WO2022091848A1 - Surface protection film, lighting cover, and method for manufacturing surface protection film - Google Patents

Surface protection film, lighting cover, and method for manufacturing surface protection film Download PDF

Info

Publication number
WO2022091848A1
WO2022091848A1 PCT/JP2021/038468 JP2021038468W WO2022091848A1 WO 2022091848 A1 WO2022091848 A1 WO 2022091848A1 JP 2021038468 W JP2021038468 W JP 2021038468W WO 2022091848 A1 WO2022091848 A1 WO 2022091848A1
Authority
WO
WIPO (PCT)
Prior art keywords
sialon
surface protective
protective film
film
examples
Prior art date
Application number
PCT/JP2021/038468
Other languages
French (fr)
Japanese (ja)
Inventor
圭司 西本
知晶 井上
弘宗 松原
Original Assignee
東海光学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東海光学株式会社 filed Critical 東海光学株式会社
Priority to JP2022559023A priority Critical patent/JPWO2022091848A1/ja
Publication of WO2022091848A1 publication Critical patent/WO2022091848A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V3/00Globes; Bowls; Cover glasses
    • F21V3/04Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings
    • F21V3/10Globes; Bowls; Cover glasses characterised by materials, surface treatments or coatings characterised by coatings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • G02B1/115Multilayers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings

