WO2022091881A1 - Thermoplastic resin composition and molded article using same - Google Patents

Thermoplastic resin composition and molded article using same Download PDF

Info

Publication number
WO2022091881A1
WO2022091881A1 PCT/JP2021/038647 JP2021038647W WO2022091881A1 WO 2022091881 A1 WO2022091881 A1 WO 2022091881A1 JP 2021038647 W JP2021038647 W JP 2021038647W WO 2022091881 A1 WO2022091881 A1 WO 2022091881A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
graft copolymer
vinyl
copolymer
graft
Prior art date
Application number
PCT/JP2021/038647
Other languages
French (fr)
Japanese (ja)
Inventor
上田隆志
佐藤大輔
森戸昭等
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021565893A priority Critical patent/JPWO2022091881A1/ja
Publication of WO2022091881A1 publication Critical patent/WO2022091881A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • C08K5/51Phosphorus bound to oxygen
    • C08K5/52Phosphorus bound to oxygen only
    • C08K5/521Esters of phosphoric acids, e.g. of H3PO4
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L55/00Compositions of homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C08L23/00 - C08L53/00
    • C08L55/02ABS [Acrylonitrile-Butadiene-Styrene] polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates

Definitions

  • the present invention relates to a thermoplastic resin composition suitable for molding using a mold such as injection molding, and also relates to a molded product using the thermoplastic resin composition.
  • Polycarbonate resin has excellent heat resistance and impact resistance, so it is widely used in a wide range of fields including the fields of automobiles, home appliances, OA equipment, and building materials.
  • rubber-reinforced styrene resin represented by ABS resin has excellent workability and mechanical properties, so that various constituent members can be molded in a wide range of fields such as automobiles, home appliances, and OA equipment. It is used as a material.
  • Polycarbonate resin is inferior to rubber-reinforced styrene resin in molding processability and secondary processability during injection molding. Therefore, in order to compensate for the drawbacks of polycarbonate resin, polycarbonate resin and rubber-reinforced styrene resin are melt-mixed. It is generally alloyed. In particular, in the field of automobiles, in addition to heat resistance, impact resistance, moldability, etc., dimensional stability is also required, and in order to improve this, attempts have been made to add an inorganic filler such as talc.
  • silicate compound-based inorganic fillers such as rubber-reinforced styrene resin and talc produced through emulsion polymerization / acid coagulation / neutralization steps may exhibit alkalinity, and when blended with polycarbonate resin, the resin There was a problem that defects in the appearance of molded products such as silver streaks due to alkaline decomposition of polycarbonate occurred.
  • This Silver Streak has one of the appearance defects that appears as a streak pattern due to a large number of fine bubbles, and it is named after it because it looks silver due to the reflection of light at the interface between the bubbles and the resin composition. There is. It is considered that the generation of bubbles is generated by the decomposition of the resin, and that the streaky pattern is generated along the flow of the resin at the time of molding to appear as streaks. Further, the shear stress at the interface between the mold and the resin composition may cause the bubbles to be stretched, resulting in a more serious appearance defect.
  • Patent Document 1 describes an aromatic polycarbonate resin, a styrene resin, and a crystalline resin. And a resin composition containing an inorganic filler in a specific composition is disclosed.
  • Patent Document 2 discloses a resin composition containing an aromatic polycarbonate resin, a styrene resin, a phosphoric acid ester compound, and talc in a specific composition.
  • a crystalline resin is blended in order to suppress the generation of silver streaks, and the filler is embedded in the crystalline resin due to the affinity between the inorganic filler and the crystalline resin.
  • the aromatic polycarbonate resin may be alkaline-decomposed by the filler that comes into contact with the polycarbonate resin before being embedded in the resin, and the effect of suppressing the generation of silver streaks was not sufficient.
  • Patent Document 2 has a certain effect in suppressing the generation of silver streaks due to the use of the rubber-reinforced styrene resin obtained by emulsion polymerization, but brings about sufficient effectiveness. Has not been reached.
  • thermoplastic resin composition capable of further suppressing the generation of silver streaks when made into a molded product, and to provide a molded product using the thermoplastic resin composition. do.
  • the present invention is composed of the following (1) to (5).
  • Polycarbonate resin (I), graft copolymer (II), and talc (IV) are blended, and when the weight of talc (IV) is 100% by weight, the contents of iron component and calcium component are high. , 0.19% by weight or less as Fe 2 O 3 and 1.9% by weight or less as CaO, respectively.
  • the graft copolymer (II) graft-polymerizes a monomer mixture containing at least an aromatic vinyl-based monomer and a cyanide vinyl-based monomer in the presence of a diene-based rubbery polymer.
  • thermoplastic resin composition according to (1) which is a graft copolymer (II-2) obtained by graft-polymerizing a monomer mixture containing at least a body and a vinyl cyanide-based monomer.
  • thermoplastic resin composition according to (1) or (2) which further contains a vinyl-based copolymer (III).
  • thermoplastic resin composition according to any one of (1) to (3) further comprising one or both of a condensed phosphoric acid ester (V) and a crystalline resin (VI).
  • the generation of silver streak in a molded product can be suppressed.
  • the silver streak tends to worsen when the temperature of the molding machine cylinder or the hot runner of the mold is raised, but the temperature can be raised by using the resin composition capable of suppressing the generation of the silver streak of the present invention. Therefore, a large-sized molded product, a molded product having a complicated shape, and a thin-walled molded product can be obtained by injection molding. Therefore, it is possible not only to adapt to the increase in size and complexity of the product, but also to reduce the cost of the product by reducing the wall thickness.
  • FIG. 1 (a) and 1 (b) are explanatory views schematically showing a rectangular flat plate produced in the section of Examples, FIG. 1 (a) is a plan view, and FIG. 1 (b) is FIG. 1 (a). It is a cross-sectional view of AA'.
  • thermoplastic resin composition of the present invention and its molded product will be specifically described.
  • Polycarbonate resin (I) The polycarbonate resin (I) used in the present invention is generally known as a resin having a repeating structural unit represented by the following general formula (1).
  • Z represents a substituted or unsubstituted alkylidene group, cyclohexylidene group, oxygen atom, sulfur atom or sulfonyl group having 2 to 5 carbon atoms.
  • R 1 , R 2 , R 3 and R 4 are hydrogen. It is an atom or an alkyl group having 1 to 6 carbon atoms, and may be the same or different from each other).
  • Z is an isopropanol group and R 1 to R 4 are hydrogen atoms.
  • the polycarbonate resin (I) is represented by an aromatic dihydroxy compound represented by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane. , Can be obtained by reaction with a carbonate precursor exemplified by phosgene.
  • the content of the polycarbonate resin (I) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III) used as an optional component, and the talc.
  • the total content of (IV) is 100% by weight, it is preferably in the range of 60 to 90% by weight, more preferably 65 to 85% by weight, and further preferably 70 to 80% by weight.
  • the content of the polycarbonate resin (I) is less than 60% by weight, the fluidity is excellent, but the impact resistance and the heat resistance may be lowered.
  • the content exceeds 90% by weight some products may not be molded due to insufficient fluidity during injection molding, although they are excellent in impact resistance and heat resistance.
  • the viscosity average molecular weight ( MV ) of the polycarbonate resin (I) is not particularly limited, but is preferably 10,000 or more and 21,000 or less, more preferably 12,000 or more and 20,000 or less. Most preferably, it is 15,000 or more and 18,000 or less.
  • the MV is 10,000 or more, mechanical properties such as impact resistance and heat resistance tend to improve, and when it is 21,000 or less, the fluidity tends to improve and the appearance of the molded product tends to improve. Yes, preferred.
  • the viscosity average molecular weight ( MV ) of the polycarbonate resin (I) can be determined by the following method.
  • Specific viscosity ( ⁇ SP ) (tt 0 ) / t 0 [T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
  • the viscosity average molecular weight MV can be calculated from the obtained specific viscosity ( ⁇ SP ) by the following Schnell's formula.
  • the graft copolymer (II) constituting the thermoplastic resin composition of the present invention includes an aromatic vinyl-based monomer (B) and a vinyl cyanide-based monomer (B) in the presence of a diene-based rubbery polymer (A1).
  • acrylic rubber polymer (A2) Acrylic rubber polymer obtained by copolymerizing an acrylic acid ester monomer and a polyfunctional monomer
  • A2 graft copolymer obtained by graft-polymerizing a monomer mixture containing at least an aromatic vinyl-based monomer (B) and a cyanide vinyl-based monomer (C) in the presence. Is preferable.
  • the diene-based rubbery polymer (A1) that can be used for the graft copolymer (II-1) is preferably one having a glass transition temperature of 0 ° C. or lower, and its lower limit is practically about -80 ° C. Is.
  • diene-based rubbery polymers that can be used include polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, and butyl acrylate-butadiene copolymer. Of these, polybutadiene is preferably used.
  • the weight average particle size of the diene-based rubbery polymer (A1) is not particularly limited, but is preferably 100 to 1200 nm, and more preferably 200 to 1200 nm. If a diene-based rubber polymer (A1) having a weight average particle size of less than 100 nm is used, the impact resistance may decrease, while when a diene-based rubber polymer (A1) having a weight average particle size of more than 1200 nm is used. May reduce fluidity.
  • particles having a weight average particle diameter of 200 to 400 nm and particles having a weight average particle diameter of 450 to 1200 nm are used from the viewpoint of achieving both impact resistance and fluidity. It is preferable to use them in combination, more preferably particles having a weight average particle diameter of 280 to 400 nm and particles having a weight average particle diameter of 600 to 1200 nm, and more preferably particles having a weight average particle diameter of 320 to 380 nm and particles having a weight average particle diameter of 700 to 1100 nm. be.
  • the weight ratio of the particles having a low particle size to the particles having a high particle size is 90:10 or more from the viewpoint of impact resistance and fluidity. It is preferably in the range of 50:50, more preferably 80:20 to 60:40, and even more preferably 75:25 to 65:35.
  • the weight average particle size of the diene-based rubbery polymer (A1) is the sodium alginate method according to "Rubbaer Age Vol. 88 p.484-490 (1960) by E. Schmidt, PH Bidison".
  • the particle size of the cumulative weight fraction of 50% is obtained from the concentration ratio of sodium alginate and the cumulative weight fraction of the sodium alginate concentration).
  • the weight fraction of the diene-based rubbery polymer (A1) in the graft copolymer (II-1) is preferably 40 to 65% by weight, more preferably 40 to 60% by weight, still more preferably. It is 40 to 50% by weight.
  • the weight fraction is 40% by weight or more, the impact resistance is improved, while when it is 65% by weight or less, the fluidity is improved, which is preferable.
  • aromatic vinyl-based monomer (B) contained in the monomer mixture examples include styrene, ⁇ -methylstyrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, chlorostyrene and bromostyrene.
  • styrene is particularly preferably adopted.
  • Examples of the vinyl cyanide-based monomer (C) contained in the monomer mixture include acrylonitrile, methacrylonitrile, etacrylonitrile, and the like, and acrylonitrile is particularly preferably adopted.
  • vinyl-based monomers copolymerizable with the aromatic vinyl-based monomer (B) and the vinyl cyanide-based monomer (C) to the extent that the effect of the present invention is not lost in the monomer mixture.
  • other vinyl-based monomers include N-phenylmaleimide, N-methylmaleimide, and methyl methacrylate, which can be selected according to the purpose, and these may be used alone or in a plurality of types. However, it can be used. If there is an intention to further improve heat resistance and flame retardancy, it is preferable to use N-phenylmaleimide. Further, if the improvement of hardness is emphasized, methyl methacrylate is preferably used.
  • the weight fraction of the aromatic vinyl-based monomer (B) in the graft copolymer (II-1) is preferably 26 to 43% by weight, more preferably 30 to 41% by weight, and particularly preferably 35 to 41% by weight. %.
  • the weight fraction of the aromatic vinyl-based monomer (B) is 26% by weight or more, it tends to be difficult to color, while when it is 43% by weight or less, graft polymerization is likely to proceed and the graft ratio is high. Is improved, and the impact resistance tends to be improved.
  • the weight fraction of the vinyl cyanide-based monomer (C) in the graft copolymer (II-1) is preferably 9 to 17% by weight, more preferably 10 to 16% by weight, still more preferably 12 to 16% by weight. %.
  • the weight fraction of the vinyl cyanide-based monomer (C) is 9% by weight or more, the graft polymerization tends to proceed, the graft ratio is improved, and the impact resistance tends to be improved, which is 17% by weight. In the following cases, it tends to be difficult to color.
  • the graft ratio of the graft copolymer (II-1) is not particularly limited. From the viewpoint of the balance between impact resistance and fluidity, the graft ratio is preferably 7 to 30%, more preferably 20 to 28%, still more preferably 22 to 26%.
  • any method such as an emulsion polymerization method, a suspension polymerization method, a continuous massive polymerization method, and a solution continuous polymerization method can be used, and two or more of these can be combined. You may combine them.
  • the emulsion polymerization method is most preferable because it is easy to control the temperature during polymerization.
  • graft copolymer (II-1) examples include acrylonitrile / acrylonitrile / styrene graft copolymer (ABS resin), methylmethacrylate / butadiene / styrene graft copolymer (MBS resin), and methylmethacrylate / acrylonitrile / butadiene / styrene graft.
  • ABS resin acrylonitrile / acrylonitrile / styrene graft copolymer
  • MVS resin methylmethacrylate / butadiene / styrene graft copolymer
  • MABS resin acrylonitrile-butadiene-styrene graft copolymer
  • ABS resin acrylonitrile-butadiene-styrene graft copolymer
  • thermoplastic resin composition containing the graft copolymer (II-2) has excellent weather resistance.
  • Acrylic rubber polymer (A2) obtained by copolymerizing an acrylic acid ester-based monomer (a) that can be used for the graft copolymer (II-2) and a polyfunctional monomer (b).
  • acrylic acid ester-based monomer (a) constituting the above those having an alkyl group having 1 to 10 carbon atoms are preferable, and for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, t-acrylic acid. Examples include butyl and octyl acrylate. Two or more of these may be used. Among these, n-butyl acrylate is preferable.
  • the polyfunctional monomer (b) constituting the acrylic rubbery polymer (A2) is not particularly limited as long as it has two or more functional groups, and examples of the functional group include an allyl group and (meth). ) A group having a carbon-carbon double bond such as an acryloyl group can be mentioned.
  • the polyfunctional monomer (b) include allyl compounds such as allyl acrylate, allyl methacrylate, diallyl maleate, triallyl cyanurate, and triallyl isocyanurate, divinylbenzene, ethylene glycol dimethacrylate, and diethylene glycol. Examples thereof include di (meth) acrylic acid ester compounds such as dimethacrylate and propylene glycol dimethacrylate.
  • allyl methacrylate is used because it is easy to adjust the gel swelling degree of the acrylic rubber polymer (A2) described later in toluene and the graft ratio of the graft copolymer (II-2) within a desired range. It is preferable to use it.
  • the acrylic rubbery polymer (A2) in the present invention is an acrylic acid ester-based monomer based on 100% by weight of the total of the acrylic acid ester-based monomer (a) and the polyfunctional monomer (b). It is preferable to obtain (a) 97 to 99.5% by weight and the polyfunctional monomer (b) 3 to 0.5% by weight by copolymerizing.
  • the acrylic acid ester-based monomer (a) is 97% by weight or more and the polyfunctional monomer (b) is 3% by weight or less, the acrylic rubbery polymer (A2) described later in toluene.
  • the degree of gel swelling tends to increase, and the graft ratio of the graft copolymer (II-2) described later tends to decrease.
  • the fluidity of the thermoplastic resin composition is improved, and further, since the graft copolymer (II-2) particles can have an aggregated structure, the impact strength and surface impact resistance of the molded product are improved. ..
  • the acrylic acid ester-based monomer (a) is 98% by weight or more and the polyfunctional monomer (b) is 2% by weight or less. It is more preferable that the acrylic acid ester-based monomer (a) is more than 98.5% by weight and the polyfunctional monomer (b) is less than 1.5% by weight.
  • the acrylic acid ester-based monomer (a) is 99.5% by weight or less and the polyfunctional monomer (b) is 0.5% by weight or more
  • the graft copolymer (II-) described later will be described. It is preferable because the graft ratio of 2) is improved and the impact strength and surface impact property of the molded product are improved.
  • the acrylic acid ester-based monomer (a) is more preferably 99.3% by weight or less, still more preferably 99.0% by weight or less. Further, the polyfunctional monomer (b) is more preferably 0.7% by weight or more, still more preferably 1.0% by weight or more.
  • any method such as an emulsion polymerization method, a suspension polymerization method, a continuous massive polymerization method, and a solution continuous polymerization method can be used, and two or more of these can be combined. You may combine them.
  • the emulsification polymerization method or the massive polymerization method is preferable.
  • the emulsion polymerization method is most preferable because it is easy to adjust the volume average particle size to a desired range by removing heat during polymerization.
  • the emulsifier used in the emulsification polymerization method is not particularly limited, and various surfactants can be used.
  • an anionic surfactant such as a carboxylate type, a sulfate ester salt type, or a sulfonate type is preferably used. Two or more of these may be used.
  • anionic surfactants include caprylate, caprinate, laurylate, mythylate, palmitate, stearate, oleate, linoleate, linolenate, and rosinate.
  • the salt referred to here include alkali metal salts such as ammonium salt, sodium salt, lithium salt and potassium salt.
  • the initiator used for the polymerization is not particularly limited, and coumenhydroperoxide is preferable as the peroxide, azobisisobutyronitrile as the azo compound, potassium persulfate as the persulfate, and the like, and two or more of these initiators are used. You may use it.
  • the graft copolymer (II-2) used in the present invention is an aromatic vinyl-based monomer (B) and a vinyl cyanide-based monomer (B) in the presence of the acrylic rubbery polymer (A2). It is obtained by graft-polymerizing a monomer mixture containing at least C). That is, the graft copolymer (II-2) is obtained by graft-polymerizing an acrylic rubber polymer (A2) with a monomer mixture containing an aromatic vinyl-based monomer and a cyanide vinyl-based monomer. It is a copolymer.
  • the weight fraction of the acrylic rubber polymer (A2) in the graft copolymer (II-2) is preferably 20% by weight or more, and more preferably 30% by weight or more.
  • the weight fraction of the acrylic rubber polymer (A2) is preferably 70% by weight or less, more preferably 60% by weight or less.
  • the weight fraction of the monomer mixture is preferably 30% by weight or more, more preferably 40% by weight or more.
  • the weight fraction of the monomer mixture is preferably 80% by weight or less, more preferably 70% by weight or less.
  • the monomer mixture constituting the graft copolymer (II-2) contains an aromatic vinyl-based monomer (B) and a vinyl cyanide-based monomer (C), and can be copolymerized with these if necessary. It may further contain a monomer.
  • aromatic vinyl-based monomer (B) examples include styrene, ⁇ -methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, t-butylstyrene and the like. Two or more of these may be used. Among these, styrene is preferable.
  • vinyl cyanide-based monomer (C) examples include acrylonitrile, methacrylonitrile, and etacrylonitrile. Two or more of these may be used. Of these, acrylonitrile is preferred.
  • the other copolymerizable monomer is not particularly limited as long as it does not impair the effect of the present invention.
  • the unsaturated carboxylic acid alkyl ester-based monomer is methyl (meth) acrylate.
  • the saturated fatty acid is preferably methacrylic acid
  • the acrylamide-based monomer is preferably acrylamide or methacrylamide
  • the maleimide-based monomer is preferably N-phenylmaleimide, and two or more of these may be used.
  • the mixing ratio of the monomer mixture was 60 to 80% by weight for the aromatic vinyl-based monomer (B) and 20 to 20 to 80% by weight for the vinyl cyanide-based monomer (C) in 100% by weight of the total amount of the monomer mixture. It is preferably in the range of 40% by weight and 0 to 20% by weight of other copolymerizable monomers.
  • the graft ratio ( ⁇ ) of the graft copolymer (II-2) is preferably 5 to 40%.
  • the graft ratio ( ⁇ ) is an index showing the compatibility of the graft copolymer (II-2), and if the graft ratio is 5% or more, the graft copolymer (II-2) in the thermoplastic resin composition
  • the compatibility of the molded product is improved, and the impact strength and surface impact resistance of the molded product can be further improved. 8% or more is more preferable.
  • the graft ratio is 40% or less, the particles of the graft copolymer (II-2) are likely to aggregate in the thermoplastic resin composition, and the impact strength and surface impact resistance of the molded product are further improved. be able to. 35% or less is more preferable, and 30% or less is further preferable.
  • the graft ratio (%) is calculated by the following equation. The specific measurement method is as described in the section of Examples.
  • Graft rate (%) [amount of vinyl polymer graft-polymerized on acrylic rubber polymer] / [rubber content of graft copolymer] x 100.
  • the graft ratio of the graft copolymer (II-2) is adjusted to a desired range by, for example, using the acrylic rubber polymer (A2) described above and adjusting the amount of the chain transfer agent, emulsifier, initiator and the like used for the polymerization. can do.
  • any method such as an emulsion polymerization method, a suspension polymerization method, a continuous massive polymerization method, and a solution continuous polymerization method can be used, and two or more of these can be combined. You may combine them.
  • the emulsion polymerization method is most preferable because it is easy to control the temperature during polymerization.
  • Examples of the emulsifier used in the emulsification polymerization method of the graft copolymer (II-2) include those exemplified as the emulsifier used in the emulsification polymerization method of the acrylic rubbery polymer (A2).
  • examples of the polymerization initiator used for the polymerization of the graft copolymer (II-2) include those exemplified as the initiator used for the polymerization of the acrylic rubbery polymer (A2).
  • a chain transfer agent can also be used for the purpose of adjusting the degree of polymerization and the graft ratio of the graft copolymer (II-2).
  • Specific examples of the chain transfer agent include n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, mercaptan such as n-octadecyl mercaptan, and terpenes such as terpinolen. Two or more of these may be used. Among these, n-octyl mercaptan and t-dodecyl mercaptan are preferably used.
  • the acrylic rubbery polymer (A2) and the monomer mixture are mixed. It is preferable to use 0.05 to 0.5 parts by weight of the chain transfer agent, 0.5 to 5 parts by weight of the emulsifier, and 0.1 to 0.5 parts by weight of the initiator with respect to 100 parts by weight of the total.
  • graft copolymer (II-2) examples include acrylonitrile / acrylic rubber polymer / styrene graft copolymer (ASA resin), methyl methacrylate / acrylic rubber polymer / styrene graft copolymer (MSA resin). , Methyl methacrylate, acrylonitrile, acrylic rubbery polymer, styrene graft copolymer (MASA resin) and the like. Of these, acrylonitrile, acrylic rubbery polymer, and styrene graft copolymer (ASA resin) are preferable.
  • the graft copolymer (II) used in the present invention may be alkaline depending on the manufacturing method used.
  • the graft copolymer (II) is typically grafted by adding a coagulant to the aqueous dispersion (latex) of the graft copolymer (II) produced by emulsion polymerization.
  • the copolymer (II) can be recovered.
  • the coagulant an acid or a water-soluble salt is used, but in the present invention, coagulation with an acid is preferable from the viewpoint of mold contamination.
  • Specific examples of the coagulant include sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and the like, and two or more of these can be used.
  • the acid adheres to the graft copolymer (II) and remains, and the remaining acid may cause corrosion of metal equipment during the production process.
  • a method of recovering the graft copolymer (II) after neutralizing the acid remaining in the graft copolymer (II) with an alkaline compound (neutralizing agent) is preferable.
  • the neutralizing agent adheres to the graft copolymer (II)
  • the graft copolymer (II) is often alkaline.
  • sodium hydroxide is preferable as the neutralizing agent.
  • the graft copolymer (II) exhibits alkalinity can be determined by the following method. That is, first, the graft copolymer (II) is mixed with water to obtain a slurry having a solid content concentration of 10% by weight. Then, this is placed in a water bath at 90 ° C. for 3 hours, and then the graft copolymer (II) is removed using a filter paper (Type 5 A: JIS P3801). Then, the temperature of the obtained filtrate is lowered to 20 ° C., and the pH of the filtrate is measured with a pH meter. If the pH is above 7, it is alkaline.
  • the content of the graft copolymer (II) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III) used as an optional component, and the like.
  • the total content of the talc (IV) is 100% by weight, it is preferably in the range of 3 to 15% by weight, more preferably 4 to 12% by weight, and further preferably 5 to 9% by weight. .. If the content of the graft copolymer (II) is less than 3% by weight, the impact resistance tends to decrease, and if it exceeds 15% by weight, the fluidity tends to decrease, which may not be preferable. ..
  • the thermoplastic resin composition of the present invention may further contain a vinyl-based copolymer (III).
  • the vinyl-based copolymer (III) is a vinyl-based copolymer obtained by copolymerizing at least an aromatic vinyl-based monomer (D) and a vinyl cyanide-based monomer (E).
  • the aromatic vinyl-based monomer (D) is preferably 60 to 85% by weight, and the cyanide vinyl-based monomer (E) is preferably 15 to 40% by weight, more preferably aromatic.
  • the vinyl-based monomer (D) is 65 to 80% by weight, the cyanide vinyl-based monomer (E) is 20 to 35% by weight, and more preferably, the aromatic vinyl-based monomer (D). Is 70 to 80% by weight, and the vinyl cyanide-based monomer (E) is 20 to 30% by weight.
  • the aromatic vinyl-based monomer (D) When the aromatic vinyl-based monomer (D) is 60% by weight or more, the compatibility with the polycarbonate resin (I) is improved, and the mechanical properties such as impact resistance are improved. Further, when the aromatic vinyl-based monomer (D) is 85% by weight or less, the impact resistance tends to be improved by improving the compatibility with the graft copolymer (II), which is preferable.
  • the vinyl-based copolymer (III) does not contain the diene-based rubbery polymer (A1) and the acrylic-based rubbery polymer (A2). That is, it is assumed that the copolymer is different from the graft copolymer (II-1) and the graft copolymer (II-2).
  • Styrene ⁇ -methylstyrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, m-methylstyrene, t-butylstyrene, vinyltoluene, chlorostyrene, bromostyrene and the like.
  • Styrene is preferably used. These do not necessarily have to be used alone, and may be used in combination of a plurality of types. Of these, styrene is particularly preferably adopted.
  • acrylonitrile, methacrylonitrile, etacrylonitrile and the like can be mentioned, and acrylonitrile is particularly preferably adopted. These do not necessarily have to be used alone, and may be used in combination of a plurality of types.
  • the aromatic vinyl-based monomer (D) and the vinyl cyanide-based monomer also in the vinyl-based copolymer (III) similarly to the graft copolymer (II), the aromatic vinyl-based monomer (D) and the vinyl cyanide-based monomer also in the vinyl-based copolymer (III) to the extent that the effect of the present invention is not lost.
  • Other vinyl-based monomers copolymerizable with (E) may be used.
  • Specific examples of other vinyl-based monomers include N-phenylmaleimide, N-methylmaleimide, and methyl methacrylate, which can be selected according to their respective purposes, and these may be used alone or in combination of two or more. It is possible. N-Phenylmaleimide is preferable if there is an intention to further improve heat resistance and flame retardancy. Further, if the improvement of hardness is emphasized, methyl methacrylate is preferably used.
  • the weight average molecular weight of the vinyl-based copolymer (III) is not particularly limited, but is preferably 110,000 or less, more preferably 105,000 or less, and further preferably 100,000 or less.
  • the lower limit of the weight average molecular weight is preferably 90,000 or more from the viewpoint of impact resistance.
  • Examples of the vinyl-based copolymer (III) include an acrylonitrile / styrene copolymer (AS resin), a methyl methacrylate / styrene copolymer (MS resin), and the like. Of these, an acrylonitrile-styrene copolymer (AS resin) is preferable.
  • AS resin acrylonitrile / styrene copolymer
  • MS resin methyl methacrylate / styrene copolymer
  • AS resin acrylonitrile-styrene copolymer
  • the content of the vinyl-based copolymer (III) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III), and the talc (IV). ) Is 100% by weight, it is preferably in the range of 0 to 12% by weight, more preferably 4 to 10% by weight, and further preferably 4 to 8% by weight. If the content of the vinyl-based copolymer (III) exceeds 12% by weight, the impact resistance may decrease, which may not be preferable.
  • the MFR (g / 10 min) of the vinyl-based copolymer (III) at 240 ° C. and 10 kg and the polycarbonate resin (I) at 240 ° C. and 10 kg are used.
  • the ratio to the MFR (g / 10 minutes) (MFR of (III) / MFR of (I)) is preferably 7 or more and 12 or less. More preferably, it is 7 or more and 11 or less, and further preferably 8 or more and 11 or less. If it is less than 7, the occurrence of silver streak tends to increase, and if it exceeds 12, the liquidity tends to decrease.
  • the graft copolymer (II) may be alkaline, and such a graft copolymer (II) is a polycarbonate resin.
  • a graft copolymer (II) is a polycarbonate resin.
  • the polycarbonate resin comes into contact with the polymer, the polycarbonate resin is decomposed into an alkali, and the decomposition causes bubbles (gas) to be generated, resulting in appearance defects such as silver streaks.
  • Alkali decomposition is known as a phenomenon in which an alkali such as a hydroxide ion acts as a catalyst on a carbonate-bonded portion to promote hydrolysis and generate a gas such as carbon dioxide or a low molecular weight component.
  • a resin composition containing two or more kinds of resins they tend to be compatible when the ratio of the melt viscosities of the respective resins is small. In other words, if the ratio of the melt viscosity of the resin is large, the phase separation tends to be easy.
  • the vinyl-based copolymer (III) is made of polycarbonate by setting the difference in melt viscosity at 240 ° C. within a specific range for the vinyl-based copolymer (III) and the polycarbonate resin (I). It promotes phase separation from the resin (I).
  • the vinyl-based copolymer (III) is phase-separated from the polycarbonate resin (I)
  • the vinyl-based copolymer (III) is considered to be unevenly distributed around the graft copolymer (II) having a more similar chemical structure, and is alkaline. It is presumed that the frequency of contact between the graft copolymer (II) exhibiting the above and the polycarbonate resin (I) becomes smaller, which suppresses the decomposition of the polycarbonate resin and further suppresses the generation of silver streaks. ..
  • the method for producing the vinyl-based copolymer (III) is not particularly limited, and bulk polymerization, suspension polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, precipitation polymerization and combinations thereof are used. .. There is no particular limitation on the method of charging the monomer, and the monomer may be added all at once at the initial stage, or the method of addition may be divided into several times in order to give or prevent the composition distribution of the copolymer. ..
  • the initiator used for the polymerization of the vinyl-based copolymer (III) the initiator mentioned in the graft copolymer (II-1) is preferably used.
  • chain transfer agent such as mercaptan or terpene
  • the chain transfer agent include n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan and terpinolene.
  • n-octyl mercaptan, t-dodecyl mercaptan and n-dodecyl mercaptan are preferably used.
  • chain transfer agents they are used alone or in combination of two or more.
  • the talc (IV) constituting the thermoplastic resin composition of the present invention contains a specific amount of an iron component and a calcium component.
  • the amount of iron component and calcium component in talc can be calculated by converting the amount of elements measured and detected by a fluorescent X-ray analyzer into the amount of the corresponding oxide.
  • the iron (Fe) component contained as an impurity is 0.19% by weight or less as Fe 2 O 3 . It is more preferably 0.17% by weight or less, still more preferably 0.15% by weight or less.
  • the calcium (Ca) component is 1.9% by weight or less as CaO. It is more preferably 1.7% by weight or less, still more preferably 1.5% by weight or less.
  • Fe 2 O 3 exceeds 0.19% by weight, or CaO exceeds 1.9% by weight, silver streak is generated more frequently, which is not preferable.
  • the lower limit is not particularly limited, but Fe 2 O 3 and Ca O can each be contained in an amount of 0.001% by weight or more.
  • iron and calcium are ionized, coordinated to the ester bond portion of the polycarbonate resin, and promote alkaline hydrolysis by catalytic action. It is estimated to be.
  • the average particle size of talc used in the present invention is not particularly limited, but is preferably 1.0 to 30.0 ⁇ m because of mechanical properties, dimensional stability and retention stability, and a high balance of the appearance of the molded product. Yes, more preferably 2.0 to 20.0 ⁇ m, still more preferably 3.0 to 16.0 ⁇ m.
  • the average particle size is 1.0 ⁇ m or more, the retention stability and the dimensional stability tend to be improved, and when the average particle size is 7.0 ⁇ m or less, the mechanical properties are improved and the appearance of the molded product is improved. There is a tendency and it is preferable.
  • the content of talc (IV) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III) used as an optional component, and the talc (
  • the total content of IV) is 100% by weight, it is preferably in the range of 5 to 20% by weight, more preferably 6 to 19% by weight, and further preferably 7 to 18% by weight. If the content of talc (IV) is less than 5% by weight, the mechanical properties and dimensional stability tend to decrease, and if it exceeds 20% by weight, the retention stability decreases, and the silver streak of the molded product It tends to occur more often, which is not preferable.
  • the resin composition of the present invention does not exclude the inclusion of an inorganic filler other than talc (IV).
  • thermoplastic resin composition of the present invention can preferably contain a condensed phosphate ester (V), and as such, for example, a compound represented by the following general formula (2) can be used.
  • R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group, but of R 1 , R 2 , R 3 and R 4 . At least one of them is a monovalent organic group.
  • X is a divalent organic group, k, l, m and n are 0 or 1 independently of each other, and N is an integer of 0 to 10.
  • the monovalent organic group includes an alkyl group, an aryl group and a cycloalkyl group which may be substituted, and examples of the substituent when substituted include an alkyl group and an alkoxy. Examples thereof include a group, an alkylthio group, an aryl group, an aryloxy group and an arylthio group, and a group in which these substituents are combined (arylalkoxyalkyl group, etc.) or these substituents are bonded with an oxygen, sulfur, nitrogen atom or the like.
  • the combined group (arylsulfonylaryl group, etc.) may be a substituent.
  • a 2,6-dimethylphenyl group is preferable.
  • the divalent organic group includes, for example, an alkylene group, a phenylene group which may have a substituent, a polyhydric phenol, and a group derived from a polynuclear phenol (bisphenol, etc.).
  • resorcinol is preferable as the divalent organic group.
  • Suitable specific examples of these phosphate ester compounds (V) include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, trioctyl phosphate, and triphenyl phosphate.
  • the thermoplastic resin composition of the present invention can preferably contain a crystalline resin (VI), and the resin is not particularly limited as long as it has a melting point and can be melt-molded, but it is molded.
  • the resin has a melting point of preferably 150 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, and particularly preferably 220 ° C. or higher.
  • the upper limit of the melting point is not particularly limited, but is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, and further preferably 250 ° C. or lower.
  • the melting point of the crystalline resin (VI) is 40 ° C. to 300 ° C. in 10 mg of pellets of the crystalline resin (VI) in the differential scanning calorimetry using "DSC-60" manufactured by Shimadzu Corporation.
  • Tm1 heat absorption peak temperature
  • the temperature was maintained at 300 ° C. for 1 minute, and then the temperature was lowered to 20 ° C./min.
  • Tm2 heat absorption peak temperature
  • the crystalline resin (VI) include polyolefin resins such as polyethylene resin and polypropylene resin, polyvinyl alcohol resin, polyvinylidene chloride resin, polyester resin, polyamide resin, polyacetal resin, polyether ether ketone resin, and poly.
  • polyolefin resins such as polyethylene resin and polypropylene resin, polyvinyl alcohol resin, polyvinylidene chloride resin, polyester resin, polyamide resin, polyacetal resin, polyether ether ketone resin, and poly.
  • ether ketone resin, polyketone resin, polyimide resin and copolymers thereof examples of the crystalline resin (VI)
  • polyamide resins and polyester resins are preferable in terms of heat resistance, moldability, fluidity and mechanical properties.
  • the above-mentioned polyamide resin is a polyamide resin having a melting point, and examples thereof include a ring-opening polymer of cyclic lactam, a polycondensate of aminocarboxylic acid, and a polycondensate of dibasic acid and diamine, and specific examples thereof.
  • the polyester resin is a polyester resin having a melting point, and is obtained from a polycondensate of dicarboxylic acid and glycol, a ring-opening polymer of cyclic lactone, a polycondensate of hydroxycarboxylic acid, and a polycondensate of dibasic acid and glycol.
  • Specific examples thereof include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethylene terephthalate and polyethylene-1,2-bis (phenoxy).
  • Semi-aromatic polyesters such as ethane-4,4'-dicarboxylate, polyethylene-1,2-bis (phenoxy) ethane-4,4'-dicarboxylate / isophthalate copolymer, polybutylene terephthalate.
  • Semi-aromatic polyesters having a melting point such as / decandicarboxylate copolymers and polycyclohexanedimethylene terephthalates / isophthalate copolymers, and crystalline polyesters composed of a mixture thereof within the range having a melting point can be mentioned. can.
  • thermotropic liquid crystallinity consisting of a structural unit selected from an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic dicarbonyl unit, an aromatic aminooxy unit, an ethylene oxide unit, etc. is used. You can also do it.
  • aromatic oxycarbonyl unit referred to here a structural unit produced from p-hydroxybenzoic acid 6-hydroxy-2-naphthoic acid and 4'-hydroxydiphenyl-4-carboxylic acid can be exemplified.
  • aromatic dioxy unit examples include structural units produced from 4,4'-dihydroxybiphenyl, hydroquinone, and t-butylhydroquinone.
  • aromatic dicarbonyl unit include structural units produced from terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid.
  • aromatic aminooxy unit for example, a structural unit produced from 4-aminophenol can be exemplified.
  • polyester it is also possible to use polylactic acid obtained by using lactic acid and / or lactide as a main raw material, and an aliphatic polyester such as a copolymer thereof within a range having a melting point.
  • Semi-aromatic polyester is particularly preferable as the crystalline polyester suitable for the present invention, and specifically, polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and co-polyesters having a melting point.
  • polyethylene terephthalate resin polypropylene terephthalate resin
  • polybutylene terephthalate resin polyethylene naphthalate resin
  • co-polyesters having a melting point examples thereof include polymers and mixtures, more preferably polyethylene terephthalate resin and polybutylene terephthalate resin, and most preferably polybutylene terephthalate resin.
  • the molecular weight of such a polyester resin is not particularly limited, and an intrinsic viscosity measured at 25 ° C. using a mixed solvent of phenol / tetrachloroethane 1: 1 is usually used. However, those having an intrinsic viscosity of 0.25 to 2.50 dl / g, particularly preferably 0.40 to 2.25 dl / g can be used.
  • a known impact resistance improving material or a known matting improving material can be used as long as the object of the present invention is not impaired.
  • Molding aids such as modified polytetrafluoroethylene, flame retardants / flame retardants, antibacterial agents typified by silver-based antibacterial agents, antifungal agents, carbon black, titanium oxide, mold release agents, lubricants, pigments. And dyes and the like can also be added.
  • the thermoplastic resin composition of the present invention can be obtained by melting and mixing each of the constituent resin components and inorganic components.
  • the melting and mixing method is not particularly limited, but a heating device, a method of melting and mixing using a single-screw or biaxial screw in a cylinder having a vent, and the like can be adopted.
  • the heating temperature at the time of melting and mixing is usually selected from the range of 230 to 320 ° C., but the temperature gradient at the time of melting and mixing can be freely set within a range that does not impair the object of the present invention.
  • biaxial screws When biaxial screws are used, they may rotate in the same direction or in different directions. Further, either a meshing type screw or a non-meshing type screw may be used.
  • the molding method for producing a molded product using the thermoplastic resin composition of the present invention is not particularly limited, but it is suitably molded by injection molding.
  • Injection molding can be carried out, preferably in a temperature range of 240 to 300 ° C., usually in the temperature range for molding the thermoplastic resin assembly.
  • the mold temperature during injection molding is preferably in the temperature range of 30 to 80 ° C. used for normal molding.
  • thermoplastic resin composition of the present invention can suppress the generation of silver streaks in the molded product, and the thermoplastic resin composition containing the graft copolymer (II-2) is further excellent in weather resistance. Therefore, the thermoplastic resin composition of the present invention is suitably provided for a molded product having a large or complicated shape.
  • the resin composition of the present invention can be suitably used not only for power window panels, center consoles, center clusters, console shutters, lever controllers, console boxes, etc. for automobile interiors, but also for automobile exterior materials, that is, rear spoilers. It can also be applied to grills, garnishes, door mirrors, roofs, fenders, bumpers, etc. Further, it can be suitably used for electrical and electronic applications, OA equipment applications, and housing / building material applications.
  • Graft rate of graft copolymer (II-1) Weigh the graft copolymer (II-1) in a predetermined amount (m; about 1 g), add 200 ml of acetone to it, and bathe in a hot water bath at a temperature of 70 ° C. Reflux in the solution for 3 hours and apply this solution to 8800 r. p. m. After centrifuging at (10000 G) for 40 minutes, the insoluble material was filtered. The obtained insoluble acetone was dried under reduced pressure at 60 ° C. for 5 hours, and its mass (n; unit g) was measured. The graft ratio was calculated from the following formula.
  • L is the rubber content of the graft copolymer (a real number exceeding 0 and less than 1).
  • Graft ratio (% by mass) ⁇ [(n)- ⁇ (m) ⁇ L ⁇ ] / [(m) ⁇ L] ⁇ ⁇ 100.
  • L is the rubber content (% by weight) of the graft copolymer (that is, the content (mass%) of the acrylic rubbery polymer (A2) in the graft copolymer (II-2)).
  • Graft ratio (% by mass) ⁇ [(n)-((m) x L / 100)] / [(m) x L / 100] ⁇ x 100.
  • FIGS. 1 (a) and 1 (b) A square flat plate P having a width of 70 mm, a length of 150 mm, and a thickness of 3 mm having an edge of 45 ° was formed (FIG. 1 (a) is a plan view of the square flat plate P, and FIG. 1 (b) is a square flat plate. It is a cross-sectional view taken along the line AA of P. The position of the injection molding gate is indicated by a white arrow). In the obtained molded product, the less the occurrence of silver streak, the better.
  • Heat resistance deflection temperature under load
  • Heat distortion temperature Measured according to ISO75-2 (2013) (measured under 1.8 MPa conditions).
  • the test piece was obtained by molding a multipurpose test piece type A1 specified in JIS K 7139 (2009) using an injection molding machine in which the cylinder temperature was set to 250 ° C. and the mold temperature was set to 60 ° C.
  • graft copolymer (II-1) This was added to an aqueous solution of dilute sulfuric acid to aggregate it, then neutralized with an aqueous solution of sodium hydroxide, and then washed, dehydrated and dried to prepare a graft copolymer (II-1).
  • the graft rate was 25%.
  • the graft copolymer (II-1) exhibited alkaline (pH 8).
  • graft copolymer (II-2) ⁇ Preparation of graft copolymer (II-2)>
  • Step for obtaining acrylic rubber polymer (A2) 130 parts by weight of pure water and 1 part by weight of an aqueous solution of disproportionated potassium rosinate (in terms of solid content) as an emulsifier are charged in a reaction vessel, heated to 75 ° C., and stirred to 19.8 parts by weight of n-butyl acrylate. And 0.2 parts by weight of allyl methacrylate (mixture 1) were continuously added over 1 hour (first addition step).
  • Step for obtaining graft copolymer (II-2) Subsequently, a mixture of 13.2 parts by weight of pure water, 0.48 parts by weight of anhydrous glucose, 0.26 parts by weight of sodium pyrophosphate and 0.01 parts by weight of ferrous sulfate, 0.4 parts by weight of potassium oleate and pure A mixture of 12.5 parts by weight of water, 50 parts by weight of acrylic rubber polymer (A2) latex (in terms of solid content) and 94.3 parts by weight of pure water were charged in a reaction vessel, heated to 58 ° C., and stirred.
  • ⁇ Preparation of vinyl-based copolymer (III)> A slurry obtained by suspend-polymerizing a monomer mixture consisting of 76% by weight of styrene and 24% by weight of acrylonitrile is subjected to washing, dehydration and drying steps, and has a weight average molecular weight of 99,000 and a melt flow rate of 274 g / 10 min. A vinyl-based copolymer (III) was prepared.
  • ⁇ Talc (IV)> The talc used was Fe 2 O 3 , CaO equivalent content, and average particle size shown in the table below. The average particle size was measured by a laser diffraction method.
  • Examples 1 to 8, Comparative Examples 1 to 10 The weight ratios of the polycarbonate resin (I), the graft copolymer (II), the vinyl copolymer (III), the inorganic filler (IV), and the phosphate ester compound (V) are as shown in the table. And kneaded by melting and kneading with a twin-screw extruder (temperature range: 240 to 260 ° C.) rotating in the same direction with a screw diameter of 30 mm to obtain pellets. The obtained pellets were evaluated as described above.
  • test piece was prepared from the obtained pellets using an injection molding machine (molding temperature 250 ° C., mold temperature 60 ° C.), and evaluated by the above-mentioned method.
  • injection molding machine molding temperature 250 ° C., mold temperature 60 ° C.
  • the molded product for silver streak evaluation according to (4) was produced under the conditions described in (4) above. The evaluation results are shown in the table.
  • thermoplastic resin compositions of Examples 1 to 8 can suppress the generation of silver streaks in the molded product.
  • occurrence of silver streak could not be sufficiently suppressed in Comparative Examples 1 to 10 using talc that deviates from this specified value.
  • the present invention is a thermoplastic resin composition capable of suppressing the generation of silver streaks in molded products, and in the automobile field, automobile exterior parts such as rear spoilers, wheel caps, door mirrors, radiator grills, power window panels, center consoles, etc. Automotive interior parts such as center clusters, lever controllers and console boxes, and automotive exterior parts such as rear spoilers, grilles, garnishes, door mirrors, roofs, fenders and bumpers. It can be suitably used in fields other than the automobile field, such as OA equipment, home appliances, housing building materials, suitcases and bags.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

