는 화합물인 것일 수 있다. The cyclized compound obtained in the solvent-free cyclization step may be a compound represented by the following Chemical Formulas 1-1 to 1-2.
[화학식 1-1][Formula 1-1]
Figure PCTKR2021015274-appb-I000001
Figure PCTKR2021015274-appb-I000001
[화학식 1-2][Formula 1-2]
Figure PCTKR2021015274-appb-I000002
Figure PCTKR2021015274-appb-I000002
(여기서 X1, X2, X3, X1’, X2’및 X3’는 독립적으로 결합(bond) 또는 산소이고, n은 0 내지 3의 정수이며, n이 0인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 수소, 치환 또는 미치환된 탄소수 1 내지 10의 알킬기이고, n이 1 내지 3의 정수인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 결합(bond), 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌이며, 적어도 1 이상의 탄소를 포함한다.)(wherein X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen, n is an integer from 0 to 3, R 1 when n is 0, R 2 , R 3 , R 1 ', R 2 ' and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1 to C 10 alkyl group, and when n is an integer of 1 to 3, R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently a bond, substituted or unsubstituted alkylene having 1 to 10 carbon atoms, including at least one carbon.)
상기 디할로겐계 고리화제는 염화티오닐(SOCl2)일 수 있다.The dihalogen-based cyclizing agent may be thionyl chloride (SOCl 2 ).
상기 디할로겐계 고리화제는 상기 알킬렌 글라이콜 1 당량에 대하여 1 내지 2 당량으로 투입되는 것일 수 있다. The dihalogen-based cyclizing agent may be added in an amount of 1 to 2 equivalents based on 1 equivalent of the alkylene glycol.
상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 메틸렌클로라이드, 디메틸 카보네이트, 메틸 시아나이드, 에틸렌 디클로라이드, 트리클로로메탄 및 아세토니트릴 중에서 선택된 1종 이상인 것일 수 있다. The aprotic organic solvent having a boiling point of 40 to 90° C. may be at least one selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, trichloromethane and acetonitrile.
상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 아세토니트릴; 및 메틸렌클로라이드, 디메틸 카보네이트, 메틸 시아나이드, 에틸렌 디클로라이드 및 트리클로로메탄 중에서 선택된 1종 이상의 혼합인 것일 수 있다. The aprotic organic solvent having a boiling point of 40 to 90° C. is acetonitrile; And it may be a mixture of one or more selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride and trichloromethane.
상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 상기 알킬렌글라이콜 100 중량부에 대하여 900 내지 1200 중량부인 것일 수 있다. The amount of the aprotic organic solvent having a boiling point of 40 to 90° C. may be 900 to 1200 parts by weight based on 100 parts by weight of the alkylene glycol.
상기 약염기 수용액은 상기 산화반응의 pH를 7 내지 9로 유지하는 함량으로 투입되며, 이때 상기 약염기 수용액을 구성하는 물의 함량은 상기 비양성자성 유기용매와 1:0.8 내지 1:3(물:유기용매)의 중량비로 포함되는 것일 수 있다. The weak base aqueous solution is added in an amount to maintain the pH of the oxidation reaction at 7 to 9, wherein the content of water constituting the weak base aqueous solution is 1:0.8 to 1:3 with the aprotic organic solvent (water: organic solvent) ) may be included in the weight ratio.
상기 루테늄 촉매는 루테늄 클로라이드인 것일 수 있다. The ruthenium catalyst may be ruthenium chloride.
상기 루테늄 촉매는 상기 알킬렌 글라이콜 1 당량을 기준으로 0.0001 내지 0.0006 당량으로 투입되는 것일 수 있다.The ruthenium catalyst may be added in an amount of 0.0001 to 0.0006 equivalents based on 1 equivalent of the alkylene glycol.
상기 산화단계는 상기 고리화 화합물에 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액 및 루테늄 촉매를 제2-1 온도조건, 제2-2 온도조건 및 제2-3 온도조건 하에 순차적으로 투입하면서 반응을 수행하는 것일 수 있다. In the oxidation step, an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution, and a ruthenium catalyst are added to the cyclized compound at the 2-1 temperature condition, the 2-2 temperature condition, and the 2-3 temperature. It may be to perform the reaction while sequentially input under the conditions.
상기 제2-1 온도조건은 0 내지 20도℃이고, 상기 제2-2 온도조건은 0 내지 10℃이며, 상기 제2-3 온도조건은 -1 내지 3℃인 것일 수 있다. The 2-1 temperature condition may be 0 to 20° C., the 2-2 temperature condition may be 0 to 10° C., and the 2-3 temperature condition may be -1 to 3° C.
상기 금속 하이포할라이트는 차아염소산칼슘 및 차아염소산나트륨 중에서 선택된 1종 이상인 것일 수 있다. The metal hypohalite may be at least one selected from calcium hypochlorite and sodium hypochlorite.
상기 금속 하이포할라이트는 상기 고리화 화합물 1 당량을 기준으로 0.5 내지 1.1 당량으로 투입되는 것일 수 있다. The metal hypohalite may be added in an amount of 0.5 to 1.1 equivalents based on 1 equivalent of the cyclized compound.
상기 고리화 화합물과 상기 금속 하이포할라이트의 반응 온도는 -5 내지 5℃인 것일 수 있다. The reaction temperature of the cyclized compound and the metal hypohalite may be -5 to 5 ℃.
상기 SO2 말단기를 포함하는 황 화합물은 하기 화학식 2-1 내지 2-2로 나타내는 화합물인 것일 수 있다. The SO 2 sulfur compound including a terminal group may be a compound represented by the following Chemical Formulas 2-1 to 2-2.
[화학식 2-1][Formula 2-1]
Figure PCTKR2021015274-appb-I000003
Figure PCTKR2021015274-appb-I000003
[화학식 2-2] [Formula 2-2]
Figure PCTKR2021015274-appb-I000004
Figure PCTKR2021015274-appb-I000004
(여기서 X1, X2, X3, X1’, X2’및 X3’는 독립적으로 결합(bond) 또는 산소이고, n은 0 내지 3의 정수이며, n이 0인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 수소, 치환 또는 미치환된 탄소수 1 내지 10의 알킬기이고, n이 1 내지 3의 정수인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 결합(bond), 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌이며, 적어도 1 이상의 탄소를 포함한다.) (wherein X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen, n is an integer from 0 to 3, R 1 when n is 0, R 2 , R 3 , R 1 ', R 2 ' and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1 to C 10 alkyl group, and when n is an integer of 1 to 3, R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently a bond, substituted or unsubstituted alkylene having 1 to 10 carbon atoms, including at least one carbon.)
상기 산화단계는 종결 시약(quench reagent)을 투입하여 종결하는 것일 수 있다. The oxidation step may be terminated by adding a quench reagent.
상기 종결 시약은 과산화수소일 수 있다. The termination reagent may be hydrogen peroxide.
본 발명에 따르면 단일 반응기와 특정 유기용매를 사용하여 경제성과 공정성을 확보하면서도 부반응이 적어 유기 황 화합물의 산출량이 높고 반응 안정성이 우수한 유기 황 화합물의 인시츄 제조방법을 제공하는 효과가 있다. According to the present invention, there is an effect of providing an in situ manufacturing method of an organic sulfur compound having a high yield of an organic sulfur compound and excellent reaction stability due to few side reactions while securing economic efficiency and fairness by using a single reactor and a specific organic solvent.
이하 본 기재의 유기 황 화합물의 인시츄 제조방법을 상세하게 설명한다. Hereinafter, the in situ manufacturing method of the organic sulfur compound of the present disclosure will be described in detail.
본 발명자들은 저가의 알킬렌 글라이콜 화합물을 출발물질로 하여 목적하는 SO2 말단기를 포함하는 황 화합물을 합성함에 있어 디할로겐계 고리화제, 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매 및 루테늄 촉매를 사용하고 인시츄 고리화단계 및 인시츄 산화단계를 연속적으로 수행하는 경우, 고순도 및 고수율로 대량 생산이 가능하면서 반응공정이 간단하고 경제적인 것을 확인하고 이를 토대로 본 발명을 완성하기에 이르렀다.The present inventors use a low-cost alkylene glycol compound as a starting material to synthesize a sulfur compound containing a desired SO 2 terminal group, a dihalogen-based cyclizing agent, an aprotic having a boiling point of 40 to 90 ℃ When an organic solvent and a ruthenium catalyst are used and the in situ cyclization step and the in situ oxidation step are continuously performed, mass production with high purity and high yield is possible, and the reaction process is simple and economical, and based on this, the present invention came to completion.
본 발명에서 사용하는 용어 "알킬"은 직쇄, 분지쇄 또는 고리형의 탄화수소 라디칼을 포함하며, 용어 "알킬렌"은 알킬로부터 유도되는 2가라디칼을 말한다. 일례로, 상기 알킬렌은 메틸렌, 에틸렌, 이소부틸렌, 시클로헥실렌, 시클로펜틸에틸렌, 2-프로페닐렌, 3-부티닐렌 등을 포함한다. As used herein, the term “alkyl” includes a straight-chain, branched-chain or cyclic hydrocarbon radical, and the term “alkylene” refers to a divalent radical derived from alkyl. For example, the alkylene includes methylene, ethylene, isobutylene, cyclohexylene, cyclopentylethylene, 2-propenylene, 3-butynylene, and the like.
본 발명에서 사용하는 용어 "치환 또는 미치환"의 표현에서, "치환"은 탄화수소 내의 하나 이상의 수소 원자가 각각, 서로 독립적으로, 동일하거나 상이한 치환기로 대체되는 것을 의미한다. In the expression of the term “substituted or unsubstituted” as used herein, “substituted” means that one or more hydrogen atoms in a hydrocarbon are each, independently of each other, replaced with the same or different substituents.
