WO2022091369A1 - Ablation system - Google Patents

Ablation system Download PDF

Info

Publication number
WO2022091369A1
WO2022091369A1 PCT/JP2020/040904 JP2020040904W WO2022091369A1 WO 2022091369 A1 WO2022091369 A1 WO 2022091369A1 JP 2020040904 W JP2020040904 W JP 2020040904W WO 2022091369 A1 WO2022091369 A1 WO 2022091369A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
value
control unit
power supply
electrode needle
Prior art date
Application number
PCT/JP2020/040904
Other languages
French (fr)
Japanese (ja)
Inventor
久生 宮本
Original Assignee
日本ライフライン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ライフライン株式会社 filed Critical 日本ライフライン株式会社
Priority to PCT/JP2020/040904 priority Critical patent/WO2022091369A1/en
Priority to JP2022558772A priority patent/JPWO2022091369A1/ja
Publication of WO2022091369A1 publication Critical patent/WO2022091369A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current

Definitions

  • the present invention relates to an ablation system including an electrode needle that is percutaneously punctured into an affected area in the body and a power supply device that supplies electric power for ablation (causing).
  • an ablation system that ablate the affected area has been proposed (for example, Patent Document 1). reference).
  • This ablation system includes an electrode needle that is percutaneously punctured into the affected area in the body, and a power supply device that supplies electric power to perform ablation on the affected area.
  • the ablation system is a power source that supplies electric power for ablation between an electrode needle that is percutaneously punctured into an affected portion in the body and the electrode needle and the counter electrode plate. It is provided with a power supply device including a unit, a control unit that controls a power supply operation in the power supply unit, and a control unit. Information indicating the measured temperature near the tip of the electrode needle is supplied from the electrode needle to the control unit. Further, the control unit sets a predetermined condition that the measured temperature changes by a decrease amount of the first threshold value or more when the control unit controls to increase or maintain the power supply value at the time of ablation. If it is satisfied, at least one of a first process of reducing or stopping the power supply and a second process of outputting a predetermined notification to the outside of the power supply device is executed.
  • the above-mentioned description is made.
  • At least one of the first process and the second process is executed.
  • the electrode There may be signs of a so-called steam pop phenomenon (popping phenomenon, pop phenomenon) near the ablation site (for example, the affected area to be ablated) by the needle.
  • the control unit measures the impedance value between the electrode needle and the counter electrode plate, and when the predetermined conditions are satisfied, the control unit measures the impedance value.
  • the fluctuation value per unit time in the impedance value indicates an increase of the second threshold value or more
  • the first process and the second process are not executed, respectively, while the unit in the impedance value.
  • the fluctuation value per hour indicates an increase below the second threshold value or a decrease
  • at least one of the first process and the second process is to be executed. You may do it.
  • the above-mentioned first item depends on the magnitude of the fluctuation value per unit time in the impedance value and whether the change is an increase or a decrease. It may be decided whether or not the process and the second process are executed. In this case, the sign of the steam pop phenomenon can be detected more accurately by using the parameter of the fluctuation value per unit time in the impedance value. Specifically, it becomes possible to detect, for example, a situation in which the electrode needle is moving along the anteroposterior direction near the cautery site, rather than showing signs of a steam pop phenomenon.
  • control unit measures the impedance value between the electrode needle and the counter electrode plate, and when the above-mentioned predetermined conditions are satisfied and the above-mentioned measurement temperature is lowered, the above-mentioned As the impedance value rises, the impedance value decreases when the measured temperature rises, and the measured temperature and the impedance value fluctuate in opposite directions along the time axis.
  • the first process and the second process are prevented from being executed, respectively, and when the measured temperature and the impedance value do not fluctuate in opposite directions along the time axis, the first process is performed.
  • One process and at least one of the second processes may be executed.
  • the movement of the electrode needle near the ablation site as described above can be detected more accurately by utilizing the presence or absence of fluctuations in the opposite direction between the measured temperature and the impedance value described above. It will be like.
  • the signs of the steam pop phenomenon can be detected more accurately, and as a result, the above-mentioned decrease in ablation efficiency can be easily prevented, and the above-mentioned burden on the patient's body can be easily reduced.
  • the control unit alternately repeats fluctuations in opposite directions between the measured temperature and the impedance value in a predetermined cycle when the predetermined conditions are satisfied.
  • the first process and the second process may not be executed respectively.
  • the state in which the electrode needle is moving near the ablation site can be detected more accurately, and the signs of the steam pop phenomenon can be detected even more accurately.
  • the above-mentioned decrease in ablation efficiency can be further prevented.
  • the burden on the patient's body as described above can be further reduced.
  • control unit may raise or maintain the power supply value in a line shape or a step shape along the time axis, for example.
  • control unit may, for example, maintain the power supply value along the time axis (at an arbitrary fixed value).
  • the ablation system when the above-mentioned predetermined conditions are satisfied at the time of ablation, at least one of the above-mentioned first process and second process is executed. So, it will be as follows. That is, it becomes possible to execute the processing for detecting the sign of the steam pop phenomenon in advance and the processing for dealing with the detection of such a sign. Therefore, it is possible to reduce the burden on the patient's body during ablation.
  • FIG. 1 is a schematic block diagram showing an overall configuration example of an ablation system (ablation system 5) according to an embodiment of the present invention.
  • This ablation system 5 for example, as shown in FIG. 1, is a system used when treating an affected portion 90 in the body of a patient 9, and a predetermined ablation is performed on such an affected portion 90.
  • the affected area 90 include an affected area having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
  • the ablation system 5 includes an electrode needle 1, a liquid supply device 2, and a power supply device 3. Further, in the ablation using the ablation system 5, for example, the counter electrode plate 4 shown in FIG. 1 is also appropriately used.
  • the electrode needle 1 is, for example, as shown by the arrow P1 in FIG. 1, a needle that is percutaneously punctured into the affected portion 90 in the body of the patient 9.
  • the electrode needle 1 is used during the above-mentioned ablation, and has an electrode portion 11 and a covering portion 12 as shown in FIG. 1, for example.
  • the liquid L supplied from the liquid supply device 2 described later circulates and flows inside the electrode needle 1 (see FIG. 1).
  • the electrode portion 11 is a region portion of the needle-shaped structure constituting the electrode needle 1 that is not covered with an insulating coating, and is a portion that functions as an electrode during ablation.
  • the covering portion 12 is a region portion of the above-mentioned needle-shaped structure in which an insulating coating is made. As shown in FIG. 1, the electrode portion 11 is arranged near the tip of the electrode needle 1, and the covering portion 12 is arranged on the proximal end side of the electrode portion 11.
  • the liquid supply device 2 is a device that supplies the cooling liquid L to the electrode needle 1 described above, and has, for example, a liquid supply unit 21 as shown in FIG.
  • Examples of the cooling liquid L include sterilized water and sterilized physiological saline.
  • the liquid supply unit 21 supplies the above-mentioned liquid L to the electrode needle 1 at any time according to the control by the control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 causes the liquid L to circulate between the inside of the liquid supply device 2 and the inside of the electrode needle 1 (in a predetermined flow path). Then, the liquid L is supplied. Further, although the details will be described later, such a liquid L supply operation is executed or stopped according to the control by the control signal CTL2 described above.
  • the liquid supply unit 21 is configured to include, for example, a liquid pump or the like.
  • the power supply device 3 supplies a power Pout (for example, radio frequency (RF) power) for ablation between the electrode needle 1 and the counter electrode plate 4, and also supplies the liquid L in the liquid supply device 2 described above. It is a device that controls the supply operation. As shown in FIG. 1, the power supply device 3 has an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
  • RF radio frequency
  • the input unit 31 is a part for inputting various set values and an instruction signal (operation signal Sm) for instructing a predetermined operation described later.
  • Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer or the like) of the power supply device 3.
  • these various setting values are not input according to the operation by the operator, but may be set in advance in the power supply device 3 at the time of shipment of the product, for example.
  • the set value input by the input unit 31 is supplied to the control unit 33, which will be described later.
  • such an input unit 31 is configured by using, for example, a predetermined dial, button, touch panel, or the like.
  • the power supply unit 32 is a portion that supplies the above-mentioned power Pout between the electrode needle 1 and the counter electrode plate 4 according to the control signal CTL1 described later.
  • a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like).
  • the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
  • the control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured by using, for example, a microcomputer or the like. Specifically, the control unit 33 first has a function (power supply control function) of controlling the power supply operation of the power supply unit 32 by using the control signal CTL1. Further, the control unit 33 has a function (liquid supply control function) of controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) by using the control signal CTL 2. Further, the control unit 33 has a function (display control function) for controlling the display operation in the display unit 34, which will be described later.
  • Such a control unit 33 also has temperature information indicating the temperature measured Tm near the tip of the electrode needle 1 (a temperature sensor such as a thermoelectric pair arranged inside the electrode unit 11), for example, as shown in FIG. It is designed to be supplied at any time. Further, for example, as shown in FIG. 1, the measured value of the impedance value Z (described later) is supplied to the control unit 33 from the power supply unit 32 described above at any time.
  • control unit 33 The details of the control operation and the like in the control unit 33 including the above-mentioned power supply control function and liquid supply control function will be described later.
  • the display unit 34 is a part (monitor) that displays various information and outputs it to the outside.
  • the information to be displayed includes, for example, the various set values input from the input unit 31 and various parameters supplied from the control unit 33 (for example, the impedance value Z described later and the count value of the number of breaks Nb). , Temperature information It supplied from the electrode needle 1 (information on the measurement temperature Tm described above) and the like.
  • the information to be displayed is not limited to these information, and other information may be displayed instead or by adding other information.
  • Such a display unit 34 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
  • the counter electrode plate 4 is used in a state of being attached to the body surface of the patient 9 at the time of ablation.
  • high frequency energization power Pout is supplied
  • the impedance value Z between the electrode needle 1 (electrode portion 11) and the counter electrode plate 4 is measured and measured at any time.
  • the impedance value Z is supplied from the power supply unit 32 to the control unit 33 in the power supply device 3.
  • the liquid supply device 2 (so that the cooling liquid L circulates between the inside of the liquid supply device 2 and the inside of the electrode needle 1 (in a predetermined flow path)).
  • the liquid L is supplied from the liquid supply unit 21) to the electrode needle 1 (see FIG. 1).
  • a cooling operation (cooling) is performed on the electrode needle 1.
  • the tissue temperature of the affected area 90 rises sufficiently based on the temperature information It indicating the measured temperature Tm near the tip of the electrode needle 1.
  • the condition of cauterization of the affected area is confirmed, such as whether it is present.
  • FIG. 2 schematically shows an example of the cauterization condition in the affected area 90 due to such ablation.
  • the initial rugby ball-shaped (elliptical spherical) thermal coagulation region Ah1 gradually expands.
  • a substantially spherical thermal coagulation region Ah2 is obtained (see the broken line arrow in FIG. 2).
  • isotropic ablation of the entire affected area 90 is performed, and as a result, effective treatment of the affected area 90 is performed.
  • FIG. 3 schematically shows an example of the break state and the number of breaks at the time of ablation in a timing diagram. Specifically, in FIG. 3, an example of a measured waveform of the impedance value Z between the electrode needle 1 (electrode portion 11) and the counter electrode plate 4 is shown along the time axis.
  • the ablation is first started, and when the tissue of the affected area 90 is cauterized and the temperature rises, the impedance value Z decreases. To go. This is because the temperature of water that contributes to electrical conduction rises in this tissue, and the thermal motion of water ions becomes active, so that the electrical conductivity in the tissue improves and the impedance value Z decreases. It has become like. Then, as the ablation progresses, the water content in the tissue of the affected area 90 evaporates, and conversely, the impedance value Z rises sharply.
  • Such a rapid increase in the impedance value Z is an index of thermal coagulation of the tissue in the affected area 90, and thus serves as a guideline for the stop timing during ablation.
  • a state in which the impedance value Z exceeds a predetermined threshold value Zth (Z> Zth) is called a “break state” (see FIG. 3).
  • ablation supply of electric power Pout
  • ablation is temporarily stopped, and then ablation is restarted.
  • water is supplied from the surrounding tissue into the tissue in the affected area 90, and as a result, the impedance value Z is lowered again for the above reason (see FIG. 3).
  • the temporary stop time of ablation (waiting time until restart of ablation) is, for example, a preset predetermined time (for example, about 10 seconds to 15 seconds) or before the impedance value Z rises. The time it takes to return to the value of.
  • Various information such as the count value of the number of breaks Nb is displayed at any time on the display unit 34 of the power supply device 3, as shown schematically in FIG. 4, for example.
  • the display unit 34 first, as schematically shown in FIG. 3 described above, the measured waveform of the impedance value Z is displayed along the time axis (reference numeral in FIG. 4). See page 20). Further, in the example of the display unit 34, the current value of the impedance value Z (Impedance: see the reference numeral P21), the temperature information It (Temperature: see the reference numeral P22) indicating the measurement temperature Tm described above, and the supply value of the power Pout.
  • the ablation is terminated as follows. Specifically, first, the operator of the power supply device 3 visually confirms the number of breaks Nb (for example, about 2 to 3 times as described above), and then manually terminates the ablation (comparative example). 1) can be mentioned.
  • Another method (Comparative Example 2) is to automatically stop the supply of power Pout after a predetermined standby time (fixed value) has elapsed without checking the number of breaks Nb. Will be.
  • this pain means the pain felt by the patient 9 during treatment, and it is said that, for example, the right shoulder and the like often hurt as referred pain via the spinal nerve. Since the impedance value Z rises sharply in the break state, the output voltage also rises sharply when the power Pout is output as a constant power, for example. In addition, the temperature at the affected area 90 tends to rise before the transition to the break state. Therefore, it is said that this pain has both electrical and thermal causes.
  • liver cancer generally has a higher recurrence rate than cancer in other organs, so that repeated treatment is required, but the memory of pain felt by patient 9 prevents the patient from receiving the next treatment. There is a risk of becoming.
  • strengthening the anesthesia during treatment can reduce such pain, strengthening the anesthesia hinders the prediction of complications. Based on these facts, it is ideal to minimize pain while using the minimum amount of anesthesia. Therefore, the number of breaks Nb during treatment by ablation is also the same as in Comparative Examples 1 and 2 above. Moreover, it is not desirable to have more than necessary.
  • FIG. 5 is a flow chart showing an example of ablation processing in the ablation system 5 of the present embodiment.
  • the threshold value Zth (threshold value of the impedance value Z) described above and the threshold value Nth (threshold value of the number of breaks Nb) described later are set (step S10 in FIG. 5). Further, in this step S10, the threshold value ⁇ Pth (threshold value of the power increase value ⁇ P described later) and the threshold value ⁇ Tmth (threshold value of the change amount ⁇ Tm of the measured temperature Tm described later), which will be described later with reference to FIG. 7, are also set. Is supposed to be done. Specifically, the set values of these threshold values Zth, Nth, ⁇ Pth, and ⁇ Tmth are input from the input unit 31 according to the operation by the operator of the power supply device 3, and are supplied to the control unit 33.
  • the above-mentioned threshold value ⁇ Tmth corresponds to a specific example of the “first threshold value” in the present invention.
  • the method of defining by this relative value there are a method of defining the impedance value Z at the start of ablation as a reference and a method of defining the minimum value of the impedance value Z after the start of ablation as a reference.
  • the setting values of such various parameters are not input according to the operation by the operator, but are set in advance in the power supply device 3, for example, at the time of shipment of the product. You may do so.
  • ablation with respect to the affected portion 90 is started by supplying a power Pout from the power supply device 3 (power supply unit 32) between the electrode needle 1 and the counter electrode plate 4 (step S11). Specifically, the start of this ablation is executed by inputting the operation signal Sm from the input unit 31 and supplying it to the control unit 33 in response to the operation by the operator of the power supply device 3. That is, in this example, the ablation is manually initiated.
  • the power supply unit 32 first measures the impedance value Z between the electrode needle 1 and the counter electrode plate 4 (step S12). In other words, the control unit 33 acquires the measurement information of such an impedance value Z. Then, when the impedance value Z measured in this way is supplied from the power supply unit 32 to the control unit 33, the control unit 33 then makes the following determination. That is, the control unit 33 determines whether or not the impedance value Z is larger than the threshold value Zth set in step S10 (whether or not Z> Zth is satisfied) (step S13).
  • step S13: N if it is determined that the impedance value Z is equal to or less than the threshold value Zth (Z> Zth is not satisfied) (step S13: N), the process returns to step S12 described above, and the impedance value Z is measured again. Will be.
  • step S13 when it is determined that the impedance value Z is larger than the threshold value Zth (satisfying Z> Zth) (step S13: Y), it means that the state has shifted to the break state described above. Therefore, in this case, the control unit 33 then automatically counts the number of transitions to this break state (break count Nb) (step S14).
  • break count Nb The count value of the number of breaks Nb is stored in various storage media in the control unit 33 at any time.
  • control unit 33 temporarily stops the ablation by temporarily reducing or stopping the supply of the power Pout from the power supply unit 32 by using the control signal CTL1 described above (step S15).
  • the impedance value Z drops again, and the break state is exited.
  • control unit 33 determines whether or not the number of breaks Nb counted in step S14 is equal to or greater than the threshold value Nth set in step S10 (whether or not Nb ⁇ Nth is satisfied) (step S16). ). If it is determined that the number of breaks Nb is less than the threshold value Nth (Nb ⁇ Nth is not satisfied) (step S16: N), then the power Pout supply (ablation) is automatically or manually restarted. (Step S17).
  • FIG. 6 shows an example of the operation mode at the time of restarting the supply of such power Pout (step S17).
  • examples of the operation mode at this time include two types of operation modes, "fully automatic mode” and "semi-automatic mode”.
  • the control unit 33 automatically restarts the power Pout supply (ablation) (step S17). Specifically, the control unit 33 automatically restarts the supply of the power Pout from the power supply unit 32 by using the control signal CTL1 described above. That is, in this fully automatic mode, the supply of the power Pout is automatically restarted.
  • step S16 when the number of breaks Nb has not reached the threshold value Nth (step S16: N), the control unit 33 is based on the operation signal Sm input in response to the operation by the operator of the power supply device 3. Restarts the supply (ablation) of the power Pout (step S17). That is, in this semi-auto mode, the power supply of the power Pout is manually restarted.
  • such two types of operation modes (“full auto mode” and “semi-auto mode”) may be switchable (shown in FIG. 6). See the dashed arrow P3). That is, for example, these two types of operation modes may be switched at any time based on the operation signal Sm input in response to the operation by the operator of the power supply device 3.
  • step S15 when the supply of the electric power Pout is temporarily “decreased", the impedance value Z can be continuously measured even in the above-mentioned break state.
  • step S15 when the supply of the power Pout is temporarily “stopped", the impedance value Z is not measured when the break state is reached.
  • step S16 if it is determined that the number of breaks Nb is equal to or greater than the threshold value Nth (Satisfying Nb ⁇ Nth) (step S16: Y), then the control unit 33 performs the following control. conduct. That is, when the number of breaks Nb reaches the threshold value Nth (step S16: Y), the control unit 33 automatically stops (completely stops) the supply of the power Pout from the power supply unit 32 to automatically stop the ablation. (Step S18). Specifically, the control unit 33 automatically stops the supply of the power Pout by using the control signal CTL1 described above. As a result, the ablation for the affected area 90 is automatically terminated by the control unit 33.
  • control unit 33 automatically ends the ablation in this way (step S18), and then automatically stops the supply of the cooling liquid L from the liquid supply device 2 (step S19). .. Specifically, the control unit 33 automatically stops the supply of the liquid L from the liquid supply unit 21 by using the control signal CTL2 described above. As a result, the circulation of the liquid L between the inside of the liquid supply device 2 and the inside of the electrode needle 1 is stopped (see FIG. 1), and the cooling operation (cooling) for the electrode needle 1 is stopped. This completes the series of processes shown in FIG. 5 (example of ablation process according to this embodiment).
  • the control unit 33 performs the following control at the time of ablation. That is, first, the control unit 33 measures the impedance value Z between the electrode needle 1 and the counter electrode plate 4 (step S12 in FIG. 5), and the impedance value Z exceeds the threshold value Zth and shifts to the break state. The number of times (break number Nb) is counted (step S14). Then, when the number of breaks Nb reaches the threshold value Nth, the control unit 33 automatically stops the supply of the power Pout to automatically end the ablation (step S18).
  • the present embodiment it becomes as follows. That is, for example, when the ablation is manually terminated after visually confirming the number of breaks Nb as described above (Comparative Example 1), or after a predetermined waiting time has elapsed without confirming the number of breaks Nb. Compared with the case of automatically terminating ablation (Comparative Example 2), effective ablation can be easily performed. Therefore, in the present embodiment, it is possible to improve the convenience when using the ablation system 5 as compared with these Comparative Examples 1 and 2.
  • the following processes preliminary detection process of signs of steam pop phenomenon and response processes when such signs are detected. I am trying to execute.
  • the above-mentioned detection processing and corresponding processing are performed during the period from the start of the above-mentioned ablation to the period before the transition to the first (first) break state.
  • An example of each of these cases will be described. However, the example is not limited to such a case, and such a detection process and a corresponding process may be performed at any time during an arbitrary period after the start of the above-mentioned ablation. This point is the same in the case of the processing example in the modification described later (processing example shown in FIGS. 10 to 14 described later).
  • FIG. 7 is a flow chart showing an example of the above-mentioned sign detection process and response process of the steam pop phenomenon in the ablation according to the present embodiment.
  • FIGS. 8 and 9 schematically show examples of timing waveforms during the processing shown in FIG. 7, respectively.
  • the horizontal axis represents time
  • the vertical axis represents the power supply value, the impedance value Z, and the measured temperature Tm near the tip of the electrode needle 1 described above. Is shown.
  • step S20 the control unit 33 acquires the measurement information of the power Pout, the measurement information of the impedance value Z, and the temperature information It indicating the measurement temperature Tm at this time point (see FIG. 1).
  • the control unit 33 in the period from the start of the above-mentioned ablation to the period before the transition to the first break state, the control unit 33, for example, sets the supply value of the power Pout. It is controlled to rise or maintain. Specifically, in the example of FIG. 8, the control unit 33 controls the supply value of the electric power Pout during this period so as to gradually increase (in a linear shape) along the time axis. On the other hand, in the example of FIG. 9, the control unit 33 controls the supply value of the electric power Pout during this period so as to rise or maintain in a stepwise manner along the time axis.
  • the control unit 33 may, for example, maintain the supply value of the electric power Pout during this period along the time axis (at an arbitrary fixed value). Further, the increase or maintenance of the power Pout supply value during this period is not automatically controlled by the control unit 33, but is manually controlled according to the operation (operation signal Sm) by the operator of the power supply device 3. It may be done.
  • the control unit 33 makes the following determination. That is, the control unit 33 determines whether or not the increase value per unit time (power increase value ⁇ P) in the supply value of the power Pout is equal to or greater than the threshold value ⁇ Pth set in step S10 of FIG. 5 described above ( ⁇ P ⁇ ⁇ Pth). Whether or not the condition is satisfied) is determined (step S21).
  • a threshold value ⁇ Pth for example, a value of about 5 [W] to 40 [W] can be mentioned, and for example, a value including 0 (zero) (for example, 0 [W] to 40 [W]]. (Value of degree) may be used.
  • the calculated value of such a power increase value ⁇ P may be reset (initialized), for example, when the state shifts to the break state described above.
  • step S21: N when it is determined that the power increase value ⁇ P is less than the threshold value ⁇ Pth (which does not satisfy ⁇ P ⁇ ⁇ Pth) (step S21: N), that is, when the power Pout is decreasing, the above step. It will return to S20.
  • step S21: Y when it is determined that the power increase value ⁇ P is equal to or greater than the threshold value ⁇ Pth (satisfying ⁇ P ⁇ ⁇ Pth) (step S21: Y), that is, when the power Pout is increased or maintained.
  • the control unit 33 makes the following determinations. That is, the control unit 33 determines whether or not the measured temperature Tm described above is changed by a decrease amount of the threshold value ⁇ Tmth or more set in step S10, that is, the change amount ⁇ Tm of the measured temperature Tm is the threshold value ⁇ Tmth or more. It is determined whether or not the amount of decrease is ( ⁇ Tm ⁇ ⁇ Tmth) (step S22).
  • a threshold value ⁇ Tmth for example, a value of about 5 [° C.] can be mentioned.
  • the change amount ⁇ Tm described above is a decrease amount less than the threshold value ⁇ Tmth ( ⁇ Tm ⁇ Tmth), or the change amount ⁇ Tm described above is an increase amount (measurement temperature Tm increases). If it is determined (step S22: N), the process returns to step S20 described above.
  • step S22 when it is determined that the above-mentioned change amount ⁇ Tm is a decrease amount of the threshold value ⁇ Tmth or more ( ⁇ Tm ⁇ ⁇ Tmth) (step S22: Y). ), Next, the control unit 33 executes the following processing. That is, in this way, when the predetermined condition that each determination in steps S21 and S22 is satisfied (becomes "Y") is satisfied (both (c) and (d) described later). In the present embodiment, the control unit 33 determines that the above-mentioned sign of the steam pop phenomenon has been detected, and executes the following corresponding processing (step S23).
  • the control unit 33 executes at least one of the following two processes (first process and second process) of (a) and (b).
  • the following process (a) is not automatically controlled by the control unit 33, but is manually controlled according to the operation (operation signal Sm) by the operator of the power supply device 3. May be good.
  • the control unit 33 performs the following control at the time of ablation. That is, when the control unit 33 satisfies the predetermined condition that both of the following (c) and (d) are applicable, of the above two processes (a) and (b). At least one of the processes is executed.
  • C The case where the supply value of the power Pout is controlled to be increased or maintained (the above-mentioned power increase value ⁇ P is equal to or higher than the threshold value ⁇ Pth including 0 (zero)) (d).
  • the measured temperature Tm changes with the amount of decrease of the threshold value ⁇ Tmth or more.
  • the measured temperature Tm changes by the amount of decrease of the threshold value ⁇ Tmth or more. If this is the case (when the above-mentioned predetermined conditions are satisfied), there is a possibility that the above-mentioned signs of the steam pop phenomenon have occurred in the vicinity of the ablation site (for example, the affected area 90 to be ablated) by the electrode needle 1. This is because when such a sign of the steam pop phenomenon occurs, an air layer is formed around the electrode needle 1, so that the measured temperature Tm near the tip of the electrode needle 1 tends to decrease. ..
  • FIG. 10 is a flow chart showing an example of the above-mentioned sign detection process and response process of the steam pop phenomenon at the time of ablation according to the modified example.
  • FIGS. 11 to 3 schematically show examples of timing waveforms during the processing shown in FIG. 10, respectively.
  • FIGS. 14 (A) and 14 (B) schematically show an example of a state at the time of a change in the reverse direction, which will be described later, shown in FIG. 13, respectively.
  • the horizontal axis represents time
  • the vertical axis represents the power supply value, the impedance value Z, and the above-mentioned electrode needle, respectively, as in FIGS. 8 and 9, respectively.
  • the measured temperature Tm near the tip of 1 is shown.
  • step S24 described below is added between steps S22 and S23. It corresponds to the one that has been made, and each other process is the same.
  • the control unit 33 indicates that the fluctuation value per unit time (impedance fluctuation value ⁇ Z) at the impedance value Z increases by the threshold value ⁇ Zth or more ( ⁇ Z ⁇ ⁇ Zth). It is determined whether or not, that is, whether or not the impedance fluctuation value ⁇ Z fluctuates with an increase value equal to or higher than the threshold value ⁇ Zth (step S24).
  • this threshold value ⁇ Zth corresponds to a specific example of the “second threshold value” in the present invention, and is set in step S10 of FIG. 5 described above, for example, like other threshold values. Further, as such a threshold value ⁇ Zth, for example, a value of about 10 [ ⁇ ] can be mentioned.
  • the impedance fluctuation value ⁇ Z is an increase value less than the threshold value ⁇ Zth ( ⁇ Z ⁇ Zth), or the impedance fluctuation value ⁇ Z is a decrease value (indicating a change in which the impedance value Z decreases). If it is determined (step S24: N), the process is as follows. That is, in this way, when the above-mentioned predetermined condition that each of the above-mentioned determinations of steps S21 and S22 is satisfied (becomes "Y") is satisfied, the above-mentioned step S24 is satisfied.
  • control unit 33 determines that the sign of the steam pop phenomenon described above has been detected, and executes the corresponding process described above (step S23). .. Specifically, in this case, the control unit 33 executes at least one of the two processes (a) and (b) described above. In this case, the series of processes shown in FIG. 10 (the process of detecting the sign of the steam pop phenomenon and the corresponding process according to this modification) are completed.
  • step S24: Y the process is as follows.
  • control unit 33 determines that the above-mentioned sign of the steam pop phenomenon has not been detected, and performs the above-mentioned corresponding processing (each of the above-mentioned processes (a) and (b)). Do not run. Specifically, in this case, the process does not proceed to step S23 described above, but returns to step S20 described above.
  • the measured temperature Tm and the impedance value Z fluctuate in opposite directions along the time axis. It may be determined whether or not each of the above-mentioned processes (a) and (b) is executed depending on whether or not the process is performed.
  • the control unit 33 has impedance when the measurement temperature Tm is lowered, for example, as shown by the broken arrow in FIGS. 11 and 12.
  • the impedance value Z decreases when the measured temperature Tm rises, and the measured temperature Tm and the impedance value Z fluctuate in opposite directions along the time axis. If so, the above-mentioned processes (a) and (b) may not be executed.
  • the fluctuation of the impedance value Z includes, for example, the fluctuation of the threshold value ⁇ Zth or more (for example, the fluctuation of about 10 [ ⁇ ] or more), and the fluctuation of the measurement temperature Tm is, for example, 10 [.
  • the fluctuations in the opposite directions between the measurement temperature Tm and the impedance value Z, for example, as shown in FIG. 13, have a predetermined period Tud (for example, Tud 5 seconds).
  • Tud 5 seconds
  • this modification shows the magnitude of the impedance fluctuation value ⁇ Z and the change of either increase or decrease even when the above-mentioned predetermined conditions are satisfied. Whether or not to execute the above-mentioned two processes (a) and (b) is determined according to the above. In other words, in this modification, an exclusion condition for executing these two processes is defined by using a parameter called the impedance fluctuation value ⁇ Z. As a result, in this modification, the above-mentioned sign of the steam pop phenomenon can be detected more accurately by using such a parameter of impedance fluctuation value ⁇ Z.
  • the measurement temperature Tm and the impedance value fluctuate in opposite directions along the time axis.
  • the above-mentioned processes (a) and (b) are prevented from being executed, the above-mentioned (a) is performed when the measured temperature Tm and the impedance value Z do not fluctuate in opposite directions along the time axis.
  • (B) When at least one of the two processes is executed, the result is as follows.
  • each member described in the above-described embodiment and the like are not limited, and may be other materials.
  • the configuration of the electrode needle 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided.
  • the values, ranges, magnitude relations, etc. of various parameters described in the above-described embodiments are not limited to those described in the above-described embodiments, and may be other values, ranges, magnitude relations, etc. good.
  • the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided. Further, the ablation system 5 as a whole may be further provided with other devices in addition to the devices described in the above-described embodiment and the like.
  • control operation in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described.
  • control method in these power supply control functions, liquid supply control functions, and the like is not limited to the methods mentioned in the above-described embodiments.
  • the ablation processing example shown in FIG. 5 and the like and the above-mentioned examples of the steam pop phenomenon sign detection processing and the corresponding processing shown in FIGS. 7 and 10, are described in the above-mentioned implementation.
  • the method is not limited to the method described in the form or the like, and other methods may be used.
  • the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program).
  • the software is composed of a group of programs for executing each function by a computer.
  • Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Otolaryngology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Plasma & Fusion (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Provided is an ablation system capable of mitigating the burden on a patient's body during an ablation. This ablation system 5 comprises an electrode needle 1, and a power source device 3 having a control unit 33 and a power source unit 32 for supplying power Pout. The control unit 33 is configured such that during the ablation, information (temperature information It) indicating the measurement temperature Tm near the forward end of the electrode needle 1 is supplied from the electrode needle 11 to the control unit 33. During the ablation, if, when performing a control to raise or maintain the power Pout supply value, the measurement temperature Tm meets a predetermined condition of varying by a decrease amount (variation amount ΔTm) greater than or equal to a threshold value ΔTmth, the control unit 33 executes at least one processing among first processing for decreasing or stopping the supply of the power Pout, and second processing for delivering a predetermined notification to the exterior of the power source device 3.