[Problem] To provide a thermoplastic resin composition that, when a molded article is obtained therefrom, can suppress occurrence of silver streaks. [Solution] This thermoplastic resin composition is obtained by blending a polycarbonate resin (I), a graft copolymer (II), and a talc (IV), and contains, when the weight of the talc (IV) is defined as 100 wt%, iron components and calcium components in amounts of not more than 0.19 wt% and not more than 1.9 wt%, respectively when defined as Fe2O3 and CaO.

Description

熱可塑性樹脂組成物およびそれを用いた成形品Thermoplastic resin composition and molded products using it
 本発明は、射出成形などの金型を用いての成形に好適な熱可塑性樹脂組成物に関し、また、その熱可塑性樹脂組成物を用いた成形品に関する。 The present invention relates to a thermoplastic resin composition suitable for molding using a mold such as injection molding, and also relates to a molded product using the thermoplastic resin composition.
 ポリカーボネート樹脂は、耐熱性、耐衝撃性に優れていることから、自動車分野、家電分野、OA機器分野、建材分野をはじめとする多岐の分野にわたって幅広く使用されている。一方、ABS樹脂に代表されるゴム強化スチレン樹脂は、優れた加工性、機械的特性を有していることから、自動車分野、家電分野、OA機器分野など広範な分野において、各種構成部材の成形材料として使用されている。 Polycarbonate resin has excellent heat resistance and impact resistance, so it is widely used in a wide range of fields including the fields of automobiles, home appliances, OA equipment, and building materials. On the other hand, rubber-reinforced styrene resin represented by ABS resin has excellent workability and mechanical properties, so that various constituent members can be molded in a wide range of fields such as automobiles, home appliances, and OA equipment. It is used as a material.
 ポリカーボネート樹脂は、ゴム強化スチレン樹脂と比較して射出成形時の成形加工性、二次加工性に劣ることから、ポリカーボネート樹脂の欠点を補う目的で、ポリカーボネート樹脂とゴム強化スチレン樹脂を溶融混合してアロイ化されることが一般的である。特に自動車分野においては、耐熱性、耐衝撃性、成形性などに加え、寸法安定性も要求され、その改善のため、タルク等の無機充填材を配合する試みも為されている。 Polycarbonate resin is inferior to rubber-reinforced styrene resin in molding processability and secondary processability during injection molding. Therefore, in order to compensate for the drawbacks of polycarbonate resin, polycarbonate resin and rubber-reinforced styrene resin are melt-mixed. It is generally alloyed. In particular, in the field of automobiles, in addition to heat resistance, impact resistance, moldability, etc., dimensional stability is also required, and in order to improve this, attempts have been made to add an inorganic filler such as talc.
 しかしながら、乳化重合/酸凝固/中和工程を経て製造されたゴム強化スチレン樹脂やタルク等のケイ酸塩化合物系の無機充填材は、アルカリ性を呈することがあり、ポリカーボネート樹脂に配合した場合、樹脂のアルカリ分解によるシルバーストリークといった成形品外観不具合が発生する課題があった。 However, silicate compound-based inorganic fillers such as rubber-reinforced styrene resin and talc produced through emulsion polymerization / acid coagulation / neutralization steps may exhibit alkalinity, and when blended with polycarbonate resin, the resin There was a problem that defects in the appearance of molded products such as silver streaks due to alkaline decomposition of polycarbonate occurred.
 この、シルバーストリーク(Silver Streak)は、多数の微細な気泡によって筋状の模様として表れる外観不良のひとつあり、気泡と樹脂組成物界面での光の反射によって、銀色にみえることからこの名がついている。気泡の発生は樹脂の分解によって発生すると考えられており、また、筋状の模様は成形時の樹脂の流れに沿って発生することで筋状にみえると考えられている。また、金型と樹脂組成物との界面での剪断応力によって、気泡が引き延ばされることで、より深刻な外観上の不良となることがある。 This Silver Streak has one of the appearance defects that appears as a streak pattern due to a large number of fine bubbles, and it is named after it because it looks silver due to the reflection of light at the interface between the bubbles and the resin composition. There is. It is considered that the generation of bubbles is generated by the decomposition of the resin, and that the streaky pattern is generated along the flow of the resin at the time of molding to appear as streaks. Further, the shear stress at the interface between the mold and the resin composition may cause the bubbles to be stretched, resulting in a more serious appearance defect.
 ポリカーボネート樹脂/ゴム強化スチレン樹脂アロイに、タルク等のケイ酸塩化合物系の無機充填材を配合する従来の技術として、例えば、特許文献1には、芳香族ポリカーボネート樹脂、スチレン系樹脂、結晶性樹脂および無機充填材を、特定組成で含有してなる樹脂組成物が開示されている。 As a conventional technique for blending a silicate compound-based inorganic filler such as talc into a polycarbonate resin / rubber-reinforced styrene resin alloy, for example, Patent Document 1 describes an aromatic polycarbonate resin, a styrene resin, and a crystalline resin. And a resin composition containing an inorganic filler in a specific composition is disclosed.
 また、特許文献2には、芳香族ポリカーボネート樹脂、スチレン系樹脂、リン酸エステル系化合物、タルクを特定組成で含有してなる樹脂組成物が開示されている。 Further, Patent Document 2 discloses a resin composition containing an aromatic polycarbonate resin, a styrene resin, a phosphoric acid ester compound, and talc in a specific composition.
国際公開第2018/083975号International Publication No. 2018/083975 国際公開第2020/196432号International Publication No. 2020/196432
 しかし、特許文献1記載の技術は、シルバーストリークの発生を抑えるために、結晶性樹脂を配合し、無機充填剤と結晶性樹脂の親和性により、結晶性樹脂中に充填剤が埋包され、その結果、芳香族ポリカーボネート樹脂と充填剤との接触が低減されて、芳香族ポリカーボネート樹脂の分解を抑える技術であると理解されるが、実際には結晶性樹脂に埋包されない充填剤や結晶性樹脂に埋包されるまでの間にポリカーボネート樹脂と接触する充填剤によって芳香族ポリカーボネート樹脂がアルカリ分解される可能性があり、シルバーストリークの発生を抑えるという効果は十分ではなかった。 However, in the technique described in Patent Document 1, a crystalline resin is blended in order to suppress the generation of silver streaks, and the filler is embedded in the crystalline resin due to the affinity between the inorganic filler and the crystalline resin. As a result, it is understood that it is a technique for suppressing the decomposition of the aromatic polycarbonate resin by reducing the contact between the aromatic polycarbonate resin and the filler, but the filler and the crystalline property are not actually embedded in the crystalline resin. The aromatic polycarbonate resin may be alkaline-decomposed by the filler that comes into contact with the polycarbonate resin before being embedded in the resin, and the effect of suppressing the generation of silver streaks was not sufficient.
 また、特許文献2記載の技術は、乳化重合によって得られたゴム強化スチレン系樹脂が用いられたことでシルバーストリークの発生を抑えるという点においては一定の効果があるものの、十分な有効性をもたらすには至っていない。 Further, the technique described in Patent Document 2 has a certain effect in suppressing the generation of silver streaks due to the use of the rubber-reinforced styrene resin obtained by emulsion polymerization, but brings about sufficient effectiveness. Has not been reached.
 そこで、本発明は、成形品とした時のシルバーストリークの発生をより抑制できる熱可塑性樹脂組成物を提供すること、および、当該熱可塑性樹脂組成物を用いた成形品を提供することを課題とする。 Therefore, it is an object of the present invention to provide a thermoplastic resin composition capable of further suppressing the generation of silver streaks when made into a molded product, and to provide a molded product using the thermoplastic resin composition. do.
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、ポリカーボネート樹脂、グラフト共重合体に特定のタルクを配合することで、成形品のシルバーストリークの発生を抑えることができる熱可塑性樹脂組成物を得ることができることを見いだし、本発明に到達した。 As a result of diligent studies to solve the above problems, the present inventors have been able to suppress the generation of silver streak in the molded product by blending a specific talc into the polycarbonate resin and the graft copolymer. We have found that a plastic resin composition can be obtained, and have arrived at the present invention.
 すなわち、本発明は以下の(1)~(5)で構成される。
(1) ポリカーボネート樹脂(I)、グラフト共重合体(II)、タルク(IV)を配合してなり、タルク(IV)の重量を100重量%としたとき、鉄成分およびカルシウム成分の含有量が、それぞれFeとして0.19重量%以下、CaOとして1.9重量%以下であることを特徴とする熱可塑性樹脂組成物。
(2) グラフト共重合体(II)が、ジエン系ゴム質重合体の存在下に、芳香族ビニル系単量体およびシアン化ビニル系単量体を少なくとも含有する単量体混合物をグラフト重合してなるグラフト共重合体(II-1)、または、アクリル酸エステル系単量体と多官能性単量体を重合してなるアクリル系ゴム質重合体の存在下に、芳香族ビニル系単量体およびシアン化ビニル系単量体を少なくとも含む単量体混合物をグラフト重合してなるグラフト共重合体(II-2)である(1)に記載の熱可塑性樹脂組成物。
(3) さらに、ビニル系共重合体(III)を含むことを特徴とする(1)または(2)に記載の熱可塑性樹脂組成物。
(4) さらに、縮合リン酸エステル(V)および結晶性樹脂(VI)のいずれかまたは両方を含むことを特徴とする(1)~(3)のいずれかに記載の熱可塑性樹脂組成物。
(5) (1)~(4)のいずれかに記載の熱可塑性樹脂組成物を成形してなる成形品。
That is, the present invention is composed of the following (1) to (5).
(1) Polycarbonate resin (I), graft copolymer (II), and talc (IV) are blended, and when the weight of talc (IV) is 100% by weight, the contents of iron component and calcium component are high. , 0.19% by weight or less as Fe 2 O 3 and 1.9% by weight or less as CaO, respectively.
(2) The graft copolymer (II) graft-polymerizes a monomer mixture containing at least an aromatic vinyl-based monomer and a cyanide vinyl-based monomer in the presence of a diene-based rubbery polymer. In the presence of a graft copolymer (II-1) or an acrylic rubbery polymer obtained by polymerizing an acrylic acid ester-based monomer and a polyfunctional monomer, an aromatic vinyl-based single amount. The thermoplastic resin composition according to (1), which is a graft copolymer (II-2) obtained by graft-polymerizing a monomer mixture containing at least a body and a vinyl cyanide-based monomer.
(3) The thermoplastic resin composition according to (1) or (2), which further contains a vinyl-based copolymer (III).
(4) The thermoplastic resin composition according to any one of (1) to (3), further comprising one or both of a condensed phosphoric acid ester (V) and a crystalline resin (VI).
(5) A molded product obtained by molding the thermoplastic resin composition according to any one of (1) to (4).
 本発明によれば、成形品におけるシルバーストリークの発生を抑制できる。一般にシルバーストリークは、成形機シリンダーや金型ホットランナー温度を上げた場合、悪化する傾向あるが、本発明のシルバーストリークの発生を抑えることができる樹脂組成物を用いることにより温度を高めることが可能となり、大型成形品、複雑な形状を有する成形品、薄肉成形品を射出成形によって得ることができる。そのため、製品の大型化や形状の複雑化に適応できるだけでなく、薄肉化によって製品のコストダウンに繋げることができる。 According to the present invention, the generation of silver streak in a molded product can be suppressed. Generally, the silver streak tends to worsen when the temperature of the molding machine cylinder or the hot runner of the mold is raised, but the temperature can be raised by using the resin composition capable of suppressing the generation of the silver streak of the present invention. Therefore, a large-sized molded product, a molded product having a complicated shape, and a thin-walled molded product can be obtained by injection molding. Therefore, it is possible not only to adapt to the increase in size and complexity of the product, but also to reduce the cost of the product by reducing the wall thickness.
図1(a)、(b)は実施例の項で作製した角形の平板を模式的に示す説明図であり、図1(a)は平面図、図1(b)は図1(a)のA-A’断面図である。1 (a) and 1 (b) are explanatory views schematically showing a rectangular flat plate produced in the section of Examples, FIG. 1 (a) is a plan view, and FIG. 1 (b) is FIG. 1 (a). It is a cross-sectional view of AA'.
 以下、本発明の熱可塑性樹脂組成物とその成形品について、具体的に説明する。 Hereinafter, the thermoplastic resin composition of the present invention and its molded product will be specifically described.
 [ポリカーボネート樹脂(I)]
 本発明に用いられるポリカーボネート樹脂(I)とは、一般的に下記一般式(1)で表される繰り返し構造単位を有する樹脂として知られている。
[Polycarbonate resin (I)]
The polycarbonate resin (I) used in the present invention is generally known as a resin having a repeating structural unit represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、Zは炭素数2~5の置換あるいは非置換のアルキリデン基、シクロヘキシリデン基、酸素原子、硫黄原子またはスルホニル基を表す。R、R、R、Rは、水素原子または炭素数1~6のアルキル基であり、それぞれ同一であっても異なっていてもよい。)。 (In the formula, Z represents a substituted or unsubstituted alkylidene group, cyclohexylidene group, oxygen atom, sulfur atom or sulfonyl group having 2 to 5 carbon atoms. R 1 , R 2 , R 3 and R 4 are hydrogen. It is an atom or an alkyl group having 1 to 6 carbon atoms, and may be the same or different from each other).
 本発明においては、Zはイソプロピリデン基、R~Rは水素原子であるものが好ましい。 In the present invention, it is preferable that Z is an isopropanol group and R 1 to R 4 are hydrogen atoms.
 ポリカーボネート樹脂(I)は、2,2-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンで代表的に例示される芳香族ジヒドロキシ化合物と、ホスゲンで代表的に例示されるカーボネート前駆体との反応によって得ることができる。 The polycarbonate resin (I) is represented by an aromatic dihydroxy compound represented by 2,2-bis (4-hydroxyphenyl) propane and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane. , Can be obtained by reaction with a carbonate precursor exemplified by phosgene.
 本発明の熱可塑性樹脂組成物において、ポリカーボネート樹脂(I)の含有量は、ポリカーボネート樹脂(I)、グラフト共重合体(II)、任意成分として用いられるビニル系共重合体(III)、およびタルク(IV)の含有量の合計を100重量%としたときに、60~90重量%の範囲であることが好ましく、より好ましくは65~85重量%、さらに好ましくは70~80重量%である。ポリカーボネート樹脂(I)の含有量が60重量%を下回った場合には、流動性には優れるものの、耐衝撃性と耐熱性が低下することがある。一方、含有量が90重量%を超えた場合には、耐衝撃性、耐熱性には優れるものの、射出成形時の流動性が不足し、成形できない製品が発生することがある。 In the thermoplastic resin composition of the present invention, the content of the polycarbonate resin (I) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III) used as an optional component, and the talc. When the total content of (IV) is 100% by weight, it is preferably in the range of 60 to 90% by weight, more preferably 65 to 85% by weight, and further preferably 70 to 80% by weight. When the content of the polycarbonate resin (I) is less than 60% by weight, the fluidity is excellent, but the impact resistance and the heat resistance may be lowered. On the other hand, when the content exceeds 90% by weight, some products may not be molded due to insufficient fluidity during injection molding, although they are excellent in impact resistance and heat resistance.
 本発明において、ポリカーボネート樹脂(I)の粘度平均分子量(M)は、特に制限は無いが、好ましくは10,000以上、21,000以下、より好ましくは12,000以上、20,000以下、最も好ましくは15,000以上、18,000以下である。Mが10,000以上の場合には、耐衝撃性などの機械特性、耐熱性などが向上する傾向があり、21,000以下の場合には流動性向上、成形品外観良化する傾向があり、好ましい。 In the present invention, the viscosity average molecular weight ( MV ) of the polycarbonate resin (I) is not particularly limited, but is preferably 10,000 or more and 21,000 or less, more preferably 12,000 or more and 20,000 or less. Most preferably, it is 15,000 or more and 18,000 or less. When the MV is 10,000 or more, mechanical properties such as impact resistance and heat resistance tend to improve, and when it is 21,000 or less, the fluidity tends to improve and the appearance of the molded product tends to improve. Yes, preferred.
 本発明において、ポリカーボネート樹脂(I)の粘度平均分子量(M)は、次の方法により求めることができる。 In the present invention, the viscosity average molecular weight ( MV ) of the polycarbonate resin (I) can be determined by the following method.
 まず、塩化メチレン100mlにポリカーボネート樹脂(I)0.7gを20℃で溶解した溶液(濃度c=0.7)から、オストワルド粘度計を用いて、次式にて算出される比粘度(ηSP)を求める。
比粘度(ηSP)=(t-t)/t
[tは塩化メチレンの落下秒数、tは試料溶液の落下秒数]
 続いて、求められた比粘度(ηSP)から次のSchnellの式により粘度平均分子量Mを算出することができる。
ηSP/c=[η]+0.45×[η]c(但し[η]は極限粘度)
[η]=1.23×10-4 0.83
 本発明の熱可塑性樹脂組成物を組成するグラフト共重合体(II)としては、ジエン系ゴム質重合体(A1)の存在下に、芳香族ビニル系単量体(B)およびシアン化ビニル系単量体(C)を少なくとも含有する単量体混合物をグラフト重合してなるグラフト共重合体(II-1)、
または、
アクリル酸エステル系単量体と多官能性単量体を共重合して得られるアクリル系ゴム質重合体(以下、「アクリル系ゴム質重合体(A2)」と記載することがある。)の存在下に、芳香族ビニル系単量体(B)およびシアン化ビニル系単量体(C)を少なくとも含む単量体混合物をグラフト重合してなるグラフト共重合体(II-2)を用いることが好ましい。
First, the specific viscosity (η SP ) calculated by the following formula from a solution (concentration c = 0.7) in which 0.7 g of polycarbonate resin (I) is dissolved in 100 ml of methylene chloride at 20 ° C. using an Ostwald viscometer. ).
Specific viscosity (η SP ) = (tt 0 ) / t 0
[T 0 is the number of seconds for methylene chloride to fall, and t is the number of seconds for the sample solution to fall]
Subsequently, the viscosity average molecular weight MV can be calculated from the obtained specific viscosity (η SP ) by the following Schnell's formula.
η SP / c = [η] +0.45 × [η] 2 c (however, [η] is the ultimate viscosity)
[Η] = 1.23 × 10 -4 MV 0.83
The graft copolymer (II) constituting the thermoplastic resin composition of the present invention includes an aromatic vinyl-based monomer (B) and a vinyl cyanide-based monomer (B) in the presence of a diene-based rubbery polymer (A1). A graft copolymer (II-1) obtained by graft-polymerizing a monomer mixture containing at least the monomer (C),
or,
Acrylic rubber polymer obtained by copolymerizing an acrylic acid ester monomer and a polyfunctional monomer (hereinafter, may be referred to as "acrylic rubber polymer (A2)"). To use a graft copolymer (II-2) obtained by graft-polymerizing a monomer mixture containing at least an aromatic vinyl-based monomer (B) and a cyanide vinyl-based monomer (C) in the presence. Is preferable.
 [グラフト共重合体(II-1)]
 グラフト共重合体(II-1)に用いることができるジエン系ゴム質重合体(A1)としては、ガラス転移温度が0℃以下のものが好適であり、その下限値は実用上-80℃程度である。使用できるジエン系ゴム質重合体を例示すると、ポリブタジエン、スチレン-ブタジエン共重合体、アクリロニトリル-ブタジエン共重合体、スチレン-ブタジエンブロック共重合体およびアクリル酸ブチル-ブタジエン共重合体などが挙げられるが、なかでも、ポリブタジエンが好ましく用いられる。
[Graft copolymer (II-1)]
The diene-based rubbery polymer (A1) that can be used for the graft copolymer (II-1) is preferably one having a glass transition temperature of 0 ° C. or lower, and its lower limit is practically about -80 ° C. Is. Examples of diene-based rubbery polymers that can be used include polybutadiene, styrene-butadiene copolymer, acrylonitrile-butadiene copolymer, styrene-butadiene block copolymer, and butyl acrylate-butadiene copolymer. Of these, polybutadiene is preferably used.
 ジエン系ゴム質重合体(A1)の重量平均粒子径は特に制限はないが、100~1200nmであることが好ましく、200~1200nmであることがより好ましい。ジエン系ゴム質重合体(A1)として重量平均粒子径が100nmに満たないものを使用すると、耐衝撃性が低下することがあり、一方、重量平均粒子径が1200nmを超えるものを使用する場合には、流動性が低下することがある。 The weight average particle size of the diene-based rubbery polymer (A1) is not particularly limited, but is preferably 100 to 1200 nm, and more preferably 200 to 1200 nm. If a diene-based rubber polymer (A1) having a weight average particle size of less than 100 nm is used, the impact resistance may decrease, while when a diene-based rubber polymer (A1) having a weight average particle size of more than 1200 nm is used. May reduce fluidity.
 また、ジエン系ゴム質重合体(A1)としては、耐衝撃性と流動性との両立の観点から、重量平均粒子径が200~400nmの粒子と、重量平均粒子径が450~1200nmの粒子を併用することが好ましく、より好ましくは重量平均粒子径が280~400nmの粒子と600~1200nmの粒子の併用、さらに好ましくは重量平均粒子径が320~380nmの粒子と700~1100nmの粒子の併用である。 Further, as the diene-based rubbery polymer (A1), particles having a weight average particle diameter of 200 to 400 nm and particles having a weight average particle diameter of 450 to 1200 nm are used from the viewpoint of achieving both impact resistance and fluidity. It is preferable to use them in combination, more preferably particles having a weight average particle diameter of 280 to 400 nm and particles having a weight average particle diameter of 600 to 1200 nm, and more preferably particles having a weight average particle diameter of 320 to 380 nm and particles having a weight average particle diameter of 700 to 1100 nm. be.
 粒径が異なる2種類のジエン系ゴム質重合体(A1)を用いる場合、耐衝撃性と流動性の観点から、低粒子径の粒子と高粒子径の粒子の重量比率は、90:10~50:50の範囲にあることが好ましく、より好ましくは80:20~60:40、さらに好ましくは75:25~65:35の範囲である。 When two types of diene-based rubbery polymers (A1) having different particle sizes are used, the weight ratio of the particles having a low particle size to the particles having a high particle size is 90:10 or more from the viewpoint of impact resistance and fluidity. It is preferably in the range of 50:50, more preferably 80:20 to 60:40, and even more preferably 75:25 to 65:35.