여기서 치환기는 통상적으로 사용되는 종류를 사용할 수 있으며, 일례로, 할로, 알킬, 아릴 및 아릴알킬 중에서 있다. Here, the substituent may use a conventionally used kind, and for example, it is among halo, alkyl, aryl and arylalkyl.
본 발명에서 사용하는 용어 "인시츄"는 달리 특정하지 않는 한, 단일 반응기를 사용하여 무용제 고리화단계와 산화단계를 수행하는 것을 지칭한다. As used herein, the term "in situ" refers to performing a solvent-free cyclization step and an oxidation step using a single reactor, unless otherwise specified.
본 발명에서 사용하는 용어 "할로겐"은 일례로 불소(F), 브롬(Br), 염소(Cl), 요오드(I) 등을 포함한다. The term "halogen" used in the present invention includes, for example, fluorine (F), bromine (Br), chlorine (Cl), iodine (I), and the like.
본 발명의 유기 황 화합물 인시츄 제조방법은 일례로, 알킬렌 글라이콜을 디할로겐계 고리화제와 반응시켜 고리화 화합물을 합성하는 인시츄 고리화단계; 및 상기 인시츄 고리화단계의 생성물에 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액, 루테늄 촉매 및 금속 하이포할라이트를 순차적으로 반응시켜 SO2 말단기를 포함하는 황 화합물을 합성하는 인시츄 산화단계를 포함하되, 상기 인시츄 고리화단계 및 인시츄 산화단계는 연속적으로 진행되는 것을 특징으로 하고, 이 경우에 반응 안정성이 우수하면서도 반응시간이 단축되고, 부반응이 적어 개선된 산출량이 제공되는 효과가 있다. The organic sulfur compound in situ production method of the present invention includes, for example, an in situ cyclization step of reacting an alkylene glycol with a dihalogen-based cyclizing agent to synthesize a cyclized compound; and an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution, a ruthenium catalyst, and a metal hypohalite by sequentially reacting the product of the in situ cyclization step to react SO 2 A sulfur compound containing a terminal group Including an in situ oxidation step of synthesizing, characterized in that the in situ cyclization step and the in situ oxidation step are performed continuously, in this case, the reaction stability is excellent, the reaction time is shortened, and there are few side reactions. It has the effect of providing a given output.
이하, 본 발명의 유기 황 화합물 인시츄 제조에 따른 단계별로 상세히 설명하기로 한다. Hereinafter, it will be described in detail step by step according to the in situ production of the organic sulfur compound of the present invention.
제1 반응단계first reaction step
본 기재에서 제1 반응단계는 무용제 조건하에 고리화 화합물을 제조하는 단계로서, 일례로 알킬렌 글라이콜에 디할로겐계 고리화제를 투입하고 교반하여 고리화 화합물을 합성할 수 있는 것으로, 투입순서를 변경할 경우 부반응이 일어나 수율 저하를 일으키는 문제가 발생할 수 있다.In the present description, the first reaction step is a step of preparing a cyclized compound under solvent-free conditions. For example, a dihalogen-based cyclizing agent is added to alkylene glycol and stirred to synthesize a cyclized compound, and the order of introduction If you change it, a side reaction may occur, which may cause a problem of lowering the yield.
본 발명의 일 실시예에 따르면, 상기 알킬렌 글라이콜은, 일례로 에틸렌글라이콜, 프로필렌글라이콜, 또는 부틸렌글라이콜일 수 있고, 바람직하게는 에틸렌글라이콜 또는 프로필렌글라이콜, 보다 바람직하게는 에틸렌글라이콜일 수 있다.According to an embodiment of the present invention, the alkylene glycol may be, for example, ethylene glycol, propylene glycol, or butylene glycol, preferably ethylene glycol or propylene glycol; More preferably, it may be ethylene glycol.
상기 화학식 1로 표시되는 화합물을 고리화하기 위해 사용하는 디할로겐계 고리화제는 반응성 할로겐화물을 사용할 수 있고, 대표적인 예로 염화티오닐(SOCl2)을 사용할 수 있다. The dihalogen-based cyclizing agent used to cyclize the compound represented by Formula 1 may use a reactive halide, and thionyl chloride (SOCl 2 ) may be used as a representative example.
본 발명의 일 실시예에 따르면, 상기 디할로겐계 고리화제는 상기 알킬렌 글라이콜 1 당량을 기준으로, 일례로 1 내지 2 당량, 바람직하게는 1 내지 1.5 당량, 보다 바람직하게는 1 내지 1.3 당량, 더욱 바람직하게는 1 내지 1.2 당량으로 투입될 수 있다. 상술한 범위를 만족하면 반응 부산물의 생성을 줄여 약염기의 사용량을 줄이는 효과를 제공할 수 있다. 참고로, 부산물인 산 gas 발생량이 많아지면 약염기 수용액의 사용량 또한 많아지게 되고 이로 인해 반응액을 중화시키는 시간이 증가하게 된다. 또한 발생되는 폐수량이 증가되며 폐수 처리비용 등이 증가할 수 있다. According to an embodiment of the present invention, the dihalogen-based cyclizing agent is based on 1 equivalent of the alkylene glycol, for example, 1 to 2 equivalents, preferably 1 to 1.5 equivalents, more preferably 1 to 1.3 equivalents equivalent, more preferably 1 to 1.2 equivalents may be added. When the above-mentioned range is satisfied, it is possible to provide the effect of reducing the amount of the weak base by reducing the generation of reaction by-products. For reference, if the amount of acid gas generated as a by-product increases, the amount of the weak base aqueous solution used also increases, which increases the time to neutralize the reaction solution. In addition, the amount of wastewater generated increases and the cost of wastewater treatment may increase.
상기 무용매 고리화단계에서 반응 온도는 일례로 10 내지 40℃, 바람직하게는 20 내지 40℃, 보다 바람직하게는 25 내지 40℃인 것이 고리화 반응성을 개선하기에 적절하다. The reaction temperature in the solvent-free cyclization step is, for example, 10 to 40 ℃, preferably 20 to 40 ℃, more preferably 25 to 40 ℃ is suitable for improving the cyclization reactivity.
상기 무용매 고리화단계에서 수득된 고리화 화합물은 하기 화학식 1-1 내지 1-2로 나타내는 화합물일 수 있다. The cyclized compound obtained in the solvent-free cyclization step may be a compound represented by the following Chemical Formulas 1-1 to 1-2.
[화학식 1-1][Formula 1-1]
Figure PCTKR2021015274-appb-I000005
Figure PCTKR2021015274-appb-I000005
[화학식 1-2][Formula 1-2]
Figure PCTKR2021015274-appb-I000006
Figure PCTKR2021015274-appb-I000006
여기서 X1, X2, X3, X1’, X2’및 X3’는 독립적으로 결합(bond) 또는 산소이고, n은 0 내지 3의 정수이며, n이 0인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 수소, 치환 또는 미치환된 탄소수 1 내지 10의 알킬기이고, n이 1 내지 3의 정수인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 결합(bond), 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌이며, 적어도 1 이상의 탄소를 포함한다.wherein X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen, n is an integer from 0 to 3, and R 1 , R when n is 0 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1-10 alkyl group, and when n is an integer of 1 to 3, R 1 , R 2 , R 3 , R 1 ′, R 2 ′, and R 3 ′ are independently a bond, substituted or unsubstituted C 1 to C 10 alkylene, and include at least one carbon.
상기 화학식 1-1에서, 일례로 X1 및 X1'가 각각 산소인 경우, n은 0이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다.In Formula 1-1, for example, when X 1 and X 1 ′ are each oxygen, n is 0, and R 1 and R 1 ′ may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 산소인 경우, n은 1내지 3의 정수이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each oxygen, n is an integer of 1 to 3, and R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms. can
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 결합인 경우, n은 0이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each a bond, n is 0, and R 1 and R 1 ' may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 결합인 경우, n은 1 내지 3의 정수이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each a bond, n is an integer of 1 to 3, and R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms. can
또한, 상기 화학식 2-2에서, 일례로 X2, X3, X2'및 X3'가 각각 산소인 경우, R2, R3, R2'및 R3'는 독립적으로 결합 혹은 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In addition, in Formula 2-2, for example, when X 2 , X 3 , X 2 ' and X 3 ' are each oxygen, R 2 , R 3 , R 2 ' and R 3 ' are independently bonded or substituted or It may be an unsubstituted C1-C10 alkylene.
또한, 상기 화학식 1-1 내지 1-2로 나타내는 화합물은 하기 화학식 3-1 내지 3-5로 표시되는 화합물로 이루어지는 그룹으로부터 선택된 1종 이상일 수 있다. In addition, the compound represented by Formulas 1-1 to 1-2 may be at least one selected from the group consisting of compounds represented by Formulas 3-1 to 3-5 below.
[화학식 3-1 내지 3-5][Formula 3-1 to 3-5]
Figure PCTKR2021015274-appb-I000007
Figure PCTKR2021015274-appb-I000007
구체적인 예로, 상기 화학식 1-1로 나타내는 화합물은 1,3,2-다이옥사티올란 2-옥사이드, 1,3,2-다이옥사싸이안 2-옥사이드, 또는 4-메틸-1,3,2-다이옥사싸이안 2-옥사이드일 수 있다.As a specific example, the compound represented by Formula 1-1 is 1,3,2-dioxathiolane 2-oxide, 1,3,2-dioxathiane 2-oxide, or 4-methyl-1,3,2- It may be dioxacyanide 2-oxide.
제2 반응단계second reaction step
