WO2022091363A1 - Filtration system and filtration device - Google Patents

Filtration system and filtration device Download PDF

Info

Publication number
WO2022091363A1
WO2022091363A1 PCT/JP2020/040886 JP2020040886W WO2022091363A1 WO 2022091363 A1 WO2022091363 A1 WO 2022091363A1 JP 2020040886 W JP2020040886 W JP 2020040886W WO 2022091363 A1 WO2022091363 A1 WO 2022091363A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
potential
filtration device
filtration
filter chamber
Prior art date
Application number
PCT/JP2020/040886
Other languages
French (fr)
Japanese (ja)
Inventor
一樹 大森
Original Assignee
三菱化工機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化工機株式会社 filed Critical 三菱化工機株式会社
Priority to PCT/JP2020/040886 priority Critical patent/WO2022091363A1/en
Priority to EP21875304.4A priority patent/EP4205828A4/en
Priority to CN202180066993.0A priority patent/CN116390795B/en
Priority to AU2021354361A priority patent/AU2021354361B2/en
Priority to CA3194303A priority patent/CA3194303A1/en
Priority to KR1020237010739A priority patent/KR20230090316A/en
Priority to JP2022505363A priority patent/JP7117471B1/en
Priority to US18/029,012 priority patent/US20230294023A1/en
Priority to PCT/JP2021/034434 priority patent/WO2022071002A1/en
Priority to TW110135519A priority patent/TWI816184B/en
Publication of WO2022091363A1 publication Critical patent/WO2022091363A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D35/00Filtering devices having features not specifically covered by groups B01D24/00 - B01D33/00, or for applications not specifically covered by groups B01D24/00 - B01D33/00; Auxiliary devices for filtration; Filter housing constructions
    • B01D35/06Filters making use of electricity or magnetism

Definitions

  • the present invention relates to a filtration system and a filtration device.
  • Solid-liquid separation by filtration of a particle-fluid slurry a method of separating a particle and a liquid to be separated by using electro-osmosis or electrophoresis is known (see, for example, Patent Documents 1 and 2).
  • Solid-liquid separation using electroosmosis is a method in which voltage and pressure are applied to a cake layer sandwiched between electrodes, and water in the cake layer is expelled through a filter medium by electroosmosis.
  • the solid-liquid separation using electrophoresis is a method in which the particles in the slurry are moved by electrophoresis and brought into direct contact with the filter medium to separate the particles in the slurry.
  • the method of directly contacting the particles in the slurry with the filter medium for solid-liquid separation may cause a decrease in the filtration rate due to clogging of the filter medium.
  • An object of the present invention is to provide a filtration system and a filtration device capable of improving the filtration rate.
  • the filtration system includes a first filtration device and a second filtration device, and the first filtration device and the second filtration device are each provided with a plurality of first openings.
  • a filter medium provided between the two, a first filter chamber provided in contact with the other surface of the first electrode, a third electrode provided in the first filter chamber and facing the first electrode, and the said. It has a second filter chamber provided in contact with the other surface of the second electrode, and the intermediate treatment liquid in the second filter chamber of the first filtration device is supplied to the first filter chamber of the second filtration device. Will be done.
  • the filtration system and the filtration device of the present invention it is possible to improve the filtration rate.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of a filtration system according to the first embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the first filtration device, the second filtration device, and the third filtration device according to the first embodiment.
  • FIG. 3 is a schematic view of the first filtration device according to the first embodiment.
  • FIG. 4 is a schematic view of the second filtration device according to the first embodiment.
  • FIG. 5 is a schematic view of the third filtration device according to the first embodiment.
  • FIG. 6 is a cross-sectional view schematically showing the configurations of the first electrode, the filter medium, and the second electrode.
  • FIG. 7 is an electrical equivalent circuit diagram showing a first filtration device, a second filtration device, and a third filtration device according to the first embodiment.
  • FIG. 8 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the first modification of the first embodiment.
  • FIG. 9 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the second modification of the first embodiment.
  • FIG. 10 is a schematic diagram of the filtration device according to the second embodiment.
  • the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to the embodiments for carrying out the following inventions (hereinafter referred to as embodiments).
  • the components in the first embodiment described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that have a so-called equal range. Further, the components disclosed in the following embodiments can be appropriately combined.
  • FIG. 1 is a cross-sectional view schematically showing a configuration example of the filtration system according to the first embodiment.
  • FIG. 2 is a cross-sectional view schematically showing a configuration example of the filtration device according to the first embodiment.
  • the first particles 71, the second particles 75, and the second particles 75 are obtained from the slurry (stock solution) 70 in which the first particles 71, the second particles 75, and the third particles 74 are dispersed in the polar solvent 72.
  • a device for separating the third particle 74 can be applied to the life science field, the sewage treatment field, the wastewater treatment field, and the like.
  • the bio-industry for culturing microorganisms such as cultured cells, microalgae, bacteria, bacteria, and viruses, and the utilization and application of enzymes, proteins, polysaccharides, lipids, etc. produced by cultured microorganisms outside and inside the body. It can be applied to the biopharmaceutical and cosmetics industries, which are the fields, or the beverage industry, which deals with brewing, fermentation, squeezing, beverages, and the like. In the fields of sewage treatment and wastewater treatment, it is a fine biomass water-based slurry that is difficult to filter and can be applied to the separation of biomass particles.
  • the filtration system 200 is a colloidal particle-based slurry in which surface-charged fine particles are highly dispersed by an electric repulsive action, and can be applied to a concentrated recovery application of colloidal fine particles.
  • the filtration system 200 according to the first embodiment includes a first filtration device 91, a second filtration device 92, a third filtration device 93, a first pressurizing device 95, and a second addition.
  • a pressure device 96, a third pressurizing device 97, and a fourth pressurizing device 98 are provided.
  • the first filtration device 91, the second filtration device 92, and the third filtration device 93 are connected in series.
  • Each of the first filtration device 91, the second filtration device 92, and the third filtration device 93 has an upper housing 11, a lid portion 12, a side housing 13, a lower housing 14, and a conductor 15.
  • Each of the first filtration device 91, the second filtration device 92, and the third filtration device 93 further has a first filter chamber in an internal space surrounded by an upper housing 11, a side housing 13, and a lower housing 14. It has 30, a first electrode 31, a second electrode 32, a third electrode 33, and a filter medium 34 (see FIGS. 3 to 5).
  • Each of the first filtration device 91, the second filtration device 92, and the third filtration device 93 further has a first power supply 51 electrically connected to the first electrode 31, the second electrode 32, and the third electrode 33. , A second power source 52 and a third power source 53.
  • the upper housing 11 is a columnar member made of an insulating material.
  • the side housing 13 is an annular member made of an insulating material and having a through hole. A part of the lower end side of the upper housing 11 is inserted into the through hole of the side housing 13.
  • the lower housing 14 is made of an insulating material and supports the side housing 13.
  • the lid portion 12 is provided so as to cover the upper surface of the upper housing 11.
  • the outer edges of the first electrode 31, the second electrode 32 and the filter medium 34 are sandwiched and fixed between the side housing 13 and the lower housing 14.