 なお、ジエン系ゴム質重合体(A1)の重量平均粒子径は、「Rubbaer Age Vol.88 p.484~490(1960)by E.Schmidt,P.H.Biddison」に記載のアルギン酸ナトリウム法(アルギン酸ナトリウムの濃度量割合とアルギン酸ナトリウム濃度の累積重量分率より累積重量分率50%の粒子径を求める。)により測定することができる。 The weight average particle size of the diene-based rubbery polymer (A1) is the sodium alginate method according to "Rubbaer Age Vol. 88 p.484-490 (1960) by E. Schmidt, PH Bidison". The particle size of the cumulative weight fraction of 50% is obtained from the concentration ratio of sodium alginate and the cumulative weight fraction of the sodium alginate concentration).
 グラフト共重合体(II-1)におけるジエン系ゴム質重合体(A1)の重量分率は、40~65重量%であることが好ましく、より好ましくは40~60重量%であり、さらに好ましくは40~50重量%である。重量分率が40重量%以上では耐衝撃性が向上し、一方、65重量%以下では流動性が向上するため好ましい。 The weight fraction of the diene-based rubbery polymer (A1) in the graft copolymer (II-1) is preferably 40 to 65% by weight, more preferably 40 to 60% by weight, still more preferably. It is 40 to 50% by weight. When the weight fraction is 40% by weight or more, the impact resistance is improved, while when it is 65% by weight or less, the fluidity is improved, which is preferable.
 単量体混合物に含まれる芳香族ビニル系単量体(B)としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン、o-エチルスチレン、p-メチルスチレン、クロロスチレンおよびブロモスチレンなどが挙げられるが、特にスチレンが好ましく採用される。 Examples of the aromatic vinyl-based monomer (B) contained in the monomer mixture include styrene, α-methylstyrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, chlorostyrene and bromostyrene. However, styrene is particularly preferably adopted.
 単量体混合物に含まれるシアン化ビニル系単量体(C)としては、例えば、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられるが、特にアクリロニトリルが好ましく採用される。 Examples of the vinyl cyanide-based monomer (C) contained in the monomer mixture include acrylonitrile, methacrylonitrile, etacrylonitrile, and the like, and acrylonitrile is particularly preferably adopted.
 その他、単量体混合物には本発明の効果を失わない程度に芳香族ビニル系単量体(B)およびシアン化ビニル系単量体(C)と共重合可能な他のビニル系単量体が含まれうる。そのような他のビニル系単量体の具体例としては、N-フェニルマレイミド、N-メチルマレイミドおよびメタクリル酸メチルなどが挙げられ、目的に応じて選択することができ、これらは単独でも複数種でも用いることが可能である。なお、耐熱性や難燃性をさらに向上させる意図があれば、N-フェニルマレイミドを用いることが好ましい。また、硬度向上を重視させるのであれば、メタクリル酸メチルが好ましく用いられる。 In addition, other vinyl-based monomers copolymerizable with the aromatic vinyl-based monomer (B) and the vinyl cyanide-based monomer (C) to the extent that the effect of the present invention is not lost in the monomer mixture. May be included. Specific examples of such other vinyl-based monomers include N-phenylmaleimide, N-methylmaleimide, and methyl methacrylate, which can be selected according to the purpose, and these may be used alone or in a plurality of types. However, it can be used. If there is an intention to further improve heat resistance and flame retardancy, it is preferable to use N-phenylmaleimide. Further, if the improvement of hardness is emphasized, methyl methacrylate is preferably used.
 グラフト共重合体(II-1)における芳香族ビニル系単量体(B)の重量分率は、26~43重量%が好ましく、より好ましくは30~41重量%、特に好ましくは35~41重量%である。芳香族ビニル系単量体(B)の重量分率が26重量%以上の場合には、着色しにくい傾向があり、一方、43重量%以下の場合にはグラフト重合が進行しやすく、グラフト率が向上し、耐衝撃性が向上する傾向がある。 The weight fraction of the aromatic vinyl-based monomer (B) in the graft copolymer (II-1) is preferably 26 to 43% by weight, more preferably 30 to 41% by weight, and particularly preferably 35 to 41% by weight. %. When the weight fraction of the aromatic vinyl-based monomer (B) is 26% by weight or more, it tends to be difficult to color, while when it is 43% by weight or less, graft polymerization is likely to proceed and the graft ratio is high. Is improved, and the impact resistance tends to be improved.
 グラフト共重合体(II-1)におけるシアン化ビニル系単量体(C)の重量分率は、9~17重量%が好ましく、より好ましくは10~16重量%、さらに好ましくは12~16重量%である。シアン化ビニル系単量体(C)の重量分率が9重量%以上の場合には、グラフト重合が進行しやすく、グラフト率が向上し、耐衝撃性が向上する傾向があり、17重量%以下の場合には、着色しにくい傾向がある。 The weight fraction of the vinyl cyanide-based monomer (C) in the graft copolymer (II-1) is preferably 9 to 17% by weight, more preferably 10 to 16% by weight, still more preferably 12 to 16% by weight. %. When the weight fraction of the vinyl cyanide-based monomer (C) is 9% by weight or more, the graft polymerization tends to proceed, the graft ratio is improved, and the impact resistance tends to be improved, which is 17% by weight. In the following cases, it tends to be difficult to color.
 グラフト共重合体(II-1)のグラフト率は、特に制限されるものではない。耐衝撃性と流動性のバランスから、グラフト率は7~30%が好ましく、より好ましくは20~28%、さらに好ましくは22~26%である。グラフト率(%)は、次式で示される。
グラフト率(%)=[ジエン系ゴム質重合体にグラフト重合したビニル系重合体量]/[グラフト共重合体のゴム含有量]×100。
The graft ratio of the graft copolymer (II-1) is not particularly limited. From the viewpoint of the balance between impact resistance and fluidity, the graft ratio is preferably 7 to 30%, more preferably 20 to 28%, still more preferably 22 to 26%. The graft ratio (%) is expressed by the following equation.
Graft rate (%) = [amount of vinyl-based polymer graft-polymerized on diene-based rubbery polymer] / [rubber content of graft copolymer] × 100.
 グラフト共重合体(II-1)の重合方法としては、乳化重合法、懸濁重合法、連続塊状重合法、溶液連続重合法などの任意の方法を用いることができ、これらを2種以上組みあわせてもよい。重合時の温度制御が容易であることから、乳化重合法が最も好ましい。 As the polymerization method of the graft copolymer (II-1), any method such as an emulsion polymerization method, a suspension polymerization method, a continuous massive polymerization method, and a solution continuous polymerization method can be used, and two or more of these can be combined. You may combine them. The emulsion polymerization method is most preferable because it is easy to control the temperature during polymerization.
 グラフト共重合体(II-1)として、例えばアクリロニトリル・ブタジエン・スチレングラフト共重合体(ABS樹脂)、メチルメタクリレート・ブタジエン・スチレングラフト共重合体(MBS樹脂)、メチルメタクリレート・アクリロニトリル・ブタジエン・スチレングラフト共重合体(MABS樹脂)等を挙げることができる。なかでもアクリロニトリル・ブタジエン・スチレングラフト共重合体(ABS樹脂)が好ましい。 Examples of the graft copolymer (II-1) include acrylonitrile / acrylonitrile / styrene graft copolymer (ABS resin), methylmethacrylate / butadiene / styrene graft copolymer (MBS resin), and methylmethacrylate / acrylonitrile / butadiene / styrene graft. A copolymer (MABS resin) and the like can be mentioned. Of these, an acrylonitrile-butadiene-styrene graft copolymer (ABS resin) is preferable.
 [グラフト共重合体(II-2)]
 グラフト共重合体(II-2)を含む熱可塑性樹脂組成物は耐候性に優れる。
[Graft copolymer (II-2)]
The thermoplastic resin composition containing the graft copolymer (II-2) has excellent weather resistance.
 グラフト共重合体(II-2)に用いることができるアクリル酸エステル系単量体(a)と多官能性単量体(b)を共重合して得られるアクリル系ゴム質重合体(A2)を構成するアクリル酸エステル系単量体(a)としては、炭素数1~10のアルキル基を有するものが好ましく、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸オクチルなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、アクリル酸n-ブチルが好ましい。 Acrylic rubber polymer (A2) obtained by copolymerizing an acrylic acid ester-based monomer (a) that can be used for the graft copolymer (II-2) and a polyfunctional monomer (b). As the acrylic acid ester-based monomer (a) constituting the above, those having an alkyl group having 1 to 10 carbon atoms are preferable, and for example, methyl acrylate, ethyl acrylate, n-butyl acrylate, t-acrylic acid. Examples include butyl and octyl acrylate. Two or more of these may be used. Among these, n-butyl acrylate is preferable.
 アクリル系ゴム質重合体(A2)を構成する多官能性単量体(b)は、官能基を2以上有するものであれば特に限定されず、官能基としては、例えば、アリル基、(メタ)アクリロイル基などの炭素-炭素二重結合を有する基などが挙げられる。多官能性単量体(b)としては、例えば、アクリル酸アリル、メタクリル酸アリル、マレイン酸ジアリル、トリアリルシアヌレート、トリアリルイソシアヌレートなどのアリル系化合物、ジビニルベンゼン、エチレングリコールジメタクリレート、ジエチレングリコールジメタクリレート、プロピレングリコールジメタクリレートなどのジ(メタ)アクリル酸エステル系化合物などが挙げられる。これらを2種以上用いてもよい。これらの中でも、後述するアクリル系ゴム質重合体(A2)のトルエン中におけるゲル膨潤度およびグラフト共重合体(II-2)のグラフト率を所望の範囲に調整しやすいことから、メタクリル酸アリルを用いることが好ましい。 The polyfunctional monomer (b) constituting the acrylic rubbery polymer (A2) is not particularly limited as long as it has two or more functional groups, and examples of the functional group include an allyl group and (meth). ) A group having a carbon-carbon double bond such as an acryloyl group can be mentioned. Examples of the polyfunctional monomer (b) include allyl compounds such as allyl acrylate, allyl methacrylate, diallyl maleate, triallyl cyanurate, and triallyl isocyanurate, divinylbenzene, ethylene glycol dimethacrylate, and diethylene glycol. Examples thereof include di (meth) acrylic acid ester compounds such as dimethacrylate and propylene glycol dimethacrylate. Two or more of these may be used. Among these, allyl methacrylate is used because it is easy to adjust the gel swelling degree of the acrylic rubber polymer (A2) described later in toluene and the graft ratio of the graft copolymer (II-2) within a desired range. It is preferable to use it.
 本発明におけるアクリル系ゴム質重合体(A2)は、アクリル酸エステル系単量体(a)および多官能性単量体(b)の合計100重量%に対して、アクリル酸エステル系単量体(a)97~99.5重量%、多官能性単量体(b)3~0.5重量%を共重合して得ることが好ましい。アクリル酸エステル系単量体(a)が97重量%以上であり、多官能性単量体(b)が3重量%以下の場合、後述するアクリル系ゴム質重合体(A2)のトルエン中におけるゲル膨潤度が増加し、後述するグラフト共重合体(II-2)のグラフト率が低下する傾向がある。その結果、熱可塑性樹脂組成物の流動性が向上し、さらにグラフト共重合体(II-2)の粒子が凝集した構造を有することができるため、成形品の衝撃強度、面衝撃性が向上する。 The acrylic rubbery polymer (A2) in the present invention is an acrylic acid ester-based monomer based on 100% by weight of the total of the acrylic acid ester-based monomer (a) and the polyfunctional monomer (b). It is preferable to obtain (a) 97 to 99.5% by weight and the polyfunctional monomer (b) 3 to 0.5% by weight by copolymerizing. When the acrylic acid ester-based monomer (a) is 97% by weight or more and the polyfunctional monomer (b) is 3% by weight or less, the acrylic rubbery polymer (A2) described later in toluene. The degree of gel swelling tends to increase, and the graft ratio of the graft copolymer (II-2) described later tends to decrease. As a result, the fluidity of the thermoplastic resin composition is improved, and further, since the graft copolymer (II-2) particles can have an aggregated structure, the impact strength and surface impact resistance of the molded product are improved. ..
 アクリル系ゴム質重合体(A2)を得るにおいて、アクリル酸エステル系単量体(a)が98重量%以上、多官能性単量体(b)が2重量%以下であることがより好ましく、アクリル酸エステル系単量体(a)が98.5重量%を超え、多官能性単量体(b)が1.5重量%未満であることがさらに好ましい。 In obtaining the acrylic rubbery polymer (A2), it is more preferable that the acrylic acid ester-based monomer (a) is 98% by weight or more and the polyfunctional monomer (b) is 2% by weight or less. It is more preferable that the acrylic acid ester-based monomer (a) is more than 98.5% by weight and the polyfunctional monomer (b) is less than 1.5% by weight.
 一方、アクリル酸エステル系単量体(a)が99.5重量%以下で、多官能性単量体(b)が0.5重量%以上である場合、後述するグラフト共重合体(II-2)のグラフト率が向上し、成形品の衝撃強度、面衝撃性が向上するため好ましい。 On the other hand, when the acrylic acid ester-based monomer (a) is 99.5% by weight or less and the polyfunctional monomer (b) is 0.5% by weight or more, the graft copolymer (II-) described later will be described. It is preferable because the graft ratio of 2) is improved and the impact strength and surface impact property of the molded product are improved.
 アクリル酸エステル系単量体(a)は、99.3重量%以下であることがより好ましく、さらに好ましくは99.0重量%以下である。また、多官能性単量体(b)は、0.7重量%以上であることがより好ましく、さらに好ましくは1.0重量%以上である。 The acrylic acid ester-based monomer (a) is more preferably 99.3% by weight or less, still more preferably 99.0% by weight or less. Further, the polyfunctional monomer (b) is more preferably 0.7% by weight or more, still more preferably 1.0% by weight or more.
 アクリル系ゴム質重合体(A2)の重合方法としては、乳化重合法、懸濁重合法、連続塊状重合法、溶液連続重合法などの任意の方法を用いることができ、これらを2種以上組みあわせてもよい。これらの中でも、乳化重合法または塊状重合法が好ましい。重合時の除熱により体積平均粒子径を所望の範囲に調整しやすいことから、乳化重合法が最も好ましい。 As the polymerization method of the acrylic rubber polymer (A2), any method such as an emulsion polymerization method, a suspension polymerization method, a continuous massive polymerization method, and a solution continuous polymerization method can be used, and two or more of these can be combined. You may combine them. Among these, the emulsification polymerization method or the massive polymerization method is preferable. The emulsion polymerization method is most preferable because it is easy to adjust the volume average particle size to a desired range by removing heat during polymerization.
 乳化重合法に用いる乳化剤は特に制限はなく、各種界面活性剤を使用できる。界面活性剤としては、カルボン酸塩型、硫酸エステル塩型、スルホン酸塩型などのアニオン系界面活性剤が好ましく使用される。これらを2種以上用いてもよい。 The emulsifier used in the emulsification polymerization method is not particularly limited, and various surfactants can be used. As the surfactant, an anionic surfactant such as a carboxylate type, a sulfate ester salt type, or a sulfonate type is preferably used. Two or more of these may be used.
 アニオン系界面活性剤の具体例としては、カプリル酸塩、カプリン酸塩、ラウリル酸塩、ミスチリン酸塩、パルミチン酸塩、ステアリン酸塩、オレイン酸塩、リノール酸塩、リノレン酸塩、ロジン酸塩、ベヘン酸塩、ヒマシ油硫酸エステル塩、ラウリルアルコール硫酸エステル塩、ドデシルベンゼンスルホン酸塩、アルキルナフタレンスルホン酸塩、アルキルジフェニルエーテルジスルホン酸塩、ナフタレンスルホン酸塩縮合物、ジアルキルスルホコハク酸塩、ポリオキシエチレンラウリル硫酸塩、ポリオキシエチレンアルキルエーテル硫酸塩、ポリオキシエチレンアルキルフェニルエーテル硫酸塩などが挙げられる。ここで言う塩としては、アンモニウム塩、ナトリウム塩、リチウム塩、カリウム塩などのアルカリ金属塩などが挙げられる。 Specific examples of anionic surfactants include caprylate, caprinate, laurylate, mythylate, palmitate, stearate, oleate, linoleate, linolenate, and rosinate. , Behenate, castor oil sulfate, lauryl alcohol sulfate, dodecylbenzene sulfonate, alkylnaphthalene sulfonate, alkyldiphenyl ether disulfonate, naphthalene sulfonate condensate, dialkyl sulfosuccinate, polyoxyethylene Examples thereof include lauryl sulfate, polyoxyethylene alkyl ether sulfate, and polyoxyethylene alkyl phenyl ether sulfate. Examples of the salt referred to here include alkali metal salts such as ammonium salt, sodium salt, lithium salt and potassium salt.
 重合に用いる開始剤は特に制限はなく、過酸化物としてクメンハイドロパーオキサイド、アゾ系化合物としてアゾビスイソブチロニトリルまたは過硫酸塩として過硫酸カリウムなどが好ましく、これらの開始剤を2種以上用いてもよい。 The initiator used for the polymerization is not particularly limited, and coumenhydroperoxide is preferable as the peroxide, azobisisobutyronitrile as the azo compound, potassium persulfate as the persulfate, and the like, and two or more of these initiators are used. You may use it.
 本発明において使用するグラフト共重合体(II-2)は、前記アクリル系ゴム質重合体(A2)の存在下に、芳香族ビニル系単量体(B)およびシアン化ビニル系単量体(C)を少なくとも含む単量体混合物をグラフト重合して得られる。つまり、前記グラフト共重合体(II-2)は、アクリル系ゴム質重合体(A2)に、芳香族ビニル系単量体およびシアン化ビニル系単量体を含む単量体混合物をグラフト重合せしめた共重合体である。 The graft copolymer (II-2) used in the present invention is an aromatic vinyl-based monomer (B) and a vinyl cyanide-based monomer (B) in the presence of the acrylic rubbery polymer (A2). It is obtained by graft-polymerizing a monomer mixture containing at least C). That is, the graft copolymer (II-2) is obtained by graft-polymerizing an acrylic rubber polymer (A2) with a monomer mixture containing an aromatic vinyl-based monomer and a cyanide vinyl-based monomer. It is a copolymer.
 グラフト共重合体(II-2)におけるアクリル系ゴム質重合体(A2)の重量分率は20重量%以上であることが好ましく、30重量%以上であることがより好ましい。一方、アクリル系ゴム質重合体(A2)の重量分率は、70重量%以下であることが好ましく、60重量%以下がより好ましい。また、単量体混合物の重量分率は、30重量%以上であることが好ましく、40重量%以上であることがより好ましい。一方、単量体混合物の重量分率は、80重量%以下であることが好ましく、70重量%以下であることがより好ましい。 The weight fraction of the acrylic rubber polymer (A2) in the graft copolymer (II-2) is preferably 20% by weight or more, and more preferably 30% by weight or more. On the other hand, the weight fraction of the acrylic rubber polymer (A2) is preferably 70% by weight or less, more preferably 60% by weight or less. The weight fraction of the monomer mixture is preferably 30% by weight or more, more preferably 40% by weight or more. On the other hand, the weight fraction of the monomer mixture is preferably 80% by weight or less, more preferably 70% by weight or less.
 グラフト共重合体(II-2)を構成する単量体混合物は、芳香族ビニル系単量体(B)およびシアン化ビニル系単量体(C)を含み、必要によりこれらと共重合可能な単量体をさらに含んでもよい。 The monomer mixture constituting the graft copolymer (II-2) contains an aromatic vinyl-based monomer (B) and a vinyl cyanide-based monomer (C), and can be copolymerized with these if necessary. It may further contain a monomer.
 芳香族ビニル系単量体(B)としては、例えば、スチレン、α-メチルスチレン、p-メチルスチレン、m-メチルスチレン、o-メチルスチレン、t-ブチルスチレンなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、スチレンが好ましい。 Examples of the aromatic vinyl-based monomer (B) include styrene, α-methylstyrene, p-methylstyrene, m-methylstyrene, o-methylstyrene, t-butylstyrene and the like. Two or more of these may be used. Among these, styrene is preferable.
 シアン化ビニル系単量体(C)としては、例えば、アクリロニトリル、メタクリロニトリル、エタクリロニトリルなどが挙げられる。これらを2種以上用いてもよい。これらの中でも、アクリロニトリルが好ましい。 Examples of the vinyl cyanide-based monomer (C) include acrylonitrile, methacrylonitrile, and etacrylonitrile. Two or more of these may be used. Of these, acrylonitrile is preferred.
 共重合可能な他の単量体としては、本発明の効果を損なわないものであれば特に制限はなく、例えば、不飽和カルボン酸アルキルエステル系単量体としては(メタ)アクリル酸メチル、不飽和脂肪酸としてはメタクリル酸、アクリルアミド系単量体としてはアクリルアミドやメタクリルアミド、マレイミド系単量体としてはN-フェニルマレイミドなどが好ましく、これらを2種以上用いてもよい。 The other copolymerizable monomer is not particularly limited as long as it does not impair the effect of the present invention. For example, the unsaturated carboxylic acid alkyl ester-based monomer is methyl (meth) acrylate. The saturated fatty acid is preferably methacrylic acid, the acrylamide-based monomer is preferably acrylamide or methacrylamide, and the maleimide-based monomer is preferably N-phenylmaleimide, and two or more of these may be used.
 単量体混合物の混合比率は、単量体混合物の総量100重量%中、芳香族ビニル系単量体(B)が60~80重量%、シアン化ビニル系単量体(C)が20~40重量%、その他共重合可能な単量体が0~20重量%の範囲が好ましい。 The mixing ratio of the monomer mixture was 60 to 80% by weight for the aromatic vinyl-based monomer (B) and 20 to 20 to 80% by weight for the vinyl cyanide-based monomer (C) in 100% by weight of the total amount of the monomer mixture. It is preferably in the range of 40% by weight and 0 to 20% by weight of other copolymerizable monomers.
 グラフト共重合体(II-2)のグラフト率(β)は、5~40%であることが好ましい。グラフト率(β)はグラフト共重合体(II-2)の相溶性を表す指標であり、グラフト率が5%以上であれば、熱可塑性樹脂組成物中におけるグラフト共重合体(II-2)の相溶性が向上し、成形品の衝撃強度、面衝撃性をより向上させることができる。8%以上がより好ましい。一方、グラフト率が40%以下であれば、熱可塑性樹脂組成物中においてグラフト共重合体(II-2)の粒子同士が凝集しやすくなり、成形品の衝撃強度、面衝撃性をより向上させることができる。35%以下がより好ましく、30%以下がさらに好ましい。グラフト率(%)は、次式によって求められる。具体的な測定方法は実施例の項において説明するとおりである。 The graft ratio (β) of the graft copolymer (II-2) is preferably 5 to 40%. The graft ratio (β) is an index showing the compatibility of the graft copolymer (II-2), and if the graft ratio is 5% or more, the graft copolymer (II-2) in the thermoplastic resin composition The compatibility of the molded product is improved, and the impact strength and surface impact resistance of the molded product can be further improved. 8% or more is more preferable. On the other hand, when the graft ratio is 40% or less, the particles of the graft copolymer (II-2) are likely to aggregate in the thermoplastic resin composition, and the impact strength and surface impact resistance of the molded product are further improved. be able to. 35% or less is more preferable, and 30% or less is further preferable. The graft ratio (%) is calculated by the following equation. The specific measurement method is as described in the section of Examples.
