WO2022092207A1 - Laminated film, and method for manufacturing strain sensor - Google Patents

Laminated film, and method for manufacturing strain sensor Download PDF

Info

Publication number
WO2022092207A1
WO2022092207A1 PCT/JP2021/039828 JP2021039828W WO2022092207A1 WO 2022092207 A1 WO2022092207 A1 WO 2022092207A1 JP 2021039828 W JP2021039828 W JP 2021039828W WO 2022092207 A1 WO2022092207 A1 WO 2022092207A1
Authority
WO
WIPO (PCT)
Prior art keywords
laminated film
less
resistance layer
base film
sample
Prior art date
Application number
PCT/JP2021/039828
Other languages
French (fr)
Japanese (ja)
Inventor
一裕 中島
智史 安井
克則 澁谷
智剛 梨木
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2022092207A1 publication Critical patent/WO2022092207A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/022Mechanical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/16Measuring arrangements characterised by the use of electric or magnetic techniques for measuring the deformation in a solid, e.g. by resistance strain gauge

Definitions

  • the present invention relates to a method for manufacturing a laminated film and a strain sensor.
  • strain gauges are required to suppress fluctuations in the temperature resistance coefficient due to storage in a moist heat environment.
  • the strain gauge described in Patent Document 1 has a problem that the above-mentioned requirements cannot be sufficiently satisfied.
  • the present invention provides a method for manufacturing a laminated film and a strain sensor in which fluctuations in the temperature resistance coefficient due to storage in a moist heat environment are suppressed and crack formation is suppressed.
  • the present invention (1) is a laminated film in which an insulating base film and a resistance layer are sequentially provided in the thickness direction, the thickness of the resistance layer is 150 nm or less, and the laminated film is placed in the thickness direction.
  • Samples were prepared by cutting so that the lengths of the first and second directions orthogonal to each other and orthogonal to each other were 15 mm and 5 mm, respectively, and the sample was prepared at 85 ° C. and 85% RH for 4 hours.
  • the absolute value of the dimensional change rate in each of the first direction and the second direction after pulling both ends of the sample in the first direction with a force of 49 mN / 5 mm is 0.025% or less.
  • the absolute value of the dimensional change rate of each of the laminated films in the first direction and the second direction is 0.025% or less, so that the temperature resistance coefficient fluctuates due to storage in a moist heat environment. It is suppressed. Further, in the laminated film of the present invention, since the thickness of the resistance layer is 150 nm or less, the formation of cracks can be suppressed.
  • an insulating base film and a resistance layer are provided in order in the thickness direction, the thickness of the resistance layer is 150 nm or less, and the base film is orthogonal to the thickness direction.
  • a sample was prepared by cutting so that the lengths of the first direction and the second direction orthogonal to each other were 15 mm and 5 mm, respectively, and the sample was prepared in an atmosphere of 85 ° C. and 85% RH for 4 hours.
  • the absolute value of the dimensional change rate in each of the first direction and the second direction after pulling both ends in the first direction with a force of 49 mN / 5 mm is 0.040% or less, both of which are laminated films. including.
  • the absolute value of the dimensional change rate of the base film in each of the first direction and the second direction is 0.040% or less, so that the laminated film has a temperature due to storage in a moist heat environment. Fluctuations in the drag coefficient are suppressed. Further, in the laminated film of the present invention, since the thickness of the resistance layer is 150 nm or less, the formation of cracks can be suppressed.
  • the present invention (3) includes the laminated film according to (1) or (2), wherein the resistance layer contains chromium nitride.
  • the present invention (4) includes the laminated film according to (1) to (3), wherein the base film is polyimide or polyethylene naphthalate.
  • the present invention (5) includes a method for manufacturing a strain sensor, which forms a strain sensor portion by patterning the resistance layer in the laminated film according to (1) and (2).
  • the manufacturing method of the present invention it is possible to manufacture a strain sensor in which fluctuations in the temperature resistance coefficient due to storage in a moist heat environment are suppressed and crack formation is suppressed.
  • the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is suppressed, and the generation of cracks is suppressed.
  • FIG. 1 is a cross-sectional view of a laminated film according to an embodiment of the present invention.
  • 2A to 2B are strain sensors in which the resistance layer shown in FIG. 1 is patterned,
  • FIG. 2A is a cross-sectional view, and
  • FIG. 2B is a plan view.
  • FIG. 3 is a cross-sectional view of a base film for which the dimensional change rate is to be measured.
  • the laminated film 1 is a film for a strain sensor used for manufacturing a strain sensor 15 (see FIGS. 2A to 2B) described later. That is, the laminated film 1 is an intermediate member for manufacturing the strain sensor 15. However, the laminated film 1 is a device that is distributed as a single component and can be industrially used.
  • the laminated film 1 extends in a plane direction orthogonal to the thickness direction. Specifically, the laminated film 1 includes a base film 2 and a resistance layer 3 in order toward one side in the thickness direction.
  • the base film 2 is insulating.
  • the base film 2 forms the other side of the laminated film 1 in the thickness direction.
  • the base film 2 extends in the plane direction.
  • the coefficient of thermal expansion of the base film 2 from 25 ° C. to 155 ° C. is, for example, 28 ppm / ° C. or less, preferably 28 ppm / ° C. or less in either the first direction or the second direction orthogonal to the thickness direction and orthogonal to each other. , 20 ppm / ° C. or lower, more preferably 17 ppm / ° C. or lower, and for example, 1 ppm / ° C. or higher.
  • the absolute value (described later) of the dimensional change rate of the laminated film 1 can be set within a predetermined range.
  • the method for measuring the coefficient of thermal expansion is measured according to, for example, JIS K 7197 (1991).
  • the heat shrinkage of the base film 2 at 200 ° C. is, for example, 0.05% or less, preferably 0.04% or less, more preferably 0.03% or less, and particularly preferably 0.02%. And, for example, over 0%.
  • the absolute value (described later) of the dimensional change rate of the laminated film 1 can be set within a predetermined range.
  • the coefficient of thermal expansion is measured according to the description of JIS K 7133 (1999).
  • the material of the base film 2 is not particularly limited, and specifically, a material having the above-mentioned range of the coefficient of thermal expansion and / or the coefficient of heat shrinkage is selected.
  • the material of the base film 2 include resins such as polyimide (PI) and polyethylene naphthalate (PEN). These can be used alone or in combination.
  • PI and PEN are mentioned from the viewpoint of obtaining a low coefficient of thermal expansion and a low coefficient of thermal contraction.
  • Commercially available products can be used as the base film 2, for example, Kapton 200V, Kapton 200EN, Kapton 150EN (above, polyimide film manufactured by Toray DuPont), Theonex series (polyethylene naphthalate film manufactured by Teijin Co., Ltd.). Etc. are used.
  • the thickness of the base film 2 is not particularly limited, and is, for example, 2 ⁇ m or more, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and for example, 500 ⁇ m or less, preferably 300 ⁇ m or less, more preferably. It is 100 ⁇ m or less.
  • a corona discharge treatment an ultraviolet irradiation treatment, a plasma treatment, a sputtering etching treatment, or the like can be applied to one surface of the base film 2 in the thickness direction.
  • the resistance layer 3 is a layer that is patterned when the strain sensor 15 (see FIGS. 2A to 2B) is manufactured from the laminated film 1.
  • the resistance layer 3 is arranged on one side of the base film 2 in the thickness direction.
  • the resistance layer 3 forms one side of the laminated film 1 in the thickness direction. Specifically, the resistance layer 3 is in contact with all of one surface of the base film 2 in the thickness direction.
  • the resistance layer 3 contains chromium nitride. Specifically, the material of the resistance layer 3 contains chromium nitride as a main component. On the other hand, the material of the resistance layer 3 is allowed to be mixed with unavoidable impurities, for example. The proportion of unavoidable impurities in the resistance layer 3 is, for example, 1 atomic% or less, preferably 0.1 atomic% or less, and more preferably 0.05 atomic% or less. Preferably, the resistance layer 3 is made of chromium nitride.
  • the molar portion of the nitrogen atom with respect to 100 mol parts of the chromium atom is, for example, 1.0 mol part or more, and for example, 10.0 mol parts or less.
  • the mole portion of the nitrogen atom relative to 100 mole parts of the chromium atom is measured by Rutherford Backscattering Analysis (RBS).
  • the thickness of the resistance layer 3 is 150 nm or less. On the other hand, if the thickness of the resistance layer 3 exceeds 150 nm, cracks are likely to occur in the resistance layer 3.
  • the thickness of the resistance layer 3 is preferably 100 nm or less, more preferably 90 nm or less, further preferably 80 nm or less, and for example, 10 nm or more, preferably 20 nm or more. If the thickness of the resistance layer 3 is at least the above-mentioned lower limit, a high gauge ratio can be secured.
  • the laminated film 1 is formed by a roll-to-roll method.
  • a long base film 2 is prepared.
  • the thermal expansion coefficient of 50 to 200 ° C. in the first direction of the base film 2 is The absolute value is, for example, 28 ppm / ° C. or lower, preferably 20 ppm / ° C. or lower, more preferably 15 ppm / ° C. or lower, and for example, 1 ppm / ° C. or higher.
  • the absolute value of the coefficient of thermal expansion at 50 to 200 ° C. in the second direction of the base film 2 is, for example, 28 ppm / ° C. or less, preferably 15 ppm / ° C. or less, more preferably 10 ppm / ° C. or less, and also. For example, it is 0.5 ppm / ° C. or higher.
  • the resistance layer 3 is formed on one side of the base film 2 in the thickness direction while conveying the long base film 2.
  • the film forming method include a sputtering method, a vacuum vapor deposition method, and an ion plating method. Sputtering methods are preferred, and reactive sputtering is more preferred.
  • the target is composed of chromium, and a mixed gas of an inert gas such as argon and nitrogen is used as the sputtering gas.
  • the volume of nitrogen with respect to 100 parts by volume of the inert gas is, for example, 0.5 to 15 parts by volume.
  • the laminated film 1 provided with the base film 2 and the resistance layer 3 is produced.
  • the laminated film 1 is heated in order to increase the crystallinity of the resistance layer 3 and improve the stability.
  • the heating temperature is not particularly limited, and is, for example, 100 ° C. or higher, preferably 125 ° C. or higher, and for example, 200 ° C. or lower, preferably 180 ° C. or lower.
  • the heating time is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 3 hours or less, preferably 2 hours or less.
  • the laminated film 1 including the base film 2 and the resistance layer 3 is obtained.
  • the absolute value of the dimensional change rate in each of the first direction and the second direction of the laminated film 1 is 0.025% or less. Since the absolute value of the dimensional change rate in each of the first direction and the second direction of the laminated film 1 is 0.025% or less, the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is suppressed.
  • the absolute value of the dimensional change rate of the laminated film 1 in each of the first direction and the second direction is preferably 0.020% or less, more preferably 0.010% or less, still more preferably 0. It is 005% or less, particularly preferably 0.003% or less, and for example, 0.000% or more.
  • the laminated film 1 is cut so that the lengths of the laminated film 1 in the first direction and the second direction are 18 mm and 5 mm, respectively.
  • both ends of the sample in the first direction are fixed using a chuck jig so that the distance between them is 15 mm, and the sample is pulled with a force of 49 mN / 5 mm for 4 hours in an atmosphere of 85 ° C. and 85% RH.
  • the dimensional change rate in the first direction is obtained by the following formula.
  • the dimensional change rate in the second direction is also measured.
  • the difference in the temperature coefficient of resistance of the resistance layer 3 before and after storage at 85 ° C. and 85% RH for 240 hours is, for example, 100 ppm / ° C. or less, preferably 55 ppm / ° C. or less, more preferably 50 ppm / ° C. or less, still more preferable. Is 35 ppm / ° C. or lower, particularly preferably 30 ppm / ° C. or lower, and is, for example, 1 ppm / ° C. or higher.