  • the third electrode 33 is fixed to the lower surface of the upper housing 11 (the surface facing the lower housing 14) by a connecting member (not shown) such as a bolt, and is located inside the through hole of the side housing 13. .
  • the conductor 15 is an annular member provided so as to surround the periphery of the side housing 13, and is provided between the side housing 13 and the lower housing 14. The lower end side of the conductor 15 is connected to the outer edge of the first electrode 31.
  • the upper housing 11 and the side housing 13 are fixed by the guide portion 21a. Further, the side housing 13, the lower housing 14, and the conductor 15 are fixed by bolts 21b and 21c. As a result, the position of each housing is fixed, and the first filter chamber is in the space surrounded by the first electrode 31, the second electrode 32, the filter medium 34, the inner wall of the side housing 13, and the third electrode 33. 30 is formed. Further, sealing members such as O-rings are provided at the connection portions between the housings and the electrodes, and the first filter chamber 30 is hermetically provided. Further, the upper housing 11 is provided so that the distance from the lower housing 14 can be adjusted. As a result, the first filtration device 91, the second filtration device 92, and the third filtration device 93 can appropriately set the volume of the first filter chamber 30 according to the type and amount of the slurry (stock solution) 70.
  • the upper housing 11 is provided with a slurry supply passage 11a, an exhaust passage 11b, and a through hole 11c.
  • One end side of the slurry supply passage 11a opens on the side surface of the upper housing 11 and is connected to the slurry supply unit 16.
  • the other end side of the slurry supply passage 11a is opened on the lower surface of the upper housing 11 and is provided so as to be connected to the through hole 33a of the third electrode 33.
  • the slurry supply valve 17 has a rod-shaped member provided inside the slurry supply passage 11a, and the rod-shaped member moves vertically in the slurry supply passage 11a to switch the open / closed state of the through hole 33a. ..
  • the through hole 33a is opened by the operation of the slurry supply valve 17, the slurry (stock solution) 70 passes through the slurry supply unit 16, the slurry supply passage 11a, and the through hole 33a of the third electrode 33. It is supplied to the first filter chamber 30 of the first filtration device 91.
  • the through hole 33a is closed by the slurry supply valve 17, the supply of the slurry (stock solution) 70 to the first filter chamber 30 of the first filtration device 91 is stopped.
  • the air exhaust valve 19 has a rod-shaped member provided inside the exhaust passage 11b, and the rod-shaped member moves vertically in the exhaust passage 11b to switch the open / closed state of the through hole 33b.
  • the air discharge valve 19 opens the through hole 33b.
  • the air in the first filter chamber 30 is exhausted to the outside through the through hole 33b, the exhaust passage 11b, and the air exhaust portion 18.
  • An air discharge valve 18a is connected to the air discharge unit 18.
  • the air discharge valve 18a is, for example, a float valve, and is provided so that the air discharge valve 18a is closed when a predetermined amount of air in the first filter chamber 30 is exhausted.
  • the air discharge valve 19 closes the through hole 33b.
  • a predetermined pressure is applied to the slurry (stock solution) 70 filled in the first filter chamber 30 by the first pressurizing device 95 via the slurry supply unit 16.
  • One end side of the through hole 11c opens on the upper surface of the upper housing 11.
  • the other end side of the through hole 11c is opened on the lower surface of the upper housing 11 and is provided so as to be connected to the recess 33c of the third electrode 33.
  • a connecting conductor 56 is inserted into the through hole 11c, and the connecting conductor 56 and the third electrode 33 are connected by a recess 33c.
  • the third electrode 33 is electrically connected to the first terminal 53a of the third power supply 53 via the connecting conductor 56.
  • the first electrode 31 is electrically connected to the second terminal 51b of the first power supply 51 via the conductor 15 and the connecting conductor 54. Further, the first electrode 31 is electrically connected to the first terminal 52a of the second power supply 52 via the conductor 15 and the connecting conductor 55a.
  • the second terminal 53b of the third power supply 53 and the first terminal 51a of the first power supply 51 are connected to the reference potential GND.
  • the reference potential GND is, for example, a ground potential. However, the present invention is not limited to this, and the reference potential GND may be a predetermined fixed potential.
  • the lower housing 14 is provided with a concave second filter chamber 35, through holes 14a and 14b, and a connection hole 14c.
  • the second filter chamber 35 is provided on the upper surface of the lower housing 14 at a position overlapping the first filter chamber 30.
  • the through hole 14a connects the second filter chamber 35 and the discharge portion 22.
  • a repulsive force acts on the first particles 71 of the slurry (stock solution) 70 by driving each electrode, so that a concentration gradient occurs in the dispersion state of the first particles 71.
  • the slurry (stock solution) 70 from which the first particles 71 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34.
  • the first intermediate treatment liquid 79a in the second filter chamber 35 of the first filtration device 91 is guided to the discharge unit 22.
  • the discharge unit 22 of the first filtration device 91 is connected to the first filter chamber 30 of the second filtration device 92 via the second pressurizing device 96.
  • the first intermediate treatment liquid 79a is supplied to the first filter chamber 30 of the second filtration device 92.
  • a repulsive force acts on the second particles 75 of the first intermediate treatment liquid 79a by driving each electrode, so that a concentration gradient occurs in the dispersion state of the second particles 75.
  • the first intermediate treatment liquid 79a from which the second particles 75 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34.
  • the second intermediate treatment liquid 79b in the second filter chamber 35 of the second filtration device 92 is guided to the discharge unit 22.
  • the discharge unit 22 of the second filtration device 92 is connected to the first filter chamber 30 of the third filtration device 93 via the third pressurizing device 97.
  • the second intermediate treatment liquid 79b is supplied to the first filter chamber 30 of the third filtration device 93.
  • a repulsive force acts on the third particles 74 of the second intermediate treatment liquid 79b by driving each electrode, so that a concentration gradient occurs in the dispersion state of the third particles 74.
  • the second intermediate treatment liquid 79b from which the third particles 74 are separated flows to the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34.
  • the filtrate 79c in the second filter chamber 35 of the third filtration device 93 is guided to the discharge unit 22.
  • the discharge unit 22 of the third filtration device 93 is connected to the tank 80 via the fourth pressurizing device 98.
  • the filtrate 79c is supplied to the tank 80.
  • the filtrate 79c is a polar solvent 72.
  • the first pressurizing device 95 pressurizes the slurry (stock solution) 70 stored in the tank 80 and supplies it to the first filter chamber 30 of the first filtration device 91.
  • the second pressurizing device 96 pressurizes the first intermediate treatment liquid 79a discharged from the second filter chamber 35 of the first filtration device 91 and supplies it to the first filter chamber 30 of the second filtration device 92.
  • the third pressurizing device 97 pressurizes the second intermediate treatment liquid 79b discharged from the second filter chamber 35 of the second filtration device 92 and supplies it to the first filter chamber 30 of the third filtration device 93.
  • the fourth pressurizing device 98 pressurizes the filtrate 79c discharged from the second filter chamber 35 of the third filtering device 93 and returns it to the tank 80.
