WO2022092321A1 - Floor board, connection structure of floor board, and method for manufacturing floor board - Google Patents

Floor board, connection structure of floor board, and method for manufacturing floor board Download PDF

Info

Publication number
WO2022092321A1
WO2022092321A1 PCT/JP2021/040350 JP2021040350W WO2022092321A1 WO 2022092321 A1 WO2022092321 A1 WO 2022092321A1 JP 2021040350 W JP2021040350 W JP 2021040350W WO 2022092321 A1 WO2022092321 A1 WO 2022092321A1
Authority
WO
WIPO (PCT)
Prior art keywords
floor plate
base material
floor
resins
outer edge
Prior art date
Application number
PCT/JP2021/040350
Other languages
French (fr)
Japanese (ja)
Inventor
直文 竹本
Original Assignee
直文 竹本
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 直文 竹本 filed Critical 直文 竹本
Priority to JP2022559456A priority Critical patent/JPWO2022092321A1/ja
Publication of WO2022092321A1 publication Critical patent/WO2022092321A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/02Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to macromolecular substances, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C5/00Pavings made of prefabricated single units
    • E01C5/22Pavings made of prefabricated single units made of units composed of a mixture of materials covered by two or more of groups E01C5/008, E01C5/02 - E01C5/20 except embedded reinforcing materials
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/24Safety or protective measures preventing damage to building parts or finishing work during construction
    • E04G21/30Safety or protective measures preventing damage to building parts or finishing work during construction against mechanical damage or dirt, e.g. guard covers of stairs