Definitions

  • the present invention relates to a surface protective film according to Sialon, a lighting cover having the surface protective film, and a method for manufacturing the surface protective film.
  • Patent Document 1 As a surface protective film applied to the thermal head, the one described in Japanese Patent Application Laid-Open No. 2011-83923 (Patent Document 1) is known.
  • This surface protective film has a sialon film formed by a high frequency (RF) sputtering method in an argon gas atmosphere mixed with 2% nitrogen gas as a surface layer.
  • RF radio frequency
  • a coating is known on the surface of a glass prism by vacuum deposition or the like.
  • the coating on the cover is designed to have high hardness and scratch resistance while transmitting illumination light.
  • the coding is designed to withstand the expected environmental temperature and humidity on the road surface for a long period of time, and also withstand chemicals such as snow melting agents used on the road surface for a long period of time.
  • the above-mentioned surface protective film protects the surface layer of the thermal head from wear due to friction generated when a recording medium or the like passes through the surface layer.
  • Sialon is composed of silicon, aluminum, oxygen, and nitrogen atoms (SiAlON), and the characteristics of Sialon change depending on the atomic number ratio of silicon and aluminum. As described above, it is manufactured by a predetermined manufacturing method and has only predetermined characteristics. There is room for improvement in the scratch resistance of the sialon film in the above-mentioned surface protective film.
  • the coating may be peeled off due to long-term use or the action of a strong impact.
  • a main object of the present invention is to provide a surface protective film having excellent scratch resistance and a method for producing the surface protective film.
  • Another main object of the present invention is to provide a surface protective film and a method for producing a surface protective film having excellent durability (environmental resistance) against at least one of temperature, humidity and chemicals.
  • another main object of the present invention is to provide a lighting cover which has predetermined performance and prevents peeling.
  • the invention according to claim 1 is a surface protective film made of Sialon, wherein the refractive index of the Sialon with respect to light having a wavelength of 550 nm is 1.90 or more and 1.94 or less. be.
  • the invention according to claim 2 is a surface protective film made of Sialon, which is characterized by containing aluminum in an atomic number ratio of 15% or more and 32% or less.
  • the invention according to claim 3 is a surface protective film made of sialon, and the quotient of aluminum divided by the sum of aluminum and silicon in the composition of the sialon at the number of atoms is 0.38 or more. It is characterized by being 0.67 or less.
  • the invention according to claim 4 is a surface protective film made of Sialon, which is characterized by containing oxygen in an atomic number ratio of 7% or more and 16% or less.
  • the invention according to claim 5 is a surface protective film made of Sialon, wherein the average visible absorption rate of the Sialon is 1% or less.
  • the invention according to claim 6 is characterized in that the surface protective film includes one or more sialon layers made of sialon and one or more dielectric layers made of dielectric.
  • the invention according to claim 7 is the invention according to claim 6, wherein the dielectric is SiO 2 .
  • the invention according to claim 8 is characterized in that, in the invention according to claim 6 or 7, the total physical film thickness of the sialon layer is 215 nm or more.
  • the invention according to claim 9 is characterized in that the lighting cover includes the surface protective film according to any one of claims 1 to 8.
  • the invention according to claim 10 is a method for producing a surface protective film, in which Si spattering and Al spattering are performed while introducing O 2 gas and N 2 gas in a film forming chamber in which a substrate is placed.
  • the surface protective film according to any one of claims 1 to 5 is formed on the substrate.
  • the invention according to claim 11 is characterized in that, in the invention according to claim 10, at least one of the spattering of Si and the spattering of Al is performed by applying a DC voltage.
  • the main effect of the present invention is to provide a surface protective film having excellent scratch resistance and a method for producing the surface protective film.
  • Another main effect of the present invention is to provide a surface protective film and a method for producing a surface protective film having excellent durability (environmental resistance) against at least one of temperature, humidity and chemicals.
  • another major effect of the present invention is to provide a lighting cover that has predetermined performance and is prevented from peeling.
  • 3 is a graph relating to the spectral absorption rate distribution in the visible region and the adjacent region of Examples 1 to 4 and Comparative Example 7 (Sialon film). 3 is a graph relating to the average absorption rate in the visible region of Examples 1 to 4 and Comparative Example 7 (Sialon film). It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of the comparative example 11. It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of the comparative example 12. It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of Example 11. It is a graph which concerns on the spectral transmittance distribution in the infrared region of Example 12.
  • the surface protective film 1 is formed on the film-forming surface M of the glass prism 2.
  • the prism 2 with the surface protective film 1 is used as a lighting cover C that also serves as an optical system element of a road guide lamp (not shown) as lighting.
  • the prism 2 is a base material on which the surface protective film 1 is formed, and is a substrate particularly in the case of a plate shape.
  • the film-forming surface M of the prism 2 is a surface that is exposed when it is installed in a road guide light.
  • the surface protective film 1 itself may be regarded as the illumination cover C.
  • the film-forming surface M may be a surface beyond the exposed surface such as the entire surface of the prism 2.
  • One or more interlayer films may be arranged between the prism 2 and the surface protective film 1.
  • the prism 2 may have a material other than glass.
  • the surface protective film 1 may be formed on a portion of the road guide light other than the prism 2, or may be formed on a device, a part, a member, or the like other than the road guide light.
  • the surface protective film 1 may be formed on a motorway, a railway (railroad track), a monorail, a guide light related to a sidewalk, or an indicator.
  • the surface protective film 1 is a film made of SiAlON.
  • the characteristics of Sialon change depending on the atomic number ratio of silicon and aluminum.
  • the characteristics of Sialon approach the characteristics of silicon nitride (Si 3 N 4 ) when the number of atoms of silicon increases with respect to the number of atoms of aluminum, and the characteristics of aluminum oxide (Al) when the number of atoms of aluminum increases with respect to the number of atoms of silicon. It approaches the characteristics of 2 O 3 ).
  • the atomic number ratio of oxygen and nitrogen to be bonded changes according to the atomic number ratio of silicon and aluminum.
  • the characteristics of Sialon (atomic number ratio of silicon and aluminum, etc.) can be changed depending on the type of manufacturing method and its condition setting.
  • FIG. 2 is a schematic diagram of various characteristics of a sialon film, with the atomic number ratio of silicon and aluminum as the horizontal axis and the relative strength of various characteristics (hardness, adhesion and chemical resistance) as the vertical axis. It is a graph. On the horizontal axis, the number of aluminum atoms increases toward the left with respect to the number of silicon atoms, and Al 2 O 3 is obtained at the left end. Further, as it goes to the right, the number of atoms of silicon increases with respect to the number of atoms of aluminum, and at the left end, it becomes Si 3 N 4 . The hardness of the sialon film becomes harder (upper on the vertical axis) as the number of atoms of silicon increases.
  • the adhesion of the sialon film to the substrate is high at the center of the horizontal axis (located at the top on the vertical axis) where aluminum and silicon are mixed, and low at both sides thereof.
  • the chemical resistance of the sialon film shows an almost constant high level (upper on the vertical axis) when the number of atoms of silicon is more than a predetermined level with respect to the number of atoms of aluminum, and the number of atoms of silicon is an atom of aluminum. If it is less than a predetermined level with respect to the number, it becomes lower.
  • the surface protective film 1 made of Sialon according to the present invention has an atomic number ratio of silicon and aluminum having high levels of hardness, adhesion and chemical resistance (see a good region in FIG. 2). ).
  • the refractive index of the sialon film changes according to the atomic number ratio of silicon and aluminum, and generally increases as the number of atoms of silicon increases with respect to the number of atoms of aluminum.
  • a sialon film having a refractive index of 1.90 or more and 1.94 or less with respect to light having a wavelength of 550 nm corresponds to the above-mentioned atomic number ratio in a good region, and has high levels of hardness, adhesion, and chemical resistance. Therefore, it becomes the surface protective film 1 of the present invention.
  • FIG. 3 is a schematic top view of the manufacturing apparatus 101 according to the embodiment.
  • the manufacturing apparatus 101 is a drum-type sputtering film forming apparatus (carousel-type sputtering apparatus), and forms a surface protective film 1 on one side of one or more plate-shaped prisms 2.
  • the manufacturing apparatus 101 includes a vacuum chamber 102 as a film forming chamber, and a cylindrical drum 104 rotatably arranged around its own axis in a central portion thereof.
  • a prism 2 as a film forming target is held on the outer peripheral cylindrical surface of the drum 104 with the film forming surface M facing outward.
  • a first sputter source 110 is arranged on one surface of the vacuum chamber 102.
  • the first sputtering source 110 includes a sputtering cathode 112 for setting the first target T1, a pair of adhesive plates 114, and a sputtering gas introduction port 116 into which the sputtering gas is introduced after appropriately adjusting the flow rate. ..
  • the sputter cathode 112 is connected to an external DC power supply (not shown).
  • the protective plate 114 is arranged so as to separate the first target T1 from the portion of the drum 104 facing the first target T1 from the internal portion of the other vacuum chamber 102.
  • the sputter gas introduction port 116 allows the sputter gas to flow toward the space separated by the adhesive plate 114.
  • a second sputter source 120 is arranged on another surface of the vacuum chamber 102. Like the first sputtering source 110, the second sputtering source 120 includes a sputtering cathode 122 for setting the second target T2, a pair of adhesive plates 124, and a sputtering gas introduction port 126.
  • a radical source 130 is arranged on the other surface of the vacuum chamber 102.
  • the radical source 130 includes a radical gas introduction port 134 in which gas can be introduced after adjusting the flow rate by a valve 132, a gun 136 capable of generating plasma by applying a voltage by a power source for acceleration voltage (not shown), and a gun 136.
  • the gas introduced into the inside of the vacuum chamber 102 from the radical gas introduction port 134 is radicalized by the plasma generated by the gun 136, and is irradiated in a beam shape toward the prism 2.
  • exhaust units 140 are provided on both sides of the radical source 130. In each exhaust unit 140, the inside of the vacuum chamber 102 is exhausted.
  • the arrangement and the number of installations of at least one of the first sputter source 110, the second sputter source 120, the radical source 130, and each exhaust unit 140 are not limited to those described above.
  • the current (voltage) in at least one of the first sputter source 110, the second sputter source 120, and the radical source 130 may be related to direct current, or related to low-frequency or high-frequency alternating current. Is also good.
  • An operation example of the manufacturing apparatus 101 (an example of a manufacturing method of the surface protective film 1) will be mainly described with reference to FIG.
  • the prism 2 is set on the drum 104, silicon (Si) is set as the first target T1, and aluminum (Al) is set as the second target T2 (step S1).
  • silicon (Si) is set as the first target T1
  • aluminum (Al) is set as the second target T2 (step S1).
  • the inside of the vacuum chamber 102 is exhausted (step S2).
  • the drum 104 is rotated so that the prism 2 held by the drum 104 sequentially and repeatedly passes inside each of the first sputter source 110, the second sputter source 120, and the radical source 130 at high speed (step). S3).
  • the prism 2 is cleaned (step S4).
  • the surface protective film 1 is formed (step S5). That is, while the rotation of the drum 104 is maintained, a rare gas (here, Ar gas) is introduced from the sputtering gas introduction port 116 of the first sputtering source 110, and a DC (DC) voltage is applied to the sputtering cathode 112. As a result, Si on the surface of the first target T1 is deposited on the surface of the prism 2 by sputtering with Ar.
  • a rare gas here, Ar gas
  • DC DC
  • a rare gas here, Ar gas
  • a DC voltage is applied to the sputtering cathode 122, so that Al on the surface of the second target T2 is formed by Ar. It is deposited on the surface of the prism 2 by sputtering.
  • oxygen gas O 2 gas
  • nitrogen gas N 2 gas
  • a high frequency voltage is applied to the gun 136 to generate radical oxygen and radical nitrogen. The generated, moving prism 2 in which Si and Al are deposited is irradiated to perform oxygen nitridation of Si and Al.
  • a rare gas may be introduced together with the O 2 gas and the N 2 gas.
  • the film thickness of the surface protective film 1 when the input power to the sputtering cathode 112 is constant and the film formation rate, which is the physical film film to be formed per unit time, is constant, the length of the sputtering time is long or short. Is controlled by. Therefore, when the time corresponding to the desired film thickness has elapsed, the voltage application to the sputtering cathodes 112 and 122 and the gun 136 is stopped, and the film formation of the surface protective film 1 is completed.
  • the drum 104 is stopped, cooling is appropriately performed, and then the prism 2 with the surface protective film 1 is taken out (step S6).
  • one or more intermediate films may be further provided between the surface protective film 1 and the prism 2 by the manufacturing apparatus 101 or another apparatus.
  • the second embodiment of the present invention which is the same as the first embodiment except for the surface protective film, will be described. Members and parts similar to those in the first embodiment are appropriately designated with the same reference numerals, and the description thereof will be omitted.
  • the second form appropriately has the same modification as the first form.
  • the surface protective film 201 according to the present invention is formed on the film-forming surface M of the glass prism 2.
  • the surface protective film 201 is a film including a sialon layer 204, which is a layer made of sialon, and a dielectric layer 206, which is a layer made of a dielectric.
  • the surface protective film 201 is preferably an alternating film of the sialon layer 204 and the dielectric layer 206, and more preferably an alternating film of the sialon layer 204 and the dielectric layer 206 made of one kind of dielectric.
  • the surface protective film 201 is a multilayer film including two or more layers.
  • the number of layers of the surface protective film 201 is not particularly limited, and may be an odd number or an even number.
  • the arrangement of each layer in the surface protective film 201 is not particularly limited, and the dielectric layer 206 is preferably the outermost layer which is the most air-side (opposite side to the prism 2) layer in the surface protective film 201.
  • the material of the dielectric in the dielectric layer 206 is not particularly limited, but is preferably low because it has a refractive index such that Sialon becomes a high refractive index material and the Sialon layer 204 can play the role of a high refractive index layer. At least one of the refractive index materials and the medium refractive index materials.
  • the dielectric (material) is silicon oxide (SiO 2 ), calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), or a mixture of two or more thereof.
  • the total physical film thickness of each sialon layer 204 in the surface protective film 201 is preferably 200 nm or more from the viewpoint of obtaining better scratch resistance. Is.
  • the surface protective film 201 is formed by a physical vapor deposition method (Physical Vapor Deposition (PVD), vacuum vapor deposition, sputtering, etc.), an atomic layer deposition (Atomic Layer Deposition), or the like, and is preferably formed by a sialon layer 204 and a dielectric layer 206. Both are sequentially formed by the same manufacturing equipment.
  • the sialon layer 204 is preferably formed in the above-mentioned manufacturing apparatus 101 in the same manner as the surface protective film 1 made of sialon of the first form.
  • Examples 1 to 4 and Comparative Examples 1 to 7 were each formed into a film by the above-mentioned manufacturing apparatus 101 under the following conditions.
  • Examples 1 to 4 belong to the above-mentioned first embodiment. That is, in Examples 1 to 4 and Comparative Examples 1 to 7, a film was directly formed on one side (deposition surface M) of the plate-shaped prism 2 made of white plate glass without an interlayer film.
  • the Vickers hardness (HVpl) of the white plate glass substrate is 646.23.
  • the Vickers hardness of the quartz substrate is 959.93.
  • the Vickers hardness (HVpl) here is a DIN standard Vickers conversion value with respect to the indentation hardness, which is measured by a measuring device (HM2000LT manufactured by Fisher Instruments Co., Ltd.), and the same applies hereinafter.
  • the inside of the vacuum chamber 102 was 2 ⁇ 10 -4 Pa (Pascal) at the start of film formation.
  • the rotation speed of the drum 104 was set to 100 rpm (revolutions per minute). The rotation of the drum 104 may be temporarily shifted or temporarily stopped.
  • Si of the first target T1 one with a purity of 99.99% doped with B (boron) was used.
  • Al of the second target T2 one having a purity of 99.99% was used.
  • the O 2 gas, N 2 gas, and Ar gas those having a purity of 99.99% or more were used.
  • a turbo molecular pump was used in the exhaust unit 140.
  • Examples 1 to 4 were formed under the following common conditions. That is, the flow rate of each Ar gas in the first sputter source 110 and the second sputter source 120 was set to 120 sccm (Standard Cubic Centimeter per Minute; 120 ml / min). The flow rate of the O 2 gas in the radical source 130 was 10 sccm, and the flow rate of the N 2 gas in the radical source 130 was 150 sccm. Further, the electric power in the radical source 130 was set to 1500 W (watt). Further, Examples 1 to 4 were formed under the individual conditions shown in Table 1 below.
  • the power of the sputtering cathode 112 of the first sputtering source 110 was 9000W, and the electric power of the sputtering cathode 122 of the second sputtering source 120 was 6000W.
  • the film formation rate was 0.40 nm / sec (nanometers per second).
  • the electric power of the first sputter source 110 was set to 4500 W, and the electric power of the second sputter source 120 was set to 6000 W.
  • the film formation rate was 0.25 nm / sec.
  • the electric power of the first sputter source 110 was set to 9000 W, and the electric power of the second sputter source 120 was set to 5000 W.
  • the film formation rate was 0.36 nm / sec.
  • the electric power of the first sputter source 110 was set to 9000 W, and the electric power of the second sputter source 120 was set to 4000 W.
  • the film formation rate was 0.32 nm / sec.
  • Comparative Examples 1 to 7 were formed under the individual conditions shown in Tables 2 and 3 below.
  • the first sputter source 110 does not require Si except that Ar gas is introduced at 120 sccm to adjust the atmosphere in the vacuum chamber 102. Therefore, it was considered to be inoperable.
  • the electric power of the second sputter source 120 was 6500 W, and Ar gas was introduced at 100 sccm.
  • the electric power was 2000 W, O 2 gas was introduced at 70 sccm, and N 2 gas was not introduced.
  • the film formation rate was 0.38 nm / sec.
  • Comparative Example 2 aluminum nitride film; AlN film
  • the first sputter source 110 was made inoperable as in Comparative Example 1.
  • the electric power of the second sputter source 120 was 6000 W, and Ar gas was introduced at 120 sccm.
  • the electric power was 2000 W, N 2 gas was introduced at 50 sccm, and O 2 gas was not introduced.
  • the film formation rate was 0.29 nm / sec.
  • the first sputter source 110 and the second sputter source 120 were the same as those of Comparative Example 2.
  • the electric power was 2000 W
  • the O 2 gas was introduced at 10 sccm
  • the N 2 gas was introduced at 100 sccm.
  • the film formation rate was 0.26 nm / sec.
  • Comparative Example 4 silicon oxynitride film; SiON film
  • the electric power of the first sputtering source 110 was 9000 W, and Ar gas was introduced at 80 sccm.
  • the second sputter source 120 was inoperable because Al was unnecessary except that Ar gas was introduced at 100 sccm to adjust the atmosphere in the vacuum chamber 102.
  • the electric power was 1000 W, the O 2 gas was introduced at 10 sccm, and the N 2 gas was introduced at 150 sccm.
  • the film formation rate was 0.20 nm / sec.
  • Comparative Example 5 silicon nitride film; Si 3N 4 film
  • the power of the first sputtering source 110 was 8000 W
  • Ar gas was introduced at 100 sccm.
  • the second sputter source 120 was inoperable as in Comparative Example 4, except that the flow rate of Ar gas was 100 sccm.
  • the electric power was 1000 W
  • N 2 gas was introduced at 80 sccm
  • O 2 gas was not introduced.
  • the film formation rate was 0.20 nm / sec.
  • Comparative Example 6 silicon oxide film; SiO 2 film
  • the electric power of the first sputtering source 110 was 9000 W, and Ar gas was introduced at 120 sccm.
  • the second sputter source 120 was inoperable as in Comparative Example 4, except that the flow rate of Ar gas was 120 sccm.
  • the electric power was 1000 W, O 2 gas was introduced at 100 sccm, and N 2 gas was not introduced.
  • the film formation rate was 0.34 nm / sec.
  • Comparative Example 7 Comparative Example 7 (Sialon film)
  • the electric power of the first sputtering source 110 was 9000 W, and Ar gas was introduced at 120 sccm.
  • the electric power of the second sputter source 120 was 3000 W, and Ar gas was introduced at 120 sccm.
  • the electric power was 1500 W, the O 2 gas was introduced at 10 sccm, and the N 2 gas was introduced at 150 sccm.
  • the film formation rate was 0.27 nm / sec.
  • the composition of the Sialon film (SiAlON) was analyzed by energy dispersive X-ray analysis (EDX) for Examples 1 to 4 and Comparative Example 7.
  • EDX energy dispersive X-ray analysis
  • the element ratios (atomic number ratio,%) of Examples 1 to 4 and Comparative Example 7 were grasped as the composition (Table 6).
  • the power (Al power) of the second sputter source 120 is higher than the power (Si power) of the first sputter source 110, that is, when Al power / (Al power + Si power) is large
  • the elemental ratio of Al in SiAlON and
  • the ratio of the element ratio of Al to the sum of the element ratios of Si that is, Al / (Al + Si) becomes large.
  • the magnitude of Al / (Al + Si) and the magnitude of Al power / (Al power + Si power) do not have a simple proportional relationship due to differences in the absolute value of each power and the introduction flow rate of various gases.
  • the refractive index (in light having a wavelength of 550 nm) is the smallest at 1.48 in Comparative Example 6 (SiO 2 ), followed by the smallest in Comparative Example 1 (Al 2 O 3 ).
  • the refractive index of each nitride is 2.00 in Comparative Example 2 (AlN) and 2.04 in Comparative Example 5 (Si 3 N 4 ), which are higher than the others.
  • the refractive index of SiAlON is 1.90 or more when Al / (Al + Si) is a predetermined degree (about the degree of Example 4) or more, and is lower than the degree of Al / (Al + Si) when it is below a predetermined degree (a degree of Example 4). (When it comes to the degree of Comparative Example 7), it is less than 1.90.
  • the Vickers hardness is smaller (softer) than the Vickers hardness of the quartz substrate in Comparative Example 1 (Al 2 O 3 ) and Comparative Example 6 (SiO 2 ).
  • the Vickers hardness of Comparative Examples 2 to 5 exceeds the Vickers hardness of the quartz substrate, and in descending order of magnitude (hardness), Comparative Example 5 (Si 3 N 4 ), Comparative Example 4 (SiON), and Comparative Example 3 (AlON). ), Comparative Example 2 (AlN).
  • the Vickers hardness of SiAlON is almost the same as that of Comparative Examples 3 and 4.
  • the Vickers hardness of Example 2 is the smallest, and the Vickers hardness of Example 1 is the largest.
  • the Vickers hardness of SiAlON is generally larger as Al / (Al + Si) is smaller and closer to Si 3 N 4 .
  • the Vickers hardness of Examples 1 to 4 exceeds the Vickers hardness of the quartz substrate. Therefore, Examples 1 to 4 have sufficient scratch resistance.
  • the spectral transmittance distribution of the prism 2 with a sialon film (horizontal axis: wavelength, vertical axis: transmittance) in the visible region and the adjacent region. ) Is sinusoidal, but its central axis is horizontal, its upper limit is about 97%, and its lower limit is about 80%. Therefore, although some interference occurs in the transmitted light of the prism 2 with the sialon film, the transmittance of the transmitted light is sufficient at least in the visible region. Therefore, the prism 2 with a sialon film is sufficiently transparent to visible light and can be sufficiently used as an illumination cover C.
  • the absorption rate [%] is simply expressed as "100- (transmittance [%] + reflectance [%])", and is hereinafter transmitted. It is expressed as 100-TR, where T is the rate and R is the reflectance. Therefore, T and R were measured in the visible region and the adjacent region, and the absorption rate 100-TR was calculated (FIG. 7).
  • the average absorption rate in the visible region was calculated (FIG. 8).
  • the visible region is a wavelength region of visible light, and here, it is set to 400 nm or more and 700 nm or less.
  • the average absorption rate exceeded 1 in Comparative Example 7 and became 1 or less in Examples 1 to 4. Therefore, the absorption of SiAlON in Examples 1 to 4 is smaller than that in Comparative Example 7, and the transparency is higher than that in Comparative Example 7.
  • the hot water test was conducted as follows. That is, the sample was taken out after being placed in warm water at 98 ° C. for 24 hours, and the state of the sample was observed. In the hot water test, membrane dissolution occurred in Comparative Example 1 (Al 2 O 3 ), Comparative Example 2 (AlN), and Comparative Example 3 (AlON). Further, in Comparative Example 5 (Si 3 N 4 ), peeling of the film occurred. In the hot water test, no change was observed in the membrane in the examples and comparative examples other than the above.
  • the constant temperature and humidity test was conducted as follows. That is, the sample was taken out after being placed in a constant temperature and humidity chamber maintained at a temperature of 85 ° C. and a relative humidity of 85% for 72 hours, and the state of the sample was observed. In the constant temperature and humidity test, cracks were generated in the film in Comparative Example 1 (Al 2 O 3 ), Comparative Example 2 (AlN), and Comparative Example 3 (AlON). Further, in Comparative Example 4 (SiON), Comparative Example 5 (Si 3N 4 ) , and Comparative Example 7, peeling of the film occurred. In the constant temperature and humidity test, no change was observed in the membrane in the examples and comparative examples other than the above.
  • the three chemicals are sodium acetate (Na acetate), sodium formic acid (Na formic acid) and potassium formic acid (Ka formic acid). These chemicals are used as snow melting agents on the road.
  • the chemical resistance test was carried out in the same manner for each of the three chemicals as follows. That is, the sample was taken out after being placed in an aqueous solution of a chemical having a temperature of 3% by weight and at room temperature for 24 hours, and the state of the sample was observed.
  • Examples 1 to 4 are films made of Sialon, and the refractive index of the light having a wavelength of 550 nm in the Sialon is 1.90 or more and 1.94 or less. Examples 1 to 4 have sufficient Vickers hardness, sufficient scratch resistance, and sufficient transparency, while having environmental resistance, that is, heat resistance and moisture resistance (good adhesion). ), And a surface protective film 1 having chemical resistance.
  • Comparative Example 7 is a sialon film having a refractive index of 1.89, which is less than 1.90, and is inferior in moisture resistance and chemical resistance (Ka formic acid).
  • Comparative Examples 1 to 5 are inferior in environmental resistance (adhesion), and Comparative Examples 1 and 6 are not hardened by Vickers and are inferior in scratch resistance.
  • Examples 1 to 4 are films made of Sialon, and the Sialon contains aluminum in the range of 15% or more and 32% or less in terms of atomic number ratio.
  • Examples 1 to 4 are surface protective films 1 having sufficient Vickers hardness, sufficient scratch resistance, sufficient transparency, and excellent environmental resistance.
  • Comparative Example 7 is a sialon film having 10.3% of aluminum, which is less than 15% in atomic number ratio, and is inferior in moisture resistance and chemical resistance (Ka formic acid).
  • Examples 1 to 4 are films made of Sialon, and the quotient (Al / (Al + Si)) obtained by dividing aluminum by the sum of aluminum and silicon in the composition of the sialon in terms of the number of atoms is 0. It is 38 or more and 0.67 or less.
  • Examples 1 to 4 are surface protective films 1 having sufficient Vickers hardness, sufficient scratch resistance, sufficient transparency, and excellent environmental resistance.
  • Comparative Example 7 is a sialon film having Al / (Al + Si) of 0.276 (27.6%), which is less than 0.38, and is inferior in moisture resistance and chemical resistance (Ka formic acid).
  • the sialons of Examples 1 to 4 contain oxygen in an atomic number ratio of 7% or more and 16% or less.
  • Examples 1 to 4 are surface protective films 1 having sufficient Vickers hardness, sufficient scratch resistance, sufficient transparency, and excellent environmental resistance.
  • Comparative Example 7 is a sialon film having 20.2% oxygen, which is more than 20% in atomic number ratio, and is inferior in moisture resistance and chemical resistance (Ka formic acid). Further, the average visible absorption rate of Sialon in Examples 1 to 4 is 1% or less. Therefore, Examples 1 to 4 are excellent in transparency.
  • the lighting cover C including the surface protective film 1 of Examples 1 to 4 has sufficient Vickers hardness, sufficient scratch resistance, and sufficient transparency or light transmission. However, it has excellent environmental resistance, and even if it is incorporated into a road guide light, for example, it is possible to prevent a situation in which small scratches (scratches) occur and the cloudiness and translucency deteriorate, and it is also used as a temperature / humidity change and a snow melting agent. Can be tolerable. Further, the surface protective film 1 of Examples 1 to 4 prevents peeling that occurs in the conventional road guide light.
  • Examples 1 to 4 are formed in the prism 2 by performing Si sputtering and Al sputtering while introducing O 2 gas and N 2 gas in the vacuum chamber 102 in which the prism 2 is placed. To. Further, Si spatter and Al spatter are performed by applying a DC voltage. Therefore, Examples 1 to 4, which are novel Sialon films, are actually formed.
  • Examples 11 to 17 and Comparative Example 11 were each formed by the above-mentioned manufacturing apparatus 101 under the following conditions. Further, Comparative Example 12 was formed by vacuum vapor deposition with only the prism 2 (substrate) aligned with Examples 11 to 17 and Comparative Example 11. Examples 11 to 17 belong to the above-mentioned second form. For clarification, Examples 5 to 10 and Comparative Examples 8 to 10 are omitted. That is, Examples 11 to 17 and Comparative Examples 11 to 12 were directly formed on one side of a substrate made of a cycloolefin polymer (COP; "ZEONEX E48R" manufactured by Nippon Zeon Corporation) without an interlayer film.
  • COP cycloolefin polymer
  • Examples 11 to 17 were formed under the following common conditions. That is, when forming the SiO 2 layer which is the dielectric layer 206, the electric power in the first sputter source 110 and the second sputter source 120 is set to 9000 W and 0 W in order, and the first sputter source 110 and the second sputter source 120 are used. The flow rate of each Ar gas was set to 120 sccm. The electric power in the radical source 130 was 1000 W, and the flow rates of Ar gas, O 2 gas, and N 2 gas in the radical source 130 were 0 sccm, 100 sccm, and 0 sccm, respectively.
  • the film formation rate in this case was 0.34 nm / sec.
  • the electric power in the first sputter source 110 and the second sputter source 120 is set to 9000 W and 6000 W in order, and the flow rate of each Ar gas in the first sputter source 110 and the second sputter source 120 is set.
  • the electric power in the radical source 130 was 1500 W, and the flow rates of Ar gas, O 2 gas, and N 2 gas in the radical source 130 were 0 sccm, 10 sccm, and 150 sccm, respectively.
  • the film formation rate in this case was 0.4 nm / sec.
  • the manufacturing conditions common to Examples 11 to 17 are shown in Table 7 below. Further, the layer configurations of Examples 11 to 17 and the physical film thickness of each layer are shown in Tables 8 to 10 below.
  • the total number of layers of the surface protective film 201 of Examples 11 to 17 is 4,2,15,10,11,2,12, respectively.
  • the bottom layer which is the first layer (the layer closest to the substrate) counting from the substrate, is the SiO 2 layer.
  • the lowest layer is the sialon layer 204.
  • Example 16 is formed in the same flow as the flow chart of the first embodiment (FIG. 4) except for step S5 (formation of the surface protective film).
  • step S5 of Example 14 first, the first sialon layer 204 is formed under the above-mentioned production conditions. The physical film thickness of the first sialon layer 204 is adjusted by the film forming time because the film forming rate is constant at the above-mentioned values. That is, the first layer is formed at the film forming time calculated by dividing the physical film thickness of the first layer by the film forming rate of the sialon layer 204.
  • the second dielectric layer 206 SiO 2 layer
  • the second layer is formed at a film forming time calculated by dividing the physical film thickness of the second layer by the film forming rate of the SiO 2 layer.
  • the surface protective film 201 of Example 12 is formed in the same manner as the surface protective film 201 of Example 16 except for the physical film thickness of each layer.
  • the surface protective film 201 of Examples 11, 14, and 17 is formed by appropriately repeating the formation of the surface protective film 201 of Example 16.
  • the surface protective film 201 of Examples 13 and 15 is the same as the surface protective film 201 of Examples 11, 14 and 17 except that the odd-numbered layer is the SiO 2 layer and the even-numbered layer is the sialon layer 204. It is formed.
  • the physical film thickness of the surface protective film 201 (“total”), the total physical film thickness of all the SiO 2 layers in the surface protective film 201 (“SiO 2 total”), and The total physical film thickness of all Sialon layers 204 in the surface protective film 201 (“SiAlON meter”) is also shown. Similarly, various totals are shown in Table 13 described later.
  • the total physical film thickness (nm) of the sialon layer 204 in Examples 11 and 12 was 104.65 and 61.35, respectively, which were less than 215 nm.
  • the total physical film thickness (nm) of the sialon layer 204 in Examples 13 to 17 was 585.88, 215.96, 215.96, 270.00, 290.34, respectively, and all of them were 215 nm or more. ..
  • Comparative Examples 11 to 12 were formed as follows. First, Comparative Example 11 is an alternating film of a Si 3 N 4 layer, which is a layer made of Si 3 N 4 , and a SiO 2 layer, and is formed in the manufacturing apparatus 101 under the manufacturing conditions shown in Table 11 below. rice field. That is, when the Si 3 N 4 layer is formed, the electric power in the first sputter source 110 and the second sputter source 120 is set to 8000 W and 0 W in order, and each Ar gas in the first sputter source 110 and the second sputter source 120 is formed. The flow rate of each was 100 sccm.
  • the electric power in the radical source 130 was 1000 W, and the flow rates of Ar gas, O 2 gas, and N 2 gas in the radical source 130 were 0 sccm, 0 sccm, and 80 sccm, respectively.
  • the film formation rate in this case was 0.2 nm / sec.
  • the SiO 2 layer of Comparative Example 11 was formed under the same conditions as in the case of forming the SiO 2 layer in Examples 11 to 17.
  • Comparative Example 12 was an alternating film of TiO 2 layer and SiO 2 layer, which are layers made of TiO 2 , and was formed by vacuum vapor deposition under the production conditions shown in Table 12 below.
  • Vacuum deposition is, more specifically, ion beam assisted deposition (IAD).
  • IAD ion beam assisted deposition
  • the voltage of the electron beam (EB) was 6 kV (kilovolt)
  • the current was 100 mA (milliampere)
  • the film formation rate was 10 ⁇ / sec (angstrom per second).
  • the acceleration voltage of the ion beam is 750 V
  • the acceleration current is 250 mA
  • the flow rate of the O 2 gas supplied to the ion beam ejection part is 20 sccm
  • the flow rate of the O 2 gas introduced into the vacuum chamber is 0 sccm ( O 2 gas is not introduced into the vacuum chamber except for the ion beam emitting part described above).
  • the voltage of EB was 6 kV (kilovolt)
  • the current was 450 mA
  • the film formation rate was 3 ⁇ / sec.
  • the acceleration voltage of the ion beam was 700 V
  • the acceleration current was 250 mA
  • the flow rate of the O 2 gas supplied to the ion beam ejection part was 15 sccm
  • the flow rate of the O 2 gas introduced into the vacuum chamber was 120 sccm.
  • the temperature in the vacuum chamber was maintained at 100 ° C. at the time of film formation of any layer, and the degree of vacuum at the start of film formation of the first layer was 8.0 ⁇ 10 -4 Pa.
  • Comparative Examples 11 to 12 The layer structure of Comparative Examples 11 to 12 and the physical film thickness of each layer are shown in Table 13 below.
  • the total number of layers of the surface protective film of Comparative Examples 11 to 12 was set to 15.5 in order.
  • the lowest layer was a SiO 2 layer. Comparative Examples 11 and 12 were formed under the above-mentioned production conditions.
  • Comparative Examples 11 to 12 Various characteristics of Comparative Examples 11 to 12 and Examples 11 to 17 are shown in Table 14 below. Further, the transparency (simulation value in the white plate glass substrate) of Comparative Examples 11 to 12 and Examples 11 to 17 is shown in FIGS. 9 to 17 (spectral reflectance distribution) in order. Further, photographs of Comparative Examples 11 to 12 and Examples 11 to 17 taken after the scratch resistance test are shown in FIGS. 18 to 26 in order.
  • the reflectance is approximately 1% or less in the visible region (here, 400 nm or more and 700 nm or less). More specifically, in the region of 400 nm or more and less than 405 nm and the region of more than 680 nm and 700 nm or less in Example 11, the reflectance is slightly more than 1% and 2% or less, and in the region of 405 nm or more and 680 nm. The reflectance is 1% or less. Further, in Example 17, the reflectance is 1% or less in the region of 420 nm or more and 670 nm or less, and the reflectance is 2% or less in the visible region other than the region.
  • the reflectance in the visible region is 0.5% or less. Furthermore, in Example 15, the reflectance in the visible region is 0.5% or less except for some regions, and the reflectance is 1% or less even in the several regions. Therefore, in Examples 11, 13 to 15, 17 and Comparative Examples 11 to 12, transparency is obtained in the visible region (most of them in Example 17). On the other hand, in Examples 12 and 16, the reflectance is approximately 3% or less in the near infrared region (here, 800 nm or more and 1000 nm or less).
  • Example 12 the reflectance is 1% or less at 850 nm or more and 1000 nm or less, and in Example 16, the reflectance is 3% or less at 850 nm or more and 1000 nm or less. Therefore, in Examples 12 and 16, transparency in the near infrared region is obtained.
  • Example 11 to 17 and Comparative Examples 11 to 12 the same constant temperature and humidity test (temperature 85 ° C., relative humidity 85%, 72 hours (hr)) as in Examples 1 to 4 and Comparative Examples 1 to 7 was maintained. ) was carried out, and after the test, the sample was kept in the tank for 328 hours (400 hours in total) in the same environment, and a long-term constant temperature and humidity test was performed. In each constant temperature and humidity test of Examples 11 to 17 and Comparative Examples 11 to 12, a tape test (peeling test) was performed in addition to the appearance observation.
  • a notch is made in the surface protective film of the sample along a virtual square having a side of 10 mm with a knife, and an adhesive tape (“Cellotape CT-15” manufactured by Nichiban Co., Ltd.” is formed in the square partitioned by the notch. ) was pasted and peeled off vertically.
  • an adhesive tape (“Cellotape CT-15” manufactured by Nichiban Co., Ltd.” is formed in the square partitioned by the notch. ) was pasted and peeled off vertically.
  • the appearance after the test was good in both Examples 11 to 17 and Comparative Examples 11 to 12, and no peeling occurred.
  • the long-term constant temperature and humidity test in Examples 11 to 17 and Comparative Example 12, the appearance after the test was good and peeling did not occur, whereas in Comparative Example 11, peeling occurred. Occurred.
  • the surface protective film 201 of Examples 11 to 17 includes one or more Sialon layers 204 made of Sialon and one or more dielectric layers 206 made of dielectric. Therefore, a transparent surface protective film 201 having excellent scratch resistance and durability is provided.
  • Comparative Example 11 is a multilayer film including a Si 3N 4 layer and a dielectric layer, which is inferior in durability due to peeling in a long-term constant temperature and humidity test.
  • Comparative Example 12 is a multilayer film including a TiO 2 layer and a dielectric layer, which has many scratches in a scratch resistance test and is inferior in scratch resistance.
  • the dielectric layer 206 is made of SiO 2 .
  • the dielectric layer 206 is more easily formed as a low refractive index layer at a lower cost, and the transparent surface protective film 201 is more easily designed by the multilayer film with the Sialon layer 204 that behaves as a high refractive index layer. It is possible. Further, in the surface protective film 201 of Examples 13 to 17, the total physical film thickness of the sialon layer is 215 nm or more. Therefore, the number of scratches is smaller in the scratch resistance test, and the scratch resistance is excellent.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