  • the first pressurizing device 95, the second pressurizing device 96, the third pressurizing device 97 and the fourth pressurizing device 98 are, for example, a pressurizing pump. Transporting the liquid using the fourth pressurizing device 98 and piping is also called a fluid conveyor.
  • the fourth pressurizing device 98 circulates the particles in the system using the clear polar solvent 72 as the transport fluid.
  • diafiltration a method of recovering a separation target in the slurry (stock solution) 70 by filtering while adding a solvent in the same amount as the amount of the filtrate in the slurry (stock solution) 70
  • a solvent in the same amount as the amount of the filtrate in the slurry (stock solution) 70
  • connection hole 14c One end side of the connection hole 14c is opened on the upper surface of the lower housing 14, and the outer edge of the second electrode 32 is provided so as to cover the connection hole 14c. Further, the other end side of the connection hole 14c opens on the side surface of the lower housing 14. A connecting conductor 55b is inserted into the connecting hole 14c, and the connecting conductor 55b and the second electrode 32 are connected to each other. As a result, the second electrode 32 is electrically connected to the second terminal 52b of the second power supply 52.
  • the configurations of the first filtration device 91, the second filtration device 92, and the third filtration device 93 shown in FIG. 2 are merely examples, and the first electrode 31, the second electrode 32, and the filter medium 34 (see FIG. 3). ) And the first filter chamber 30 sandwiched between the third electrode 33 and the like, any configuration may be used.
  • FIG. 3 is a schematic view of the first filtration device according to the first embodiment.
  • FIG. 4 is a schematic view of the second filtration device according to the first embodiment.
  • FIG. 5 is a schematic view of the third filtration device according to the first embodiment.
  • FIGS. 3 to 5 in order to make the explanation easy to understand, the arrangement relationship between the first electrode 31, the second electrode 32, the third electrode 33 and the filter medium 34, and the first filter chamber 30 and the second filter chamber 35 is shown. It is shown schematically.
  • the first electrode 31 and the second electrode 32 are mesh-shaped electrodes.
  • the first electrode 31 has a plurality of conductive thin wires 31a, and a plurality of first openings 31b are provided between the plurality of conductive thin wires 31a.
  • the second electrode 32 has a plurality of conductive thin wires 32a, and a plurality of second openings 32b are provided between the plurality of conductive thin wires 32a.
  • the second electrode 32 is provided so as to face one surface (lower surface) of the first electrode 31 via the filter medium 34.
  • the filter medium 34 is provided between the first electrode 31 and the second electrode 32.
  • the first electrode 31 and the second electrode 32 are provided in direct contact with the filter medium 34.
  • the plurality of conductive thin wires 31a and the plurality of conductive thin wires 32a are not particularly limited as long as they are conductive materials, and may be, for example, metal or carbon fiber.
  • the first electrode 31 and the second electrode 32 are not limited to the configuration in which they are in direct contact with the filter medium 34, and may be arranged with a gap between the first electrode 31 and the second electrode 32.
  • the filter medium 34 includes a filtration membrane 34a and an opening 34b.
  • the filtration membrane 34a is provided with a plurality of openings 34b.
  • An electric field acts on the filtration membrane 34a.
  • a microfiltration membrane MF membrane (Microfiltration Membrane)
  • the filter medium 34 is formed of an insulating material such as a resin material.
  • FIGS. 3 to 5 the first opening 31b of the first electrode 31, the second opening 32b of the second electrode 32, and the opening 34b of the filter medium 34 are shown to have the same size, but for the sake of explanation only. It is schematically shown, and the sizes of the first opening 31b, the second opening 32b, and the opening 34b may be different.
  • FIG. 6 is a cross-sectional view schematically showing the configurations of the first electrode, the filter medium, and the second electrode.
  • the diameter D3 of the opening 34b provided in the filter medium 34 is smaller than the diameter D1 of the first opening 31b of the first electrode 31, and the diameter D1 of the second opening 32b of the second electrode 32. It is smaller than the diameter D2.
  • the arrangement pitch of the plurality of conductive thin wires 31a, the arrangement pitch of the plurality of conductive thin wires 32a, and the arrangement pitch of the filtration membrane 34a are provided differently from each other.
  • the diameter D1 of the first opening 31b of the first electrode 31 is 0.5 ⁇ m or more and 500 ⁇ m or less, for example, about 70 ⁇ m.
  • the diameter D2 of the second opening 32b of the second electrode 32 is 0.5 ⁇ m or more and 1000 ⁇ m or less, for example, about 100 ⁇ m.
  • the diameter D3 of the plurality of openings 34b provided on the filter medium 34 is 0.1 ⁇ m or more and 100 ⁇ m or less, more preferably 1 ⁇ m or more and 7 ⁇ m or less.
  • the diameter D1 of the first opening 31b of the first electrode 31 is smaller than the diameter D2 of the second opening 32b of the second electrode 32.
  • the present invention is not limited to this, and the diameter D1 of the first opening 31b of the first electrode 31 may be formed to have the same size as the diameter D2 of the second opening 32b of the second electrode 32.
  • the opening 34b of the filter medium 34 is provided non-superimposing with the plurality of conductive thin wires 31a and the plurality of conductive thin wires 32a at least in the region overlapping the first opening 31b and the second opening 32b.
  • the distance between the first electrode 31 and the second electrode 32 is defined by the thickness of the filter medium 34.
  • the third electrode 33 is a plate-shaped member, and is provided so as to face the other surface (upper surface) of the first electrode 31 with the first filter chamber 30 interposed therebetween.
  • the through holes 33a and 33b and the recess 33c (see FIG. 2) of the third electrode 33 are not shown.
  • the first filter chamber 30 is provided in contact with the other surface (upper surface) of the first electrode 31.
  • the first filter chamber 30 is supplied with the slurry (stock solution) 70 containing the first particles 71, the second particles 75, the third particles 74, and the polar solvent 72 to be separated.
  • the first particles 71 are, for example, biomass particles or colloidal particles, and the surface of the particles is negatively charged.
  • the first particle 71 is chlorella, microalgae spirulina, colloidal silica, Escherichia coli, sewage activated sludge, or the like.
  • the diameter of the first particle 71 varies depending on the technical field to which it is applied and the type of separation target, but is 100 nm or more and 2000 ⁇ m or less, for example, 200 nm or more and 100 ⁇ m or less.
  • the second particle 75 is, for example, a high molecular weight polysaccharide, and the surface of the particle is negatively charged.
  • the diameter of the second particle 75 is smaller than the diameter of the first particle 71.
  • the diameter of the second particle 75 varies depending on the technical field to which it is applied and the type of separation target, but is 30 nm or more and 500 nm or less, for example, about 100 nm.
  • the third particle 74 is, for example, a low molecular weight polysaccharide, and the surface of the particle is negatively charged.
  • the diameter of the third particle 74 is smaller than the diameter of the second particle 75.
  • the diameter of the third particle 74 varies depending on the technical field to which it is applied and the type of separation target, but is 5 nm or more and 100 nm or less, for example, about 20 nm.