Definitions

  • the present invention relates to a floor plate, a connection structure of floor plates, and a method for manufacturing the floor plate.
  • Japanese Unexamined Patent Publication No. 2019-142071 Japanese Unexamined Patent Publication No. 2005-314989 Japanese Unexamined Patent Publication No. 2014-136886 Japanese Unexamined Patent Publication No. 2014-148838
  • the present invention has been made in view of such a problem, and an object of the present invention is to provide a lightweight and strong floor plate, a connecting structure of the floor plate, and a method for manufacturing the floor plate.
  • a floor plate in the first aspect of the present invention, may include a substrate and a coating layer.
  • the floor plate may be made of synthetic resin.
  • the coating layer may be a polyurea resin that covers the surface of the substrate.
  • the base material is polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin (Acrylonitrile, Butadiene, Styrene copolymer synthetic resin), and acetal. It may be formed of one or more resins selected from the group of resins.
  • the substrate may be made of a polycarbonate resin.
  • a coating layer may be formed on the entire surface of the base material.
  • the floor plate may further include a fiber sheet provided between the base material and the coating layer.
  • the floor plate may further include an ID device fixed to the base material.
  • the ID device may store identification information that identifies the floor plate.
  • the base material may be a plate with a rectangular outer edge.
  • the base material may have a hexagonal outer edge plate shape.
  • the polyurea resin may be a mixture of a polyisocyanate compound and a synthetic resin.
  • a connecting structure of floor plates is provided.
  • the base material formed of the synthetic resin may have a protrusion.
  • the protrusion may protrude outward from the outer edge.
  • the substrate may include recesses.
  • the recess may be formed in a region adjacent to the outer edge to correspond to the shape of the protrusion.
  • the protrusion of one floor plate and the recess of the other floor plate may be configured to be connectable.
  • the base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion. Is formed in a planar viewing table shape whose width expands from the outer edge to the outside, and the recess is a planar viewing table whose width expands inward from the outer edge so that the protruding portion fits. It is formed in a shape, and the protrusion of one floor plate and the recess of another floor plate may be configured to be connectable.
  • the base material formed of the synthetic resin has a recess portion formed in the vertical direction in a region adjacent to the outer edge, and is formed in another floor plate adjacent to the recess portion formed in one floor plate.
  • a substantially U-shaped connecting member may be inserted into the recessed portion so that both floor plates can be connected.
  • the base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion, and is provided with one floor plate.
  • a through hole is formed at a corresponding position on the side surface of the protrusion and the recess of the other floor plate, and by inserting a rod-shaped member into the through hole, the one floor plate and the other floor plate can be formed. It may be configured so that it can be connected.
  • a method for manufacturing a floor plate includes an injection stage.
  • a polyurea resin coating material may be injected onto the surface of the synthetic resin base material of the floor plate.
  • the method of manufacturing the floor plate comprises a drying stage. In the drying step, the coating material may be dried after the spraying step.
  • the base material may be formed of one or more resins selected from the group consisting of polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin, and acetal resin.
  • the coating material may be injected onto the entire surface of the base material.
  • a floor plate that is lightweight and has sufficient strength, and a method for manufacturing the floor plate.
  • FIG. 10 It is a perspective view which shows the floor plate 10 which concerns on 1st Embodiment of this invention. It is a figure which shows the partial cross section of a floor plate 10. It is a flowchart which shows an example of the manufacturing process of a floor plate 10. It is a figure which shows an example of the boundary condition in the simulation analysis for a floor plate 10. It is a figure which shows another example of the boundary condition in the simulation analysis for a floor plate 10. It is a figure explaining an example of the compression test with respect to the floor plate 10. It is a figure explaining the result of the compression test with respect to the floor plate 10 in FIG. It is a figure explaining the content of the 1st Embodiment which applies a load to a floor plate 10 placed on the ground.
  • FIG. 20 is a sectional view taken along the line CC of FIG.
  • FIG. 20 is a sectional view taken along the line CC of FIG.
  • FIG. 1 is a perspective view showing a floor plate 10 according to the first embodiment of the present invention.
  • the floor plate 10 is laid on, for example, an unprepared ground or an unpaved surface at a construction site or the like.
  • the floor plate 10 may be laid on a road or the like to form a traveling surface of a vehicle such as a heavy machine and a walking surface of a person.
  • the floor board 10 may be used in an event venue, a temporary plaza of a meeting place, a temporary road, a construction site vehicle loading / unloading road, a wasteland, a slope, or a housing construction site.
  • the floor plate may provide a mounting surface on which the container is mounted.
  • the floor plate 10 of this example has a rectangular outer edge.
  • the floor plate 10 has a first main surface 12, a second main surface 14, and a side surface 15.
  • the first main surface 12 and the second main surface 14 mean the main surfaces opposite to each other.
  • the first main surface 12 is the front surface and the second main surface 14 is the back surface.
  • the side surface 15 refers to a surface between the first main surface 12 and the second main surface 14.
  • the floor plate 10 may have the same structure and shape as the first main surface 12 and the second main surface 14, and either the first main surface or the second main surface may be used as the front surface. ..
  • the floor plate 10 has a rectangular shape or a square whose outer edge is composed of a pair of sides 16-1 and 16-2 and a pair of sides 17-1 and 17-2.
  • the pair of sides 16-1 and 16-2 are the long sides
  • the pair of sides 17-1 and 17-2 are the short sides.
  • the plane parallel to the main surface is defined as the XY plane
  • the first direction along the XY plane is defined as the XY plane.
  • the X-axis direction is defined as the Y-axis direction
  • the second direction in this example, the direction along the side 16
  • the thickness direction of the floor plate 10 is the Z-axis.
  • Top view means a case of viewing from the positive direction to the negative direction of the Z axis.
  • the size of the floor plate 10 may be determined according to the standard of the size of the existing floor plate.
  • the size of the floor plate 10 is 914 mm (short side) ⁇ 1829 mm (long side), 1524 mm ⁇ 1524 mm (square), 1219 mm (short side) ⁇ 2438 mm (long side), 1524 mm (short side) ⁇ 3048 mm (long side).
  • Side 1524 mm (short side) x 4572 mm (long side), or 1524 mm (short side) x 6096 mm (long side).
  • the thickness of the floor plate 10 may be 19 mm, 22 mm, or 25 mm according to the standard of the thickness of the floor plate.
  • the floor plate 10 of the present embodiment can replace the existing floor plate. It is also possible to use the floor plate 10 in combination with the existing floor plate.
  • the size and thickness of the floor plate 10 are not limited to the standard size and thickness of the existing floor plate.
  • FIG. 2 is a diagram showing a partial cross section of the floor plate 10.
  • the first main surface 12 provides a traveling surface on which a vehicle such as a heavy machine travels and a walking surface on which a pedestrian walks.
  • the second main surface 14 is the back surface in contact with the ground or the like.
  • the floor plate 10 has a base material 20 and a coating layer 22.
  • the base material 20 is made of synthetic resin.
  • the synthetic resin forming the base material 20 is a polymer compound.
  • the synthetic resin forming the base material 20 is a hard plastic.
  • the synthetic resin forming the base material 20 is selected from the group consisting of polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin, and acetal resin. It may be formed from one or more resins.
  • the substrate 20 is made of a polycarbonate resin. In the following description, a case where the base material 20 is made of a polycarbonate resin will be described as an example.
  • the coating layer 22 is formed so as to cover the surface of the base material 20.
  • the coating layer 22 is made of polyurea resin.
  • the polyurea resin is, for example, a resin having a urea bond formed by a chemical reaction between isocyanate and an amino group.
  • a polyurea resin is formed by reacting a polyisocyanate with a polyamine.
  • the polyurea resin is a polyisocyanate compound having a specific gravity of 1.09 to 1.12 and a synthetic resin as a curing agent having a specific gravity of 1.13 to 1.02, having a volume ratio of 1: 1 or a weight ratio of about 109: 100. It may be formed using a mixed solvent.
  • the coating layer 22 may contain a colorant.
  • the colorant is a pigment.
  • the pigment may be contained in the coating layer 22 in a state of being dispersed in the polyurea resin. Thereby, the coating layer 22 can also be used as a coating film. Therefore, it is possible to provide a floor plate 10 colored in various colors for displaying a section such as a construction site or a traffic division without forming a separate coating film.
  • the coating layer 22 is preferably formed on the entire surface of the base material 20. That is, the coating layer 22 has a first main surface 12 (running surface of a vehicle, a walking surface of a pedestrian, a surface on which a heavy object is placed), a second main surface 14 (ground, a surface in contact with the ground), and a side surface 15. Cover all of.
  • the thickness T1 of the coating layer 22 is smaller than the thickness T2 of the base material 20.
  • the thickness T2 of the base material 20 is 3 mm or more and 7 mm or less
  • the thickness T1 of the coating layer 22 is 1 mm or more and 3 mm or less.
  • the base material 20 is made of synthetic resin, it is very lightweight.
  • the thickness T1 of the coating layer 22 is 2 mm
  • the thickness T2 of the base material 20 is 5 mm
  • the size is 1524 mm (short).
  • the weight is 51 kg.
  • the weight is 328 kg, so that the floor plate 10 of the present embodiment weighs less than one-sixth of the weight of the floor iron plate. Since the floor plate 10 is very lightweight, it can be easily transported and stored. Therefore, it is possible to reduce the burden of carrying in to the construction site or the like.
  • the coating layer 22 is made of polyurea resin, it has high strength, excellent water resistance, and excellent impact resistance. Therefore, by coating the surface of the base material 20 with the coating layer 22, it is possible to provide a floor plate 10 which is ultra-lightweight and has excellent strength, water resistance, and impact resistance.
  • the base material 20 formed of the polycarbonate resin is vulnerable to an alkaline solution, but the coating layer 22 formed of the polyurea resin is relatively strong against an alkaline solution. Therefore, since the floor plate 10 of the present embodiment covers the base material 20 with the coating layer 22 formed of the polyurea resin, the chemical resistance can be improved as compared with the case where the floor plate 10 is formed by the polycarbonate resin alone. can. Further, the floor plate 10 of the present embodiment is superior in workability and can be manufactured at low cost as compared with the metal floor plate.
  • FIG. 3 is a flowchart showing an example of the manufacturing process of the floor plate 10.
  • the base material of the synthetic resin is molded into a predetermined shape.
  • the synthetic resin base material 20 is molded into a shape corresponding to the shape of the floor plate 10.
  • the molding of the base material 20 is, for example, realized by an existing technique such as vacuum forming. Further, a base material formed into a size larger than the final base material 20 may be cut into a predetermined shape of the base material 20.
  • the material and thickness of the base material 20 may be selected depending on the use of the floor plate 10.
  • the base material 20 is formed of one or more resins selected according to the application from the group consisting of polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin, and acetal resin. May be done.
  • a synthetic resin having higher rigidity is used as compared with the case where the floor plate 10 is laid in an event venue where the vehicle does not run and only a person walks.
  • the thickness T2 of the base material 20 may be increased.
  • the base material 20 may have a structure having a plurality of layers of two or more, if necessary.
  • the floor plate 10 which is more resistant to impact and has high rigidity can be obtained.
  • various materials can be used for each layer of the plurality of base materials. For example, by using a material having different strength and hardness in the first layer and the second layer of the base material, a structure resistant to impact can be obtained.
  • the coating material is injected onto the base material.
  • each parameter when injecting the coating material is set.
  • the parameter includes, for example, the injection amount of the coating material per unit time with respect to the unit area of the base material 20.
  • the injection step S102 may, in one example, be performed by a side injection device, a top surface injection device, and a bottom surface injection device. While transporting the base material 20 by the transport device, the coating material is jetted from the injection port of the side surface injection device to the side surface of the base material 20, and from the injection port of the top surface injection device to the first main surface of the base material 20.
  • the coating material may be injected, and the coating material on the second main surface of the base material 20 may be injected from the injection port of the lower surface injection device.
  • At least a part of the transport devices may be provided with a mechanism for transporting the base material 20 while rotating it in the transport surface so that the coating material can be sprayed on all the side surfaces of the base material 20 by the side jet device. ..
  • the spraying stage of the coating material is not limited to this case.
  • FIG. 4 is a diagram showing an example of boundary conditions in simulation analysis for the floor plate 10.
  • a model is set as the base material 20, which is made of a polycarbonate resin, has a thickness T2 of 5 mm, and has a size of 1524 mm (short side) ⁇ 3048 mm (long side).
  • 76 MPa was used as the yield stress (compression) value of the polycarbonate resin base material 20, and 1.9 GPa was used as the elastic modulus (compression) value.
  • the coating layer 22 As the coating layer 22, a model was set in which the coating layer 22 was made of polyurea resin and had a thickness T1 of 2 mm and covered the entire surface of the base material 20. Therefore, the total thickness of the floor plate 10 is 9 mm. 3.54 MPa was used as the value of the yield stress (compression) of the coating layer 22 made of polyurea resin, and 0.15 GPa was used as the value of the elastic modulus (compression).
  • a cylindrical model 30 having a cylindrical shape imitating a tire shape whose central axis faces the Y-axis was used.
  • a columnar model 30 having a width in the Y-axis direction (corresponding to the tire width) of 435 mm and an outer diameter ⁇ (corresponding to the tire diameter) of 963 mm was used.
  • the side surface (peripheral surface) of the columnar model 30 was arranged at the center of the first main surface 12 (upper surface) of the floor plate 10.
  • the central axis of the columnar model 30 is the sides 16-1 and 16-2.
  • the columnar model 30 was arranged so as to extend in the same direction as the above.
  • the load was applied vertically to the first main surface 12 of the floor plate 10 via the columnar model.
  • the load was 5 tons (49000N).
  • At least three sides 15 of the floor plate 10 were fixed by a virtual wall model.
  • the second main surface of the floor plate 10 was provided with a condition to be in contact with a virtual wall having an elastic modulus of 7.8 GPa assuming a compacted ground.
  • FIG. 5 is a diagram showing another example of the boundary condition in the simulation analysis for the floor plate 10.
  • the side surface (peripheral surface) of the columnar model 30 given as the load load range is arranged in contact with the side 16-1 (long side) of the floor plate 10.
  • the central axis of the columnar model was set in the same direction as the side 16-1.
  • the tangent line of the circumference of the circular bottom surface of the columnar model 30 and the first main surface of the floor plate 10 are arranged so as to be 45 degrees.
  • the load was applied in an oblique direction of 45 degrees from the Z-axis direction.
  • the load was 5 tons.
  • Other conditions were the same as in FIG. 4.
  • the base material 20 is subjected to a compressive stress of 39 MPa and the coating layer 22 is subjected to a compressive stress of 7.4 MPa at the maximum stress portion Pmax1 shown in FIG. I understood.
  • the base material 20 is subjected to a compressive stress of 33 MPa and the coating layer 22 is subjected to a stress of 8.9 MPa at the maximum stress location Pmax2 shown in FIG. I understand.
  • the coating layer may be deformed, but the stress applied to the base material 20 is 51% or less of the yield stress, and the base material 20 is not affected.
  • FIG. 6 is a diagram illustrating an example of a compression test for the floor plate 10.
  • the floor plate 10 three types of a first sample, a second sample, and a third sample were prepared.
  • the thickness T1 of the coating layer 22 is 1 mm
  • the thickness T2 of the base material 20 is 10 mm
  • the thickness T1 of the coating layer 22 is 1 mm
  • the thickness T2 of the base material 20 is 5 mm
  • the thickness T1 of the coating layer 22 is 2 mm
  • the thickness T2 of the base material 20 is 5 mm.
  • the coating layer was formed so as to cover the entire surface of each base material 20.
  • the floor plate 10 of the first sample, the second sample, and the third sample had a size of 100 mm ⁇ 100 mm.
  • FIG. 7 is a diagram illustrating the result of the compression test of the floor plate 10 in FIG.
  • the horizontal axis shows the compression displacement (mm), and the vertical axis shows the compression load (kN).
  • the solid line indicates the first sample
  • the dotted line indicates the second sample
  • the alternate long and short dash line indicates the third sample.
  • the compressive displacement was around 0.62 mm, and the compressive load reached a value range of 900 kN to 1000 kN. Due to the restrictions of the test equipment, the load application was stopped before the compressive load reached 1000 kN.
  • FIG. 8 is a diagram illustrating the contents of the first embodiment in which a load is applied to the floor plate 10 placed on the ground.
  • Soil 60 was placed in container 62.
  • the inner dimensions of the container 62 were 700 mm ⁇ 700 mm and the depth was 50 mm.
  • the ground condition was created by rolling (compacting) from the upper surface of the soil 60.
  • the floor plate 10 was placed on the upper surface of the soil 60.
  • the floor plate 10 has a size of 600 mm ⁇ 600 mm, a thickness T1 of the coating layer 22 is 2 mm, and a thickness T2 of the base material 20 is 5 mm.
  • a rubber plate 50 having a size of 100 mm ⁇ 100 mm and a thickness of 8 mm was placed on the upper surface of the floor plate 10.
  • a rubber material having a hardness of 80 (measured by JIS K6253) was used.
  • a load was applied from above the rubber plate 50 by a cylindrical jig 52 having a diameter of 160 mm.
  • the centers of the floor plate 10, the container 62 of the soil 60, the rubber plate 50, and the jig 52 are aligned, and the orientations of the corresponding sides of the floor plate 10, the container 62 of the soil 60, and the rubber plate 50 are aligned. Arranged to align.
  • Two types of soil 60 were prepared, a first soil in which 50% black soil and 50% cement were mixed, and a second soil containing only black soil, and experiments were carried out in each case.
  • FIG. 9 is a diagram illustrating the contents of the second embodiment in which a load is applied to a floor plate 10 placed on the ground in two layers.
  • two floor plates 10b-1 and 10b-2 were placed on the upper surface of the soil 60.
  • the floor plates 10b-1 and 10b-2 each have a size of 600 mm ⁇ 300 mm, the thickness T1 of the coating layer 22 is 2 mm, and the thickness T2 of the base material 20 is 5 mm.
  • the floor plates 10b-1 and 10b-2 were juxtaposed so that their long sides faced each other.
  • a floor plate 10a having a size of 600 mm ⁇ 600 mm was placed on the floor plates 10b-1 and 10b-2.
  • the floor plates 10a and the floor plates 10b-1 and 10b-2 were arranged in a staggered pattern.
  • a rubber plate 50 was placed on the upper surface of the floor plate 10a.
  • a load was applied from above the rubber plate 50 by the jig 52.
  • the dimensions, materials, and arrangements of the floor plate 10a, the soil 60, the container 62, the rubber plate 50, and the jig 52 are the same as in FIG.
  • FIG. 10 is a diagram illustrating the contents of a comparative example in which a load is applied to an iron plate 70 placed on the ground.
  • an iron plate 70 having a size of 600 mm ⁇ 600 mm and a thickness of 16 mm was placed on the upper surface of the soil 60.
  • the dimensions and arrangement of the soil 60, the container 62, the rubber plate 50, and the jig 52 are the same as in the case of FIG.
  • FIG. 11 is a graph showing an example of the result of an experiment in which a load is applied to a floor plate 10 placed on the ground.
  • the horizontal axis of FIG. 11 shows the compression displacement (mm), and the vertical axis shows the compression load (kN).
  • mm the compression displacement
  • kN the compression load
  • FIG. 11 as the soil 60, a first soil in which 50% by volume of black soil and 50% by volume of cement were mixed was used.
  • the experimental results of the first example shown in FIG. 8 are shown by a solid line
  • the experimental results of the second embodiment shown by FIG. 9 are shown by a alternate long and short dash line
  • the experiments of the comparative example shown in FIG. 10 are shown.
  • the results are shown by the dotted line.
  • FIG. 12 is an enlarged view of a part of the graph shown in FIG.
  • the horizontal axis of FIG. 12 indicates the compression displacement (mm), and the vertical axis indicates the compression load (kN).
  • FIG. 12 shows an enlarged area in FIG. 11 where the compressive displacement is 5 mm or less.
  • a rapid increase in the compressive load is observed at the stage of the initial displacement.
  • any value in the region where the compression displacement is 0.5 mm or more and 1 mm or less, more specifically, A sharp increase in compressive load is observed at any value in the region where the compressive displacement is 0.6 mm ⁇ 1 mm. The reason why this phenomenon occurs is not always clear, but it is considered that this phenomenon is caused by the yielding of the soil surface of the soil 60.
  • the compressive load increased sharply to 90.9 kN and then gradually increased. It is considered that the iron plate 70 of the comparative example yielded at this 90.9 kN.
  • the compressive load rapidly increased to 6.21 kN and then gradually increased. It is considered that the floor plate 10 of the first embodiment yielded at this 6.21 kN.
  • the compressive load increased sharply to 4 kN and then slowly increased. It is considered that the floor plates 10a, 10b-1 and 10b-2 of the second embodiment yielded at this 4 kN.
  • the floor plate 10 of the first embodiment has lower rigidity than the iron plate 70 in the experiment using the first soil. Therefore, the floor plate 10 was deformed according to the load.
  • the bearing capacity (kN / m 2 ) means the allowable stress for a given force.
  • FIG. 13 is a diagram showing another example of the result of an experiment in which a load is applied to a floor plate 10 placed on the ground.
  • the horizontal axis of FIG. 13 indicates the compression displacement (mm), and the vertical axis indicates the compression load (kN).
  • mm the compression displacement
  • kN the compression load
  • FIG. 13 as the soil 60, a second soil having 100% by volume of black soil was used. The second soil is softer than the first soil.
  • the experimental result of the first embodiment shown in FIG. 8 is shown by a solid line
  • the experimental result of the second embodiment shown in FIG. 9 is shown by a alternate long and short dash line, which is shown in FIG.
  • the experimental results of the comparative example are shown by the dotted lines.
  • the first embodiment, the second embodiment, and the comparative example are all included.
  • No sudden increase in compressive load was observed at the initial displacement stage. Since the second soil has a weaker compaction (compacting) than the first soil containing cement, the soil surface of the soil 60 has started to yield from the initial stage of loading. In the experiment, soil 60 leaked to the side of the container 62.
  • the compressive load linearly increases as the compressive displacement increases in the initial first region.
  • the first region is, for example, a region having a compression displacement of 0 mm or more and 15 mm or less.
  • the first region is, for example, a region having a compression displacement of 0 mm or more and 20 mm or less.
  • the compression displacement increases more than the first region, it becomes the second region where the slope (increase rate) in which the compression load increases according to the compression displacement increases.
  • the measured characteristic curve is a downwardly convex curve.
  • the second region is, for example, a region having a compression displacement of 15 mm or more and 23 mm or less.
  • the first region is, for example, a region having a compression displacement of 20 mm or more and 35 mm or less.
  • the soil 60 is extruded from the container 62 and the soil 60 is pressed against it.
  • the slope (increase rate) at which the compression load increases decreases as the compression displacement increases, and the third region becomes.
  • the measured characteristic curve is an upwardly convex curve.
  • the compressive load at the boundary point from the second region to the third region is considered to indicate the characteristics of the material such as the floor plate 10. Specifically, it is considered that the compressive load at each boundary point (P0, P1, P2) corresponds to the yield load (ultimate load) of the iron plate 70 or the floor plate 10, respectively.
  • the boundary points (P0, P1, P2) are calculated as points away from the approximate straight line when an approximate straight line is drawn with respect to the straight line portion of the characteristic curve measured in the range where the compression displacement is 20 mm or more and 30 mm or less. It may be calculated as an inflection point in which the characteristic curve changes from a downward convex to an upward convex.
  • the boundary point (inflection point) P0 was observed near the compression displacement of 33 mm.
  • the yield load (ultimate load) at the boundary point P0 was 476 kN.
  • the boundary point (inflection point) P1 was observed near the compression displacement of 24 mm.
  • the yield load (ultimate load) at the boundary point P1 was 96.7 kN.
  • the boundary point (inflection point) P2 was observed near the compression displacement of 23 mm.
  • the yield load (ultimate load) at the boundary point P2 was 131 kN.
  • FIG. 14 is a diagram showing the provision of bearing capacity in the Building Standards Act.
  • the Building Standards Law of Japan stipulates the bearing capacity (allowable stress level) according to the type of ground.
  • Ground bearing capacity when the ground is bedrock, consolidated sand, earthen ground, faithful Leki layer, faithful sandy ground, sandy ground, hard clay ground, clay ground, hard loam layer, and loam layer are 1000, 500, 300, 300, 200, 50, 100, 20, 100, and 50 (kN / m 2 ), respectively.
  • the floor plate 10 of the first embodiment shown in FIGS. 11, 12, and 14 satisfies the standard of bearing capacity and is considered to be sufficiently usable.
  • the standard of bearing capacity is satisfied and the floor plate can be sufficiently used. Conceivable.
  • the weight is one sixth or less of that of the floor iron plate, but the characteristics that can be used at a construction site or the like are exhibited. Therefore, it is possible to replace the existing iron plate. Since the floor plate 10 is very lightweight, it can be easily transported and stored. Therefore, it is possible to reduce the burden of carrying in to the construction site or the like.
  • the floor plate 10 of the present invention is not limited to the case where it has the cross-sectional structure shown in FIG.
  • another material may be included between the substrate 20 and the coating layer 22.
  • FIG. 15 is a diagram showing another example of the partial cross section of the floor plate 10 shown in FIG.
  • FIG. 15 shows a cross section of a part of the floor plate 10 as in FIG. 2.
  • the floor plate 10 of this example further includes a fiber sheet 28 in addition to the base material 20 and the coating layer 22 shown in FIG.
  • the fiber sheet 28 is provided between the base material 20 and the coating layer 22.
  • the fiber sheet 28 may have a higher cutting strength than the coating layer 22. Further, the fiber sheet 28 may have higher fire resistance than the coating layer 22.
  • the fiber sheet 28 may be a sheet containing carbon fibers formed by carbonizing fibers formed of a predetermined material. Further, the fiber sheet 28 may be a basalt fiber sheet.
  • the basalt fiber sheet is a sheet containing fibers formed by melting basalt.
  • the basalt fiber sheet contains silicon dioxide (SiO 2 ) as a main component, and aluminum oxide (Al 2 O 3 ), calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), potassium oxide (K 2 ). O), titanium oxide (TiO 2 ), iron oxide (Fe 2 O 3 + FeO) and the like are contained.
  • the weight ratio content of each component is SiO 2 : about 51 to 60%, Al 2 O 3 : about 14 to 19%, CaO: about 5 to 10%, MgO: about 3 to 6%, Na 2 O + K 2 . O: about 3 to 6%, TiO 2 : about 0 to 3%, Fe 2 O 3 + FeO: about 9 to 14%.
  • the basalt fiber sheet may further contain other components.
  • the fiber sheet 28 is provided at least on the first main surface 12 and the second main surface 14 of the floor plate 10.
  • the fiber sheet 28 is provided on at least a part of the first main surface 12 and the second main surface 14 of the floor plate 10.
  • the fiber sheet 28 may also be provided on the side surface.
  • the fiber sheet 28 may be thinner than the coating layer 22.
  • the thickness of the fiber sheet 28 may be 1 mm or less, and may be 0.6 mm or less.
  • the fiber sheet 28 may be less likely to be penetrated by the material for forming the coating layer 22 than the base material 20. This makes it possible to reduce the amount of coating material required to form the coating layer 22 having a predetermined thickness while improving the strength of the floor plate 10.
  • FIG. 16 is a diagram showing another example of the partial cross section of the floor plate 10 shown in FIG.
  • the ID device 24 is fixed to the floor plate 10 of this example.
  • the ID device 24 stores the information for identifying the floor plate 10 and transmits the identification information to the outside. For example, by bringing the reading device close to the ID device 24, the identification information of the floor plate 10 is read.
  • a plurality of ID devices 24 may be provided on the floor plate 10 not only on the first main surface 12 side but also on the second main surface 14 side.
  • the position where the ID device 24 is provided is not limited. It may be provided symmetrically with respect to the center of the floor plate 10. In one example, the ID device 24 may be provided at the center of each side 16-1, 16-2, 17-1, 17-2 of the floor plate 10. As a result, the identification information can be read from the ID device 24 without considering the orientation of the floor plate 10.
  • the periphery of the ID device 24 may be covered with a protective film 26.
  • the protective film 26 may be made of a polyurea resin. Polyurea resin is not only ultra-lightweight, excellent in strength, water resistance, and impact resistance, but also has higher electromagnetic wave permeability than metal. Therefore, unlike the configuration in which the ID device 24 is covered with metal as in the case of embedding in the iron floor plate, the ID device 24 is covered with the protective film 26, the base material 20, the coating layer 22, and the like. Can be configured to be able to communicate with the outside.
  • a hollow portion for inserting the ID device 24 may be provided. Then, the ID device 24 covered with the protective film 26 is separately manufactured, inserted into the hollow portion of the base material 20, and fixed with an adhesive or the like. By forming the coating layer 22 with the ID device 24 fixed in the hollow portion, the configuration shown in FIG. 16 can be manufactured.
  • the ID device 24 may store information indicating a state such as position information of the floor plate 10.
  • the information may be written by an external writing device.
  • the ID device 24 may transmit the information at a predetermined cycle by the Bluetooth (registered trademark) Low Energy (BLE) method.
  • BLE Bluetooth Low Energy
  • the information may be received by a receiver built in a mobile terminal or the like.
  • the mobile terminal may transmit the received information to a cloud server or the like. By accessing the cloud server with a mobile terminal or the like, the state of each floor plate 10 can be grasped.
  • the ID device 24 described above may be embedded in the base material 20 as shown in FIG. 16 or may be arranged on the upper side or the lower side of the base material 20 as shown in FIG.
  • the coating layer 22 of the polyurea resin is formed to have a thickness that covers the ID device 24 and is configured to hold the ID device 24.
  • the polyurea resin is ultra-lightweight and has excellent strength, water resistance, and impact resistance. Therefore, even when the ID device 24 is covered only with the coating layer 22, it has a predetermined strength. can do. Further, with such a configuration, it is not necessary to provide a hollow portion in the base material 20 in the manufacturing process, so that the manufacturing process can be simplified.
  • FIG. 18 is a plan view showing the floor plate 80a and the floor plate 80b according to the second embodiment of the present invention.
  • the floor plate of the present invention is not limited to the one having a rectangular outer edge as described with reference to FIGS. 1 to 17.
  • the outer edges 83a and 83b are hexagonal plates. It may be in the shape.
  • the floor plate 80 of the second embodiment also has the base material 20 and the coating layer 22 like the floor plate 10 of the first embodiment.
  • the base material 20 is made of synthetic resin.
  • the base material 20 may be made of a hard plastic such as polycarbonate, as described in the first embodiment.
  • the base material 20 that determines the shape of the floor plate 80a has protrusions 82a-1, 82a-2, and 82a-3 (generally referred to as protrusions 82a) that protrude outward from the outer edge 83.
  • the substrate 20 has recesses 84a-1, 84a-2, and 84a-3.
  • the recesses 84a-1, 84a-2, and 84a-3 are formed in a region adjacent to the outer edge 83, and the protrusions 82a-1, 82a-2, and Corresponds to the shape of 82a-3.
  • a protrusion 82a and a recess 84a are arranged on adjacent sides of the hexagonal outer edge 83.
  • protrusions 82a are provided on three sides, and recesses 84a are provided on the remaining three sides. Then, the protrusions 82a and the recesses 84a are alternately arranged along the outer edge 83.
  • the base material 20 that determines the shape of the floor plate 80b also has protrusions 82b-1, 82b-2, and 82b-3 that protrude outward from the outer edge 83 (sometimes collectively referred to as protrusions 82b).
  • the base material 20 has recesses 84b-1, 84b-2, and 84b-3 (collectively, the recesses 84b).
  • the protrusion 82b and the recess 84ba are arranged on the adjacent sides of the hexagonal outer edge 83. That is, the protrusions 82b and the recesses 84b are alternately arranged along the outer edge 83.
  • the protrusions 82a and 82b of one floor plate and the recesses 84a and 84b of the other floor plates are configured to be connectable.
  • the protruding portion 82b-1 of the floor plate 80b and the recess 84a-2 of the floor plate 80a are connected, but the present invention is not limited to this case.
  • Any protrusion 82a of the floor plate 80a may be connected to any recess 84b of the floor plate 80b, and any recess 84a of the floor plate 80a and any protrusion 82b of the floor plate 80b may be connected. May be.
  • the number of floor plates 80 is not limited to two. A plurality of floor plates 80 can be sequentially connected and used.
  • FIG. 19 is a diagram showing a partial cross section of the floor plate 80a and the floor plate 80b shown in FIG.
  • the protrusion 82b-1 may be provided on the first main surface 12 side (+ Z side) in the thickness direction Z
  • the recess 84a-2 may be provided on the second main surface 14 side (+ Z side) in the thickness direction Z. It may be provided in the portion.
  • the protrusions 82a, 82b and the recesses 84a, 84b are provided in the hexagonal floor plate 80
  • the protrusions 82a, 82b and the recesses 84a are provided in the rectangular floor plate 10 as shown in FIGS. 1 to 17.
  • 84b may be provided.
  • the protruding portion of one floor plate 10 and the recessed portion of the other floor plate 10 are configured to be connectable.
  • the mechanism (connecting structure) for connecting a plurality of floor plates to each other is not limited to the configurations shown in FIGS. 18 and 19.
  • the base material 20 has a recess 18 formed in the vertical direction in a region adjacent to the outer edge thereof, and is formed in one floor plate 10.
  • the connecting member 100 may be engaged with the recessed portion 18 formed in the recessed portion 18 and the other floor plate 10 adjacent to the recessed portion 18 to connect both the one floor plate and the other floor plate.
  • the recessed portion 18 has a deeply recessed recessed portion 19, and the connecting member 100 is formed in a substantially U-shape having a main body portion 101 and protruding portions 102 extending downward at both ends thereof.
  • the connecting member 100 may be attached to the recessed portion 18 so that both the protruding portions 102 of the connecting member 100 having such a shape are inserted into the deep recessed portion 19.
  • the recess 18 and the connecting member 100 have such a configuration because the connecting portion can be in a relatively flat state. Further, when connected via the connecting member 100, it is possible to form a state in which some play is formed, so that the floor plates 10 can be connected even if they are slightly displaced from each other.
  • the connecting member 100 may be fitted into the base material 20 and then screwed from the first main surface 12 side or the second main surface 14 side.
  • the connecting member 100 is preferably made of a strong material such as metal.
  • the connecting member 100 made of the resin base material 110 it is preferable to use the base material 110 coated with the polyurea resin coating layer 112.
  • the coating layer 112 is coated on the entire surface, back surface, side surface, outer surface, and inner surface of the base material 110 also in the connecting member 100.
  • the base material 20 of the floor plate 10 has a protrusion 210 protruding outward from the outer edge thereof and a recess 220 formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion 210.
  • the protrusion 210 is formed in a substantially trapezoidal shape in a plan view in which the width expands from the outer edge to the outside, and the recess 220 has a width from the outer edge to the inside so that the protrusion 210 fits. It is formed in a substantially trapezoidal shape in a plan view, and a protrusion 210 of one floor plate 10 and a recess 220 of another floor plate 10 can be connected to each other.
  • Such a structure is preferable because it is possible to form a structure in which the protrusion 210 and the recess 220 once fitted are hard to come off. It is preferable that the protrusion 210 and the recess 220 are also coated with the coating layer 22 on the entire surface of the base material 20 because the strength of the protrusion 210 and the recess 220 is improved.
  • the base material 20 of the floor plate 10 has a protrusion 310 protruding outward from the outer edge and a recess 320 formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion 310.
  • a through hole (not shown) is formed at a corresponding position on the side surface of the protrusion 310 of one floor plate 10 and the recess 320 of the other floor plate 10, and a rod-shaped member 330 is once inserted into the through hole.
  • One floor plate 10 and the other floor plate 10 may be configured to be connectable by inserting from the other end to the other end. With such a configuration, both floor plates 10 can be rotated in the vertical direction.
  • the rod-shaped member 330 can be made of a hard material such as metal, it is preferably made of a material that can be elastically deformed such as resin or a relatively soft metal. That is, since the floor plate 10 coated with the polyurea resin has a structure that is more flexible and receives a load than the metal floor plate, the floor plate 10 may be bent even at the connecting portion, and at that time, the rod-shaped member 330 It is preferable that the material is elastically deformed so that it can be dealt with.
  • the rod-shaped member 330 may be configured by coating a resin base material with a coating layer of a polyurea resin. At this time, it is preferable that the entire surface of the base material of the rod-shaped member 330 is coated with a coating layer of polyurea resin. Further, it is preferable that the entire surface of the base material 20 including the inner surface of the through hole is coated with the polyurea resin coating layer 22 also in the protruding portion 310 and the recess 320 of the floor plate 10.
  • the coating layer 22 is formed on the entire surface of the base material 20. That is, the coating layer 22 has a first main surface 12 (running surface of a vehicle, a walking surface of a pedestrian, a surface on which a heavy object is placed), a second main surface 14 (ground, a surface in contact with the ground), and a side surface 15.
  • a coating layer is also provided on the inner side surface of the through hole or the side surface of the uneven portion.
  • the fiber sheet 28 as shown in FIG. 15 may be provided, and the ID device 24 as shown in FIGS. 16 and 17. May be fixed. These cross-sectional views are the same as those in FIGS. 15 to 17.
  • the floor plate 80 of the second embodiment is also much lighter than the floor plate, so that it can be easily transported and stored. Further, since the coating layer 22 is formed of the polyurea resin on the entire surface of the base material 20, the chemical resistance can be improved.