[Problem] To provide a surface protection film which has outstanding scratch resistance and outstanding durability (environmental resistance) with respect to at least one of temperature, humidity, and chemicals, as well as a method for manufacturing the surface protection film; and to provide a lighting cover which is prevented from peeling while having the prescribed performance. [Solution] A surface protection film 1 according to the present invention is a film made of SiAlON, the SiAlON having a refractive index of 1.90-1.94, inclusive, to light having a wavelength of 550 nm. The surface protection film 1 is formed on a film forming surface M of a prism 2 by sputtering Si and sputtering Al while introducing O2 gas and N2 gas in a vacuum chamber in which the prism 2 is placed. A lighting cover C according to the present invention includes the surface protection film 1.

Description

表面保護膜、照明カバー、及び表面保護膜の製造方法Manufacturing method of surface protective film, lighting cover, and surface protective film
 本発明は、サイアロンに係る表面保護膜、その表面保護膜を有する照明カバー、及び表面保護膜の製造方法に関する。 The present invention relates to a surface protective film according to Sialon, a lighting cover having the surface protective film, and a method for manufacturing the surface protective film.
 サーマルヘッドに施された表面保護膜として、特開2011-83923号公報(特許文献1)に記載されたものが知られている。
 この表面保護膜は、窒素ガスを2%混合したアルゴンガス雰囲気の高周波(RF)スパッタ法で成膜されたサイアロン膜を表層として有している。
As a surface protective film applied to the thermal head, the one described in Japanese Patent Application Laid-Open No. 2011-83923 (Patent Document 1) is known.
This surface protective film has a sialon film formed by a high frequency (RF) sputtering method in an argon gas atmosphere mixed with 2% nitrogen gas as a surface layer.
 他方、道路及び誘導路の各路面に設置される照明(誘導灯)のカバーとして、ガラス製のプリズムの表面に対し真空蒸着等によりコーティングが形成されたものが知られている。そのカバーにおけるコーティングは、照明光を透過しつつ、高い硬度を有して耐傷性を有するように設計される。又、そのコーディングは、路面において想定される環境温度及び環境湿度に長期間耐え、又路面で用いられる融雪剤等の薬品にも長期間耐えるように設計される。 On the other hand, as a cover for lighting (guide lights) installed on each road surface of a road and a taxiway, a coating is known on the surface of a glass prism by vacuum deposition or the like. The coating on the cover is designed to have high hardness and scratch resistance while transmitting illumination light. In addition, the coding is designed to withstand the expected environmental temperature and humidity on the road surface for a long period of time, and also withstand chemicals such as snow melting agents used on the road surface for a long period of time.
特開2011-83923号公報Japanese Unexamined Patent Publication No. 2011-83923
 上述の表面保護膜は、サーマルヘッドの表層を記録媒体等が通過した際に生じる摩擦による摩耗から保護する。
 しかし、サイアロンは、シリコン、アルミニウム、酸素、及び窒素の各原子から成り(SiAlON)、サイアロンの特性は、シリコンとアルミニウムとの原子数比等により変化するところ、上述の表面保護膜におけるサイアロン膜は、上述の通り所定の製法で製造されており、所定の特性を有するに留まる。上述の表面保護膜におけるサイアロン膜の耐傷性等は、向上の余地がある。
The above-mentioned surface protective film protects the surface layer of the thermal head from wear due to friction generated when a recording medium or the like passes through the surface layer.
However, Sialon is composed of silicon, aluminum, oxygen, and nitrogen atoms (SiAlON), and the characteristics of Sialon change depending on the atomic number ratio of silicon and aluminum. As described above, it is manufactured by a predetermined manufacturing method and has only predetermined characteristics. There is room for improvement in the scratch resistance of the sialon film in the above-mentioned surface protective film.
 他方、誘導灯のカバーにおけるコーティングの耐傷性及び耐環境性は、向上の余地がある。又、そのコーティングは、長期の使用あるいは強い衝撃の作用等により、剥離する可能性が存在する。 On the other hand, there is room for improvement in the scratch resistance and environmental resistance of the coating on the guide light cover. Further, the coating may be peeled off due to long-term use or the action of a strong impact.
 そこで、本発明の主な目的は、耐傷性に優れた表面保護膜,表面保護膜の製造方法を提供することである。
 又、本発明の他の主な目的は、温度、湿度及び薬品の少なくとも何れかに対する耐久性(耐環境性)に優れた表面保護膜,表面保護膜の製造方法を提供することである。
 更に、本発明の他の主な目的は、所定の性能を有しつつ、剥離が防止される照明カバーを提供することである。
Therefore, a main object of the present invention is to provide a surface protective film having excellent scratch resistance and a method for producing the surface protective film.
Another main object of the present invention is to provide a surface protective film and a method for producing a surface protective film having excellent durability (environmental resistance) against at least one of temperature, humidity and chemicals.
Further, another main object of the present invention is to provide a lighting cover which has predetermined performance and prevents peeling.
 請求項1に記載の発明は、表面保護膜において、サイアロン製の膜であり、前記サイアロンにおける波長550nmの光に対する屈折率は、1.90以上1.94以下であることを特徴とするものである。
 請求項2に記載の発明は、表面保護膜において、サイアロン製の膜であり、前記サイアロンは、アルミニウムを、原子数比で15%以上32%以下含んでいることを特徴とするものである。
 請求項3に記載の発明は、表面保護膜において、サイアロン製の膜であり、前記サイアロンの原子数での組成における、アルミニウムを、アルミニウムとシリコンとの和で割った商が、0.38以上0.67以下であることを特徴とするものである。
 請求項4に記載の発明は、表面保護膜において、サイアロン製の膜であり、前記サイアロンは、酸素を、原子数比で7%以上16%以下含んでいることを特徴とするものである。
 請求項5に記載の発明は、表面保護膜において、サイアロン製の膜であり、前記サイアロンの可視域平均吸収率は、1%以下であることを特徴とするものである。
 請求項6に記載の発明は、表面保護膜において、1以上のサイアロン製のサイアロン層、及び1以上の誘電体製の誘電体層を含むことを特徴とするものである。
 請求項7に記載の発明は、請求項6に記載の発明において、前記誘電体は、SiOであることを特徴とするものである。
 請求項8に記載の発明は、請求項6又は請求項7に記載の発明において、前記サイアロン層の合計物理膜厚は、215nm以上であることを特徴とするものである。
 請求項9に記載の発明は、照明カバーにおいて、請求項1から請求項8の何れかに記載の表面保護膜を含んでいることを特徴とするものである。
The invention according to claim 1 is a surface protective film made of Sialon, wherein the refractive index of the Sialon with respect to light having a wavelength of 550 nm is 1.90 or more and 1.94 or less. be.
The invention according to claim 2 is a surface protective film made of Sialon, which is characterized by containing aluminum in an atomic number ratio of 15% or more and 32% or less.
The invention according to claim 3 is a surface protective film made of sialon, and the quotient of aluminum divided by the sum of aluminum and silicon in the composition of the sialon at the number of atoms is 0.38 or more. It is characterized by being 0.67 or less.
The invention according to claim 4 is a surface protective film made of Sialon, which is characterized by containing oxygen in an atomic number ratio of 7% or more and 16% or less.
The invention according to claim 5 is a surface protective film made of Sialon, wherein the average visible absorption rate of the Sialon is 1% or less.
The invention according to claim 6 is characterized in that the surface protective film includes one or more sialon layers made of sialon and one or more dielectric layers made of dielectric.
The invention according to claim 7 is the invention according to claim 6, wherein the dielectric is SiO 2 .
The invention according to claim 8 is characterized in that, in the invention according to claim 6 or 7, the total physical film thickness of the sialon layer is 215 nm or more.
The invention according to claim 9 is characterized in that the lighting cover includes the surface protective film according to any one of claims 1 to 8.
 請求項10に記載の発明は、表面保護膜の製造方法において、基材を置いた成膜室内において、Oガス及びNガスを導入しながら、SiのスパッタとAlのスパッタとを行うことで、請求項1から請求項5の何れかに記載の表面保護膜を前記基材に形成することを特徴とするものである。
 請求項11に記載の発明は、請求項10に記載の発明において、前記Siのスパッタ及び前記Alのスパッタの少なくとも一方は、直流電圧の印加により行われることを特徴とするものである。
The invention according to claim 10 is a method for producing a surface protective film, in which Si spattering and Al spattering are performed while introducing O 2 gas and N 2 gas in a film forming chamber in which a substrate is placed. The surface protective film according to any one of claims 1 to 5 is formed on the substrate.
The invention according to claim 11 is characterized in that, in the invention according to claim 10, at least one of the spattering of Si and the spattering of Al is performed by applying a DC voltage.
 本発明の主な効果は、耐傷性に優れた表面保護膜,表面保護膜の製造方法を提供することである。
 又、本発明の他の主な効果は、温度、湿度及び薬品の少なくとも何れかに対する耐久性(耐環境性)に優れた表面保護膜,表面保護膜の製造方法を提供することである。
 更に、本発明の他の主な効果は、所定の性能を有しつつ、剥離が防止される照明カバーを提供することである。
The main effect of the present invention is to provide a surface protective film having excellent scratch resistance and a method for producing the surface protective film.
Another main effect of the present invention is to provide a surface protective film and a method for producing a surface protective film having excellent durability (environmental resistance) against at least one of temperature, humidity and chemicals.
Furthermore, another major effect of the present invention is to provide a lighting cover that has predetermined performance and is prevented from peeling.
本発明の第1形態に係る表面保護膜及びプリズムの模式的な横断面図である。It is a schematic cross-sectional view of the surface protective film and the prism which concerns on 1st Embodiment of this invention. シリコンとアルミニウムとの原子数比を横軸とし、各種特性の相対的な強弱を縦軸とした、サイアロン膜の各種特性に関する模式的なグラフである。It is a schematic graph about various characteristics of a sialon film, with the atomic number ratio of silicon and aluminum as the horizontal axis and the relative strength and weakness of various characteristics as the vertical axis. 表面保護膜の製造装置の模式的な上面図である。It is a schematic top view of the surface protection film manufacturing apparatus. 図3の動作例のフローチャートである。It is a flowchart of the operation example of FIG. 本発明の第2形態に係る表面保護膜及びプリズムの模式的な横断面図である。It is a schematic cross-sectional view of the surface protective film and the prism which concerns on 2nd Embodiment of this invention. 実施例1~4及び比較例1~7、並びに白板ガラス基板及び石英基板のビッカース硬さに係るグラフである。It is a graph relating to the Vickers hardness of Examples 1 to 4 and Comparative Examples 1 to 7, and a white plate glass substrate and a quartz substrate. 実施例1~4及び比較例7(サイアロン膜)の可視域及び隣接域における分光吸収率分布に係るグラフである。3 is a graph relating to the spectral absorption rate distribution in the visible region and the adjacent region of Examples 1 to 4 and Comparative Example 7 (Sialon film). 実施例1~4及び比較例7(サイアロン膜)の可視域における平均吸収率に係るグラフである。3 is a graph relating to the average absorption rate in the visible region of Examples 1 to 4 and Comparative Example 7 (Sialon film). 比較例11の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of the comparative example 11. 比較例12の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of the comparative example 12. 実施例11の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of Example 11. 実施例12の赤外域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the infrared region of Example 12. 実施例13の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of Example 13. 実施例14の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of Example 14. 実施例15の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of Example 15. 実施例16の赤外域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the infrared region of Example 16. 実施例17の可視域及び隣接域における分光透過率分布に係るグラフである。It is a graph which concerns on the spectral transmittance distribution in the visible region and the adjacent region of Example 17. 比較例11の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Comparative Example 11. 比較例12の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Comparative Example 12. 実施例11の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 11. 実施例12の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 12. 実施例13の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 13. 実施例14の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 14. 実施例15の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 15. 実施例16の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 16. 実施例17の耐傷性試験後に撮影された写真である。It is a photograph taken after the scratch resistance test of Example 17.
 以下、本発明に係る実施の形態の例が、適宜図面を用いて説明される。
 尚、本発明は、以下の例に限定されない。
Hereinafter, examples of embodiments according to the present invention will be described with reference to the drawings.
The present invention is not limited to the following examples.
[第1形態]
≪表面保護膜の構成等≫
 図1に例示されるように、本発明の第1形態に係る表面保護膜1は、ガラス製のプリズム2の成膜面M上に形成されている。
 表面保護膜1付きのプリズム2は、照明としての道路誘導灯(図示略)の光学系要素を兼ねた照明カバーCとして用いられる。
 プリズム2は、表面保護膜1が形成される基材であり、特に板状の場合、基板である。プリズム2の成膜面Mは、道路誘導灯に設置された場合に露出する面である。
 尚、表面保護膜1自体が照明カバーCと捉えられても良い。又、成膜面Mは、プリズム2の全表面等、露出する面を超えた面とされても良い。プリズム2と表面保護膜1との間に、1つ以上の中間膜が配置されても良い。プリズム2は、ガラス以外の材質を有していても良い。表面保護膜1は、道路誘導灯におけるプリズム2以外の部分に形成されても良いし、道路誘導灯以外の装置、部品、部材等に形成されても良い。例えば、表面保護膜1は、自動車道、鉄道(線路)、モノレール、歩道に係る誘導灯、表示器に形成されても良い。
[First form]
≪Construction of surface protective film, etc.≫
As illustrated in FIG. 1, the surface protective film 1 according to the first embodiment of the present invention is formed on the film-forming surface M of the glass prism 2.
The prism 2 with the surface protective film 1 is used as a lighting cover C that also serves as an optical system element of a road guide lamp (not shown) as lighting.
The prism 2 is a base material on which the surface protective film 1 is formed, and is a substrate particularly in the case of a plate shape. The film-forming surface M of the prism 2 is a surface that is exposed when it is installed in a road guide light.
The surface protective film 1 itself may be regarded as the illumination cover C. Further, the film-forming surface M may be a surface beyond the exposed surface such as the entire surface of the prism 2. One or more interlayer films may be arranged between the prism 2 and the surface protective film 1. The prism 2 may have a material other than glass. The surface protective film 1 may be formed on a portion of the road guide light other than the prism 2, or may be formed on a device, a part, a member, or the like other than the road guide light. For example, the surface protective film 1 may be formed on a motorway, a railway (railroad track), a monorail, a guide light related to a sidewalk, or an indicator.
 表面保護膜1は、サイアロン(SiAlON)製の膜である。
 サイアロンの特性は、シリコンとアルミニウムとの原子数比等により変化する。サイアロンの特性は、シリコンの原子数がアルミニウムの原子数に対して多くなると窒化シリコン(Si)の特性に近づき、アルミニウムの原子数がシリコンの原子数に対して多くなると酸化アルミニウム(Al)の特性に近づく。シリコンとアルミニウムとの原子数比に応じ、結合する酸素及び窒素の原子数比が変化する。
 サイアロンの特性(シリコンとアルミニウムとの原子数比等)は、製法の種類及びその条件設定等により変化させることができる。
The surface protective film 1 is a film made of SiAlON.
The characteristics of Sialon change depending on the atomic number ratio of silicon and aluminum. The characteristics of Sialon approach the characteristics of silicon nitride (Si 3 N 4 ) when the number of atoms of silicon increases with respect to the number of atoms of aluminum, and the characteristics of aluminum oxide (Al) when the number of atoms of aluminum increases with respect to the number of atoms of silicon. It approaches the characteristics of 2 O 3 ). The atomic number ratio of oxygen and nitrogen to be bonded changes according to the atomic number ratio of silicon and aluminum.
The characteristics of Sialon (atomic number ratio of silicon and aluminum, etc.) can be changed depending on the type of manufacturing method and its condition setting.
 図2は、シリコンとアルミニウムとの原子数比を横軸とし、各種特性(硬さ、密着性及び耐薬品性)の相対的な強弱を縦軸とした、サイアロン膜の各種特性に関する模式的なグラフである。横軸において、左に行くほどアルミニウムの原子数がシリコンの原子数に対して多くなり、左端ではAlとなる。又、右に行くほどシリコンの原子数がアルミニウムの原子数に対して多くなり、左端ではSiとなる。
 サイアロン膜の硬さは、シリコンの原子数が多くなる程、硬く(縦軸で上に)なる。
 サイアロン膜の基材に対する密着性は、アルミニウム及びシリコンが混じる横軸中央部で高く(縦軸で上に位置し)、その両側で低くなる。
 サイアロン膜の耐薬品性は、シリコンの原子数がアルミニウムの原子数に対して所定程度以上となれば、ほぼ一定の高い(縦軸で上側の)水準を示し、シリコンの原子数がアルミニウムの原子数に対して所定程度未満であると、低くなっていく。
 本発明に係るサイアロン製の表面保護膜1は、硬さ、密着性及び耐薬品性が何れも高い水準となるシリコンとアルミニウムとの原子数比を有している(図2の良好な領域参照)。
FIG. 2 is a schematic diagram of various characteristics of a sialon film, with the atomic number ratio of silicon and aluminum as the horizontal axis and the relative strength of various characteristics (hardness, adhesion and chemical resistance) as the vertical axis. It is a graph. On the horizontal axis, the number of aluminum atoms increases toward the left with respect to the number of silicon atoms, and Al 2 O 3 is obtained at the left end. Further, as it goes to the right, the number of atoms of silicon increases with respect to the number of atoms of aluminum, and at the left end, it becomes Si 3 N 4 .
The hardness of the sialon film becomes harder (upper on the vertical axis) as the number of atoms of silicon increases.
The adhesion of the sialon film to the substrate is high at the center of the horizontal axis (located at the top on the vertical axis) where aluminum and silicon are mixed, and low at both sides thereof.
The chemical resistance of the sialon film shows an almost constant high level (upper on the vertical axis) when the number of atoms of silicon is more than a predetermined level with respect to the number of atoms of aluminum, and the number of atoms of silicon is an atom of aluminum. If it is less than a predetermined level with respect to the number, it becomes lower.
The surface protective film 1 made of Sialon according to the present invention has an atomic number ratio of silicon and aluminum having high levels of hardness, adhesion and chemical resistance (see a good region in FIG. 2). ).
 又、サイアロン膜の屈折率は、シリコンとアルミニウムとの原子数比に応じて変化し、概ね、シリコンの原子数がアルミニウムの原子数に対して多くなる程、大きくなる。
 例えば、波長550nmの光に対する屈折率が1.90以上1.94以下のサイアロン膜は、上述した良好な領域の原子数比に対応し、硬さ、密着性及び耐薬品性が何れも高い水準となって、本発明の表面保護膜1となる。
Further, the refractive index of the sialon film changes according to the atomic number ratio of silicon and aluminum, and generally increases as the number of atoms of silicon increases with respect to the number of atoms of aluminum.
For example, a sialon film having a refractive index of 1.90 or more and 1.94 or less with respect to light having a wavelength of 550 nm corresponds to the above-mentioned atomic number ratio in a good region, and has high levels of hardness, adhesion, and chemical resistance. Therefore, it becomes the surface protective film 1 of the present invention.
≪表面保護膜の製造装置等≫
 次いで、上述の表面保護膜1を製造する装置の実施形態が、説明される。
 尚、本発明に係る表面保護膜1の製造装置は、以下の形態に限定されない。
≪Manufacturing equipment for surface protective film, etc.≫
Next, an embodiment of an apparatus for manufacturing the above-mentioned surface protective film 1 will be described.
The apparatus for manufacturing the surface protective film 1 according to the present invention is not limited to the following forms.
 図3は、当該形態に係る製造装置101の模式的な上面図である。
 製造装置101は、ドラム型スパッタ成膜装置(カルーセル型スパッタリング装置)であり、1以上の板状のプリズム2における片面に表面保護膜1を成膜するものである。
 製造装置101は、成膜室としての真空室102と、その中央部において自身の軸周りで回転可能に配置された円筒状のドラム104と、を備えている。ドラム104の外周円筒面には、成膜対象としてのプリズム2が、成膜面Mを外側に向けた状態で保持されている。
FIG. 3 is a schematic top view of the manufacturing apparatus 101 according to the embodiment.
The manufacturing apparatus 101 is a drum-type sputtering film forming apparatus (carousel-type sputtering apparatus), and forms a surface protective film 1 on one side of one or more plate-shaped prisms 2.
The manufacturing apparatus 101 includes a vacuum chamber 102 as a film forming chamber, and a cylindrical drum 104 rotatably arranged around its own axis in a central portion thereof. A prism 2 as a film forming target is held on the outer peripheral cylindrical surface of the drum 104 with the film forming surface M facing outward.
 真空室102の一面には、第1スパッタ源110が配置されている。
 第1スパッタ源110は、第1ターゲットT1をセットするスパッタカソード112と、一対の防着板114と、スパッタガスが適宜流量調整のうえで導入されるスパッタガス導入口116と、を備えている。
 スパッタカソード112は、外部直流電源(図示略)と接続されている。
 防着板114は、第1ターゲットT1とこれに対向するドラム104の部分との間を、他の真空室102の内部部分から区切るように配置されている。
 スパッタガス導入口116は、防着板114によって区切られた空間へ向けてスパッタガスを流す。
A first sputter source 110 is arranged on one surface of the vacuum chamber 102.
The first sputtering source 110 includes a sputtering cathode 112 for setting the first target T1, a pair of adhesive plates 114, and a sputtering gas introduction port 116 into which the sputtering gas is introduced after appropriately adjusting the flow rate. ..