  • the polar solvent 72 in which the first particle 71, the second particle 75, and the third particle 74 are dispersed is water, and some water molecules 73 are positively charged. As a result, the slurry (stock solution) 70 is in an electrically equilibrium state as a whole.
  • the polar solvent 72 is not limited to water, and may be alcohol or the like.
  • the first power source 51 supplies the first electrode 31 with a first potential V1 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74.
  • the first potential V1 in the first filtration device 91 is, for example, ⁇ 20 V.
  • the first potential V1 in the second filtration device 92 is, for example, ⁇ 40 V.
  • the first potential V1 in the third filtration device 93 is, for example, ⁇ 60 V.
  • the second power source 52 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the second electrode 32, and has an absolute value larger than the absolute value of the first potential V1.
  • Two potentials V2 are supplied.
  • the second potential V2 in the first filtration device 91 is, for example, ⁇ 30 V.
  • the second potential V2 in the second filtration device 92 is, for example, ⁇ 50 V.
  • the second potential V2 in the third filtration device 93 is, for example, ⁇ 70 V.
  • the third power source 53 supplies the third electrode 33 with a third potential V3 having a polarity different from that of the first particle 71.
  • the third potential V3 in the first filtration device 91, the second filtration device 92, and the third filtration device 93 is, for example, + 30V.
  • the first potential V1, the second potential V2, and the third potential can be set in the range of 1 mV or more and 1000 V or less in absolute value.
  • the first potential difference (50V) between the first potential V1 (-20V) of the first electrode 31 and the third potential V3 (+ 30V) of the third electrode 33 is the first potential V1 (-20V).
  • the second potential difference (10V) between the second potential V2 (-30V) of the second electrode 32 is the first potential V1 (-20V).
  • the first potential difference (70V) between the first potential V1 (-40V) of the first electrode 31 and the third potential V3 (+ 30V) of the third electrode 33 is the first potential V1 (-40V).
  • the second potential difference (10V) between the second potential V2 (-50V) of the second electrode 32 is the first potential V1 (-40V).
  • the first potential difference (90V) between the first potential V1 (-60V) of the first electrode 31 and the third potential V3 (+ 30V) of the third electrode 33 is the first potential V1 (-60V).
  • the second potential difference (10V) between the second potential V2 (-70V) of the second electrode 32 is the first potential V1 (-60V).
  • the first potential difference (70V) in the second filtration device 92 is larger than the first potential difference (50V) in the first filtration device 91.
  • the first potential difference (90V) in the third filtration device 93 is larger than the first potential difference (50V) in the first filtration device 91 and the first potential difference (70V) in the second filtration device 92.
  • FIG. 7 is an electrical equivalent circuit diagram showing a first filtration device, a second filtration device, and a third filtration device according to the first embodiment.
  • the first power supply 51 and the third power supply 53 are constant voltage sources
  • the second power supply 52 is a constant current source.
  • the resistance component R1 and the capacitance component C are connected in parallel between the first electrode 31 and the second electrode 32.
  • the resistance component R1 and the capacitance component C are components equivalently represented by the filter medium 34 provided with a large number of openings 34b.
  • the resistance component R2 is connected between the first electrode 31 and the third electrode 33.
  • the resistance component R2 is a resistance component equivalently represented by the slurry (stock solution) 70 of the first filter chamber 30, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b.
  • the second power supply 52 may be a constant voltage power supply or a constant current power supply.
  • the second power source 52 since the second power source 52 is a constant current source, it depends on the filtration state of the first filtration device 91, the second filtration device 92, and the third filtration device 93, that is, the resistance component of the filter medium 34.
  • the second potential V2 changes according to the fluctuation of the resistance component R2 of R1 and the first filter chamber 30.
  • the second potential V2 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74, and maintains a value larger than the absolute value of the first potential V1.
  • the negatively charged first particles 71 and the first electrode are based on Coulomb's law. A repulsive force is generated between the 31 and the 31. Further, an attractive force is generated between the negatively charged first particle 71 and the third electrode 33.
  • q1 and q2 are electric charges, and s is the distance between the electric charges. That is, the smaller the distance s, the larger the Coulomb force F acts on the first particle 71.
  • a stronger repulsive force is generated in the first particle 71 located near the first electrode 31, and the first particle 71 located near the third electrode 33 is generated.
  • a stronger attractive force is generated.
  • the repulsive force and the attractive force generated in the first particle 71 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 31 and approaching the third electrode 33.
  • the negatively charged first particle 71 moves to the third electrode 33 side by electrophoresis.
  • the first filtration device 91 can prevent the first particles 71 from accumulating on the surface of the first electrode 31 and the surface of the filter medium 34 to form a cake layer. That is, it is possible to suppress an increase in the filtration resistance of the opening 34b of the filter medium 34.
  • the positively charged water molecule 73 generates an attractive force with the first electrode 31.
  • the attractive force acting on the positively charged water molecule 73 acts in the direction indicated by the arrow F2, that is, in the direction from the third electrode 33 toward the first electrode 31.
  • the positively charged water molecule 73 moves to the first electrode 31 side.
  • an electric field is formed from the first electrode 31 to the second electrode 32 so as to penetrate the filter medium 34 in the thickness direction due to the potential difference between the first electrode 31 and the second electrode 32.
  • the water molecule 73 that has moved to the first electrode 31 side receives a force by the electric field, is pulled toward the second electrode 32 side, and passes through the filter medium 34. With the movement of the positively charged water molecule 73, the uncharged water molecule is also dragged toward the second electrode 32, and an electroosmotic flow is formed. As a result, the polar solvent 72 containing the positively charged water molecule 73 flows into the second filter chamber 35. As described above, the first particle 71 is separated from the first electrode 31 by electrophoresis and moved to the third electrode 33 side, and the polar solvent 72 from which the first particle 71 is separated is discharged. , The concentration of the first particle 71 of the slurry (stock solution) 70 in the first filter chamber 30 can be increased.
  • the particle level (particle diameter) passing through the filter medium 34 can also be controlled.
  • a barrier electric field is formed between the electrode 32 and the electrode 32.
  • the first filtration device 91 suppresses the passage of the first particle 71 through the filter medium 34, and allows the second particle 75 and the third particle 74 to pass through the filter medium 34. Therefore, the concentration of the first particles 71 of the slurry (stock solution) 70 in the first filter chamber 30 can be increased.
  • the ultrafiltration membrane is controlled by the electric field control between the electrodes of the first power supply 51, the second power supply 52, and the third power supply 53.
  • the particle size to be separated can be changed to the equivalent of (UF membrane) or nanofiltration membrane (NF membrane).
  • the ultrafiltration membrane (UF membrane) is a filtration membrane having an opening diameter of 10 nm or more and 100 nm or less.
  • the nanofiltration membrane (NF membrane) is a filtration membrane having an opening diameter of 1 nm or more and 10 nm or less.
  • a stronger repulsive force is generated in the second particle 75 located near the first electrode 31, and the second particle 75 located near the third electrode 33. Generates a stronger attractive force.