Abstract

[Problem] The present invention addresses the problem of providing: a floor board which is light and has sufficient strength; a connection structure of the floor board; and a method for manufacturing the floor board. [Solution] Provided is a floor board 10 comprising: a substrate 20 formed of a synthetic resin; and a polyurea resin coating layer 22 that covers the surface of the substrate 20. A floor board 10 may be manufactured according to a method for manufacturing the floor board 10, the method comprising: a spraying step for spraying a polyurea resin coating material on the surface of the synthetic resin substrate 20; and a drying step for drying the coating material, after the spraying step.

Description

敷板、敷板の連結構造および敷板の製造方法Floor board, connection structure of floor board and manufacturing method of floor board
 本発明は、敷板、敷板の連結構造および敷板の製造方法に関する。 The present invention relates to a floor plate, a connection structure of floor plates, and a method for manufacturing the floor plate.
 従来、工事現場等で使用する敷板としては、鉄等の金属製のものが一般的であった。これに対して、近年、鉄よりも軽量となる、合成樹脂で形成された樹脂板の少なくとも1つの表面に、メッシュシートが含浸された敷板が提案されている(例えば、特許文献1参照)。また、樹脂板を構成する合成樹脂として、ポリカーボネート樹脂等が挙げられ、そのポリカーボネート樹脂等によって形成された敷板が提案されている(特許文献2~4参照)。 Conventionally, as a floor board used at a construction site, a metal such as iron has been generally used. On the other hand, in recent years, a floor plate in which a mesh sheet is impregnated on at least one surface of a resin plate made of synthetic resin, which is lighter than iron, has been proposed (see, for example, Patent Document 1). Further, as a synthetic resin constituting the resin plate, a polycarbonate resin or the like can be mentioned, and a floor plate formed of the polycarbonate resin or the like has been proposed (see Patent Documents 2 to 4).
特開2019-142071号公報Japanese Unexamined Patent Publication No. 2019-142071 特開2005-314989号公報Japanese Unexamined Patent Publication No. 2005-314989 特開2014-136886号公報Japanese Unexamined Patent Publication No. 2014-136886 特開2014-148838号公報Japanese Unexamined Patent Publication No. 2014-148838
 しかしながら、前記した特許文献に記載されたような従来の敷板では、強度不足等の問題が生じる虞があった。 However, with the conventional floor plate as described in the above-mentioned patent document, there is a possibility that problems such as insufficient strength may occur.
 本発明はこのような問題に鑑みてなされたものであり、軽量で強度も十分な敷板、当該敷板の連結構造および当該敷板の製造方法を提供することを課題としている。 The present invention has been made in view of such a problem, and an object of the present invention is to provide a lightweight and strong floor plate, a connecting structure of the floor plate, and a method for manufacturing the floor plate.
 本発明の第1の態様においては、敷板が提供される。敷板は、基材およびコーティング層を備えてよい。敷板は、合成樹脂で形成されてよい。コーティング層は、基材の表面を覆うポリウレア樹脂であってよい。 In the first aspect of the present invention, a floor plate is provided. The floor plate may include a substrate and a coating layer. The floor plate may be made of synthetic resin. The coating layer may be a polyurea resin that covers the surface of the substrate.
 基材は、ポリカーボネート樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ABS樹脂(アクリロニトリル (Acrylonitrile)、ブタジエン(Butadiene)、スチレン(Styrene)共重合合成樹脂)、およびアセタール樹脂からなる群から選ばれた1または複数の樹脂で形成されてよい。基材は、ポリカーボネート樹脂で形成されてよい。 The base material is polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin (Acrylonitrile, Butadiene, Styrene copolymer synthetic resin), and acetal. It may be formed of one or more resins selected from the group of resins. The substrate may be made of a polycarbonate resin.
 基材の全面に、コーティング層が形成されてよい。敷板は、基材と、コーティング層との間に設けられた繊維シートを更に備えてよい。 A coating layer may be formed on the entire surface of the base material. The floor plate may further include a fiber sheet provided between the base material and the coating layer.
 敷板は、基材に固定されたIDデバイスを更に備えてよい。IDデバイスは、敷板を識別する識別情報を記憶してよい。 The floor plate may further include an ID device fixed to the base material. The ID device may store identification information that identifies the floor plate.
 基材は、外縁が矩形の板状であってよい。基材は、外縁が六角形の板状であってよい。 The base material may be a plate with a rectangular outer edge. The base material may have a hexagonal outer edge plate shape.
 ポリウレア樹脂は、ポリイソシアネート化合物と、合成樹脂とが混合されていてよい。 The polyurea resin may be a mixture of a polyisocyanate compound and a synthetic resin.
 本発明の第2の態様においては、敷板の連結構造が提供される。敷板の連結構造においては、合成樹脂で形成された基材は、突出部を備えてよい。突出部は外縁から外側に突出してよい。基材は、凹部を備えてよい。凹部は、外縁に隣接する領域に形成されて突出部の形状に対応してよい。一の敷板の突出部と、他の敷板の凹部が連結可能に構成されてよい。 In the second aspect of the present invention, a connecting structure of floor plates is provided. In the connecting structure of the floor plate, the base material formed of the synthetic resin may have a protrusion. The protrusion may protrude outward from the outer edge. The substrate may include recesses. The recess may be formed in a region adjacent to the outer edge to correspond to the shape of the protrusion. The protrusion of one floor plate and the recess of the other floor plate may be configured to be connectable.
 また、合成樹脂で形成された基材は、外縁から外側に突出した突出部と、前記外縁に隣接する領域に形成されて前記突出部の形状に対応する凹部とを備えており、前記突出部は、前記外縁から外側に向けて幅が拡がる平面視略台形状に形成されており、前記凹部は、前記突出部が嵌合するように前記外縁から内側に向けて幅が拡がる平面視略台形状に形成されており、一の敷板の前記突出部と、他の敷板の前記凹部が連結可能に構成されていても良い。 Further, the base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion. Is formed in a planar viewing table shape whose width expands from the outer edge to the outside, and the recess is a planar viewing table whose width expands inward from the outer edge so that the protruding portion fits. It is formed in a shape, and the protrusion of one floor plate and the recess of another floor plate may be configured to be connectable.
 また、合成樹脂で形成された基材は、外縁に隣接する領域に上下方向に形成された凹み部を有しており、一の敷板に形成された前記凹み部と隣接する他の敷板に形成された前記凹み部に、略コ字形状の連結部材を挿入して、双方の敷板を連結可能に構成されていても良い。 Further, the base material formed of the synthetic resin has a recess portion formed in the vertical direction in a region adjacent to the outer edge, and is formed in another floor plate adjacent to the recess portion formed in one floor plate. A substantially U-shaped connecting member may be inserted into the recessed portion so that both floor plates can be connected.
 また、合成樹脂で形成された基材は、外縁から外側に突出した突出部と、前記外縁に隣接する領域に形成されて前記突出部の形状に対応する凹部とを備えており、一の敷板の前記突出部と他の敷板の前記凹部の側面には、対応する位置に貫通孔が形成されており、前記貫通孔に棒状部材を挿通することで、前記一の敷板と前記他の敷板が連結可能に構成されていても良い。 Further, the base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion, and is provided with one floor plate. A through hole is formed at a corresponding position on the side surface of the protrusion and the recess of the other floor plate, and by inserting a rod-shaped member into the through hole, the one floor plate and the other floor plate can be formed. It may be configured so that it can be connected.
 本発明の第3の態様においては、敷板の製造方法が提供される。敷板の製造方法は、噴射段階を備える。噴射段階においては、敷板の合成樹脂の基材の表面に、ポリウレア樹脂のコーティング材を噴射してよい。敷板の製造方法は、乾燥段階を備える。乾燥段階においては、噴射段階の後に、コーティング材を乾燥させてよい。 In the third aspect of the present invention, a method for manufacturing a floor plate is provided. The method of manufacturing the floor plate includes an injection stage. In the injection stage, a polyurea resin coating material may be injected onto the surface of the synthetic resin base material of the floor plate. The method of manufacturing the floor plate comprises a drying stage. In the drying step, the coating material may be dried after the spraying step.
 基材は、ポリカーボネート樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ABS樹脂、およびアセタール樹脂からなる群から選ばれた1または複数の樹脂で形成されてよい。 The base material may be formed of one or more resins selected from the group consisting of polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin, and acetal resin.
 噴射段階において、コーティング材を基材の全面に噴射してよい。 At the injection stage, the coating material may be injected onto the entire surface of the base material.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The outline of the above invention does not list all the necessary features of the present invention. A subcombination of these feature groups can also be an invention.
 本発明によれば、軽量で強度も十分な敷板および当該敷板の製造方法を提供することができる。 According to the present invention, it is possible to provide a floor plate that is lightweight and has sufficient strength, and a method for manufacturing the floor plate.
本発明の第1の実施形態に係る敷板10を示す斜視図である。It is a perspective view which shows the floor plate 10 which concerns on 1st Embodiment of this invention. 敷板10の部分断面を示す図である。It is a figure which shows the partial cross section of a floor plate 10. 敷板10の製造工程の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing process of a floor plate 10. 敷板10に対するシミュレーション解析における境界条件の一例を示す図である。It is a figure which shows an example of the boundary condition in the simulation analysis for a floor plate 10. 敷板10に対するシミュレーション解析における境界条件の他の例を示す図である。It is a figure which shows another example of the boundary condition in the simulation analysis for a floor plate 10. 敷板10に対する圧縮試験の一例を説明する図である。It is a figure explaining an example of the compression test with respect to the floor plate 10. 図6における敷板10に対する圧縮試験の結果を説明する図である。It is a figure explaining the result of the compression test with respect to the floor plate 10 in FIG. 地面に置いた敷板10に荷重を加える第1実施例の内容を説明する図である。It is a figure explaining the content of the 1st Embodiment which applies a load to a floor plate 10 placed on the ground. 地面に2枚重ねて置いた敷板10に荷重を加える第2実施例の内容を説明する図である。It is a figure explaining the content of the 2nd Example which applies a load to the floor board 10 which put two sheets on the ground. 地面に置いた鉄板70に荷重を加える比較例の内容を説明する図である。It is a figure explaining the content of the comparative example which applies a load to the iron plate 70 placed on the ground. 地面に置いた敷板10に荷重を加える実験の結果の一例を示すグラフである。It is a graph which shows an example of the result of the experiment which applies a load to the floor board 10 placed on the ground. 図11に示されるグラフの一部を拡大した図である。11 is an enlarged view of a part of the graph shown in FIG. 地面に置いた敷板10に荷重を加える実験の結果の他の例を示す図である。It is a figure which shows the other example of the result of the experiment which applies a load to the floor board 10 placed on the ground. 建築基準法における地耐力の規定を示す図である。It is a figure which shows the rule of the bearing capacity in the Building Standard Law. 図1に示された敷板10の部分断面の他の例を示す図である。It is a figure which shows the other example of the partial cross section of the floor plate 10 shown in FIG. 図1に示された敷板10の部分断面の他の例を示す図である。It is a figure which shows the other example of the partial cross section of the floor plate 10 shown in FIG. 図1に示された敷板10の部分断面の他の例を示す図である。It is a figure which shows the other example of the partial cross section of the floor plate 10 shown in FIG. 本発明の第2の実施形態に係る敷板80aおよび敷板80bを示す平面図である。It is a top view which shows the floor plan 80a and the floor board 80b which concerns on the 2nd Embodiment of this invention. 図18に示された敷板80aおよび敷板80bの部分断面を示す図である。It is a figure which shows the partial cross section of the floor plate 80a and the floor plate 80b shown in FIG. 図1に示された敷板10の連結構造の一例を示す平面図である。It is a top view which shows an example of the connection structure of the floor board 10 shown in FIG. 図20のC-C断面図である。FIG. 20 is a sectional view taken along the line CC of FIG. 図1に示された敷板10の連結構造の他の例を示す平面図である。It is a top view which shows the other example of the connection structure of the floor board 10 shown in FIG. 図1に示された敷板10の連結構造のさらに他の例を示す平面図である。It is a top view which shows still another example of the connection structure of the floor board 10 shown in FIG.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention within the scope of the claims. Also, not all combinations of features described in the embodiments are essential to the means of solving the invention.
 図1は、本発明の第1の実施形態に係る敷板10を示す斜視図である。敷板10は、例えば、工事現場等における未整地面または未舗装面上に敷かれる。敷板10は、道路等に敷かれて、重機等の車両の走行面、ならびに人の歩行面を形成してよい。敷板10は、イベント会場、集会場の仮設広場、仮設路、工事現場車両搬出入路、荒れ地、法面あるいは住宅建築現場において用いられてもよい。敷板は、コンテナが載置される載置面を提供してもよい。 FIG. 1 is a perspective view showing a floor plate 10 according to the first embodiment of the present invention. The floor plate 10 is laid on, for example, an unprepared ground or an unpaved surface at a construction site or the like. The floor plate 10 may be laid on a road or the like to form a traveling surface of a vehicle such as a heavy machine and a walking surface of a person. The floor board 10 may be used in an event venue, a temporary plaza of a meeting place, a temporary road, a construction site vehicle loading / unloading road, a wasteland, a slope, or a housing construction site. The floor plate may provide a mounting surface on which the container is mounted.
 本例の敷板10は、外縁が矩形の板状である。敷板10は、第1主面12、第2主面14、および側面15を有する。第1主面12と第2主面14は、互いに逆側の主面を意味する。図1に示される例では、第1主面12が、おもて面であり、第2主面14が裏面である。側面15は、第1主面12と第2主面14との間の面を指す。但し、敷板10は、第1主面12と第2主面14の構造および形状が同じであってよく、第1主面と第2主面のどちらをおもて面として使用してもよい。 The floor plate 10 of this example has a rectangular outer edge. The floor plate 10 has a first main surface 12, a second main surface 14, and a side surface 15. The first main surface 12 and the second main surface 14 mean the main surfaces opposite to each other. In the example shown in FIG. 1, the first main surface 12 is the front surface and the second main surface 14 is the back surface. The side surface 15 refers to a surface between the first main surface 12 and the second main surface 14. However, the floor plate 10 may have the same structure and shape as the first main surface 12 and the second main surface 14, and either the first main surface or the second main surface may be used as the front surface. ..
 本例では、上面視において、敷板10は、外縁が一対の辺16-1および16-2と一対の辺17-1および17-2とからなる長方形または正方形をしている。本例では、一対の辺16-1および16-2が長辺であり、一対の辺17-1および17-2が短辺である。なお、本明細書において、主面(第1主面12、第2主面14)に平行な面をXY平面とし、XY平面に沿う第1方向(本例では、辺17に沿う方向)をX軸方向とし、XY平行に沿う方向であって第1方向と直交する方向である第2方向(本例では、辺16に沿う方向)をY軸方向とし、敷板10の厚み方向をZ軸方向として説明する。上面視とは、Z軸の正方向から負方向に向かって視た場合を意味する。 In this example, in the top view, the floor plate 10 has a rectangular shape or a square whose outer edge is composed of a pair of sides 16-1 and 16-2 and a pair of sides 17-1 and 17-2. In this example, the pair of sides 16-1 and 16-2 are the long sides, and the pair of sides 17-1 and 17-2 are the short sides. In the present specification, the plane parallel to the main surface (first main surface 12, second main surface 14) is defined as the XY plane, and the first direction along the XY plane (in this example, the direction along the side 17) is defined as the XY plane. The X-axis direction is defined as the Y-axis direction, the second direction (in this example, the direction along the side 16), which is the direction along the XY parallel and orthogonal to the first direction, is the Y-axis direction, and the thickness direction of the floor plate 10 is the Z-axis. Explained as a direction. Top view means a case of viewing from the positive direction to the negative direction of the Z axis.
 敷板10の大きさは、既存の敷鉄板の大きさの規格に合わせて決定してよい。一例において、敷板10の大きさは、914mm(短辺)×1829mm(長辺)、1524mm×1524mm(正方形)、1219mm(短辺)×2438mm(長辺)、1524mm(短辺)×3048mm(長辺)、1524mm(短辺)×4572mm(長辺)、または1524mm(短辺)×6096mm(長辺)であってよい。敷板10の厚みは、敷鉄板の厚みの規格に対応して、19mm、22mm、または25mmとしてよい。 The size of the floor plate 10 may be determined according to the standard of the size of the existing floor plate. In one example, the size of the floor plate 10 is 914 mm (short side) × 1829 mm (long side), 1524 mm × 1524 mm (square), 1219 mm (short side) × 2438 mm (long side), 1524 mm (short side) × 3048 mm (long side). Side), 1524 mm (short side) x 4572 mm (long side), or 1524 mm (short side) x 6096 mm (long side). The thickness of the floor plate 10 may be 19 mm, 22 mm, or 25 mm according to the standard of the thickness of the floor plate.
 敷板10の大きさおよび厚みを、既存の敷鉄板の大きさおよび厚みの規格と同一とすることによって、本実施形態の敷板10によって、既存の敷鉄板を置き換えることができる。また、敷板10と既存の敷鉄板とを組み合わせて使用することも可能となる。しかしながら、敷板10の大きさおよび厚みは、既存の敷鉄板の大きさおよび厚みの規格に限定されない。 By making the size and thickness of the floor plate 10 the same as the standard of the size and thickness of the existing floor plate, the floor plate 10 of the present embodiment can replace the existing floor plate. It is also possible to use the floor plate 10 in combination with the existing floor plate. However, the size and thickness of the floor plate 10 are not limited to the standard size and thickness of the existing floor plate.
 図2は、敷板10の部分断面を示す図である。図2においては、第1主面12が、重機等の車両が走行する走行面、および歩行者が歩行する歩行面を提供する。第2主面14が地面等に接する裏面である。敷板10は、基材20およびコーティング層22を有する。基材20は、合成樹脂で形成される。 FIG. 2 is a diagram showing a partial cross section of the floor plate 10. In FIG. 2, the first main surface 12 provides a traveling surface on which a vehicle such as a heavy machine travels and a walking surface on which a pedestrian walks. The second main surface 14 is the back surface in contact with the ground or the like. The floor plate 10 has a base material 20 and a coating layer 22. The base material 20 is made of synthetic resin.
 一例として基材20を形成する合成樹脂は、高分子化合物である。例えば、基材20を形成する合成樹脂は、硬質プラスチックである。より具体的な例として、基材20を形成する合成樹脂は、ポリカーボネート樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ABS樹脂、およびアセタール樹脂からなる群から選ばれた1または複数の樹脂から形成されてよい。一つの実施例において、基材20は、ポリカーボネート樹脂で形成される。以下の説明では、基材20がポリカーボネート樹脂で形成されている場合を例にとって説明する。 As an example, the synthetic resin forming the base material 20 is a polymer compound. For example, the synthetic resin forming the base material 20 is a hard plastic. As a more specific example, the synthetic resin forming the base material 20 is selected from the group consisting of polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin, and acetal resin. It may be formed from one or more resins. In one embodiment, the substrate 20 is made of a polycarbonate resin. In the following description, a case where the base material 20 is made of a polycarbonate resin will be described as an example.
 コーティング層22は、基材20の表面を覆って形成される。コーティング層22は、ポリウレア樹脂で形成される。ポリウレア樹脂とは、例えばイソシアネートとアミノ基との化学反応によって形成されるウレア結合を有する樹脂である。一例としてポリウレア樹脂は、ポリイソシアネートとポリアミンを反応させて形成される。ポリウレア樹脂は、比重1.09~1.12のポリイソシアネート化合物と、比重1.13~1.02の硬化剤としての合成樹脂とを、容積比1対1または重量比が109対100程度に混合した混合溶剤を用いて形成してよい。 The coating layer 22 is formed so as to cover the surface of the base material 20. The coating layer 22 is made of polyurea resin. The polyurea resin is, for example, a resin having a urea bond formed by a chemical reaction between isocyanate and an amino group. As an example, a polyurea resin is formed by reacting a polyisocyanate with a polyamine. The polyurea resin is a polyisocyanate compound having a specific gravity of 1.09 to 1.12 and a synthetic resin as a curing agent having a specific gravity of 1.13 to 1.02, having a volume ratio of 1: 1 or a weight ratio of about 109: 100. It may be formed using a mixed solvent.
 コーティング層22は、着色剤を含んでいてよい。一例において、着色剤は顔料である。顔料は、ポリウレア樹脂の中に分散した状態でコーティング層22に含まれてよい。これによって、コーティング層22を塗膜としても用いることができる。したがって、別途の塗膜を形成することなく、工事現場や通行区分等の区画表示のために種々の色に着色された敷板10を提供することが可能となる。 The coating layer 22 may contain a colorant. In one example, the colorant is a pigment. The pigment may be contained in the coating layer 22 in a state of being dispersed in the polyurea resin. Thereby, the coating layer 22 can also be used as a coating film. Therefore, it is possible to provide a floor plate 10 colored in various colors for displaying a section such as a construction site or a traffic division without forming a separate coating film.
 コーティング層22は、基材20の全面に形成されることが好ましい。つまり、コーティング層22は、第1主面12(車両の走行面、歩行者の歩行面、重量物の載置面)と、第2主面14(地面、地面に接する面)、および側面15の全てを覆う。 The coating layer 22 is preferably formed on the entire surface of the base material 20. That is, the coating layer 22 has a first main surface 12 (running surface of a vehicle, a walking surface of a pedestrian, a surface on which a heavy object is placed), a second main surface 14 (ground, a surface in contact with the ground), and a side surface 15. Cover all of.