본 기재에서 제2 반응단계는 산화단계로서, 일례로 전술한 제1 반응단계를 수행한 반응기 내 고리화 화합물에 상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액과 루테늄 촉매를 순차 투입하면서 반응을 수행하는 것일 수 있다. 약염기 수용액과 유기용매의 순서가 바뀔 경우 반응 전환이 잘 이루어지지 않아 수율이 악화될 수 있다. In the present description, the second reaction step is an oxidation step, for example, an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous solution of a weak base, and ruthenium in the cyclized compound in the reactor in which the above-described first reaction step is performed. The reaction may be performed while sequentially adding the catalyst. If the order of the weak base aqueous solution and the organic solvent is changed, the reaction conversion may not be performed well and the yield may deteriorate.
본 기재에서 제2 반응단계로서 최적의 투입 순서는 유기용매 -> 약염기 수용액 -> 루테늄 촉매의 순서로 이루어질 수 있으며, 이 경우 반응 수율과 순도를 모두 효과적으로 개선할 수 있다. As the second reaction step in the present description, the optimal input order may be in the order of organic solvent -> weak base aqueous solution -> ruthenium catalyst, and in this case, both the reaction yield and purity can be effectively improved.
본 발명에 포함되는 유기반응에서 용매 효과는 매우 중요한 것으로, 다른 조건이 모두 동일하더라도 용매에 따라 어떤 반응은 진행되지 않을 수도 있고, 어떤 반응은 거의 100%에 가깝게 진행될 수 있다. 따라서 본 기재에 따른 유기 황 화합물을 인시츄 제조하는 방법에서 용매의 선택은 매우 중요하다. In the organic reaction included in the present invention, the solvent effect is very important, and even if all other conditions are the same, some reactions may not proceed depending on the solvent, and some reactions may proceed close to 100%. Therefore, in the method for in situ production of the organic sulfur compound according to the present disclosure, the selection of the solvent is very important.
상기 유기용매는 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매를 사용하는 것이 산화 반응 단계에서 부반응을 적게 일으킬 수 있어 바람직하다. 참고로, 메탄올, 에탄올을 비롯한 양성자성(protic) 유기용매의 경우 후술하는 하이포할라이트가 해당 유기용매를 산화시켜 타겟 물질이 아닌 부산물을 생성시키고 이로 인해 수율과 순도 저하를 일으킬 수 있다. As the organic solvent, it is preferable to use an aprotic organic solvent having a boiling point of 40 to 90° C. because it may cause less side reactions in the oxidation reaction step. For reference, in the case of protic organic solvents such as methanol and ethanol, hypohalite, which will be described later, oxidizes the organic solvent to generate a byproduct rather than a target material, which may cause a decrease in yield and purity.
상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 일례로메틸렌클로라이드, 디메틸 카보네이트, 메틸 시아나이드, 에틸렌 디클로라이드, 트리클로로메탄 및 아세토니트릴 중에서 선택된 1종 이상일 수 있다.The aprotic organic solvent having a boiling point of 40 to 90° C. may be, for example, at least one selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, trichloromethane and acetonitrile.
또한, 상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 아세토니트릴과, 메틸렌클로라이드, 디메틸 카보네이트, 메틸 시아나이드, 에틸렌 디클로라이드 및 트리클로로메탄 중에서 선택된 1종 이상을 혼합하여 사용하는 것이 극성 비양성자성 유기용매인 아세토니트릴이 물과 비극성 비양성자성 유기용매간의 계면반응을 더 용이하게 하여 반응 수율을 개선할 수 있어 바람직하다.In addition, the aprotic organic solvent having a boiling point of 40 to 90 ° C. is acetonitrile, methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, and trichloromethane using a mixture of at least one selected from the group consisting of It is preferable that the polar aprotic organic solvent, acetonitrile, can improve the reaction yield by facilitating the interfacial reaction between water and the non-polar aprotic organic solvent.
이때 비극성 비양성자성 유기용매와 아세토니트릴은 일례로 1:0.5 내지 10의 중량비, 바람직하게는 1:0.5 내지 5의 중량비, 보다 바람직하게는 1:0.5 내지 3의 중량비로 배합될 수 있다. 상술한 범위를 만족하면, 생산효율 개선 효과를 극대화할 수 있다.In this case, the non-polar aprotic organic solvent and acetonitrile may be combined, for example, in a weight ratio of 1:0.5 to 10, preferably 1:0.5 to 5, and more preferably 1:0.5 to 3 by weight. When the above-described range is satisfied, the effect of improving production efficiency can be maximized.
한편, 상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 상기 알킬렌글라이콜 100 중량부에 대하여 900 내지 1200 중량부인 것이 생성된 황 화합물의 용해성을 제공하기에 바람직하다. 적정 범위 미만으로 포함될 경우 반응 도중 생성물이 석출되어 반응 전환이 완전히 되지 않으므로 순도와 수율을 모두 저감할 수 있다. Meanwhile, the amount of the aprotic organic solvent having a boiling point of 40 to 90° C. is preferably 900 to 1200 parts by weight based on 100 parts by weight of the alkylene glycol to provide solubility of the resulting sulfur compound. When included below the appropriate range, the product is precipitated during the reaction and the reaction conversion is not complete, so both purity and yield can be reduced.
본 발명의 일 실시예에 따르면, 전술한 반응물 용액에 기재에 따른 약염기(weak base) 수용액을 포함하여 완충효과를 제공할 수 있다. According to an embodiment of the present invention, it is possible to provide a buffering effect by including an aqueous solution of a weak base according to the description in the above-described reactant solution.
상기 약염기 수용액은 적절한 약염기의 투입으로 인해 산화반응의 pH는 일례로 7 내지 9, 바람직하게는 7 내지 8로 유지하는 것이 반응효율을 최적화할 수 있어 바람직하다.In the weak base aqueous solution, the pH of the oxidation reaction is preferably maintained at 7 to 9, preferably 7 to 8, due to the addition of an appropriate weak base to optimize the reaction efficiency.
본 기재에서 pH는 통상 공지된 방법으로 측정할 수 있으며, 예를 들어 pH 미터를 사용하여 측정할 수 있다. In the present description, the pH may be measured by a commonly known method, for example, using a pH meter.
상기 약염기로는 반응에 영향을 미치지 않는 종류라면 제한되지 않으며, 일례로 탄산(수소)나트륨, 탄산암모늄, 탄산칼륨, 인산암모늄, 인산나트륨 등을 사용할 수 있고, 성능과 제조단가를 고려하여 탄산(수소)나트륨을 사용하는 것이 바람직하다. The weak base is not limited as long as it does not affect the reaction, and for example, sodium carbonate (hydrogen), ammonium carbonate, potassium carbonate, ammonium phosphate, sodium phosphate, etc. may be used, and in consideration of performance and manufacturing cost, carbonic acid ( Hydrogen) sodium is preferably used.
상기 약염기의 투입량은, 일례로 상기 화학식 1로 표시되는 화합물 1 당량을 기준으로 0.1 내지 1 당량, 바람직하게는 0.1 내지 0.5 당량, 바람직하게는 0.1 내지 0.2 당량으로 투입되는 것이 반응 효율을 개선하고 반응에 필요한 pH를 최적화할 수 있어 바람직하다. The amount of the weak base is, for example, 0.1 to 1 equivalent, preferably 0.1 to 0.5 equivalent, preferably 0.1 to 0.2 equivalent, based on 1 equivalent of the compound represented by Formula 1, to improve reaction efficiency and react It is preferable because it can optimize the required pH.
특히, 본 발명의 일 실시예에 따르면, 상기 약염기는 수용액으로 투입되는 것이 바람직한데, 수용액으로 투입함에 따라 발열을 줄여 공정 시간 단축 및 반응 안정성 효과를 제공할 수 있다. In particular, according to an embodiment of the present invention, it is preferable that the weak base is added as an aqueous solution. As the aqueous solution is added, heat generation is reduced, thereby shortening the process time and providing the effect of stability of the reaction.
상기 약염기 수용액을 구성하는 물의 함량(중량 기준)은 상기 비양성자성 유기용매와 일례로, 1:1 내지 1:4 (물:유기용매), 바람직하게는 1:0.9 내지 1:3.2 (물:유기용매), 보다 바람직하게는 1:1.5 내지 1:2.2 (물:유기용매)인 것이 반응 속도와 반응 효율을 최적화할 수 있어 바람직하다. 상기 물은 전술한 산화환원반응 촉매인 루테늄 촉매를 산화시켜 전체 산화환원반응을 활성화 및 촉진시키는 활성화제로서의 역할을 수행할 수 있다. The content (by weight) of water constituting the weak base aqueous solution is, for example, 1:1 to 1:4 (water:organic solvent), preferably 1:0.9 to 1:3.2 (water: organic solvent), more preferably 1:1.5 to 1:2.2 (water:organic solvent) because it is possible to optimize the reaction rate and reaction efficiency. The water may serve as an activator for activating and promoting the overall redox reaction by oxidizing the ruthenium catalyst, which is the above-described redox catalyst.
참고로, 루테늄 촉매는 물과 반응하여 RuO2와 3HCl, H+로 전환되고, 전환물 중에서 RuO2는 물과 추가 반응하여 RuO4로 전환되면서 금속 하이포할라이트를 비롯한 후술하는 산화제와 직접 반응하는 루트로 진행될 수 있고, 이로부터 반응 시간을 단축하고, 부반응 없이 반응수율을 개선할 뿐 아니라 반응 안정성 또한 제공할 수 있다. For reference, the ruthenium catalyst is converted to RuO 2 , 3HCl, and H + by reacting with water, and among the conversions, RuO 2 is further reacted with water to be converted to RuO 4 , a route that directly reacts with an oxidizing agent to be described later including metal hypohalite can proceed, thereby shortening the reaction time, improving the reaction yield without side reactions, as well as providing reaction stability.