Description

アブレーションシステムAblation system
 本発明は、体内の患部に対して経皮的に穿刺される電極針と、アブレーション(焼灼)を行うための電力を供給する電源装置と、を備えたアブレーションシステムに関する。 The present invention relates to an ablation system including an electrode needle that is percutaneously punctured into an affected area in the body and a power supply device that supplies electric power for ablation (causing).
 患者体内の患部(例えば癌などの腫瘍を有する患部)を治療するための医療機器の1つとして、そのような患部に対してアブレーションを行う、アブレーションシステムが提案されている(例えば、特許文献1参照)。このアブレーションシステムは、体内の患部に対して経皮的に穿刺される電極針と、患部に対するアブレーションを行うための電力を供給する電源装置とを、備えている。 As one of the medical devices for treating an affected area in a patient's body (for example, an affected area having a tumor such as cancer), an ablation system that ablate the affected area has been proposed (for example, Patent Document 1). reference). This ablation system includes an electrode needle that is percutaneously punctured into the affected area in the body, and a power supply device that supplies electric power to perform ablation on the affected area.
特開2019-41782号公報Japanese Unexamined Patent Publication No. 2019-41782
 ところで、このようなアブレーションシステムでは一般に、例えば、アブレーションの際の患者の体への負担を、軽減することが求められている。アブレーションの際の患者の体への負担を軽減することが可能な、アブレーションシステムを提供することが望ましい。 By the way, in such an ablation system, for example, it is required to reduce the burden on the patient's body during ablation. It is desirable to provide an ablation system that can reduce the burden on the patient's body during ablation.
 本発明の一実施の形態に係るアブレーションシステムは、体内の患部に対して経皮的に穿刺される電極針と、この電極針と対極板との間にアブレーションを行うための電力を供給する電源部と、この電源部における電力の供給動作を制御する制御部と、を有する電源装置と、を備えたものである。上記電極針の先端付近での測定温度を示す情報が、この電極針から上記制御部へと供給されるようになっている。また、上記制御部は、アブレーションの際に、電力の供給値を上昇または維持させるように制御している場合において上記測定温度が第1閾値以上の低下量にて変化する、という所定の条件を満たしている場合には、電力の供給を低下または停止させる第1処理と、上記電源装置の外部に対して所定の通知を出力する第2処理と、のうちの少なくとも一方の処理を実行する。 The ablation system according to the embodiment of the present invention is a power source that supplies electric power for ablation between an electrode needle that is percutaneously punctured into an affected portion in the body and the electrode needle and the counter electrode plate. It is provided with a power supply device including a unit, a control unit that controls a power supply operation in the power supply unit, and a control unit. Information indicating the measured temperature near the tip of the electrode needle is supplied from the electrode needle to the control unit. Further, the control unit sets a predetermined condition that the measured temperature changes by a decrease amount of the first threshold value or more when the control unit controls to increase or maintain the power supply value at the time of ablation. If it is satisfied, at least one of a first process of reducing or stopping the power supply and a second process of outputting a predetermined notification to the outside of the power supply device is executed.
 本発明の一実施の形態に係るアブレーションシステムでは、アブレーションの際に、電力の供給値が上昇していくように制御している場合において、上記所定の条件を満たしている場合には、上記した第1処理および第2処理のうちの少なくとも一方の処理が、実行される。ここで、電力の供給値を上昇または維持させている場合であっても、上記測定温度が上記第1閾値以上の低下量にて変化している場合(上記所定の条件を満たす場合)、電極針による焼灼部位(例えば、アブレーション対象となる患部)付近で、いわゆるスチームポップ現象(ポッピング現象,ポップ現象)の兆候が生じている可能性がある。したがって、このような所定の条件を満たす場合に、上記した第1処理および第2処理のうちの少なくとも一方の処理が実行されることで、スチームポップ現象の兆候の事前の検出処理、および、そのような兆候が検出された際の対応処理がそれぞれ、実行できるようになる。 In the ablation system according to the embodiment of the present invention, when the power supply value is controlled to increase during ablation and the above-mentioned predetermined conditions are satisfied, the above-mentioned description is made. At least one of the first process and the second process is executed. Here, even when the power supply value is increased or maintained, if the measured temperature changes by a decrease amount of the first threshold value or more (when the predetermined condition is satisfied), the electrode There may be signs of a so-called steam pop phenomenon (popping phenomenon, pop phenomenon) near the ablation site (for example, the affected area to be ablated) by the needle. Therefore, when such a predetermined condition is satisfied, at least one of the above-mentioned first process and second process is executed, so that the process of detecting the sign of the steam pop phenomenon in advance and the process thereof can be performed. When such a sign is detected, the corresponding processing can be executed respectively.
 本発明の一実施の形態に係るアブレーションシステムでは、上記制御部は、電極針と対極板との間のインピーダンス値を測定するようになっていると共に、上記所定の条件を満たしている場合において、上記インピーダンス値における単位時間当たりの変動値が、第2閾値以上の上昇を示している場合には、上記第1処理および上記第2処理をそれぞれ、実行しないようにする一方、上記インピーダンス値における単位時間当たりの変動値が、上記第2閾値未満の上昇を示している場合、または、低下を示している場合に、上記第1処理および上記第2処理のうちの少なくとも一方の処理を実行するようにしてもよい。つまり、上記所定の条件を満たしている場合であっても、上記インピーダンス値における単位時間当たりの変動値の大きさや、上昇または低下のどちらの変化を示しているのかに応じて、上記した第1処理および第2処理の実行の有無を決定するようにしてもよい。このようにした場合、上記インピーダンス値における単位時間当たりの変動値というパラメータを利用して、上記したスチームポップ現象の兆候が、より精度良く検出できるようになる。具体的には、スチームポップ現象の兆候が生じているのではなく、例えば、焼灼部位付近で電極針が前後方向に沿って動いているという状況が、検出できるようになる。したがって、このような状況が検出できるようになる結果、例えば、不要な電力供給値の低下等に起因した、焼灼効率の低下が防止されると共に、アブレーション期間の長期化による患者の体への負担が、軽減される。 In the ablation system according to the embodiment of the present invention, the control unit measures the impedance value between the electrode needle and the counter electrode plate, and when the predetermined conditions are satisfied, the control unit measures the impedance value. When the fluctuation value per unit time in the impedance value indicates an increase of the second threshold value or more, the first process and the second process are not executed, respectively, while the unit in the impedance value. When the fluctuation value per hour indicates an increase below the second threshold value or a decrease, at least one of the first process and the second process is to be executed. You may do it. That is, even when the above-mentioned predetermined conditions are satisfied, the above-mentioned first item depends on the magnitude of the fluctuation value per unit time in the impedance value and whether the change is an increase or a decrease. It may be decided whether or not the process and the second process are executed. In this case, the sign of the steam pop phenomenon can be detected more accurately by using the parameter of the fluctuation value per unit time in the impedance value. Specifically, it becomes possible to detect, for example, a situation in which the electrode needle is moving along the anteroposterior direction near the cautery site, rather than showing signs of a steam pop phenomenon. Therefore, as a result of being able to detect such a situation, for example, a decrease in ablation efficiency due to an unnecessary decrease in power supply value is prevented, and a burden on the patient's body due to a prolonged ablation period is prevented. However, it is reduced.
 また、上記制御部は、電極針と対極板との間のインピーダンス値を測定するようになっていると共に、上記所定の条件を満たしている場合において、上記測定温度が低下しているときに上記インピーダンス値が上昇していると共に、上記測定温度が上昇しているときに上記インピーダンス値が低下しており、上記測定温度と上記インピーダンス値とが時間軸に沿って互いに逆方向に変動している場合には、上記第1処理および上記第2処理をそれぞれ、実行しないようにする一方、上記測定温度と上記インピーダンス値とが時間軸に沿って互いに逆方向に変動していない場合に、上記第1処理および上記第2処理のうちの少なくとも一方の処理を実行するようにしてもよい。このようにした場合、上記した測定温度とインピーダンス値との逆方向の変動の有無を利用して、上記したような、焼灼部位付近での電極針の動いている状況が、より精度良く検出できるようになる。これにより、スチームポップ現象の兆候が、更に精度良く検出できる結果、上記した焼灼効率の低下が防止され易くなると共に、上記した患者の体への負担が軽減され易くなる。 Further, the control unit measures the impedance value between the electrode needle and the counter electrode plate, and when the above-mentioned predetermined conditions are satisfied and the above-mentioned measurement temperature is lowered, the above-mentioned As the impedance value rises, the impedance value decreases when the measured temperature rises, and the measured temperature and the impedance value fluctuate in opposite directions along the time axis. In this case, the first process and the second process are prevented from being executed, respectively, and when the measured temperature and the impedance value do not fluctuate in opposite directions along the time axis, the first process is performed. One process and at least one of the second processes may be executed. In this case, the movement of the electrode needle near the ablation site as described above can be detected more accurately by utilizing the presence or absence of fluctuations in the opposite direction between the measured temperature and the impedance value described above. It will be like. As a result, the signs of the steam pop phenomenon can be detected more accurately, and as a result, the above-mentioned decrease in ablation efficiency can be easily prevented, and the above-mentioned burden on the patient's body can be easily reduced.
 この場合において、上記制御部は、上記所定の条件を満たしている場合において、上記測定温度と上記インピーダンス値との間での互いに逆方向の変動が、所定の周期にて交互に繰り返されている場合に、上記第1処理および上記第2処理をそれぞれ、実行しないようにしてもよい。このようにした場合、例えば、患者の呼吸変動に起因して、所定の周期での逆方向の変動が生じていることが、検出できるようになる。これにより、焼灼部位付近での電極針の動いている状況が、更に精度良く検出でき、スチームポップ現象の兆候が、より一層精度良く検出できる結果、上記した焼灼効率の低下が更に防止され易くなると共に、上記した患者の体への負担が更に軽減され易くなる。 In this case, the control unit alternately repeats fluctuations in opposite directions between the measured temperature and the impedance value in a predetermined cycle when the predetermined conditions are satisfied. In some cases, the first process and the second process may not be executed respectively. In this case, for example, it becomes possible to detect that the fluctuation in the reverse direction in a predetermined cycle is caused by the respiratory fluctuation of the patient. As a result, the state in which the electrode needle is moving near the ablation site can be detected more accurately, and the signs of the steam pop phenomenon can be detected even more accurately. As a result, the above-mentioned decrease in ablation efficiency can be further prevented. At the same time, the burden on the patient's body as described above can be further reduced.
 また、上記制御部は、電力の供給値を、例えば、時間軸に沿って線形状または階段状に、上昇または維持させるようにしてもよい。あるいは、上記制御部は、例えば、電力の供給値を、時間軸に沿って(任意の固定値に)維持させるようにしてもよい。 Further, the control unit may raise or maintain the power supply value in a line shape or a step shape along the time axis, for example. Alternatively, the control unit may, for example, maintain the power supply value along the time axis (at an arbitrary fixed value).
 本発明の一実施の形態に係るアブレーションシステムによれば、アブレーションの際に上記所定の条件を満たしている場合には、上記した第1処理および第2処理のうちの少なくとも一方の処理を実行するようにしたので、以下のようになる。すなわち、スチームポップ現象の兆候の事前の検出処理、および、そのような兆候が検出された際の対応処理をそれぞれ、実行できるようになる。よって、アブレーションの際の患者の体への負担を、軽減することが可能となる。 According to the ablation system according to the embodiment of the present invention, when the above-mentioned predetermined conditions are satisfied at the time of ablation, at least one of the above-mentioned first process and second process is executed. So, it will be as follows. That is, it becomes possible to execute the processing for detecting the sign of the steam pop phenomenon in advance and the processing for dealing with the detection of such a sign. Therefore, it is possible to reduce the burden on the patient's body during ablation.
本発明の一実施の形態に係るアブレーションシステムの全体構成例を模式的に表すブロック図である。It is a block diagram schematically showing the whole configuration example of the ablation system which concerns on one Embodiment of this invention. アブレーションによる患部での焼灼具合の一例を表す模式図である。It is a schematic diagram which shows an example of the cauterization condition in the affected part by ablation. アブレーションの際のブレイク状態およびブレイク回数の一例を模式的に表すタイミング図である。It is a timing diagram schematically showing an example of the break state and the number of breaks at the time of ablation. 実施の形態に係るアブレーションの際の表示部での表示態様の一例を表す模式図である。It is a schematic diagram which shows an example of the display mode in the display part at the time of ablation which concerns on embodiment. 実施の形態に係るアブレーションの処理例を表す流れ図である。It is a flow chart which shows the processing example of ablation which concerns on embodiment. 図5に示した電力供給再開の際の動作モードの一例を表す図である。It is a figure which shows an example of the operation mode at the time of resuming the power supply shown in FIG. 実施の形態に係るアブレーションの際におけるスチームポップ現象の兆候の検出処理および対応処理の一例を表す流れ図である。It is a flow chart which shows an example of the detection process and the corresponding process of the sign of the steam pop phenomenon at the time of ablation which concerns on embodiment. 図7に示した処理の際のタイミング波形例を表す模式図である。It is a schematic diagram which shows the timing waveform example at the time of the processing shown in FIG. 7. 図7に示した処理の際の他のタイミング波形例を表す模式図である。It is a schematic diagram which shows the example of another timing waveform at the time of the processing shown in FIG. 7. 変形例に係るアブレーションの際におけるスチームポップ現象の兆候の検出処理および対応処理の一例を表す流れ図である。It is a flow chart which shows an example of the detection process and the corresponding process of a sign of a steam pop phenomenon at the time of ablation which concerns on a modification. 図10に示した処理の際のタイミング波形例を表す模式図である。It is a schematic diagram which shows the timing waveform example at the time of the processing shown in FIG. 図10に示した処理の際の他のタイミング波形例を表す模式図である。It is a schematic diagram which shows the example of another timing waveform at the time of the processing shown in FIG. 図10に示した処理の際の他のタイミング波形例を表す模式図である。It is a schematic diagram which shows the example of another timing waveform at the time of the processing shown in FIG. 図13に示した逆方向の変動の際の状態例について説明するための模式図である。It is a schematic diagram for demonstrating an example of a state at the time of a change in the reverse direction shown in FIG.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。なお、説明は以下の順序で行う。
1.実施の形態(電力供給値の上昇・測定温度の低下を基に電力供給値を制御する例)
2.変形例(インピーダンス値の変動状況も考慮して電力供給値を制御する例)
3.その他の変形例
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. The explanation will be given in the following order.
1. 1. Embodiment (example of controlling the power supply value based on the rise of the power supply value and the decrease of the measured temperature)
2. 2. Modification example (example of controlling the power supply value in consideration of the fluctuation state of the impedance value)
3. 3. Other variants
<1.実施の形態>
[構成]
 図1は、本発明の一実施の形態に係るアブレーションシステム(アブレーションシステム5)の全体構成例を、模式的にブロック図で表したものである。このアブレーションシステム5は、例えば図1に示したように、患者9の体内における患部90を治療する際に用いられるシステムであり、そのような患部90に対して所定のアブレーションを行うようになっている。なお、上記した患部90としては、例えば、癌(肝癌,肺癌,乳癌,腎臓癌,甲状腺癌など)等の腫瘍を有する患部が挙げられる。
<1. Embodiment>
[Constitution]
FIG. 1 is a schematic block diagram showing an overall configuration example of an ablation system (ablation system 5) according to an embodiment of the present invention. This ablation system 5, for example, as shown in FIG. 1, is a system used when treating an affected portion 90 in the body of a patient 9, and a predetermined ablation is performed on such an affected portion 90. There is. Examples of the affected area 90 include an affected area having a tumor such as cancer (liver cancer, lung cancer, breast cancer, kidney cancer, thyroid cancer, etc.).
 アブレーションシステム5は、図1に示したように、電極針1、液体供給装置2および電源装置3を備えている。また、このアブレーションシステム5を用いたアブレーションの際には、例えば図1に示した対極板4も、適宜使用されるようになっている。 As shown in FIG. 1, the ablation system 5 includes an electrode needle 1, a liquid supply device 2, and a power supply device 3. Further, in the ablation using the ablation system 5, for example, the counter electrode plate 4 shown in FIG. 1 is also appropriately used.
(A.電極針1)
 電極針1は、例えば図1中の矢印P1で示したように、患者9の体内における患部90に対して、経皮的に穿刺される針である。この電極針1は、上記したアブレーションの際に使用されるものであり、例えば図1に示したように、電極部11および被覆部12を有している。なお、このような電極針1の内部には、後述する液体供給装置2から供給される液体Lが、循環して流れるようになっている(図1参照)。
(A. Electrode needle 1)
The electrode needle 1 is, for example, as shown by the arrow P1 in FIG. 1, a needle that is percutaneously punctured into the affected portion 90 in the body of the patient 9. The electrode needle 1 is used during the above-mentioned ablation, and has an electrode portion 11 and a covering portion 12 as shown in FIG. 1, for example. The liquid L supplied from the liquid supply device 2 described later circulates and flows inside the electrode needle 1 (see FIG. 1).
 電極部11は、電極針1を構成する針状構造体のうち、絶縁性の被覆がなされてない領域部分であり、アブレーションの際の電極として機能する部分である。被覆部12は、上記した針状構造体のうち、絶縁性の被覆がなされている領域部分である。図1に示したように、電極針1における先端付近に電極部11が配置されていると共に、この電極部11の基端側に被覆部12が配置されるようになっている。 The electrode portion 11 is a region portion of the needle-shaped structure constituting the electrode needle 1 that is not covered with an insulating coating, and is a portion that functions as an electrode during ablation. The covering portion 12 is a region portion of the above-mentioned needle-shaped structure in which an insulating coating is made. As shown in FIG. 1, the electrode portion 11 is arranged near the tip of the electrode needle 1, and the covering portion 12 is arranged on the proximal end side of the electrode portion 11.
(液体供給装置2)
 液体供給装置2は、上記した電極針1に対して冷却用の液体Lを供給する装置であり、例えば図1に示したように、液体供給部21を有している。なお、この冷却用の液体Lとしては、例えば、滅菌水や、滅菌した生理食塩水などが挙げられる。
(Liquid supply device 2)
The liquid supply device 2 is a device that supplies the cooling liquid L to the electrode needle 1 described above, and has, for example, a liquid supply unit 21 as shown in FIG. Examples of the cooling liquid L include sterilized water and sterilized physiological saline.