 グラフト率(%)=[アクリル系ゴム質重合体にグラフト重合したビニル系重合体量]/[グラフト共重合体のゴム含有量]×100。 Graft rate (%) = [amount of vinyl polymer graft-polymerized on acrylic rubber polymer] / [rubber content of graft copolymer] x 100.
 グラフト共重合体(II-2)のグラフト率は、例えば、前述のアクリル系ゴム質重合体(A2)を用い、重合に用いる連鎖移動剤、乳化剤、開始剤の量などによって所望の範囲に調整することができる。 The graft ratio of the graft copolymer (II-2) is adjusted to a desired range by, for example, using the acrylic rubber polymer (A2) described above and adjusting the amount of the chain transfer agent, emulsifier, initiator and the like used for the polymerization. can do.
 グラフト共重合体(II-2)の重合方法としては、乳化重合法、懸濁重合法、連続塊状重合法、溶液連続重合法などの任意の方法を用いることができ、これらを2種以上組みあわせてもよい。重合時の温度制御が容易であることから、乳化重合法が最も好ましい。 As the polymerization method of the graft copolymer (II-2), any method such as an emulsion polymerization method, a suspension polymerization method, a continuous massive polymerization method, and a solution continuous polymerization method can be used, and two or more of these can be combined. You may combine them. The emulsion polymerization method is most preferable because it is easy to control the temperature during polymerization.
 グラフト共重合体(II-2)の乳化重合法で使用する乳化剤としては、アクリル系ゴム質重合体(A2)の乳化重合法に用いる乳化剤として例示したものを挙げることができる。また、グラフト共重合体(II-2)の重合に用いる重合開始剤としては、アクリル系ゴム質重合体(A2)の重合に用いる開始剤として例示したものを挙げることができる。 Examples of the emulsifier used in the emulsification polymerization method of the graft copolymer (II-2) include those exemplified as the emulsifier used in the emulsification polymerization method of the acrylic rubbery polymer (A2). In addition, examples of the polymerization initiator used for the polymerization of the graft copolymer (II-2) include those exemplified as the initiator used for the polymerization of the acrylic rubbery polymer (A2).
 グラフト共重合体(II-2)の重合度およびグラフト率調整を目的として、連鎖移動剤を使用することもできる。連鎖移動剤の具体例としては、n-オクチルメルカプタン、t-ドデシルメルカプタン、n-ドデシルメルカプタン、n-テトラデシルメルカプタン、n-オクタデシルメルカプタンなどのメルカプタン、テルピノレンなどのテルペンなどが挙げられる。これらを2種以上用いてもよい。これらのなかでも、n-オクチルメルカプタン、t-ドデシルメルカプタンが好ましく用いられる。 A chain transfer agent can also be used for the purpose of adjusting the degree of polymerization and the graft ratio of the graft copolymer (II-2). Specific examples of the chain transfer agent include n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, mercaptan such as n-octadecyl mercaptan, and terpenes such as terpinolen. Two or more of these may be used. Among these, n-octyl mercaptan and t-dodecyl mercaptan are preferably used.
 グラフト共重合体(II-2)のグラフト率を前述の好ましい範囲に調整する観点から、グラフト共重合体(II-2)の重合において、アクリル系ゴム質重合体(A2)および単量体混合物の合計100重量部に対して、連鎖移動剤を0.05~0.5重量部、乳化剤を0.5~5重量部、開始剤を0.1~0.5重量部用いることが好ましい。 From the viewpoint of adjusting the graft ratio of the graft copolymer (II-2) to the above-mentioned preferable range, in the polymerization of the graft copolymer (II-2), the acrylic rubbery polymer (A2) and the monomer mixture are mixed. It is preferable to use 0.05 to 0.5 parts by weight of the chain transfer agent, 0.5 to 5 parts by weight of the emulsifier, and 0.1 to 0.5 parts by weight of the initiator with respect to 100 parts by weight of the total.
 グラフト共重合体(II-2)として、例えばアクリロニトリル・アクリル系ゴム質重合体・スチレングラフト共重合体(ASA樹脂)、メチルメタクリレート・アクリル系ゴム質重合体・スチレングラフト共重合体(MSA樹脂)、メチルメタクリレート・アクリロニトリル・アクリル系ゴム質重合体・スチレングラフト共重合体(MASA樹脂)等を挙げることができる。なかでもアクリロニトリル・アクリル系ゴム質重合体・スチレングラフト共重合体(ASA樹脂)が好ましい。 Examples of the graft copolymer (II-2) include acrylonitrile / acrylic rubber polymer / styrene graft copolymer (ASA resin), methyl methacrylate / acrylic rubber polymer / styrene graft copolymer (MSA resin). , Methyl methacrylate, acrylonitrile, acrylic rubbery polymer, styrene graft copolymer (MASA resin) and the like. Of these, acrylonitrile, acrylic rubbery polymer, and styrene graft copolymer (ASA resin) are preferable.
 本発明にて用いられるグラフト共重合体(II)は、採用される製法によっては、アルカリ性を呈することがある。 The graft copolymer (II) used in the present invention may be alkaline depending on the manufacturing method used.
 例えば、本発明において、グラフト共重合体(II)は、典型的には、乳化重合で製造されたグラフト共重合体(II)の水分散体(ラテックス)に凝固剤を添加することにより、グラフト共重合体(II)を回収することができる。凝固剤としては、酸または水溶性の塩が用いられるが、本発明においては金型汚染性の観点から、酸による凝固が好ましい。凝固剤の具体例としては、硫酸、塩酸、リン酸、酢酸などが挙げられ、これらを2種以上用いることができる。なお、酸で凝固した場合には、グラフト共重合体(II)に酸が付着し、それが残存し、残存した酸によって生産工程中の金属設備の腐食を発生させることがある。それを防止するため、グラフト共重合体(II)に残存した酸を、アルカリ性化合物(中和剤)を用いて、中和した後にグラフト共重合体(II)を回収する方法が好ましい。このとき、グラフト共重合体(II)には中和剤が付着するため、グラフト共重合体(II)はアルカリ性を呈することが多い。なお、本発明において、中和剤としては水酸化ナトリウムが好ましい。 For example, in the present invention, the graft copolymer (II) is typically grafted by adding a coagulant to the aqueous dispersion (latex) of the graft copolymer (II) produced by emulsion polymerization. The copolymer (II) can be recovered. As the coagulant, an acid or a water-soluble salt is used, but in the present invention, coagulation with an acid is preferable from the viewpoint of mold contamination. Specific examples of the coagulant include sulfuric acid, hydrochloric acid, phosphoric acid, acetic acid and the like, and two or more of these can be used. When solidified with an acid, the acid adheres to the graft copolymer (II) and remains, and the remaining acid may cause corrosion of metal equipment during the production process. In order to prevent this, a method of recovering the graft copolymer (II) after neutralizing the acid remaining in the graft copolymer (II) with an alkaline compound (neutralizing agent) is preferable. At this time, since the neutralizing agent adheres to the graft copolymer (II), the graft copolymer (II) is often alkaline. In the present invention, sodium hydroxide is preferable as the neutralizing agent.
 ここで、本発明において、グラフト共重合体(II)がアルカリ性を呈するか否かは、以下の方法で判断することができる。すなわち、最初に、グラフト共重合体(II)を水と混合して固形分濃度10重量%のスラリーとする。次いで、これを90℃のウォータバス中に3時間置き、その後、濾紙(5種A:JIS P 3801)を用いてグラフト共重合体(II)を除去する。そして、得られた濾液を20℃まで降温し、pH計で濾液のpHを測定する。pHが7を超えていればアルカリ性である。 Here, in the present invention, whether or not the graft copolymer (II) exhibits alkalinity can be determined by the following method. That is, first, the graft copolymer (II) is mixed with water to obtain a slurry having a solid content concentration of 10% by weight. Then, this is placed in a water bath at 90 ° C. for 3 hours, and then the graft copolymer (II) is removed using a filter paper (Type 5 A: JIS P3801). Then, the temperature of the obtained filtrate is lowered to 20 ° C., and the pH of the filtrate is measured with a pH meter. If the pH is above 7, it is alkaline.
 本発明の熱可塑性樹脂組成物において、グラフト共重合体(II)の含有量は、ポリカーボネート樹脂(I)、グラフト共重合体(II)、任意成分として用いられるビニル系共重合体(III)、およびタルク(IV)の含有量の合計を100重量%とした場合、3~15重量%の範囲であることが好ましく、より好ましくは4~12重量%、さらに好ましくは5~9重量%である。グラフト共重合体(II)の含有量が3重量%未満の場合には、耐衝撃性が低下する傾向があり、15重量%を超える場合、流動性が低下する傾向があり好ましくないことがある。 In the thermoplastic resin composition of the present invention, the content of the graft copolymer (II) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III) used as an optional component, and the like. When the total content of the talc (IV) is 100% by weight, it is preferably in the range of 3 to 15% by weight, more preferably 4 to 12% by weight, and further preferably 5 to 9% by weight. .. If the content of the graft copolymer (II) is less than 3% by weight, the impact resistance tends to decrease, and if it exceeds 15% by weight, the fluidity tends to decrease, which may not be preferable. ..
 [ビニル系共重合体(III)]
 本発明の熱可塑性樹脂組成物は、さらにビニル系共重合体(III)を含んでいてもよい。ビニル系共重合体(III)は、少なくとも芳香族ビニル系単量体(D)およびシアン化ビニル系単量体(E)を共重合して得られるビニル系共重合体である。
[Vinyl copolymer (III)]
The thermoplastic resin composition of the present invention may further contain a vinyl-based copolymer (III). The vinyl-based copolymer (III) is a vinyl-based copolymer obtained by copolymerizing at least an aromatic vinyl-based monomer (D) and a vinyl cyanide-based monomer (E).
 共重合に際して、芳香族ビニル系単量体(D)は60~85重量%でありシアン化ビニル系単量体(E)は15~40重量%であることが好ましく、より好ましくは、芳香族ビニル系単量体(D)は65~80重量%であり、シアン化ビニル系単量体(E)は20~35重量%であり、さらに好ましくは、芳香族ビニル系単量体(D)は70~80重量%であり、シアン化ビニル系単量体(E)は20~30重量%である。 At the time of copolymerization, the aromatic vinyl-based monomer (D) is preferably 60 to 85% by weight, and the cyanide vinyl-based monomer (E) is preferably 15 to 40% by weight, more preferably aromatic. The vinyl-based monomer (D) is 65 to 80% by weight, the cyanide vinyl-based monomer (E) is 20 to 35% by weight, and more preferably, the aromatic vinyl-based monomer (D). Is 70 to 80% by weight, and the vinyl cyanide-based monomer (E) is 20 to 30% by weight.
 芳香族ビニル系単量体(D)が60重量%以上の場合には、ポリカーボネート樹脂(I)との相溶性が向上し、耐衝撃性等の機械特性が向上する。また、芳香族ビニル系単量体(D)が85重量%以下の場合には、グラフト共重合体(II)との相溶性の向上により耐衝撃性が向上する傾向があるため、好ましい。 When the aromatic vinyl-based monomer (D) is 60% by weight or more, the compatibility with the polycarbonate resin (I) is improved, and the mechanical properties such as impact resistance are improved. Further, when the aromatic vinyl-based monomer (D) is 85% by weight or less, the impact resistance tends to be improved by improving the compatibility with the graft copolymer (II), which is preferable.
 本発明において、ビニル系共重合体(III)は、ジエン系ゴム質重合体(A1)およびアクリル系ゴム質重合体(A2)を含まない。すなわち、グラフト共重合体(II-1)およびグラフト共重合体(II-2)とは異なる共重合体であるものとする。 In the present invention, the vinyl-based copolymer (III) does not contain the diene-based rubbery polymer (A1) and the acrylic-based rubbery polymer (A2). That is, it is assumed that the copolymer is different from the graft copolymer (II-1) and the graft copolymer (II-2).
 ビニル系共重合体(III)の構成成分である芳香族ビニル系単量体(D)としては、前述のグラフト共重合体(II)での芳香族ビニル系単量体(B)と同様に、スチレン、α-メチルスチレン、ビニルトルエン、o-エチルスチレン、p-メチルスチレン、m-メチルスチレン、t-ブチルスチレン、ビニルトルエン、クロロスチレン、ブロモスチレンなどが挙げられる。好ましくはスチレンが用いられる。これらは必ずしも1種類で使用する必要はなく、複数種併用して使用することもできる。これらの中で特にスチレンが好ましく採用される。 The aromatic vinyl-based monomer (D), which is a constituent component of the vinyl-based copolymer (III), is the same as the aromatic vinyl-based monomer (B) in the graft copolymer (II) described above. , Styrene, α-methylstyrene, vinyltoluene, o-ethylstyrene, p-methylstyrene, m-methylstyrene, t-butylstyrene, vinyltoluene, chlorostyrene, bromostyrene and the like. Styrene is preferably used. These do not necessarily have to be used alone, and may be used in combination of a plurality of types. Of these, styrene is particularly preferably adopted.
 ビニル系共重合体(III)の構成成分であるシアン化ビニル系単量体(E)としては、前述のグラフト共重合体(II)でのシアン化ビニル系単量体(C)と同様に、例えば、アクリロニトリル、メタクリロニトリルおよびエタクリロニトリルなどが挙げられるが、特にアクリロニトリルが好ましく採用される。これらは必ずしも1種類で使用する必要はなく、複数種併用して使用することもできる。 The vinyl cyanide-based monomer (E), which is a constituent component of the vinyl-based copolymer (III), is the same as the vinyl cyanide-based monomer (C) in the graft copolymer (II) described above. For example, acrylonitrile, methacrylonitrile, etacrylonitrile and the like can be mentioned, and acrylonitrile is particularly preferably adopted. These do not necessarily have to be used alone, and may be used in combination of a plurality of types.
 また、グラフト共重合体(II)と同様に、ビニル系共重合体(III)においても本発明の効果を失わない程度に芳香族ビニル系単量体(D)およびシアン化ビニル系単量体(E)と共重合可能な他のビニル系単量体を用いても良い。他のビニル系単量体の具体例としては、N-フェニルマレイミド、N-メチルマレイミドおよびメタクリル酸メチルなどが挙げられ、それぞれの目的に応じて選択することができ、これらは単独でも複数でも用いることが可能である。耐熱性や難燃性をさらに向上させる意図があれば、N-フェニルマレイミドが好ましい。また、硬度向上を重視させるのであれば、メタクリル酸メチルが好ましく用いられる。 Further, similarly to the graft copolymer (II), the aromatic vinyl-based monomer (D) and the vinyl cyanide-based monomer also in the vinyl-based copolymer (III) to the extent that the effect of the present invention is not lost. Other vinyl-based monomers copolymerizable with (E) may be used. Specific examples of other vinyl-based monomers include N-phenylmaleimide, N-methylmaleimide, and methyl methacrylate, which can be selected according to their respective purposes, and these may be used alone or in combination of two or more. It is possible. N-Phenylmaleimide is preferable if there is an intention to further improve heat resistance and flame retardancy. Further, if the improvement of hardness is emphasized, methyl methacrylate is preferably used.
 ビニル系共重合体(III)の重量平均分子量は特に制限は無いが、110,000以下が好ましく、より好ましくは105,000以下、さらに好ましくは100,000以下である。特に重量平均分子量の下限は、耐衝撃性の観点から90,000以上が好ましい。 The weight average molecular weight of the vinyl-based copolymer (III) is not particularly limited, but is preferably 110,000 or less, more preferably 105,000 or less, and further preferably 100,000 or less. In particular, the lower limit of the weight average molecular weight is preferably 90,000 or more from the viewpoint of impact resistance.
 ビニル系共重合体(III)として、例えばアクリロニトリル・スチレン共重合体(AS樹脂)、メチルメタクリレート・スチレン共重合体(MS樹脂)等を挙げることができる。なかでもアクリロニトリル・スチレン共重合体(AS樹脂)が好ましい。 Examples of the vinyl-based copolymer (III) include an acrylonitrile / styrene copolymer (AS resin), a methyl methacrylate / styrene copolymer (MS resin), and the like. Of these, an acrylonitrile-styrene copolymer (AS resin) is preferable.
 本発明の熱可塑性樹脂組成物において、ビニル系共重合体(III)の含有量は、ポリカーボネート樹脂(I)、グラフト共重合体(II)、ビニル系共重合体(III)、およびタルク(IV)の含有量の合計を100重量%とした場合、0~12重量%の範囲であることが好ましく、より好ましくは4~10重量%、さらに好ましくは4~8重量%である。ビニル系共重合体(III)の含有量が12重量%を超える場合、耐衝撃性が低下することがあり、好ましくないことがある。 In the thermoplastic resin composition of the present invention, the content of the vinyl-based copolymer (III) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III), and the talc (IV). ) Is 100% by weight, it is preferably in the range of 0 to 12% by weight, more preferably 4 to 10% by weight, and further preferably 4 to 8% by weight. If the content of the vinyl-based copolymer (III) exceeds 12% by weight, the impact resistance may decrease, which may not be preferable.
 本発明において、ビニル系共重合体(III)を含有する場合、240℃、10kgにおけるビニル系共重合体(III)のMFR(g/10分)と240℃、10kgにおけるポリカーボネート樹脂(I)のMFR(g/10分)との比((III)のMFR/(I)のMFR)は、7以上12以下であることが好ましい。より好ましくは、7以上11以下であり、さらに好ましくは8以上11以下である。7未満の場合はシルバーストリークの発生が多くなる傾向があり、12を超えると流動性が低下する傾向がある。 In the present invention, when the vinyl-based copolymer (III) is contained, the MFR (g / 10 min) of the vinyl-based copolymer (III) at 240 ° C. and 10 kg and the polycarbonate resin (I) at 240 ° C. and 10 kg are used. The ratio to the MFR (g / 10 minutes) (MFR of (III) / MFR of (I)) is preferably 7 or more and 12 or less. More preferably, it is 7 or more and 11 or less, and further preferably 8 or more and 11 or less. If it is less than 7, the occurrence of silver streak tends to increase, and if it exceeds 12, the liquidity tends to decrease.
 ポリカーボネート樹脂(I)、グラフト共重合体(II)を含有する樹脂組成物においては、グラフト共重合体(II)がアルカリ性を呈することがあり、斯様なグラフト共重合体(II)がポリカーボネート樹脂に接触すると、ポリカーボネート樹脂はアルカリ分解し、当該分解によって気泡(ガス)が発生し、シルバーストリークなどの外観不具合が発生する。アルカリ分解とは、カーボネート結合部分に水酸化物イオンなどのアルカリが触媒として作用し、加水分解が促進され、二酸化炭素や低分子量成分などのガスが発生する現象として知られている。 In the resin composition containing the polycarbonate resin (I) and the graft copolymer (II), the graft copolymer (II) may be alkaline, and such a graft copolymer (II) is a polycarbonate resin. When the polycarbonate resin comes into contact with the polymer, the polycarbonate resin is decomposed into an alkali, and the decomposition causes bubbles (gas) to be generated, resulting in appearance defects such as silver streaks. Alkali decomposition is known as a phenomenon in which an alkali such as a hydroxide ion acts as a catalyst on a carbonate-bonded portion to promote hydrolysis and generate a gas such as carbon dioxide or a low molecular weight component.
 二種以上の樹脂が配合された樹脂組成物においては、それぞれの樹脂の溶融粘度の比が小さいときに相溶する傾向がある。換言すると、樹脂の溶融粘度の比が大きいと相分離しやすい傾向がある。 In a resin composition containing two or more kinds of resins, they tend to be compatible when the ratio of the melt viscosities of the respective resins is small. In other words, if the ratio of the melt viscosity of the resin is large, the phase separation tends to be easy.
 そのため、本発明においては、ビニル系共重合体(III)とポリカーボネート樹脂(I)について、240℃での溶融粘度の差を特定の範囲とすることにより、ビニル系共重合体(III)がポリカーボネート樹脂(I)と相分離することを促している。 Therefore, in the present invention, the vinyl-based copolymer (III) is made of polycarbonate by setting the difference in melt viscosity at 240 ° C. within a specific range for the vinyl-based copolymer (III) and the polycarbonate resin (I). It promotes phase separation from the resin (I).
 ビニル系共重合体(III)がポリカーボネート樹脂(I)と相分離すると、ビニル系共重合体(III)は、化学構造がより類似するグラフト共重合体(II)周囲に偏在すると考えられ、アルカリ性を呈するグラフト共重合体(II)とポリカーボネート樹脂(I)が接触する確率頻度が小さくなり、これによりポリカーボネート樹脂の分解が抑制され、シルバーストリークの発生をより強く抑えることができると推定している。 When the vinyl-based copolymer (III) is phase-separated from the polycarbonate resin (I), the vinyl-based copolymer (III) is considered to be unevenly distributed around the graft copolymer (II) having a more similar chemical structure, and is alkaline. It is presumed that the frequency of contact between the graft copolymer (II) exhibiting the above and the polycarbonate resin (I) becomes smaller, which suppresses the decomposition of the polycarbonate resin and further suppresses the generation of silver streaks. ..
 本発明において、ビニル系共重合体(III)の製造方法に関しては特に制限はなく、塊状重合、懸濁重合、塊状懸濁重合、溶液重合、乳化重合、沈殿重合およびこれらの組み合わせ等が用いられる。単量体の仕込み方法に関しても特に制限はなく、初期に一括添加してもよく、共重合体の組成分布を付けるため、あるいは防止するために添加方法は数回に分けて重合してもよい。 In the present invention, the method for producing the vinyl-based copolymer (III) is not particularly limited, and bulk polymerization, suspension polymerization, bulk suspension polymerization, solution polymerization, emulsion polymerization, precipitation polymerization and combinations thereof are used. .. There is no particular limitation on the method of charging the monomer, and the monomer may be added all at once at the initial stage, or the method of addition may be divided into several times in order to give or prevent the composition distribution of the copolymer. ..
 本発明において、ビニル系共重合体(III)の重合に使用される開始剤は、グラフト共重合体(II-1)にてあげた開始剤が好適に用いられる。 In the present invention, as the initiator used for the polymerization of the vinyl-based copolymer (III), the initiator mentioned in the graft copolymer (II-1) is preferably used.
 重合を行うに際しては、グラフト共重合体(II-1)、ビニル系共重合体(III)の重合度調節を目的として、メルカプタンやテルペンなどの連鎖移動剤を使用することも可能である。連鎖移動剤の具体例としては、n-オクチルメルカプタン、t-ドデシルメルカプタン、n-ドデシルメルカプタン、n-テトラデシルメルカプタン、n-オクタデシルメルカプタンおよびテルピノレンなどが挙げられる。なかでも、n-オクチルメルカプタン、t-ドデシルメルカプタンおよびn-ドデシルメルカプタンが好ましく用いられる。これらの連鎖移動剤を使用する場合は、1種または2種以上を併用して使用される。 When polymerizing, it is also possible to use a chain transfer agent such as mercaptan or terpene for the purpose of adjusting the degree of polymerization of the graft copolymer (II-1) and the vinyl-based copolymer (III). Specific examples of the chain transfer agent include n-octyl mercaptan, t-dodecyl mercaptan, n-dodecyl mercaptan, n-tetradecyl mercaptan, n-octadecyl mercaptan and terpinolene. Of these, n-octyl mercaptan, t-dodecyl mercaptan and n-dodecyl mercaptan are preferably used. When these chain transfer agents are used, they are used alone or in combination of two or more.