이때 상기 약염기의 수용액으로 제공되는 물의 사용량은, 일례로 상기 화학식 1로 표시되는 화합물 100 중량부를 기준으로 300 내지 1000 중량부, 바람직하게는 300 내지 800 중량부, 보다 바람직하게는 300 내지 600 중량부로 투입되는 것이 반응 전환율과 순도를 최적화할 수 있어 바람직하다.In this case, the amount of water provided as an aqueous solution of the weak base is, for example, 300 to 1000 parts by weight, preferably 300 to 800 parts by weight, more preferably 300 to 600 parts by weight, based on 100 parts by weight of the compound represented by Formula 1 above. It is preferable because it can optimize the reaction conversion rate and purity.
한편, 상기 약염기 수용액의 적가온도(전술한 제2 온도조건에 해당)는 일례로 0 내지 10℃, 보다 바람직하게는 0 내지 5℃인 것이 반응 안정성을 부여하기에 적절하다. On the other hand, the dropwise addition temperature of the weak base aqueous solution (corresponding to the second temperature condition described above) is, for example, 0 to 10 ℃, more preferably 0 to 5 ℃ is suitable for imparting reaction stability.
본 발명의 일 실시예에 따르면, 촉매로서 루테늄 계열을 첨가한다. According to an embodiment of the present invention, a ruthenium series is added as a catalyst.
통상적으로 촉매가 있으면 더 적은 활성화 에너지를 필요로 하기 때문에 반응속도가 증가한다. 상기 산화환원반응의 반응속도를 증가시킬 수 있는 촉매라면 제한없이 사용될 수 있으나, 바람직하게는 산화환원반응의 촉매로서 주로 사용되는 백금족 촉매가 사용될 수 있고, 보다 바람직하게는 루테늄 계열이 사용될 수 있으며, 가장 바람직하게는 루테늄 클로라이드가 사용될 수 있다. Typically, the presence of a catalyst increases the reaction rate because less activation energy is required. Any catalyst capable of increasing the reaction rate of the redox reaction may be used without limitation, but preferably a platinum group catalyst mainly used as a catalyst for the redox reaction may be used, and more preferably a ruthenium series may be used, Most preferably, ruthenium chloride may be used.
상기 루테늄 클로라이드는 무수물 또는 수화물 형태로 사용될 수 있으며, 그 사용량은 일례로 상기 화학식 1로 표시되는 화합물 1 당량을 기준으로 0.0001 내지 0.0006 당량, 바람직하게는 0.0002 내지 0.0005 당량으로 투입될 수 있으며, 이 경우에 전술한 산화환원반응을 최적화하여 반응 시간을 단축하고, 부반응 없이 반응수율을 개선할 수 있다. The ruthenium chloride may be used in the form of anhydrous or hydrate, and the amount used may be, for example, 0.0001 to 0.0006 equivalents, preferably 0.0002 to 0.0005 equivalents, based on 1 equivalent of the compound represented by Formula 1 It may be added in an amount, in this case By optimizing the redox reaction described above, the reaction time can be shortened, and the reaction yield can be improved without side reactions.
특히, 본 기재의 제조공정에 따르면, 상기 루테늄 클로라이드를0.0001 내지 0.0002 당량의 극미량으로 투입하더라도 반응이 진행되므로 생산단가를 줄일 수 있다. In particular, according to the manufacturing process of the present disclosure, even if the ruthenium chloride is added in a very trace amount of 0.0001 to 0.0002 equivalent, the reaction proceeds, so that the production cost can be reduced.
한편, 상기 산화단계는 상기 고리화 화합물에 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액 및 루테늄 촉매를 제2-1 온도조건, 제2-2 온도조건 및 제2-3 온도조건 하에 순차적으로 투입하면서 반응을 수행하는 것일 수 있고, 이때 제2-1 온도조건은 일례로 0 내지 20℃, 바람직하게는 0 내지 15℃인 것이 반응 안정성을 부여하기에 적절하다. On the other hand, in the oxidation step, an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution and a ruthenium catalyst are added to the cyclized compound under the 2-1 temperature condition, the 2-2 temperature condition and the second 2- The reaction may be carried out while sequentially added under 3 temperature conditions, and in this case, the 2-1 temperature condition is, for example, 0 to 20° C., preferably 0 to 15° C. It is suitable for imparting reaction stability.
또한, 상기 제2-2 온도조건은 일례로 0 내지 10℃, 바람직하게는 0 내지 5℃인 것이 반응 완충성을 제공하기에 적절하다. In addition, the 2-2 temperature condition is, for example, 0 to 10 ℃, preferably 0 to 5 ℃ is suitable to provide the reaction buffer.
또한, 상기 제2-3 온도조건은 일례로 -1 내지 3℃, 바람직하게는 -1 내지 2℃인 것이 반응 완충성을 제공하기에 적절하다.In addition, the 2-3 temperature condition is, for example, -1 to 3 ℃, preferably -1 to 2 ℃ is suitable to provide the reaction buffer.
전술한 루테늄 촉매가 투입된 반응물 용액에 금속 하이포할라이트를 투입하고 반응을 수행하게 된다. 이때 전술한 무용매 고리화단계 및 산화단계는 단일 반응기에서 분리공정없이 진행되는 것을 특징으로 한다.Metal hypohalite is added to the reactant solution to which the above-described ruthenium catalyst is added, and the reaction is performed. At this time, the above-described solvent-free cyclization step and oxidation step is characterized in that it proceeds without a separation process in a single reactor.
본 발명의 일 실시예에 따른 산화반응, 구체적으로는 산화환원반응은금속 하이포할라이트를 비롯한 산화제를 사용하여 수행할 수 있다. The oxidation reaction, specifically, the redox reaction according to an embodiment of the present invention, may be performed using an oxidizing agent including metal hypohalite.
적절한 금속 하이포할라이트의 예로는 알칼리 금속 또는 알칼리 토금속의 하이포할라이트를 들 수 있으며, 일례로 알칼리 금속의 하이포할라이트의 경우 1몰당 1몰 만이 반응하는 것과 비교하여, 1몰당 2몰의 OCl-1을 내어 놓으므로 몰량으로도 효율적으로 산화반응을 일으킬 수 있다. Examples of suitable metal hypohalites include hypohalites of alkali metals or alkaline earth metals, for example 2 moles of OCl per mole compared to 1 mole per mole of alkali metal hypohalites . Since 1 is released, the oxidation reaction can be efficiently caused even with a molar amount.
전술한 금속 하이포할라이트는 일례로 상온에서 고체 상태인 차아염소산칼슘(calcium hypochlorite) 또는 차아염소산나트륨(sodium hypochlorite)을 사용할 수 있다. The above-mentioned metal hypohalite may be, for example, calcium hypochlorite or sodium hypochlorite in a solid state at room temperature.
상기 금속 하이포할라이트의 투입량은, 일례로 상기 화학식 1로 표시되는 화합물 1 당량을 기준으로 알칼리의 하이포할라이트인 경우 1.0 ~ 1.1당량이 적절하며 알칼리토금속의 하이포할라이트인 경우 0.5~0.6 당량이 적절하다. The amount of the metal hypohalite to be added is, for example, 1.0 to 1.1 equivalents in the case of alkali hypohalite, and 0.5 to 0.6 equivalents in the case of alkaline earth hypohalite based on 1 equivalent of the compound represented by Formula 1 above. proper.
한편, 상기 고리화 화합물과 상기 금속 하이포할라이트의 반응 온도는 일례로 -5 내지 5℃, 보다 바람직하게는 -3 내지 5℃인 것이 반응 안정성을 부여하며 수율을 개선하기에 바람직하다. 이때 반응 온도에 따라 수율이 많이 변화하게 된다. On the other hand, the reaction temperature of the cyclized compound and the metal hypohalite is, for example, -5 to 5 ° C., more preferably -3 to 5 ° C. It is preferable to impart reaction stability and improve the yield. At this time, the yield varies greatly depending on the reaction temperature.
이때, 상기 금속 하이포할라이트의 적가시간은 일례로 180분 이하, 바람직하게는 10 내지 150 분, 보다 바람직하게는 30 내지 120분일 수 있다.In this case, the dropwise addition time of the metal hypohalite may be, for example, 180 minutes or less, preferably 10 to 150 minutes, more preferably 30 to 120 minutes.
또한, 상기 고리화 화합물과 상기 금속 하이포할라이트의 반응 온도는 일례로 5℃ 미만, 바람직하게는 -5 내지 5℃, 보다 바람직하게는 -3 내지 3℃인 것이 반응 안정성을 부여하기에 적절하며 수율을 개선하는 효과가 있다.In addition, the reaction temperature of the cyclized compound and the metal hypohalite is, for example, less than 5 ℃, preferably -5 to 5 ℃, more preferably -3 to 3 ℃ is suitable for imparting reaction stability, It has the effect of improving the yield.
이때 반응 시간은 일례로 1시간 이하일 수 있다.In this case, the reaction time may be, for example, 1 hour or less.
상기 제2 반응단계를 거쳐 수득된 SO2 말단기를 포함하는 황 화합물은 전술한 화학식 1-1 내지 1-2로 나타내는 화합물을 산화반응에 사용하여 제조되는 생성물일 수 있다. The sulfur compound including the SO 2 terminal group obtained through the second reaction step may be a product prepared by using the compounds represented by Chemical Formulas 1-1 to 1-2 described above in an oxidation reaction.
상기 수득된 SO2 말단기를 포함하는 황 화합물은 일례로, 하기 화학식 2-1 내지 2-2로 나타내는 화합물일 수 있다.The obtained SO 2 sulfur compound including a terminal group may be, for example, a compound represented by the following Chemical Formulas 2-1 to 2-2.
[화학식 2-1][Formula 2-1]
Figure PCTKR2021015274-appb-I000008
Figure PCTKR2021015274-appb-I000008
[화학식 2-2][Formula 2-2]
Figure PCTKR2021015274-appb-I000009
Figure PCTKR2021015274-appb-I000009