 液体供給部21は、後述する制御信号CTL2による制御に従って、上記した液体Lを電極針1に対して随時供給するものである。具体的には、例えば図1に示したように、液体供給部21は、液体供給装置2の内部と電極針1の内部との間(所定の流路内)を液体Lが循環するようにして、液体Lの供給動作を行う。また、詳細は後述するが、上記した制御信号CTL2による制御に従って、このような液体Lの供給動作が実行されたり、停止されたりするようになっている。なお、このような液体供給部21は、例えば、液体ポンプ等を含んで構成されている。 The liquid supply unit 21 supplies the above-mentioned liquid L to the electrode needle 1 at any time according to the control by the control signal CTL2 described later. Specifically, for example, as shown in FIG. 1, the liquid supply unit 21 causes the liquid L to circulate between the inside of the liquid supply device 2 and the inside of the electrode needle 1 (in a predetermined flow path). Then, the liquid L is supplied. Further, although the details will be described later, such a liquid L supply operation is executed or stopped according to the control by the control signal CTL2 described above. The liquid supply unit 21 is configured to include, for example, a liquid pump or the like.
(電源装置3)
 電源装置3は、電極針1と対極板4との間にアブレーションを行うための電力Pout(例えば高周波(RF;Radio Frequency)の電力)を供給すると共に、上記した液体供給装置2における液体Lの供給動作を制御する装置である。この電源装置3は、図1に示したように、入力部31、電源部32、制御部33および表示部34を有している。
(Power supply device 3)
The power supply device 3 supplies a power Pout (for example, radio frequency (RF) power) for ablation between the electrode needle 1 and the counter electrode plate 4, and also supplies the liquid L in the liquid supply device 2 described above. It is a device that controls the supply operation. As shown in FIG. 1, the power supply device 3 has an input unit 31, a power supply unit 32, a control unit 33, and a display unit 34.
 入力部31は、各種の設定値や、後述する所定の動作を指示するための指示信号(操作信号Sm)を入力する部分である。このような操作信号Smは、電源装置3の操作者(例えば技師等)による操作に応じて、入力部31から入力されるようになっている。ただし、これらの各種の設定値が、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。また、入力部31により入力された設定値は、後述する制御部33へ供給されるようになっている。なお、このような入力部31は、例えば所定のダイヤルやボタン、タッチパネル等を用いて構成されている。 The input unit 31 is a part for inputting various set values and an instruction signal (operation signal Sm) for instructing a predetermined operation described later. Such an operation signal Sm is input from the input unit 31 in response to an operation by an operator (for example, an engineer or the like) of the power supply device 3. However, these various setting values are not input according to the operation by the operator, but may be set in advance in the power supply device 3 at the time of shipment of the product, for example. Further, the set value input by the input unit 31 is supplied to the control unit 33, which will be described later. It should be noted that such an input unit 31 is configured by using, for example, a predetermined dial, button, touch panel, or the like.
 電源部32は、後述する制御信号CTL1に従って、上記した電力Poutを電極針1と対極板4との間に供給する部分である。このような電源部32は、所定の電源回路(例えばスイッチングレギュレータ等)を用いて構成されている。なお、電力Poutが高周波電力からなる場合、その周波数は、例えば450kHz~550kHz程度(例えば500kHz)である。 The power supply unit 32 is a portion that supplies the above-mentioned power Pout between the electrode needle 1 and the counter electrode plate 4 according to the control signal CTL1 described later. Such a power supply unit 32 is configured by using a predetermined power supply circuit (for example, a switching regulator or the like). When the power Pout is composed of high frequency power, the frequency is, for example, about 450 kHz to 550 kHz (for example, 500 kHz).
 制御部33は、電源装置3全体を制御すると共に所定の演算処理を行う部分であり、例えばマイクロコンピュータ等を用いて構成されている。具体的には、制御部33は、まず、制御信号CTL1を用いて、電源部32における電力Poutの供給動作を制御する機能(電力供給制御機能)を有している。また、制御部33は、制御信号CTL2を用いて、液体供給装置2(液体供給部21)における液体Lの供給動作を制御する機能(液体供給制御機能)を有している。更に、制御部33は、後述する表示部34における表示動作を制御する機能(表示制御機能)を有している。 The control unit 33 is a part that controls the entire power supply device 3 and performs predetermined arithmetic processing, and is configured by using, for example, a microcomputer or the like. Specifically, the control unit 33 first has a function (power supply control function) of controlling the power supply operation of the power supply unit 32 by using the control signal CTL1. Further, the control unit 33 has a function (liquid supply control function) of controlling the supply operation of the liquid L in the liquid supply device 2 (liquid supply unit 21) by using the control signal CTL 2. Further, the control unit 33 has a function (display control function) for controlling the display operation in the display unit 34, which will be described later.
 このような制御部33にはまた、例えば図1に示したように、電極針1の先端付近(電極部11の内部に配置された熱電対等の温度センサ)での測定温度Tmを示す温度情報Itが、随時供給されるようになっている。また、例えば図1に示したように、制御部33には、上記した電源部32からインピーダンス値Z(後述)の測定値が、随時供給されるようになっている。 Such a control unit 33 also has temperature information indicating the temperature measured Tm near the tip of the electrode needle 1 (a temperature sensor such as a thermoelectric pair arranged inside the electrode unit 11), for example, as shown in FIG. It is designed to be supplied at any time. Further, for example, as shown in FIG. 1, the measured value of the impedance value Z (described later) is supplied to the control unit 33 from the power supply unit 32 described above at any time.
 なお、上記した電力供給制御機能および液体供給制御機能を含む、制御部33における制御動作等の詳細については、後述する。 The details of the control operation and the like in the control unit 33 including the above-mentioned power supply control function and liquid supply control function will be described later.
 表示部34は、各種の情報を表示して外部へと出力する部分(モニター)である。表示対象の情報としては、例えば、入力部31から入力される前述の各種の設定値や、制御部33から供給される各種パラメータ(例えば、後述するインピーダンス値Zやブレイク回数Nbのカウント値など)、電極針1から供給される温度情報It(前述した測定温度Tmの情報)などが挙げられる。ただし、表示対象の情報としてはこれらの情報には限られず、他の情報を代わりに、あるいは他の情報を加えて表示するようにしてもよい。このような表示部34は、各種の方式によるディスプレイ(例えば、液晶ディスプレイやCRT(Cathode Ray Tube)ディスプレイ、有機EL(Electro Luminescence)ディスプレイなど)を用いて構成されている。 The display unit 34 is a part (monitor) that displays various information and outputs it to the outside. The information to be displayed includes, for example, the various set values input from the input unit 31 and various parameters supplied from the control unit 33 (for example, the impedance value Z described later and the count value of the number of breaks Nb). , Temperature information It supplied from the electrode needle 1 (information on the measurement temperature Tm described above) and the like. However, the information to be displayed is not limited to these information, and other information may be displayed instead or by adding other information. Such a display unit 34 is configured by using a display by various methods (for example, a liquid crystal display, a CRT (Cathode Ray Tube) display, an organic EL (Electro Luminescence) display, or the like).
 なお、このような表示部34上に表示される情報の詳細例については、後述する(図4)。 A detailed example of the information displayed on the display unit 34 will be described later (FIG. 4).
(対極板4)
 対極板4は、例えば図1に示したように、アブレーションの際に患者9の体表に装着された状態で用いられるものである。詳細は後述するが、アブレーションの際に、前述した電極針1(電極部11)とこの対極板4との間で、高周波通電がなされる(電力Poutが供給される)ようになっている。また、詳細は後述するが、このようなアブレーションの際に、図1に示したように、電極針1(電極部11)と対極板4との間のインピーダンス値Zが随時測定され、測定されたインピーダンス値Zが、電源装置3内において電源部32から制御部33へと供給されるようになっている。
(Counter electrode plate 4)
As shown in FIG. 1, for example, the counter electrode plate 4 is used in a state of being attached to the body surface of the patient 9 at the time of ablation. Although the details will be described later, at the time of ablation, high frequency energization (power Pout is supplied) is performed between the above-mentioned electrode needle 1 (electrode portion 11) and the counter electrode plate 4. Further, as will be described in detail later, at the time of such ablation, as shown in FIG. 1, the impedance value Z between the electrode needle 1 (electrode portion 11) and the counter electrode plate 4 is measured and measured at any time. The impedance value Z is supplied from the power supply unit 32 to the control unit 33 in the power supply device 3.
[動作および作用・効果]
(A.基本動作)
 このアブレーションシステム5では、例えば癌等の腫瘍を有する患部90を治療する際に、そのような患部90に対して所定のアブレーションが行われる(図1参照)。このようなアブレーションでは、まず、例えば図1中の矢印P1で示したように、患者9の体内の患部90に対し、電極針1が先端側(電極部11側)から経皮的に穿刺される。そして、この電極針1と対極板4との間に、電源装置3(電源部32)から電力Pout(例えば高周波電力)が供給されることで、患部90に対して、ジュール発熱によるアブレーションが行われる。
[Operation and action / effect]
(A. Basic operation)
In this ablation system 5, when treating an affected part 90 having a tumor such as cancer, a predetermined ablation is performed on such an affected part 90 (see FIG. 1). In such ablation, first, as shown by an arrow P1 in FIG. 1, the electrode needle 1 is percutaneously punctured from the tip side (electrode portion 11 side) into the affected portion 90 in the body of the patient 9. To. Then, power Pout (for example, high frequency power) is supplied from the power supply device 3 (power supply unit 32) between the electrode needle 1 and the counter electrode plate 4, so that the affected area 90 is ablated by Joule heat generation. Will be.
 また、このようなアブレーションの際には、液体供給装置2の内部と電極針1の内部との間(所定の流路内)を冷却用の液体Lが循環するように、液体供給装置2(液体供給部21)から電極針1に対して液体Lが供給される(図1参照)。これにより、アブレーションの際に、電極針1に対する冷却動作(クーリング)が行われる。なお、アブレーションの終了後には、このような冷却動作も停止された後、電極針1の先端付近での測定温度Tmを示す温度情報Itを基に、患部90の組織温度が十分に上昇しているのかなど、患部の焼灼具合が確認される。 Further, at the time of such ablation, the liquid supply device 2 (so that the cooling liquid L circulates between the inside of the liquid supply device 2 and the inside of the electrode needle 1 (in a predetermined flow path)). The liquid L is supplied from the liquid supply unit 21) to the electrode needle 1 (see FIG. 1). As a result, during ablation, a cooling operation (cooling) is performed on the electrode needle 1. After the ablation is completed, such a cooling operation is also stopped, and then the tissue temperature of the affected area 90 rises sufficiently based on the temperature information It indicating the measured temperature Tm near the tip of the electrode needle 1. The condition of cauterization of the affected area is confirmed, such as whether it is present.
 図2は、このようなアブレーションによる患部90での焼灼具合の一例を、模式的に表したものである。この図2に示したように、患部90に穿刺された電極針1を用いて上記したアブレーションがなされると、例えば、当初のラグビボール状(楕円球状)の熱凝固領域Ah1が、徐々に拡がっていくことで、ほぼ球状の熱凝固領域Ah2が得られる(図2中の破線の矢印を参照)。これにより、患部90全体への等方的なアブレーションが行われる結果、患部90への効果的な治療がなされることになる。 FIG. 2 schematically shows an example of the cauterization condition in the affected area 90 due to such ablation. As shown in FIG. 2, when the above-mentioned ablation is performed using the electrode needle 1 punctured in the affected portion 90, for example, the initial rugby ball-shaped (elliptical spherical) thermal coagulation region Ah1 gradually expands. By doing so, a substantially spherical thermal coagulation region Ah2 is obtained (see the broken line arrow in FIG. 2). As a result, isotropic ablation of the entire affected area 90 is performed, and as a result, effective treatment of the affected area 90 is performed.
(B.ブレイク状態およびブレイク回数について)
 ここで、図1,図2に加えて、図3を参照して、上記したアブレーションの詳細(後述するブレイク状態およびブレイク回数)について説明する。図3は、アブレーションの際のブレイク状態およびブレイク回数の一例を、タイミング図にて模式的に表したものである。具体的には、この図3では、電極針1(電極部11)と対極板4との間のインピーダンス値Zの測定波形例を、時間軸に沿って示している。
(B. Break status and number of breaks)
Here, in addition to FIGS. 1 and 2, the details of the above-mentioned ablation (break state and number of breaks described later) will be described with reference to FIG. FIG. 3 schematically shows an example of the break state and the number of breaks at the time of ablation in a timing diagram. Specifically, in FIG. 3, an example of a measured waveform of the impedance value Z between the electrode needle 1 (electrode portion 11) and the counter electrode plate 4 is shown along the time axis.
 図3に示した例のように、一般に、電極針1を使用したアブレーションの際には、まず、アブレーションが開始され、患部90の組織が焼灼されて温度が上昇すると、インピーダンス値Zが低下していく。これは、この組織内において、電気伝導に寄与する水分の温度が上昇し、水中イオンの熱運動が盛んになることから、組織内の電気伝導性が良くなり、インピーダンス値Zが低下していくようになっている。そして、アブレーションが進んでいくと、このような患部90の組織内の水分が蒸発することで、逆に、インピーダンス値Zが急激に上昇していく。このようなインピーダンス値Zの急激な上昇(インピーダンスライズ)は、患部90における組織の熱凝固の指標となることから、アブレーションの際の停止タイミングの目安となる。具体的には、インピーダンス値Zが所定の閾値Zthを越えた状態(Z>Zth)は、「ブレイク状態」と呼ばれる(図3参照)。また、このようなブレイク状態へと移行すると、アブレーション(電力Poutの供給)が一時的に停止された後、アブレーションが再開される。なお、アブレーションが一時的に停止されると、周りの組織から患部90における組織内へ水分が供給される結果、上記した理由により、インピーダンス値Zが再度低下することになる(図3参照)。そして、このような断続的なアブレーションが複数回繰り返されることで、患部90への治療がなされる。なお、上記したアブレーションの一時的な停止時間(アブレーションの再開までの待機時間)としては、例えば、予め設定された所定時間(例えば10秒~15秒程度)、または、インピーダンス値Zが概ね上昇前の値に戻るまでの時間が挙げられる。 As in the example shown in FIG. 3, in general, in the case of ablation using the electrode needle 1, the ablation is first started, and when the tissue of the affected area 90 is cauterized and the temperature rises, the impedance value Z decreases. To go. This is because the temperature of water that contributes to electrical conduction rises in this tissue, and the thermal motion of water ions becomes active, so that the electrical conductivity in the tissue improves and the impedance value Z decreases. It has become like. Then, as the ablation progresses, the water content in the tissue of the affected area 90 evaporates, and conversely, the impedance value Z rises sharply. Such a rapid increase in the impedance value Z (impedance rise) is an index of thermal coagulation of the tissue in the affected area 90, and thus serves as a guideline for the stop timing during ablation. Specifically, a state in which the impedance value Z exceeds a predetermined threshold value Zth (Z> Zth) is called a “break state” (see FIG. 3). Further, when the state shifts to such a break state, ablation (supply of electric power Pout) is temporarily stopped, and then ablation is restarted. When the ablation is temporarily stopped, water is supplied from the surrounding tissue into the tissue in the affected area 90, and as a result, the impedance value Z is lowered again for the above reason (see FIG. 3). Then, by repeating such intermittent ablation a plurality of times, the affected portion 90 is treated. The temporary stop time of ablation (waiting time until restart of ablation) is, for example, a preset predetermined time (for example, about 10 seconds to 15 seconds) or before the impedance value Z rises. The time it takes to return to the value of.
 具体的には、この図3に示した例では、時間の経過とともに、タイミングt1,t2,t3の3回、ブレイク状態へと移行して、アブレーションが一時的に停止されている。このように、ブレイク状態への移行が複数回繰り返される場合における、ブレイク状態へ移行した回数(移行回数)を、以下、「ブレイク回数Nb」と称する。つまり、この図3の例では、タイミングt1において1回目のブレイク状態へと移行し(Nb=1)、タイミングt2において2回目のブレイク状態へと移行し(Nb=2)、タイミングt3において3回目のブレイク状態へと移行している(Nb=3)。 Specifically, in the example shown in FIG. 3, with the passage of time, the ablation shifts to the break state three times at the timings t1, t2, and t3, and the ablation is temporarily stopped. The number of transitions to the break state (number of transitions) in the case where the transition to the break state is repeated a plurality of times is hereinafter referred to as "break count Nb". That is, in the example of FIG. 3, the transition to the first break state at the timing t1 (Nb = 1), the transition to the second break state at the timing t2 (Nb = 2), and the third break state at the timing t3. It has shifted to the break state of (Nb = 3).
 ちなみに、電極針1を使用したアブレーションによる患部90への治療では、このブレイク回数Nbは、一般に、2~3回(Nb=2またはNb=3)程度が目安とされている。つまり、前述の図2中に示した熱凝固領域Ah1,Ah2はそれぞれ、一例として、Nb=1,Nb=3の場合に相当している。 Incidentally, in the treatment of the affected area 90 by ablation using the electrode needle 1, the number of breaks Nb is generally about 2 to 3 times (Nb = 2 or Nb = 3) as a guide. That is, the thermal coagulation regions Ah1 and Ah2 shown in FIG. 2 described above correspond to the case of Nb = 1 and Nb = 3, respectively, as an example.
 このようなブレイク回数Nbのカウント値等の各種情報は、例えば図4に模式的に示したように、電源装置3における表示部34に、随時表示されるようになっている。具体的には、この表示部34では、まず、前述した図3にも模式的に示したように、インピーダンス値Zの測定波形が、時間軸に沿って表示されている(図4中の符号P20参照)。また、この表示部34の例では更に、インピーダンス値Zの現在値(Impedance:符号P21参照)と、前述した測定温度Tmを示す温度情報It(Temperature:符号P22参照)と、電力Poutの供給値(Power:符号P23参照)と、アブレーション時間(アブレーションの開始時からの経過時間)の情報(Ablation Time:符号P24参照)とが、それぞれ表示されている。更に、この表示部34の例では、図4中に示したように、インピーダンス値Zの現在値(符号P21参照)とともに、前述したブレイク回数Nbのカウント値が、併せて表示されている。加えて、この表示部34の例では、図4中の符号P25で示したように、アブレーションの開始時から初回のブレイク状態となるまでの経過時間(前述したタイミングt1までの時間)と、電力Poutの供給動作によるエネルギー量ΔE(アブレーションの開始時からの、電力Poutの供給値の積算値(エネルギー積算値,ジュール量))とがそれぞれ、表示されるようになっている。 Various information such as the count value of the number of breaks Nb is displayed at any time on the display unit 34 of the power supply device 3, as shown schematically in FIG. 4, for example. Specifically, in the display unit 34, first, as schematically shown in FIG. 3 described above, the measured waveform of the impedance value Z is displayed along the time axis (reference numeral in FIG. 4). See page 20). Further, in the example of the display unit 34, the current value of the impedance value Z (Impedance: see the reference numeral P21), the temperature information It (Temperature: see the reference numeral P22) indicating the measurement temperature Tm described above, and the supply value of the power Pout. (Power: see reference numeral P23) and information on the ablation time (elapsed time from the start of ablation) (Ablation Time: see reference numeral P24) are displayed. Further, in the example of the display unit 34, as shown in FIG. 4, the current value of the impedance value Z (see reference numeral P21) and the count value of the break count Nb described above are also displayed. In addition, in the example of the display unit 34, as indicated by reference numeral P25 in FIG. 4, the elapsed time from the start of ablation to the first break state (time to the timing t1 described above) and the electric power. The energy amount ΔE (integrated value (energy integrated value, joule amount) of the power Pout supply value from the start of ablation) due to the Pout supply operation is displayed respectively.