 [タルク(IV)]
 本発明の熱可塑性樹脂組成物を組成するタルク(IV)は特定量の鉄成分、カルシウム成分を含有する。タルク中の鉄成分、カルシウム成分の量は、蛍光X線分析装置により測定、検出された元素量から該当する酸化物量に換算し算出できる。具体的には、不純物として含有される鉄(Fe)成分がFeとして0.19重量%以下である。より好ましくは0.17重量%以下、さらに好ましくは0.15重量%以下である。また、カルシウム(Ca)成分がCaOとして1.9重量%以下であることが好ましい。より好ましくは1.7重量%以下、さらに好ましくは1.5重量%以下である。Feとして0.19重量%を超え、または、CaOとして1.9重量%を超えるとシルバーストリークの発生が多くなるため好ましくない。また、下限値については特に制限はないが、Fe、CaOとしてそれぞれ0.001重量%以上含有することができる。
[Talc (IV)]
The talc (IV) constituting the thermoplastic resin composition of the present invention contains a specific amount of an iron component and a calcium component. The amount of iron component and calcium component in talc can be calculated by converting the amount of elements measured and detected by a fluorescent X-ray analyzer into the amount of the corresponding oxide. Specifically, the iron (Fe) component contained as an impurity is 0.19% by weight or less as Fe 2 O 3 . It is more preferably 0.17% by weight or less, still more preferably 0.15% by weight or less. Further, it is preferable that the calcium (Ca) component is 1.9% by weight or less as CaO. It is more preferably 1.7% by weight or less, still more preferably 1.5% by weight or less. If Fe 2 O 3 exceeds 0.19% by weight, or CaO exceeds 1.9% by weight, silver streak is generated more frequently, which is not preferable. The lower limit is not particularly limited, but Fe 2 O 3 and Ca O can each be contained in an amount of 0.001% by weight or more.
 タルク中の不純物として含有される鉄成分やカルシウム成分がシルバーストリークの発生に与える影響については、鉄やカルシウムがイオン化し、ポリカーボネート樹脂のエステル結合部分に配位、触媒作用によりアルカリ加水分解を促進させると推定される。 Regarding the effect of iron and calcium components contained as impurities in talc on the generation of silver streak, iron and calcium are ionized, coordinated to the ester bond portion of the polycarbonate resin, and promote alkaline hydrolysis by catalytic action. It is estimated to be.
 本発明に使用するタルクの平均粒径には特に制限はないが、機械特性、寸法安定性および滞留安定性、成形品外観の高位でのバランスのため、好ましくは1.0~30.0μmであり、より好ましくは2.0~20.0μm、さらに好ましくは3.0~16.0μmである。平均粒径が、1.0μm以上の場合には、滞留安定性および寸法安定性が向上する傾向があり、7.0μm以下の場合には、機械特性が向上し、成形品外観が良化する傾向があり好ましい。 The average particle size of talc used in the present invention is not particularly limited, but is preferably 1.0 to 30.0 μm because of mechanical properties, dimensional stability and retention stability, and a high balance of the appearance of the molded product. Yes, more preferably 2.0 to 20.0 μm, still more preferably 3.0 to 16.0 μm. When the average particle size is 1.0 μm or more, the retention stability and the dimensional stability tend to be improved, and when the average particle size is 7.0 μm or less, the mechanical properties are improved and the appearance of the molded product is improved. There is a tendency and it is preferable.
 本発明の熱可塑性樹脂組成物において、タルク(IV)の含有量は、ポリカーボネート樹脂(I)、グラフト共重合体(II)、任意成分として用いられるビニル系共重合体(III)、およびタルク(IV)の含有量の合計を100重量%とした場合、5~20重量%の範囲であることが好ましく、より好ましくは6~19重量%、さらに好ましくは7~18重量%である。タルク(IV)の含有量が5重量%未満の場合には、機械特性および寸法安定性が低下する傾向があり、20重量%を超える場合、滞留安定性が低下し、成形品のシルバーストリークの発生が多くなる傾向があり、好ましくない。 In the thermoplastic resin composition of the present invention, the content of talc (IV) is the polycarbonate resin (I), the graft copolymer (II), the vinyl-based copolymer (III) used as an optional component, and the talc ( When the total content of IV) is 100% by weight, it is preferably in the range of 5 to 20% by weight, more preferably 6 to 19% by weight, and further preferably 7 to 18% by weight. If the content of talc (IV) is less than 5% by weight, the mechanical properties and dimensional stability tend to decrease, and if it exceeds 20% by weight, the retention stability decreases, and the silver streak of the molded product It tends to occur more often, which is not preferable.
 なお、本発明の樹脂組成物においては、タルク(IV)以外の無機充填材が含まれることを排除するものではない。 It should be noted that the resin composition of the present invention does not exclude the inclusion of an inorganic filler other than talc (IV).
 [縮合リン酸エステル(V)]
 本発明の熱可塑性樹脂組成物は、好ましく縮合リン酸エステル(V)を含むことができ、そのようなものとしては、例えば下記一般式(2)にて示される化合物を使用することができる
[Condensed Phosphate Ester (V)]
The thermoplastic resin composition of the present invention can preferably contain a condensed phosphate ester (V), and as such, for example, a compound represented by the following general formula (2) can be used.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 一般式(2)において、R、R、RおよびRは、それぞれ互いに独立して、水素原子または1価の有機基を表すが、R、R、RおよびRの中の少なくとも一つは1価の有機基である。Xは2価の有機基であり、k、l、mおよびnはそれぞれ互いに独立して0または1であり、Nは0~10の整数である。 In the general formula (2), R 1 , R 2 , R 3 and R 4 each independently represent a hydrogen atom or a monovalent organic group, but of R 1 , R 2 , R 3 and R 4 . At least one of them is a monovalent organic group. X is a divalent organic group, k, l, m and n are 0 or 1 independently of each other, and N is an integer of 0 to 10.
 上記一般式(2)において、1価の有機基とは、置換されていてもよいアルキル基、アリール基、シクロアルキル基が挙げられ、置換されている場合の置換基としては例えばアルキル基、アルコキシ基、アルキルチオ基、アリール基、アリールオキシ基、アリールチオ基が挙げられ、またこれら置換基を組み合わせた基(アリールアルコキシアルキル基等)、またはこれらの置換基を酸素、硫黄、窒素原子等により結合して組み合わせた基(アリールスルホニルアリール基等)が置換基であってもよい。特に1価の有機基としては、2,6-ジメチルフェニル基が好ましい。 In the above general formula (2), the monovalent organic group includes an alkyl group, an aryl group and a cycloalkyl group which may be substituted, and examples of the substituent when substituted include an alkyl group and an alkoxy. Examples thereof include a group, an alkylthio group, an aryl group, an aryloxy group and an arylthio group, and a group in which these substituents are combined (arylalkoxyalkyl group, etc.) or these substituents are bonded with an oxygen, sulfur, nitrogen atom or the like. The combined group (arylsulfonylaryl group, etc.) may be a substituent. In particular, as the monovalent organic group, a 2,6-dimethylphenyl group is preferable.
 また、2価の有機基とは、例えばアルキレン基、置換基を有していてもよいフェニレン基、多価フェノール類、多核フェノール類(ビスフェノール類等)から誘導される基が挙げられる。特に2価の有機基としては、レゾルシノールが好ましい。 Further, the divalent organic group includes, for example, an alkylene group, a phenylene group which may have a substituent, a polyhydric phenol, and a group derived from a polynuclear phenol (bisphenol, etc.). In particular, resorcinol is preferable as the divalent organic group.
 これらリン酸エステル系化合物(V)の好適な具体例としては、トリメチルホスフェート、トリエチルホスフェート、トリプロピルホスフェート、トリブチルホスフェート、トリペンチルホスフェート、トリヘキシルホスフェート、トリシクロヘキシルホスフェート、トリオクチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、ヒドロキシフェニルジフェニルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、さらには、下記化学式(3)、化学式(4)、化学式(5)で示される化合物等が挙げられる。 Suitable specific examples of these phosphate ester compounds (V) include trimethyl phosphate, triethyl phosphate, tripropyl phosphate, tributyl phosphate, tripentyl phosphate, trihexyl phosphate, tricyclohexyl phosphate, trioctyl phosphate, and triphenyl phosphate. Tricredyl phosphate, tricylenyl phosphate, hydroxyphenyldiphenyl phosphate, cresyldiphenyl phosphate, xylenyl diphenyl phosphate, and further, compounds represented by the following chemical formulas (3), chemical formulas (4), chemical formulas (5), etc. Can be mentioned.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 [結晶性樹脂(VI)]
 本発明の熱可塑性樹脂組成物は、好ましく結晶性樹脂(VI)を含むことができ、そのような樹脂としては、融点を有して溶融成形可能な樹脂であれば、特に限定されないが、成形加工性および耐熱性の点で、融点が、好ましくは150℃以上、より好ましくは180℃以上、さらに好ましくは200℃以上、特に好ましくは220℃以上の樹脂である。融点の上限は、特に限定されないが、好ましくは300℃以下、より好ましくは280℃以下、さらに好ましくは250℃以下である。なお、本発明において、結晶性樹脂(VI)の融点は、島津製作所社製「DSC-60」を使用した示差走査熱量測定において、結晶性樹脂(VI)のペレット10mgを、40℃~300℃の温度幅で、20℃/分の昇温条件で測定した温度領域において観察される吸熱ピーク温度(Tm1)の観察後、300℃の温度で1分間保持した後、20℃/分の降温条件で40℃まで一旦冷却し、1分間保持した後、再度20℃/分の昇温条件で測定した際に観察される吸熱ピーク温度(Tm2)を指す。
[Crystalline resin (VI)]
The thermoplastic resin composition of the present invention can preferably contain a crystalline resin (VI), and the resin is not particularly limited as long as it has a melting point and can be melt-molded, but it is molded. In terms of processability and heat resistance, the resin has a melting point of preferably 150 ° C. or higher, more preferably 180 ° C. or higher, still more preferably 200 ° C. or higher, and particularly preferably 220 ° C. or higher. The upper limit of the melting point is not particularly limited, but is preferably 300 ° C. or lower, more preferably 280 ° C. or lower, and further preferably 250 ° C. or lower. In the present invention, the melting point of the crystalline resin (VI) is 40 ° C. to 300 ° C. in 10 mg of pellets of the crystalline resin (VI) in the differential scanning calorimetry using "DSC-60" manufactured by Shimadzu Corporation. After observing the heat absorption peak temperature (Tm1) observed in the temperature range measured under the temperature range of 20 ° C./min with the temperature range of 30 ° C., the temperature was maintained at 300 ° C. for 1 minute, and then the temperature was lowered to 20 ° C./min. Refers to the heat absorption peak temperature (Tm2) observed when the temperature is once cooled to 40 ° C., held for 1 minute, and then measured again under the heating condition of 20 ° C./min.
 結晶性樹脂(VI)の具体例としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂などのポリオレフィン系樹脂、ポリビニルアルコール樹脂、ポリ塩化ビニリデン樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトン樹脂、ポリケトン樹脂、ポリイミド樹脂およびこれらの共重合体などが挙げられ、1種または2種以上併用してもよい。中でも、耐熱性、成形加工性、流動性および機械特性の点で、ポリアミド樹脂、ポリエステル樹脂が好ましい。 Specific examples of the crystalline resin (VI) include polyolefin resins such as polyethylene resin and polypropylene resin, polyvinyl alcohol resin, polyvinylidene chloride resin, polyester resin, polyamide resin, polyacetal resin, polyether ether ketone resin, and poly. Examples thereof include ether ketone resin, polyketone resin, polyimide resin and copolymers thereof, and one kind or two or more kinds may be used in combination. Of these, polyamide resins and polyester resins are preferable in terms of heat resistance, moldability, fluidity and mechanical properties.
 上記ポリアミド樹脂は、融点を有するポリアミド樹脂であり、例えば、環状ラクタムの開環重合物、アミノカルボン酸の重縮合物、二塩基酸とジアミンとの重縮合物などが挙げられ、具体的には、ナイロン6、ナイロン66、ナイロン46、ナイロン56、ナイロン610、ナイロン612、ナイロン11、ナイロン12などの脂肪族ポリアミド、ポリ(メタキシレンアジパミド)、ポリ(ヘキサメチレンテレフタルアミド)、ポリ(ヘキサメチレンイソフタルアミド)、ポリ(ノナメチレンテレフタルアミド)、ポリ(テトラメチレンイソフタルアミド)などの融点を有する脂肪族-芳香族ポリアミド、および融点を有する範囲でこれらの共重合体や混合物を挙げることができる。中でも、本発明の効果である、機械特性、耐熱性、流動性のバランスおよび成形時の滞留安定性、成形品外観の観点から、好ましくは、ナイロン6およびナイロン610であり、最も好ましくはナイロン6である。 The above-mentioned polyamide resin is a polyamide resin having a melting point, and examples thereof include a ring-opening polymer of cyclic lactam, a polycondensate of aminocarboxylic acid, and a polycondensate of dibasic acid and diamine, and specific examples thereof. , Nylon 6, Nylon 66, Nylon 46, Nylon 56, Nylon 610, Nylon 612, Nylon 11, Nylon 12 and other aliphatic polyamides, Poly (methoxylen adipamide), Poly (hexamethylene terephthalamide), Poly (hexa) (Methyleneisophthalamide), poly (nonamethyleneterephthalamide), poly (tetramethyleneisophthalamide) and other aliphatic-aromatic polyamides having a melting point, and copolymers and mixtures thereof within the range having a melting point can be mentioned. .. Among them, nylon 6 and nylon 610 are preferable, and nylon 6 is most preferable, from the viewpoints of mechanical properties, heat resistance, balance of fluidity, retention stability during molding, and appearance of the molded product, which are the effects of the present invention. Is.
 上記ポリエステル樹脂とは、融点を有するポリエステル樹脂であり、ジカルボン酸とグリコールの重縮合物、環状ラクトンの開環重合物、ヒドロキシカルボン酸の重縮合物、二塩基酸とグリコールの重縮合物から得られる結晶性のポリエステル樹脂などが挙げられ、具体的には、ポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリシクロヘキサンジメチレンテレフタレートおよびポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレートなどの半芳香族ポリエステルの他、ポリエチレン-1,2-ビス(フェノキシ)エタン-4,4’-ジカルボキシレート/イソフタレート共重合体、ポリブチレンテレフタレート/デカンジカルボキシレート共重合体およびポリシクロへキサンジメチレンテレフタレート/イソフタレート共重合体などの融点を有する半芳香族ポリエステルや、融点を有する範囲でそれらの混合物からなる結晶性のポリエステルを挙げることができる。その他、芳香族オキシカルボニル単位、芳香族ジオキシ単位、芳香族ジカルボニル単位、芳香族アミノオキシ単位、エチレンオキシド単位などから選ばれた構造単位からなるサーモトロピック液晶性を示す結晶性のポリエステル樹脂を使用することもできる。 The polyester resin is a polyester resin having a melting point, and is obtained from a polycondensate of dicarboxylic acid and glycol, a ring-opening polymer of cyclic lactone, a polycondensate of hydroxycarboxylic acid, and a polycondensate of dibasic acid and glycol. Specific examples thereof include polyethylene terephthalate, polypropylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polybutylene naphthalate, polycyclohexanedimethylene terephthalate and polyethylene-1,2-bis (phenoxy). ) Semi-aromatic polyesters such as ethane-4,4'-dicarboxylate, polyethylene-1,2-bis (phenoxy) ethane-4,4'-dicarboxylate / isophthalate copolymer, polybutylene terephthalate. Semi-aromatic polyesters having a melting point such as / decandicarboxylate copolymers and polycyclohexanedimethylene terephthalates / isophthalate copolymers, and crystalline polyesters composed of a mixture thereof within the range having a melting point can be mentioned. can. In addition, a crystalline polyester resin exhibiting thermotropic liquid crystallinity consisting of a structural unit selected from an aromatic oxycarbonyl unit, an aromatic dioxy unit, an aromatic dicarbonyl unit, an aromatic aminooxy unit, an ethylene oxide unit, etc. is used. You can also do it.
 ここでいう芳香族オキシカルボニル単位としては、p-ヒドロキシ安息香酸6-ヒドロキシ-2-ナフトエ酸、4’-ヒドロキシジフェニル-4-カルボン酸から生成した構造単位を例示することができる。芳香族ジオキシ単位としては、4,4’-ジヒドロキシビフェニル、ハイドロキノン、t-ブチルハイドロキノンから生成した構造単位を例示することができる。芳香族ジカルボニル単位としては、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸から生成した構造単位を例示することができる。芳香族アミノオキシ単位としては、例えば、4-アミノフェノールから生成した構造単位を例示することができる。 As the aromatic oxycarbonyl unit referred to here, a structural unit produced from p-hydroxybenzoic acid 6-hydroxy-2-naphthoic acid and 4'-hydroxydiphenyl-4-carboxylic acid can be exemplified. Examples of the aromatic dioxy unit include structural units produced from 4,4'-dihydroxybiphenyl, hydroquinone, and t-butylhydroquinone. Examples of the aromatic dicarbonyl unit include structural units produced from terephthalic acid, isophthalic acid, and 2,6-naphthalenedicarboxylic acid. As the aromatic aminooxy unit, for example, a structural unit produced from 4-aminophenol can be exemplified.
 またポリエステルとしては、他にも乳酸および/またはラクチドを主原料として得られるポリ乳酸、および融点を有する範囲でその共重合体などの脂肪族ポリエステルを使用することも可能である。 Further, as the polyester, it is also possible to use polylactic acid obtained by using lactic acid and / or lactide as a main raw material, and an aliphatic polyester such as a copolymer thereof within a range having a melting point.
 特に本発明に好適な結晶性のポリエステルとしては半芳香族ポリエステルが好ましく、具体的にはポリエチレンテレフタレート樹脂、ポリプロピレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂および、融点を有する範囲でそれらの共重合体や混合物を挙げることができ、より好ましくはポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂であり、最も好ましくはポリブチレンテレフタレート樹脂である。 Semi-aromatic polyester is particularly preferable as the crystalline polyester suitable for the present invention, and specifically, polyethylene terephthalate resin, polypropylene terephthalate resin, polybutylene terephthalate resin, polyethylene naphthalate resin, and co-polyesters having a melting point. Examples thereof include polymers and mixtures, more preferably polyethylene terephthalate resin and polybutylene terephthalate resin, and most preferably polybutylene terephthalate resin.
 このようなポリエステル樹脂の分子量に特に制限はなく、通常フェノール/テトラクロロエタン1:1の混合溶媒を用いて25℃で測定した固有粘度が0.10~3.00dl/gのものを使用することができるが、好ましくは0.25~2.50dl/g、特に好ましくは0.40~2.25dl/gの固有粘度のものが使用できる。 The molecular weight of such a polyester resin is not particularly limited, and an intrinsic viscosity measured at 25 ° C. using a mixed solvent of phenol / tetrachloroethane 1: 1 is usually used. However, those having an intrinsic viscosity of 0.25 to 2.50 dl / g, particularly preferably 0.40 to 2.25 dl / g can be used.
 また、本発明の目的を損なわない範囲で、公知の耐衝撃改良材や公知の艶消し改良材を使用することができる。 Further, a known impact resistance improving material or a known matting improving material can be used as long as the object of the present invention is not impaired.
 また、本発明の目的を損なわない範囲で、必要に応じて、ヒンダードフェノール系酸化防止剤、含硫黄化合物系酸化防止剤、含リン有機化合物系酸化防止剤、フェノール系、アクリレート系などの熱酸化防止剤、ベンゾトリアゾール系、ベンゾフェノン系、サクシレート系などの紫外線吸収剤、グラフト共重合体(II-2)以外のアクリル酸およびそのエステルや、メタクリル酸およびそのエステルからなる重合体または共重合体や変性ポリテトラフルオロエチレンなどの成形加工助剤、難燃剤・難燃助剤、銀系抗菌剤に代表される抗菌剤、抗カビ剤、カーボンブラック、酸化チタン、離型剤、潤滑剤、顔料および染料などを添加することもできる。 Further, as long as the object of the present invention is not impaired, heat of a hindered phenol-based antioxidant, a sulfur-containing compound-based antioxidant, a phosphorus-containing organic compound-based antioxidant, a phenol-based, an acrylate-based, etc. Antioxidants, benzotriazole-based, benzophenone-based, succilate-based UV absorbers, acrylic acids other than the graft copolymer (II-2) and their esters, and polymers or copolymers consisting of methacrylic acid and its esters. Molding aids such as modified polytetrafluoroethylene, flame retardants / flame retardants, antibacterial agents typified by silver-based antibacterial agents, antifungal agents, carbon black, titanium oxide, mold release agents, lubricants, pigments. And dyes and the like can also be added.
 本発明の熱可塑性樹脂組成物は、構成する各樹脂成分や無機成分を溶融混合して得ることができる。溶融混合方法に関しては、特に制限は無いが、加熱装置、ベントを有するシリンダーで単軸または二軸のスクリューを使用して溶融混合する方法などが採用可能である。溶融混合の際の加熱温度は、通常230~320℃の範囲から選択されるが、本発明の目的を損なわない範囲で、溶融混合時の温度勾配等を自由に設定することも可能である。また、二軸のスクリューを用いる場合は、互いに同方向回転でも異方向回転でも良い。また噛み合い型、非噛み合い型のスクリューのいずれでもよい。 The thermoplastic resin composition of the present invention can be obtained by melting and mixing each of the constituent resin components and inorganic components. The melting and mixing method is not particularly limited, but a heating device, a method of melting and mixing using a single-screw or biaxial screw in a cylinder having a vent, and the like can be adopted. The heating temperature at the time of melting and mixing is usually selected from the range of 230 to 320 ° C., but the temperature gradient at the time of melting and mixing can be freely set within a range that does not impair the object of the present invention. When biaxial screws are used, they may rotate in the same direction or in different directions. Further, either a meshing type screw or a non-meshing type screw may be used.
 本発明の熱可塑性樹脂組成物を用いて成形品を製造する際の成形方法については特に限定されないが、射出成形により好適に成形される。射出成形は、好ましくは240~300℃の通常、熱可塑性樹脂組を成形する温度範囲で実施することができる。また、射出成形時の金型温度は、好ましくは30~80℃の通常成形に使用される温度範囲である。 The molding method for producing a molded product using the thermoplastic resin composition of the present invention is not particularly limited, but it is suitably molded by injection molding. Injection molding can be carried out, preferably in a temperature range of 240 to 300 ° C., usually in the temperature range for molding the thermoplastic resin assembly. The mold temperature during injection molding is preferably in the temperature range of 30 to 80 ° C. used for normal molding.