The sputter cathode 112 is connected to an external DC power supply (not shown).
The protective plate 114 is arranged so as to separate the first target T1 from the portion of the drum 104 facing the first target T1 from the internal portion of the other vacuum chamber 102.
The sputter gas introduction port 116 allows the sputter gas to flow toward the space separated by the adhesive plate 114.
 真空室102の別の一面には、第2スパッタ源120が配置されている。
 第2スパッタ源120は、第1スパッタ源110と同様に、第2ターゲットT2をセットするスパッタカソード122と、一対の防着板124と、スパッタガス導入口126と、を備えている。
A second sputter source 120 is arranged on another surface of the vacuum chamber 102.
Like the first sputtering source 110, the second sputtering source 120 includes a sputtering cathode 122 for setting the second target T2, a pair of adhesive plates 124, and a sputtering gas introduction port 126.
 更に、真空室102の他の一面には、ラジカル源130が配置されている。
 ラジカル源130は、ガスをバルブ132により流量調整のうえで導入可能なラジカルガス導入口134と、加速電圧用電源(図示略)により電圧が印加されることでプラズマを発生可能なガン136と、を有する。
 ラジカルガス導入口134から真空室102の内部に導入されたガスは、ガン136が発生したプラズマによりラジカル化し、プリズム2に向かってビーム状に照射される。
Further, a radical source 130 is arranged on the other surface of the vacuum chamber 102.
The radical source 130 includes a radical gas introduction port 134 in which gas can be introduced after adjusting the flow rate by a valve 132, a gun 136 capable of generating plasma by applying a voltage by a power source for acceleration voltage (not shown), and a gun 136. Has.
The gas introduced into the inside of the vacuum chamber 102 from the radical gas introduction port 134 is radicalized by the plasma generated by the gun 136, and is irradiated in a beam shape toward the prism 2.
 加えて、ラジカル源130の両脇には、排気部140が設けられている。各排気部140では、真空室102内の排気が行われる。
 尚、第1スパッタ源110、第2スパッタ源120、ラジカル源130及び各排気部140の少なくとも何れかの配置、及び設置数は、上述のものに限定されない。第1スパッタ源110、第2スパッタ源120、及びラジカル源130の少なくとも何れかにおける電流(電圧)は、直流に係るものであっても良いし、低周波あるいは高周波の交流に係るものであっても良い。
In addition, exhaust units 140 are provided on both sides of the radical source 130. In each exhaust unit 140, the inside of the vacuum chamber 102 is exhausted.
The arrangement and the number of installations of at least one of the first sputter source 110, the second sputter source 120, the radical source 130, and each exhaust unit 140 are not limited to those described above. The current (voltage) in at least one of the first sputter source 110, the second sputter source 120, and the radical source 130 may be related to direct current, or related to low-frequency or high-frequency alternating current. Is also good.
 製造装置101の動作例(表面保護膜1の製造方法の例)について、主に図4に基づいて説明される。 An operation example of the manufacturing apparatus 101 (an example of a manufacturing method of the surface protective film 1) will be mainly described with reference to FIG.
 まず、プリズム2がドラム104にセットされると共に、第1ターゲットT1としてシリコン(Si)がセットされ、第2ターゲットT2としてアルミニウム(Al)がセットされる(ステップS1)。
 次に、真空室102の内部が排気される(ステップS2)。
 続いて、ドラム104が回転され、ドラム104に保持されたプリズム2が、第1スパッタ源110,第2スパッタ源120,ラジカル源130の各内側を順次繰り返し高速で通過するようにされる(ステップS3)。
 次いで、プリズム2のクリーニングが行われる(ステップS4)。即ち、ラジカル源130のラジカルガス導入口34から酸素(O)ガスが導入された状態で、ガン136に高周波電圧が印加されて、ラジカル酸素が生成され、移動しているプリズム2に対して所定時間照射される。かようなラジカル酸素の照射により、プリズム2表面に有機物等が付着していたとしても、有機物等はラジカル酸素及びプラズマで発生する紫外線によって分解剥離され、プリズム2の表面がクリーニングされる。かようなクリーニングにより、後に形成する膜の密着性が向上する。
First, the prism 2 is set on the drum 104, silicon (Si) is set as the first target T1, and aluminum (Al) is set as the second target T2 (step S1).
Next, the inside of the vacuum chamber 102 is exhausted (step S2).
Subsequently, the drum 104 is rotated so that the prism 2 held by the drum 104 sequentially and repeatedly passes inside each of the first sputter source 110, the second sputter source 120, and the radical source 130 at high speed (step). S3).
Next, the prism 2 is cleaned (step S4). That is, in a state where oxygen (O 2 ) gas is introduced from the radical gas introduction port 34 of the radical source 130, a high frequency voltage is applied to the gun 136 to generate radical oxygen with respect to the moving prism 2. Irradiate for a predetermined time. Even if organic substances or the like adhere to the surface of the prism 2 by such irradiation with radical oxygen, the organic substances or the like are decomposed and peeled off by the radical oxygen and the ultraviolet rays generated by the plasma, and the surface of the prism 2 is cleaned. Such cleaning improves the adhesion of the film to be formed later.
 続いて、表面保護膜1が形成される(ステップS5)。
 即ち、ドラム104の回転が維持された状態で、第1スパッタ源110のスパッタガス導入口116から希ガス(ここではArガス)が導入され、スパッタカソード112に直流(DC)電圧が印加されることで、第1ターゲットT1表面のSiが、Arによるスパッタにより、プリズム2の表面上に堆積する。又、第2スパッタ源120のスパッタガス導入口126から希ガス(ここではArガス)が導入され、スパッタカソード122に直流電圧が印加されることで、第2ターゲットT2表面のAlが、Arによるスパッタにより、プリズム2の表面上に堆積する。
 更に、ラジカル源130のラジカルガス導入口134から酸素ガス(Oガス)及び窒素ガス(Nガス)が導入された状態で、ガン136に高周波電圧が印加されて、ラジカル酸素及びラジカル窒素が生成され、Si及びAlの堆積した移動中のプリズム2に対して照射されて、Si及びAlの酸窒化がなされる。尚、Oガス及びNガスと共に、希ガスが導入されても良い。
 表面保護膜1の膜厚は、スパッタカソード112への投入電力が一定であり、単位時間当たりの成膜される物理膜厚である成膜レートが一定である場合には、スパッタリングの時間の長短により制御される。よって、所望の膜厚に相当する時間が経過した時点で、スパッタカソード112,122及びガン136への電圧印加が停止されて、表面保護膜1の成膜が完了する。
Subsequently, the surface protective film 1 is formed (step S5).
That is, while the rotation of the drum 104 is maintained, a rare gas (here, Ar gas) is introduced from the sputtering gas introduction port 116 of the first sputtering source 110, and a DC (DC) voltage is applied to the sputtering cathode 112. As a result, Si on the surface of the first target T1 is deposited on the surface of the prism 2 by sputtering with Ar. Further, a rare gas (here, Ar gas) is introduced from the sputtering gas introduction port 126 of the second sputtering source 120, and a DC voltage is applied to the sputtering cathode 122, so that Al on the surface of the second target T2 is formed by Ar. It is deposited on the surface of the prism 2 by sputtering.
Further, in a state where oxygen gas (O 2 gas) and nitrogen gas (N 2 gas) are introduced from the radical gas introduction port 134 of the radical source 130, a high frequency voltage is applied to the gun 136 to generate radical oxygen and radical nitrogen. The generated, moving prism 2 in which Si and Al are deposited is irradiated to perform oxygen nitridation of Si and Al. A rare gas may be introduced together with the O 2 gas and the N 2 gas.
As for the film thickness of the surface protective film 1, when the input power to the sputtering cathode 112 is constant and the film formation rate, which is the physical film film to be formed per unit time, is constant, the length of the sputtering time is long or short. Is controlled by. Therefore, when the time corresponding to the desired film thickness has elapsed, the voltage application to the sputtering cathodes 112 and 122 and the gun 136 is stopped, and the film formation of the surface protective film 1 is completed.
 表面保護膜1の形成が完了すれば、ドラム104が止められ、適宜冷却が行われた後、表面保護膜1付きプリズム2が取り出される(ステップS6)。
 尚、表面保護膜1とプリズム2との間に、製造装置101あるいは別の装置によって更に1以上の中間膜が付与されても良い。
When the formation of the surface protective film 1 is completed, the drum 104 is stopped, cooling is appropriately performed, and then the prism 2 with the surface protective film 1 is taken out (step S6).
In addition, one or more intermediate films may be further provided between the surface protective film 1 and the prism 2 by the manufacturing apparatus 101 or another apparatus.
[第2形態]
≪表面保護膜の構成等≫
 次に、表面保護膜を除き第1形態と同様に成る本発明の第2形態が説明される。第1形態と同様に成る部材及び部分については、適宜、同じ符号が付され、説明が省略される。第2形態は、第1形態と同様な変更例を適宜有する。
 図5に例示されるように、本発明に係る表面保護膜201は、ガラス製のプリズム2の成膜面M上に形成されている。
[Second form]
≪Construction of surface protective film, etc.≫
Next, the second embodiment of the present invention, which is the same as the first embodiment except for the surface protective film, will be described. Members and parts similar to those in the first embodiment are appropriately designated with the same reference numerals, and the description thereof will be omitted. The second form appropriately has the same modification as the first form.
As illustrated in FIG. 5, the surface protective film 201 according to the present invention is formed on the film-forming surface M of the glass prism 2.
 表面保護膜201は、サイアロン製の層であるサイアロン層204と誘電体製の層である誘電体層206とを含む膜である。表面保護膜201は、好ましくはサイアロン層204と誘電体層206の交互膜であり、より好ましくはサイアロン層204と1種類の誘電体製の誘電体層206との交互膜である。
 表面保護膜201は、2以上の層を含む多層膜である。表面保護膜201の層数は、特に限定されず、奇数でも偶数でも良い。表面保護膜201における各層の配置は、特に限定されないところ、好ましくは誘電体層206が表面保護膜201における最も空気側(プリズム2と反対側)の層である最表層となるものとされる。
The surface protective film 201 is a film including a sialon layer 204, which is a layer made of sialon, and a dielectric layer 206, which is a layer made of a dielectric. The surface protective film 201 is preferably an alternating film of the sialon layer 204 and the dielectric layer 206, and more preferably an alternating film of the sialon layer 204 and the dielectric layer 206 made of one kind of dielectric.
The surface protective film 201 is a multilayer film including two or more layers. The number of layers of the surface protective film 201 is not particularly limited, and may be an odd number or an even number. The arrangement of each layer in the surface protective film 201 is not particularly limited, and the dielectric layer 206 is preferably the outermost layer which is the most air-side (opposite side to the prism 2) layer in the surface protective film 201.
 誘電体層206における誘電体の材料は、特に限定されないところ、サイアロンが高屈折率材料となるような屈折率を有していてサイアロン層204が高屈折率層の役割を担えるため、好ましくは低屈折率材料及び中屈折率材料の少なくとも一方である。
 例えば、誘電体(の材料)は、酸化ケイ素(SiO)、フッ化カルシウム(CaF)、フッ化マグネシウム(MgF)、あるいはこれらの二種以上の混合物である。
The material of the dielectric in the dielectric layer 206 is not particularly limited, but is preferably low because it has a refractive index such that Sialon becomes a high refractive index material and the Sialon layer 204 can play the role of a high refractive index layer. At least one of the refractive index materials and the medium refractive index materials.
For example, the dielectric (material) is silicon oxide (SiO 2 ), calcium fluoride (CaF 2 ), magnesium fluoride (MgF 2 ), or a mixture of two or more thereof.
 表面保護膜201における各サイアロン層204の物理膜厚の合計(サイアロン層204が1つの場合には当該サイアロン層204の物理膜厚)は、より良好な耐傷性を得る観点から、好ましくは200nm以上である。 The total physical film thickness of each sialon layer 204 in the surface protective film 201 (in the case of one sialon layer 204, the physical film thickness of the sialon layer 204) is preferably 200 nm or more from the viewpoint of obtaining better scratch resistance. Is.
≪表面保護膜の製造等≫
 表面保護膜201は、物理蒸着法(Physical Vapor Deposition(PVD),真空蒸着及びスパッタリング等)、あるいは原子層堆積(Atomic Layer Deposition)等により形成され、好ましくは、サイアロン層204及び誘電体層206の双方において同じ製造装置により順次形成される。サイアロン層204は、好ましくは上述の製造装置101において、第1形態のサイアロン製の表面保護膜1と同様に形成される。
≪Manufacturing of surface protective film, etc.≫
The surface protective film 201 is formed by a physical vapor deposition method (Physical Vapor Deposition (PVD), vacuum vapor deposition, sputtering, etc.), an atomic layer deposition (Atomic Layer Deposition), or the like, and is preferably formed by a sialon layer 204 and a dielectric layer 206. Both are sequentially formed by the same manufacturing equipment. The sialon layer 204 is preferably formed in the above-mentioned manufacturing apparatus 101 in the same manner as the surface protective film 1 made of sialon of the first form.
 次いで、本発明の好適な実施例、及び本発明に属さない比較例が説明される。
 尚、本発明は、以下の実施例に限定されない。又、本発明の捉え方により、下記の実施例が実質的には比較例となったり、下記の比較例が実質的には実施例となったりすることがある。
Next, preferred embodiments of the present invention and comparative examples not belonging to the present invention will be described.
The present invention is not limited to the following examples. Further, depending on the way of understanding the present invention, the following examples may be substantially comparative examples, and the following comparative examples may be substantially examples.
≪実施例1~4及び比較例1~7で共通する製造条件等≫
 実施例1~4及び比較例1~7は、それぞれ、上述の製造装置101により、次の条件を揃えて成膜された。実施例1~4は、上述の第1形態に属する。
 即ち、実施例1~4及び比較例1~7は、白板ガラス製の板状のプリズム2の片面(成膜面M)に、中間膜なしで直接成膜された。白板ガラス基板のビッカース硬さ(HVpl)は、646.23である。尚、石英基板のビッカース硬さは、959.93である。ここでのビッカース硬さ(HVpl)は、インデンテーション硬度に対するDIN規格のビッカース換算値であって、測定装置(フィッシャーインスツルメンツ社製HM2000LT)で測定されたものであり、以下同様である。
 又、真空室102の内部は、成膜開始時点で2×10-4Pa(パスカル)とされた。
 更に、ドラム104の回転数は、100rpm(回毎分)とされた。尚、ドラム104の回転は、一時的に変速されたり一旦停止されたりしても良い。
 又更に、第1ターゲットT1のSiとして、B(ホウ素)でドーピングされた純度99.99%のものが用いられた。又、第2ターゲットT2のAlとして、純度99.99%のものが用いられた。
 加えて、Oガス、Nガス、及びArガスとして、何れも純度99.99%以上のものが用いられた。
 尚、排気部140において、ターボ分子ポンプが用いられた。
<< Manufacturing conditions common to Examples 1 to 4 and Comparative Examples 1 to 7 >>
Examples 1 to 4 and Comparative Examples 1 to 7 were each formed into a film by the above-mentioned manufacturing apparatus 101 under the following conditions. Examples 1 to 4 belong to the above-mentioned first embodiment.
That is, in Examples 1 to 4 and Comparative Examples 1 to 7, a film was directly formed on one side (deposition surface M) of the plate-shaped prism 2 made of white plate glass without an interlayer film. The Vickers hardness (HVpl) of the white plate glass substrate is 646.23. The Vickers hardness of the quartz substrate is 959.93. The Vickers hardness (HVpl) here is a DIN standard Vickers conversion value with respect to the indentation hardness, which is measured by a measuring device (HM2000LT manufactured by Fisher Instruments Co., Ltd.), and the same applies hereinafter.
The inside of the vacuum chamber 102 was 2 × 10 -4 Pa (Pascal) at the start of film formation.
Further, the rotation speed of the drum 104 was set to 100 rpm (revolutions per minute). The rotation of the drum 104 may be temporarily shifted or temporarily stopped.
Furthermore, as the Si of the first target T1, one with a purity of 99.99% doped with B (boron) was used. Further, as Al of the second target T2, one having a purity of 99.99% was used.
In addition, as the O 2 gas, N 2 gas, and Ar gas, those having a purity of 99.99% or more were used.
A turbo molecular pump was used in the exhaust unit 140.
≪実施例1~4の製造条件等≫
 そして、実施例1~4が、次の共通の条件下で成膜された。
 即ち、第1スパッタ源110及び第2スパッタ源120における各Arガスの流量は、何れも120sccm(Standard Cubic Centimeter per Minute;毎分120ミリリットル)とされた。又、ラジカル源130におけるOガスの流量は、何れも10sccmとされ、ラジカル源130におけるNガスの流量は、何れも150sccmとされた。更に、ラジカル源130における電力は、1500W(ワット)とされた。
 又、実施例1~4は、次の表1に示される個別の条件において成膜された。
<< Manufacturing conditions of Examples 1 to 4 >>
Then, Examples 1 to 4 were formed under the following common conditions.
That is, the flow rate of each Ar gas in the first sputter source 110 and the second sputter source 120 was set to 120 sccm (Standard Cubic Centimeter per Minute; 120 ml / min). The flow rate of the O 2 gas in the radical source 130 was 10 sccm, and the flow rate of the N 2 gas in the radical source 130 was 150 sccm. Further, the electric power in the radical source 130 was set to 1500 W (watt).
Further, Examples 1 to 4 were formed under the individual conditions shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 即ち、実施例1の成膜において、第1スパッタ源110のスパッタカソード112の電力は9000Wとされ、第2スパッタ源120のスパッタカソード122の電力は6000Wとされた。尚、成膜レートは、0.40nm/sec(ナノメートル毎秒)であった。
 又、実施例2の成膜において、第1スパッタ源110の電力は4500Wとされ、第2スパッタ源120の電力は6000Wとされた。尚、成膜レートは、0.25nm/secであった。
 更に、実施例3の成膜において、第1スパッタ源110の電力は9000Wとされ、第2スパッタ源120の電力は5000Wとされた。尚、成膜レートは、0.36nm/secであった。
 加えて、実施例4の成膜において、第1スパッタ源110の電力は9000Wとされ、第2スパッタ源120の電力は4000Wとされた。尚、成膜レートは、0.32nm/secであった。
That is, in the film formation of Example 1, the power of the sputtering cathode 112 of the first sputtering source 110 was 9000W, and the electric power of the sputtering cathode 122 of the second sputtering source 120 was 6000W. The film formation rate was 0.40 nm / sec (nanometers per second).
Further, in the film formation of Example 2, the electric power of the first sputter source 110 was set to 4500 W, and the electric power of the second sputter source 120 was set to 6000 W. The film formation rate was 0.25 nm / sec.
Further, in the film formation of Example 3, the electric power of the first sputter source 110 was set to 9000 W, and the electric power of the second sputter source 120 was set to 5000 W. The film formation rate was 0.36 nm / sec.
In addition, in the film formation of Example 4, the electric power of the first sputter source 110 was set to 9000 W, and the electric power of the second sputter source 120 was set to 4000 W. The film formation rate was 0.32 nm / sec.
≪比較例1~7の製造条件等≫
 又、比較例1~7は、次の表2,表3に示される個別の条件において成膜された。
<< Manufacturing conditions of Comparative Examples 1 to 7 >>
Further, Comparative Examples 1 to 7 were formed under the individual conditions shown in Tables 2 and 3 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 即ち、比較例1(Al膜)の成膜において、第1スパッタ源110は、真空室102内の雰囲気調整のためにArガスを120sccmで導入することを除き、Siが不要であることから不作動とされた。又、第2スパッタ源120の電力は6500Wとされ、Arガスは100sccmで導入された。ラジカル源130については、電力が2000Wとされ、Oガスが70sccmで導入され、Nガスは導入されなかった。尚、成膜レートは、0.38nm/secであった。
 又、比較例2(窒化アルミニウム膜;AlN膜)の成膜において、第1スパッタ源110は、比較例1と同様に不作動とされた。又、第2スパッタ源120の電力は6000Wとされ、Arガスは120sccmで導入された。ラジカル源130については、電力が2000Wとされ、Nガスが50sccmで導入され、Oガスは導入されなかった。尚、成膜レートは、0.29nm/secであった。
 更に、比較例3(酸窒化アルミニウム膜;AlON膜)の成膜において、第1スパッタ源110及び第2スパッタ源120は、比較例2と同様とされた。ラジカル源130については、電力が2000Wとされ、Oガスが10sccmで導入され、Nガスが100sccmで導入された。尚、成膜レートは、0.26nm/secであった。
 又更に、比較例4(酸窒化シリコン膜;SiON膜)の成膜において、第1スパッタ源110の電力は9000Wとされ、Arガスは80sccmで導入された。又、第2スパッタ源120は、真空室102内の雰囲気調整のためにArガスを100sccmで導入することを除き、Alが不要であることから不作動とされた。ラジカル源130については、電力が1000Wとされ、Oガスが10sccmで導入され、Nガスが150sccmで導入された。尚、成膜レートは、0.20nm/secであった。
That is, in the film formation of Comparative Example 1 (Al 2 O 3 film), the first sputter source 110 does not require Si except that Ar gas is introduced at 120 sccm to adjust the atmosphere in the vacuum chamber 102. Therefore, it was considered to be inoperable. The electric power of the second sputter source 120 was 6500 W, and Ar gas was introduced at 100 sccm. For the radical source 130, the electric power was 2000 W, O 2 gas was introduced at 70 sccm, and N 2 gas was not introduced. The film formation rate was 0.38 nm / sec.
Further, in the film formation of Comparative Example 2 (aluminum nitride film; AlN film), the first sputter source 110 was made inoperable as in Comparative Example 1. The electric power of the second sputter source 120 was 6000 W, and Ar gas was introduced at 120 sccm. For the radical source 130, the electric power was 2000 W, N 2 gas was introduced at 50 sccm, and O 2 gas was not introduced. The film formation rate was 0.29 nm / sec.
Further, in the film formation of Comparative Example 3 (aluminum nitride film; AlON film), the first sputter source 110 and the second sputter source 120 were the same as those of Comparative Example 2. For the radical source 130, the electric power was 2000 W, the O 2 gas was introduced at 10 sccm, and the N 2 gas was introduced at 100 sccm. The film formation rate was 0.26 nm / sec.
Furthermore, in the film formation of Comparative Example 4 (silicon oxynitride film; SiON film), the electric power of the first sputtering source 110 was 9000 W, and Ar gas was introduced at 80 sccm. Further, the second sputter source 120 was inoperable because Al was unnecessary except that Ar gas was introduced at 100 sccm to adjust the atmosphere in the vacuum chamber 102. For the radical source 130, the electric power was 1000 W, the O 2 gas was introduced at 10 sccm, and the N 2 gas was introduced at 150 sccm. The film formation rate was 0.20 nm / sec.