  • the difference between the resistance temperature coefficients before and after storage is equal to or less than the above-mentioned upper limit, the measurement accuracy of the strain sensor 15 is improved.
  • one side and the other side in the thickness direction of the laminated film 1 are fixed with a glass plate, and the atmosphere is 85 ° C. and 85% RH. Store under 240 hours. Find the difference in temperature coefficient of resistance before and after storage. Details of how to obtain the difference in the temperature coefficient of resistance before and after storage will be described in a later example.
  • the resistance layer 3 in the above-mentioned laminated film 1 is patterned to form the resistance pattern 4.
  • Examples of the method for patterning the resistance layer 3 include etching, and specific examples thereof include dry etching, wet etching, preferably dry etching, and more preferably laser etching.
  • the resistance pattern 4 integrally includes the strain sensor unit 5, the terminal 6, and the wiring 7.
  • the strain sensor unit 5 has a substantially knotted shape in a plan view. Specifically, the strain sensor unit 5 has a plurality of first lines 8, a plurality of first connection lines 9, and a plurality of second connection lines 10.
  • Each of the plurality of first lines 8 extends along the first direction.
  • the plurality of first lines 8 are arranged so as to be spaced apart from each other in the second direction.
  • the plurality of first connecting lines 9 connect one end of the first line 8 adjacent to the second direction in the first direction.
  • the plurality of second connecting lines 10 connect the other ends of the first lines 8 adjacent to each other in the second direction in the first direction. When projected in the first direction, the first connecting line 9 and the second connecting line 10 are arranged alternately.
  • the terminal 6 is separated from the strain sensor unit 5 in the plane direction.
  • the terminal 6 has, for example, a land shape having a substantially rectangular shape in a plan view. Two terminals 6 are provided at intervals.
  • the wiring 7 connects the two terminals 6 and both ends of the strain sensor unit 5.
  • one conductive path is formed from one terminal 6 through one wiring 7, the strain sensor unit 5 and another wiring 7 to the other terminal 6.
  • the dimensions of the strain sensor unit 5 are appropriately set according to the application and purpose.
  • the width of the first line 8, the first connecting line 9 and the second connecting line 10 is, for example, 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and for example, 150 ⁇ m or less, preferably preferably. It is 100 ⁇ m or less, more preferably 70 ⁇ m or less.
  • the shape of the base film 2 is also appropriately set according to the application and purpose of the strain sensor 15, and becomes a desired dimension by, for example, external processing.
  • the base film 2 of the strain sensor 15 is attached to the surface of the subject 20 via the adhesive layer 21. Further, the lead wire 23 is connected to the two terminals 6 via the conductive adhesive layer 22. The lead wire 23 is electrically connected to an external resistance measurement circuit (not shown).
  • the resistance value of the distortion sensor unit 5 changes. Based on this, the amount of strain is calculated in the resistance measurement circuit.
  • the strain amount of the subject 20 is calculated.
  • the absolute value of the dimensional change rate of each of the laminated films 1 in the first direction and the second direction is 0.025% or less, so that the temperature resistance coefficient due to storage in a moist heat environment is Fluctuations are suppressed. Further, in the laminated film 1, since the thickness of the resistance layer 3 is 150 nm or less, the formation of cracks can be suppressed.
  • the manufacturing method of the first embodiment it is possible to manufacture the strain sensor 15 in which the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is suppressed and the generation of cracks is suppressed.
  • the dimensions in the first direction and the second direction are the long direction (MD direction) manufactured by the roll-to-roll method as the first direction and the width direction (TD direction) as the second direction.
  • MD direction long direction
  • TD direction width direction
  • any one direction orthogonal to the thickness direction is set as the first direction, and the direction orthogonal to the direction is set as the second direction, and the dimensional change rate in those directions is obtained. be able to.
  • the absolute value of the dimensional change rate of the laminated film 1 in each of the first direction and the second direction is 0.025% or less.
  • the first embodiment defines the dimensional change rate of the laminated film 1, but the present invention is not limited to this, and as shown in FIG. 3, the second embodiment defines the dimensional change rate of the base film 2. be able to.
  • the base film 2 that is the target of the dimensional change rate is, specifically, the long base film 2 that is prepared first.
  • the absolute value of the dimensional change rate in the first direction and the second direction after storing this base film 2 in an atmosphere of 85 ° C. and 85% RH for 4 hours is 0.040% or less.
  • the absolute value of the dimensional change rate of at least one of the first direction and the second direction exceeds 0.040%, the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is not suppressed.
  • the absolute value of the dimensional change rate of the base film 2 in each of the first direction and the second direction is preferably 0.020% or less, more preferably 0.010% or less, still more preferably 0. It is .005% or less, particularly preferably 0.004% or less, and for example, 0.000% or more.
  • the method of determining the dimensional change rate of the base film 2 is the same as that of the laminated film 1.
  • the long direction of the base film 2 is the first direction and the width direction is the second direction.
  • the dimensional change rate of the base film 2 in the first direction is, for example, 0.025% or less, more preferably 0.010% or less, still more preferably 0.005% or less, and particularly preferably 0.004%. And, for example, over 0.000%.
  • the dimensional change rate of the base film 2 in the second direction is, for example, 0.040% or less, more preferably 0.010% or less, still more preferably 0.007% or less, and particularly preferably 0.005%. And, for example, over 0.000%.
  • the base film 2 prepared for the production of the laminated film 1 is not the base film 2 after being pulled for 4 hours (high temperature and high humidity tensile test) in an atmosphere of 85 ° C. and 85% RH, but the above-mentioned wet heat. It is a base film 2 having no history of deformation (high temperature and high humidity tensile test) (so-called untreated). That is, the above-mentioned high-temperature and high-humidity tensile test is a step necessary for measurement for obtaining the dimensional change rate, and is not a step for manufacturing the base film 2.
  • a resistance layer 3 is formed on one surface of the base film 2 having the above-mentioned specific dimensional change rate in the thickness direction in the same manner as in one embodiment, and if necessary, the resistance layer 3 is heated. To obtain the laminated film 1.
  • the resistance layer 3 of the laminated film 1 is patterned to form the strain sensor unit 5.
  • the absolute value of the dimensional change rate of the base film 2 in each of the first direction and the second direction is 0.040% or less, so that the temperature resistance coefficient due to storage in a moist heat environment Fluctuations are suppressed. Further, in the laminated film 1, since the thickness of the resistance layer 3 is 150 nm or less, the formation of cracks can be suppressed.
  • the manufacturing method of the second embodiment it is possible to manufacture the strain sensor 15 in which the fluctuation of the temperature resistance coefficient due to the storage in a moist heat environment is suppressed and the generation of cracks is suppressed.
  • the dimensional change rate of the base film 2 before the laminated film 1 is manufactured is specified, but the resistance layer 3 in the laminated film 1 is removed after the laminated film 1 is manufactured.
  • the dimensional change rate of the base film 2 after that may be in the above range.
  • the dimensional change rate of the laminated film 1 satisfies the range of the first embodiment (0.025% or less), and the dimensional change rate of the base film 2 is within the range of the second embodiment (0.040% or less). ) May be satisfied.
  • the dimensional change rate of the laminated film 1 satisfies the range of the first embodiment
  • the dimensional change rate of the base film 2 satisfies the range of the second embodiment.
  • Examples and comparative examples are shown below, and the present invention will be described in more detail.
  • the present invention is not limited to Examples and Comparative Examples.
  • specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are described in the above-mentioned "form for carrying out the invention", and the compounding ratios corresponding to them (Substitute the upper limit value (value defined as “less than or equal to” or “less than”) or the lower limit value (value defined as "greater than or equal to” or “excess”) such as content ratio), physical property value, parameter, etc. be able to.
  • Example 1 A base film 2 having a thickness of 50 ⁇ m made of a polyimide film (Kapton 200 V) manufactured by Toray DuPont was prepared.
  • the base film 2 was set in the sputtering apparatus. After exhausting the inside of the sputtering apparatus until the degree of vacuum becomes 1 ⁇ 10 -3 Pa or less, the resistance layer 3 made of chromium nitride is subjected to reactive pulse DC sputtering (pulse width: 1 ⁇ s, frequency: 100 kHz) under the following conditions. Was formed.
  • Target Chrome, flat plate shape of 500 mm x 150 mm Power: 5 kW (Power density: 6.7 W / cm 2 ) Magnetic flux density (target surface): 30 mT Substrate temperature: 150 ° C Sputtering gas: Mixed gas of argon and nitrogen Film formation pressure: 0.085 Pa
  • the number of parts of nitrogen gas introduced into the sputtering apparatus was adjusted so as to be as shown in Table 1 with respect to 100 parts by volume of argon gas introduced into the sputtering apparatus.
  • the laminated film 1 was heated (annealed) at 155 ° C. for 60 minutes.
  • Example 2 to Comparative Example 2 The treatment was carried out in the same manner as in Example 1 except that the type of the base film 2, the thickness of the base film 2, the amount of nitrogen introduced during sputtering, the thickness of the resistance layer 3 and the like were changed according to the description in Table 1.
  • the laminated film 1 was manufactured.
  • FIB device Hitachi FB2200, acceleration voltage: 40kV
  • FE-TEM device JEOL JEM-2800, acceleration voltage: 200kV
  • the laminated film 1 was cut into a size of 10 mm ⁇ 200 mm, and the resistance layer 3 was patterned into a knotted shape having a width of 30 ⁇ m by laser patterning to prepare a strain sensor 15. At this time, the patterning was adjusted so that the resistance of the wiring 7 was about 10 k ⁇ and the resistance of the strain sensor unit 5 was 30 times the resistance of the wiring 7.
  • a sample was prepared by laminating glass plates on both sides of the strain sensor 15 via an adhesive.
  • the temperature of the strain sensor unit 5 of the sample was set to 5 ° C.
  • a tester was connected to each of the two terminals 6, a constant current was passed, and the voltage was read to measure the two-terminal resistance at 5 ° C. Similarly, the two-terminal resistance at 25 ° C and 45 ° C was measured.
  • the resistance temperature coefficient calculated from the resistance values of 5 ° C. and 25 ° C. and the average value of the resistance temperature coefficient calculated from the resistance values of 25 ° C. and 45 ° C. are set to the resistance temperature of the strain sensor unit 5 (resistance layer 3). Obtained as a coefficient.
  • the above sample was stored at 85 ° C. and 85% RH for 240 hours.
  • the resistance temperature coefficient of the strain sensor unit 5 in the sample after storage was determined.
  • Dimensional change rate of laminated film A sample was prepared by cutting the size of the long laminated film 1 into a size of 15 mm ⁇ 5 mm.
  • the length of the sample, 15 mm corresponded to the length of the laminated film 1 in the long direction (first direction) (MD direction).
  • the width of the sample of 5 mm corresponded to the length of the laminated film 1 in the width direction (second direction) (TD direction).
  • the sample was set in a thermomechanical analyzer (TMA 4000SE, manufactured by Netch Japan Co., Ltd.). Specifically, the chuck gripped one end and the other end of the sample in the length direction. The measuring chamber was set at 85 ° C. and 85% RH. The sample was pulled with a force of 49 mN / 5 mm for 4 hours.
  • TMA 4000SE thermomechanical analyzer
  • Laminated film is used in the manufacture of strain sensors.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Laminated Bodies (AREA)