  • the repulsive force and the attractive force generated in the second particle 75 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 31 and closer to the third electrode 33.
  • the negatively charged second particle 75 moves to the third electrode 33 side by electrophoresis.
  • the second filtration device 92 can prevent the second particles 75 from accumulating on the surface of the first electrode 31 and the surface of the filter medium 34 to form a cake layer. That is, it is possible to suppress an increase in the filtration resistance of the opening 34b of the filter medium 34.
  • a barrier electric field is formed between the electrode 32 and the electrode 32.
  • a stronger repulsive force is generated in the third particle 74 located near the first electrode 31, and the third particle 74 located near the third electrode 33. Generates a stronger attractive force.
  • the repulsive force and the attractive force generated in the third particle 74 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 31 and closer to the third electrode 33.
  • the negatively charged third particle 74 moves to the third electrode 33 side by electrophoresis.
  • the third filtration device 93 can prevent the third particles 74 from accumulating on the surface of the first electrode 31 and the surface of the filter medium 34 to form a cake layer. That is, it is possible to suppress an increase in the filtration resistance of the opening 34b of the filter medium 34.
  • a barrier electric field is formed between the electrode 32 and the electrode 32.
  • the third filtration device 93 prevents the third particles 74 from passing through the filter medium 34. Therefore, the concentration of the third particles 74 of the second intermediate treatment liquid 79b in the first filter chamber 30 can be increased.
  • the first particle 71, the second particle 75, and the third particle are placed between the first electrode 31 and the third electrode 33.
  • the water molecule 73 is moved by the electrophoresis that moves 74 by the Coulomb force F (the repulsive force generated between the first particle 71 and the first electrode 31) and the electric field between the first electrode 31 and the second electrode 32.
  • the first particle 71, the second particle 75, and the third particle 74 can be separated by combining with the electric permeation that allows the filter medium 34 to pass through.
  • the first electrode 31 also serves as an electrode for electrophoresis and an electrode for electroosmosis.
  • the first particle 71 in each of the first filter chambers 30 is compared with the method of simply applying pressure to the slurry (stock solution) 70, the first intermediate treatment liquid 79a, and the second intermediate treatment liquid 79b.
  • the enrichment of the second particle 75 and the third particle 74 can be increased.
  • the frequency of cleaning and replacement of the filter medium 34 can be reduced, and the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b can be efficiently filtered.
  • the volume of the first filter chamber 30 is reduced as compared with the case where pressure is simply applied to the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b to perform filtration, and the filter medium 34 is used. Even if the area of the above is reduced, the same level of filtration speed as before can be achieved. That is, the first filtration device 91, the second filtration device 92, and the third filtration device 93 can be miniaturized.
  • the configurations of the first filtration device 91, the second filtration device 92, and the third filtration device 93 described above are merely examples and can be changed as appropriate.
  • the negative electrode filter plate formed by laminating the first electrode 31, the filter medium 34, and the second electrode 32 and the third electrode 33 are arranged so as to face each other in a parallel plate shape.
  • the present invention is not limited to this, and the negative electrode filter plate formed by laminating the first electrode 31, the filter medium 34 and the second electrode 32 and the third electrode 33 may each have a curved surface.
  • the shape and arrangement of the negative electrode filter plate and the third electrode 33 can be appropriately changed according to the shape and structure of the first filtration device 91, the second filtration device 92, and the third filtration device 93.
  • the concentrations of the slurry (stock solution) 70, the first intermediate treatment liquid 79a, and the second intermediate treatment liquid 79b supplied to the first filter chamber 30 are not particularly limited, and the first filtration device 91 and the second filtration device It can be changed depending on the field to which the 92 and the third filtration device 93 are applied.
  • the internal pressure of the first filter chamber 30 is pressurized and is larger than the internal pressure of the second filter chamber 35.
  • the internal pressure of the first filter chamber 30 is made relatively larger than the internal pressure of the second filter chamber 35 by applying a negative pressure by vacuuming the internal pressure of the second filter chamber 35 or the like. You may do so.
  • first potential V1, the second potential V2, and the third potential V3 are appropriately changed according to the types of the first particle 71, the second particle 75, and the third particle 74 to be separated, and the required filtration characteristics. Is preferable.
  • the first filtration device 91, the second filtration device 92, and the third filtration device 93 do not have to include the third power supply 53.
  • the third electrode 33 is connected to, for example, the reference potential GND.
  • the first filtration device 91, the second filtration device 92, and the second filtration device 92 are compared with the case where a power source is provided for each of the first electrode 31, the second electrode 32, and the third electrode 33. 3
  • the size of the filtration device 93 can be reduced.
  • the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, and the filtrate 79c discharged from the first filtration device 91, the second filtration device 92, and the third filtration device 93 are not necessarily conveyed by the pressurizing device. It may also be transported manually, for example by an operator. That is, the filtration method using the filtration system 200 includes a step of supplying the first intermediate treatment liquid 79a of the second filter chamber 35 of the first filtration device 91 to the first filter chamber 30 of the second filtration device 92, and a second.
  • the step of supplying the second intermediate treatment liquid 79b of the second filter chamber 35 of the filtration device 92 to the first filter chamber 30 of the third filtration device 93 and the filtrate 79c of the second filter chamber 35 of the third filtration device 93. May have a step of returning to the tank 80.
  • the filtration system 200 of the first embodiment includes a first filtration device 91 and a second filtration device 92.
  • the first filtration device 91 and the second filtration device 92 are each provided with a first electrode 31 provided with a plurality of first openings 31b and a plurality of second openings 32b with one surface of the first electrode 31.
  • a second electrode 32 provided so as to face each other, a filter medium 34 provided between the first electrode 31 and the second electrode 32 provided with a plurality of third opening 34b ports, and the other of the first electrode 31.
  • a first filter chamber 30 provided in contact with a surface, a third electrode 33 provided in the first filter chamber 30 facing the first electrode 31, and a second filter provided in contact with the other surface of the second electrode 32. It has a filter chamber 35 and.
  • the intermediate treatment liquid (first intermediate treatment liquid 79a) of the second filter chamber 35 of the first filtration device 91 is supplied to the first filter chamber 30 of the second filtration device 92.
  • the Coulomb force F (the first particle 71 and the first electrode 31) generated in the particles between the first electrode 31 and the third electrode 33
  • the particles move in the direction from the first electrode 31 to the third electrode 33 due to the repulsive force generated between them.
  • electrophoresis it is possible to suppress the formation of a cake layer on the surface of the first electrode 31 and the surface of the filter medium 34.
  • particles can be separated by electroosmosis in which water molecules 73 are moved by an electric field between the first electrode 31 and the second electrode 32 and permeate through the filter medium 34, and the slurry (stock solution) in the first filter chamber 30.
  • the concentration of 70 particles can be increased.
  • the filtration rate can be improved several to 10 times or more as compared with the method of simply applying pressure to the slurry (stock solution) 70 to separate particles having a particle size larger than the opening 34b of the filter medium 34. can.