 コーティング層22の厚みT1は、基材20の厚みT2より小さい。一例として、基材20の厚みT2は3mm以上7mm以下であり、コーティング層22の厚みT1は1mm以上3mm以下である。 The thickness T1 of the coating layer 22 is smaller than the thickness T2 of the base material 20. As an example, the thickness T2 of the base material 20 is 3 mm or more and 7 mm or less, and the thickness T1 of the coating layer 22 is 1 mm or more and 3 mm or less.
 基材20は、合成樹脂で形成されるので、非常に軽量である。例えば、ポリカーボネート樹脂で形成された基材20の全面にポリウレア樹脂でコーティング層22が形成した試料において、コーティング層22の厚みT1が2mm、基材20の厚みT2が5mm、大きさが1524mm(短辺)×3048mm(長辺)の場合、重量が51kgとなる。同じ大きさおよび厚みの敷鉄板の場合328kgであるので、本実施形態の敷板10は、敷鉄板に比べて6分の1以下の重量となる。敷板10が非常に軽量であるので、運搬および保存等が容易となる。したがって、工事現場等への搬入負担を軽減することができる。 Since the base material 20 is made of synthetic resin, it is very lightweight. For example, in a sample in which the coating layer 22 is formed of the polyurea resin on the entire surface of the base material 20 made of the polycarbonate resin, the thickness T1 of the coating layer 22 is 2 mm, the thickness T2 of the base material 20 is 5 mm, and the size is 1524 mm (short). In the case of side) × 3048 mm (long side), the weight is 51 kg. In the case of a floor iron plate of the same size and thickness, the weight is 328 kg, so that the floor plate 10 of the present embodiment weighs less than one-sixth of the weight of the floor iron plate. Since the floor plate 10 is very lightweight, it can be easily transported and stored. Therefore, it is possible to reduce the burden of carrying in to the construction site or the like.
 また、コーティング層22は、ポリウレア樹脂で形成されるので、高強度、優れた耐水性、および、優れた耐衝撃性を有する。このため、基材20の表面をコーティング層22でコーティングすることで、超軽量で、強度、耐水性、および、耐衝撃性に優れた敷板10を提供できる。ポリカーボネート樹脂で形成された基材20は、アルカリ性の溶液に弱いが、ポリウレア樹脂で形成されたコーティング層22はアルカリ性の溶液にも比較的強い。したがって、本実施形態の敷板10は、ポリウレア樹脂で形成されたコーティング層22で基材20を覆っているので、ポリカーボネート樹脂単体で敷板10を形成する場合に比べて耐薬品性を向上することもできる。また、本実施形態の敷板10は、金属製の敷板と比べ、加工性に優れ、また、低コストで製造できる。 Further, since the coating layer 22 is made of polyurea resin, it has high strength, excellent water resistance, and excellent impact resistance. Therefore, by coating the surface of the base material 20 with the coating layer 22, it is possible to provide a floor plate 10 which is ultra-lightweight and has excellent strength, water resistance, and impact resistance. The base material 20 formed of the polycarbonate resin is vulnerable to an alkaline solution, but the coating layer 22 formed of the polyurea resin is relatively strong against an alkaline solution. Therefore, since the floor plate 10 of the present embodiment covers the base material 20 with the coating layer 22 formed of the polyurea resin, the chemical resistance can be improved as compared with the case where the floor plate 10 is formed by the polycarbonate resin alone. can. Further, the floor plate 10 of the present embodiment is superior in workability and can be manufactured at low cost as compared with the metal floor plate.
 図3は、敷板10の製造工程の一例を示すフローチャートである。基材成形段階S101において、合成樹脂の基材を、所定の形状に成形する。例えば、合成樹脂の基材20を、敷板10の形状に対応する形状に成形する。基材20の成形は、一例において、既存の真空成型等の技術によって実現される。また、最終的な基材20より大きいサイズに成形された基材を、予め定められた基材20の形状に切断してもよい。 FIG. 3 is a flowchart showing an example of the manufacturing process of the floor plate 10. In the base material molding step S101, the base material of the synthetic resin is molded into a predetermined shape. For example, the synthetic resin base material 20 is molded into a shape corresponding to the shape of the floor plate 10. The molding of the base material 20 is, for example, realized by an existing technique such as vacuum forming. Further, a base material formed into a size larger than the final base material 20 may be cut into a predetermined shape of the base material 20.
 なお、敷板10の用途によって、基材20の材料および厚みを選択してよい。基材20は、ポリカーボネート樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ABS樹脂、およびアセタール樹脂からなる群から用途に応じて選ばれた1または複数の樹脂で形成されてよい。一例において、敷板10が重機等の車両の走行面を提供する場合は、車両が走行せず人が歩行するにすぎないイベント会場に敷設される場合に比べて高い剛性の合成樹脂が使われてよく、基材20の厚みT2を大きくしてよい。 The material and thickness of the base material 20 may be selected depending on the use of the floor plate 10. The base material 20 is formed of one or more resins selected according to the application from the group consisting of polycarbonate resin, polyethylene resin, polyolefin resin, polyester resin, acrylic resin, polyamide resin, polystyrene resin, ABS resin, and acetal resin. May be done. In one example, when the floor plate 10 provides a running surface for a vehicle such as a heavy machine, a synthetic resin having higher rigidity is used as compared with the case where the floor plate 10 is laid in an event venue where the vehicle does not run and only a person walks. Often, the thickness T2 of the base material 20 may be increased.
 また、基材20は、必要に応じて2層以上の複数層を有する構造になっていても良い。基材20を複数層で構成すると、より衝撃に強く、剛性の高い敷板10とすることができる。なお、複数層の基材のそれぞれの層は、上記した樹脂の他、種々の材質を使用可能である。例えば、基材の第1層と第2層で異なる強度、硬さの材質を使用することで、衝撃に強い構造とすることができる。 Further, the base material 20 may have a structure having a plurality of layers of two or more, if necessary. When the base material 20 is composed of a plurality of layers, the floor plate 10 which is more resistant to impact and has high rigidity can be obtained. In addition to the above-mentioned resin, various materials can be used for each layer of the plurality of base materials. For example, by using a material having different strength and hardness in the first layer and the second layer of the base material, a structure resistant to impact can be obtained.
 次に、噴射段階S102において、基材にコーティング材を噴射する。S102においては、それぞれの基材の全面にコーティング材を噴射することが好ましい。具体的には、コーティング材を噴射する際の各パラメーが設定される。当該パラメータには、例えば、基材20の単位面積に対する、単位時間当たりのコーティング材の噴射量等が含まれる。噴射段階S102は、一例において、側面用噴射装置、上面用噴射装置、および下面用噴射装置によって実行されてよい。搬送装置で基材20を搬送しつつ、側面用噴射装置の噴射口から、基材20の側面にコーティン材を噴射し、上面用噴射装置の噴射口から、基材20の第1主面にコーティング材を噴射し、下面用噴射装置の噴射口から、基材20の第2主面のコーティング材を噴射してよい。側面用噴射装置によって、基材20の全ての側面にコーティング材を噴射できるように、少なくとも一部の搬送装置には、基材20を搬送面内において回転させながら搬送する機構が設けられてよい。但し、コーティング材の噴射段階は、この場合に限られない。 Next, in the injection step S102, the coating material is injected onto the base material. In S102, it is preferable to spray the coating material on the entire surface of each base material. Specifically, each parameter when injecting the coating material is set. The parameter includes, for example, the injection amount of the coating material per unit time with respect to the unit area of the base material 20. The injection step S102 may, in one example, be performed by a side injection device, a top surface injection device, and a bottom surface injection device. While transporting the base material 20 by the transport device, the coating material is jetted from the injection port of the side surface injection device to the side surface of the base material 20, and from the injection port of the top surface injection device to the first main surface of the base material 20. The coating material may be injected, and the coating material on the second main surface of the base material 20 may be injected from the injection port of the lower surface injection device. At least a part of the transport devices may be provided with a mechanism for transporting the base material 20 while rotating it in the transport surface so that the coating material can be sprayed on all the side surfaces of the base material 20 by the side jet device. .. However, the spraying stage of the coating material is not limited to this case.
 以上のような本実施形態の敷板10の強度についてシミュレーション解析および現物での試験を実行した。図4から図13を参照しつつ説明する。 Simulation analysis and actual test were performed on the strength of the floor plate 10 of the present embodiment as described above. This will be described with reference to FIGS. 4 to 13.
 図4は、敷板10に対するシミュレーション解析における境界条件の一例を示す図である。本例では、基材20として、ポリカーボネート樹脂で形成されており厚みT2が5mmであり、大きさが1524mm(短辺)×3048mm(長辺)であるモデルを設定した。ポリカーボネート樹脂製の基材20の降伏応力(圧縮)の値として76MPaを用い、弾性率(圧縮)の値として1.9GPaを用いた。 FIG. 4 is a diagram showing an example of boundary conditions in simulation analysis for the floor plate 10. In this example, a model is set as the base material 20, which is made of a polycarbonate resin, has a thickness T2 of 5 mm, and has a size of 1524 mm (short side) × 3048 mm (long side). 76 MPa was used as the yield stress (compression) value of the polycarbonate resin base material 20, and 1.9 GPa was used as the elastic modulus (compression) value.
 コーティング層22としては、ポリウレア樹脂で形成されており厚みT1が2mmであり基材20の全面を覆っているモデルを設定した。したがって、敷板10の全体の厚みは、9mmとした。ポリウレア樹脂製のコーティング層22の降伏応力(圧縮)の値として3.54MPaを用い、弾性率(圧縮)の値として0.15GPaを用いた。 As the coating layer 22, a model was set in which the coating layer 22 was made of polyurea resin and had a thickness T1 of 2 mm and covered the entire surface of the base material 20. Therefore, the total thickness of the floor plate 10 is 9 mm. 3.54 MPa was used as the value of the yield stress (compression) of the coating layer 22 made of polyurea resin, and 0.15 GPa was used as the value of the elastic modulus (compression).
 荷重負荷モデル(荷重負荷範囲)として、中心軸がY軸に向くタイヤ形状を模した円柱形状をした円柱状モデル30を用いた。具体的には、Y軸方向の幅(タイヤ幅に相当)が435mmであり、外径φ(タイヤ径に相当)が963mmである円柱状モデル30が用いられた。円柱状モデル30の側面(周面)を敷板10の第1主面12(上面)の板中央部に配置した。具体的には、敷板10の一対の辺16-1、16-2(一対の長辺)の間の距離の中間点において、円柱状モデル30の中心軸が、辺16-1、16-2と同じ方向に延びるように、円柱状モデル30を配置した。荷重は、円柱状モデルを介して敷板10の第1主面12に鉛直に与えた。荷重は5トン(49000N)とした。 As a load-load model (load-load range), a cylindrical model 30 having a cylindrical shape imitating a tire shape whose central axis faces the Y-axis was used. Specifically, a columnar model 30 having a width in the Y-axis direction (corresponding to the tire width) of 435 mm and an outer diameter φ (corresponding to the tire diameter) of 963 mm was used. The side surface (peripheral surface) of the columnar model 30 was arranged at the center of the first main surface 12 (upper surface) of the floor plate 10. Specifically, at the midpoint of the distance between the pair of sides 16-1 and 16-2 (pair of long sides) of the floor plate 10, the central axis of the columnar model 30 is the sides 16-1 and 16-2. The columnar model 30 was arranged so as to extend in the same direction as the above. The load was applied vertically to the first main surface 12 of the floor plate 10 via the columnar model. The load was 5 tons (49000N).
 敷板10の少なくとも3つの側面15については、仮想璧モデルによって固定した。敷板10の第2主面は、転圧地面を想定した弾性率7.8GPaの仮想璧に接触するように条件を与えた。 At least three sides 15 of the floor plate 10 were fixed by a virtual wall model. The second main surface of the floor plate 10 was provided with a condition to be in contact with a virtual wall having an elastic modulus of 7.8 GPa assuming a compacted ground.
 図5は、敷板10に対するシミュレーション解析における境界条件の他の例を示す図である。図5に示されるシミュレーショにおいては、荷重負荷範囲として与えられる円柱状モデル30の側面(周面)が敷板10の辺16-1(長辺)に乗り上げるように接して配置される。円柱状モデルの中心軸は、辺16-1と同じ方向とした。円柱状モデル30と敷板10との接点において、円柱状モデル30の円形の底面の円周の接線と敷板10の第1主面とが45度となるように配置した。荷重は、Z軸方向から45度となる斜め方向に与えた。荷重は5トンとした。その他の条件は、図4の場合と同様とした。 FIG. 5 is a diagram showing another example of the boundary condition in the simulation analysis for the floor plate 10. In the simulation shown in FIG. 5, the side surface (peripheral surface) of the columnar model 30 given as the load load range is arranged in contact with the side 16-1 (long side) of the floor plate 10. The central axis of the columnar model was set in the same direction as the side 16-1. At the point of contact between the columnar model 30 and the floor plate 10, the tangent line of the circumference of the circular bottom surface of the columnar model 30 and the first main surface of the floor plate 10 are arranged so as to be 45 degrees. The load was applied in an oblique direction of 45 degrees from the Z-axis direction. The load was 5 tons. Other conditions were the same as in FIG. 4.
 図4の境界条件を用いたシミュレーション解析によれば、図4に示した最大応力箇所Pmax1において基材20には39MPaの圧縮応力がかかり、コーティング層22には7.4MPaの圧縮応力がかかることがわかった。図5の境界条件を用いたシミュレーショ解析によれば、図5に示した最大応力箇所Pmax2において、基材20には33MPaの圧縮応力がかかり、コーティング層22には8.9MPaの応力がかかることがわかった。この結果、コーティンング層は変形することがあり得るが、基材20にかかる応力は、降伏応力に比べて51%以下であり、基材20に影響がないことがわかった。 According to the simulation analysis using the boundary conditions of FIG. 4, the base material 20 is subjected to a compressive stress of 39 MPa and the coating layer 22 is subjected to a compressive stress of 7.4 MPa at the maximum stress portion Pmax1 shown in FIG. I understood. According to the simulation analysis using the boundary conditions of FIG. 5, the base material 20 is subjected to a compressive stress of 33 MPa and the coating layer 22 is subjected to a stress of 8.9 MPa at the maximum stress location Pmax2 shown in FIG. I understand. As a result, it was found that the coating layer may be deformed, but the stress applied to the base material 20 is 51% or less of the yield stress, and the base material 20 is not affected.
 図6は、敷板10に対する圧縮試験の一例を説明する図である。敷板10としては、第1試料、第2試料、および第3試料の3種類を作製した。第1試料はコーティング層22の厚みT1が1mmで基材20の厚みT2が10mmである。第2試料はコーティング層22の厚みT1が1mmで基材20の厚みT2が5mmである。第3試料はコーティング層22の厚みT1が2mmで基材20の厚みT2が5mmである。各試料において、コーティング層は、それぞれの基材20の全面を覆うように形成された。第1試料、第2試料、および第3試料とも敷板10は、100mm×100mmの大きさとした。敷板10を100mm×100mmの大きさの一対の鉄板41で挟み込んで荷重を加えることで、敷板10全体に均等な荷重が加わるようにした。 FIG. 6 is a diagram illustrating an example of a compression test for the floor plate 10. As the floor plate 10, three types of a first sample, a second sample, and a third sample were prepared. In the first sample, the thickness T1 of the coating layer 22 is 1 mm, and the thickness T2 of the base material 20 is 10 mm. In the second sample, the thickness T1 of the coating layer 22 is 1 mm, and the thickness T2 of the base material 20 is 5 mm. In the third sample, the thickness T1 of the coating layer 22 is 2 mm, and the thickness T2 of the base material 20 is 5 mm. In each sample, the coating layer was formed so as to cover the entire surface of each base material 20. The floor plate 10 of the first sample, the second sample, and the third sample had a size of 100 mm × 100 mm. By sandwiching the floor plate 10 between a pair of iron plates 41 having a size of 100 mm × 100 mm and applying a load, an even load is applied to the entire floor plate 10.
 図7は、図6における敷板10の圧縮試験の結果を説明する図である。横軸は圧縮変位(mm)を示し、縦軸は圧縮荷重(kN)を示す。図7において、実線は第1試料、点線は第2試料、一点鎖線は第3試料を示す。第1試料、第2試料、および第3試料のいずれの場合も、圧縮変位が0.6mmを超えると、圧縮荷重が急激に上昇を開始した。そして、圧縮変位が0.62mm付近で、圧縮荷重が900kNから1000kNの値の範囲に到達した。なお、試験装置の制約により圧縮荷重が1000kNになる前に荷重印加を停止させた。各試料間での圧縮荷重が上昇する圧縮変位の値の差は、荷重印加を停止操作に伴う測定誤差に起因すると考えられる。なお、試料のアスペクト比および試料の厚みの影響もないとはいえないが、本実験によれば、試料の大きさを考慮すると、100000(kN/m)の圧縮強度を達成することができた。次に、地面に敷板10を置いた場合の実験について説明する。 FIG. 7 is a diagram illustrating the result of the compression test of the floor plate 10 in FIG. The horizontal axis shows the compression displacement (mm), and the vertical axis shows the compression load (kN). In FIG. 7, the solid line indicates the first sample, the dotted line indicates the second sample, and the alternate long and short dash line indicates the third sample. In all of the first sample, the second sample, and the third sample, when the compressive displacement exceeded 0.6 mm, the compressive load began to increase sharply. Then, the compressive displacement was around 0.62 mm, and the compressive load reached a value range of 900 kN to 1000 kN. Due to the restrictions of the test equipment, the load application was stopped before the compressive load reached 1000 kN. The difference in the value of the compressive displacement in which the compressive load increases between the samples is considered to be due to the measurement error associated with the operation of stopping the load application. Although it cannot be said that there is no influence of the aspect ratio of the sample and the thickness of the sample, according to this experiment, the compressive strength of 100,000 (kN / m 2 ) can be achieved in consideration of the size of the sample. rice field. Next, an experiment in the case where the floor plate 10 is placed on the ground will be described.
 図8は、地面に置いた敷板10に荷重を加える第1実施例の内容を説明する図である。土壌60を容器62に入れた。容器62の内側寸法は700mm×700mmで深さが50mmとした。土壌60の上面から転圧(締固め)して、地面状態を作った。敷板10を土壌60の上面に配置した。敷板10は、大きさが600mm×600mmであり、コーティング層22の厚みT1が2mmであり、基材20の厚みT2が5mmである。 FIG. 8 is a diagram illustrating the contents of the first embodiment in which a load is applied to the floor plate 10 placed on the ground. Soil 60 was placed in container 62. The inner dimensions of the container 62 were 700 mm × 700 mm and the depth was 50 mm. The ground condition was created by rolling (compacting) from the upper surface of the soil 60. The floor plate 10 was placed on the upper surface of the soil 60. The floor plate 10 has a size of 600 mm × 600 mm, a thickness T1 of the coating layer 22 is 2 mm, and a thickness T2 of the base material 20 is 5 mm.
 敷板10の上面には、100mm×100mmの大きさで厚みが8mmであるゴム板50を置いた。ゴム板50として、硬度80(測定は、JIS K6253による)のゴム材を用いた。ゴム板50の上から直径160mmの円柱状の治具52によって荷重を加えた。上面視において、敷板10、土壌60の容器62、ゴム板50、および治具52の各中心が一致し、かつ、敷板10、土壌60の容器62、およびゴム板50の対応する辺の向きが揃うように配置された。土壌60として、黒土50%とセメント50%とを混合した第1土壌、および黒土のみの第2土壌の2種類の場合を用意し、それぞれの場合について実験を実施した。 A rubber plate 50 having a size of 100 mm × 100 mm and a thickness of 8 mm was placed on the upper surface of the floor plate 10. As the rubber plate 50, a rubber material having a hardness of 80 (measured by JIS K6253) was used. A load was applied from above the rubber plate 50 by a cylindrical jig 52 having a diameter of 160 mm. In top view, the centers of the floor plate 10, the container 62 of the soil 60, the rubber plate 50, and the jig 52 are aligned, and the orientations of the corresponding sides of the floor plate 10, the container 62 of the soil 60, and the rubber plate 50 are aligned. Arranged to align. Two types of soil 60 were prepared, a first soil in which 50% black soil and 50% cement were mixed, and a second soil containing only black soil, and experiments were carried out in each case.
 図9は、地面に2枚重ねて置いた敷板10に荷重を加える第2実施例の内容を説明する図である。図9においては、2枚の敷板10b-1、10b-2を土壌60の上面に配置した。敷板10b-1、10b-2は、それぞれ大きさが600mm×300mmであり、コーティング層22の厚みT1が2mmであり、基材20の厚みT2が5mmである。敷板10b-1および10b-2は、互いの長辺が向い合うように並置した。敷板10b-1および10b-2の上には、大きさが600mm×600mmである敷板10aを配置した。すなわち、敷板10aと、敷板10b-1、10b-2とは千鳥に配置された。敷板10aの上面には、ゴム板50を置いた。ゴム板50の上から治具52によって荷重を加えた。敷板10a、土壌60、容器62、ゴム板50、および治具52の寸法、材質、および配置は、図8の場合と同様である。 FIG. 9 is a diagram illustrating the contents of the second embodiment in which a load is applied to a floor plate 10 placed on the ground in two layers. In FIG. 9, two floor plates 10b-1 and 10b-2 were placed on the upper surface of the soil 60. The floor plates 10b-1 and 10b-2 each have a size of 600 mm × 300 mm, the thickness T1 of the coating layer 22 is 2 mm, and the thickness T2 of the base material 20 is 5 mm. The floor plates 10b-1 and 10b-2 were juxtaposed so that their long sides faced each other. A floor plate 10a having a size of 600 mm × 600 mm was placed on the floor plates 10b-1 and 10b-2. That is, the floor plates 10a and the floor plates 10b-1 and 10b-2 were arranged in a staggered pattern. A rubber plate 50 was placed on the upper surface of the floor plate 10a. A load was applied from above the rubber plate 50 by the jig 52. The dimensions, materials, and arrangements of the floor plate 10a, the soil 60, the container 62, the rubber plate 50, and the jig 52 are the same as in FIG.
 図10は、地面に置いた鉄板70に荷重を加える比較例の内容を説明する図である。図10においては、600mm×600mmであり厚みが16mmである鉄板70を土壌60の上面に配置した。土壌60、容器62、ゴム板50、および治具52の寸法および配置は、図8の場合と同様である。 FIG. 10 is a diagram illustrating the contents of a comparative example in which a load is applied to an iron plate 70 placed on the ground. In FIG. 10, an iron plate 70 having a size of 600 mm × 600 mm and a thickness of 16 mm was placed on the upper surface of the soil 60. The dimensions and arrangement of the soil 60, the container 62, the rubber plate 50, and the jig 52 are the same as in the case of FIG.