여기서 X1, X2, X3, X1’, X2’및 X3’는 독립적으로 결합(bond) 또는 산소이고, n은 0 내지 3의 정수이며, n이 0인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 수소, 치환 또는 미치환된 탄소수 1 내지 10의 알킬기이고, n이 1 내지 3의 정수인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 결합(bond), 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌이며, 적어도 1 이상의 탄소를 포함한다.wherein X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen, n is an integer from 0 to 3, and R 1 , R when n is 0 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1-10 alkyl group, and when n is an integer of 1 to 3, R 1 , R 2 , R 3 , R 1 ′, R 2 ′, and R 3 ′ are independently a bond, substituted or unsubstituted C 1 to C 10 alkylene, and include at least one carbon.
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 산소인 경우, n은 0이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each oxygen, n is 0, and R 1 and R 1 ' may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 산소인 경우, n은 1내지 3의 정수이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each oxygen, n is an integer of 1 to 3, and R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms. can
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 결합인 경우, n은 0이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each a bond, n is 0, and R 1 and R 1 ' may be substituted or unsubstituted alkylene having 1 to 10 carbon atoms, respectively.
상기 화학식 2-1에서, 일례로 X1 및 X1'가 각각 결합인 경우, n은 1 내지 3의 정수이고, R1 및 R1'는 각각 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In Formula 2-1, for example, when X 1 and X 1 ' are each a bond, n is an integer of 1 to 3, and R 1 and R 1 ' are each substituted or unsubstituted alkylenyl having 1 to 10 carbon atoms. can
또한, 상기 화학식 2-2에서, 일례로 X3, X4, X3'및 X4'가 각각 산소인 경우, R3, R4, R3'및 R4'는 독립적으로 결합 혹은 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌일 수 있다. In addition, in Formula 2-2, for example, when X 3 , X 4 , X 3 ' and X 4 ' are each oxygen, R 3 , R 4 , R 3 ' and R 4 ' are independently bonded or substituted or It may be an unsubstituted C1-C10 alkylene.
구체적인 예로, 상기 화학식 2-1 내지 2-2로 나타내는 화합물은 하기 화학식 4-1 내지 4-5로 표시되는 화합물로 이루어지는 그룹으로부터 선택된 1종 이상일 수 있다. As a specific example, the compound represented by Chemical Formulas 2-1 to 2-2 may be at least one selected from the group consisting of compounds represented by the following Chemical Formulas 4-1 to 4-5.
[화학식 4-1 내지 4-5][Formula 4-1 to 4-5]
Figure PCTKR2021015274-appb-I000010
Figure PCTKR2021015274-appb-I000010
또한, 상기 화학식 2-1로 나타내는 화합물은 1,3,2-다이옥사티올란 2,2-옥사이드, 1,3,2-다이옥사싸이안 2,2-옥사이드, 또는 4-메틸-1,3,2-다이옥사싸이안 2,2-옥사이드일 수 있다.In addition, the compound represented by Formula 2-1 is 1,3,2-dioxathiolane 2,2-oxide, 1,3,2-dioxathiane 2,2-oxide, or 4-methyl-1,3 It may be ,2-dioxacyanine 2,2-oxide.
실제로, 본 기재에 따른 유기 황 화합물의 인시츄 제조방법에 따르면, 반응시간 1시간 내에 상기 화학식 2-1 내지 2-2로 나타내는 화합물의 순도는 일례로 90 중량% 이상, 바람직하게는 95 중량% 이상, 보다 바람직하게는 99 중량% 이상, 가장 바람직하게는 100 중량%일 수 있다.In fact, according to the in situ manufacturing method of the organic sulfur compound according to the present disclosure, the purity of the compounds represented by Formulas 2-1 to 2-2 within 1 hour of reaction time is, for example, 90% by weight or more, preferably 95% by weight or more. or more, more preferably 99% by weight or more, and most preferably 100% by weight or more.
또한, 본 기재에 따른 유기 황 화합물의 인시츄 제조방법에 따르면, 반응시간 1시간 내에 상기 화학식 2-1 내지 2-2로 나타내는 화합물의 수율은 일례로 79 중량% 이상, 바람직하게는 80 중량% 이상, 보다 바람직하게는 82 중량% 이상, 더욱 바람직하게는 85 중량% 이상, 가장 바람직하게는 90 중량% 이상일 수 있다.In addition, according to the in situ manufacturing method of the organic sulfur compound according to the present disclosure, the yield of the compound represented by Formulas 2-1 to 2-2 within 1 hour of reaction time is, for example, 79% by weight or more, preferably 80% by weight. or more, more preferably 82% by weight or more, more preferably 85% by weight or more, and most preferably 90% by weight or more.
본 기재에 따른 유기 황 화합물의 인시츄 제조방법에 따라 1시간동안 반응시킨 다음 반응을 종결하고 기체 크로마토그래피로 측정한 생성물의 순도가 99.5 중량 %이상인 것을 알 수 있다. After reacting for 1 hour according to the in situ manufacturing method of the organic sulfur compound according to the present disclosure, the reaction was terminated, and it can be seen that the purity of the product measured by gas chromatography was 99.5 wt % or more.
또한, 본 기재의 제조방법에 따르면, 전술한 바와 같이 100% 또는 이에 근접한 고순도로 생성물을 수득하여 용해되지 않는 불순물들을 포함하지 않으므로 필터 처리, 여약 정제 등의 후공정 없이 반응 종결 시약(quench reagent)을 투입하여 반응을 종료할 수 있다. 이때, 상기 반응 종결 시약은 과산화수소를 사용할 수 있다. In addition, according to the manufacturing method of the present disclosure, as described above, the product is obtained with a high purity of 100% or close to it, and does not contain insoluble impurities, so a reaction termination reagent (quench reagent) without post-processes such as filter treatment and filtration purification can be added to terminate the reaction. In this case, hydrogen peroxide may be used as the reaction termination reagent.
한편, 본 발명에서 사용하는 단일 반응기는 이에 한정하는 것은 아니나, 전술한 제1 및 제2 반응온도의 온도조건의 범위와 제1 단계에서 산이 발생하는 점을 함께 고려할 때 G/L 반응기를 사용하여야 하며, 저온 냉각 자켓 반응기에 콘덴서, 감압장치, 드롭핑 장치가 필요하고, 농축시 가열을 하기 위한 히팅 장치, 및 제1 반응단계에서 생성되는 부산물(산 가스)를 제거하기 위한 스크러버 장치를 사용하는 것이 바람직하다. On the other hand, the single reactor used in the present invention is not limited thereto, but a G/L reactor must be used in consideration of the range of the temperature conditions of the first and second reaction temperatures and the point that acid is generated in the first step. A condenser, a pressure reducing device, and a dropping device are required for the low-temperature cooling jacket reactor, a heating device for heating during concentration, and a scrubber device for removing by-products (acid gas) generated in the first reaction step are used. it is preferable
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것도 당연한 것이다.Hereinafter, preferred examples are presented to help the understanding of the present invention, but the following examples are merely illustrative of the present invention, and it will be apparent to those skilled in the art that various changes and modifications are possible within the scope and spirit of the present invention, It goes without saying that such variations and modifications fall within the scope of the appended claims.
[실시예][Example]
실시예 1Example 1
<제1 반응단계><First Reaction Step>
2L 4구 저온 냉각 자켓 반응 용기에 온도계를 설치하고, 상기 화학식 1로 나타내는 화합물로서 에틸렌글라이콜(이하 출발물질이라고도 함) 100g을 25℃ 하에 투입하고 교반하였다. A thermometer was installed in a 2L 4-neck low-temperature cooling jacket reaction vessel, and 100 g of ethylene glycol (hereinafter also referred to as a starting material) as a compound represented by Formula 1 was added at 25° C. and stirred.
수득된 용액에 고리화제로서 황화염소(SOCl2)를 상기 에틸렌글라이콜 1 당량 기준으로 1.1 당량을 25℃에 60분에 걸쳐 서서히 투입하며 고리화 화합물을 제조하였다. 이때 온도는 40℃가 넘지 않도록 하였다. To the obtained solution, chlorine sulfide (SOCl 2 ) as a cyclizing agent was slowly added to 1.1 equivalents based on 1 equivalent of ethylene glycol at 25° C. over 60 minutes to prepare a cyclized compound. At this time, the temperature did not exceed 40 ℃.
<제2 반응단계><Second Reaction Step>
상기 제1 반응단계에서 수득한 용액을 10℃(제2 온도조건 중 제2-1 온도조건에 해당)까지 식히며 메틸렌 클로라이드 1100g을 투입하였다. The solution obtained in the first reaction step was cooled to 10° C. (corresponding to the 2-1 temperature condition among the second temperature conditions), and 1100 g of methylene chloride was added thereto.
상기 용액이 0 내지 10℃(제2-2 온도조건에 해당)까지 식으면 탄산수소나트륨 수용액(농도 5.3 중량%)을 첨가하여 고리화 화합물이 포함된 용액을 pH 7 내지 9를 유지하도록 하였다. When the solution was cooled to 0 to 10 °C (corresponding to the 2-2 temperature condition), an aqueous sodium bicarbonate solution (concentration of 5.3 wt%) was added to maintain the pH of the solution containing the cyclized compound of 7 to 9.
상기 용액을 2℃(제2-3 온도조건에 해당)까지 냉각한 다음 루테늄 클로라이드를 상기 에틸렌글라이콜 1 당량 기준으로 0.0005 당량을 투입하고 교반하였다. The solution was cooled to 2° C. (corresponding to temperature condition 2-3), and then 0.0005 equivalent of ruthenium chloride was added based on 1 equivalent of ethylene glycol and stirred.