 加えて、比較例5(窒化シリコン膜;Si膜)の成膜において、第1スパッタ源110の電力は8000Wとされ、Arガスは100sccmで導入された。又、第2スパッタ源120は、Arガスの流量が100sccmとされたことを除き、比較例4と同様に不作動とされた。ラジカル源130については、電力が1000Wとされ、Nガスが80sccmで導入され、Oガスは導入されなかった。尚、成膜レートは、0.20nm/secであった。
 又、比較例6(酸化シリコン膜;SiO膜)の成膜において、第1スパッタ源110の電力は9000Wとされ、Arガスは120sccmで導入された。又、第2スパッタ源120は、Arガスの流量が120sccmとされたことを除き、比較例4と同様に不作動とされた。ラジカル源130については、電力が1000Wとされ、Oガスが100sccmで導入され、Nガスは導入されなかった。尚、成膜レートは、0.34nm/secであった。
 更に、比較例7(サイアロン膜)の成膜において、第1スパッタ源110の電力は9000Wとされ、Arガスは120sccmで導入された。又、第2スパッタ源120の電力は3000Wとされ、Arガスは120sccmで導入された。ラジカル源130については、電力が1500Wとされ、Oガスが10sccmで導入され、Nガスが150sccmで導入された。尚、成膜レートは、0.27nm/secであった。
In addition, in the film formation of Comparative Example 5 (silicon nitride film; Si 3N 4 film ), the power of the first sputtering source 110 was 8000 W, and Ar gas was introduced at 100 sccm. Further, the second sputter source 120 was inoperable as in Comparative Example 4, except that the flow rate of Ar gas was 100 sccm. For the radical source 130, the electric power was 1000 W, N 2 gas was introduced at 80 sccm, and O 2 gas was not introduced. The film formation rate was 0.20 nm / sec.
Further, in the film formation of Comparative Example 6 (silicon oxide film; SiO 2 film), the electric power of the first sputtering source 110 was 9000 W, and Ar gas was introduced at 120 sccm. Further, the second sputter source 120 was inoperable as in Comparative Example 4, except that the flow rate of Ar gas was 120 sccm. For the radical source 130, the electric power was 1000 W, O 2 gas was introduced at 100 sccm, and N 2 gas was not introduced. The film formation rate was 0.34 nm / sec.
Further, in the film formation of Comparative Example 7 (Sialon film), the electric power of the first sputtering source 110 was 9000 W, and Ar gas was introduced at 120 sccm. The electric power of the second sputter source 120 was 3000 W, and Ar gas was introduced at 120 sccm. For the radical source 130, the electric power was 1500 W, the O 2 gas was introduced at 10 sccm, and the N 2 gas was introduced at 150 sccm. The film formation rate was 0.27 nm / sec.
≪実施例1~4,比較例1~7の特性等≫
 実施例1~4,比較例1~7の各種の特性が、次の表4~表5に示される。
 又、サイアロン膜(実施例1~4,比較例7)の組成が、次の表6に示される。
 更に、上述の通り測定されたビッカース硬さが、図6に示される。
 又更に、サイアロン膜(実施例1~4,比較例7)の透明性が、図7(分光吸収率分布),図8(可視域平均吸収率)に示される。
<< Characteristics of Examples 1 to 4 and Comparative Examples 1 to 7 >>
Various characteristics of Examples 1 to 4 and Comparative Examples 1 to 7 are shown in Tables 4 to 5 below.
The compositions of the sialon membranes (Examples 1 to 4, Comparative Example 7) are shown in Table 6 below.
Further, the Vickers hardness measured as described above is shown in FIG.
Furthermore, the transparency of the Sialon film (Examples 1 to 4 and Comparative Example 7) is shown in FIGS. 7 (spectral absorption rate distribution) and FIG. 8 (visible range average absorption rate).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 サイアロン膜(SiAlON)の組成は、実施例1~4,比較例7についてエネルギー分散型X線分析(EDX)で分析された。この分析により、実施例1~4,比較例7の元素比(原子数比,%)が、組成として把握された(表6)。
 第1スパッタ源110の電力(Si電力)に対して第2スパッタ源120の電力(Al電力)が高い場合、即ちAl電力/(Al電力+Si電力)が大きい場合、SiAlONにおけるAlの元素比及びSiの元素比の和に対するAlの元素比の比率、即ちAl/(Al+Si)は大きくなる。但し、各電力の絶対値、及び各種ガスの導入流量等の違いにより、Al/(Al+Si)の大きさと、Al電力/(Al電力+Si電力)の大きさとは、単純な比例関係にならない。
 SiAlONの特性は、Al/(Al+Si)が大きい程、Alの特性に近づき、Al/(Al+Si)が小さい程、Siの特性に近づく。
The composition of the Sialon film (SiAlON) was analyzed by energy dispersive X-ray analysis (EDX) for Examples 1 to 4 and Comparative Example 7. By this analysis, the element ratios (atomic number ratio,%) of Examples 1 to 4 and Comparative Example 7 were grasped as the composition (Table 6).
When the power (Al power) of the second sputter source 120 is higher than the power (Si power) of the first sputter source 110, that is, when Al power / (Al power + Si power) is large, the elemental ratio of Al in SiAlON and The ratio of the element ratio of Al to the sum of the element ratios of Si, that is, Al / (Al + Si) becomes large. However, the magnitude of Al / (Al + Si) and the magnitude of Al power / (Al power + Si power) do not have a simple proportional relationship due to differences in the absolute value of each power and the introduction flow rate of various gases.
The larger the Al / (Al + Si), the closer the characteristics of SiAlON are to the characteristics of Al 2 O 3 , and the smaller the Al / (Al + Si), the closer to the characteristics of Si 3 N 4 .
 屈折率(波長550nmの光におけるもの)は、比較例6(SiO)において1.48と最も小さく、次いで比較例1(Al)において小さい。これに対し、各窒化物の屈折率は、比較例2(AlN)において2.00であり、比較例5(Si)において2.04であって、他より高くなっている。
 SiAlONの屈折率は、Al/(Al+Si)が所定程度(実施例4の程度)以上であると1.90以上となり、Al/(Al+Si)が所定程度を下回ると(実施例4の程度を下回り比較例7の程度となると)、1.90未満となる。
The refractive index (in light having a wavelength of 550 nm) is the smallest at 1.48 in Comparative Example 6 (SiO 2 ), followed by the smallest in Comparative Example 1 (Al 2 O 3 ). On the other hand, the refractive index of each nitride is 2.00 in Comparative Example 2 (AlN) and 2.04 in Comparative Example 5 (Si 3 N 4 ), which are higher than the others.
The refractive index of SiAlON is 1.90 or more when Al / (Al + Si) is a predetermined degree (about the degree of Example 4) or more, and is lower than the degree of Al / (Al + Si) when it is below a predetermined degree (a degree of Example 4). (When it comes to the degree of Comparative Example 7), it is less than 1.90.
 ビッカース硬さは、比較例1(Al)及び比較例6(SiO)において、石英基板のビッカース硬さよりも小さい(柔らかい)。
 比較例2~5のビッカース硬さは、石英基板のビッカース硬さを上回っており、大きい(硬い)順に、比較例5(Si)、比較例4(SiON)、比較例3(AlON)、比較例2(AlN)となっている。
 又、SiAlONのビッカース硬さは、比較例3,4と概ね同程度となっている。SiAlONの中では、実施例2のビッカース硬さが最も小さく、実施例1のビッカース硬さが最も大きくなっている。SiAlONのビッカース硬さは、概ね、Al/(Al+Si)が小さくSiに近い程大きい。
 実施例1~4のビッカース硬さは、石英基板のビッカース硬さを上回るものである。よって、実施例1~4は、十分な耐傷性を有する。
The Vickers hardness is smaller (softer) than the Vickers hardness of the quartz substrate in Comparative Example 1 (Al 2 O 3 ) and Comparative Example 6 (SiO 2 ).
The Vickers hardness of Comparative Examples 2 to 5 exceeds the Vickers hardness of the quartz substrate, and in descending order of magnitude (hardness), Comparative Example 5 (Si 3 N 4 ), Comparative Example 4 (SiON), and Comparative Example 3 (AlON). ), Comparative Example 2 (AlN).
Further, the Vickers hardness of SiAlON is almost the same as that of Comparative Examples 3 and 4. Among SiAlON, the Vickers hardness of Example 2 is the smallest, and the Vickers hardness of Example 1 is the largest. The Vickers hardness of SiAlON is generally larger as Al / (Al + Si) is smaller and closer to Si 3 N 4 .
The Vickers hardness of Examples 1 to 4 exceeds the Vickers hardness of the quartz substrate. Therefore, Examples 1 to 4 have sufficient scratch resistance.
 又、SiAlONの透明性について、まずプリズム2の成膜面Mに対する薄膜の形成により、可視域及び隣接域において、サイアロン膜付きプリズム2の分光透過率分布(横軸:波長,縦軸:透過率)が正弦波状となるものの、その中心軸は水平であり、その上限は97%程度であり、その下限は80%程度である。よって、サイアロン膜付きプリズム2の透過光には、若干の干渉が生じるものの、当該透過光の透過率は、少なくとも可視域において十分なものである。従って、サイアロン膜付きプリズム2は、可視光に対して十分に透明であり、照明カバーCとして十分に用い得る。
 次に、SiAlONにおける光の吸収(小さい程透明である)について、吸収率[%]は、簡易的に「100-(透過率[%]+反射率[%])」で表され、以下透過率をTとし反射率をRとして100-T-Rと表される。そこで、可視域及び隣接域において、TとRが測定され、吸収率100-T-Rが算出された(図7)。又、可視域における平均吸収率が算出された(図8)。ここで、可視域は、可視光の波長域であり、ここでは400nm以上700nm以下とされた。
 平均吸収率は、比較例7において1を超え、実施例1~4では1以下となった。よって、実施例1~4のSiAlONの吸収は、比較例7に比べて小さく、透明性は、比較例7より高い。
Regarding the transparency of SiAlON, first, by forming a thin film on the film forming surface M of the prism 2, the spectral transmittance distribution of the prism 2 with a sialon film (horizontal axis: wavelength, vertical axis: transmittance) in the visible region and the adjacent region. ) Is sinusoidal, but its central axis is horizontal, its upper limit is about 97%, and its lower limit is about 80%. Therefore, although some interference occurs in the transmitted light of the prism 2 with the sialon film, the transmittance of the transmitted light is sufficient at least in the visible region. Therefore, the prism 2 with a sialon film is sufficiently transparent to visible light and can be sufficiently used as an illumination cover C.
Next, regarding the absorption of light in SiAlON (the smaller it is, the more transparent it is), the absorption rate [%] is simply expressed as "100- (transmittance [%] + reflectance [%])", and is hereinafter transmitted. It is expressed as 100-TR, where T is the rate and R is the reflectance. Therefore, T and R were measured in the visible region and the adjacent region, and the absorption rate 100-TR was calculated (FIG. 7). In addition, the average absorption rate in the visible region was calculated (FIG. 8). Here, the visible region is a wavelength region of visible light, and here, it is set to 400 nm or more and 700 nm or less.
The average absorption rate exceeded 1 in Comparative Example 7 and became 1 or less in Examples 1 to 4. Therefore, the absorption of SiAlON in Examples 1 to 4 is smaller than that in Comparative Example 7, and the transparency is higher than that in Comparative Example 7.
 更に、実施例1~4,比較例1~7に対して、温水試験、恒温恒湿試験、及び耐薬品試験が行われた(表5)。
 各試験は、成膜後、他の試験等を行っていない新たな試料に対して行われた。
Further, a hot water test, a constant temperature and humidity test, and a chemical resistance test were performed on Examples 1 to 4 and Comparative Examples 1 to 7 (Table 5).
Each test was performed on a new sample that had not been subjected to other tests or the like after the film formation.
 温水試験は、次のように行われた。即ち、試料が、98℃の温水中に24時間入れられた後で取り出され、試料の様子が観察された。
 温水試験では、比較例1(Al)、比較例2(AlN)、比較例3(AlON)において、膜の溶解が発生した。又、比較例5(Si)において、膜の剥がれが発生した。
 温水試験では、上記以外の実施例,比較例では、膜に変化はみられなかった。
The hot water test was conducted as follows. That is, the sample was taken out after being placed in warm water at 98 ° C. for 24 hours, and the state of the sample was observed.
In the hot water test, membrane dissolution occurred in Comparative Example 1 (Al 2 O 3 ), Comparative Example 2 (AlN), and Comparative Example 3 (AlON). Further, in Comparative Example 5 (Si 3 N 4 ), peeling of the film occurred.
In the hot water test, no change was observed in the membrane in the examples and comparative examples other than the above.
 恒温恒湿試験は、次のように行われた。即ち、試料が、気温85℃で相対湿度85%に保持された恒温恒湿槽に72時間入れられた後で取り出され、試料の様子が観察された。
 恒温恒湿試験では、比較例1(Al)、比較例2(AlN)、比較例3(AlON)において、膜にクラックが発生した。又、比較例4(SiON)、比較例5(Si)、比較例7において、膜の剥がれが発生した。
 恒温恒湿試験では、上記以外の実施例,比較例では、膜に変化はみられなかった。
 温水試験及び恒温恒湿試験の少なくとも一方において膜の剥がれ又は溶解が発生するものは、プリズム2に対する密着性に劣るものと考えられる。
 尚、ビッカース硬さの大きさが十分でない比較例6(SiO)について、恒温恒湿試験は省略された。
The constant temperature and humidity test was conducted as follows. That is, the sample was taken out after being placed in a constant temperature and humidity chamber maintained at a temperature of 85 ° C. and a relative humidity of 85% for 72 hours, and the state of the sample was observed.
In the constant temperature and humidity test, cracks were generated in the film in Comparative Example 1 (Al 2 O 3 ), Comparative Example 2 (AlN), and Comparative Example 3 (AlON). Further, in Comparative Example 4 (SiON), Comparative Example 5 (Si 3N 4 ) , and Comparative Example 7, peeling of the film occurred.
In the constant temperature and humidity test, no change was observed in the membrane in the examples and comparative examples other than the above.
It is considered that the film peeling or dissolution occurs in at least one of the hot water test and the constant temperature and humidity test is inferior in the adhesion to the prism 2.
The constant temperature and humidity test was omitted for Comparative Example 6 (SiO 2 ) in which the Vickers hardness was not sufficient.
 耐薬品試験は、次の3つの薬品について実施された。3つの薬品は、酢酸ナトリウム(酢酸Na)、蟻酸ナトリウム(蟻酸Na)、蟻酸カリウム(蟻酸Ka)である。これらの薬品は、道路において融雪剤として用いられている。
 耐薬品試験は、3つの薬品について、それぞれ次のように同様に実施された。即ち、試料が、3重量%で室温である薬品の水溶液に24時間入れられた後で取り出され、試料の様子が観察された。
 耐薬品試験では、比較例1(Al)において、蟻酸Naに対し膜が溶解し、比較例2(AlN)、比較例3(AlON)において、蟻酸Na及び蟻酸Kaに対し膜が溶解した。又、比較例4(SiON)、比較例5(Si)において、酢酸Na、蟻酸Na及び蟻酸Kaに対し膜の剥がれが発生した。更に、比較例7において、蟻酸Kaに対し膜の溶解が発生した。
 耐薬品試験では、上記以外の実施例,比較例では、何れの薬品に対しても膜に変化はみられなかった。
Chemical resistance tests were conducted on the following three chemicals. The three chemicals are sodium acetate (Na acetate), sodium formic acid (Na formic acid) and potassium formic acid (Ka formic acid). These chemicals are used as snow melting agents on the road.
The chemical resistance test was carried out in the same manner for each of the three chemicals as follows. That is, the sample was taken out after being placed in an aqueous solution of a chemical having a temperature of 3% by weight and at room temperature for 24 hours, and the state of the sample was observed.
In the chemical resistance test, the membrane was dissolved in Na formic acid in Comparative Example 1 (Al 2 O 3 ), and the membrane was dissolved in Na formic acid and Ka formic acid in Comparative Example 2 (AlN) and Comparative Example 3 (AlON). bottom. Further, in Comparative Example 4 (SiON) and Comparative Example 5 (Si 3N 4 ) , peeling of the film occurred with respect to Na acetate, Na formic acid and Ka formic acid. Further, in Comparative Example 7, dissolution of the membrane occurred in Ka formic acid.
In the chemical resistance test, no change was observed in the film for any of the chemicals in the examples and comparative examples other than the above.
≪実施例1~4,比較例1~7のまとめ等≫
 実施例1~4は、サイアロン製の膜であり、そのサイアロンにおける波長550nmの光に係る屈折率は、1.90以上1.94以下である。実施例1~4は、十分なビッカース硬さを有して十分な耐傷性を有し、且つ十分な透明性を有しながら、耐環境性、即ち耐温性及び耐湿性(良好な密着性)、並びに耐薬品性を備えた表面保護膜1となっている。これに対し、比較例7は、屈折率が1.90を下回る1.89であるサイアロン膜であり、耐湿性及び耐薬品性(蟻酸Ka)に劣る。又、比較例1~5は耐環境性(密着性)で劣り、比較例1,6はビッカース硬さないし耐傷性で劣る。
 又、実施例1~4は、サイアロン製の膜であり、そのサイアロンは、アルミニウムを、原子数比で15%以上32%以下の範囲内において含んでいる。実施例1~4は、十分なビッカース硬さを有して十分な耐傷性を有し、且つ十分な透明性を有しながら、耐環境性に優れた表面保護膜1となっている。これに対し、比較例7は、アルミニウムを原子数比で15%を下回る10.3%有するサイアロン膜であり、耐湿性及び耐薬品性(蟻酸Ka)に劣る。
 更に、実施例1~4は、サイアロン製の膜であり、そのサイアロンの原子数での組成における、アルミニウムを、アルミニウムとシリコンとの和で割った商(Al/(Al+Si))が、0.38以上0.67以下である。実施例1~4は、十分なビッカース硬さを有して十分な耐傷性を有し、且つ十分な透明性を有しながら、耐環境性に優れた表面保護膜1となっている。これに対し、比較例7は、Al/(Al+Si)が0.38を下回る0.276(27.6%)であるサイアロン膜であり、耐湿性及び耐薬品性(蟻酸Ka)に劣る。
 加えて、実施例1~4のサイアロンは、酸素を、原子数比で7%以上16%以下含んでいる。実施例1~4は、十分なビッカース硬さを有して十分な耐傷性を有し、且つ十分な透明性を有しながら、耐環境性に優れた表面保護膜1となっている。これに対し、比較例7は、酸素を原子数比で20%を上回る20.2%有するサイアロン膜であり、耐湿性及び耐薬品性(蟻酸Ka)に劣る。
 又、実施例1~4のサイアロンの可視域平均吸収率は、1%以下である。よって、実施例1~4は、透明性に優れている。
<< Summary of Examples 1 to 4, Comparative Examples 1 to 7 >>
Examples 1 to 4 are films made of Sialon, and the refractive index of the light having a wavelength of 550 nm in the Sialon is 1.90 or more and 1.94 or less. Examples 1 to 4 have sufficient Vickers hardness, sufficient scratch resistance, and sufficient transparency, while having environmental resistance, that is, heat resistance and moisture resistance (good adhesion). ), And a surface protective film 1 having chemical resistance. On the other hand, Comparative Example 7 is a sialon film having a refractive index of 1.89, which is less than 1.90, and is inferior in moisture resistance and chemical resistance (Ka formic acid). Further, Comparative Examples 1 to 5 are inferior in environmental resistance (adhesion), and Comparative Examples 1 and 6 are not hardened by Vickers and are inferior in scratch resistance.
Further, Examples 1 to 4 are films made of Sialon, and the Sialon contains aluminum in the range of 15% or more and 32% or less in terms of atomic number ratio. Examples 1 to 4 are surface protective films 1 having sufficient Vickers hardness, sufficient scratch resistance, sufficient transparency, and excellent environmental resistance. On the other hand, Comparative Example 7 is a sialon film having 10.3% of aluminum, which is less than 15% in atomic number ratio, and is inferior in moisture resistance and chemical resistance (Ka formic acid).
Further, Examples 1 to 4 are films made of Sialon, and the quotient (Al / (Al + Si)) obtained by dividing aluminum by the sum of aluminum and silicon in the composition of the sialon in terms of the number of atoms is 0. It is 38 or more and 0.67 or less. Examples 1 to 4 are surface protective films 1 having sufficient Vickers hardness, sufficient scratch resistance, sufficient transparency, and excellent environmental resistance. On the other hand, Comparative Example 7 is a sialon film having Al / (Al + Si) of 0.276 (27.6%), which is less than 0.38, and is inferior in moisture resistance and chemical resistance (Ka formic acid).
In addition, the sialons of Examples 1 to 4 contain oxygen in an atomic number ratio of 7% or more and 16% or less. Examples 1 to 4 are surface protective films 1 having sufficient Vickers hardness, sufficient scratch resistance, sufficient transparency, and excellent environmental resistance. On the other hand, Comparative Example 7 is a sialon film having 20.2% oxygen, which is more than 20% in atomic number ratio, and is inferior in moisture resistance and chemical resistance (Ka formic acid).
Further, the average visible absorption rate of Sialon in Examples 1 to 4 is 1% or less. Therefore, Examples 1 to 4 are excellent in transparency.
 そして、実施例1~4の表面保護膜1を含む照明カバーCは、十分なビッカース硬さを有して十分な耐傷性を有し、且つ十分な透明性ないし照明光の透過性を有しながら、耐環境性に優れており、例えば道路誘導灯に組み込まれたとしても、小傷(スクラッチ)等が付いて曇り透光性が劣化する事態が防止され、又温度湿度変化及び融雪剤に耐えるものにできる。又、実施例1~4の表面保護膜1では、従来の道路誘導灯で発生していた剥離が防止される。
 更に、実施例1~4は、プリズム2を置いた真空室102内において、Oガス及びNガスを導入しながら、SiのスパッタとAlのスパッタとを行うことで、プリズム2に形成される。又、Siのスパッタ及びAlのスパッタは、直流電圧の印加により行われる。よって、新規なサイアロン膜である実施例1~4が実際に形成される。
The lighting cover C including the surface protective film 1 of Examples 1 to 4 has sufficient Vickers hardness, sufficient scratch resistance, and sufficient transparency or light transmission. However, it has excellent environmental resistance, and even if it is incorporated into a road guide light, for example, it is possible to prevent a situation in which small scratches (scratches) occur and the cloudiness and translucency deteriorate, and it is also used as a temperature / humidity change and a snow melting agent. Can be tolerable. Further, the surface protective film 1 of Examples 1 to 4 prevents peeling that occurs in the conventional road guide light.
Further, Examples 1 to 4 are formed in the prism 2 by performing Si sputtering and Al sputtering while introducing O 2 gas and N 2 gas in the vacuum chamber 102 in which the prism 2 is placed. To. Further, Si spatter and Al spatter are performed by applying a DC voltage. Therefore, Examples 1 to 4, which are novel Sialon films, are actually formed.
≪実施例11~17及び比較例11~12で共通する製造条件等≫
 実施例11~17及び比較例11は、それぞれ、上述の製造装置101により、次の条件を揃えて成膜された。又、比較例12は、プリズム2(基板)のみ、実施例11~17及び比較例11と揃えて、真空蒸着により形成された。実施例11~17は、上述の第2形態に属する。明確化のため、実施例5~10及び比較例8~10は、欠番とする。
 即ち、実施例11~17及び比較例11~12は、シクロオレフィンポリマー(COP;日本ゼオン株式会社製「ZEONEX E48R」)製の基板の片面に、中間膜なしで直接成膜された。
 実施例11~17及び比較例11で共通する製造条件は、プリズム2(基板)の材質を除き、実施例1~4及び比較例1~7で共通する製造条件と同じものとされた。
 比較例12においては、基板以外に他と共通する製造条件はない。
<< Manufacturing conditions common to Examples 11 to 17 and Comparative Examples 11 to 12 >>
Examples 11 to 17 and Comparative Example 11 were each formed by the above-mentioned manufacturing apparatus 101 under the following conditions. Further, Comparative Example 12 was formed by vacuum vapor deposition with only the prism 2 (substrate) aligned with Examples 11 to 17 and Comparative Example 11. Examples 11 to 17 belong to the above-mentioned second form. For clarification, Examples 5 to 10 and Comparative Examples 8 to 10 are omitted.