Abstract

A laminated film (1) is provided, in order in the thickness direction, with an insulating base film (2) and a resistance layer (3). The thickness of the resistance layer (3) is at most equal to 150 nm. A sample was prepared by cutting the laminated film (1) such that the lengths in a first direction and a second direction orthogonal to one another were respectively 15 mm and 5 mm, and the absolute values of the dimensional rate of change in each of the first direction and the second direction after the two end portions of the sample in the first direction had been pulled with a force of 49 mN/5 mm for 4 hours in an atmosphere at 85°C and 85% RH were each at most equal to 0.025%.

Description

積層フィルムおよび歪みセンサの製造方法Manufacturing method of laminated film and strain sensor
 本発明は、積層フィルムおよび歪みセンサの製造方法に関する。 The present invention relates to a method for manufacturing a laminated film and a strain sensor.
 従来、ポリイミドからなる基材と、その上に形成された窒化クロムからなる抵抗体とを備えるひずみゲージが知られている(例えば、下記特許文献1参照。)。 Conventionally, a strain gauge having a base material made of polyimide and a resistor made of chromium nitride formed on the substrate is known (see, for example, Patent Document 1 below).
特開2019-66312号公報Japanese Unexamined Patent Publication No. 2019-66312
 しかるに、ひずみゲージには、湿熱環境保管による温度抵抗係数の変動を抑制することが要求される。しかし、特許文献1に記載のひずみゲージは、上記した要求を十分に満足できないという不具合がある。 However, strain gauges are required to suppress fluctuations in the temperature resistance coefficient due to storage in a moist heat environment. However, the strain gauge described in Patent Document 1 has a problem that the above-mentioned requirements cannot be sufficiently satisfied.
 また、歪みゲージの抵抗体がクラックを生じれば、被検体の歪みをセンシングできないという不具合がある。 In addition, if the resistance of the strain gauge cracks, there is a problem that the strain of the subject cannot be sensed.
 本発明は、湿熱環境保管による温度抵抗係数の変動が抑制され、クラックの生成が抑制された積層フィルムおよび歪みセンサの製造方法を提供する。 The present invention provides a method for manufacturing a laminated film and a strain sensor in which fluctuations in the temperature resistance coefficient due to storage in a moist heat environment are suppressed and crack formation is suppressed.
 本発明(1)は、絶縁性の基材フィルムと、抵抗層とを厚み方向に順に備える積層フィルムであり、前記抵抗層の厚みが、150nm以下であり、前記積層フィルムを、前記厚み方向に直交し、かつ、互いに直交する第1方向および第2方向のそれぞれの長さが15mmおよび5mmとなるようにカットしてサンプルを作製し、85℃、85%RHの雰囲気下で、4時間、前記サンプルの第1方向両端部を49mN/5mmの力で引っ張った後における、前記第1方向および前記第2方向のそれぞれにおける寸法変化率の絶対値は、いずれも、0.025%以下である、積層フィルムを含む。 The present invention (1) is a laminated film in which an insulating base film and a resistance layer are sequentially provided in the thickness direction, the thickness of the resistance layer is 150 nm or less, and the laminated film is placed in the thickness direction. Samples were prepared by cutting so that the lengths of the first and second directions orthogonal to each other and orthogonal to each other were 15 mm and 5 mm, respectively, and the sample was prepared at 85 ° C. and 85% RH for 4 hours. The absolute value of the dimensional change rate in each of the first direction and the second direction after pulling both ends of the sample in the first direction with a force of 49 mN / 5 mm is 0.025% or less. , Includes laminated film.
 本発明の積層フィルムでは、第1方向および第2方向のそれぞれの積層フィルムの寸法変化率の絶対値が、いずれも、0.025%以下であるので、湿熱環境保管による温度抵抗係数の変動が抑制される。また、本発明の積層フィルムでは、抵抗層の厚みが150nm以下であるので、クラックの生成を抑制できる。 In the laminated film of the present invention, the absolute value of the dimensional change rate of each of the laminated films in the first direction and the second direction is 0.025% or less, so that the temperature resistance coefficient fluctuates due to storage in a moist heat environment. It is suppressed. Further, in the laminated film of the present invention, since the thickness of the resistance layer is 150 nm or less, the formation of cracks can be suppressed.
 本発明(2)は、絶縁性の基材フィルムと、抵抗層とを厚み方向に順に備え、前記抵抗層の厚みが、150nm以下であり、前記基材フィルムを、前記厚み方向に直交し、かつ、互いに直交する第1方向および第2方向のそれぞれの長さが15mmおよび5mmとなるようにカットしてサンプルを作製し、85℃、85%RHの雰囲気下で、4時間、前記サンプルの第1方向両端部を49mN/5mmの力で引っ張った後における、前記第1方向および前記第2方向のそれぞれにおける寸法変化率の絶対値は、いずれも、0.040%以下である、積層フィルムを含む。 In the present invention (2), an insulating base film and a resistance layer are provided in order in the thickness direction, the thickness of the resistance layer is 150 nm or less, and the base film is orthogonal to the thickness direction. Then, a sample was prepared by cutting so that the lengths of the first direction and the second direction orthogonal to each other were 15 mm and 5 mm, respectively, and the sample was prepared in an atmosphere of 85 ° C. and 85% RH for 4 hours. The absolute value of the dimensional change rate in each of the first direction and the second direction after pulling both ends in the first direction with a force of 49 mN / 5 mm is 0.040% or less, both of which are laminated films. including.
 本発明の積層フィルムでは、第1方向および第2方向のそれぞれにおける基材フィルムの寸法変化率の絶対値が、いずれも、0.040%以下であるので、積層フィルムは、湿熱環境保管による温度抵抗係数の変動が抑制される。また、本発明の積層フィルムでは、抵抗層の厚みが150nm以下であるので、クラックの生成を抑制できる。 In the laminated film of the present invention, the absolute value of the dimensional change rate of the base film in each of the first direction and the second direction is 0.040% or less, so that the laminated film has a temperature due to storage in a moist heat environment. Fluctuations in the drag coefficient are suppressed. Further, in the laminated film of the present invention, since the thickness of the resistance layer is 150 nm or less, the formation of cracks can be suppressed.
 本発明(3)は、前記抵抗層が、窒化クロムを含む、(1)または(2)に記載の積層フィルムを含むを含む。 The present invention (3) includes the laminated film according to (1) or (2), wherein the resistance layer contains chromium nitride.
 本発明(4)は、前記基材フィルムが、ポリイミドまたはポリエチレンナフタレートである、(1)~(3)に記載の積層フィルムを含む。 The present invention (4) includes the laminated film according to (1) to (3), wherein the base film is polyimide or polyethylene naphthalate.
 本発明(5)は、(1)また(2)に記載の積層フィルムにおける前記抵抗層をパターンニングして歪みセンサ部を形成する、歪みセンサの製造方法を含む。 The present invention (5) includes a method for manufacturing a strain sensor, which forms a strain sensor portion by patterning the resistance layer in the laminated film according to (1) and (2).
 本発明の製造方法によれば、湿熱環境保管による温度抵抗係数の変動が抑制され、クラックの生成が抑制された歪みセンサを製造できる。 According to the manufacturing method of the present invention, it is possible to manufacture a strain sensor in which fluctuations in the temperature resistance coefficient due to storage in a moist heat environment are suppressed and crack formation is suppressed.
 本発明の積層フィルム、および、歪みセンサの製造方法により製造される歪みセンサは、湿熱環境保管による温度抵抗係数の変動が抑制され、クラックの生成が抑制されている。 In the laminated film of the present invention and the strain sensor manufactured by the method for manufacturing the strain sensor, the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is suppressed, and the generation of cracks is suppressed.
図1は、本発明の一実施形態の積層フィルムの断面図である。FIG. 1 is a cross-sectional view of a laminated film according to an embodiment of the present invention. 図2A~図2Bは、図1に示す抵抗層をパターニングした歪みセンサであり、図2Aが、断面図、図2Bが、平面図である。2A to 2B are strain sensors in which the resistance layer shown in FIG. 1 is patterned, FIG. 2A is a cross-sectional view, and FIG. 2B is a plan view. 図3は、寸法変化率の測定対象となる基材フィルムの断面図である。FIG. 3 is a cross-sectional view of a base film for which the dimensional change rate is to be measured.
 <第1実施形態>
 本発明の積層フィルムの第1実施形態を、図1を参照して説明する。
<First Embodiment>
A first embodiment of the laminated film of the present invention will be described with reference to FIG.
 <積層フィルム>
 積層フィルム1は、後で説明する歪みセンサ15(図2A~図2B参照)の製造に用いられる歪みセンサ用フィルムである。つまり、積層フィルム1は、歪みセンサ15を作製するための中間部材である。ただし、積層フィルム1は、部品単独で流通し、産業上利用可能なデバイスである。この積層フィルム1は、厚み方向に直交する面方向に延びる。具体的には、積層フィルム1は、基材フィルム2と、抵抗層3とを厚み方向一方側に向かって順に備える。
<Laminated film>
The laminated film 1 is a film for a strain sensor used for manufacturing a strain sensor 15 (see FIGS. 2A to 2B) described later. That is, the laminated film 1 is an intermediate member for manufacturing the strain sensor 15. However, the laminated film 1 is a device that is distributed as a single component and can be industrially used. The laminated film 1 extends in a plane direction orthogonal to the thickness direction. Specifically, the laminated film 1 includes a base film 2 and a resistance layer 3 in order toward one side in the thickness direction.
 <基材フィルム>
 基材フィルム2は、絶縁性である。基材フィルム2は、積層フィルム1の厚み方向他方面を形成する。基材フィルム2は、面方向に延びる。
<Base film>
The base film 2 is insulating. The base film 2 forms the other side of the laminated film 1 in the thickness direction. The base film 2 extends in the plane direction.
 基材フィルム2の25℃~155℃における熱膨張係数は、厚み方向に直交し、かつ、互いに直交する第1方向および第2方向のいずれの方向においても、例えば、28ppm/℃以下、好ましくは、20ppm/℃以下、より好ましくは、17ppm/℃以下であり、また、例えば、1ppm/℃以上である。基材フィルム2の熱膨張係数が上記した上限以下であれば、積層フィルム1の寸法変化率の絶対値(後述)を所定範囲にできる。熱膨張係数の測定方法は、後の実施例では、例えば、JIS K 7197(1991)の記載に従って測定される。 The coefficient of thermal expansion of the base film 2 from 25 ° C. to 155 ° C. is, for example, 28 ppm / ° C. or less, preferably 28 ppm / ° C. or less in either the first direction or the second direction orthogonal to the thickness direction and orthogonal to each other. , 20 ppm / ° C. or lower, more preferably 17 ppm / ° C. or lower, and for example, 1 ppm / ° C. or higher. When the coefficient of thermal expansion of the base film 2 is not more than the above-mentioned upper limit, the absolute value (described later) of the dimensional change rate of the laminated film 1 can be set within a predetermined range. In a later embodiment, the method for measuring the coefficient of thermal expansion is measured according to, for example, JIS K 7197 (1991).
 また、基材フィルム2の200℃における熱収縮率は、例えば、0.05%以下、好ましくは、0.04%以下、より好ましくは、0.03%以下、とりわけ好ましくは、0.02%以下であり、また、例えば、0%超過である。基材フィルム2の熱収縮率が上記した上限以下であれば、積層フィルム1の寸法変化率の絶対値(後述)を所定範囲にできる。熱膨張係数は、JIS K 7133(1999)の記載に従って測定される。 The heat shrinkage of the base film 2 at 200 ° C. is, for example, 0.05% or less, preferably 0.04% or less, more preferably 0.03% or less, and particularly preferably 0.02%. And, for example, over 0%. When the heat shrinkage rate of the base film 2 is not more than the above-mentioned upper limit, the absolute value (described later) of the dimensional change rate of the laminated film 1 can be set within a predetermined range. The coefficient of thermal expansion is measured according to the description of JIS K 7133 (1999).
 基材フィルム2の材料は、特に限定されず、具体的には、上記した熱膨張係数および/または熱収縮率の範囲を有する材料が選択される。基材フィルム2の材料としては、例えば、ポリイミド(PI)、ポリエチレンナフタレート(PEN)などの樹脂が挙げられる。これらは、単独使用または併用することができる。好ましくは、低い熱膨張係数および低い熱収縮率を得る観点から、PI、PENが挙げられる。基材フィルム2は、市販品を用いることができ、例えば、カプトン200V、カプトン200EN、カプトン150EN(以上、東レ・デュポン社製のポリイミドフィルム)、テオネックスシリーズ(帝人社製のポリエチレンナフタレートフィルム)などが用いられる。 The material of the base film 2 is not particularly limited, and specifically, a material having the above-mentioned range of the coefficient of thermal expansion and / or the coefficient of heat shrinkage is selected. Examples of the material of the base film 2 include resins such as polyimide (PI) and polyethylene naphthalate (PEN). These can be used alone or in combination. Preferably, PI and PEN are mentioned from the viewpoint of obtaining a low coefficient of thermal expansion and a low coefficient of thermal contraction. Commercially available products can be used as the base film 2, for example, Kapton 200V, Kapton 200EN, Kapton 150EN (above, polyimide film manufactured by Toray DuPont), Theonex series (polyethylene naphthalate film manufactured by Teijin Co., Ltd.). Etc. are used.