 図11は、地面に置いた敷板10に荷重を加える実験の結果の一例を示すグラフである。図11の横軸は圧縮変位(mm)を示し、縦軸は圧縮荷重(kN)を示す。図11においては、土壌60として、黒土50体積%とセメント50体積%とを混合した第1土壌が用いられた。図8に示される第1実施例の実験結果が実線で示されており、図9に示される第2実施例の実験結果が一点鎖線で示されており、図10に示される比較例の実験結果が点線で示されている。 FIG. 11 is a graph showing an example of the result of an experiment in which a load is applied to a floor plate 10 placed on the ground. The horizontal axis of FIG. 11 shows the compression displacement (mm), and the vertical axis shows the compression load (kN). In FIG. 11, as the soil 60, a first soil in which 50% by volume of black soil and 50% by volume of cement were mixed was used. The experimental results of the first example shown in FIG. 8 are shown by a solid line, the experimental results of the second embodiment shown by FIG. 9 are shown by a alternate long and short dash line, and the experiments of the comparative example shown in FIG. 10 are shown. The results are shown by the dotted line.
 図12は、図11に示されるグラフの一部を拡大した図である。図12の横軸は圧縮変位(mm)を示し、縦軸は圧縮荷重(kN)を示す。図12は、図11における圧縮変位が5mm以下の区域を拡大して示している。 FIG. 12 is an enlarged view of a part of the graph shown in FIG. The horizontal axis of FIG. 12 indicates the compression displacement (mm), and the vertical axis indicates the compression load (kN). FIG. 12 shows an enlarged area in FIG. 11 where the compressive displacement is 5 mm or less.
 図11および図12によれば、第1実施例、第2実施例、および比較例とも、初期変位の段階で急激な圧縮荷重の増加が観測される。具体的には、図12に示されるとおり、第1実施例、第2実施例、および比較例とも、圧縮変位が0.5mm以上1mm以下の領域のいずれかの値、より具体的には、圧縮変位が0.6mm±1mmの領域のいずれかの値において、急激な圧縮荷重の増加が観察される。この現象が生じる理由は必ずしも明らかではないが、この現象は、土壌60の土面が降伏していることに起因すると考えられる。 According to FIGS. 11 and 12, in the first embodiment, the second embodiment, and the comparative example, a rapid increase in the compressive load is observed at the stage of the initial displacement. Specifically, as shown in FIG. 12, in each of the first embodiment, the second embodiment, and the comparative example, any value in the region where the compression displacement is 0.5 mm or more and 1 mm or less, more specifically, A sharp increase in compressive load is observed at any value in the region where the compressive displacement is 0.6 mm ± 1 mm. The reason why this phenomenon occurs is not always clear, but it is considered that this phenomenon is caused by the yielding of the soil surface of the soil 60.
 比較例においては、圧縮荷重は、90.9kNまで急激に上昇した後、上昇が緩やかになった。比較例の鉄板70は、この90.9kNで降伏したと考えらえる。一方、第1実施例においては、圧縮荷重は、6.21kNまで急激に上昇した後、上昇が緩やかになった。第1実施例の敷板10は、この6.21kNで降伏したと考えられる。第2実施例においては、圧縮荷重は、4kNまで急激に上昇した後、上昇が緩やかになった。第2実施例の敷板10a、10b-1、10b-2は、この4kNで降伏したと考えられる。 In the comparative example, the compressive load increased sharply to 90.9 kN and then gradually increased. It is considered that the iron plate 70 of the comparative example yielded at this 90.9 kN. On the other hand, in the first embodiment, the compressive load rapidly increased to 6.21 kN and then gradually increased. It is considered that the floor plate 10 of the first embodiment yielded at this 6.21 kN. In the second embodiment, the compressive load increased sharply to 4 kN and then slowly increased. It is considered that the floor plates 10a, 10b-1 and 10b-2 of the second embodiment yielded at this 4 kN.
 なお、図10に示される比較例では、第1土壌を用いた実験において、鉄板70の剛性が高いため鉄板70の底面積(600mm×600mm=0.36m)の全体に荷重が加わっていた。したがって、比較例における地耐力は90.9(kN)÷0.36(m)=252(kN/m)と推定された。一方、第1実施例の敷板10は、第1土壌を用いた実験において、鉄板70に比べて剛性が低い。したがって、敷板10は、荷重に応じて変形していた。具体的には、第1実施例においては、実質的に治具52の底面積(φ160mm:80mm×80mm×π=0.0201m)において荷重が伝わる状態になっていた。したがって、第1実施例における地耐力は6.21(kN)÷0.0201=308(kN/m)と推定された。したがって、第1実施例の敷板10は、比較例の鉄板70と同程度の地耐力を示した。第2実施例における地耐力は4(kN)÷0.0201=200(kN/m)と推定された。なお、地耐力(kN/m)とは、与えられた力に対する許容応力度を意味する。 In the comparative example shown in FIG. 10, in the experiment using the first soil, a load was applied to the entire bottom area (600 mm × 600 mm = 0.36 m 2 ) of the iron plate 70 due to the high rigidity of the iron plate 70. .. Therefore, the bearing capacity in the comparative example was estimated to be 90.9 (kN) ÷ 0.36 (m 2 ) = 252 (kN / m 2 ). On the other hand, the floor plate 10 of the first embodiment has lower rigidity than the iron plate 70 in the experiment using the first soil. Therefore, the floor plate 10 was deformed according to the load. Specifically, in the first embodiment, the load was substantially transmitted in the bottom area of the jig 52 (φ160 mm: 80 mm × 80 mm × π = 0.0201 m 2 ). Therefore, the bearing capacity in the first embodiment was estimated to be 6.21 (kN) ÷ 0.0201 = 308 (kN / m 2 ). Therefore, the floor plate 10 of the first embodiment showed the same level of bearing capacity as the iron plate 70 of the comparative example. The bearing capacity in the second embodiment was estimated to be 4 (kN) ÷ 0.0201 = 200 (kN / m 2 ). The bearing capacity (kN / m 2 ) means the allowable stress for a given force.
 図13は、地面に置いた敷板10に荷重を加える実験の結果の他の例を示す図である。図13の横軸は圧縮変位(mm)を示し、縦軸は圧縮荷重(kN)を示す。図13においては、土壌60として、黒土100体積%である第2土壌が用いられた。第2土壌は、第1土壌に比べて柔らかい。図13において、図8に示される第1実施例の実験結果が実線で示されており、図9に示される第2実施例の実験結果が一点鎖線で示されており、図10に示される比較例の実験結果が点線で示されている。 FIG. 13 is a diagram showing another example of the result of an experiment in which a load is applied to a floor plate 10 placed on the ground. The horizontal axis of FIG. 13 indicates the compression displacement (mm), and the vertical axis indicates the compression load (kN). In FIG. 13, as the soil 60, a second soil having 100% by volume of black soil was used. The second soil is softer than the first soil. In FIG. 13, the experimental result of the first embodiment shown in FIG. 8 is shown by a solid line, and the experimental result of the second embodiment shown in FIG. 9 is shown by a alternate long and short dash line, which is shown in FIG. The experimental results of the comparative example are shown by the dotted lines.
 図11および図12に示される第1土壌の場合の実験結果と異なり、図13に示される第2土壌の場合の実験結果においては、第1実施例、第2実施例、および比較例とも、初期変位の段階で急激な圧縮荷重の増加が観測されていない。第2土壌は、セメントを含む第1土壌と比べて転圧(締固め)が弱いため、荷重初期から土壌60の土面の降伏が開始されている。実験においては、土壌60が容器62の側方に漏れた。 Unlike the experimental results in the case of the first soil shown in FIGS. 11 and 12, in the experimental results in the case of the second soil shown in FIG. 13, the first embodiment, the second embodiment, and the comparative example are all included. No sudden increase in compressive load was observed at the initial displacement stage. Since the second soil has a weaker compaction (compacting) than the first soil containing cement, the soil surface of the soil 60 has started to yield from the initial stage of loading. In the experiment, soil 60 leaked to the side of the container 62.
 図13に示されるとおり、第1実施例、第2実施例、および比較例とも、初期の第1領域においては、圧縮変位が増加するにしたがって圧縮荷重が直線的に増加する。図13に示される場合において、第1実施例および第2実施例では、第1領域は、例えば、圧縮変位が0mm以上15mm以下の領域である。比較例では、第1領域は、例えば、圧縮変位が0mm以上20mm以下の領域である。 As shown in FIG. 13, in the first embodiment, the second embodiment, and the comparative example, the compressive load linearly increases as the compressive displacement increases in the initial first region. In the case shown in FIG. 13, in the first embodiment and the second embodiment, the first region is, for example, a region having a compression displacement of 0 mm or more and 15 mm or less. In the comparative example, the first region is, for example, a region having a compression displacement of 0 mm or more and 20 mm or less.
 第1領域よりも圧縮変位が増加すると、圧縮変位にしたがって圧縮荷重が増加する傾き(増加率)が増加する第2領域となる。第2領域では、測定された特性曲線は、下に凸の曲線となる。第1実施例および第2実施例では、第2領域は、例えば、圧縮変位が15mm以上23mm以下の領域である。比較例では、第1領域は、例えば、圧縮変位が20mm以上35mm以下の領域である。第2領域においては、土壌60が容器62から押し出されるとともに土壌60が圧接されると考えられる。 When the compression displacement increases more than the first region, it becomes the second region where the slope (increase rate) in which the compression load increases according to the compression displacement increases. In the second region, the measured characteristic curve is a downwardly convex curve. In the first embodiment and the second embodiment, the second region is, for example, a region having a compression displacement of 15 mm or more and 23 mm or less. In the comparative example, the first region is, for example, a region having a compression displacement of 20 mm or more and 35 mm or less. In the second region, it is considered that the soil 60 is extruded from the container 62 and the soil 60 is pressed against it.
 第2領域よりも圧縮変位が増加すると、圧縮変位が増加するにしたがって、圧縮荷重が増加する傾き(増加率)が減少する第3領域となる。第3領域では、測定された特性曲線は、上に凸の曲線となる。第2領域から第3領域への境界点における圧縮荷重は、敷板10等の材料の特性を示していると考えられる。具体的には、各境界点(P0、P1、P2)における圧縮荷重は、それぞれ鉄板70または敷板10等の降伏荷重(終局荷重)に対応していると考えられる。なお、境界点(P0、P1、P2)は、圧縮変位が20mm以上30mm以下の範囲で測定された特性曲線の直線部分に対して近似直線を引いたときに、近似直線から離れる点として算出されてもよく、特性曲線が下に凸から上に凸に変わる変曲点として算出されてもよい。 When the compression displacement increases more than the second region, the slope (increase rate) at which the compression load increases decreases as the compression displacement increases, and the third region becomes. In the third region, the measured characteristic curve is an upwardly convex curve. The compressive load at the boundary point from the second region to the third region is considered to indicate the characteristics of the material such as the floor plate 10. Specifically, it is considered that the compressive load at each boundary point (P0, P1, P2) corresponds to the yield load (ultimate load) of the iron plate 70 or the floor plate 10, respectively. The boundary points (P0, P1, P2) are calculated as points away from the approximate straight line when an approximate straight line is drawn with respect to the straight line portion of the characteristic curve measured in the range where the compression displacement is 20 mm or more and 30 mm or less. It may be calculated as an inflection point in which the characteristic curve changes from a downward convex to an upward convex.
 比較例においては、圧縮変位33mm付近に境界点(変曲点)P0が観察された。境界点P0における降伏荷重(終局荷重)は、476kNであった。一方、第1実施例においては、圧縮変位24mm付近に境界点(変曲点)P1が観察された。境界点P1における降伏荷重(終局荷重)は、96.7kNであった。第2実施例においては、圧縮変位23mm付近に境界点(変曲点)P2が観察された。境界点P2における降伏荷重(終局荷重)は、131kNであった。 In the comparative example, the boundary point (inflection point) P0 was observed near the compression displacement of 33 mm. The yield load (ultimate load) at the boundary point P0 was 476 kN. On the other hand, in the first embodiment, the boundary point (inflection point) P1 was observed near the compression displacement of 24 mm. The yield load (ultimate load) at the boundary point P1 was 96.7 kN. In the second embodiment, the boundary point (inflection point) P2 was observed near the compression displacement of 23 mm. The yield load (ultimate load) at the boundary point P2 was 131 kN.
 なお、第2土壌を用いた実験において、第1土壌用いた実験と異なり、比較例である鉄板70、第1実施例の敷板10、第2実施例の敷板10a、10b-1、10b-2のいずれも変形していた。変形に起因して、鉄板70および敷板10(敷板10a、10b-1、10b-2)に対しては、実質的に治具52の底面積(φ160mm:80mm×80mm×π=0.0201m)において荷重が伝わる状態になっていた。したがって、比較例における地耐力は、476(kN)÷0.0201(m)=23674(kN/m)と推定された。第1実施例における地耐力は、96.7(kN)÷0.0201(m)=4809(kN/m)と推定された。第2実施例における地耐力は、131(kN)÷0.0201(m)=6515(kN/m)と推定された。 In the experiment using the second soil, unlike the experiment using the first soil, the iron plate 70 as a comparative example, the floor plate 10 of the first example, and the floor plate 10a, 10b-1, 10b-2 of the second embodiment All of them were deformed. Due to the deformation, the bottom area of the jig 52 (φ160 mm: 80 mm × 80 mm × π = 0.0201 m 2 ) is substantially relative to the iron plate 70 and the floor plate 10 ( bed plates 10a, 10b-1, 10b-2). ), The load was transmitted. Therefore, the bearing capacity in the comparative example was estimated to be 476 (kN) ÷ 0.0201 (m 2 ) = 23674 (kN / m 2 ). The bearing capacity in the first embodiment was estimated to be 96.7 (kN) ÷ 0.0201 (m 2 ) = 4809 (kN / m 2 ). The bearing capacity in the second embodiment was estimated to be 131 (kN) ÷ 0.0201 (m 2 ) = 6515 (kN / m 2 ).
 図14は、建築基準法における地耐力の規定を示す図である。日本の建築基準法では、地盤の種類に応じて地耐力(許容応力度)が定められている。地盤が岩盤、固結した砂、土丹盤、忠実なレキ層、忠実な砂質地盤、砂質地盤、堅い粘土質地盤、粘土質地盤、堅いローム層、およびローム層の場合の地耐力(長期に生じる力の場合)は、それぞれ1000、500、300、300、200、50、100、20、100、および50(kN/m)である。地盤の種類を考慮したとしても、図11、図12、および図14に示される第1実施例の敷板10は、地耐力の基準を満足しており、十分に使用できると考えられる。また、敷板10aと敷板10b-1、10b-2のように複数の敷板を複数層に千鳥に配置した第2実施例の場合も、地耐力の基準を満足しており、十分に使用できると考えられる。 FIG. 14 is a diagram showing the provision of bearing capacity in the Building Standards Act. The Building Standards Law of Japan stipulates the bearing capacity (allowable stress level) according to the type of ground. Ground bearing capacity when the ground is bedrock, consolidated sand, earthen ground, faithful Leki layer, faithful sandy ground, sandy ground, hard clay ground, clay ground, hard loam layer, and loam layer ( For long-term forces) are 1000, 500, 300, 300, 200, 50, 100, 20, 100, and 50 (kN / m 2 ), respectively. Even when the type of ground is taken into consideration, the floor plate 10 of the first embodiment shown in FIGS. 11, 12, and 14 satisfies the standard of bearing capacity and is considered to be sufficiently usable. Further, in the case of the second embodiment in which a plurality of floor plates are arranged in a staggered manner in a plurality of layers such as the floor plate 10a and the floor plates 10b-1 and 10b-2, the standard of bearing capacity is satisfied and the floor plate can be sufficiently used. Conceivable.
 以上のように、図1に示す第1の実施形態の敷板10によれば、敷鉄板に比べて6分の1以下の重量となるにもかかわらず、工事現場等において使用可能な特性を示すので、既存の敷鉄板を置き換えることができる。敷板10が非常に軽量であるので、運搬および保存等が容易となる。したがって、工事現場等への搬入負担を軽減することができる。 As described above, according to the floor plate 10 of the first embodiment shown in FIG. 1, the weight is one sixth or less of that of the floor iron plate, but the characteristics that can be used at a construction site or the like are exhibited. Therefore, it is possible to replace the existing iron plate. Since the floor plate 10 is very lightweight, it can be easily transported and stored. Therefore, it is possible to reduce the burden of carrying in to the construction site or the like.
 本発明の敷板10は、図2に示される断面構造を有する場合に限られない。一例において、基材20とコーティング層22との間に他の材料が含まれていてもよい。 The floor plate 10 of the present invention is not limited to the case where it has the cross-sectional structure shown in FIG. In one example, another material may be included between the substrate 20 and the coating layer 22.
 図15は、図1に示された敷板10の部分断面の他の例を示す図である。図15においては、図2と同様に敷板10の一部における断面を示している。本例の敷板10は、図2に示した基材20およびコーティング層22に加え、繊維シート28を更に備える。 FIG. 15 is a diagram showing another example of the partial cross section of the floor plate 10 shown in FIG. FIG. 15 shows a cross section of a part of the floor plate 10 as in FIG. 2. The floor plate 10 of this example further includes a fiber sheet 28 in addition to the base material 20 and the coating layer 22 shown in FIG.
 繊維シート28は、基材20およびコーティング層22の間に設けられる。繊維シート28は、コーティング層22よりも、切断強度が大きくてよい。また、繊維シート28は、コーティング層22よりも、耐火性が高くてよい。繊維シート28は、所定の材料で形成した繊維を炭化して形成した炭素繊維を含むシートであってよい。また、繊維シート28は、バサルト繊維シートであってもよい。バサルト繊維シートは、玄武岩を溶融して形成した繊維を含むシートである。 The fiber sheet 28 is provided between the base material 20 and the coating layer 22. The fiber sheet 28 may have a higher cutting strength than the coating layer 22. Further, the fiber sheet 28 may have higher fire resistance than the coating layer 22. The fiber sheet 28 may be a sheet containing carbon fibers formed by carbonizing fibers formed of a predetermined material. Further, the fiber sheet 28 may be a basalt fiber sheet. The basalt fiber sheet is a sheet containing fibers formed by melting basalt.
 バサルト繊維シートは、二酸化珪素(SiO)を主成分として、酸化アルミニウム(Al)、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化ナトリウム(NaO)、酸化カリウム(KO)、酸化チタン(TiO)、酸化鉄(Fe+FeO)等を含む。各成分の重量比の含有率は、SiO:51~60%程度、Al:14~19%程度、CaO:5~10%程度、MgO:3~6%程度、NaO+KO:3~6%程度、TiO:0~3%程度、Fe+FeO:9~14%程度である。バサルト繊維シートには、その他の成分が更に含まれていてもよい。 The basalt fiber sheet contains silicon dioxide (SiO 2 ) as a main component, and aluminum oxide (Al 2 O 3 ), calcium oxide (CaO), magnesium oxide (MgO), sodium oxide (Na 2 O), potassium oxide (K 2 ). O), titanium oxide (TiO 2 ), iron oxide (Fe 2 O 3 + FeO) and the like are contained. The weight ratio content of each component is SiO 2 : about 51 to 60%, Al 2 O 3 : about 14 to 19%, CaO: about 5 to 10%, MgO: about 3 to 6%, Na 2 O + K 2 . O: about 3 to 6%, TiO 2 : about 0 to 3%, Fe 2 O 3 + FeO: about 9 to 14%. The basalt fiber sheet may further contain other components.
 繊維シート28は、少なくとも、敷板10の第1主面12および第2主面14に設けられる。繊維シート28は、敷板10の第1主面12および第2主面14の少なくとも一部に設けられる。繊維シート28は、側面にも設けられてよい。 The fiber sheet 28 is provided at least on the first main surface 12 and the second main surface 14 of the floor plate 10. The fiber sheet 28 is provided on at least a part of the first main surface 12 and the second main surface 14 of the floor plate 10. The fiber sheet 28 may also be provided on the side surface.
 繊維シート28は、コーティング層22よりも薄くてよい。繊維シート28の厚みは1mm以下であってよく、0.6mm以下であってもよい。このような繊維シート28を用いることで、敷板10の厚みをそれほど増大させずに、強度を向上させることができる。 The fiber sheet 28 may be thinner than the coating layer 22. The thickness of the fiber sheet 28 may be 1 mm or less, and may be 0.6 mm or less. By using such a fiber sheet 28, the strength can be improved without increasing the thickness of the floor plate 10 so much.
 また、繊維シート28は、基材20よりも、コーティング層22を形成するための材料が浸みこみにくくてよい。これにより、敷板10の強度を向上させつつ、所定の厚みのコーティング層22を形成するために要するコーティング材料を少なくできる。 Further, the fiber sheet 28 may be less likely to be penetrated by the material for forming the coating layer 22 than the base material 20. This makes it possible to reduce the amount of coating material required to form the coating layer 22 having a predetermined thickness while improving the strength of the floor plate 10.
 図16は、図1に示された敷板10の部分断面の他の例を示す図である。本例の敷板10には、IDデバイス24が固定される。IDデバイス24は、敷板10を識別する情報を記憶し、且つ、外部に識別情報を送信する。例えば読出装置をIDデバイス24に近接させることで、敷板10の識別情報を読み出す。 FIG. 16 is a diagram showing another example of the partial cross section of the floor plate 10 shown in FIG. The ID device 24 is fixed to the floor plate 10 of this example. The ID device 24 stores the information for identifying the floor plate 10 and transmits the identification information to the outside. For example, by bringing the reading device close to the ID device 24, the identification information of the floor plate 10 is read.
 敷板10には、複数のIDデバイス24が、第1主面12側のみならず、第2主面14側に設けられていてもよい。IDデバイス24の設けられる位置は限定されない。敷板10の中央に対して対称に設けられてよい。一例において、敷板10の各辺16-1、16-2、17-1、17-2の中央に、IDデバイス24が設けられてよい。これにより、敷板10の向きを考慮せずに、IDデバイス24から識別情報を読み出すことができる。 A plurality of ID devices 24 may be provided on the floor plate 10 not only on the first main surface 12 side but also on the second main surface 14 side. The position where the ID device 24 is provided is not limited. It may be provided symmetrically with respect to the center of the floor plate 10. In one example, the ID device 24 may be provided at the center of each side 16-1, 16-2, 17-1, 17-2 of the floor plate 10. As a result, the identification information can be read from the ID device 24 without considering the orientation of the floor plate 10.
 IDデバイス24の周囲は保護膜26で覆われていてもよい。保護膜26は、ポリウレア樹脂で形成されてよい。ポリウレア樹脂は、超軽量で、強度、耐水性、および、耐衝撃性に優れるのみならず、電磁波を透過性が金属に比べて高い。したがって、鉄敷板の内部に埋め込む場合のように金属でIDデバイス24を覆う構成と違って、保護膜26、基材20、コーティング層22等でIDデバイス24を覆う構成によれば、IDデバイス24が外部と通信可能に構成することができる。 The periphery of the ID device 24 may be covered with a protective film 26. The protective film 26 may be made of a polyurea resin. Polyurea resin is not only ultra-lightweight, excellent in strength, water resistance, and impact resistance, but also has higher electromagnetic wave permeability than metal. Therefore, unlike the configuration in which the ID device 24 is covered with metal as in the case of embedding in the iron floor plate, the ID device 24 is covered with the protective film 26, the base material 20, the coating layer 22, and the like. Can be configured to be able to communicate with the outside.