That is, Examples 11 to 17 and Comparative Examples 11 to 12 were directly formed on one side of a substrate made of a cycloolefin polymer (COP; "ZEONEX E48R" manufactured by Nippon Zeon Corporation) without an interlayer film.
The manufacturing conditions common to Examples 11 to 17 and Comparative Example 11 were the same as those common to Examples 1 to 4 and Comparative Examples 1 to 7 except for the material of the prism 2 (substrate).
In Comparative Example 12, there are no manufacturing conditions common to others other than the substrate.
≪実施例11~17の製造条件等≫
 そして、実施例11~17が、次の共通の条件下で成膜された。
 即ち、誘電体層206であるSiO層を形成する場合、第1スパッタ源110及び第2スパッタ源120における電力は、順に9000W,0Wとされ、第1スパッタ源110及び第2スパッタ源120における各Arガスの流量は、何れも120sccmとされた。又、ラジカル源130における電力は、1000Wとされ、ラジカル源130におけるArガス,Oガス,Nガスの流量は、順に0sccm,100sccm,0sccmとされた。この場合の成膜レートは、0.34nm/secとされた。
 他方、サイアロン層204を形成する場合、第1スパッタ源110及び第2スパッタ源120における各電力は、順に9000W,6000Wとされ、第1スパッタ源110及び第2スパッタ源120における各Arガスの流量は、何れも120sccmとされた。又、ラジカル源130における電力は、1500Wとされ、ラジカル源130におけるArガス,Oガス,Nガスの流量は、順に0sccm,10sccm,150sccmとされた。この場合の成膜レートは、0.4nm/secとされた。
 かような実施例11~17に共通する製造条件が、次の表7に示される。
 又、実施例11~17の層構成及び各層の物理膜厚が、次の表8~表10に示される。
<< Manufacturing conditions of Examples 11 to 17 >>
Then, Examples 11 to 17 were formed under the following common conditions.
That is, when forming the SiO 2 layer which is the dielectric layer 206, the electric power in the first sputter source 110 and the second sputter source 120 is set to 9000 W and 0 W in order, and the first sputter source 110 and the second sputter source 120 are used. The flow rate of each Ar gas was set to 120 sccm. The electric power in the radical source 130 was 1000 W, and the flow rates of Ar gas, O 2 gas, and N 2 gas in the radical source 130 were 0 sccm, 100 sccm, and 0 sccm, respectively. The film formation rate in this case was 0.34 nm / sec.
On the other hand, when the sialon layer 204 is formed, the electric power in the first sputter source 110 and the second sputter source 120 is set to 9000 W and 6000 W in order, and the flow rate of each Ar gas in the first sputter source 110 and the second sputter source 120 is set. Was 120 sccm in each case. The electric power in the radical source 130 was 1500 W, and the flow rates of Ar gas, O 2 gas, and N 2 gas in the radical source 130 were 0 sccm, 10 sccm, and 150 sccm, respectively. The film formation rate in this case was 0.4 nm / sec.
The manufacturing conditions common to Examples 11 to 17 are shown in Table 7 below.
Further, the layer configurations of Examples 11 to 17 and the physical film thickness of each layer are shown in Tables 8 to 10 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 実施例11~17の表面保護膜201の全層数は、順に4,2,15,10,11,2,12である。
 実施例13,15の表面保護膜201では、基板から数えて1層目(最も基板に近い層)である最下層がSiO層となっている。他方、実施例11,12,14,16,17の表面保護膜201では、最下層がサイアロン層204となっている。
The total number of layers of the surface protective film 201 of Examples 11 to 17 is 4,2,15,10,11,2,12, respectively.
In the surface protective film 201 of Examples 13 and 15, the bottom layer, which is the first layer (the layer closest to the substrate) counting from the substrate, is the SiO 2 layer. On the other hand, in the surface protective film 201 of Examples 11, 12, 14, 16, and 17, the lowest layer is the sialon layer 204.
 実施例16は、ステップS5(表面保護膜の形成)を除き、第1形態のフローチャート(図4)のフローと同様のフローで形成される。実施例14のステップS5では、まず1層目のサイアロン層204が、上述の製造条件で形成される。1層目のサイアロン層204の物理膜厚は、成膜レートが上述の値において一定であることから、成膜時間により調整される。即ち、1層目の物理膜厚をサイアロン層204の成膜レートで除して算出された成膜時間において1層目が成膜される。次に、2層目の誘電体層206(SiO層)が、上述の製造条件で形成される。2層目は、2層目の物理膜厚をSiO層の成膜レートで除して算出された成膜時間において成膜される。
 実施例12の表面保護膜201は、実施例16の表面保護膜201と、各層の物理膜厚を除き、同様に形成される。
 実施例11,14,17の表面保護膜201は、実施例16の表面保護膜201の形成を適宜繰り返すことで形成される。
Example 16 is formed in the same flow as the flow chart of the first embodiment (FIG. 4) except for step S5 (formation of the surface protective film). In step S5 of Example 14, first, the first sialon layer 204 is formed under the above-mentioned production conditions. The physical film thickness of the first sialon layer 204 is adjusted by the film forming time because the film forming rate is constant at the above-mentioned values. That is, the first layer is formed at the film forming time calculated by dividing the physical film thickness of the first layer by the film forming rate of the sialon layer 204. Next, the second dielectric layer 206 (SiO 2 layer) is formed under the above-mentioned manufacturing conditions. The second layer is formed at a film forming time calculated by dividing the physical film thickness of the second layer by the film forming rate of the SiO 2 layer.
The surface protective film 201 of Example 12 is formed in the same manner as the surface protective film 201 of Example 16 except for the physical film thickness of each layer.
The surface protective film 201 of Examples 11, 14, and 17 is formed by appropriately repeating the formation of the surface protective film 201 of Example 16.
 一方、実施例13,15の表面保護膜201は、奇数層目がSiO層で偶数層目がサイアロン層204となることを除き、実施例11,14,17の表面保護膜201と同様に形成される。
 尚、表8~表10では、表面保護膜201の物理膜厚(「合計」)、並びに表面保護膜201中の全てのSiO層の物理膜厚の合計(「SiO計」)、及び表面保護膜201中の全てのサイアロン層204の物理膜厚の合計(「SiAlON計」)が併せて示される。後述の表13でも同様に各種の合計が示される。
On the other hand, the surface protective film 201 of Examples 13 and 15 is the same as the surface protective film 201 of Examples 11, 14 and 17 except that the odd-numbered layer is the SiO 2 layer and the even-numbered layer is the sialon layer 204. It is formed.
In Tables 8 to 10, the physical film thickness of the surface protective film 201 (“total”), the total physical film thickness of all the SiO 2 layers in the surface protective film 201 (“SiO 2 total”), and The total physical film thickness of all Sialon layers 204 in the surface protective film 201 (“SiAlON meter”) is also shown. Similarly, various totals are shown in Table 13 described later.
 実施例11,12におけるサイアロン層204の物理膜厚(nm)の合計は、順に104.65,61.35であり、何れも215nm未満であった。
 実施例13~17におけるサイアロン層204の物理膜厚(nm)の合計は、順に585.88,215.96,215.96,270.00,290.34であり、何れも215nm以上であった。
The total physical film thickness (nm) of the sialon layer 204 in Examples 11 and 12 was 104.65 and 61.35, respectively, which were less than 215 nm.
The total physical film thickness (nm) of the sialon layer 204 in Examples 13 to 17 was 585.88, 215.96, 215.96, 270.00, 290.34, respectively, and all of them were 215 nm or more. ..
≪比較例11~12の製造条件等≫
 他方、比較例11~12は、次のように成膜された。
 まず、比較例11は、Si製の層であるSi層とSiO層との交互膜であり、製造装置101において、次の表11に示される製造条件で成膜された。
 即ち、Si層を形成する場合、第1スパッタ源110及び第2スパッタ源120における各電力は、順に8000W,0Wとされ、第1スパッタ源110及び第2スパッタ源120における各Arガスの流量は、何れも100sccmとされた。又、ラジカル源130における電力は、1000Wとされ、ラジカル源130におけるArガス,Oガス,Nガスの流量は、順に0sccm,0sccm,80sccmとされた。この場合の成膜レートは、0.2nm/secとされた。
 又、比較例11のSiO層は、実施例11~17におけるSiO層を形成する場合と同じ条件で成膜された。
<< Manufacturing conditions of Comparative Examples 11 to 12 >>
On the other hand, Comparative Examples 11 to 12 were formed as follows.
First, Comparative Example 11 is an alternating film of a Si 3 N 4 layer, which is a layer made of Si 3 N 4 , and a SiO 2 layer, and is formed in the manufacturing apparatus 101 under the manufacturing conditions shown in Table 11 below. rice field.
That is, when the Si 3 N 4 layer is formed, the electric power in the first sputter source 110 and the second sputter source 120 is set to 8000 W and 0 W in order, and each Ar gas in the first sputter source 110 and the second sputter source 120 is formed. The flow rate of each was 100 sccm. The electric power in the radical source 130 was 1000 W, and the flow rates of Ar gas, O 2 gas, and N 2 gas in the radical source 130 were 0 sccm, 0 sccm, and 80 sccm, respectively. The film formation rate in this case was 0.2 nm / sec.
Further, the SiO 2 layer of Comparative Example 11 was formed under the same conditions as in the case of forming the SiO 2 layer in Examples 11 to 17.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 次に、比較例12は、TiO製の層であるTiO層とSiO層との交互膜であり、真空蒸着により、次の表12に示される製造条件で成膜された。真空蒸着は、より詳しくは、イオンビームアシスト蒸着(Ion Assist Depotition;IAD)である。
 SiO層の成膜時、電子ビーム(EB)の電圧は6kV(キロボルト)、電流は100mA(ミリアンペア)とされ、成膜レートは10Å/sec(オングストローム毎秒)とされた。又、イオンビーム(イオンガン)の加速電圧は750V、加速電流は250mAとされ、イオンビーム発出部に供給するOガスの流量は20sccmとされ、真空室内に導入するOガスの流量は0sccm(上述のイオンビーム発出部を除き真空室内にOガスを導入しない)とされた。
 他方、TiO層の成膜時、EBの電圧は6kV(キロボルト)、電流は450mAとされ、成膜レートは3Å/secとされた。又、イオンビームの加速電圧は700V、加速電流は250mAとされ、イオンビーム発出部に供給するOガスの流量は15sccmとされ、真空室内に導入するOガスの流量は120sccmとされた。
 尚、何れの層の成膜時においても、真空室内の温度は100℃に保持され、1層目の成膜開始時の真空度は8.0×10-4Paとされた。
Next, Comparative Example 12 was an alternating film of TiO 2 layer and SiO 2 layer, which are layers made of TiO 2 , and was formed by vacuum vapor deposition under the production conditions shown in Table 12 below. Vacuum deposition is, more specifically, ion beam assisted deposition (IAD).
At the time of film formation of the SiO 2 layer, the voltage of the electron beam (EB) was 6 kV (kilovolt), the current was 100 mA (milliampere), and the film formation rate was 10 Å / sec (angstrom per second). The acceleration voltage of the ion beam (ion gun) is 750 V, the acceleration current is 250 mA, the flow rate of the O 2 gas supplied to the ion beam ejection part is 20 sccm, and the flow rate of the O 2 gas introduced into the vacuum chamber is 0 sccm ( O 2 gas is not introduced into the vacuum chamber except for the ion beam emitting part described above).
On the other hand, at the time of film formation of the TiO 2 layer, the voltage of EB was 6 kV (kilovolt), the current was 450 mA, and the film formation rate was 3 Å / sec. The acceleration voltage of the ion beam was 700 V, the acceleration current was 250 mA, the flow rate of the O 2 gas supplied to the ion beam ejection part was 15 sccm, and the flow rate of the O 2 gas introduced into the vacuum chamber was 120 sccm.
The temperature in the vacuum chamber was maintained at 100 ° C. at the time of film formation of any layer, and the degree of vacuum at the start of film formation of the first layer was 8.0 × 10 -4 Pa.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 かような比較例11~12の層構成及び各層の物理膜厚が、次の表13に示される。
 比較例11~12の表面保護膜の全層数は、順に15,5とされた。
 比較例11,12の表面保護膜では、何れも最下層がSiO層とされた。比較例11,12は、上述の製造条件において形成された。
The layer structure of Comparative Examples 11 to 12 and the physical film thickness of each layer are shown in Table 13 below.
The total number of layers of the surface protective film of Comparative Examples 11 to 12 was set to 15.5 in order.
In each of the surface protective films of Comparative Examples 11 and 12, the lowest layer was a SiO 2 layer. Comparative Examples 11 and 12 were formed under the above-mentioned production conditions.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
≪実施例11~17,比較例11~12の特性等≫
 比較例11~12,実施例11~17の各種の特性が、次の表14に示される。
 又、比較例11~12,実施例11~17の透明性(白板ガラス基板におけるシミュレーション値)が、順に図9~図17(分光反射率分布)に示される。
 更に、耐傷性試験後に撮影された比較例11~12,実施例11~17の写真が、順に図18~図26に示される。
<< Characteristics of Examples 11 to 17, Comparative Examples 11 to 12 >>
Various characteristics of Comparative Examples 11 to 12 and Examples 11 to 17 are shown in Table 14 below.
Further, the transparency (simulation value in the white plate glass substrate) of Comparative Examples 11 to 12 and Examples 11 to 17 is shown in FIGS. 9 to 17 (spectral reflectance distribution) in order.
Further, photographs of Comparative Examples 11 to 12 and Examples 11 to 17 taken after the scratch resistance test are shown in FIGS. 18 to 26 in order.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 透明性(分光反射率分布)に関し、実施例11,13~15,17及び比較例11~12では、可視域(ここでは400nm以上700nm以下)において反射率が概ね1%以下となっている。
 より詳しくは、実施例11における400nm以上405nm未満の領域と680nmを超えて700nm以下の領域で、反射率が1%を僅かに上回って2%以下となっており、405nm以上680nmの領域で、反射率が1%以下となっている。又、実施例17では、420nm以上670nm以下の領域で反射率が1%以下となっており、その領域以外の可視域で反射率が2%以下となっている。更に、比較例11,12及び実施例13,14において、可視域での反射率が0.5%以下となっている。又更に、実施例15において、可視域での反射率が数箇所の領域を除き0.5%以下となっており、当該数箇所の領域においても反射率は1%以下となっている。よって、実施例11,13~15,17及び比較例11~12では、可視域(実施例17ではその大部分)における透明性が得られている。
 他方、実施例12,16では、近赤外域(ここでは800nm以上1000nm以下)において反射率が概ね3%以下となっている。より詳しくは、実施例12では、850nm以上1000nm以下において反射率が1%以下となっており、実施例16では、850nm以上1000nm以下において反射率が3%以下となっている。よって、実施例12,16では、近赤外域における透明性が得られている。
Regarding transparency (spectral reflectance distribution), in Examples 11, 13 to 15, 17 and Comparative Examples 11 to 12, the reflectance is approximately 1% or less in the visible region (here, 400 nm or more and 700 nm or less).
More specifically, in the region of 400 nm or more and less than 405 nm and the region of more than 680 nm and 700 nm or less in Example 11, the reflectance is slightly more than 1% and 2% or less, and in the region of 405 nm or more and 680 nm. The reflectance is 1% or less. Further, in Example 17, the reflectance is 1% or less in the region of 420 nm or more and 670 nm or less, and the reflectance is 2% or less in the visible region other than the region. Further, in Comparative Examples 11 and 12 and Examples 13 and 14, the reflectance in the visible region is 0.5% or less. Furthermore, in Example 15, the reflectance in the visible region is 0.5% or less except for some regions, and the reflectance is 1% or less even in the several regions. Therefore, in Examples 11, 13 to 15, 17 and Comparative Examples 11 to 12, transparency is obtained in the visible region (most of them in Example 17).
On the other hand, in Examples 12 and 16, the reflectance is approximately 3% or less in the near infrared region (here, 800 nm or more and 1000 nm or less). More specifically, in Example 12, the reflectance is 1% or less at 850 nm or more and 1000 nm or less, and in Example 16, the reflectance is 3% or less at 850 nm or more and 1000 nm or less. Therefore, in Examples 12 and 16, transparency in the near infrared region is obtained.
 又、耐傷性に関し、次の試験が行われた。即ち、研磨材(スリーエムジャパン株式会社製「スコッチブライト7530DOT」;#3000番相当)が、試料の表面保護膜に対して、荷重200g(グラム)で当てられ、表面保護膜上の仮想的な直線(長さ20mm(ミリメートル))に沿って第1の端部から第2の端部まで10往復にて移動された。その後、研磨材が表面保護膜から離されて、表面保護膜が撮影され、観察された。
 かような試験の結果、実施例13~17(図22~図26)及び比較例11(図18)では、独立した細い筋状の傷が散見される程度で済んでいて傷の数が少なくなっており、耐傷性は良好であった。又、実施例11~12(図20~図21)では、実施例13~17及び比較例11に比べ、傷の数がやや多く、耐傷性は比較的に並であった。これに対し、比較例12では、比較的に多数の筋状の傷が見受けられ、耐傷性は他に比べ劣っていた。
In addition, the following tests were conducted with respect to scratch resistance. That is, an abrasive (“Scotch Bright 7530DOT” manufactured by 3M Japan Ltd .; equivalent to # 3000) is applied to the surface protective film of the sample with a load of 200 g (gram), and a virtual straight line on the surface protective film is applied. It was moved along (20 mm (millimeters) in length) from the first end to the second end in 10 round trips. After that, the abrasive was separated from the surface protective film, and the surface protective film was photographed and observed.
As a result of such a test, in Examples 13 to 17 (FIGS. 22 to 26) and Comparative Example 11 (FIG. 18), only a small number of independent fine streaky scratches were found, and the number of scratches was small. The scratch resistance was good. Further, in Examples 11 to 12 (FIGS. 20 to 21), the number of scratches was slightly larger than that of Examples 13 to 17 and Comparative Example 11, and the scratch resistance was relatively average. On the other hand, in Comparative Example 12, a relatively large number of streaky scratches were observed, and the scratch resistance was inferior to the others.
 更に、実施例11~17,比較例11~12に対し、実施例1~4,比較例1~7と同様の恒温恒湿試験(温度85℃,相対湿度85%,72時間(hr)保持)が行われ、その試験後更に継続して同様の環境で328時間(合計400時間)槽内に試料が保持されて、長時間の恒温恒湿試験が行われた。実施例11~17,比較例11~12の各恒温恒湿試験では、外観観察に加え、テープ試験(剥離試験)が行われた。即ち、一辺が10mmの仮想的な正方形に沿って試料の表面保護膜に対しナイフで切れ込みを入れ、その切れ込みで区画された正方形内に対し、粘着テープ(ニチバン株式会社製「セロテープCT-15」)が貼り付けられ、垂直方向に引き剥がされた。
 72時間の恒温恒湿試験では、実施例11~17,比較例11~12の何れにおいても、試験後の外観は良好であり、剥がれは発生しなかった。これに対し、長時間の恒温恒湿試験では、実施例11~17,比較例12では、試験後の外観は良好であり、剥がれが発生しなかったのに対し、比較例11では、剥がれが発生した。
Further, for Examples 11 to 17 and Comparative Examples 11 to 12, the same constant temperature and humidity test (temperature 85 ° C., relative humidity 85%, 72 hours (hr)) as in Examples 1 to 4 and Comparative Examples 1 to 7 was maintained. ) Was carried out, and after the test, the sample was kept in the tank for 328 hours (400 hours in total) in the same environment, and a long-term constant temperature and humidity test was performed. In each constant temperature and humidity test of Examples 11 to 17 and Comparative Examples 11 to 12, a tape test (peeling test) was performed in addition to the appearance observation. That is, a notch is made in the surface protective film of the sample along a virtual square having a side of 10 mm with a knife, and an adhesive tape (“Cellotape CT-15” manufactured by Nichiban Co., Ltd.” is formed in the square partitioned by the notch. ) Was pasted and peeled off vertically.
In the 72-hour constant temperature and humidity test, the appearance after the test was good in both Examples 11 to 17 and Comparative Examples 11 to 12, and no peeling occurred. On the other hand, in the long-term constant temperature and humidity test, in Examples 11 to 17 and Comparative Example 12, the appearance after the test was good and peeling did not occur, whereas in Comparative Example 11, peeling occurred. Occurred.
≪実施例11~17,比較例11~12のまとめ等≫
 実施例11~17の表面保護膜201は、1以上のサイアロン製のサイアロン層204、及び1以上の誘電体製の誘電体層206を含む。よって、透明で、耐傷性及び耐久性に優れた表面保護膜201が提供される。比較例11は、Si層及び誘電体層を含む多層膜であり、長期間の恒温恒湿試験で剥がれが発生して耐久性に劣る。又、比較例12は、TiO層及び誘電体層を含む多層膜であり、耐傷性試験で傷が多く、耐傷性に劣る。
 又、実施例11~17の表面保護膜201において、誘電体層206は、SiO製である。よって、誘電体層206が低屈折率層としてより低コストでより容易に形成され、高屈折率層として振る舞うサイアロン層204との多層膜により、透明性を有する表面保護膜201がより容易に設計可能である。
 更に、実施例13~17の表面保護膜201において、サイアロン層の合計物理膜厚は、215nm以上である。よって、耐傷性試験で傷の数がより少なく、更に耐傷性に優れる。
<< Summary of Examples 11 to 17, Comparative Examples 11 to 12 >>
The surface protective film 201 of Examples 11 to 17 includes one or more Sialon layers 204 made of Sialon and one or more dielectric layers 206 made of dielectric. Therefore, a transparent surface protective film 201 having excellent scratch resistance and durability is provided. Comparative Example 11 is a multilayer film including a Si 3N 4 layer and a dielectric layer, which is inferior in durability due to peeling in a long-term constant temperature and humidity test. Further, Comparative Example 12 is a multilayer film including a TiO 2 layer and a dielectric layer, which has many scratches in a scratch resistance test and is inferior in scratch resistance.
Further, in the surface protective film 201 of Examples 11 to 17, the dielectric layer 206 is made of SiO 2 . Therefore, the dielectric layer 206 is more easily formed as a low refractive index layer at a lower cost, and the transparent surface protective film 201 is more easily designed by the multilayer film with the Sialon layer 204 that behaves as a high refractive index layer. It is possible.
Further, in the surface protective film 201 of Examples 13 to 17, the total physical film thickness of the sialon layer is 215 nm or more. Therefore, the number of scratches is smaller in the scratch resistance test, and the scratch resistance is excellent.
 1,201・・表面保護膜、2・・プリズム(基材)、102・・真空室(成膜室)、204・・サイアロン層、206・・誘電体層、C・・照明カバー。 1,201 ... Surface protective film, 2 ... Prism (base material), 102 ... Vacuum chamber (deposition chamber), 204 ... Sialon layer, 206 ... Dielectric layer, C ... Lighting cover.