 ところで、このようなアブレーションシステムによるアブレーションの際に、従来の一般的な手法では、以下のようにしてアブレーションを終了させるようになっている。具体的には、まず、ブレイク回数Nbを、電源装置3の操作者が目視等で確認してから(例えば上記したように、2~3回程度)、アブレーションを手動で終了させる手法(比較例1)が挙げられる。また、ブレイク回数Nbを確認せずに、所定の待機時間(固定値)が経過してから電力Poutの供給を自動的に停止することで、アブレーションを自動終了させる手法(比較例2)が挙げられる。 By the way, at the time of ablation by such an ablation system, in the conventional general method, the ablation is terminated as follows. Specifically, first, the operator of the power supply device 3 visually confirms the number of breaks Nb (for example, about 2 to 3 times as described above), and then manually terminates the ablation (comparative example). 1) can be mentioned. Another method (Comparative Example 2) is to automatically stop the supply of power Pout after a predetermined standby time (fixed value) has elapsed without checking the number of breaks Nb. Will be.
 ところが、上記比較例1の手法では、操作者による目視等での確認であることから、例えばブレイク状態の見落とし等により、ブレイク回数Nbのカウントが不正確となってしまうおそれもあり、アブレーション時間が余計にかかってしまうリスクもある。なお、2回目以降のブレイク状態への移行は、一般的に短時間でなされることから(図3参照)、このようなリスクは非常に高いと言える。一方、上記比較例2の手法では、常に一定の待機時間の経過を待つことから、アブレーション時間内にブレイク回数Nbが必要以上に多くなってしまう(例えば4回以上)おそれがある。これらのことから、上記比較例1,2などでは、アブレーションによる治療の際に、患部90に対して必要以上に多くのブレイク状態が付与されることになる結果、患者9が感じる疼痛が大きくなり、患者9への負担も大きくなってしまうおそれがある。 However, in the method of Comparative Example 1 above, since the confirmation is performed visually by the operator, for example, the count of the number of breaks Nb may be inaccurate due to oversight of the break state, and the ablation time may be inaccurate. There is also the risk of extra risk. Since the transition to the break state from the second time onward is generally performed in a short time (see FIG. 3), it can be said that such a risk is extremely high. On the other hand, in the method of Comparative Example 2 above, since the elapse of a certain waiting time is always waited, there is a possibility that the number of breaks Nb becomes larger than necessary (for example, 4 times or more) within the ablation time. From these facts, in Comparative Examples 1 and 2 and the like, when the treatment by ablation, the affected part 90 is given an unnecessarily large number of break states, and as a result, the pain felt by the patient 9 becomes large. , There is a risk that the burden on the patient 9 will increase.
 ここで、この疼痛とは、治療の際に患者9が感じる痛みのことを意味しており、例えば、脊髄神経を介した関連痛として、右肩などが痛むことが多いと言われている。なお、ブレイク状態ではインピーダンス値Zが急上昇するため、電力Poutを例えば定電力出力する場合には、出力電圧も急上昇する。また、ブレイク状態への移行前には、患部90での温度も上昇する傾向にある。したがって、この疼痛には、電気的および熱的の双方の発生要因があると言われている。 Here, this pain means the pain felt by the patient 9 during treatment, and it is said that, for example, the right shoulder and the like often hurt as referred pain via the spinal nerve. Since the impedance value Z rises sharply in the break state, the output voltage also rises sharply when the power Pout is output as a constant power, for example. In addition, the temperature at the affected area 90 tends to rise before the transition to the break state. Therefore, it is said that this pain has both electrical and thermal causes.
 また、患部90における腫瘍の種類によっては、このような疼痛が大きくなると、例えば以下のようなデメリットがある。具体的には、例えば肝臓癌では一般に、他の臓器での癌と比べて再発率が高いため、繰り返しの治療が必要となるが、患者9が感じる痛みの記憶が、次回の治療を受ける妨げとなるおそれがある。一方で、治療の際の麻酔を強くすれば、そのような疼痛を軽減できるものの、麻酔を強くすることは、合併症予知の妨げとなる。これらのことから、最小限の量の麻酔を使用しつつ、疼痛は最小限に抑えることが理想であるため、アブレーションによる治療の際のブレイク回数Nbについても、上記比較例1,2などのように、必要以上に多くなってしまうのは望ましくないと言える。 Further, depending on the type of tumor in the affected area 90, if such pain becomes large, there are the following disadvantages, for example. Specifically, for example, liver cancer generally has a higher recurrence rate than cancer in other organs, so that repeated treatment is required, but the memory of pain felt by patient 9 prevents the patient from receiving the next treatment. There is a risk of becoming. On the other hand, although strengthening the anesthesia during treatment can reduce such pain, strengthening the anesthesia hinders the prediction of complications. Based on these facts, it is ideal to minimize pain while using the minimum amount of anesthesia. Therefore, the number of breaks Nb during treatment by ablation is also the same as in Comparative Examples 1 and 2 above. Moreover, it is not desirable to have more than necessary.
 このようにして、上記比較例1,2などでは、効果的なアブレーションの実施が困難となる結果、アブレーションシステムを使用する際の利便性が、損なわれてしまうおそれがある。 In this way, in Comparative Examples 1 and 2 above, it becomes difficult to carry out effective ablation, and as a result, the convenience when using the ablation system may be impaired.
(C.本実施の形態のアブレーション)
 そこで、例えば図5に示したように、本実施の形態のアブレーションシステム5では、以下詳述する手法でアブレーションを行うことで、上記比較例1,2などにおける課題を解決するようにしている。この図5は、本実施の形態のアブレーションシステム5におけるアブレーションの処理例を、流れ図で表したものである。
(C. Ablation of the present embodiment)
Therefore, for example, as shown in FIG. 5, in the ablation system 5 of the present embodiment, the problems in the above comparative examples 1 and 2 are solved by performing ablation by the method described in detail below. FIG. 5 is a flow chart showing an example of ablation processing in the ablation system 5 of the present embodiment.
 この本実施の形態のアブレーションでは、まず、前述した閾値Zth(インピーダンス値Zの閾値)と、後述する閾値Nth(ブレイク回数Nbの閾値)との設定を行う(図5のステップS10)。また、このステップS10では、後述する図7にて説明する、閾値ΔPth(後述する電力上昇値ΔPの閾値)と、閾値ΔTmth(後述する測定温度Tmの変化量ΔTmの閾値)とについても、設定が行われるようになっている。具体的には、これらの閾値Zth,Nth,ΔPth,ΔTmthの設定値がそれぞれ、電源装置3の操作者による操作に応じて入力部31から入力され、制御部33へと供給される。 In the ablation of this embodiment, first, the threshold value Zth (threshold value of the impedance value Z) described above and the threshold value Nth (threshold value of the number of breaks Nb) described later are set (step S10 in FIG. 5). Further, in this step S10, the threshold value ΔPth (threshold value of the power increase value ΔP described later) and the threshold value ΔTmth (threshold value of the change amount ΔTm of the measured temperature Tm described later), which will be described later with reference to FIG. 7, are also set. Is supposed to be done. Specifically, the set values of these threshold values Zth, Nth, ΔPth, and ΔTmth are input from the input unit 31 according to the operation by the operator of the power supply device 3, and are supplied to the control unit 33.
 なお、上記した閾値ΔTmthは、本発明における「第1閾値」の一具体例に対応している。 The above-mentioned threshold value ΔTmth corresponds to a specific example of the “first threshold value” in the present invention.
 ここで、閾値Nthとしては、ブレイク回数Nbに関して前述したように、例えば2回(Nth=2)(あるいは3回(Nth=3))が挙げられる。また、閾値Zthとしては、絶対値で規定する手法(例えば、Zth=120[Ω]程度)と、相対値で規定する手法(何Ωもしくは何%上昇したかで規定する手法:例えば、30Ω程度もしくは30%程度の上昇など)と、に大別される。更に、この相対値で規定する手法としても、アブレーションの開始時におけるインピーダンス値Zを基準として規定する手法と、アブレーション開始後におけるインピーダンス値Zの最小値を基準として規定する手法と、が挙げられる。なお、前述したように、このような各種のパラメータの設定値が、操作者による操作に応じて入力されるのではなく、例えば、製品の出荷時等に予め電源装置3内で設定されているようにしてもよい。 Here, as the threshold value Nth, as described above with respect to the number of breaks Nb, for example, 2 times (Nth = 2) (or 3 times (Nth = 3)) can be mentioned. As the threshold value Zth, a method specified by an absolute value (for example, about Zth = 120 [Ω]) and a method specified by a relative value (a method specified by what Ω or what percentage is increased: for example, about 30 Ω). Or it is roughly divided into (such as an increase of about 30%). Further, as the method of defining by this relative value, there are a method of defining the impedance value Z at the start of ablation as a reference and a method of defining the minimum value of the impedance value Z after the start of ablation as a reference. As described above, the setting values of such various parameters are not input according to the operation by the operator, but are set in advance in the power supply device 3, for example, at the time of shipment of the product. You may do so.
 次に、電極針1と対極板4との間に電源装置3(電源部32)から電力Poutを供給することで、患部90に対するアブレーションを開始する(ステップS11)。具体的には、このアブレーションの開始は、電源装置3の操作者による操作に応じて、操作信号Smが入力部31から入力されて制御部33へと供給されることで、実行される。すなわち、この例では、アブレーションが手動で開始されるようになっている。 Next, ablation with respect to the affected portion 90 is started by supplying a power Pout from the power supply device 3 (power supply unit 32) between the electrode needle 1 and the counter electrode plate 4 (step S11). Specifically, the start of this ablation is executed by inputting the operation signal Sm from the input unit 31 and supplying it to the control unit 33 in response to the operation by the operator of the power supply device 3. That is, in this example, the ablation is manually initiated.
 続いて、このようなアブレーションが開始されると、電源部32はまず、電極針1と対極板4との間のインピーダンス値Zを測定する(ステップS12)。言い換えると、制御部33は、そのようなインピーダンス値Zの測定情報を取得する。そして、このようにして測定されたインピーダンス値Zが、電源部32から制御部33へと供給されると、次に制御部33は、以下の判定を行う。すなわち、制御部33は、このインピーダンス値Zが、ステップS10において設定された閾値Zthよりも大きいのか否か(Z>Zthを満たすのか否か)を判定する(ステップS13)。ここで、インピーダンス値Zが閾値Zth以下である(Z>Zthを満たさない)と判定された場合には(ステップS13:N)、上記したステップS12へと戻り、再びインピーダンス値Zの測定が行われる。 Subsequently, when such ablation is started, the power supply unit 32 first measures the impedance value Z between the electrode needle 1 and the counter electrode plate 4 (step S12). In other words, the control unit 33 acquires the measurement information of such an impedance value Z. Then, when the impedance value Z measured in this way is supplied from the power supply unit 32 to the control unit 33, the control unit 33 then makes the following determination. That is, the control unit 33 determines whether or not the impedance value Z is larger than the threshold value Zth set in step S10 (whether or not Z> Zth is satisfied) (step S13). Here, if it is determined that the impedance value Z is equal to or less than the threshold value Zth (Z> Zth is not satisfied) (step S13: N), the process returns to step S12 described above, and the impedance value Z is measured again. Will be.
 一方、インピーダンス値Zが閾値Zthよりも大きい(Z>Zthを満たす)と判定された場合(ステップS13:Y)、前述したブレイク状態へと移行したことを意味する。そこで、この場合、次に制御部33は、このブレイク状態へと移行した回数(ブレイク回数Nb)を自動的にカウントする(ステップS14)。なお、このブレイク回数Nbのカウント値は、例えば制御部33内の各種記憶媒体に、随時記憶されることになる。 On the other hand, when it is determined that the impedance value Z is larger than the threshold value Zth (satisfying Z> Zth) (step S13: Y), it means that the state has shifted to the break state described above. Therefore, in this case, the control unit 33 then automatically counts the number of transitions to this break state (break count Nb) (step S14). The count value of the number of breaks Nb is stored in various storage media in the control unit 33 at any time.
 続いて、制御部33は、前述した制御信号CTL1を用いて、電源部32からの電力Poutの供給を一時的に低下または停止させることで、アブレーションを一時的に停止させる(ステップS15)。これにより前述したように、インピーダンス値Zが再度低下し、ブレイク状態から抜けることになる。 Subsequently, the control unit 33 temporarily stops the ablation by temporarily reducing or stopping the supply of the power Pout from the power supply unit 32 by using the control signal CTL1 described above (step S15). As a result, as described above, the impedance value Z drops again, and the break state is exited.
 次いで、制御部33は、上記したステップS14においてカウントされたブレイク回数Nbが、ステップS10において設定された閾値Nth以上であるのか否か(Nb≧Nthを満たすのか否か)を判定する(ステップS16)。ブレイク回数Nbが閾値Nth未満である(Nb≧Nthを満たさない)と判定された場合には(ステップS16:N)、次に、電力Poutの供給(アブレーション)が、自動的または手動により再開される(ステップS17)。 Next, the control unit 33 determines whether or not the number of breaks Nb counted in step S14 is equal to or greater than the threshold value Nth set in step S10 (whether or not Nb ≧ Nth is satisfied) (step S16). ). If it is determined that the number of breaks Nb is less than the threshold value Nth (Nb ≧ Nth is not satisfied) (step S16: N), then the power Pout supply (ablation) is automatically or manually restarted. (Step S17).
 ここで、図6は、このような電力Poutの供給再開(ステップS17)の際の、動作モードの一例を表したものである。この図6に示したように、このときの動作モードとしては、例えば、「フルオートモード」と「セミオートモード」との2種類の動作モードが挙げられる。 Here, FIG. 6 shows an example of the operation mode at the time of restarting the supply of such power Pout (step S17). As shown in FIG. 6, examples of the operation mode at this time include two types of operation modes, "fully automatic mode" and "semi-automatic mode".
 まず、フルオードモードでは、ブレイク回数Nbが閾値Nthに到達していない場合(ステップS16:N)、制御部33により、電力Poutの供給(アブレーション)を自動的に再開させる(ステップS17)。具体的には、制御部33は、前述した制御信号CTL1を用いて、電源部32からの電力Poutの供給を、自動的に再開させる。つまり、このフルオートモードでは、電力Poutの供給が、自動的に再開されるようになっている。 First, in the full ode mode, when the break count Nb has not reached the threshold value Nth (step S16: N), the control unit 33 automatically restarts the power Pout supply (ablation) (step S17). Specifically, the control unit 33 automatically restarts the supply of the power Pout from the power supply unit 32 by using the control signal CTL1 described above. That is, in this fully automatic mode, the supply of the power Pout is automatically restarted.
 一方、セミオードモードでは、ブレイク回数Nbが閾値Nthに到達していない場合(ステップS16:N)、電源装置3の操作者による操作に応じて入力される操作信号Smに基づいて、制御部33が電力Poutの供給(アブレーション)を再開させる(ステップS17)。つまり、このセミオートモードでは、電力Poutの供給が、手動により再開されるようになっている。 On the other hand, in the semi-ode mode, when the number of breaks Nb has not reached the threshold value Nth (step S16: N), the control unit 33 is based on the operation signal Sm input in response to the operation by the operator of the power supply device 3. Restarts the supply (ablation) of the power Pout (step S17). That is, in this semi-auto mode, the power supply of the power Pout is manually restarted.
 また、本実施の形態では、例えば電源装置3において、このような2種類の動作モード(「フルオートモード」および「セミオートモード」)が、切り替え可能となっていてもよい(図6中に示した破線の矢印P3参照)。すなわち、例えば、電源装置3の操作者による操作に応じて入力される操作信号Smに基づいて、これらの2種類の動作モードが、随時切り替えられるようになっていてもよい。 Further, in the present embodiment, for example, in the power supply device 3, such two types of operation modes (“full auto mode” and “semi-auto mode”) may be switchable (shown in FIG. 6). See the dashed arrow P3). That is, for example, these two types of operation modes may be switched at any time based on the operation signal Sm input in response to the operation by the operator of the power supply device 3.
 なお、このような電力Poutの供給(アブレーション)が再開された後は、前述したステップS12へと戻り、再びインピーダンス値Zの測定が行われることになる。ちなみに、前述したステップS15において、電力Poutの供給を一時的に「低下」させる場合には、前述したブレイク状態においても、インピーダンス値Zが測定し続けられるようになっている。一方、ステップS15において、電力Poutの供給を一時的に「停止」させる場合には、ブレイク状態になると、インピーダンス値Zの測定は行われないようになっている。 After the supply (ablation) of the power Pout is restarted, the process returns to step S12 described above, and the impedance value Z is measured again. Incidentally, in the above-mentioned step S15, when the supply of the electric power Pout is temporarily "decreased", the impedance value Z can be continuously measured even in the above-mentioned break state. On the other hand, in step S15, when the supply of the power Pout is temporarily "stopped", the impedance value Z is not measured when the break state is reached.
 ここで、上記したステップS16において、ブレイク回数Nbが閾値Nth以上である(Nb≧Nthを満たす)と判定された場合には(ステップS16:Y)、次に制御部33は、以下の制御を行う。すなわち、制御部33は、ブレイク回数Nbが閾値Nthに到達した場合(ステップS16:Y)、電源部32からの電力Poutの供給を自動的に停止(完全停止)させることにより、アブレーションを自動的に終了させる(ステップS18)。具体的には、制御部33は、前述した制御信号CTL1を用いて、電力Poutの供給を自動的に停止させる。これにより、患部90に対するアブレーションが、制御部33によって自動的に終了させられることになる。 Here, in step S16 described above, if it is determined that the number of breaks Nb is equal to or greater than the threshold value Nth (Satisfying Nb ≧ Nth) (step S16: Y), then the control unit 33 performs the following control. conduct. That is, when the number of breaks Nb reaches the threshold value Nth (step S16: Y), the control unit 33 automatically stops (completely stops) the supply of the power Pout from the power supply unit 32 to automatically stop the ablation. (Step S18). Specifically, the control unit 33 automatically stops the supply of the power Pout by using the control signal CTL1 described above. As a result, the ablation for the affected area 90 is automatically terminated by the control unit 33.
 続いて、制御部33は、このようにしてアブレーションを自動的に終了させた(ステップS18)後に、液体供給装置2からの冷却用の液体Lの供給も、自動的に停止させる(ステップS19)。具体的には、制御部33は、前述した制御信号CTL2を用いて、液体供給部21からの液体Lの供給を、自動的に停止させる。これにより、液体供給装置2の内部と電極針1の内部との間での液体Lの循環が停止され(図1参照)、電極針1に対する冷却動作(クーリング)が停止される。以上で、図5に示した一連の処理(本実施の形態のアブレーションの処理例)が終了となる。 Subsequently, the control unit 33 automatically ends the ablation in this way (step S18), and then automatically stops the supply of the cooling liquid L from the liquid supply device 2 (step S19). .. Specifically, the control unit 33 automatically stops the supply of the liquid L from the liquid supply unit 21 by using the control signal CTL2 described above. As a result, the circulation of the liquid L between the inside of the liquid supply device 2 and the inside of the electrode needle 1 is stopped (see FIG. 1), and the cooling operation (cooling) for the electrode needle 1 is stopped. This completes the series of processes shown in FIG. 5 (example of ablation process according to this embodiment).
 このようにして、本実施の形態のアブレーションシステム5では、制御部33はアブレーションの際に、以下のような制御を行う。すなわち、まず、制御部33は、電極針1と対極板4との間のインピーダンス値Zを測定する(図5のステップS12)と共に、このインピーダンス値Zが閾値Zthを越えてブレイク状態へと移行した回数(ブレイク回数Nb)をカウントする(ステップS14)。そして、制御部33は、このブレイク回数Nbが閾値Nthに到達した場合には、電力Poutの供給を自動的に停止させることにより、アブレーションを自動的に終了させる(ステップS18)。 In this way, in the ablation system 5 of the present embodiment, the control unit 33 performs the following control at the time of ablation. That is, first, the control unit 33 measures the impedance value Z between the electrode needle 1 and the counter electrode plate 4 (step S12 in FIG. 5), and the impedance value Z exceeds the threshold value Zth and shifts to the break state. The number of times (break number Nb) is counted (step S14). Then, when the number of breaks Nb reaches the threshold value Nth, the control unit 33 automatically stops the supply of the power Pout to automatically end the ablation (step S18).