온도를 -5 내지 5℃로 유지한 상태에서 차아염소산나트륨을 상기 에틸렌글라이콜 1 당량 기준으로 1당량을 투입하고 반응액 온도를 5℃ 미만을 유지하도록 하였다. While the temperature was maintained at -5 to 5°C, 1 equivalent of sodium hypochlorite was added based on 1 equivalent of the ethylene glycol, and the reaction solution temperature was maintained at less than 5°C.
반응 종결 시약으로서 과산화수소를 상기 에틸렌글라이콜 1 당량 기준으로 0.1 당량을 투입하고 30분간 교반시킨 후 층분리를 진행하였다. 분리된 여액은 셀라이트 필터를 사용하여 여과였으며, 반응액을 농축시키고 재결정하여 고체 생성물을 수득하였다. As a reaction termination reagent, 0.1 equivalent of hydrogen peroxide was added based on 1 equivalent of the ethylene glycol, stirred for 30 minutes, and then layer separation was performed. The separated filtrate was filtered using a Celite filter, and the reaction solution was concentrated and recrystallized to obtain a solid product.
실시예 2Example 2
상기 실시예 1의 상기 <제2 반응단계> 항목에서 차아염소산 나트륨을상온에서 고체 상태인 차아염소산 칼슘으로 대체한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복하였다. The same process as in Example 1 was repeated except that, in the <Second Reaction Step> section of Example 1, sodium hypochlorite was replaced with calcium hypochlorite in a solid state at room temperature.
실시예 3Example 3
상기 실시예 1의 상기 <제2 반응단계> 항목에서 유기용매를 아세토니트릴과 메틸렌 클로라이드 1:1 중량비의 혼합으로 대체한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복하였다. The same process as in Example 1 was repeated except that in the <Second Reaction Step> section of Example 1, the organic solvent was replaced with a mixture of acetonitrile and methylene chloride in a 1:1 weight ratio.
비교예 1Comparative Example 1
상기 실시예 1의 상기 <제2 반응단계> 항목에서 유기용매를 미사용한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복하였다. The same process as in Example 1 was repeated except that no organic solvent was used in the <Second Reaction Step> of Example 1.
비교예 2Comparative Example 2
상기 실시예 1의 상기 <제2 반응단계> 항목에서 유기용매를 메탄올로 대체하고 층 분리 전 단계에 메틸렌 클로라이드를 투입하여 층 분리를 진행한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복하였다. The same process as in Example 1 was repeated, except that in the <second reaction step> item of Example 1, the organic solvent was replaced with methanol and methylene chloride was added to proceed with layer separation by adding methylene chloride to the step before layer separation.
비교예 3Comparative Example 3
상기 실시예 1의 상기 <제2 반응단계> 항목에서 차아염소산 칼슘 투입 온도조건을 10℃로 대체한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복하였다. The same process as in Example 1 was repeated except that in the <Second Reaction Step> item of Example 1, the calcium hypochlorite input temperature condition was replaced with 10°C.
비교예 4Comparative Example 4
상기 실시예 1의 상기 <제1 반응단계> 항목에서 에틸렌글라이콜, 황화염소의 투입순서를 황화염소, 에틸렌글라이콜의 순서로 대체한 것을 제외하고 상기 실시예 1과 동일한 공정을 반복하였다. The same process as in Example 1 was repeated except that the order of ethylene glycol and chlorine sulfide was replaced with the order of chlorine sulfide and ethylene glycol in the <first reaction step> of Example 1 .
비교예 5Comparative Example 5
상기 실시예 1에서 상기 <제1 반응단계> 항목에서 수득된 반응물을 식힌 뒤 유기용매 (디메틸 클로라이드), 약염기 (NaHCO3) 포화수용액을 이용하여 중화한 후 층 분리하였다. 유기용매 층은 농축하였다.In Example 1, the reactant obtained in the <First Reaction Step> item was cooled, neutralized using an organic solvent (dimethyl chloride) and a saturated aqueous solution of a weak base (NaHCO 3 ), and then the layers were separated. The organic solvent layer was concentrated.
이어서 상기 <제1 반응단계> 항목에서 사용한 반응기와 별개의 저온 냉각 자켓 반응기에 투입하고 상기 <제2 반응단계>, <제3 반응단계>를 수행한 것을 제외하고는 상기 실시예 1과 동일한 공정을 반복하였다.Then, the same process as in Example 1, except that it was put into a low-temperature cooling jacketed reactor separate from the reactor used in the <first reaction step>, and the <second reaction step> and <the third reaction step> were performed. was repeated.
<실험예><Experimental example>
상기 실시예 1 내지 3, 비교예 1 내지 6에서 수득된 고체 생성물의 수율을 계산하여 하기 표 1에 나타내었다. The yields of the solid products obtained in Examples 1 to 3 and Comparative Examples 1 to 6 were calculated and shown in Table 1 below.
또한, 상기 고체 생성물을 40℃에서 진공건조한 다음 생성물을 수득하여 기체 크로마토그래피를 수행하고 전술한 화학식 5-3으로 나타내는 화합물로서 1,3,2-디아옥사티올란 2,2-옥사이드(이하 생성물이라고도 함)에 대한 순도를 확인하여 하기 표 1에 함께 나타내었다. In addition, the solid product was vacuum dried at 40° C., and the product was obtained and subjected to gas chromatography, and 1,3,2-diaoxathiolane 2,2-oxide (hereinafter also referred to as product) was performed as a compound represented by Chemical Formula 5-3. ) was confirmed and shown together in Table 1 below.
구분division 수율 (중량%)Yield (wt%) 순도 (중량%)Purity (wt%)
실시예1Example 1 86%86% 99.9%99.9%
실시예2Example 2 85%85% 99.9%99.9%
실시예3Example 3 88%88% 99.9%99.9%
비교예1Comparative Example 1 47%47% 95.6%95.6%
비교예2Comparative Example 2 13%13% 89.7%89.7%
비교예3Comparative Example 3 50%50% 98.5%98.5%
비교예4Comparative Example 4 41%41% 95.0%95.0%
비교예5Comparative Example 5 68%68% 99.8%99.8%
상기 표 1에서 보듯이, 고리화단계와 산화단계를 단일 반응기에서 수행하되, 상기 산화단계에 특정 비점 범위의 비양성자성 유기용매를 사용한 실시예 1 내지 실시예 3에서는 반응 전환율을 개선시켜 85 중량% 이상의 수율과 99.9 중량%의 순도를 제공하는 것을 확인할 수 있었다. 특히, 전술한 유기용매로서 비점이 상이한 2종을 병용한 실시예 3의 경우 해당 유기용매를 단독 사용한 실시예 1 내지 2 대비 좀더 개선된 수율을 확인할 수 있었다. As shown in Table 1, the cyclization step and the oxidation step were performed in a single reactor, but in Examples 1 to 3 using an aprotic organic solvent having a specific boiling point in the oxidation step, the reaction conversion was improved to 85 weight It was confirmed to provide a yield of % or more and a purity of 99.9 wt%. In particular, in the case of Example 3, in which two types of different boiling points were used in combination as the aforementioned organic solvent, more improved yield compared to Examples 1 and 2 in which the organic solvent was used alone.
반면, 유기용매를 사용하지 않는 비교예 1에서는 수율과 순도가 모두불량한 결과를 확인할 수 있었다. On the other hand, in Comparative Example 1 in which no organic solvent was used, it was confirmed that both yield and purity were poor.
또한, 양성자성 유기용매를 사용한 비교예 2에서는 반응 전환이 효과적으로 이루어질 수 없어 수율이 저하될 뿐 아니라 부산물 생성이 많아 순도가 특히 저감되는 결과를 확인할 수 있었다.In addition, in Comparative Example 2 using the protic organic solvent, the reaction conversion could not be effectively performed, resulting in a decrease in yield as well as a large amount of by-products, resulting in particularly reduced purity.
또한, 금속 하이포할라이트의 투입조건이 부적절한 비교예 3에서는 수율이 불량하였고, 출발물질과 고리화제의 투입순서를 뒤바꾼 비교예 4에서는 수율과 순도가 모두 불량한 것을 알 수 있었다. In addition, it was found that the yield was poor in Comparative Example 3 in which the input conditions of the metal hypohalite were inadequate, and both the yield and the purity were poor in Comparative Example 4 in which the order of input of the starting material and the cyclizing agent was reversed.
나아가, 이중 반응기를 사용한 비교예 5에서는 중화, 추출(층 분리), 농축, 반응기 세척이라는 단계가 필수적으로 추가될 뿐 아니라, 고리화 화합물의 경우 물에 녹는 성질이 있어 약염기 수용액을 사용하여 추출(층 분리)할 경우 loss가 발생해 수율을 떨어뜨리는 것을 알 수 있었다. Furthermore, in Comparative Example 5 using a double reactor, steps such as neutralization, extraction (layer separation), concentration, and reactor washing are essentially added, and in the case of a cyclized compound, it is soluble in water, so extraction ( layer separation), a loss occurred, and it was found that the yield decreased.
결론적으로, 고리화단계와 산화단계를 단일 반응기에서 수행하되, 특정 유기용매를 사용하면서 각 반응단계별 사용하는 물질의 종류 및 투입순서, 특히 반응온도 조건을 특정하는 경우에 부반응이 적어 개선된 산출량이 제공되며 반응 안정성이 우수한 것을 확인할 수 있었다.In conclusion, the cyclization step and the oxidation step are performed in a single reactor, but when a specific organic solvent is used, the type of material used for each reaction step and the input sequence, especially when the reaction temperature condition is specified, the improved output is reduced due to the small number of side reactions. It was confirmed that the reaction stability was excellent.