 基材20の成形過程において、IDデバイス24を入れる空洞部分を設けてよい。そして、保護膜26で覆ったIDデバイス24を別途作製し、基材20の空洞部分に挿入して接着材等によって固定する。IDデバイス24を空洞部分内に固定した状態で、コーティング層22を形成することで、図16に示される構成を製作することができる。 In the molding process of the base material 20, a hollow portion for inserting the ID device 24 may be provided. Then, the ID device 24 covered with the protective film 26 is separately manufactured, inserted into the hollow portion of the base material 20, and fixed with an adhesive or the like. By forming the coating layer 22 with the ID device 24 fixed in the hollow portion, the configuration shown in FIG. 16 can be manufactured.
 また、IDデバイス24は、敷板10の位置情報等の状態を示す情報を記憶してもよい。当該情報は、外部の書込装置が書き込んでよい。IDデバイス24は、Bluetooth(登録商標) Low Energy(BLE)方式で、所定の周期で当該情報を発信してよい。携帯端末等に内蔵した受信機で当該情報を受信してよい。携帯端末は、受信した情報を、クラウドサーバー等に送信してよい。携帯端末等でクラウドサーバーにアクセスすることで、それぞれの敷板10の状態を把握することができる。 Further, the ID device 24 may store information indicating a state such as position information of the floor plate 10. The information may be written by an external writing device. The ID device 24 may transmit the information at a predetermined cycle by the Bluetooth (registered trademark) Low Energy (BLE) method. The information may be received by a receiver built in a mobile terminal or the like. The mobile terminal may transmit the received information to a cloud server or the like. By accessing the cloud server with a mobile terminal or the like, the state of each floor plate 10 can be grasped.
 また、上記したIDデバイス24は、図16に示すように基材20に埋め込む他、図17に示すように、基材20の上側や下側に配設されていても良い。この場合は、ポリウレア樹脂のコーティング層22が、IDデバイス24を覆うような厚みに形成されて、IDデバイス24を保持するように構成されると良い。前記したように、ポリウレア樹脂は、超軽量で、強度、耐水性、および、耐衝撃性に優れるため、IDデバイス24がコーティング層22だけで覆われている状態でも、所定の強度を有する状態とすることができる。また、このような構成であると、製造過程において、基材20に空洞部分を設ける等の必要がないため、製造工程を簡略化することができる。 Further, the ID device 24 described above may be embedded in the base material 20 as shown in FIG. 16 or may be arranged on the upper side or the lower side of the base material 20 as shown in FIG. In this case, it is preferable that the coating layer 22 of the polyurea resin is formed to have a thickness that covers the ID device 24 and is configured to hold the ID device 24. As described above, the polyurea resin is ultra-lightweight and has excellent strength, water resistance, and impact resistance. Therefore, even when the ID device 24 is covered only with the coating layer 22, it has a predetermined strength. can do. Further, with such a configuration, it is not necessary to provide a hollow portion in the base material 20 in the manufacturing process, so that the manufacturing process can be simplified.
 図18は、本発明の第2の実施形態に係る敷板80aおよび敷板80bを示す平面図である。本発明の敷板は、図1から図17を用いて説明した外縁が矩形の板状をしているものに限られない。図18に示される敷板80a、80b(以下、総称して敷板80と称する場合がある)のように、外縁83a、83b(以下、総称して外縁83と称する場合がある)が六角形の板状をしていてよい。 FIG. 18 is a plan view showing the floor plate 80a and the floor plate 80b according to the second embodiment of the present invention. The floor plate of the present invention is not limited to the one having a rectangular outer edge as described with reference to FIGS. 1 to 17. Like the floor plates 80a and 80b shown in FIG. 18 (hereinafter, may be collectively referred to as the floor plate 80), the outer edges 83a and 83b (hereinafter, may be collectively referred to as the outer edge 83) are hexagonal plates. It may be in the shape.
 第2実施形態の敷板80も、第1実施形態の敷板10と同様に、基材20およびコーティング層22を有する。基材20は、合成樹脂で形成される。基材20は、第1実施形態で説明したのと同様に、ポリカーボネート等の硬質プラスチックで形成されてよい。 The floor plate 80 of the second embodiment also has the base material 20 and the coating layer 22 like the floor plate 10 of the first embodiment. The base material 20 is made of synthetic resin. The base material 20 may be made of a hard plastic such as polycarbonate, as described in the first embodiment.
 敷板80aの形状を決定する基材20は、外縁83から外側に突出した突出部82a-1、82a-2、および82a-3(総称して、突出部82aと称する場合がある)を有する。基材20は、凹部84a-1、84a-2、および84a-3を有する。凹部84a-1、84a-2、および84a-3(総称して、凹部84aと総称する場合がある)は、外縁83に隣接する領域に形成されて突出部82a-1、82a-2、および82a-3の形状に対応する。六角形をなす外縁83において隣接する辺には、突出部82aと凹部84aが配置される。すなわち、六角形をなす6辺のうち、3辺に突出部82aが設けられ、残りの3辺に凹部84aが設けられる。そして、外縁83にそって、突出部82aと凹部84aが交互に配置される。 The base material 20 that determines the shape of the floor plate 80a has protrusions 82a-1, 82a-2, and 82a-3 (generally referred to as protrusions 82a) that protrude outward from the outer edge 83. The substrate 20 has recesses 84a-1, 84a-2, and 84a-3. The recesses 84a-1, 84a-2, and 84a-3 (collectively, the recesses 84a) are formed in a region adjacent to the outer edge 83, and the protrusions 82a-1, 82a-2, and Corresponds to the shape of 82a-3. A protrusion 82a and a recess 84a are arranged on adjacent sides of the hexagonal outer edge 83. That is, of the six hexagonal sides, protrusions 82a are provided on three sides, and recesses 84a are provided on the remaining three sides. Then, the protrusions 82a and the recesses 84a are alternately arranged along the outer edge 83.
 敷板80bの形状を決定する基材20も、同様に、外縁83から外側に突出した突出部82b-1、82b-2、および82b-3(総称して、突出部82bと称する場合がある)を有する。基材20は、凹部84b-1、84b-2、および84b-3(総称して、凹部84bと総称する場合がある)を有する。敷板80bにおいても、六角形をなす外縁83において隣接する辺には、突出部82bと凹部84baが配置される。すなわち、外縁83にそって、突出部82bと凹部84bが交互に配置される。 Similarly, the base material 20 that determines the shape of the floor plate 80b also has protrusions 82b-1, 82b-2, and 82b-3 that protrude outward from the outer edge 83 (sometimes collectively referred to as protrusions 82b). Have. The base material 20 has recesses 84b-1, 84b-2, and 84b-3 (collectively, the recesses 84b). Also in the floor plate 80b, the protrusion 82b and the recess 84ba are arranged on the adjacent sides of the hexagonal outer edge 83. That is, the protrusions 82b and the recesses 84b are alternately arranged along the outer edge 83.
 複数の敷板80a、80bのうち、一方の敷板の突出部82a、82bと、他の敷板の凹部84a、84bが連結可能に構成されている。図18においては、敷板80bの突出部82b-1と敷板80aの凹部84a-2とが連結されているが、この場合に限られない。敷板80aのいずれかの突出部82aと、敷板80bのいずれかの凹部84bとが連結されてもよく、敷板80aのいずれかの凹部84aと、敷板80bのいずれかの突出部82bとが連結されてもよい。敷板80の数は、2枚に限られない。複数の敷板80を順次に連結して使用することができる。 Of the plurality of floor plates 80a and 80b, the protrusions 82a and 82b of one floor plate and the recesses 84a and 84b of the other floor plates are configured to be connectable. In FIG. 18, the protruding portion 82b-1 of the floor plate 80b and the recess 84a-2 of the floor plate 80a are connected, but the present invention is not limited to this case. Any protrusion 82a of the floor plate 80a may be connected to any recess 84b of the floor plate 80b, and any recess 84a of the floor plate 80a and any protrusion 82b of the floor plate 80b may be connected. May be. The number of floor plates 80 is not limited to two. A plurality of floor plates 80 can be sequentially connected and used.
 図19は、図18に示された敷板80aおよび敷板80bの部分断面を示す図である。突出部82b-1は、厚み方向Zの第1主面12側(+Z側)の部分に設けられてよく、凹部84a-2は、厚み方向Zの第2主面14側(+Z側)の部分に設けられていてよい。このように構成することで、敷板80aおよび敷板80bを連結させたときに、敷板80aおよび敷板80bのそれぞれの第1主面12間に生じる段差が軽減され、敷板80aおよび敷板80bのそれぞれの第2主面14間に生じる段差が軽減される。 FIG. 19 is a diagram showing a partial cross section of the floor plate 80a and the floor plate 80b shown in FIG. The protrusion 82b-1 may be provided on the first main surface 12 side (+ Z side) in the thickness direction Z, and the recess 84a-2 may be provided on the second main surface 14 side (+ Z side) in the thickness direction Z. It may be provided in the portion. With this configuration, when the floor plate 80a and the floor plate 80b are connected, the step generated between the first main surfaces 12 of the floor plate 80a and the floor plate 80b is reduced, and the first of the floor plate 80a and the floor plate 80b is reduced. The step generated between the two main surfaces 14 is reduced.
 なお、突出部82a、82bおよび凹部84a、84bを六角形状の敷板80に設ける場合を示したが、図1から図17に示したような矩形状の敷板10に突出部82a、82bおよび凹部84a、84bを設けてもよい。この場合も、一の敷板10の突出部と、他の敷板10の凹部が連結可能に構成される。また、複数の敷板を相互に連結させる機構(連結構造)は、図18および図19に示された構成に限定されない。 Although the case where the protrusions 82a, 82b and the recesses 84a, 84b are provided in the hexagonal floor plate 80 is shown, the protrusions 82a, 82b and the recesses 84a are provided in the rectangular floor plate 10 as shown in FIGS. 1 to 17. , 84b may be provided. Also in this case, the protruding portion of one floor plate 10 and the recessed portion of the other floor plate 10 are configured to be connectable. Further, the mechanism (connecting structure) for connecting a plurality of floor plates to each other is not limited to the configurations shown in FIGS. 18 and 19.
 例えば、図20及び図21に示す敷板10のように、基材20には、その外縁に隣接する領域に上下方向に形成された凹み部18を有しており、一の敷板10に形成された凹み部18と隣接する他の敷板10に形成された凹み部18に、連結部材100を係合させて、一の敷板と他の敷板の双方を連結するようになっていても良い。このとき、凹み部18がさらに深く凹んだ深凹み部19を有しており、連結部材100が本体部101とその両端部に下方へ延びる突出部102を有する略コ字形状に形成されており、このような形状の連結部材100の双方の突出部102を深凹み部19に挿入するように、凹み部18に連結部材100を取り付けるようになっていても良い。 For example, as in the floor plate 10 shown in FIGS. 20 and 21, the base material 20 has a recess 18 formed in the vertical direction in a region adjacent to the outer edge thereof, and is formed in one floor plate 10. The connecting member 100 may be engaged with the recessed portion 18 formed in the recessed portion 18 and the other floor plate 10 adjacent to the recessed portion 18 to connect both the one floor plate and the other floor plate. At this time, the recessed portion 18 has a deeply recessed recessed portion 19, and the connecting member 100 is formed in a substantially U-shape having a main body portion 101 and protruding portions 102 extending downward at both ends thereof. The connecting member 100 may be attached to the recessed portion 18 so that both the protruding portions 102 of the connecting member 100 having such a shape are inserted into the deep recessed portion 19.
 凹み部18と連結部材100とがこのような構成になっていると、連結箇所を比較的フラットな状態にすることができるため、好ましい。また、連結部材100を介して連結すると、多少の遊びを形成した状態とすることも可能であるため、敷板10同士が多少ずれた状態でも連結可能とすることができる。なお、連結部材100を基材20に嵌め込んだ上で、さらに第1主面12側又は第2主面14側からねじ止めするようになっていても良い。 It is preferable that the recess 18 and the connecting member 100 have such a configuration because the connecting portion can be in a relatively flat state. Further, when connected via the connecting member 100, it is possible to form a state in which some play is formed, so that the floor plates 10 can be connected even if they are slightly displaced from each other. The connecting member 100 may be fitted into the base material 20 and then screwed from the first main surface 12 side or the second main surface 14 side.
 なお、連結部材100は、金属等の強度のある材質で構成されていることが好ましい。また、樹脂製の基材110で構成された連結部材100を使用する場合には、基材110にポリウレア樹脂のコーティング層112をコーティングした構成となっているものを使用するのが好ましい。この場合には、連結部材100においても、基材110の表面、裏面、側面、外面、内面の全面にコーティング層112がコーティングされるようになっているのが好ましい。このようになっていることで、金属と遜色ない強度の樹脂製の連結部材とすることができ、重機などが敷板10の連結部分に乗って加重が掛かったとしても連結部材100が変形したり壊れたりしないような、十分な強度を保つことができる。 The connecting member 100 is preferably made of a strong material such as metal. When the connecting member 100 made of the resin base material 110 is used, it is preferable to use the base material 110 coated with the polyurea resin coating layer 112. In this case, it is preferable that the coating layer 112 is coated on the entire surface, back surface, side surface, outer surface, and inner surface of the base material 110 also in the connecting member 100. By doing so, it is possible to make a connecting member made of resin whose strength is comparable to that of metal, and even if a heavy machine or the like rides on the connecting portion of the floor plate 10 and a load is applied, the connecting member 100 may be deformed. It can maintain sufficient strength so that it will not break.
 また、図22に示すように、敷板10の基材20には、その外縁から外側に突出した突出部210と、外縁に隣接する領域に形成されて突出部210の形状に対応する凹部220とを備えていても良い。ここでは、突出部210が、外縁から外側に向けて幅が拡がる平面視略台形状に形成されており、また、凹部220が、突出部210が嵌合するように外縁から内側に向けて幅が拡がる平面視略台形状に形成されており、一の敷板10の突出部210と、他の敷板10の凹部220が連結可能に構成されている。このような構成となっていることで、一旦嵌め込んだ突出部210と凹部220とが外れ難い構造とできるため、好ましい。なお、この突出部210と凹部220にも、基材20の全面にコーティング層22がコーティングされている方が、突出部210と凹部220の強度が向上するため、が好ましい。 Further, as shown in FIG. 22, the base material 20 of the floor plate 10 has a protrusion 210 protruding outward from the outer edge thereof and a recess 220 formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion 210. May be equipped. Here, the protrusion 210 is formed in a substantially trapezoidal shape in a plan view in which the width expands from the outer edge to the outside, and the recess 220 has a width from the outer edge to the inside so that the protrusion 210 fits. It is formed in a substantially trapezoidal shape in a plan view, and a protrusion 210 of one floor plate 10 and a recess 220 of another floor plate 10 can be connected to each other. Such a structure is preferable because it is possible to form a structure in which the protrusion 210 and the recess 220 once fitted are hard to come off. It is preferable that the protrusion 210 and the recess 220 are also coated with the coating layer 22 on the entire surface of the base material 20 because the strength of the protrusion 210 and the recess 220 is improved.
 また、図23に示すように、敷板10の基材20には、外縁から外側に突出した突出部310と、外縁に隣接する領域に形成されて突出部310の形状に対応する凹部320とを備えており、一の敷板10の突出部310と他の敷板10の凹部320の側面には、対応する位置に貫通孔(図示省略)が形成されており、この貫通孔に棒状部材330を一端から他端まで挿通することで、一の敷板10と他の敷板10が連結可能に構成されていても良い。このような構成になっていると、双方の敷板10同士が上下方向に回動可能にすることができるため、平坦でない起伏のある地形の場所に敷板10を設置する場合などに、当該起伏に沿って敷板10を設置することができる。また、棒状部材330は、金属等の硬い材質で構成されることも可能であるが、樹脂又は比較的柔らかい金属等の弾性変形可能な材質で構成されていることが好ましい。すなわち、ポリウレア樹脂でコーティングされた敷板10は、金属の敷板よりも撓んで加重を受ける構造になっているため、連結部分においても敷板10が撓む可能性があり、その際に、棒状部材330も弾性変形して対応可能になっていることが好ましい。例えば、棒状部材330が、樹脂製の基材にポリウレア樹脂のコーティング層をコーティングした構成になっていても良い。このとき、棒状部材330の基材の全面にポリウレア樹脂のコーティング層がコーティングされていることが好ましい。また、敷板10の突出部310と凹部320においても、貫通孔の内面も含めて、基材20の全面にポリウレア樹脂のコーティング層22がコーティングされていることが好ましい。 Further, as shown in FIG. 23, the base material 20 of the floor plate 10 has a protrusion 310 protruding outward from the outer edge and a recess 320 formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion 310. A through hole (not shown) is formed at a corresponding position on the side surface of the protrusion 310 of one floor plate 10 and the recess 320 of the other floor plate 10, and a rod-shaped member 330 is once inserted into the through hole. One floor plate 10 and the other floor plate 10 may be configured to be connectable by inserting from the other end to the other end. With such a configuration, both floor plates 10 can be rotated in the vertical direction. Therefore, when the floor plates 10 are installed in a place with uneven terrain, the undulations occur. The floor plate 10 can be installed along the line. Further, although the rod-shaped member 330 can be made of a hard material such as metal, it is preferably made of a material that can be elastically deformed such as resin or a relatively soft metal. That is, since the floor plate 10 coated with the polyurea resin has a structure that is more flexible and receives a load than the metal floor plate, the floor plate 10 may be bent even at the connecting portion, and at that time, the rod-shaped member 330 It is preferable that the material is elastically deformed so that it can be dealt with. For example, the rod-shaped member 330 may be configured by coating a resin base material with a coating layer of a polyurea resin. At this time, it is preferable that the entire surface of the base material of the rod-shaped member 330 is coated with a coating layer of polyurea resin. Further, it is preferable that the entire surface of the base material 20 including the inner surface of the through hole is coated with the polyurea resin coating layer 22 also in the protruding portion 310 and the recess 320 of the floor plate 10.
 なお、前記したように、図20~図23に示したパターンにおいても、コーティング層22は、基材20の全面に形成されることが好ましい。つまり、コーティング層22は、第1主面12(車両の走行面、歩行者の歩行面、重量物の載置面)と、第2主面14(地面、地面に接する面)、および側面15の全てを覆い、さらに貫通孔や凹凸部が設けられている場合には、その貫通孔の内部側面や凹凸部の側面にもコーティング層が設けられていることが好ましい。 As described above, even in the patterns shown in FIGS. 20 to 23, it is preferable that the coating layer 22 is formed on the entire surface of the base material 20. That is, the coating layer 22 has a first main surface 12 (running surface of a vehicle, a walking surface of a pedestrian, a surface on which a heavy object is placed), a second main surface 14 (ground, a surface in contact with the ground), and a side surface 15. When a through hole or an uneven portion is provided, it is preferable that a coating layer is also provided on the inner side surface of the through hole or the side surface of the uneven portion.
 また、図18および図19に示される第2実施形態の敷板80においても、図15に占示されるような繊維シート28が設けられてよく、図16や図17に示されるようなIDデバイス24が固定されてもよい。これらの断面図は、図15~図17と同様である。 Further, also in the floor plate 80 of the second embodiment shown in FIGS. 18 and 19, the fiber sheet 28 as shown in FIG. 15 may be provided, and the ID device 24 as shown in FIGS. 16 and 17. May be fixed. These cross-sectional views are the same as those in FIGS. 15 to 17.
 第2実施形態の敷板80によっても、敷鉄板に比べて非常に軽量であるので、運搬および保存等が容易となる。また、基材20の全面にポリウレア樹脂でコーティング層22が形成されているので、耐薬品性を向上することもできる。 The floor plate 80 of the second embodiment is also much lighter than the floor plate, so that it can be easily transported and stored. Further, since the coating layer 22 is formed of the polyurea resin on the entire surface of the base material 20, the chemical resistance can be improved.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 Although the present invention has been described above using the embodiments, the technical scope of the present invention is not limited to the scope described in the above embodiments. It will be apparent to those skilled in the art that various changes or improvements can be made to the above embodiments. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.
 特許請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。特許請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The order of execution of each process such as operation, procedure, step, and step in the apparatus, system, program, and method shown in the claims, specification, and drawings is particularly "before" and "prior to". It should be noted that it can be realized in any order unless the output of the previous process is used in the subsequent process. Even if the scope of claims, the specification, and the operation flow in the drawings are explained using "first", "next", etc. for convenience, it means that it is essential to carry out in this order. It's not a thing.
 10・・・敷板、12・・・第1主面、14・・・第2主面、15・・・側面、16・・・辺、17・・・辺、18・・・凹み部、19・・・深凹み部、20・・・基材、22・・・コーティング層、24・・・IDデバイス、26・・・保護膜、28・・・繊維シート、30・・・円柱状モデル、41・・・鉄板、50・・・ゴム板、52・・・治具、60・・・土壌、62・・・容器、70・・・鉄板、80・・・敷板、82・・・突出部、83・・・外縁、84・・・凹部、100・・・連結部材、101・・・本体部、102・・・突出部、110・・・基材、112・・・コーティイング層、210・・・突出部、220・・・凹部、310・・・突出部、320・・・凹部、330・・・棒状部材 10 ... Floor plate, 12 ... 1st main surface, 14 ... 2nd main surface, 15 ... Side surface, 16 ... Side, 17 ... Side, 18 ... Recessed part, 19 ... Deep recess, 20 ... Base material, 22 ... Coating layer, 24 ... ID device, 26 ... Protective film, 28 ... Fiber sheet, 30 ... Cylindrical model, 41 ... iron plate, 50 ... rubber plate, 52 ... jig, 60 ... soil, 62 ... container, 70 ... iron plate, 80 ... floor plate, 82 ... protrusion , 83 ... outer edge, 84 ... concave, 100 ... connecting member, 101 ... main body, 102 ... protruding part, 110 ... base material, 112 ... coating layer, 210 ... Protruding part, 220 ... Concave part, 310 ... Protruding part, 320 ... Concave part, 330 ... Rod-shaped member