Claims (11)

  1.  サイアロン製の膜であり、
     前記サイアロンにおける波長550nmの光に対する屈折率は、1.90以上1.94以下である
    ことを特徴とする表面保護膜。
    It is a membrane made of Sialon,
    A surface protective film having a refractive index of 1.90 or more and 1.94 or less with respect to light having a wavelength of 550 nm in the sialon.
  2.  サイアロン製の膜であり、
     前記サイアロンは、アルミニウムを、原子数比で15%以上32%以下含んでいる
    ことを特徴とする表面保護膜。
    It is a membrane made of Sialon,
    The sialon is a surface protective film characterized by containing aluminum in an atomic number ratio of 15% or more and 32% or less.
  3.  サイアロン製の膜であり、
     前記サイアロンの原子数での組成における、アルミニウムを、アルミニウムとシリコンとの和で割った商が、0.38以上0.67以下である
    ことを特徴とする表面保護膜。
    It is a membrane made of Sialon,
    A surface protective film characterized in that the quotient of aluminum divided by the sum of aluminum and silicon in the composition of the sialon in terms of the number of atoms is 0.38 or more and 0.67 or less.
  4.  サイアロン製の膜であり、
     前記サイアロンは、酸素を、原子数比で7%以上16%以下含んでいる
    ことを特徴とする表面保護膜。
    It is a membrane made of Sialon,
    The sialon is a surface protective film characterized by containing oxygen in an atomic number ratio of 7% or more and 16% or less.
  5.  サイアロン製の膜であり、
     前記サイアロンの可視域平均吸収率は、1%以下である
    ことを特徴とする表面保護膜。
    It is a membrane made of Sialon,
    A surface protective film having a visible average absorption rate of 1% or less for the sialon.
  6.  1以上のサイアロン製のサイアロン層、及び1以上の誘電体製の誘電体層を含む
    ことを特徴とする表面保護膜。
    A surface protective film comprising one or more sialon layers made of sialon and one or more dielectric layers made of dielectric.
  7.  前記誘電体は、SiOである
    ことを特徴とする請求項6に記載の表面保護膜。
    The surface protective film according to claim 6, wherein the dielectric is SiO 2 .
  8.  前記サイアロン層の合計物理膜厚は、215nm以上である
    ことを特徴とする請求項6又は請求項7に記載の表面保護膜。
    The surface protective film according to claim 6 or 7, wherein the total physical film thickness of the sialon layer is 215 nm or more.
  9.  請求項1から請求項8の何れかに記載の表面保護膜を含む
    ことを特徴とする照明カバー。
    A lighting cover comprising the surface protective film according to any one of claims 1 to 8.
  10.  基材を置いた成膜室内において、Oガス及びNガスを導入しながら、SiのスパッタとAlのスパッタとを行うことで、請求項1から請求項5の何れかに記載の表面保護膜を前記基材に形成する
    ことを特徴とする表面保護膜の製造方法。
    The surface protection according to any one of claims 1 to 5 by performing Si sputtering and Al sputtering while introducing O 2 gas and N 2 gas in a film forming chamber in which a substrate is placed. A method for producing a surface protective film, which comprises forming a film on the substrate.
  11.  前記Siのスパッタ及び前記Alのスパッタの少なくとも一方は、直流電圧の印加により行われる
    ことを特徴とする請求項10に記載の表面保護膜の製造方法。
    The method for producing a surface protective film according to claim 10, wherein at least one of the Si sputtering and the Al sputtering is performed by applying a DC voltage.
PCT/JP2021/038468 2020-10-27 2021-10-18 Surface protection film, lighting cover, and method for manufacturing surface protection film WO2022091848A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022559023A JPWO2022091848A1 (en) 2020-10-27 2021-10-18