 これにより本実施の形態では、以下のようになる。すなわち、例えば前述したような、ブレイク回数Nbを目視等で確認してからアブレーションを手動で終了させる場合(比較例1)や、ブレイク回数Nbを確認せずに所定の待機時間が経過してからアブレーションを自動終了させる場合(比較例2)などと比べ、効果的なアブレーションが容易に実施できるようになる。よって、本実施の形態ではこれらの比較例1,2などと比べ、アブレーションシステム5を使用する際の利便性を向上させることが可能となる。 As a result, in the present embodiment, it becomes as follows. That is, for example, when the ablation is manually terminated after visually confirming the number of breaks Nb as described above (Comparative Example 1), or after a predetermined waiting time has elapsed without confirming the number of breaks Nb. Compared with the case of automatically terminating ablation (Comparative Example 2), effective ablation can be easily performed. Therefore, in the present embodiment, it is possible to improve the convenience when using the ablation system 5 as compared with these Comparative Examples 1 and 2.
(D.本実施の形態のスチームポップ現象の兆候の検出処理および対応処理)
 ところで、上記したようなアブレーションの際に、電極針1による焼灼部位(アブレーション対象となる患部90)付近で、いわゆるスチームポップ現象(ポッピング現象,ポップ現象)が生じるケースが有り得る。このようなスチームポップ現象が患部90付近で生じると、アブレーションの際の患者9の体への負担が、増大してしまうおそれがある。
(D. Detection processing and corresponding processing of signs of the steam pop phenomenon of the present embodiment)
By the way, at the time of ablation as described above, there may be a case where a so-called steam pop phenomenon (popping phenomenon, pop phenomenon) occurs in the vicinity of the cauterized portion (affected portion 90 to be ablated) by the electrode needle 1. If such a steam pop phenomenon occurs in the vicinity of the affected area 90, the burden on the body of the patient 9 at the time of ablation may increase.
 そこで、本実施の形態のアブレーションシステム5では、制御部33において、以下のような各処理(スチームポップ現象の兆候の事前の検出処理、および、そのような兆候が検出された際の対応処理)を実行するようにしている。 Therefore, in the ablation system 5 of the present embodiment, in the control unit 33, the following processes (preliminary detection process of signs of steam pop phenomenon and response processes when such signs are detected) are performed. I am trying to execute.
 なお、以下説明する処理例(図7~図9に示す処理例)では、前述したアブレーションの開始時から1回目(初回)のブレイク状態への移行前の期間において、上記した検出処理および対応処理をそれぞれ行う場合の例について、説明する。ただし、このような場合の例には限られず、上記したアブレーションの開始後の任意の期間において、そのような検出処理および対応処理がそれぞれ、随時行われるようにしてもよい。この点は、後述する変形例における処理例(後述する図10~図14に示す処理例)の場合においても、同様である。 In the processing example described below (processing example shown in FIGS. 7 to 9), the above-mentioned detection processing and corresponding processing are performed during the period from the start of the above-mentioned ablation to the period before the transition to the first (first) break state. An example of each of these cases will be described. However, the example is not limited to such a case, and such a detection process and a corresponding process may be performed at any time during an arbitrary period after the start of the above-mentioned ablation. This point is the same in the case of the processing example in the modification described later (processing example shown in FIGS. 10 to 14 described later).
 ここで、図7は、本実施の形態に係るアブレーションの際における、上記したスチームポップ現象の兆候の検出処理および対応処理の一例を、流れ図で表したものである。また、図8,図9はそれぞれ、図7に示した処理の際のタイミング波形例を、模式的に表したものである。なお、これらの図8,図9ではそれぞれ、横軸は時間を示しており、縦軸は、電力Poutの供給値、インピーダンス値Z、および、前述した電極針1の先端付近での測定温度Tmを、示している。 Here, FIG. 7 is a flow chart showing an example of the above-mentioned sign detection process and response process of the steam pop phenomenon in the ablation according to the present embodiment. Further, FIGS. 8 and 9 schematically show examples of timing waveforms during the processing shown in FIG. 7, respectively. In FIGS. 8 and 9, the horizontal axis represents time, and the vertical axis represents the power supply value, the impedance value Z, and the measured temperature Tm near the tip of the electrode needle 1 described above. Is shown.
 この図7に示した処理では、まず、電源部32において、電力Poutの供給値と、前述したインピーダンス値Zと、上記した測定温度Tmとについての測定がそれぞれ、行われる(ステップS20)。言い換えると、制御部33は、この時点における、電力Poutの測定情報と、インピーダンス値Zの測定情報と、測定温度Tmを示す温度情報Itとを、それぞれ取得する(図1参照)。 In the process shown in FIG. 7, first, in the power supply unit 32, the supply value of the power Pout, the impedance value Z described above, and the measurement temperature Tm described above are measured (step S20). In other words, the control unit 33 acquires the measurement information of the power Pout, the measurement information of the impedance value Z, and the temperature information It indicating the measurement temperature Tm at this time point (see FIG. 1).
 ここで、例えば図8,図9に示したように、上記したアブレーションの開始時から1回目のブレイク状態への移行前の期間においては、制御部33は、例えば、電力Poutの供給値を、上昇または維持させるように制御している。具体的には、図8の例では、制御部33は、この期間における電力Poutの供給値を、時間軸に沿って徐々に(線形状に)上昇させるように制御している。一方、図9の例では、制御部33は、この期間における電力Poutの供給値を、時間軸に沿って階段状に上昇または維持させるように制御している。なお、制御部33は、例えば、この期間における電力Poutの供給値を、時間軸に沿って(任意の固定値に)維持させるようにしてもよい。また、この期間における電力Poutの供給値の上昇または維持が、制御部33によって自動的に制御されるのではなく、電源装置3の操作者による操作(操作信号Sm)に応じて、手動で制御されるようにしてもよい。 Here, for example, as shown in FIGS. 8 and 9, in the period from the start of the above-mentioned ablation to the period before the transition to the first break state, the control unit 33, for example, sets the supply value of the power Pout. It is controlled to rise or maintain. Specifically, in the example of FIG. 8, the control unit 33 controls the supply value of the electric power Pout during this period so as to gradually increase (in a linear shape) along the time axis. On the other hand, in the example of FIG. 9, the control unit 33 controls the supply value of the electric power Pout during this period so as to rise or maintain in a stepwise manner along the time axis. The control unit 33 may, for example, maintain the supply value of the electric power Pout during this period along the time axis (at an arbitrary fixed value). Further, the increase or maintenance of the power Pout supply value during this period is not automatically controlled by the control unit 33, but is manually controlled according to the operation (operation signal Sm) by the operator of the power supply device 3. It may be done.
 すると、次に制御部33は、以下の判定を行う。すなわち、制御部33は、電力Poutの供給値における単位時間当たりの上昇値(電力上昇値ΔP)が、前述した図5のステップS10において設定された閾値ΔPth以上であるか否か(ΔP≧ΔPthを満たすのか否か)について、判定を行う(ステップS21)。なお、このような閾値ΔPthとしては、例えば、5[W]~40[W]程度の値が挙げられるが、例えば、0(ゼロ)を含む値(例えば、0[W]~40[W]程度の値)としてもよい。また、上記した電力上昇値ΔPは、例えば、電力Poutにおける現在値(Pn)から、現在から上記した単位時間(例えば60[sec]程度)の分だけ前までの期間における電力Poutの最小値に対応する過去値を(Pp)差し引くことで、算出されるようになっている(ΔP=Pn-Pp)。ただし、このような電力上昇値ΔPの計算値は、例えば、前述したブレイク状態へと移行した場合には、リセット(初期化)されるようにしてもよい。 Then, the control unit 33 makes the following determination. That is, the control unit 33 determines whether or not the increase value per unit time (power increase value ΔP) in the supply value of the power Pout is equal to or greater than the threshold value ΔPth set in step S10 of FIG. 5 described above (ΔP ≧ ΔPth). Whether or not the condition is satisfied) is determined (step S21). As such a threshold value ΔPth, for example, a value of about 5 [W] to 40 [W] can be mentioned, and for example, a value including 0 (zero) (for example, 0 [W] to 40 [W]]. (Value of degree) may be used. Further, the above-mentioned power increase value ΔP is, for example, the minimum value of the power Pout in the period from the current value (Pn) in the power Pout to the above-mentioned unit time (for example, about 60 [sec]) before. It is calculated by subtracting the corresponding past value (Pp) (ΔP = Pn-Pp). However, the calculated value of such a power increase value ΔP may be reset (initialized), for example, when the state shifts to the break state described above.
 ここで、電力上昇値ΔPが、閾値ΔPth未満である(ΔP≧ΔPthを満たさない)と判定された場合(ステップS21:N)、つまり、電力Poutが低下している場合には、上記したステップS20へと戻ることになる。 Here, when it is determined that the power increase value ΔP is less than the threshold value ΔPth (which does not satisfy ΔP ≧ ΔPth) (step S21: N), that is, when the power Pout is decreasing, the above step. It will return to S20.
 一方、電力上昇値ΔPが、閾値ΔPth以上である(ΔP≧ΔPthを満たす)と判定された場合(ステップS21:Y)、つまり、電力Poutが上昇しているか、あるいは維持されている場合には、続いて制御部33は、以下の判定を行う。すなわち、制御部33は、上記した測定温度Tmが、ステップS10において設定された閾値ΔTmth以上の低下量にて変化しているのか否か、つまり、測定温度Tmの変化量ΔTmが、閾値ΔTmth以上(ΔTm≧ΔTmth)の低下量となっているのか否かについて、判定を行う(ステップS22)。なお、このような閾値ΔTmthとしては、例えば、5[℃]程度の値が挙げられる。 On the other hand, when it is determined that the power increase value ΔP is equal to or greater than the threshold value ΔPth (satisfying ΔP ≧ ΔPth) (step S21: Y), that is, when the power Pout is increased or maintained. Subsequently, the control unit 33 makes the following determinations. That is, the control unit 33 determines whether or not the measured temperature Tm described above is changed by a decrease amount of the threshold value ΔTmth or more set in step S10, that is, the change amount ΔTm of the measured temperature Tm is the threshold value ΔTmth or more. It is determined whether or not the amount of decrease is (ΔTm ≧ ΔTmth) (step S22). As such a threshold value ΔTmth, for example, a value of about 5 [° C.] can be mentioned.
 ここで、上記した変化量ΔTmが、閾値ΔTmth未満(ΔTm<ΔTmth)の低下量となっている、あるいは、上記した変化量ΔTmが上昇量となっている(測定温度Tmが上昇する変化を示している)と判定された場合には(ステップS22:N)、上記したステップS20へと戻ることになる。 Here, the change amount ΔTm described above is a decrease amount less than the threshold value ΔTmth (ΔTm <ΔTmth), or the change amount ΔTm described above is an increase amount (measurement temperature Tm increases). If it is determined (step S22: N), the process returns to step S20 described above.
 一方、例えば図8,図9に示した場合のように、上記した変化量ΔTmが、閾値ΔTmth以上(ΔTm≧ΔTmth)の低下量となっていると判定された場合には(ステップS22:Y)、次に制御部33は、以下の処理を実行する。すなわち、このようにして、ステップS21,S22の各判定がいずれも満たされている(「Y」となる)という、所定の条件を満たしている場合(後述する(c),(d)の双方に該当する場合に対応)には、本実施の形態では制御部33は、前述したスチームポップ現象の兆候が検出されたとものと判定して、以下の対応処理を実行する(ステップS23)。具体的には、この場合に制御部33は、以下の(a),(b)の2つの処理(第1処理および第2処理)のうちの少なくとも一方の処理を、実行する。なお、以下の(a)の処理が、制御部33によって自動的に制御されるのではなく、電源装置3の操作者による操作(操作信号Sm)に応じて、手動で制御されるようにしてもよい。
(a)電力Poutの供給を低下または停止させる処理(第1処理)
(b)電源装置3の外部(操作者等)に対して、所定の通知(表示部34上での所定のメッセージの表示や、所定の音声の出力など)を出力する処理(第2処理)
On the other hand, as in the case shown in FIGS. 8 and 9, when it is determined that the above-mentioned change amount ΔTm is a decrease amount of the threshold value ΔTmth or more (ΔTm ≧ ΔTmth) (step S22: Y). ), Next, the control unit 33 executes the following processing. That is, in this way, when the predetermined condition that each determination in steps S21 and S22 is satisfied (becomes "Y") is satisfied (both (c) and (d) described later). In the present embodiment, the control unit 33 determines that the above-mentioned sign of the steam pop phenomenon has been detected, and executes the following corresponding processing (step S23). Specifically, in this case, the control unit 33 executes at least one of the following two processes (first process and second process) of (a) and (b). The following process (a) is not automatically controlled by the control unit 33, but is manually controlled according to the operation (operation signal Sm) by the operator of the power supply device 3. May be good.
(A) Processing to reduce or stop the supply of power Pout (first processing)
(B) A process for outputting a predetermined notification (display of a predetermined message on the display unit 34, output of a predetermined voice, etc.) to the outside (operator, etc.) of the power supply device 3 (second process).
 以上で、図7に示した一連の処理(本実施の形態に係る、スチームポップ現象の兆候の検出処理および対応処理)が、終了となる。 With the above, the series of processes shown in FIG. 7 (the process of detecting the sign of the steam pop phenomenon and the process of responding to the signs of the steam pop phenomenon according to the present embodiment) are completed.
(E.作用・効果)
 このようにして、本実施の形態のアブレーションシステム5では、制御部33はアブレーションの際に、以下のような制御を行う。すなわち、制御部33は、以下の(c),(d)の双方に該当しているという、所定の条件を満たしている場合に、上記した(a),(b)の2つの処理のうちの少なくとも一方の処理を、実行する。
(c)電力Poutの供給値を、上昇または維持させるように制御している(上記した電力上昇値ΔPが、0(ゼロ)を含む閾値ΔPth以上となっている)場合である
(d)上記した測定温度Tmが、閾値ΔTmth以上の低下量にて変化している
(E. Action / Effect)
In this way, in the ablation system 5 of the present embodiment, the control unit 33 performs the following control at the time of ablation. That is, when the control unit 33 satisfies the predetermined condition that both of the following (c) and (d) are applicable, of the above two processes (a) and (b). At least one of the processes is executed.
(C) The case where the supply value of the power Pout is controlled to be increased or maintained (the above-mentioned power increase value ΔP is equal to or higher than the threshold value ΔPth including 0 (zero)) (d). The measured temperature Tm changes with the amount of decrease of the threshold value ΔTmth or more.
 ここで、電力Poutの供給値を上昇または維持させている場合(電力上昇値ΔPが閾値ΔPth以上となっている場合)であっても、測定温度Tmが閾値ΔTmth以上の低下量にて変化している場合(上記した所定の条件を満たす場合)、電極針1による焼灼部位(例えば、アブレーション対象となる患部90)付近で、前述したスチームポップ現象の兆候が生じている可能性がある。これは、そのようなスチームポップ現象の兆候が生じた場合、電極針1の周囲に空気層が形成されるため、電極針1の先端付近の測定温度Tmが、低下する傾向にあるからである。したがって、このような所定の条件を満たす場合に、上記した(a),(b)の2つの処理のうちの少なくとも一方の処理が実行されることで、スチームポップ現象の兆候の事前の検出処理、および、そのような兆候が検出された際の対応処理がそれぞれ、実行できるようになる。その結果、本実施の形態では、アブレーションの際の患者9の体への負担を、軽減することが可能となる。 Here, even when the supply value of the power Pout is increased or maintained (when the power increase value ΔP is equal to or higher than the threshold value ΔPth), the measured temperature Tm changes by the amount of decrease of the threshold value ΔTmth or more. If this is the case (when the above-mentioned predetermined conditions are satisfied), there is a possibility that the above-mentioned signs of the steam pop phenomenon have occurred in the vicinity of the ablation site (for example, the affected area 90 to be ablated) by the electrode needle 1. This is because when such a sign of the steam pop phenomenon occurs, an air layer is formed around the electrode needle 1, so that the measured temperature Tm near the tip of the electrode needle 1 tends to decrease. .. Therefore, when such a predetermined condition is satisfied, at least one of the above two processes (a) and (b) is executed, so that the process of detecting the sign of the steam pop phenomenon in advance is performed. , And the corresponding processing when such a sign is detected can be executed respectively. As a result, in the present embodiment, it is possible to reduce the burden on the body of the patient 9 at the time of ablation.
<2.変形例>
 続いて、上記実施の形態の変形例について説明する。なお、以下では、実施の形態における構成要素と同一のものには同一の符号を付し、適宜説明を省略する。
<2. Modification example>
Subsequently, a modified example of the above embodiment will be described. In the following, the same components as those in the embodiment are designated by the same reference numerals, and the description thereof will be omitted as appropriate.
[動作]
 図10は、変形例に係るアブレーションの際における、前述したスチームポップ現象の兆候の検出処理および対応処理の一例を、流れ図で表したものである。また、図11~図3はそれぞれ、図10に示した処理の際のタイミング波形例を、模式的に表したものである。また、図14(A),図14(B)はそれぞれ、図13に示した、後述する逆方向の変動の際の状態例について、模式的に表したものである。なお、図11~図13ではそれぞれ、前述した図8,図9と同様に、横軸は時間を示しており、縦軸は、電力Poutの供給値、インピーダンス値Z、および、前述した電極針1の先端付近での測定温度Tmを、示している。
[motion]
FIG. 10 is a flow chart showing an example of the above-mentioned sign detection process and response process of the steam pop phenomenon at the time of ablation according to the modified example. Further, FIGS. 11 to 3 schematically show examples of timing waveforms during the processing shown in FIG. 10, respectively. Further, FIGS. 14 (A) and 14 (B) schematically show an example of a state at the time of a change in the reverse direction, which will be described later, shown in FIG. 13, respectively. In FIGS. 11 to 13, the horizontal axis represents time, and the vertical axis represents the power supply value, the impedance value Z, and the above-mentioned electrode needle, respectively, as in FIGS. 8 and 9, respectively. The measured temperature Tm near the tip of 1 is shown.
 この図10に示した本変形例の処理は、図7に示した上記実施の形態の処理(ステップS20~S23の各処理)において、ステップS22,S23の間に、以下説明するステップS24を追加させたものに対応しており、他の各処理は同様となっている。 In the process of the present modification shown in FIG. 10, in the process of the above embodiment shown in FIG. 7 (each process of steps S20 to S23), step S24 described below is added between steps S22 and S23. It corresponds to the one that has been made, and each other process is the same.
 具体的には、この図10のステップS24では、制御部33は、インピーダンス値Zにおける単位時間当たりの変動値(インピーダンス変動値ΔZ)が、閾値ΔZth以上(ΔZ≧ΔZth)の上昇を示しているのか否か、つまり、このインピーダンス変動値ΔZが、閾値ΔZth以上の上昇値で変動しているのか否かについて、判定を行う(ステップS24)。なお、この閾値ΔZthは、本発明における「第2閾値」の一具体例に対応しており、例えば他の閾値と同様に、前述した図5のステップS10において設定されるようになっている。また、このような閾値ΔZthとしては、例えば、10[Ω]程度の値が挙げられる。また、上記したインピーダンス変動値ΔZは、例えば、インピーダンス値Zにおける現在値(Zn)から、現在から上記した単位時間(例えば60[sec]程度)の分だけ前までの期間におけるインピーダンス値Zの最小値に対応する過去値(Zp)を差し引くことで、算出されるようになっている(ΔZ=Zn-Zp)。 Specifically, in step S24 of FIG. 10, the control unit 33 indicates that the fluctuation value per unit time (impedance fluctuation value ΔZ) at the impedance value Z increases by the threshold value ΔZth or more (ΔZ ≧ ΔZth). It is determined whether or not, that is, whether or not the impedance fluctuation value ΔZ fluctuates with an increase value equal to or higher than the threshold value ΔZth (step S24). It should be noted that this threshold value ΔZth corresponds to a specific example of the “second threshold value” in the present invention, and is set in step S10 of FIG. 5 described above, for example, like other threshold values. Further, as such a threshold value ΔZth, for example, a value of about 10 [Ω] can be mentioned. Further, the impedance fluctuation value ΔZ described above is, for example, the minimum impedance value Z in the period from the current value (Zn) in the impedance value Z to the period before the unit time (for example, about 60 [sec]) described above. It is calculated by subtracting the past value (Zp) corresponding to the value (ΔZ = Zn—Zp).