 基材フィルム2の厚みは、特に限定されず、例えば、2μm以上、好ましくは、10μm以上、より好ましくは、20μm以上であり、また、例えば、500μm以下、好ましくは、300μm以下、より好ましくは、100μm以下である。 The thickness of the base film 2 is not particularly limited, and is, for example, 2 μm or more, preferably 10 μm or more, more preferably 20 μm or more, and for example, 500 μm or less, preferably 300 μm or less, more preferably. It is 100 μm or less.
 基材フィルム2の厚み方向一方面には、抵抗層3との密着性向上のため、例えば、コロナ放電処理、紫外線照射処理、プラズマ処理、スパッタエッチング処理などの処理を施すことができる。 In order to improve the adhesion with the resistance layer 3, for example, a corona discharge treatment, an ultraviolet irradiation treatment, a plasma treatment, a sputtering etching treatment, or the like can be applied to one surface of the base film 2 in the thickness direction.
 <抵抗層>
 抵抗層3は、積層フィルム1から歪みセンサ15(図2A~図2B参照)が製造されるときに、パターニングされる層である。抵抗層3は、基材フィルム2の厚み方向一方面に配置されている。抵抗層3は、積層フィルム1の厚み方向一方面を形成する。具体的には、抵抗層3は、基材フィルム2の厚み方向一方面の全部に接触している。
<Resistance layer>
The resistance layer 3 is a layer that is patterned when the strain sensor 15 (see FIGS. 2A to 2B) is manufactured from the laminated film 1. The resistance layer 3 is arranged on one side of the base film 2 in the thickness direction. The resistance layer 3 forms one side of the laminated film 1 in the thickness direction. Specifically, the resistance layer 3 is in contact with all of one surface of the base film 2 in the thickness direction.
 抵抗層3は、窒化クロムを含む。具体的には、抵抗層3の材料は、窒化クロムを主成分として含有する。一方、抵抗層3の材料には、例えば、不可避不純物の混入が許容される。抵抗層3における不可避不純物の割合は、例えば、1原子%以下、好ましくは、0.1原子%以下、より好ましくは、0.05原子%以下である。好ましくは、抵抗層3は、窒化クロムからなる。 The resistance layer 3 contains chromium nitride. Specifically, the material of the resistance layer 3 contains chromium nitride as a main component. On the other hand, the material of the resistance layer 3 is allowed to be mixed with unavoidable impurities, for example. The proportion of unavoidable impurities in the resistance layer 3 is, for example, 1 atomic% or less, preferably 0.1 atomic% or less, and more preferably 0.05 atomic% or less. Preferably, the resistance layer 3 is made of chromium nitride.
 窒化クロムでは、クロム原子100モル部に対する窒素原子のモル部は、例えば、1.0モル部以上であり、また、例えば、例えば、10.0モル部以下である。クロム原子100モル部に対する窒素原子のモル部は、ラザフォード後方散乱分析法(RBS)により測定される。 In chromium nitride, the molar portion of the nitrogen atom with respect to 100 mol parts of the chromium atom is, for example, 1.0 mol part or more, and for example, 10.0 mol parts or less. The mole portion of the nitrogen atom relative to 100 mole parts of the chromium atom is measured by Rutherford Backscattering Analysis (RBS).
 抵抗層3の厚みは、150nm以下である。他方、抵抗層3の厚みが150nmを越えると、抵抗層3におけるクラックを生じ易い。 The thickness of the resistance layer 3 is 150 nm or less. On the other hand, if the thickness of the resistance layer 3 exceeds 150 nm, cracks are likely to occur in the resistance layer 3.
 抵抗層3の厚みは、好ましくは、100nm以下、より好ましくは、90nm以下、さらに好ましくは、80nm以下であり、また、例えば、10nm以上、好ましくは、20nm以上である。抵抗層3の厚みが上記した下限以上であれば、高いゲージ率を確保できる。 The thickness of the resistance layer 3 is preferably 100 nm or less, more preferably 90 nm or less, further preferably 80 nm or less, and for example, 10 nm or more, preferably 20 nm or more. If the thickness of the resistance layer 3 is at least the above-mentioned lower limit, a high gauge ratio can be secured.
 <積層フィルムの製造方法>
 積層フィルム1の製造方法では、例えば、ロール-トゥ-ロール方式で積層フィルム1を形成する。
<Manufacturing method of laminated film>
In the method for manufacturing the laminated film 1, for example, the laminated film 1 is formed by a roll-to-roll method.
 まず、この方法では、例えば、長尺の基材フィルム2を準備する。この場合において、長尺方向を第1方向とし、長尺方向および厚み方向に直交する幅方向を第2方向とすれば、基材フィルム2の第1方向における50~200℃の熱膨張係数の絶対値は、例えば、28ppm/℃以下、好ましくは、20ppm/℃以下、より好ましくは、15ppm/℃以下であり、また、例えば、1ppm/℃以上である。基材フィルム2の第2方向における50~200℃の熱膨張係数の絶対値は、例えば、28ppm/℃以下、好ましくは、15ppm/℃以下、より好ましくは、10ppm/℃以下であり、また、例えば、0.5ppm/℃以上である。 First, in this method, for example, a long base film 2 is prepared. In this case, if the long direction is the first direction and the width direction orthogonal to the long direction and the thickness direction is the second direction, the thermal expansion coefficient of 50 to 200 ° C. in the first direction of the base film 2 is The absolute value is, for example, 28 ppm / ° C. or lower, preferably 20 ppm / ° C. or lower, more preferably 15 ppm / ° C. or lower, and for example, 1 ppm / ° C. or higher. The absolute value of the coefficient of thermal expansion at 50 to 200 ° C. in the second direction of the base film 2 is, for example, 28 ppm / ° C. or less, preferably 15 ppm / ° C. or less, more preferably 10 ppm / ° C. or less, and also. For example, it is 0.5 ppm / ° C. or higher.
 次いで、この方法では、長尺の基材フィルム2を搬送しながら、抵抗層3を基材フィルム2の厚み方向一方面に成膜する。成膜方法としては、例えば、スパッタリング法、真空蒸着法、イオンプレーティング法などが挙げられる。好ましくは、スパッタリング法、より好ましくは、反応性スパッタリングが挙げられる。 Next, in this method, the resistance layer 3 is formed on one side of the base film 2 in the thickness direction while conveying the long base film 2. Examples of the film forming method include a sputtering method, a vacuum vapor deposition method, and an ion plating method. Sputtering methods are preferred, and reactive sputtering is more preferred.
 反応性スパッタリングでは、ターゲットは、クロムからなり、スパッタリングガスとして、アルゴンなどの不活性ガスと、窒素との混合ガスが用いられる。不活性ガス100体積部に対する窒素の体積部数は、例えば、0.5~15体積部である。 In reactive sputtering, the target is composed of chromium, and a mixed gas of an inert gas such as argon and nitrogen is used as the sputtering gas. The volume of nitrogen with respect to 100 parts by volume of the inert gas is, for example, 0.5 to 15 parts by volume.
 これにより、基材フィルム2および抵抗層3を備える積層フィルム1を作製する。 As a result, the laminated film 1 provided with the base film 2 and the resistance layer 3 is produced.
 その後、必要により、抵抗層3の結晶性を高めて安定性を向上させるために、積層フィルム1を加熱する。加熱温度は、特に限定されず、例えば、100℃以上、好ましくは、125℃以上であり、また、例えば、200℃以下、好ましくは、180℃以下である。
 加熱時間は、例えば、1分以上、好ましくは、5分以上であり、また、例えば、3時間以下、好ましくは、2時間以下である。
Then, if necessary, the laminated film 1 is heated in order to increase the crystallinity of the resistance layer 3 and improve the stability. The heating temperature is not particularly limited, and is, for example, 100 ° C. or higher, preferably 125 ° C. or higher, and for example, 200 ° C. or lower, preferably 180 ° C. or lower.
The heating time is, for example, 1 minute or more, preferably 5 minutes or more, and for example, 3 hours or less, preferably 2 hours or less.
 これにより、基材フィルム2と、抵抗層3とを備える積層フィルム1とを得る。 Thereby, the laminated film 1 including the base film 2 and the resistance layer 3 is obtained.
 そして、積層フィルム1の第1方向および第2方向のそれぞれにおける寸法変化率の絶対値は、いずれも、0.025%以下である。積層フィルム1の第1方向および第2方向のそれぞれにおける寸法変化率の絶対値は、いずれも、0.025%以下であるので、湿熱環境保管による温度抵抗係数の変動が抑制される。 The absolute value of the dimensional change rate in each of the first direction and the second direction of the laminated film 1 is 0.025% or less. Since the absolute value of the dimensional change rate in each of the first direction and the second direction of the laminated film 1 is 0.025% or less, the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is suppressed.
 第1方向および第2方向のそれぞれにおける積層フィルム1の寸法変化率の絶対値は、いずれも、好ましくは、0.020%以下、より好ましくは、0.010%以下、さらに好ましくは、0.005%以下、とりわけ好ましくは、0.003%以下であり、また、例えば、0.000%超過である。 The absolute value of the dimensional change rate of the laminated film 1 in each of the first direction and the second direction is preferably 0.020% or less, more preferably 0.010% or less, still more preferably 0. It is 005% or less, particularly preferably 0.003% or less, and for example, 0.000% or more.
 第1方向および第2方向のそれぞれにおける積層フィルム1の寸法変化率を求めるには、まず、積層フィルム1を第1方向および第2方向のそれぞれの長さが18mmおよび5mmとなるようにカットしてサンプルを作製する。次いで、サンプルの第1方向両端部をチャック治具を用いてその間隔が15mmとなるように固定し、85℃、85%RHの雰囲気下で、4時間、49mN/5mmの力で引っ張る。引っ張った後のサンプルの第1方向の長さを測定する。その後、下記式により、第1方向の寸法変化率を求める。同様の手法を用いて,第2方向の寸法変化率も測定する. To obtain the dimensional change rate of the laminated film 1 in each of the first direction and the second direction, first, the laminated film 1 is cut so that the lengths of the laminated film 1 in the first direction and the second direction are 18 mm and 5 mm, respectively. To make a sample. Next, both ends of the sample in the first direction are fixed using a chuck jig so that the distance between them is 15 mm, and the sample is pulled with a force of 49 mN / 5 mm for 4 hours in an atmosphere of 85 ° C. and 85% RH. Measure the length of the sample in the first direction after pulling. After that, the dimensional change rate in the first direction is obtained by the following formula. Using the same method, the dimensional change rate in the second direction is also measured.
 第1方向長さの寸法変化率[%]=(引っ張った後のサンプルの第1方向長さ-引っ張る前のサンプルの第1方向長さ)/引っ張る前のサンプルの第1方向長さ×100 Dimensional change rate of first-direction length [%] = (first-direction length of sample after pulling-first-direction length of sample before pulling) / first-direction length of sample before pulling x 100
 第2方向長さの寸法変化率[%]=(引っ張った後のサンプルの第2方向長さ-引っ張る前のサンプルの第2方向長さ)/引っ張る前のサンプルの第2方向長さ×100 Dimensional change rate of the second direction length [%] = (second direction length of the sample after pulling-second direction length of the sample before pulling) / second direction length of the sample before pulling × 100
 抵抗層3の85℃、85%RHでの240時間保管前後の抵抗温度係数の差は、例えば、100ppm/℃以下、好ましくは、55ppm/℃以下、より好ましくは、50ppm/℃以下、さらに好ましくは、35ppm/℃以下、とりわけ好ましくは、30ppm/℃以下であり、また、例えば、1ppm/℃以上である。保管前後の抵抗温度係数の差が上記した上限以下であれば、歪みセンサ15の測定精度が向上する。 The difference in the temperature coefficient of resistance of the resistance layer 3 before and after storage at 85 ° C. and 85% RH for 240 hours is, for example, 100 ppm / ° C. or less, preferably 55 ppm / ° C. or less, more preferably 50 ppm / ° C. or less, still more preferable. Is 35 ppm / ° C. or lower, particularly preferably 30 ppm / ° C. or lower, and is, for example, 1 ppm / ° C. or higher. When the difference between the resistance temperature coefficients before and after storage is equal to or less than the above-mentioned upper limit, the measurement accuracy of the strain sensor 15 is improved.
 保管前後の抵抗温度係数の差を求めるには、抵抗層3をパターンニングした後、積層フィルム1の厚み方向一方面および他方面をガラス板で固定し、それらを85℃、85%RHの雰囲気下で240時間保管する。保管前後の抵抗温度係数の差を求める。保管前後の抵抗温度係数の差の求め方の詳細は、後の実施例で記載する。 To obtain the difference in the temperature coefficient of resistance before and after storage, after patterning the resistance layer 3, one side and the other side in the thickness direction of the laminated film 1 are fixed with a glass plate, and the atmosphere is 85 ° C. and 85% RH. Store under 240 hours. Find the difference in temperature coefficient of resistance before and after storage. Details of how to obtain the difference in the temperature coefficient of resistance before and after storage will be described in a later example.
<歪みセンサの製造方法>
 次に、歪みセンサ15の製造方法を図2A~図2Bを参照して説明する。
<Manufacturing method of strain sensor>
Next, a method of manufacturing the strain sensor 15 will be described with reference to FIGS. 2A to 2B.
 図2A~図2Bに示すように、この製造方法では、上記した積層フィルム1における抵抗層3をパターニングして、抵抗パターン4を形成する。抵抗層3をパターニングする方法としては、例えば、エッチングが挙げられ、具体的には、ドライエッチング、ウエットエッチング、好ましくは、ドライエッチング、より好ましくは、レーザエッチングが挙げられる。 As shown in FIGS. 2A to 2B, in this manufacturing method, the resistance layer 3 in the above-mentioned laminated film 1 is patterned to form the resistance pattern 4. Examples of the method for patterning the resistance layer 3 include etching, and specific examples thereof include dry etching, wet etching, preferably dry etching, and more preferably laser etching.