Claims (18)

  1. 알킬렌 글라이콜에 디할로겐계 고리화제를 투입하고 교반하여 고리화 화합물을 합성하는 무용매 고리화단계; 및 A solvent-free cyclization step of synthesizing a cyclized compound by adding a dihalogen-based cyclizing agent to the alkylene glycol and stirring; and
    비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액 및 루테늄 촉매 하에, 상기 고리화 화합물과 금속 하이포할라이트를 반응시켜 SO2 말단기를 포함하는 황 화합물을 합성하는 산화단계를 포함하되, In the presence of an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous weak base solution, and a ruthenium catalyst, the cyclized compound and the metal hypohalite are reacted to synthesize a sulfur compound containing SO 2 terminal groups. Oxidation step including,
    상기 무용매 고리화단계 및 산화단계는 단일 반응기에서 분리공정없이 진행되는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법.The solvent-free cyclization step and the oxidation step are in situ production method of an organic sulfur compound, characterized in that it proceeds without a separation process in a single reactor.
  2. 제1항에 있어서,According to claim 1,
    상기 무용매 고리화단계에서 수득된 고리화 화합물은 하기 화학식 1-1 내지 1-2로 나타내는 화합물인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The cyclization compound obtained in the solvent-free cyclization step is an in situ method for preparing an organic sulfur compound, characterized in that it is a compound represented by the following Chemical Formulas 1-1 to 1-2.
    [화학식 1-1][Formula 1-1]
    Figure PCTKR2021015274-appb-I000011
    Figure PCTKR2021015274-appb-I000011
    [화학식 1-2][Formula 1-2]
    Figure PCTKR2021015274-appb-I000012
    Figure PCTKR2021015274-appb-I000012
    (여기서 X1, X2, X3, X1’, X2’및 X3’는 독립적으로 결합(bond) 또는 산소이고, n은 0 내지 3의 정수이며, n이 0인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 수소, 치환 또는 미치환된 탄소수 1 내지 10의 알킬기이고, n이 1 내지 3의 정수인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 결합(bond), 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌이며, 적어도 1 이상의 탄소를 포함한다.)(wherein X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen, n is an integer from 0 to 3, R 1 when n is 0, R 2 , R 3 , R 1 ', R 2 ' and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1 to C 10 alkyl group, and when n is an integer of 1 to 3, R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently a bond, substituted or unsubstituted alkylene having 1 to 10 carbon atoms, including at least one carbon.)
  3. 제1항에 있어서,According to claim 1,
    상기 디할로겐계 고리화제는 염화티오닐(SOCl2)인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The dihalogen-based cyclizing agent is thionyl chloride (SOCl 2 ) An in situ manufacturing method of an organic sulfur compound, characterized in that.
  4. 제1항에 있어서,According to claim 1,
    상기 디할로겐계 고리화제는 상기 알킬렌 글라이콜 1 당량에 대하여 1 내지 2 당량으로 투입되는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The method for producing an organic sulfur compound in situ, characterized in that the dihalogen-based cyclizing agent is added in an amount of 1 to 2 equivalents based on 1 equivalent of the alkylene glycol.
  5. 제 1항에 있어서,The method of claim 1,
    상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 메틸렌클로라이드, 디메틸 카보네이트, 메틸 시아나이드, 에틸렌 디클로라이드, 트리클로로메탄 및 아세토니트릴 중에서 선택된 1종 이상인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The aprotic organic solvent having a boiling point of 40 to 90° C. is at least one selected from methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride, trichloromethane and acetonitrile. In situ manufacturing method.
  6. 제 1항에 있어서,The method of claim 1,
    상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 아세토니트릴; 및 메틸렌클로라이드, 디메틸 카보네이트, 메틸 시아나이드, 에틸렌 디클로라이드 및 트리클로로메탄 중에서 선택된 1종 이상의 혼합인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법.The aprotic organic solvent having a boiling point of 40 to 90° C. is acetonitrile; and methylene chloride, dimethyl carbonate, methyl cyanide, ethylene dichloride and at least one mixture selected from trichloromethane.
  7. 제 1항에 있어서,The method of claim 1,
    상기 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매는 상기 알킬렌글라이콜 100 중량부에 대하여 900 내지 1200 중량부인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The method for producing an organic sulfur compound in situ, wherein the amount of the aprotic organic solvent having a boiling point of 40 to 90° C. is 900 to 1200 parts by weight based on 100 parts by weight of the alkylene glycol.
  8. 제 1항에 있어서,The method of claim 1,
    상기 약염기 수용액은 상기 산화반응의 pH를 7 내지 9로 유지하는 함량으로 투입되며, 이때 상기 약염기 수용액을 구성하는 물의 함량은 상기 비양성자성 유기용매와 1:0.8 내지 1:3(물:유기용매)의 중량비로 포함되는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The weak base aqueous solution is added in an amount to maintain the pH of the oxidation reaction at 7 to 9, wherein the content of water constituting the weak base aqueous solution is 1:0.8 to 1:3 with the aprotic organic solvent (water: organic solvent) ) in situ manufacturing method of an organic sulfur compound, characterized in that it is included in a weight ratio of
  9. 제 1항에 있어서,The method of claim 1,
    상기 루테늄 촉매는 루테늄 클로라이드인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The ruthenium catalyst is an in situ method for producing an organic sulfur compound, characterized in that ruthenium chloride.
  10. 제 1항에 있어서,The method of claim 1,
    상기 루테늄 촉매는 상기 알킬렌 글라이콜 1 당량을 기준으로 0.0001 내지 0.0006 당량으로 투입되는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The ruthenium catalyst is an in situ method for producing an organic sulfur compound, characterized in that it is added in an amount of 0.0001 to 0.0006 equivalents based on 1 equivalent of the alkylene glycol.
  11. 제 1항에 있어서,The method of claim 1,
    상기 산화단계는 상기 고리화 화합물에 비점이 40 내지 90℃인 비양성자성(aprotic) 유기용매, 약염기 수용액 및 루테늄 촉매를 제2-1 온도조건, 제2-2 온도조건 및 제2-3 온도조건 하에 순차적으로 투입하면서 반응을 수행하는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. In the oxidation step, an aprotic organic solvent having a boiling point of 40 to 90° C., an aqueous solution of a weak base, and a ruthenium catalyst are added to the cyclized compound at the 2-1 temperature condition, the 2-2 temperature condition, and the 2-3 temperature. An in situ manufacturing method of an organic sulfur compound, characterized in that the reaction is performed while sequentially added under conditions.
  12. 제 11항에 있어서,12. The method of claim 11,
    상기 제2-1 온도조건은 0 내지 20℃이고, 상기 제2-2 온도조건은 0 내지 10℃이며, 상기 제2-3 온도조건은 -1 내지 3℃인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The 2-1 temperature condition is 0 to 20°C, the 2-2 temperature condition is 0 to 10°C, and the 2-3 temperature condition is -1 to 3°C. In situ manufacturing method.
  13. 제 1항에 있어서,The method of claim 1,
    상기 금속 하이포할라이트는 차아염소산칼슘 및 차아염소산나트륨 중에서 선택된 1종 이상인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The metal hypohalite is an in situ manufacturing method of an organic sulfur compound, characterized in that at least one selected from calcium hypochlorite and sodium hypochlorite.
  14. 제 1항에 있어서,The method of claim 1,
    상기 금속 하이포할라이트는 상기 고리화 화합물 1 당량을 기준으로 0.5 내지 1.1 당량으로 투입되는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법.The method for producing an organic sulfur compound in situ, wherein the metal hypohalite is added in an amount of 0.5 to 1.1 equivalents based on 1 equivalent of the cyclized compound.
  15. 제 1항에 있어서,The method of claim 1,
    상기 고리화 화합물과 상기 금속 하이포할라이트의 반응 온도는 -5 내지 5℃인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The reaction temperature of the cyclized compound and the metal hypohalite is -5 to 5 ℃ method for producing an organic sulfur compound in situ.
  16. 제 1항에 있어서,The method of claim 1,
    상기 SO2 말단기를 포함하는 황 화합물은 하기 화학식 2-1 내지 2-2로 나타내는 화합물인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The sulfur compound including the SO 2 terminal group is a method for producing an organic sulfur compound in situ, characterized in that the compound represented by the following Chemical Formulas 2-1 to 2-2.
    [화학식 2-1][Formula 2-1]
    Figure PCTKR2021015274-appb-I000013
    Figure PCTKR2021015274-appb-I000013
    [화학식 2-2] [Formula 2-2]
    Figure PCTKR2021015274-appb-I000014
    Figure PCTKR2021015274-appb-I000014
    (여기서 X1, X2, X3, X1’, X2’및 X3’는 독립적으로 결합(bond) 또는 산소이고, n은 0 내지 3의 정수이며, n이 0인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 수소, 치환 또는 미치환된 탄소수 1 내지 10의 알킬기이고, n이 1 내지 3의 정수인 경우 R1, R2, R3, R1’, R2’및 R3’는 독립적으로 결합(bond), 치환 또는 미치환된 탄소수 1 내지 10의 알킬렌이며, 적어도 1 이상의 탄소를 포함한다.)(wherein X 1 , X 2 , X 3 , X 1 ', X 2 ' and X 3 ' are independently a bond or oxygen, n is an integer from 0 to 3, R 1 when n is 0, R 2 , R 3 , R 1 ', R 2 ' and R 3 ' are independently hydrogen, a substituted or unsubstituted C 1 to C 10 alkyl group, and when n is an integer of 1 to 3, R 1 , R 2 , R 3 , R 1 ', R 2 ', and R 3 ' are independently a bond, substituted or unsubstituted alkylene having 1 to 10 carbon atoms, including at least one carbon.)
  17. 제 1항에 있어서,The method of claim 1,
    상기 산화단계는 종결 시약(quench reagent)을 투입하여 종결하는 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법. The oxidation step is an in situ production method of an organic sulfur compound, characterized in that the termination by adding a quench reagent.
  18. 제 17항에 있어서,18. The method of claim 17,
    상기 종결 시약은 과산화수소인 것을 특징으로 하는 유기 황 화합물의 인시츄 제조방법.The termination reagent is an in situ production method of an organic sulfur compound, characterized in that hydrogen peroxide.
PCT/KR2021/015274 2020-10-30 2021-10-28 Method for in-situ preparation of organic sulfur compound WO2022092833A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0142869 2020-10-30
KR1020200142869A KR20220057819A (en) 2020-10-30 2020-10-30 Method for insitu preparing organic sulfur compounds