 ここで、このインピーダンス変動値ΔZが、閾値ΔZth未満(ΔZ<ΔZth)の上昇値となっている、あるいは、このインピーダンス変動値ΔZが低下値となっている(インピーダンス値Zが低下する変化を示している)と判定された場合には(ステップS24:N)、以下のようになる。すなわち、このようにして、前述したステップS21,S22の各判定がいずれも満たされている(「Y」となる)という、前述した所定の条件を満たしている場合において、上記したステップS24を満たしていない(「N」となる)場合には、本変形例では制御部33は、前述したスチームポップ現象の兆候が検出されたとものと判定して、前述した対応処理を実行する(ステップS23)。具体的には、この場合に制御部33は、前述した(a),(b)の2つの処理のうちの少なくとも一方の処理を、実行する。なお、この場合には、図10に示した一連の処理(本変形例に係る、スチームポップ現象の兆候の検出処理および対応処理)が、終了となる。 Here, the impedance fluctuation value ΔZ is an increase value less than the threshold value ΔZth (ΔZ <ΔZth), or the impedance fluctuation value ΔZ is a decrease value (indicating a change in which the impedance value Z decreases). If it is determined (step S24: N), the process is as follows. That is, in this way, when the above-mentioned predetermined condition that each of the above-mentioned determinations of steps S21 and S22 is satisfied (becomes "Y") is satisfied, the above-mentioned step S24 is satisfied. If not (becomes "N"), in this modification, the control unit 33 determines that the sign of the steam pop phenomenon described above has been detected, and executes the corresponding process described above (step S23). .. Specifically, in this case, the control unit 33 executes at least one of the two processes (a) and (b) described above. In this case, the series of processes shown in FIG. 10 (the process of detecting the sign of the steam pop phenomenon and the corresponding process according to this modification) are completed.
 一方、例えば図11,図12に示した場合のように、(前述した測定温度Tmの変化量ΔTmが、ΔTmth以上の低下量となっていると判定された場合(ステップS22:Y)において、)上記したインピーダンス変動値ΔZが、閾値ΔZth以上(ΔZ≧ΔZth)の上昇値となっていると判定された場合(ステップS24:Y)、以下のようになる。 On the other hand, for example, as shown in FIGS. 11 and 12, (in the case where it is determined that the change amount ΔTm of the measurement temperature Tm described above is a decrease amount of ΔTmth or more (step S22: Y)). ) When it is determined that the impedance fluctuation value ΔZ described above is an increase value of the threshold value ΔZth or more (ΔZ ≧ ΔZth) (step S24: Y), the process is as follows.
 すなわち、この場合、本変形例では制御部33は、前述したスチームポップ現象の兆候が検出されていないと判定して、上記した対応処理(前述した(a),(b)の各処理)を実行しないようにする。具体的には、この場合には、上記したステップS23へは進まずに、前述したステップS20へと戻ることになる。 That is, in this case, in this modification, the control unit 33 determines that the above-mentioned sign of the steam pop phenomenon has not been detected, and performs the above-mentioned corresponding processing (each of the above-mentioned processes (a) and (b)). Do not run. Specifically, in this case, the process does not proceed to step S23 described above, but returns to step S20 described above.
 ここで、このステップS24において、図11,図12に加えて例えば図13に示したように、制御部33は、測定温度Tmとインピーダンス値Zとが、時間軸に沿って互いに逆方向に変動しているのか否かに応じて、前述した(a),(b)の各処理を実行するのか否かについて、判定するようにしてもよい。 Here, in this step S24, in addition to FIGS. 11 and 12, for example, as shown in FIG. 13, in the control unit 33, the measured temperature Tm and the impedance value Z fluctuate in opposite directions along the time axis. It may be determined whether or not each of the above-mentioned processes (a) and (b) is executed depending on whether or not the process is performed.
 具体的には、制御部33は、上記した所定の条件を満たしている場合において、例えば図11,図12中の破線の矢印で示したように、測定温度Tmが低下しているときにインピーダンス値Zが上昇していると共に、測定温度Tmが上昇しているときにインピーダンス値Zが低下しており、これらの測定温度Tmとインピーダンス値Zとが時間軸に沿って互いに逆方向に変動している場合には、前述した(a),(b)の各処理を実行しないようにしてもよい。なお、この場合における、インピーダンス値Zの変動とは、例えば前述した閾値ΔZth以上の変動(例えば、10[Ω]程度以上の変動)が挙げられ、測定温度Tmの変動とは、例えば、10[℃]程度以上の変動が挙げられる。また、この場合において、制御部33は、測定温度Tmとインピーダンス値Zとの間での互いに逆方向の変動が、例えば図13に示したように、所定の周期Tud(例えば、Tud=5秒程度)にて交互に繰り返されている場合に、前述した(a),(b)の各処理を実行しないようにしてもよい。 Specifically, when the above-mentioned predetermined conditions are satisfied, the control unit 33 has impedance when the measurement temperature Tm is lowered, for example, as shown by the broken arrow in FIGS. 11 and 12. As the value Z rises, the impedance value Z decreases when the measured temperature Tm rises, and the measured temperature Tm and the impedance value Z fluctuate in opposite directions along the time axis. If so, the above-mentioned processes (a) and (b) may not be executed. In this case, the fluctuation of the impedance value Z includes, for example, the fluctuation of the threshold value ΔZth or more (for example, the fluctuation of about 10 [Ω] or more), and the fluctuation of the measurement temperature Tm is, for example, 10 [. ℃] or more fluctuations can be mentioned. Further, in this case, in the control unit 33, the fluctuations in the opposite directions between the measurement temperature Tm and the impedance value Z, for example, as shown in FIG. 13, have a predetermined period Tud (for example, Tud = 5 seconds). When each process is repeated alternately in (degree), the above-mentioned processes (a) and (b) may not be executed.
 一方、制御部33は、逆に、これらの測定温度Tmとインピーダンス値Zとが、時間軸に沿って互いに逆方向に変動していない(互いに同じ方向に変動している)場合には、前述した(a),(b)の2つの処理のうちの少なくとも一方の処理を、実行するようにしてもよい。 On the other hand, on the contrary, when the measured temperature Tm and the impedance value Z do not fluctuate in opposite directions along the time axis (fluctuate in the same direction), the control unit 33 described above. At least one of the two processes (a) and (b) may be executed.
 このようにして、測定温度Tmとインピーダンス値Zとが時間軸に沿って互いに逆方向に変動しているのか否かに応じて、前述した(a),(b)の各処理の実行の有無を判定する理由としては、以下の通りである。 In this way, whether or not each of the above-mentioned processes (a) and (b) is executed depending on whether or not the measured temperature Tm and the impedance value Z fluctuate in opposite directions along the time axis. The reason for determining is as follows.
 すなわち、例えば図14(A),図14(B)に示したように、測定温度Tmとインピーダンス値Zとが、時間軸に沿って互いに逆方向に変動している場合には、前述したスチームポップ現象の兆候が生じているのではなく、以下のようなケースが想定されるからである。つまり、焼灼部位付近(患部90における熱凝固領域Ah付近)で、電極針1が前後方向(軸方向:図14(A),図14(B)中の破線の矢印参照)に沿って動いていることで、上記したような逆方向の変動が生じているものと、考えられるからである。具体的には、図14(A)に示したように状態では、電極針1の先端付近が焼灼部位の内部に位置していることから、測定温度Tmが相対的に高い状態となることで、前述した理由により、インピーダンス値Zが相対的に低い状態となる。一方、図14(B)に示したように状態では、電極針1の先端付近が焼灼部位の外部に位置していることから、測定温度Tmが相対的に低い状態となることで、前述した理由により、逆に、インピーダンス値Zが相対的に高い状態となる。そして、図14中の矢印P4で示したように、これらの図14(A),図14(B)の各状態が、上記した所定の周期Tud(患者9の呼吸変動による周期)にて、交互に繰り返される場合には、上記したように、電極針1が動いている可能性が高いと言えるからである。つまり、このような場合には、スチームポップ現象の兆候が生じているのではなく、電極針1が動いている可能性が高いことから、前述した(a),(b)の各処理を実行しないようにしているのである。 That is, for example, as shown in FIGS. 14 (A) and 14 (B), when the measured temperature Tm and the impedance value Z fluctuate in opposite directions along the time axis, the above-mentioned steam This is because the following cases are assumed, not the signs of the pop phenomenon. That is, in the vicinity of the ablation site (near the thermal coagulation region Ah in the affected area 90), the electrode needle 1 moves in the anteroposterior direction (axial direction: see the broken line arrow in FIGS. 14 (A) and 14 (B)). This is because it is considered that the above-mentioned fluctuation in the opposite direction has occurred. Specifically, in the state shown in FIG. 14A, since the vicinity of the tip of the electrode needle 1 is located inside the ablation site, the measurement temperature Tm becomes relatively high. For the reason described above, the impedance value Z becomes relatively low. On the other hand, in the state shown in FIG. 14B, since the vicinity of the tip of the electrode needle 1 is located outside the ablation site, the measurement temperature Tm is relatively low, which is described above. For some reason, on the contrary, the impedance value Z becomes relatively high. Then, as shown by the arrow P4 in FIG. 14, each of these states of FIGS. 14 (A) and 14 (B) is in the above-mentioned predetermined cycle Tud (cycle due to respiratory fluctuation of patient 9). This is because it can be said that there is a high possibility that the electrode needle 1 is moving when it is repeated alternately. That is, in such a case, there is a high possibility that the electrode needle 1 is moving instead of a sign of the steam pop phenomenon, so each of the above-mentioned processes (a) and (b) is executed. I try not to.
[作用・効果]
 このようにして本変形例では、実施の形態で説明した所定の条件を満たしている場合において、上記したインピーダンス変動値ΔZが、閾値ΔZth以上の上昇を示している場合には、前述した(a),(b)の各処理を実行しないようにする。一方、この場合において、インピーダンス変動値ΔZが、閾値ΔZth未満の上昇を示している場合、または、低下を示している場合に、前述した(a),(b)の2つの処理のうちの、少なくとも一方の処理を実行する。
[Action / Effect]
In this way, in this modification, when the predetermined conditions described in the embodiment are satisfied and the impedance fluctuation value ΔZ described above indicates an increase of the threshold value ΔZth or more, the above-mentioned (a). ) And (b) are not executed. On the other hand, in this case, when the impedance fluctuation value ΔZ indicates an increase of less than the threshold value ΔZth or a decrease, of the above-mentioned two processes (a) and (b), Perform at least one process.
 つまり、本変形例では上記実施の形態の場合とは異なり、上記した所定の条件を満たしている場合であっても、インピーダンス変動値ΔZの大きさや、上昇または低下のどちらの変化を示しているのかに応じて、前述した(a),(b)の2つの処理の実行の有無を決定するようにしている。言い換えると、本変形例では、インピーダンス変動値ΔZというパラメータを利用して、これら2つの処理の実行についての、除外条件を規定するようにしている。これにより本変形例では、このようなインピーダンス変動値ΔZというパラメータを利用して、上記したスチームポップ現象の兆候が、より精度良く検出できるようになる。具体的には、スチームポップ現象の兆候が生じているのではなく、例えば上記したように、焼灼部位付近で電極針1が前後方向に沿って動いているという状況が、検出できるようになる。したがって、このような状況が検出できるようになる結果、本変形例では、例えば、不要な電力Poutの供給値低下等に起因した、焼灼効率の低下を防止することが可能となると共に、アブレーション期間の長期化による患者9の体への負担を、軽減することが可能となる。 That is, unlike the case of the above embodiment, this modification shows the magnitude of the impedance fluctuation value ΔZ and the change of either increase or decrease even when the above-mentioned predetermined conditions are satisfied. Whether or not to execute the above-mentioned two processes (a) and (b) is determined according to the above. In other words, in this modification, an exclusion condition for executing these two processes is defined by using a parameter called the impedance fluctuation value ΔZ. As a result, in this modification, the above-mentioned sign of the steam pop phenomenon can be detected more accurately by using such a parameter of impedance fluctuation value ΔZ. Specifically, it becomes possible to detect a situation in which the electrode needle 1 is moving in the front-rear direction in the vicinity of the ablation site, for example, as described above, instead of causing a sign of the steam pop phenomenon. Therefore, as a result of being able to detect such a situation, in this modification, it is possible to prevent a decrease in ablation efficiency due to, for example, a decrease in the supply value of unnecessary power Pout, and an ablation period. It is possible to reduce the burden on the body of the patient 9 due to the prolongation of the period.
 また、本変形例では、上記した所定の条件を満たしている場合において、上記したようにして、測定温度Tmとインピーダンス値とが時間軸に沿って互いに逆方向に変動している場合には、前述した(a),(b)の各処理を実行しないようにする一方、測定温度Tmとインピーダンス値Zとが時間軸に沿って互いに逆方向に変動していない場合に、前述した(a),(b)の2つの処理のうちの、少なくとも一方の処理を実行するようにした場合には、以下のようになる。すなわち、このような測定温度Tmとインピーダンス値Zとの逆方向の変動の有無を利用して、上記したような、焼灼部位付近での電極針1の動いている状況が、より精度良く検出できるようになる。これにより、スチームポップ現象の兆候が、更に精度良く検出できる結果、上記した焼灼効率の低下を防止することが容易となると共に、上記した患者の体への負担を軽減することが容易となる。 Further, in this modification, when the above-mentioned predetermined conditions are satisfied and the measurement temperature Tm and the impedance value fluctuate in opposite directions along the time axis as described above, the measurement temperature Tm and the impedance value fluctuate in opposite directions along the time axis. While the above-mentioned processes (a) and (b) are prevented from being executed, the above-mentioned (a) is performed when the measured temperature Tm and the impedance value Z do not fluctuate in opposite directions along the time axis. , (B) When at least one of the two processes is executed, the result is as follows. That is, by utilizing the presence or absence of such fluctuations in the opposite direction between the measured temperature Tm and the impedance value Z, it is possible to more accurately detect the state in which the electrode needle 1 is moving near the ablation site as described above. It will be like. As a result, the signs of the steam pop phenomenon can be detected more accurately, and as a result, it becomes easy to prevent the above-mentioned decrease in ablation efficiency and it becomes easy to reduce the above-mentioned burden on the patient's body.
 更に、本変形例では、上記した所定の条件を満たしている場合において、測定温度Tmとインピーダンス値Zとの間での互いに逆方向の変動が、所定の周期Tudにて交互に繰り返されている場合に、前述した(a),(b)の各処理を実行しないようにした場合には、以下のようになる。すなわち、例えば上記したような、患者9の呼吸変動に起因して、所定の周期Tudでの逆方向の変動が生じていることが、検出できるようになる。これにより、焼灼部位付近での電極針1の動いている状況が、更に精度良く検出でき、スチームポップ現象の兆候が、より一層精度良く検出できる結果、上記した焼灼効率の低下を防止することが、更に容易となると共に、上記した患者の体への負担を軽減することが、更に容易となる。 Further, in this modification, when the above-mentioned predetermined conditions are satisfied, fluctuations in opposite directions between the measured temperature Tm and the impedance value Z are alternately repeated in a predetermined period Tud. In this case, if the above-mentioned processes (a) and (b) are not executed, the result is as follows. That is, for example, it becomes possible to detect that the fluctuation in the reverse direction in the predetermined cycle Tud is caused by the respiratory fluctuation of the patient 9, as described above. As a result, the state in which the electrode needle 1 is moving near the ablation site can be detected more accurately, and the signs of the steam pop phenomenon can be detected even more accurately, and as a result, the above-mentioned decrease in ablation efficiency can be prevented. It becomes even easier, and it becomes easier to reduce the burden on the patient's body as described above.
<3.その他の変形例>
 以上、実施の形態および変形例を挙げて本発明を説明したが、本発明はこれらの実施の形態等に限定されず、種々の変形が可能である。
<3. Other variants>
Although the present invention has been described above with reference to embodiments and modifications, the present invention is not limited to these embodiments and the like, and various modifications are possible.
 例えば、上記実施の形態等において説明した各部材の材料等は限定されるものではなく、他の材料としてもよい。また、上記実施の形態等では、電極針1の構成を具体的に挙げて説明したが、必ずしも全ての部材を備える必要はなく、また、他の部材を更に備えていてもよい。更に、上記実施の形態等で説明した各種パラメータの値や範囲、大小関係等についても、上記実施の形態等で説明したものには限られず、他の値や範囲、大小関係等であってもよい。 For example, the material and the like of each member described in the above-described embodiment and the like are not limited, and may be other materials. Further, in the above-described embodiment and the like, the configuration of the electrode needle 1 has been specifically described, but it is not always necessary to include all the members, and other members may be further provided. Further, the values, ranges, magnitude relations, etc. of various parameters described in the above-described embodiments are not limited to those described in the above-described embodiments, and may be other values, ranges, magnitude relations, etc. good.
 また、上記実施の形態等では、液体供給装置2および電源装置3のブロック構成を具体的に挙げて説明したが、上記実施の形態等で説明した各ブロックを必ずしも全て備える必要はなく、また、他のブロックを更に備えていてもよい。また、アブレーションシステム5全体としても、上記実施の形態等で説明した各装置に加えて、他の装置を更に備えていてもよい。 Further, in the above-described embodiment and the like, the block configurations of the liquid supply device 2 and the power supply device 3 have been specifically described, but it is not always necessary to include all the blocks described in the above-described embodiment and the like. Other blocks may be further provided. Further, the ablation system 5 as a whole may be further provided with other devices in addition to the devices described in the above-described embodiment and the like.
 更に、上記実施の形態等では、電力供給制御機能と液体供給制御機能とを含む、制御部33における制御動作(アブレーションの手法)について具体的に説明した。しかしながら、これらの電力供給制御機能および液体供給制御機能等における制御手法(アブレーションの手法)については、上記実施の形態等で挙げた手法には限られない。 Further, in the above-described embodiment and the like, the control operation (ablation method) in the control unit 33 including the power supply control function and the liquid supply control function has been specifically described. However, the control method (ablation method) in these power supply control functions, liquid supply control functions, and the like is not limited to the methods mentioned in the above-described embodiments.
 具体的には、例えば、図5等に示したアブレーションの処理例や、図7,図10等に示した、前述したスチームポップ現象の兆候の検出処理および対応処理の例については、上記実施の形態等で説明した手法には限られず、他の手法を用いるようにしてもよい。 Specifically, for example, the ablation processing example shown in FIG. 5 and the like, and the above-mentioned examples of the steam pop phenomenon sign detection processing and the corresponding processing shown in FIGS. 7 and 10, are described in the above-mentioned implementation. The method is not limited to the method described in the form or the like, and other methods may be used.
 また、上記実施の形態等で説明した一連の処理は、ハードウェア(回路)で行われるようにしてもよいし、ソフトウェア(プログラム)で行われるようにしてもよい。ソフトウェアで行われるようにした場合、そのソフトウェアは、各機能をコンピュータにより実行させるためのプログラム群で構成される。各プログラムは、例えば、上記コンピュータに予め組み込まれて用いられてもよいし、ネットワークや記録媒体から上記コンピュータにインストールして用いられてもよい。 Further, the series of processes described in the above-described embodiment or the like may be performed by hardware (circuit) or software (program). When it is done by software, the software is composed of a group of programs for executing each function by a computer. Each program may be used by being preliminarily incorporated in the computer, for example, or may be installed and used in the computer from a network or a recording medium.
 更に、これまでに説明した各種の例を、任意の組み合わせで適用させるようにしてもよい。 Furthermore, the various examples described so far may be applied in any combination.