 抵抗パターン4は、歪みセンサ部5と、端子6と、配線7とを一体的に含む。 The resistance pattern 4 integrally includes the strain sensor unit 5, the terminal 6, and the wiring 7.
 図2Bに示すように、歪みセンサ部5は、平面視略葛折り形状を有する。具体的には、歪みセンサ部5は、複数の第1線8と、複数の第1接続線9と、複数の第2接続線10とを有する。 As shown in FIG. 2B, the strain sensor unit 5 has a substantially knotted shape in a plan view. Specifically, the strain sensor unit 5 has a plurality of first lines 8, a plurality of first connection lines 9, and a plurality of second connection lines 10.
 複数の第1線8のそれぞれは、第1方向に沿って延びる。複数の第1線8は、第2方向に間隔を隔てて整列配置されている。 Each of the plurality of first lines 8 extends along the first direction. The plurality of first lines 8 are arranged so as to be spaced apart from each other in the second direction.
 複数の第1接続線9は、第2方向に隣り合う第1線8の第1方向一端部を連絡する。 The plurality of first connecting lines 9 connect one end of the first line 8 adjacent to the second direction in the first direction.
 複数の第2接続線10は、第2方向に隣り合う第1線8の第1方向他端部を連絡する。第1方向に投影したときには、第1接続線9および第2接続線10は、交互に配置される。 The plurality of second connecting lines 10 connect the other ends of the first lines 8 adjacent to each other in the second direction in the first direction. When projected in the first direction, the first connecting line 9 and the second connecting line 10 are arranged alternately.
 端子6は、歪みセンサ部5と面方向に間隔を隔てられる。端子6は、例えば、平面視略矩形のランド形状を有する。端子6は、間隔を隔てて2つ設けられる。 The terminal 6 is separated from the strain sensor unit 5 in the plane direction. The terminal 6 has, for example, a land shape having a substantially rectangular shape in a plan view. Two terminals 6 are provided at intervals.
 配線7は、2つの端子6と、歪みセンサ部5の両端とを連絡する。 The wiring 7 connects the two terminals 6 and both ends of the strain sensor unit 5.
 歪みセンサ部5では、一の端子6から、一の配線7、歪みセンサ部5および他の配線7を通過して、他の端子6に至る1本の導電パスが形成されている。 In the strain sensor unit 5, one conductive path is formed from one terminal 6 through one wiring 7, the strain sensor unit 5 and another wiring 7 to the other terminal 6.
 歪みセンサ部5の寸法は、用途および目的に応じて適宜設定される。第1線8、第1接続線9および第2接続線10の幅は、例えば、1μm以上、好ましくは、5μm以上、より好ましくは、10μm以上であり、また、例えば、150μm以下、好ましくは、100μm以下、より好ましくは、70μm以下である。 The dimensions of the strain sensor unit 5 are appropriately set according to the application and purpose. The width of the first line 8, the first connecting line 9 and the second connecting line 10 is, for example, 1 μm or more, preferably 5 μm or more, more preferably 10 μm or more, and for example, 150 μm or less, preferably preferably. It is 100 μm or less, more preferably 70 μm or less.
 また、基材フィルム2の形状も、歪みセンサ15の用途および目的に応じて、適宜設定され、例えば、外形加工により所望の寸法となる。 Further, the shape of the base film 2 is also appropriately set according to the application and purpose of the strain sensor 15, and becomes a desired dimension by, for example, external processing.
<歪みセンサにより歪み量の測定>
 次に、歪みセンサ15を被検体20に配置して、被検体20の歪み量(変形量)を測定する方法を説明する。
<Measurement of strain amount by strain sensor>
Next, a method of arranging the strain sensor 15 on the subject 20 and measuring the strain amount (deformation amount) of the subject 20 will be described.
 図2Aに示すように、被検体20の表面に、接着層21を介して、歪みセンサ15の基材フィルム2を貼着する。また、2つの端子6には、導電性接着層22を介して、リード線23を接続する。リード線23は、外部の抵抗測定回路(図示せず)と電気的に接続されている。 As shown in FIG. 2A, the base film 2 of the strain sensor 15 is attached to the surface of the subject 20 via the adhesive layer 21. Further, the lead wire 23 is connected to the two terminals 6 via the conductive adhesive layer 22. The lead wire 23 is electrically connected to an external resistance measurement circuit (not shown).
 そして、被検体20が歪むと、歪みセンサ部5の抵抗値が変化する。これに基づいて、抵抗測定回路において、歪量が算出される。 Then, when the subject 20 is distorted, the resistance value of the distortion sensor unit 5 changes. Based on this, the amount of strain is calculated in the resistance measurement circuit.
 具体的には、被検体20が第1方向に伸張すると、第1線8に引張歪が付与され、第1線8の断面積が減少し、歪みセンサ部5の抵抗が大きくなる。一方、被検体20が収縮すると、第1線8に圧縮歪が付与され、第1線8の断面積が増大し、歪みセンサ部5の抵抗が小さくなる。このような抵抗変化量から、被検体20の歪量が算出される。 Specifically, when the subject 20 stretches in the first direction, tensile strain is applied to the first line 8, the cross-sectional area of the first line 8 decreases, and the resistance of the strain sensor unit 5 increases. On the other hand, when the subject 20 contracts, compression strain is applied to the first line 8, the cross-sectional area of the first line 8 increases, and the resistance of the strain sensor unit 5 decreases. From such a resistance change amount, the strain amount of the subject 20 is calculated.
 <第1実施形態の作用効果>
 そして、この積層フィルム1では、第1方向および第2方向のそれぞれの積層フィルム1の寸法変化率の絶対値が、いずれも、0.025%以下であるので、湿熱環境保管による温度抵抗係数の変動が抑制される。また、積層フィルム1では、抵抗層3の厚みが150nm以下であるので、クラックの生成を抑制できる。
<Action and effect of the first embodiment>
In this laminated film 1, the absolute value of the dimensional change rate of each of the laminated films 1 in the first direction and the second direction is 0.025% or less, so that the temperature resistance coefficient due to storage in a moist heat environment is Fluctuations are suppressed. Further, in the laminated film 1, since the thickness of the resistance layer 3 is 150 nm or less, the formation of cracks can be suppressed.
 また、第1実施形態の製造方法によれば、湿熱環境保管による温度抵抗係数の変動が抑制され、クラックの生成が抑制された歪みセンサ15を製造できる。 Further, according to the manufacturing method of the first embodiment, it is possible to manufacture the strain sensor 15 in which the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is suppressed and the generation of cracks is suppressed.
 <第1実施形態の変形例>
 第1実施形態では、ロール-トゥ-ロール方式で製造される長尺方向(MD方向)を第1方向とし、幅方向(TD方向)を第2方向として、第1方向および第2方向における寸法変化率を求めているが、これに限定されない。具体的には、積層フィルム1の製造方式によらず、厚み方向に直交するいずれか一の方向を第1方向とし、それに直交する方向を第2方向として、それらの方向における寸法変化率を求めることができる。そのような第1方向および第2方向のそれぞれにおける積層フィルム1の寸法変化率の絶対値も、いずれも、0.025%以下である。
<Modified example of the first embodiment>
In the first embodiment, the dimensions in the first direction and the second direction are the long direction (MD direction) manufactured by the roll-to-roll method as the first direction and the width direction (TD direction) as the second direction. We are looking for a rate of change, but we are not limited to this. Specifically, regardless of the manufacturing method of the laminated film 1, any one direction orthogonal to the thickness direction is set as the first direction, and the direction orthogonal to the direction is set as the second direction, and the dimensional change rate in those directions is obtained. be able to. The absolute value of the dimensional change rate of the laminated film 1 in each of the first direction and the second direction is 0.025% or less.
<第2実施形態>
 以下の第2実施形態において、上記した第1実施形態と同様の部材および工程については、同一の参照符号を付し、その詳細な説明を省略する。また、第2実施形態は、特記する以外、第1実施形態と同様の作用効果を奏することができる。さらに、第1実施形態および第2実施形態を適宜組み合わせることができる。
<Second Embodiment>
In the following second embodiment, the same members and processes as those in the first embodiment described above are designated by the same reference numerals, and detailed description thereof will be omitted. Further, the second embodiment can exhibit the same effects as those of the first embodiment, except for special mention. Further, the first embodiment and the second embodiment can be combined as appropriate.
 第1実施形態では、積層フィルム1の寸法変化率を規定しているが、これに限定されず、図3に示すように、第2実施形態では、基材フィルム2の寸法変化率を規定することができる。 The first embodiment defines the dimensional change rate of the laminated film 1, but the present invention is not limited to this, and as shown in FIG. 3, the second embodiment defines the dimensional change rate of the base film 2. be able to.
 寸法変化率の対象となる基材フィルム2は、図3に示すように、具体的には、最初に準備する長尺の基材フィルム2である。 As shown in FIG. 3, the base film 2 that is the target of the dimensional change rate is, specifically, the long base film 2 that is prepared first.
 この基材フィルム2を、85℃、85%RHの雰囲気下で4時間保管した後における第1方向および第2方向における寸法変化率の絶対値は、いずれも、0.040%以下である。他方、第1方向および第2方向のうち、少なくとも一方の寸法変化率の絶対値が0.040%を超過すれば、湿熱環境保管による温度抵抗係数の変動が抑制されない。 The absolute value of the dimensional change rate in the first direction and the second direction after storing this base film 2 in an atmosphere of 85 ° C. and 85% RH for 4 hours is 0.040% or less. On the other hand, if the absolute value of the dimensional change rate of at least one of the first direction and the second direction exceeds 0.040%, the fluctuation of the temperature resistance coefficient due to storage in a moist heat environment is not suppressed.
 第1方向および第2方向のそれぞれにおける基材フィルム2の寸法変化率の絶対値は、いずれも、好ましくは、0.020%以下、より好ましくは、0.010%以下、さらに好ましくは、0.005%以下、とりわけ好ましくは、0.004%以下であり、また、例えば、0.000%超過である。基材フィルム2の寸法変化率の求め方は、積層フィルム1のそれと同様である。 The absolute value of the dimensional change rate of the base film 2 in each of the first direction and the second direction is preferably 0.020% or less, more preferably 0.010% or less, still more preferably 0. It is .005% or less, particularly preferably 0.004% or less, and for example, 0.000% or more. The method of determining the dimensional change rate of the base film 2 is the same as that of the laminated film 1.
 基材フィルム2を長尺の基材フィルム2として準備する場合には、基材フィルム2の長尺方向を第1方向とし、幅方向を第2方向とする。基材フィルム2の第1方向における寸法変化率は、例えば、0.025%以下、より好ましくは、0.010%以下、さらに好ましくは、0.005%以下、とりわけ好ましくは、0.004%以下であり、また、例えば、0.000%超過である。基材フィルム2の第2方向における寸法変化率は、例えば、0.040%以下、より好ましくは、0.010%以下、さらに好ましくは、0.007%以下、とりわけ好ましくは、0.005%以下であり、また、例えば、0.000%超過である。 When the base film 2 is prepared as a long base film 2, the long direction of the base film 2 is the first direction and the width direction is the second direction. The dimensional change rate of the base film 2 in the first direction is, for example, 0.025% or less, more preferably 0.010% or less, still more preferably 0.005% or less, and particularly preferably 0.004%. And, for example, over 0.000%. The dimensional change rate of the base film 2 in the second direction is, for example, 0.040% or less, more preferably 0.010% or less, still more preferably 0.007% or less, and particularly preferably 0.005%. And, for example, over 0.000%.
 積層フィルム1の製造のために準備される基材フィルム2は、85℃、85%RHの雰囲気下での4時間引っ張り(高温高湿引張試験)後の基材フィルム2ではなく、上記した湿熱変形(高温高湿引張試験)の履歴を有さない(いわゆる未処理)の基材フィルム2である。つまり、上記した高温高湿引張試験は、寸法変化率を求めるための測定に必要な工程であって、基材フィルム2の製造工程ではない。 The base film 2 prepared for the production of the laminated film 1 is not the base film 2 after being pulled for 4 hours (high temperature and high humidity tensile test) in an atmosphere of 85 ° C. and 85% RH, but the above-mentioned wet heat. It is a base film 2 having no history of deformation (high temperature and high humidity tensile test) (so-called untreated). That is, the above-mentioned high-temperature and high-humidity tensile test is a step necessary for measurement for obtaining the dimensional change rate, and is not a step for manufacturing the base film 2.
 積層フィルム1の製造方法では、上記した特定の寸法変化率を有する基材フィルム2の厚み方向一方面に、一実施形態と同様にして、抵抗層3を形成し、必要によって、加熱し、これによって、積層フィルム1を得る。 In the method for producing the laminated film 1, a resistance layer 3 is formed on one surface of the base film 2 having the above-mentioned specific dimensional change rate in the thickness direction in the same manner as in one embodiment, and if necessary, the resistance layer 3 is heated. To obtain the laminated film 1.
 その後、積層フィルム1の抵抗層3をパターンニングして歪みセンサ部5を形成する。 After that, the resistance layer 3 of the laminated film 1 is patterned to form the strain sensor unit 5.
 <第2実施形態の作用効果>