 本発明の熱可塑性樹脂組成物は、成形品においてシルバーストリークの発生を抑えることができ、グラフト共重合体(II-2)を含む熱可塑性樹脂組成物はさらに耐候性にも優れる。このため本発明の熱可塑性樹脂組成物は、大型または複雑な形状を有する成形品に好適に供せられる。 The thermoplastic resin composition of the present invention can suppress the generation of silver streaks in the molded product, and the thermoplastic resin composition containing the graft copolymer (II-2) is further excellent in weather resistance. Therefore, the thermoplastic resin composition of the present invention is suitably provided for a molded product having a large or complicated shape.
 すなわち、本発明の樹脂組成物は、自動車内装用のパワーウインドパネル、センターコンソール、センタークラスター、コンソールシャッター、レバーコントローラー、コンソールボックスなどに好適に使用できるだけでなく、自動車用の外装材、すなわちリアスポイラー、グリル、ガーニッシュ、ドアミラー、ルーフ、フェンダー、バンパーなどへも応用することができる。また電気電子用途、OA機器用途、住宅・建材用途にも好適に使用することができる。 That is, the resin composition of the present invention can be suitably used not only for power window panels, center consoles, center clusters, console shutters, lever controllers, console boxes, etc. for automobile interiors, but also for automobile exterior materials, that is, rear spoilers. It can also be applied to grills, garnishes, door mirrors, roofs, fenders, bumpers, etc. Further, it can be suitably used for electrical and electronic applications, OA equipment applications, and housing / building material applications.
 本発明をさらに具体的に説明するため、以下に実施例を挙げるが、これらの実施例は本発明を何ら制限するものではなく、種々の変形が可能である。まず、各参考例、実施例および比較例における評価方法を下記する。 In order to explain the present invention more specifically, examples are given below, but these examples do not limit the present invention in any way and can be modified in various ways. First, the evaluation methods in each reference example, example and comparative example are described below.
 (1)グラフト共重合体(II-1)のグラフト率
 グラフト共重合体(II-1)を所定量(m;約1g)秤量し、これにアセトン200mlを加え、70℃の温度の湯浴中で3時間還流し、この溶液を8800r.p.m.(10000G)で40分間遠心分離した後、不溶分を濾過した。得られたアセトン不溶分を60℃で5時間減圧乾燥し、その質量(n;単位g)を測定した。グラフト率は、下記式より算出した。ここでLは、グラフト共重合体のゴム含有率(0を超え1未満の実数)である。
グラフト率(質量%)={[(n)-{(m)×L}]/[(m)×L]}×100。
(1) Graft rate of graft copolymer (II-1) Weigh the graft copolymer (II-1) in a predetermined amount (m; about 1 g), add 200 ml of acetone to it, and bathe in a hot water bath at a temperature of 70 ° C. Reflux in the solution for 3 hours and apply this solution to 8800 r. p. m. After centrifuging at (10000 G) for 40 minutes, the insoluble material was filtered. The obtained insoluble acetone was dried under reduced pressure at 60 ° C. for 5 hours, and its mass (n; unit g) was measured. The graft ratio was calculated from the following formula. Here, L is the rubber content of the graft copolymer (a real number exceeding 0 and less than 1).
Graft ratio (% by mass) = {[(n)-{(m) × L}] / [(m) × L]} × 100.
 (2)グラフト共重合体(II-2)のグラフト率
 グラフト共重合体(II-2)を所定量(m;約1.5g)秤量し、これにアセトニトリル100mlを加え、70℃の湯浴中で3時間還流する。この溶液を9000rpmで40分間遠心分離した後、不溶分を濾過し、この不溶分を80℃で5時間真空乾燥し、重量(n;単位g)を測定した。グラフト率は下記式より算出した。ここでLは、グラフト共重合体のゴム含有率(重量%)(すなわち、グラフト共重合体(II-2)中のアクリル系ゴム質重合体(A2)の含有率(質量%))である。
グラフト率(質量%)={[(n)-((m)×L/100)]/[(m)×L/100]}×100。
(2) Graft rate of graft copolymer (II-2) Weigh the graft copolymer (II-2) in a predetermined amount (m; about 1.5 g), add 100 ml of acetonitrile to it, and bathe in a hot water bath at 70 ° C. Reflux inside for 3 hours. After centrifuging this solution at 9000 rpm for 40 minutes, the insoluble matter was filtered, and the insoluble matter was vacuum dried at 80 ° C. for 5 hours, and the weight (n; unit g) was measured. The graft ratio was calculated from the following formula. Here, L is the rubber content (% by weight) of the graft copolymer (that is, the content (mass%) of the acrylic rubbery polymer (A2) in the graft copolymer (II-2)). ..
Graft ratio (% by mass) = {[(n)-((m) x L / 100)] / [(m) x L / 100]} x 100.
 (3)重量平均分子量
 下記により得られたビニル系共重合体(III-1)~(III-5)を約0.03g秤量し、これをテトラヒドロフラン約15gに溶解せしめ、約0.2質量%の溶液を得た。当該溶液を用いてGPCクロマトグラムから、ポリスチレンを標準物質として換算することにより重量平均分子量を求めた。なお、GPC測定は下記条件により測定した。
(3) Weight average molecular weight Approximately 0.03 g of the vinyl-based copolymers (III-1) to (III-5) obtained below was weighed, and this was dissolved in approximately 15 g of tetrahydrofuran to obtain approximately 0.2% by mass. Solution was obtained. The weight average molecular weight was determined by converting polystyrene as a standard substance from a GPC chromatogram using the solution. The GPC measurement was performed under the following conditions.
 ・機器:Waters2695(日本ウォーターズ株式会社)
 ・カラム温度:40℃
 ・検出器:RI2414(示差屈折率計)
 ・キャリア溶離液流量:0.3ml/分(溶媒:テトラヒドロフラン)
 ・カラム:TSKgel SuperHZM-M(6.0mmI.D.×15cm)、
      TSKgel SuperHZM-N(6.0mmI.D.×15cm)
      直列(いずれも東ソー(株)製)。
・ Equipment: Waters2695 (Japan Waters Corp.)
-Column temperature: 40 ° C
-Detector: RI2414 (differential refractometer)
-Carrier eluent flow rate: 0.3 ml / min (solvent: tetrahydrofuran)
-Column: TSKgel SuperHZM-M (6.0 mm ID x 15 cm),
TSKgel SuperHZM-N (6.0 mm ID x 15 cm)
In series (both manufactured by Tosoh Corporation).
 ・標準試料:東ソー株式会社製単分散ポリスチレン。 ・ Standard sample: Monodisperse polystyrene manufactured by Tosoh Corporation.
 (4)シルバーストリークの評価
 射出成形機を使用して、シリンダー温度を320℃、金型温度を10℃に設定し、図1(a)、(b)に模式的に示す、長手方向に角度45°のエッジを有する幅70mm、長さ150mm、厚さ3mmの角形の平板Pを成形した(図1(a)は、角形の平板Pの平面図、図1(b)は、角形の平板PのA-A’断面図である。また射出成形のゲートの位置を白抜き矢印で示した)。得られた成形品においては、シルバーストリークの発生が少ないほど優れていることを示す。以下の基準により目視で判定を行った。3~5が合格レベルであり、1と2は不合格レベルである。
5:シルバーストリークの発生無し。
4:シルバーストリークの発生個数が10個未満であり、問題にならないレベル。
3:シルバーストリークの発生個数が10個以上30個未満であり、問題にならないレベルである。
2:ゲート付近にシルバーストリークの発生が目立ち、外観に問題がある。
1:成形品全体にシルバーストリークの発生があり、外観に問題がある。
(4) Evaluation of silver streak Using an injection molding machine, the cylinder temperature is set to 320 ° C. and the mold temperature is set to 10 ° C., and the angle in the longitudinal direction is schematically shown in FIGS. 1 (a) and 1 (b). A square flat plate P having a width of 70 mm, a length of 150 mm, and a thickness of 3 mm having an edge of 45 ° was formed (FIG. 1 (a) is a plan view of the square flat plate P, and FIG. 1 (b) is a square flat plate. It is a cross-sectional view taken along the line AA of P. The position of the injection molding gate is indicated by a white arrow). In the obtained molded product, the less the occurrence of silver streak, the better. The judgment was made visually according to the following criteria. 3 to 5 are pass levels, and 1 and 2 are fail levels.
5: No silver streak occurred.
4: The number of silver streaks generated is less than 10, which is not a problem.
3: The number of silver streaks generated is 10 or more and less than 30, which is a level that does not cause a problem.
2: Silver streak is noticeable near the gate, and there is a problem with the appearance.
1: Silver streak occurs in the entire molded product, and there is a problem with the appearance.
 (5)流動性、メルトフローレート
 ポリカーボネート系樹脂(I)、下記より得られたビニル系共重合体(III)および各実施例、比較例により得られたペレットについて、ISO1133(2011年版)に準拠して、温度:240℃、荷重:10kg条件でメルトフローレートを測定した。
(5) Fluidity, melt flow rate Polycarbonate resin (I), vinyl copolymer (III) obtained from the following, and pellets obtained from each example and comparative example are based on ISO1133 (2011 edition). Then, the melt flow rate was measured under the conditions of temperature: 240 ° C. and load: 10 kg.
 (6)耐衝撃性(シャルピー衝撃強度)
 各実施例および比較例により得られたペレットから、シリンダー温度を250℃、金型温度を60℃に設定した射出成形機を用いて、JIS K 7139(2009)に規定される多目的試験片タイプA1を成形し、これを切り出したタイプB2試験片を用いて、ISO179/1eA(2010)に準拠してシャルピー衝撃強度を測定した。
(6) Impact resistance (Charpy impact strength)
Multipurpose test piece type A1 specified in JIS K 7139 (2009) using an injection molding machine in which the cylinder temperature is set to 250 ° C. and the mold temperature is set to 60 ° C. from the pellets obtained in each Example and Comparative Example. Was formed, and the cut-out type B2 test piece was used to measure the Charpy impact strength in accordance with ISO179 / 1eA (2010).
 (7)耐熱性(荷重たわみ温度)
 熱変形温度:ISO75-2(2013)(1.8MPa条件で測定)に準拠して測定した。試験片は、シリンダー温度を250℃、金型温度を60℃に設定した射出成形機を用いて、JIS K 7139(2009)に規定される多目的試験片タイプA1を成形して得た。
(7) Heat resistance (deflection temperature under load)
Heat distortion temperature: Measured according to ISO75-2 (2013) (measured under 1.8 MPa conditions). The test piece was obtained by molding a multipurpose test piece type A1 specified in JIS K 7139 (2009) using an injection molding machine in which the cylinder temperature was set to 250 ° C. and the mold temperature was set to 60 ° C.
 (8)タルク中の鉄成分、カルシウム成分の定量
 蛍光X線分析装置:EDX-720(株)島津製作所製により測定、検出された元素量から該当する酸化物量に換算した。
(8) Quantification of iron component and calcium component in talc Fluorescent X-ray analyzer: EDX-720 The amount of elements measured and detected by Shimadzu Corporation was converted into the corresponding oxide amount.
 <ポリカーボネート系樹脂(I)>
・ポリカーボネート系樹脂(I-1);商品名「“ユーピロン”(登録商標)H-3000」、粘度平均分子量:18,000、メルトフローレート:32g/10min、三菱エンジニアリングプラスチック(株)製
・ポリカーボネート系樹脂(I-2);商品名「“ユーピロン”(登録商標)S-3000」、粘度平均分子量:21,500、メルトフローレート:15g/10min、三菱エンジニアリングプラスチック(株)製
 <グラフト共重合体(II-1)の調製>
 ポリブタジエンラテックス(重量平均粒子径350nmと800nmの2種併用し、質量比率8:2、ジエン系ゴム質重合体(A1))45重量%(固形分換算)の存在下で、スチレン40重量%とアクリロニトリル15重量%からなる単量体混合物を、ステアリン酸カリウムを使用して乳化重合してゴム強化スチレン・アクリロニトリル共重合体ラテックスを得た。これを、希硫酸水溶液中に添加して凝集させた後、水酸化ナトリウム水溶液により中和し、その後に洗浄・脱水・乾燥工程を経て、グラフト共重合体(II-1)を調製した。グラフト率は25%であった。グラフト共重合体(II-1)はアルカリ性(pH8)を呈した。
<Polycarbonate resin (I)>
-Polycarbonate resin (I-1); trade name "" Upiron "(registered trademark) H-3000", viscosity average molecular weight: 18,000, melt flow rate: 32 g / 10 min, manufactured by Mitsubishi Engineering Plastics Co., Ltd. Polycarbonate System resin (I-2); trade name "" Upiron "(registered trademark) S-3000", viscosity average molecular weight: 21,500, melt flow rate: 15 g / 10 min, manufactured by Mitsubishi Engineering Plastics Co., Ltd. <Graft Co-weight Preparation of coalescing (II-1)>
Polybutadiene latex (2 types with a weight average particle diameter of 350 nm and 800 nm used in combination, mass ratio 8: 2, diene rubber polymer (A1)) in the presence of 45% by weight (solid content equivalent) of styrene 40% by weight. A monomer mixture consisting of 15% by weight of acrylonitrile was emulsion-polymerized using potassium stearate to obtain a rubber-reinforced styrene / acrylonitrile copolymer latex. This was added to an aqueous solution of dilute sulfuric acid to aggregate it, then neutralized with an aqueous solution of sodium hydroxide, and then washed, dehydrated and dried to prepare a graft copolymer (II-1). The graft rate was 25%. The graft copolymer (II-1) exhibited alkaline (pH 8).
 <グラフト共重合体(II-2)の調製>
 [アクリル系ゴム質重合体(A2)を得るための工程]
 純水130重量部、乳化剤である不均化ロジン酸カリウム水溶液1重量部(固形分換算)を反応容器に仕込み、75℃まで昇温し、撹拌下、アクリル酸n-ブチル19.8重量部とメタクリル酸アリル0.2重量部の混合物(混合物1)を1時間かけて連続添加した(第1添加工程)。次いで2重量%過硫酸カリウム水溶液8重量部と、不均化ロジン酸カリウム水溶液1.5重量部(固形分換算)をそれぞれ6時間かけて連続添加した(第2添加工程)。また、過硫酸カリウム水溶液および不均化ロジン酸カリウム水溶液の添加開始から2時間後にアクリル酸n-ブチル79.2重量部とメタクリル酸アリル0.8重量部の混合物(混合物3)を4時間かけて添加した(第3添加工程)。添加終了後さらに1時間保持することでアクリル系ゴム質重合体(A2)ラテックスを乳化重合により得た。
<Preparation of graft copolymer (II-2)>
[Step for obtaining acrylic rubber polymer (A2)]
130 parts by weight of pure water and 1 part by weight of an aqueous solution of disproportionated potassium rosinate (in terms of solid content) as an emulsifier are charged in a reaction vessel, heated to 75 ° C., and stirred to 19.8 parts by weight of n-butyl acrylate. And 0.2 parts by weight of allyl methacrylate (mixture 1) were continuously added over 1 hour (first addition step). Next, 8 parts by weight of a 2 wt% potassium persulfate aqueous solution and 1.5 parts by weight of a disproportionated potassium rosinate aqueous solution (in terms of solid content) were continuously added over 6 hours (second addition step). In addition, 2 hours after the start of addition of the potassium persulfate aqueous solution and the disproportionated potassium rosinate aqueous solution, a mixture of 79.2 parts by weight of n-butyl acrylate and 0.8 parts by weight of allyl methacrylate (mixture 3) was applied over 4 hours. And added (third addition step). Acrylic rubbery polymer (A2) latex was obtained by emulsion polymerization by holding for another 1 hour after the addition was completed.
 [グラフト共重合体(II-2)を得るための工程]
 引き続いて、純水13.2重量部、無水ブドウ糖0.48重量部、ピロリン酸ナトリウム0.26重量部および硫酸第一鉄0.01重量部の混合物、オレイン酸カリウム0.4重量部および純水12.5重量部の混合物、アクリル系ゴム質重合体(A2)ラテックス50重量部(固形分換算)および純水94.3重量部を反応容器に仕込み、58℃まで昇温し、撹拌下、スチレン36.5重量部、アクリロニトリル13.5重量部およびt-ドデシルメルカプタン0.2重量部の混合物(i)を4時間かけて連続添加した。連続添加開始0.5時間後に、容器内温度を62℃に昇温し、クメンハイドロパーオキサイド0.3重量部、オレイン酸カリウム2.0重量部および純水12.5重量部の混合物を並行して5時間かけて連続添加した。続いて、混合物(i)の添加終了時にさらに65℃まで昇温し、グラフト共重合体ラテックスを重合率98%で得た。これを希硫酸水溶液中に添加して凝集させた後、水酸化ナトリウム水溶液により中和し、その後に洗浄・脱水・乾燥工程を経て、パウダー状のグラフト共重合体(II-2)を得た。グラフト率は30%であった。グラフト共重合体(II-2)はアルカリ性(pH8)を呈した。
[Step for obtaining graft copolymer (II-2)]
Subsequently, a mixture of 13.2 parts by weight of pure water, 0.48 parts by weight of anhydrous glucose, 0.26 parts by weight of sodium pyrophosphate and 0.01 parts by weight of ferrous sulfate, 0.4 parts by weight of potassium oleate and pure A mixture of 12.5 parts by weight of water, 50 parts by weight of acrylic rubber polymer (A2) latex (in terms of solid content) and 94.3 parts by weight of pure water were charged in a reaction vessel, heated to 58 ° C., and stirred. , 36.5 parts by weight of styrene, 13.5 parts by weight of acrylonitrile and 0.2 parts by weight of t-dodecyl mercaptan (i) were continuously added over 4 hours. 0.5 hours after the start of continuous addition, the temperature inside the container was raised to 62 ° C., and a mixture of 0.3 parts by weight of cumene hydroperoxide, 2.0 parts by weight of potassium oleate and 12.5 parts by weight of pure water was added in parallel. Then, it was continuously added over 5 hours. Subsequently, at the end of the addition of the mixture (i), the temperature was further raised to 65 ° C. to obtain a graft copolymer latex at a polymerization rate of 98%. This was added to an aqueous solution of dilute sulfuric acid to aggregate it, then neutralized with an aqueous solution of sodium hydroxide, and then washed, dehydrated and dried to obtain a powdery graft copolymer (II-2). .. The graft rate was 30%. The graft copolymer (II-2) exhibited alkaline (pH 8).
 <ビニル系共重合体(III)の調製>
 スチレン76重量%とアクリロニトリル24重量%からなる単量体混合物を懸濁重合して得られたスラリーを、洗浄・脱水・乾燥工程を経て、重量平均分子量99,000、メルトフローレート274g/10minのビニル系共重合体(III)を調製した。
<Preparation of vinyl-based copolymer (III)>
A slurry obtained by suspend-polymerizing a monomer mixture consisting of 76% by weight of styrene and 24% by weight of acrylonitrile is subjected to washing, dehydration and drying steps, and has a weight average molecular weight of 99,000 and a melt flow rate of 274 g / 10 min. A vinyl-based copolymer (III) was prepared.
 <タルク(IV)>
 タルクは下表に示すFe、CaO換算含有量、平均粒子径のものを使用した。なお、平均粒子径はレーザー回折法により測定した。
<Talc (IV)>
The talc used was Fe 2 O 3 , CaO equivalent content, and average particle size shown in the table below. The average particle size was measured by a laser diffraction method.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 <縮合リン酸エステル(V)>
・芳香族縮合リン酸エステル;商品名「PX-200」大八化学(株)製。
<Condensed Phosphate Ester (V)>
-Aromatic condensed phosphoric acid ester; trade name "PX-200" manufactured by Daihachi Chemical Co., Ltd.
 <結晶性樹脂(VI)>
・ポリブチレンテレフタレート樹脂(IV-1);商品名「“トレコン”1100M」、東レ(株)製。
<Crystalline resin (VI)>
-Polybutylene terephthalate resin (IV-1); trade name "Trecon" 1100M, manufactured by Toray Industries, Inc.
 <その他添加剤>
・リン系熱安定剤;商品名「アデカスタブ135A」、(株)ADEKA製
・酸性化合物;0.5mol/Lリン酸
・有機リン酸エステル化合物;商品名「アデカスタブAX-71」、(株)ADEKA製
・カーボンブラックマスターバッチ;商品名「CTB-10」、住化カラー(株)製。
<Other additives>
-Phosphorus-based heat stabilizer; trade name "ADEKA STUB 135A", manufactured by ADEKA Co., Ltd.-acid compound; 0.5 mol / L phosphoric acid-organic phosphate ester compound; trade name "ADEKA STAB AX-71", ADEKA Co., Ltd. Made by Carbon Black Master Batch; trade name "CTB-10", manufactured by Sumika Color Co., Ltd.
 (実施例1~8、比較例1~10)
 前記ポリカーボネート系樹脂(I)、グラフト共重合体(II)、ビニル系共重合体(III)、無機充填剤(IV)、リン酸エステル系化合物(V)を、表に示したとおりの重量比で配合し、スクリュー径30mmの同方向回転の二軸押出機(温度範囲:240~260℃)で溶融混練を行い、ペレットを得た。得られたペレットについて前述の評価を行った。また、得られたペレットから、射出成形機(成形温度250℃、金型温度60℃)を用いて試験片を作製し、前述の方法により評価を行った。ただし、前記(4)のシルバーストリーク評価用の成形品は、前記(4)に記載の条件で作製した。評価結果を表に示す。
(Examples 1 to 8, Comparative Examples 1 to 10)
The weight ratios of the polycarbonate resin (I), the graft copolymer (II), the vinyl copolymer (III), the inorganic filler (IV), and the phosphate ester compound (V) are as shown in the table. And kneaded by melting and kneading with a twin-screw extruder (temperature range: 240 to 260 ° C.) rotating in the same direction with a screw diameter of 30 mm to obtain pellets. The obtained pellets were evaluated as described above. Further, a test piece was prepared from the obtained pellets using an injection molding machine (molding temperature 250 ° C., mold temperature 60 ° C.), and evaluated by the above-mentioned method. However, the molded product for silver streak evaluation according to (4) was produced under the conditions described in (4) above. The evaluation results are shown in the table.
 実施例1~8の熱可塑性樹脂組成物は、成形品におけるシルバーストリークの発生を抑えることができていることがわかる。一方、本規定値を外れるタルクを使用した比較例1~10はシルバーストリークの発生を十分に抑えることができていないことがわかる。 It can be seen that the thermoplastic resin compositions of Examples 1 to 8 can suppress the generation of silver streaks in the molded product. On the other hand, it can be seen that the occurrence of silver streak could not be sufficiently suppressed in Comparative Examples 1 to 10 using talc that deviates from this specified value.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 本発明は、成形品においてシルバーストリークの発生を抑えることができる熱可塑性樹脂組成物であり、自動車分野ではリアスポイラー、ホイールキャップ、ドアミラー、ラジエータグリルなどの自動車外装部品やパワーウインドパネル、センターコンソール、センタークラスター、レバーコントローラー、コンソールボックスなどの自動車内装用部品、リアスポイラー、グリル、ガーニッシュ、ドアミラー、ルーフ、フェンダー、バンパーなどの自動車外装用部品。自動車分野以外でもOA機器や家電機器、住宅建材、スーツケースやカバンなどの分野へ好適に使用することができる。 The present invention is a thermoplastic resin composition capable of suppressing the generation of silver streaks in molded products, and in the automobile field, automobile exterior parts such as rear spoilers, wheel caps, door mirrors, radiator grills, power window panels, center consoles, etc. Automotive interior parts such as center clusters, lever controllers and console boxes, and automotive exterior parts such as rear spoilers, grilles, garnishes, door mirrors, roofs, fenders and bumpers. It can be suitably used in fields other than the automobile field, such as OA equipment, home appliances, housing building materials, suitcases and bags.
P  角形の平板 P Square flat plate