Claims (16)

  1.  合成樹脂で形成された基材と、
     前記基材の表面を覆う、ポリウレア樹脂のコーティング層と
     を備える敷板。
    A base material made of synthetic resin and
    A floor plate provided with a polyurea resin coating layer that covers the surface of the base material.
  2.  前記基材は、ポリカーボネート樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ABS樹脂、およびアセタール樹脂からなる群から選ばれた1または複数の樹脂から形成される、請求項1に記載の敷板。 The substrate is formed from one or more resins selected from the group consisting of polycarbonate resins, polyethylene resins, polyolefin resins, polyester resins, acrylic resins, polyamide resins, polystyrene resins, ABS resins, and acetal resins. Item 1. The floor plate according to Item 1.
  3.  前記基材は、ポリカーボネート樹脂で形成されている、請求項1に記載の敷板。 The floor plate according to claim 1, wherein the base material is made of a polycarbonate resin.
  4.  前記基材の全面に、前記コーティング層が形成された
     請求項1から3のいずれか一項に記載の敷板。
    The floor plate according to any one of claims 1 to 3, wherein the coating layer is formed on the entire surface of the base material.
  5.  前記基材と、前記コーティング層との間に設けられた繊維シートを更に備える
     請求項1から4のいずれか一項に記載の敷板。
    The floor plate according to any one of claims 1 to 4, further comprising a fiber sheet provided between the base material and the coating layer.
  6.  前記基材に固定されたIDデバイスを更に備え、
     前記IDデバイスは、前記敷板を識別する識別情報を記憶する
     請求項1から5のいずれか一項に記載の敷板。
    Further equipped with an ID device fixed to the substrate,
    The floor plate according to any one of claims 1 to 5, wherein the ID device stores identification information for identifying the floor plate.
  7.  前記基材は、外縁が矩形の板状である、請求項1から6のいずれか一項に記載の敷板。 The floor plate according to any one of claims 1 to 6, wherein the base material has a rectangular plate shape at the outer edge.
  8.  前記基材は、外縁が六角形の板状である、請求項1から6のいずれか一項に記載の敷板。 The floor plate according to any one of claims 1 to 6, wherein the base material has a hexagonal outer edge.
  9.  前記ポリウレア樹脂は、ポリイソシアネート化合物と、合成樹脂とが混合されている
     請求項1から8のいずれか一項に記載の敷板。
    The floor plate according to any one of claims 1 to 8, wherein the polyurea resin is a mixture of a polyisocyanate compound and a synthetic resin.
  10.  請求項1から9のいずれか一項に記載の敷板同士を繋ぐ連結構造であって、
     合成樹脂で形成された基材は、外縁から外側に突出した突出部と、前記外縁に隣接する領域に形成されて前記突出部の形状に対応する凹部とを備えており、
     一の敷板の前記突出部と、他の敷板の前記凹部が連結可能に構成されている、
     敷板の連結構造。
    A connecting structure for connecting the floor plates according to any one of claims 1 to 9.
    The base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion.
    The protrusion of one floor plate and the recess of the other floor plate are configured to be connectable.
    Connection structure of floor board.
  11.  請求項1から9のいずれか一項に記載の敷板同士を繋ぐ連結構造であって、
     合成樹脂で形成された基材は、外縁から外側に突出した突出部と、前記外縁に隣接する領域に形成されて前記突出部の形状に対応する凹部とを備えており、
     前記突出部は、前記外縁から外側に向けて幅が拡がる平面視略台形状に形成されており、
     前記凹部は、前記突出部が嵌合するように前記外縁から内側に向けて幅が拡がる平面視略台形状に形成されており、
     一の敷板の前記突出部と、他の敷板の前記凹部が連結可能に構成されている、
     敷板の連結構造。
    A connecting structure for connecting the floor plates according to any one of claims 1 to 9.
    The base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion.
    The protrusion is formed in a substantially trapezoidal shape in a plan view in which the width expands from the outer edge to the outside.
    The recess is formed in a substantially trapezoidal shape in a plan view in which the width expands inward from the outer edge so that the protrusion fits.
    The protrusion of one floor plate and the recess of the other floor plate are configured to be connectable.
    Connection structure of floor board.
  12.  請求項1から9のいずれか一項に記載の敷板同士を繋ぐ連結構造であって、
     合成樹脂で形成された基材は、外縁に隣接する領域に上下方向に形成された凹み部を有しており、
     一の敷板に形成された前記凹み部と隣接する他の敷板に形成された前記凹み部に、略コ字形状の連結部材を挿入して、双方の敷板を連結可能に構成されている、
     敷板の連結構造。
    A connecting structure for connecting the floor plates according to any one of claims 1 to 9.
    The base material formed of the synthetic resin has a recess formed in the vertical direction in the region adjacent to the outer edge.
    A substantially U-shaped connecting member is inserted into the recess formed in one floor plate and the recess formed in another floor plate adjacent to the recess, so that both floor plates can be connected.
    Connection structure of floor board.
  13.  請求項1から9のいずれか一項に記載の敷板同士を繋ぐ連結構造であって、
     合成樹脂で形成された基材は、外縁から外側に突出した突出部と、前記外縁に隣接する領域に形成されて前記突出部の形状に対応する凹部とを備えており、
     一の敷板の前記突出部と他の敷板の前記凹部の側面には、対応する位置に貫通孔が形成されており、
     前記貫通孔に棒状部材を挿通することで、前記一の敷板と前記他の敷板が連結可能に構成されている、
     敷板の連結構造。
    A connecting structure for connecting the floor plates according to any one of claims 1 to 9.
    The base material formed of the synthetic resin has a protrusion protruding outward from the outer edge and a recess formed in a region adjacent to the outer edge and corresponding to the shape of the protrusion.
    Through holes are formed at corresponding positions on the side surfaces of the protrusion of one floor plate and the recess of the other floor plate.
    By inserting a rod-shaped member into the through hole, the one floor plate and the other floor plate can be connected to each other.
    Connection structure of floor board.
  14.  合成樹脂の基材の表面に、ポリウレア樹脂のコーティング材を噴射する噴射段階と、
     前記噴射段階の後に、前記コーティング材を乾燥させる乾燥段階と
     を備える敷板の製造方法。
    The injection stage of injecting a polyurea resin coating material onto the surface of the synthetic resin base material,
    A method for manufacturing a floor plate including a drying step of drying the coating material after the injection step.
  15.  前記基材は、ポリカーボネート樹脂、ポリエチレン樹脂、ポリオレフィン樹脂、ポリエステル樹脂、アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、ABS樹脂、およびアセタール樹脂からなる群から選ばれた1または複数の樹脂から形成される、請求項14に記載の敷板の製造方法。 The substrate is formed from one or more resins selected from the group consisting of polycarbonate resins, polyethylene resins, polyolefin resins, polyester resins, acrylic resins, polyamide resins, polystyrene resins, ABS resins, and acetal resins. Item 14. The method for manufacturing a floor plate according to Item 14.
  16.  前記噴射段階において、前記コーティング材を前記基材の全面に噴射する
     請求項14または15に記載の敷板の製造方法。
     