 そして、この積層フィルム1では、第1方向および第2方向のそれぞれにおける基材フィルム2の寸法変化率の絶対値が、いずれも、0.040%以下であるので、湿熱環境保管による温度抵抗係数の変動が抑制される。また、積層フィルム1では、抵抗層3の厚みが150nm以下であるので、クラックの生成を抑制できる。
<Action and effect of the second embodiment>
In this laminated film 1, the absolute value of the dimensional change rate of the base film 2 in each of the first direction and the second direction is 0.040% or less, so that the temperature resistance coefficient due to storage in a moist heat environment Fluctuations are suppressed. Further, in the laminated film 1, since the thickness of the resistance layer 3 is 150 nm or less, the formation of cracks can be suppressed.
 また、第2実施形態の製造方法によれば、湿熱環境保管による温度抵抗係数の変動が抑制され、クラックの生成が抑制された歪みセンサ15を製造できる。 Further, according to the manufacturing method of the second embodiment, it is possible to manufacture the strain sensor 15 in which the fluctuation of the temperature resistance coefficient due to the storage in a moist heat environment is suppressed and the generation of cracks is suppressed.
 <第2実施形態の変形例>
 第2実施形態では、積層フィルム1を製造する前の基材フィルム2の寸法変化率を規定しているが、積層フィルム1を製造した後であって、積層フィルム1における抵抗層3を除去した後の基材フィルム2の寸法変化率が、上記範囲であってもよい。
<Modified example of the second embodiment>
In the second embodiment, the dimensional change rate of the base film 2 before the laminated film 1 is manufactured is specified, but the resistance layer 3 in the laminated film 1 is removed after the laminated film 1 is manufactured. The dimensional change rate of the base film 2 after that may be in the above range.
<第1実施形態および第2実施形態の変形例>
 積層フィルム1は、その寸法変化率が第1実施形態の範囲(0.025%以下)を満足し、かつ、基材フィルム2の寸法変化率が第2実施形態の範囲(0.040%以下)を満足してもよい。
<Modified examples of the first embodiment and the second embodiment>
The dimensional change rate of the laminated film 1 satisfies the range of the first embodiment (0.025% or less), and the dimensional change rate of the base film 2 is within the range of the second embodiment (0.040% or less). ) May be satisfied.
 好ましくは、積層フィルム1は、その寸法変化率が第1実施形態の範囲を満足し、かつ、基材フィルム2の寸法変化率が第2実施形態の範囲を満足する。これによって、湿熱環境保管による温度抵抗係数の変動がより一層抑制される。 Preferably, the dimensional change rate of the laminated film 1 satisfies the range of the first embodiment, and the dimensional change rate of the base film 2 satisfies the range of the second embodiment. As a result, fluctuations in the temperature resistance coefficient due to storage in a moist heat environment are further suppressed.
 以下に実施例および比較例を示し、本発明をさらに具体的に説明する。なお、本発明は、何ら実施例および比較例に限定されない。また、以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。 Examples and comparative examples are shown below, and the present invention will be described in more detail. The present invention is not limited to Examples and Comparative Examples. In addition, specific numerical values such as the compounding ratio (content ratio), physical property values, parameters, etc. used in the following description are described in the above-mentioned "form for carrying out the invention", and the compounding ratios corresponding to them ( Substitute the upper limit value (value defined as "less than or equal to" or "less than") or the lower limit value (value defined as "greater than or equal to" or "excess") such as content ratio), physical property value, parameter, etc. be able to.
  実施例1
 東レ・デュポン社製ポリイミドフィルム(カプトン200V)からなる厚み50μmの基材フィルム2を準備した。
Example 1
A base film 2 having a thickness of 50 μm made of a polyimide film (Kapton 200 V) manufactured by Toray DuPont was prepared.
 基材フィルム2をスパッタ装置にセットした。スパッタ装置内を真空度が1×10-3Pa以下となるまで排気した後、下記の条件で、反応性パルスDCスパッタ(パルス幅:1μs、周波数:100kHz)により、窒化クロムからなる抵抗層3を成膜した。 The base film 2 was set in the sputtering apparatus. After exhausting the inside of the sputtering apparatus until the degree of vacuum becomes 1 × 10 -3 Pa or less, the resistance layer 3 made of chromium nitride is subjected to reactive pulse DC sputtering (pulse width: 1 μs, frequency: 100 kHz) under the following conditions. Was formed.
  ターゲット:クロム、500mm×150mmの平板形状
  電力:5kW(電力密度:6.7W/cm
  磁束密度(ターゲット表面):30mT
  基板温度:150℃
  スパッタリングガス:アルゴンおよび窒素の混合ガス
  成膜圧力:0.085Pa
Target: Chrome, flat plate shape of 500 mm x 150 mm Power: 5 kW (Power density: 6.7 W / cm 2 )
Magnetic flux density (target surface): 30 mT
Substrate temperature: 150 ° C
Sputtering gas: Mixed gas of argon and nitrogen Film formation pressure: 0.085 Pa
 スパッタ装置に導入されるアルゴンガス100体積部に対する、スパッタ装置に導入される窒素ガスの体積部数を、表1の通りになるように、調整した。 The number of parts of nitrogen gas introduced into the sputtering apparatus was adjusted so as to be as shown in Table 1 with respect to 100 parts by volume of argon gas introduced into the sputtering apparatus.
 これによって、基材フィルム2と、抵抗層3とを備える長尺の積層フィルム1を製造した。 As a result, a long laminated film 1 including the base film 2 and the resistance layer 3 was manufactured.
 次いで、積層フィルム1を、155℃で、60分、加熱(アニール)した Next, the laminated film 1 was heated (annealed) at 155 ° C. for 60 minutes.
  実施例2~比較例2
 基材フィルム2の種類、基材フィルム2の厚み、スパッタリング時における窒素導入量等、抵抗層3の厚み等を、表1の記載に従って変更した以外は、実施例1と同様に処理して、積層フィルム1を製造した。
Example 2 to Comparative Example 2
The treatment was carried out in the same manner as in Example 1 except that the type of the base film 2, the thickness of the base film 2, the amount of nitrogen introduced during sputtering, the thickness of the resistance layer 3 and the like were changed according to the description in Table 1. The laminated film 1 was manufactured.
 <評価>
 各実施例~各比較例の積層フィルム1について、以下の事項を測定した。それらの結果を表1に示す。
<Evaluation>
The following items were measured for the laminated film 1 of each Example to each Comparative Example. The results are shown in Table 1.
<抵抗層の観察>
 抵抗層3を目視により観察して、クラックの有無を観察した。
<Observation of resistance layer>
The resistance layer 3 was visually observed to observe the presence or absence of cracks.
<抵抗層の厚み>
 FIBマイクロサンプリング法により、積層フィルム1を断面が露出するように処理した後、断面のFE-TEM観察を実施した。
<Thickness of resistance layer>
After treating the laminated film 1 so that the cross section was exposed by the FIB microsampling method, FE-TEM observation of the cross section was carried out.
 FIB装置: Hitachi製 FB2200、 加速電圧: 40kV
 FE-TEM 装置: JEOL製 JEM-2800、加速電圧: 200kV
FIB device: Hitachi FB2200, acceleration voltage: 40kV
FE-TEM device: JEOL JEM-2800, acceleration voltage: 200kV
<抵抗層の85℃、85%RHでの240時間保管前後の抵抗温度係数の差>
 積層フィルム1を、10mm×200mmのサイズにカットし、レーザーパターニングにより、抵抗層3を幅30μmの葛折り形状にパターンニングして、歪みセンサ15を作製した。これに際し、配線7の抵抗が約10kΩ、歪みセンサ部5の抵抗が配線7の抵抗の30倍となるように、パターンニングを調整した。
<Difference in resistance temperature coefficient before and after 240 hours storage of resistance layer at 85 ° C and 85% RH>
The laminated film 1 was cut into a size of 10 mm × 200 mm, and the resistance layer 3 was patterned into a knotted shape having a width of 30 μm by laser patterning to prepare a strain sensor 15. At this time, the patterning was adjusted so that the resistance of the wiring 7 was about 10 kΩ and the resistance of the strain sensor unit 5 was 30 times the resistance of the wiring 7.
 歪みセンサ15の両面に,接着剤を介してガラス板を貼り合せて、サンプルを作製した。 A sample was prepared by laminating glass plates on both sides of the strain sensor 15 via an adhesive.
 サンプルの歪みセンサ部5の温度を5℃にした。2つの端子6のそれぞれにテスタを接続し、定電流を流し電圧を読み取ることにより、5℃における2端子抵抗を測定した。同様にして、25℃および45℃の2端子抵抗を測定した。 The temperature of the strain sensor unit 5 of the sample was set to 5 ° C. A tester was connected to each of the two terminals 6, a constant current was passed, and the voltage was read to measure the two-terminal resistance at 5 ° C. Similarly, the two-terminal resistance at 25 ° C and 45 ° C was measured.
 そして、5℃および25℃の抵抗値から計算した抵抗温度係数と、25℃および45℃の抵抗値から計算したと抵抗温度係数の平均値を、歪みセンサ部5(抵抗層3)の抵抗温度係数として求めた。 Then, the resistance temperature coefficient calculated from the resistance values of 5 ° C. and 25 ° C. and the average value of the resistance temperature coefficient calculated from the resistance values of 25 ° C. and 45 ° C. are set to the resistance temperature of the strain sensor unit 5 (resistance layer 3). Obtained as a coefficient.
 別途、上記したサンプルを85℃、85%RHで240時間保管した。保管後のサンプルにおける歪みセンサ部5の抵抗温度係数を求めた。 Separately, the above sample was stored at 85 ° C. and 85% RH for 240 hours. The resistance temperature coefficient of the strain sensor unit 5 in the sample after storage was determined.
 そして、歪みセンサ部5の保管前後の抵抗温度係数の差を求めた。 Then, the difference in the resistance temperature coefficient before and after storage of the strain sensor unit 5 was obtained.
 <積層フィルムおよび基材フィルムの寸法変化率>
 A. 積層フィルムの寸法変化率
 長尺の積層フィルム1のサイズを15mm×5mmのサイズにカットして、サンプルを作製した。なお、サンプルの長さ15mmは、積層フィルム1の長尺方向(第1方向)(MD方向)の長さに相当した。サンプルの幅5mmは、積層フィルム1の幅方向(第2方向)(TD方向)の長さに相当した。
<Dimensional change rate of laminated film and base film>
A. Dimensional change rate of laminated film A sample was prepared by cutting the size of the long laminated film 1 into a size of 15 mm × 5 mm. The length of the sample, 15 mm, corresponded to the length of the laminated film 1 in the long direction (first direction) (MD direction). The width of the sample of 5 mm corresponded to the length of the laminated film 1 in the width direction (second direction) (TD direction).
 サンプルを、熱機械分析装置(TMA 4000SE、ネッチジャパン社製)にセットした。具体的には、チャックで、サンプルの長さ方向の一端部および他端部を把持した。
 測定室を85℃、85%RHにセットした。サンプルを、4時間、49mN/5mmの力で引っ張った。
The sample was set in a thermomechanical analyzer (TMA 4000SE, manufactured by Netch Japan Co., Ltd.). Specifically, the chuck gripped one end and the other end of the sample in the length direction.
The measuring chamber was set at 85 ° C. and 85% RH. The sample was pulled with a force of 49 mN / 5 mm for 4 hours.
 その後、引っ張り前後における積層フィルム1の長さ方向および幅方向のそれぞれの寸法変化率を求めた。 After that, the dimensional change rates of the laminated film 1 in the length direction and the width direction before and after pulling were obtained.
 B. 基材フィルムの寸法変化率
 抵抗層3を形成する前の基材フィルム2についても、上記と同様にし、保管前後における基材フィルム2の長さ方向および幅方向のそれぞれの寸法変化率を求めた。
B. Dimensional change rate of the base film For the base film 2 before forming the resistance layer 3, the dimensional change rates of the base film 2 in the length direction and the width direction before and after storage were obtained in the same manner as described above. ..
<基材フィルムの熱膨張係数>
 基材フィルム2の熱膨張係数を、JIS K 7197(1991)に基づき、下記の装置および条件で測定した。
<Coefficient of thermal expansion of base film>
The coefficient of thermal expansion of the base film 2 was measured with the following equipment and conditions based on JIS K 7197 (1991).
 装置:エスアイアイ・ナノテクノロジー社製 TMA/SS7100
 測定モード:引張法
 測定荷重:19.6mN
 温度範囲:25℃~155℃
 昇温速度:10℃/min
 測定雰囲気:大気(空気)
Equipment: TMA / SS7100 manufactured by SII Nanotechnology Co., Ltd.
Measurement mode: Tensile method Measurement load: 19.6mN
Temperature range: 25 ° C to 155 ° C
Temperature rise rate: 10 ° C / min
Measurement atmosphere: Atmosphere (air)
<基材フィルムの熱収縮率>
 基材フィルム2の200℃における熱収縮率を、JIS K 7133(1999)の記載に従って測定した。
<Heat shrinkage of base film>
The heat shrinkage rate of the base film 2 at 200 ° C. was measured according to the description of JIS K 7133 (1999).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。 Although the above invention has been provided as an exemplary embodiment of the present invention, this is merely an example and should not be construed in a limited manner. Modifications of the invention that are apparent to those skilled in the art are included in the claims below.
 積層フィルムは、歪みセンサの製造に用いられる。 Laminated film is used in the manufacture of strain sensors.
1 積層フィルム
2 基材フィルム
3 抵抗層
5 センサ部
15 歪みセンサ
1 Laminated film 2 Base film 3 Resistance layer 5 Sensor unit 15 Distortion sensor