Claims (5)

  1.  ポリカーボネート樹脂(I)、グラフト共重合体(II)、タルク(IV)を配合してなり、タルク(IV)の重量を100重量%としたとき、鉄成分およびカルシウム成分の含有量が、それぞれFeとして0.19重量%以下、CaOとして1.9重量%以下であることを特徴とする熱可塑性樹脂組成物。 Polycarbonate resin (I), graft copolymer (II), and talc (IV) are blended, and when the weight of talc (IV) is 100% by weight, the contents of iron component and calcium component are Fe, respectively. 2 A thermoplastic resin composition having an O 3 content of 0.19% by weight or less and a CaO content of 1.9% by weight or less.
  2.  グラフト共重合体(II)が、ジエン系ゴム質重合体の存在下に、芳香族ビニル系単量体およびシアン化ビニル系単量体を少なくとも含有する単量体混合物をグラフト重合してなるグラフト共重合体(II-1)、または、アクリル酸エステル系単量体と多官能性単量体を重合してなるアクリル系ゴム質重合体の存在下に、芳香族ビニル系単量体およびシアン化ビニル系単量体を少なくとも含む単量体混合物をグラフト重合してなるグラフト共重合体(II-2)である請求項1に記載の熱可塑性樹脂組成物。 A graft formed by graft-polymerizing a graft copolymer (II) in the presence of a diene-based rubbery polymer with a monomer mixture containing at least an aromatic vinyl-based monomer and a cyanide vinyl-based monomer. In the presence of the copolymer (II-1) or the acrylic rubbery polymer obtained by polymerizing the acrylic acid ester-based monomer and the polyfunctional monomer, the aromatic vinyl-based monomer and cyanide are present. The thermoplastic resin composition according to claim 1, which is a graft copolymer (II-2) obtained by graft-polymerizing a monomer mixture containing at least a vinyl compound-based monomer.
  3.  さらに、ビニル系共重合体(III)を含むことを特徴とする請求項1または2に記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to claim 1 or 2, further comprising a vinyl-based copolymer (III).
  4.  さらに、縮合リン酸エステル(V)および結晶性樹脂(VI)の何れかまたは両方を含むことを特徴とする請求項1~3のいずれかに記載の熱可塑性樹脂組成物。 The thermoplastic resin composition according to any one of claims 1 to 3, further comprising one or both of a condensed phosphoric acid ester (V) and a crystalline resin (VI).
  5.  請求項1~4のいずれかに記載の熱可塑性樹脂組成物を成形してなる成形品。 A molded product obtained by molding the thermoplastic resin composition according to any one of claims 1 to 4.
PCT/JP2021/038647 2020-10-29 2021-10-19 Thermoplastic resin composition and molded article using same WO2022091881A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021565893A JPWO2022091881A1 (en) 2020-10-29 2021-10-19