    The method for manufacturing a floor plate according to claim 14 or 15, wherein the coating material is sprayed onto the entire surface of the base material in the spraying step.
PCT/JP2021/040350 2020-11-02 2021-11-02 Floor board, connection structure of floor board, and method for manufacturing floor board WO2022092321A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559456A JPWO2022092321A1 (en) 2020-11-02 2021-11-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020183607 2020-11-02
JP2020-183607 2020-11-02

Publications (1)

Publication Number Publication Date
WO2022092321A1 true WO2022092321A1 (en) 2022-05-05

Family

ID=81382655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040350 WO2022092321A1 (en) 2020-11-02 2021-11-02 Floor board, connection structure of floor board, and method for manufacturing floor board

Country Status (2)

Country Link
JP (1) JPWO2022092321A1 (en)
WO (1) WO2022092321A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813406A (en) * 1994-06-27 1996-01-16 Takeshige Shimonohara Facing board
JPH1061150A (en) * 1996-08-20 1998-03-03 Dantani Plywood Co Ltd Floor material and work execution meth0d therefor
JP2004315637A (en) * 2003-04-15 2004-11-11 Mitsubishi Gas Chem Co Inc Polyurethane resin composition and cured product thereof
JP2009079409A (en) * 2007-09-26 2009-04-16 Alinco Inc Flooring plate
JP2018510986A (en) * 2015-03-25 2018-04-19 クオリティー マット カンパニー Matte structure with environmentally resistant core
JP2019142071A (en) * 2018-02-20 2019-08-29 横浜港埠頭株式会社 Slab and method of manufacturing slab

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0813406A (en) * 1994-06-27 1996-01-16 Takeshige Shimonohara Facing board
JPH1061150A (en) * 1996-08-20 1998-03-03 Dantani Plywood Co Ltd Floor material and work execution meth0d therefor
JP2004315637A (en) * 2003-04-15 2004-11-11 Mitsubishi Gas Chem Co Inc Polyurethane resin composition and cured product thereof
JP2009079409A (en) * 2007-09-26 2009-04-16 Alinco Inc Flooring plate
JP2018510986A (en) * 2015-03-25 2018-04-19 クオリティー マット カンパニー Matte structure with environmentally resistant core
JP2019142071A (en) * 2018-02-20 2019-08-29 横浜港埠頭株式会社 Slab and method of manufacturing slab

Also Published As

Publication number Publication date
JPWO2022092321A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
US4021589A (en) Buoyancy materials
JP3004820B2 (en) Lightning strike composites and methods
US5234757A (en) Expandable films and molded products therefrom
US5783272A (en) Expandable films and molded products therefrom
EP0358384B1 (en) Skid-resistant pavement markings
US5200261A (en) Foam material reinforced with composite fibers
RU2164978C2 (en) Road pavement raised light-reflecting marking member
CN102580291B (en) There is the golf of single thermoplastic cover layer of heterogeneous composition
CN101067343B (en) Grid structural reinforced composite material sandwich structure
US20070230196A1 (en) Composite products and methods of making the same
CN201052677Y (en) Lattice reinforced composite material sandwich structure
JP3882161B2 (en) Resin paving material, resin paving method and asphalt paving surface treatment method
WO2022092321A1 (en) Floor board, connection structure of floor board, and method for manufacturing floor board
JP3007177B2 (en) Ski
CN101469759A (en) Fiber reinforced rubber vibration isolator and method of producing the same
JPS63225739A (en) Vibration isolating device
KR101705258B1 (en) Running track construction method for recycling polyurethane
JPH07187065A (en) Buoyancy body for floating structure
KR102322387B1 (en) Under pad of floor carpet for vehicle and manufacturing method therof
CN113302045A (en) Floor or wall panel
TW201945172A (en) Molded article and method for manufacturing molded article
CA2594075C (en) Composite article and method of forming the same
CN113123522A (en) Honeycomb core material, method for manufacturing honeycomb core material, composite honeycomb structure, and method for manufacturing composite honeycomb structure
JPH0893217A (en) Plate body for concrete form
KR102635117B1 (en) Tire and tire manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886438

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559456

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886438

Country of ref document: EP

Kind code of ref document: A1