Publications (1)

Publication Number Publication Date
WO2022092833A1 true WO2022092833A1 (en) 2022-05-05

Family

ID=81382873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/015274 WO2022092833A1 (en) 2020-10-30 2021-10-28 Method for in-situ preparation of organic sulfur compound

Country Status (2)

Country Link
KR (1) KR20220057819A (en)
WO (1) WO2022092833A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557927A (en) * 2022-09-13 2023-01-03 珠海正杏新材料科技有限公司 Preparation method of vinyl sulfate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332521A1 (en) * 1988-03-08 1989-09-13 Rhone-Poulenc Sante Process for the preparation of cyclic sulfates
KR20160016897A (en) * 2013-05-29 2016-02-15 바스프 에스이 Process for the oxidation of sulfoxides
CN105481826A (en) * 2016-01-11 2016-04-13 烟台海川化学制品有限公司 Preparation method of ethylene sulfate
CN109485633A (en) * 2018-12-06 2019-03-19 东营石大胜华新能源有限公司 A kind of preparation method of sulfuric acid vinyl ester
CN111533728A (en) * 2020-07-08 2020-08-14 东营市海科新源化工有限责任公司 Preparation method of vinyl sulfate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0332521A1 (en) * 1988-03-08 1989-09-13 Rhone-Poulenc Sante Process for the preparation of cyclic sulfates
KR20160016897A (en) * 2013-05-29 2016-02-15 바스프 에스이 Process for the oxidation of sulfoxides
CN105481826A (en) * 2016-01-11 2016-04-13 烟台海川化学制品有限公司 Preparation method of ethylene sulfate
CN109485633A (en) * 2018-12-06 2019-03-19 东营石大胜华新能源有限公司 A kind of preparation method of sulfuric acid vinyl ester
CN111533728A (en) * 2020-07-08 2020-08-14 东营市海科新源化工有限责任公司 Preparation method of vinyl sulfate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115557927A (en) * 2022-09-13 2023-01-03 珠海正杏新材料科技有限公司 Preparation method of vinyl sulfate

Also Published As

Publication number Publication date
KR20220057819A (en) 2022-05-09

Similar Documents

Publication Publication Date Title
WO2020145627A1 (en) Method for preparing glufosinate
WO2020145514A1 (en) Method of producing l-glufosinate
WO2019245091A1 (en) Method for preparing lithium difluorophosphate crystal with high purity, and non-aqueous electrolyte solution for secondary battery using same
WO2011071314A2 (en) Processes for preparing crystalline forms a and b of ilaprazole and process for converting the crystalline forms
WO2011053035A2 (en) Organic light-emitting compound and an organic light-emitting element having the same
WO2022092833A1 (en) Method for in-situ preparation of organic sulfur compound
WO2010030132A2 (en) Purification method for adefovir dipivoxil
WO2012030106A2 (en) Production method of intermediate compound for synthesizing medicament
WO2016204376A1 (en) Novel intermediates for preparing dpp-iv inhibitors, preparing method thereof and preparing method of dpp-iv inhibitors using the same
WO2017126847A1 (en) Method for preparing 3-((2s,5s)-4-methylene-5-(3-oxopropyl)tetrahydrofurane-2-yl) propanol derivative, and intermediate therefor
WO2021118003A1 (en) High-yield preparation method for novel vascular leakage blocker
WO2022092429A1 (en) Method for producing organic sulfur compound
WO2012044043A2 (en) Novel method of preparing benzoimidazole derivatives
WO2023068629A1 (en) Group 3 metal precursor, preparation method therefor, and method for manufacturing thin film by using same
WO2014010990A1 (en) Novel pyridine derivatives and method for preparation of intermediate compound for producing sulfonylurea herbicides using the same
WO2022158766A1 (en) High-purity hydrogen hexacyanocobaltate compound and method for preparing same
WO2022092430A1 (en) Method for producing organic sulfur compound
WO2021194244A1 (en) Novel method for preparing inotodiol
WO2022119070A1 (en) Selenium-based catalyst system for preparing carbonate derivative, and method for preparing carbonate derivative by using same
WO2022131696A1 (en) Method for preparing n-(1-methyl-1h-tetrazol-5-yl)-2-(((2-methyl-2h-tetrazol-5-yl)methoxy)methyl)-6-(trifluoromethyl)nicotinamide
WO2023075263A1 (en) Method for preparing asymmetric phosphate-based compound
WO2022092835A1 (en) Method for preparing phosphate-based symmetric compound
WO2023234654A1 (en) Method for preparing lithium difluorophosphate salt for lithium secondary battery
WO2012148246A2 (en) A preparation method of sitagliptin
WO2014112688A1 (en) Catalytic manufacturing method for amine having no substituent group on the nitrogen, and use for the amine produced

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886827

Country of ref document: EP

Kind code of ref document: A1