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020181009 2020-10-29
JP2020-181009 2020-10-29

Publications (1)

Publication Number Publication Date
WO2022091881A1 true WO2022091881A1 (en) 2022-05-05

Family

ID=81383802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038647 WO2022091881A1 (en) 2020-10-29 2021-10-19 Thermoplastic resin composition and molded article using same

Country Status (2)

Country Link
JP (1) JPWO2022091881A1 (en)
WO (1) WO2022091881A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137054A (en) * 1995-11-17 1997-05-27 Sumika A B S Latex Kk Polycarbonate resin composition
JP2004520469A (en) * 2001-01-25 2004-07-08 バイエル アクチェンゲゼルシャフト Low iron content polycarbonate composition
JP2006342199A (en) * 2005-06-07 2006-12-21 Teijin Chem Ltd Housing molding having excellent appearance
JP2015096569A (en) * 2013-11-15 2015-05-21 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and polycarbonate resin molded article
JP2015131876A (en) * 2014-01-09 2015-07-23 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate resin composition and molded product thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09137054A (en) * 1995-11-17 1997-05-27 Sumika A B S Latex Kk Polycarbonate resin composition
JP2004520469A (en) * 2001-01-25 2004-07-08 バイエル アクチェンゲゼルシャフト Low iron content polycarbonate composition
JP2006342199A (en) * 2005-06-07 2006-12-21 Teijin Chem Ltd Housing molding having excellent appearance
JP2015096569A (en) * 2013-11-15 2015-05-21 三菱エンジニアリングプラスチックス株式会社 Polycarbonate resin composition and polycarbonate resin molded article
JP2015131876A (en) * 2014-01-09 2015-07-23 三菱エンジニアリングプラスチックス株式会社 Aromatic polycarbonate resin composition and molded product thereof

Also Published As

Publication number Publication date
JPWO2022091881A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
EP0845496B1 (en) ABS type high gloss molding
JP6610680B2 (en) Thermoplastic resin composition and molded article thereof
EP2257590A1 (en) Impact-resistant modified polycarbonate compositions with a good combination of raw talc, hydrolysis- and melt stability
JP6024757B2 (en) Natural rubber-containing thermoplastic resin composition and molded article thereof
KR20150002604A (en) Rubber graft copolymer, and thermoplastic resin composition containing rubber graft copolymer
WO2001062812A1 (en) Polymer compositions with an improved constancy of characteristics
KR100602045B1 (en) Thermoplastic Moulding Materials Based on Highly Effective Grafted Rubber Components
EP1141057B1 (en) Abs-moulding compounds with an improved combination of properties
WO2022091881A1 (en) Thermoplastic resin composition and molded article using same
JP6904482B2 (en) Thermoplastic resin composition and its molded product
JP3565989B2 (en) Thermoplastic molding composition
EP2148902A2 (en) Impact strength modified polycarbonate compositions
EP2147952B1 (en) Thermoplastic resin composition and resin molded article
JP4333857B2 (en) Flame retardant thermoplastic resin composition and regenerated molding material thereof
JP2015168814A (en) Thermoplastic resin composition and molded article
JP2019157016A (en) Thermoplastic resin composition for blow molding and molded article of the same
JP2006016524A (en) Thermoplastic resin composition and molded product thereof
JP2022129758A (en) Thermoplastic resin composition, method for producing the same and molding
JP2024012142A (en) thermoplastic resin composition
KR101005512B1 (en) Thermoplastic Resin Composition Having Improved Impact Strength
CN114174418A (en) Resin composition
JP2013082821A (en) Thermoplastic resin composition and molded article

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021565893

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21886000

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21886000

Country of ref document: EP

Kind code of ref document: A1