Claims (5)

  1.  体内の患部に対して経皮的に穿刺される電極針と、
     前記電極針と対極板との間にアブレーションを行うための電力を供給する電源部と、前記電源部における前記電力の供給動作を制御する制御部と、を有する電源装置と
     を備え、
     前記電極針の先端付近での測定温度を示す情報が、前記電極針から前記制御部へと供給されるようになっており、
     前記制御部は、
     前記アブレーションの際に、
     前記電力の供給値を上昇または維持させるように制御している場合において前記測定温度が第1閾値以上の低下量にて変化する、という所定の条件を満たしている場合には、
     前記電力の供給を低下または停止させる第1処理と、前記電源装置の外部に対して所定の通知を出力する第2処理と、のうちの少なくとも一方の処理を実行する
     アブレーションシステム。
    An electrode needle that is percutaneously punctured into the affected area in the body,
    It is provided with a power supply device having a power supply unit for supplying electric power for ablation between the electrode needle and the counter electrode needle, and a control unit for controlling the power supply operation in the power supply unit.
    Information indicating the measured temperature near the tip of the electrode needle is supplied from the electrode needle to the control unit.
    The control unit
    At the time of the ablation
    When the predetermined condition that the measured temperature changes by the amount of decrease of the first threshold value or more when the power supply value is controlled to be increased or maintained is satisfied.
    An ablation system that executes at least one of a first process of reducing or stopping the supply of electric power and a second process of outputting a predetermined notification to the outside of the power supply device.
  2.  前記制御部は、
     前記電極針と前記対極板との間のインピーダンス値を測定するようになっており、
     前記所定の条件を満たしている場合において、
     前記インピーダンス値における単位時間当たりの変動値が、第2閾値以上の上昇を示している場合には、前記第1処理および前記第2処理をそれぞれ、実行しないようにする一方、
     前記インピーダンス値における単位時間当たりの変動値が、前記第2閾値未満の上昇を示している場合、または、低下を示している場合に、前記第1処理および前記第2処理のうちの少なくとも一方の処理を、実行する
     請求項1に記載のアブレーションシステム。
    The control unit
    The impedance value between the electrode needle and the counter electrode plate is measured.
    When the above-mentioned predetermined conditions are satisfied,
    When the fluctuation value per unit time in the impedance value indicates an increase of the second threshold value or more, the first process and the second process are prevented from being executed, respectively.
    At least one of the first process and the second process when the fluctuation value per unit time in the impedance value indicates an increase below the second threshold value or a decrease. The ablation system according to claim 1, wherein the processing is performed.
  3.  前記制御部は、
     前記電極針と前記対極板との間のインピーダンス値を測定するようになっており、
     前記所定の条件を満たしている場合において、
     前記測定温度が低下しているときに、前記インピーダンス値が上昇していると共に、前記測定温度が上昇しているときに、前記インピーダンス値が低下しており、前記測定温度と前記インピーダンス値とが、時間軸に沿って互いに逆方向に変動している場合には、前記第1処理および前記第2処理をそれぞれ、実行しないようにする一方、
     前記測定温度と前記インピーダンス値とが、時間軸に沿って互いに逆方向に変動していない場合に、前記第1処理および前記第2処理のうちの少なくとも一方の処理を、実行する
     請求項1または請求項2に記載のアブレーションシステム。
    The control unit
    The impedance value between the electrode needle and the counter electrode plate is measured.
    When the above-mentioned predetermined conditions are satisfied,
    When the measured temperature is decreasing, the impedance value is increasing, and when the measuring temperature is increasing, the impedance value is decreasing, and the measured temperature and the impedance value are different from each other. , When the temperature fluctuates in opposite directions along the time axis, the first process and the second process are prevented from being executed, respectively.
    1. The ablation system according to claim 2.
  4.  前記制御部は、
     前記所定の条件を満たしている場合において、
     前記測定温度と前記インピーダンス値との間での互いに逆方向の変動が、所定の周期にて交互に繰り返されている場合に、
     前記第1処理および前記第2処理をそれぞれ、実行しないようにする
     請求項3に記載のアブレーションシステム。
    The control unit
    When the above-mentioned predetermined conditions are satisfied,
    When the fluctuations in opposite directions between the measured temperature and the impedance value are alternately repeated in a predetermined cycle.
    The ablation system according to claim 3, wherein the first process and the second process are not executed, respectively.
  5.  前記制御部は、前記電力の供給値を、
     時間軸に沿って、線形状または階段状に上昇または維持させるか、
     あるいは、時間軸に沿って維持させる
     請求項1ないし請求項4のいずれか1項に記載のアブレーションシステム。
    The control unit determines the power supply value.
    Ascend or maintain linearly or stepwise along the time axis,
    Alternatively, the ablation system according to any one of claims 1 to 4, which is maintained along the time axis.
PCT/JP2020/040904 2020-10-30 2020-10-30 Ablation system WO2022091369A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/040904 WO2022091369A1 (en) 2020-10-30 2020-10-30 Ablation system
JP2022558772A JPWO2022091369A1 (en) 2020-10-30 2020-10-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040904 WO2022091369A1 (en) 2020-10-30 2020-10-30 Ablation system