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-179884 2020-10-27
JP2020179884 2020-10-27

Publications (1)

Publication Number Publication Date
WO2022091848A1 true WO2022091848A1 (en) 2022-05-05

Family

ID=81382600

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/038468 WO2022091848A1 (en) 2020-10-27 2021-10-18 Surface protection film, lighting cover, and method for manufacturing surface protection film

Country Status (2)

Country Link
JP (1) JPWO2022091848A1 (en)
WO (1) WO2022091848A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223170A (en) * 1987-03-13 1988-09-16 Ube Ind Ltd Beta-sialon target for sputtering
JPH07224381A (en) * 1994-02-14 1995-08-22 Canon Inc Production of thin film and device therefor
JPH11258583A (en) * 1999-01-22 1999-09-24 Sharp Corp Liquid crystal display element
JP2020519948A (en) * 2017-05-08 2020-07-02 コーニング インコーポレイテッド Reflective, pigmented, or color-shifting, scratch-resistant coatings and articles
WO2020170577A1 (en) * 2019-02-21 2020-08-27 株式会社シンクロン Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63223170A (en) * 1987-03-13 1988-09-16 Ube Ind Ltd Beta-sialon target for sputtering
JPH07224381A (en) * 1994-02-14 1995-08-22 Canon Inc Production of thin film and device therefor
JPH11258583A (en) * 1999-01-22 1999-09-24 Sharp Corp Liquid crystal display element
JP2020519948A (en) * 2017-05-08 2020-07-02 コーニング インコーポレイテッド Reflective, pigmented, or color-shifting, scratch-resistant coatings and articles
WO2020170577A1 (en) * 2019-02-21 2020-08-27 株式会社シンクロン Sputtering film forming apparatus, sputtering film forming method therefor, and compound thin film

Also Published As

Publication number Publication date
JPWO2022091848A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
EP2484453B1 (en) Smooth, dense optical films
US8153241B2 (en) Wide-angle highly reflective mirrors at 193NM
US9983333B2 (en) Hafnium or zirconium oxide coating
JP3808917B2 (en) Thin film manufacturing method and thin film
US7041391B2 (en) Method for forming thin films
JP2015200888A (en) Hard reflection preventive film, manufacturing of hard reflection preventive film and use thereof
CN107082575A (en) Substrate with ARC
JPH08220304A (en) Optical product, exposure device or optical system using same, and production thereof
CN1161656C (en) Attenuating embedded phase shift photomask blanks
JP2005114649A (en) Cover glass for timepiece
WO2022091848A1 (en) Surface protection film, lighting cover, and method for manufacturing surface protection film
US20030194569A1 (en) Attenuated embedded phase shift photomask blanks
JP2006317603A (en) Front surface mirror
KR20050102661A (en) Vaporizing material for producing highly refractive optical layers
JP5916821B2 (en) Hafnium oxide coating
JP6366263B2 (en) Optical multilayer film, optical lens, and method of manufacturing optical multilayer film
US6682860B2 (en) Attenuated embedded phase shift photomask blanks
CN100473754C (en) Method for obtaining a thin, stabilized fluorine-doped silica layer, resulting thin layer and use thereof in ophthalmic optics
JP2019020721A (en) Nd filter, and manufacturing method of the same
JPH04223401A (en) Thin film for optical parts
CN117170000A (en) Optical element and device
JPH03173638A (en) Antireflection film and manufacture thereof
JPH09263936A (en) Production of thin film and thin film
WO2022255179A1 (en) Composite film manufacturing method and organic/inorganic hybrid film manufacturing method
WO2023112940A1 (en) Optical filter and sterilization device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885967

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022559023

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21885967

Country of ref document: EP

Kind code of ref document: A1