  • the absolute value of the second potential V2 of the second electrode 32 is larger than the absolute value of the first potential V1 of the first electrode 31.
  • the first potential difference between the first potential V1 and the third potential V3 of the third electrode 33 is larger than the second potential difference between the first potential V1 and the second potential V2.
  • the first potential difference in the second filtration device 92 is larger than the first potential difference in the first filtration device 91.
  • the first particle 71 can be moved to the third electrode 33 side. Further, different particles are separated in each of the first filtration device 91 and the second filtration device 92.
  • the filtration system 200 can separately separate the first particles 71 and the second particles 75 from the slurry (stock solution) 70 containing the two types of particles.
  • the filtration system 200 is a first for supplying the intermediate treatment liquid (first intermediate treatment liquid 79a) of the second filter chamber 35 in the first filtration device 91 to the first filter chamber 30 in the second filtration device 92. 2
  • the pressurizing device 96 is further provided.
  • the pressure of the first filter chamber 30 in the second filtration device 92 can be increased. Therefore, the filtration system 200 can further improve the filtration rate of the second filtration device 92.
  • the filtration system 200 further includes a third filtration device 93.
  • the third filtration device 93 is provided with a first electrode 31 provided with a plurality of first openings 31b and a second electrode 31 provided with a plurality of second openings 32b facing the one surface of the first electrode 31.
  • the two electrodes 32 and a plurality of openings 34b are provided, and the filter medium 34 provided between the first electrode 31 and the second electrode 32 is provided in contact with the other surface of the first electrode 31.
  • the first potential difference between the first potential V1 of the first electrode 31 and the third potential V3 of the third electrode 33 is the second potential V2 between the first potential V1 and the second electrode 32. Greater than 2 potential differences.
  • the intermediate treatment liquid (second intermediate treatment liquid 79b) of the second filter chamber 35 in the second filtration device 92 is supplied to the first filter chamber 30 in the third filtration device 93.
  • the first potential difference in the third filtration device 93 is larger than the first potential difference in the second filtration device 92.
  • the filtration system 200 can separately separate the first particle 71, the second particle 75, and the third particle 74 from the slurry (stock solution) 70 containing three kinds of particles.
  • FIG. 8 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the first modification of the first embodiment.
  • the same components as those described in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
  • the filtration system 200A includes a first filtration device 91A, a second filtration device 92A, and a third filtration device 93A connected in series. Be prepared.
  • Each of the first filtration device 91A, the second filtration device 92A, and the third filtration device 93A has a housing 20, four filtration units 100 arranged inside the housing 20, a second filter chamber 35, and two. It includes one first power source 51, two second power sources 52, and two third power sources 53.
  • the four filtration units 100 include a filtration unit 101, a filtration unit 102, a filtration unit 105, and a filtration unit 106.
  • the filtration unit 101 and the filtration unit 102 are arranged side by side in one direction X.
  • the filtration unit 105 and the filtration unit 106 are arranged side by side in one direction X.
  • the filtration unit 101 and the filtration unit 105 are arranged side by side in the other direction Y orthogonal to the one direction X.
  • the filtration unit 102 and the filtration unit 106 are arranged side by side in the other direction Y.
  • Each filtration unit 100 has a first filter chamber 30, a first electrode 31, a second electrode 32, a third electrode 33, and a filter medium 34.
  • the first electrode 31, the second electrode 32, the third electrode 33, and the filter medium 34 included in one filtration unit 100 are shared with the adjacent filtration units 100 in the other direction Y.
  • one first electrode 31, one second electrode 32, one third electrode 33, and one filter medium 34 are adjacent filtration units 100 (a set of filtration unit 101 and filtration unit 105) in the other direction Y.
  • the set of filtration unit 102 and filtration unit 106 are adjacent filtration units 100 (a set of filtration unit 101 and filtration unit 105) in the other direction Y.
  • a plurality of electrodes are arranged in the order of the third electrode 33, the first electrode 31, and the second electrode 32.
  • a plurality of electrodes are arranged in the order of the second electrode 32, the first electrode 31, and the third electrode 33.
  • a supply unit 81, a first discharge unit 83, and a second discharge unit 85 are connected to the housing 20.
  • the supply unit 81 is a pipe that supplies the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b to the first filter chamber 30.
  • the first discharge unit 83 is a pipe for discharging a part of the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b from the first filter chamber 30.
  • the first discharge unit 83 is provided at a position different from that of the supply unit 81.
  • the first discharge unit 83 includes a valve 84.
  • the first discharge unit 83 discharges the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b of the first filter chamber 30.
  • the first discharge unit 83 is also used to discharge the concentrated liquid 76.
  • the concentrate 76 is a concentrated slurry (stock solution) 70.
  • the second discharge unit 85 is a pipe for discharging the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, or the filtrate 92c in the second filter chamber 35 from the second filter chamber 35.
  • the second filter chamber 35 is surrounded by the inner wall of the housing 20 and the two second electrodes 32.
  • the second filter chamber 35 is arranged between two filtration units 100 arranged in one direction X.
  • a repulsive force acts on the first particle 71 (see FIG. 3) of the slurry (stock solution) 70 by driving each electrode, so that a concentration gradient occurs in the dispersion state of the first particle 71.
  • the slurry (stock solution) 70 from which the first particles 71 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34.
  • the first intermediate treatment liquid 79a in the second filter chamber 35 of the first filtration device 91A is supplied to the second filtration device 92A via the second discharge unit 85.
  • a repulsive force acts on the second particles 75 (see FIG. 4) of the first intermediate treatment liquid 79a by driving each electrode, so that a concentration gradient occurs in the dispersion state of the second particles 75.
  • the first intermediate treatment liquid 79a from which the second particles 75 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34.
  • the second intermediate treatment liquid 79b in the second filter chamber 35 of the second filtration device 92A is supplied to the third filtration device 93A via the second discharge unit 85.
  • a repulsive force acts on the third particle 74 (see FIG. 5) of the second intermediate treatment liquid 79b by driving each electrode, so that a concentration gradient occurs in the dispersion state of the third particle 74.
  • the second intermediate treatment liquid 79b from which the third particles 74 are separated flows to the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34.
  • the filtrate 79c in the second filter chamber 35 of the third filtration device 93A is returned to the tank 80 in which the slurry (stock solution) 70 is stored via the second discharge unit 85.
  • the filtrate 79c is a polar solvent 72.
  • the plurality of filtration units 100 may be arranged side by side in a direction orthogonal to both the one direction X and the other direction Y (the depth direction of the paper surface in FIG. 8). That is, the plurality of filtration units 100 may be arranged three-dimensionally side by side.
  • Each of the first filtration device 91A, the second filtration device 92A, and the third filtration device 93A does not necessarily have to include two first power sources 51, two second power sources 52, and two third power sources 53.
  • the number of power supplies that are constant voltage power supplies may be one.
  • the number of the first power supply 51 and the third power supply 53 may be one.
  • one first power source 51 is connected to the plurality of first electrodes 31, and one third power source 53 is connected to the plurality of third electrodes 33.
  • FIG. 9 is a modification of FIG. 8.