Publications (1)

Publication Number Publication Date
WO2022091369A1 true WO2022091369A1 (en) 2022-05-05

Family

ID=81383854

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040904 WO2022091369A1 (en) 2020-10-30 2020-10-30 Ablation system

Country Status (2)

Country Link
JP (1) JPWO2022091369A1 (en)
WO (1) WO2022091369A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516867A (en) * 2000-10-17 2004-06-10 ブロンカス テクノロジーズ, インコーポレイテッド Control systems and processes for application of energy to airway walls and other media
JP2015009157A (en) * 2013-07-01 2015-01-19 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Realtime prediction of steam pop event during ablation
JP2015089521A (en) * 2013-11-06 2015-05-11 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Using catheter position and temperature measurement to detect movement from ablation point
JP2016093502A (en) * 2014-11-11 2016-05-26 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Irrigated ablation catheter with sensor array
JP2019041782A (en) * 2017-08-29 2019-03-22 日本ライフライン株式会社 Ablation system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004516867A (en) * 2000-10-17 2004-06-10 ブロンカス テクノロジーズ, インコーポレイテッド Control systems and processes for application of energy to airway walls and other media
JP2015009157A (en) * 2013-07-01 2015-01-19 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Realtime prediction of steam pop event during ablation
JP2015089521A (en) * 2013-11-06 2015-05-11 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Using catheter position and temperature measurement to detect movement from ablation point
JP2016093502A (en) * 2014-11-11 2016-05-26 バイオセンス・ウエブスター・(イスラエル)・リミテッドBiosense Webster (Israel), Ltd. Irrigated ablation catheter with sensor array
JP2019041782A (en) * 2017-08-29 2019-03-22 日本ライフライン株式会社 Ablation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
IIDA HIROYA, AIHARA TSUKASA, IKUTA SHINICHI, YAMANAKA NAOKI, YAMANA-KA NAOKI: "Effectiveness of impedance monitoring during radiofrequency ablation for predicting popping", WORLD JOURNAL OF GASTROENTEROLOGY, WJG PRESS, CN, vol. 18, no. 41, 1 January 2012 (2012-01-01), CN , pages 5870, XP055938673, ISSN: 1007-9327, DOI: 10.3748/wjg.v18.i41.5870 *

Also Published As

Publication number Publication date
JPWO2022091369A1 (en) 2022-05-05

Similar Documents

Publication Publication Date Title
JP6853145B2 (en) Ablation system
US11701164B2 (en) Energy treatment system and output control method thereof
WO2021129271A1 (en) Method and apparatus for controlling output of radio frequency ablation power, and radio frequency ablation system
US11813031B2 (en) System and method for an improved graphical user interface that provides independent control of multiple radiofrequency probes during an ablation procedure
WO2020262279A1 (en) High-frequency treatment device and high-frequency treatment method
WO2022091369A1 (en) Ablation system
JP5737765B2 (en) Catheter system
JP7455494B2 (en) ablation system
WO2022038728A1 (en) Ablation system
KR101737253B1 (en) Catheter system
US20170202600A1 (en) Medical device
US11737819B2 (en) System and method for a graphical user interface that provides improved control and visualization for an ablation procedure
JP7352011B2 (en) Ablation control system
JP7414860B2 (en) Electromedical device control system and method for controlling the electromedical device system
WO2022075255A1 (en) High-frequency treatment device and high-frequency treatment method
JP2023143342A (en) Power supply device, electric medical device system, and power supply method
JP2019170466A (en) Ablation device
JP2019170467A (en) Ablation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959887

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959887

Country of ref document: EP

Kind code of ref document: A1