Claims (5)

  1.  絶縁性の基材フィルムと、抵抗層とを厚み方向に順に備える積層フィルムであり、
     前記抵抗層の厚みが、150nm以下であり、
     前記積層フィルムを、前記厚み方向に直交し、かつ、互いに直交する第1方向および第2方向のそれぞれの長さが15mmおよび5mmとなるようにカットしてサンプルを作製し、85℃、85%RHの雰囲気下で、4時間、前記サンプルの第1方向両端部を49mN/5mmの力で引っ張った後における、前記第1方向および前記第2方向のそれぞれにおける寸法変化率の絶対値は、いずれも、0.025%以下であることを特徴とする、積層フィルム。
    A laminated film in which an insulating base film and a resistance layer are provided in order in the thickness direction.
    The thickness of the resistance layer is 150 nm or less.
    The laminated film was cut so that the lengths of the first direction and the second direction orthogonal to the thickness direction and orthogonal to each other were 15 mm and 5 mm, respectively, to prepare a sample, and the sample was prepared at 85 ° C. and 85%. The absolute value of the dimensional change rate in each of the first direction and the second direction after pulling both ends of the sample in the first direction with a force of 49 mN / 5 mm for 4 hours under the atmosphere of RH is any. Also, a laminated film, characterized in that it is 0.025% or less.
  2.  絶縁性の基材フィルムと、抵抗層とを厚み方向に順に備え、
     前記抵抗層の厚みが、150nm以下であり、
     前記基材フィルムを、前記厚み方向に直交し、かつ、互いに直交する第1方向および第2方向のそれぞれの長さが15mmおよび5mmとなるようにカットしてサンプルを作製し、85℃、85%RHの雰囲気下で、4時間、前記サンプルの第1方向両端部を49mN/5mmの力で引っ張った後における、前記第1方向および前記第2方向のそれぞれにおける寸法変化率の絶対値は、いずれも、0.040%以下であることを特徴とする、積層フィルム。
    An insulating base film and a resistance layer are provided in order in the thickness direction.
    The thickness of the resistance layer is 150 nm or less.
    The base film was cut so that the lengths of the first direction and the second direction orthogonal to the thickness direction and orthogonal to each other were 15 mm and 5 mm, respectively, to prepare a sample, and the sample was prepared at 85 ° C. and 85 ° C. The absolute value of the dimensional change rate in each of the first direction and the second direction after pulling both ends of the sample in the first direction with a force of 49 mN / 5 mm for 4 hours in an atmosphere of% RH is the absolute value. Both are laminated films, characterized in that they are 0.040% or less.
  3.  前記抵抗層が、窒化クロムを含むことを特徴とする、請求項1または2に記載の積層フィルム。 The laminated film according to claim 1 or 2, wherein the resistance layer contains chromium nitride.
  4.  前記基材フィルムが、ポリイミドまたはポリエチレンナフタレートであることを特徴とする、請求項1~3のいずれか一項に記載の積層フィルム。 The laminated film according to any one of claims 1 to 3, wherein the base film is polyimide or polyethylene naphthalate.
  5.  請求項1~4のいずれか一項に記載の積層フィルムにおける前記抵抗層をパターンニングして歪みセンサ部を形成することを特徴とする、歪みセンサの製造方法。 A method for manufacturing a strain sensor, which comprises patterning the resistance layer in the laminated film according to any one of claims 1 to 4 to form a strain sensor portion.
PCT/JP2021/039828 2020-10-30 2021-10-28 Laminated film, and method for manufacturing strain sensor WO2022092207A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020182136A JP2022072607A (en) 2020-10-30 2020-10-30 Method for manufacturing laminate film and strain sensor
JP2020-182136 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022092207A1 true WO2022092207A1 (en) 2022-05-05