  • FIG. 9 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the second modification of the first embodiment.
  • the same components as those described in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
  • the filtration system 200B includes a first filtration device 91B, a second filtration device 92B, and a third filtration device 93B connected in series. Be prepared.
  • Each of the first filtration device 91B, the second filtration device 92B, and the third filtration device 93B has eight filtration units 100, two second filter chambers 35, four first power supplies 51, and four second filters. It includes a power source 52 and four third power sources 53.
  • the eight filtration units 100 include a filtration unit 101, a filtration unit 102, a filtration unit 103, a filtration unit 104, a filtration unit 105, a filtration unit 106, a filtration unit 107, and a filtration unit 108.
  • the filtration unit 101, the filtration unit 102, the filtration unit 103, and the filtration unit 104 are arranged side by side in one direction X.
  • the filtration unit 105, the filtration unit 106, the filtration unit 107, and the filtration unit 108 are arranged side by side in one direction X.
  • the filtration unit 103 and the filtration unit 107 are arranged side by side in the other direction Y.
  • the filtration unit 104 and the filtration unit 108 are arranged side by side in the other direction Y.
  • the first electrode 31, the second electrode 32, the third electrode 33, and the filter medium 34 included in one filtration unit 100 are shared with the adjacent filtration units 100 in the other direction Y.
  • one first electrode 31, one second electrode 32, one third electrode 33, and one filter medium 34 are adjacent filtration units 100 (a set of filtration unit 103 and filtration unit 107) in the other direction Y. And is shared by the set of filtration unit 104 and filtration unit 108).
  • a plurality of electrodes are arranged in the order of the third electrode 33, the first electrode 31, and the second electrode 32.
  • a plurality of electrodes are arranged in the order of the second electrode 32, the first electrode 31, and the third electrode 33.
  • the third electrode 33 included in the filtration unit 102 is shared with the adjacent filtration units 103 in one direction X.
  • the third electrode 33 included in the filtration unit 106 is shared with the adjacent filtration units 107 in one direction X.
  • the filtration unit 100 (the set of the filtration unit 102 and the filtration unit 103, and the set of the filtration unit 106 and the filtration unit 107) adjacent to each other in the one direction X. ) Is partitioned by the third electrode 33 shared by.
  • the first discharge unit 831 discharges the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b in the first filter chamber 30 of the filtration unit 105 and the filtration unit 106.
  • the first discharge unit 831 is also used to discharge the concentrated liquid 76.
  • the second discharge unit 851 discharges the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, or the filtrate 92c in the second filter chamber 35 between the filtration unit 105 and the filtration unit 106 from the second filter chamber 35. It is a piping for doing.
  • the second discharge unit 851 is connected to the filtration unit 103 and the first filter chamber 30 of the filtration unit 104.
  • the third discharge unit 832 discharges the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b in the first filter chamber 30 of the filtration unit 107 and the filtration unit 108.
  • the third discharge unit 832 is also used to discharge the concentrated liquid 76.
  • the fourth discharge unit 852 discharges the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, or the filtrate 92c in the second filter chamber 35 between the filtration unit 107 and the filtration unit 108 from the second filter chamber 35. It is a piping for doing.
  • the filtration units 100 of 4 do not necessarily have to be arranged in one direction X.
  • the number of filtration units 100 arranged in one direction X may be three or five or more.
  • the third electrode 33 arranged between the two arranged first filter chambers 30 in one direction X does not necessarily have to be shared by the two filtration units 100. That is, two third electrodes 33 isolated from each other may be arranged between the two arranged first filter chambers 30 in one direction X.
  • the plurality of filtration units 100 may be arranged side by side in a direction orthogonal to both one direction X and the other direction Y (the depth direction of the paper surface in FIG. 9). That is, the plurality of filtration units 100 may be arranged three-dimensionally side by side.
  • Each of the first filtration device 91B, the second filtration device 92B, and the third filtration device 93B does not necessarily have to include four first power sources 51, four second power sources 52, and four third power sources 53.
  • the number of power supplies that are constant voltage power supplies may be one.
  • the number of the first power supply 51 and the third power supply 53 may be one.
  • one first power source 51 is connected to the plurality of first electrodes 31, and one third power source 53 is connected to the plurality of third electrodes 33.
  • FIG. 10 is a schematic diagram of the filtration device according to the second embodiment.
  • the same components as those described in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
  • the filtration device 10 of the second embodiment includes a housing 40, a first filter chamber 400, a first electrode 401, a second electrode 402, a third electrode 403, and a first filter medium.
  • 404 2nd filter chamber 405, 4th electrode 411, 5th electrode 412, 2nd filter medium 414, 3rd filter chamber 415, 6th electrode 421, 7th electrode 422, and 3rd filter medium. It has a 424, a fourth filter chamber 425, a first power supply 61, a second power supply 62, a fourth power supply 64, a fifth power supply 65, a sixth power supply 66, and a seventh power supply 67.
  • the first filter chamber 400 is a space surrounded by the inner wall of the housing 40, the first electrode 401, and the third electrode 403.
  • the first electrode 401 and the second electrode 402 are mesh-shaped electrodes.
  • the first electrode 401 has a plurality of conductive thin wires 401a, and a plurality of first openings 401b are provided between the plurality of conductive thin wires 401a.
  • the second electrode 402 has a plurality of conductive thin wires 402a, and a plurality of second openings 402b are provided between the plurality of conductive thin wires 402a.
  • the second electrode 402 is provided so as to face one surface (lower surface) of the first electrode 401 via the first filter medium 404.
  • the first filter medium 404 is provided between the first electrode 401 and the second electrode 402.
  • the first electrode 401 and the second electrode 402 are provided in direct contact with the first filter medium 404.
  • the third electrode 403 is a plate-shaped member, and is provided so as to face the other surface (upper surface) of the first electrode 401 with the first filter chamber 400 interposed therebetween.
  • the first filter medium 404 includes a filtration membrane 404a and a first opening 404b.
  • the filtration membrane 404a is provided with a plurality of first opening 404b.
  • An electric field acts on the filtration membrane 404a.
  • the first filter medium 404 for example, a microfiltration membrane (MF membrane) is used.
  • the first filter medium 404 is formed of an insulating material such as a resin material.
  • the second filter chamber 405 is arranged on the side opposite to the first electrode 401 with the second electrode 402 interposed therebetween. The second filter chamber 405 is provided in contact with the second electrode 402.
  • the first electrode 401 is electrically connected to the second terminal 61b of the first power supply 61. Further, the first electrode 401 is electrically connected to the first terminal 62a of the second power supply 62.
  • the second electrode 402 is electrically connected to the second terminal 62b of the second power supply 62.
  • the third electrode 403 and the first terminal 61a of the first power supply 61 are connected to the reference potential GND.
  • the first power supply 61 supplies the first electrode 401 with a first potential V1 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74.
  • the first potential V1 is, for example, ⁇ 20 V.
  • the second power source 62 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the second electrode 402, and has an absolute value larger than the absolute value of the first potential V1.
  • Two potentials V2 are supplied.