Family

ID=81383393

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/039828 WO2022092207A1 (en) 2020-10-30 2021-10-28 Laminated film, and method for manufacturing strain sensor

Country Status (3)

Country Link
JP (1) JP2022072607A (en)
TW (1) TW202224921A (en)
WO (1) WO2022092207A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122504A (en) * 1989-10-05 1991-05-24 Asahi Chem Ind Co Ltd Strain gage
JPH10270201A (en) * 1997-03-21 1998-10-09 Res Inst Electric Magnetic Alloys Cr-n-based strained resistance film, manufacture therefor and strain sensor
JP2006147812A (en) * 2004-10-18 2006-06-08 Ricoh Co Ltd Laminated thin film electric wiring board
JP2014074661A (en) * 2012-10-04 2014-04-24 Research Institute For Electromagnetic Materials Strain gage
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor
JP2019059170A (en) * 2017-09-27 2019-04-18 日東電工株式会社 Crystallization film
JP2019066311A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2020129013A (en) * 2020-06-05 2020-08-27 ミネベアミツミ株式会社 Strain gauge

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03122504A (en) * 1989-10-05 1991-05-24 Asahi Chem Ind Co Ltd Strain gage
JPH10270201A (en) * 1997-03-21 1998-10-09 Res Inst Electric Magnetic Alloys Cr-n-based strained resistance film, manufacture therefor and strain sensor
JP2006147812A (en) * 2004-10-18 2006-06-08 Ricoh Co Ltd Laminated thin film electric wiring board
JP2014074661A (en) * 2012-10-04 2014-04-24 Research Institute For Electromagnetic Materials Strain gage
JP2015031633A (en) * 2013-08-05 2015-02-16 公益財団法人電磁材料研究所 Strain sensor
JP2019059170A (en) * 2017-09-27 2019-04-18 日東電工株式会社 Crystallization film
JP2019066311A (en) * 2017-09-29 2019-04-25 ミネベアミツミ株式会社 Strain gauge
JP2020129013A (en) * 2020-06-05 2020-08-27 ミネベアミツミ株式会社 Strain gauge

Also Published As

Publication number Publication date
JP2022072607A (en) 2022-05-17
TW202224921A (en) 2022-07-01

Similar Documents

Publication Publication Date Title
US9905341B2 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
US9851262B2 (en) Temperature sensor
JP7424750B2 (en) Temperature sensor film, conductive film and manufacturing method thereof
JP5871190B2 (en) Metal nitride film for thermistor, method for producing the same, and film type thermistor sensor
US9842675B2 (en) Metal nitride material for thermistor, method for producing same, and film type thermistor sensor
WO2022092207A1 (en) Laminated film, and method for manufacturing strain sensor
WO2022092202A1 (en) Multilayer film, method for producing second multilayer film, and method for producing strain sensor
WO2022092205A1 (en) Laminated film, manufacturing method therefor, and strain sensor
WO2022092203A1 (en) Strain sensor and laminate
TW202231893A (en) Strain sensor, functional film, and method for manufacturing same
JP2018137268A (en) Electronic device and manufacturing method therefor
WO2022092204A1 (en) Laminated film and strain sensor
WO2020162236A1 (en) Temperature sensor film, conductive film, and method for producing same
TWI841675B (en) Temperature sensing film, conductive film and manufacturing method thereof
EP4040129A1 (en) Temperature sensor film, conductive film, and method for producing same
WO2019093373A1 (en) Strain gauge and production method for strain gauge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886324

Country of ref document: EP

Kind code of ref document: A1