  • the second potential V2 is, for example, ⁇ 30 V.
  • the potential difference (20V) between the first potential V1 (-20V) of the first electrode 401 and the third potential (0V) of the third electrode 403 is the second potential of the first potential V1 (-20V) and the second electrode 402. It is larger than the potential difference (10V) from V2 (-30).
  • the filtration device 10 is further provided with a third power source, and the third power source has a third potential V3 (3rd potential V3) having a polarity different from that of the first particle 71, the second particle 75, and the third particle 74 on the third electrode 403. For example, + 30V) may be supplied.
  • the first potential V1, the second potential V2, and the third potential V3 can be set in an absolute value in the range of 1 mV or more and 1000 V or less.
  • the 4th electrode 411 and the 5th electrode 412 are mesh-shaped electrodes.
  • the fourth electrode 411 has a plurality of conductive thin wires 411a, and a plurality of fourth openings 411b are provided between the plurality of conductive thin wires 411a.
  • the fourth electrode 411 is arranged so as to sandwich the second filter chamber 405 with the second electrode 402.
  • the fifth electrode 412 has a plurality of conductive thin wires 412a, and a plurality of fifth openings 412b are provided between the plurality of conductive thin wires 412a.
  • the fifth electrode 412 is provided so as to face one surface (lower surface) of the fourth electrode 411 via the second filter medium 414.
  • the second filter medium 414 is provided between the fourth electrode 411 and the fifth electrode 412.
  • the fourth electrode 411 and the fifth electrode 412 are provided in direct contact with the second filter medium 414.
  • the second filter medium 414 includes a filtration membrane 414a and a second opening 414b.
  • the filtration membrane 414a is provided with a plurality of second opening 414b.
  • An electric field acts on the filtration membrane 414a.
  • the size of the second opening 414b is the same as that of the first opening 404b of the first filter medium 404.
  • As the second filter medium 414 for example, a microfiltration membrane (MF membrane (Microfiltration Membrane)) is used.
  • the second filter medium 414 is made of an insulating material such as a resin material.
  • the third filter chamber 415 is arranged on the side opposite to the fourth electrode 411 with the fifth electrode 412 interposed therebetween.
  • the third filter chamber 415 is provided in contact with the fifth electrode 412.
  • the fourth electrode 411 is electrically connected to the second terminal 64b of the fourth power supply 64. Further, the fourth electrode 411 is electrically connected to the first terminal 65a of the fifth power supply 65. The fifth electrode 412 is electrically connected to the second terminal 65b of the fifth power supply 65. The first terminal 64a of the fourth power supply 64 is connected to the reference potential GND.
  • the fourth power source 64 supplies the fourth electrode 411 with a fourth potential V4 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74.
  • the fourth potential V4 is, for example, ⁇ 40 V.
  • the fifth power source 65 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the fifth electrode 412, and has an absolute value larger than the absolute value of the fourth potential V4.
  • 5 Potential V5 is supplied.
  • the fifth potential V5 is, for example, ⁇ 50 V.
  • the potential difference (40V) between the fourth potential V4 (-40V) and the third potential V3 (0V) of the fourth electrode 411 is the fifth potential (-50V) of the fourth potential V4 (-40V) and the fifth electrode 412. It is larger than the potential difference (10V) with.
  • the potential difference (40V) between the fourth potential V4 (-40V) and the third potential V3 (0V) is larger than the potential difference (20V) between the first potential V1 (-20) and the third potential V3 (0V).
  • the fourth potential V4 and the fifth potential V5 can be set in an absolute value in the range of 1 mV or more and 1000 V or less.
  • the sixth electrode 421 and the seventh electrode 422 are mesh-shaped electrodes. Specifically, the sixth electrode 421 has a plurality of conductive thin wires 421a, and a plurality of sixth openings 421b are provided between the plurality of conductive thin wires 421a.
  • the sixth electrode 421 is arranged with the third filter chamber 415 sandwiched between the sixth electrode 421 and the fifth electrode 412.
  • the seventh electrode 422 has a plurality of conductive thin wires 422a, and a plurality of seventh openings 422b are provided between the plurality of conductive thin wires 422a.
  • the seventh electrode 422 is provided so as to face one surface (lower surface) of the sixth electrode 421 via the third filter medium 424.
  • the third filter medium 424 is provided between the sixth electrode 421 and the seventh electrode 422.
  • the sixth electrode 421 and the seventh electrode 422 are provided in direct contact with the third filter medium 424.
  • the third filter medium 424 includes a filtration membrane 424a and a third opening 424b.
  • the filtration membrane 424a is provided with a plurality of third opening 424b.
  • An electric field acts on the filtration membrane 424a.
  • the size of the third opening 424b is the same as that of the second opening 414b of the second filter medium 414.
  • As the third filter medium 424 for example, a microfiltration membrane (MF membrane (Microfiltration Membrane)) is used.
  • the third filter medium 424 is formed of an insulating material such as a resin material.
  • the fourth filter chamber 425 is arranged on the side opposite to the sixth electrode 421 with the seventh electrode 422 interposed therebetween. The fourth filter chamber 425 is provided in contact with the seventh electrode 422.
  • the sixth electrode 421 is electrically connected to the second terminal 66b of the sixth power supply 66. Further, the sixth electrode 421 is electrically connected to the first terminal 67a of the seventh power supply 67. The seventh electrode 422 is electrically connected to the second terminal 67b of the seventh power supply 67. The first terminal 66a of the sixth power supply 66 is connected to the reference potential GND.
  • the sixth power source 66 supplies the sixth electrode 421 with a sixth potential V6 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74.
  • the sixth potential V6 is, for example, ⁇ 60 V.
  • the seventh power source 67 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the seventh electrode 422, and has an absolute value larger than the absolute value of the sixth potential V6.
  • 7 potential V7 is supplied.
  • the seventh potential V7 is, for example, ⁇ 70 V.
  • the potential difference (60V) between the 6th potential V6 (-60V) and the 3rd potential V3 (0V) of the 6th electrode 421 is the 7th potential V7 (-70V) of the 6th potential V6 (-60V) and the 7th electrode 422. ) Is larger than the potential difference (10V).
  • the potential difference (60V) between the sixth potential V6 (-60V) and the third potential V3 (0V) is larger than the potential difference (40V) between the fourth potential V4 (-40V) and the third potential (0V).
  • the sixth potential V6 and the seventh potential V7 can be set in an absolute value in the range of 1 mV or more and 1000 V or less.
  • the pressurizing device 99 returns the filtrate 79c of the fourth filter chamber 425 to the first filter chamber 400.
  • the pressurizing device 99 is, for example, a pressurizing pump. Transporting the liquid using the pressurizing device 99 and piping is also called a fluid conveyor.
  • the pressurizing device 99 can apply a pressure larger than the total of the filtration resistances (pressure loss) of the first filter chamber 400, the second filter chamber 405, and the third filter chamber 415 to the first filter chamber 400.
  • the circulation flow rate of the pressurizing device 99 is equal to or less than the capacity of the filter chamber having the lowest filtration rate (acquired filtrate amount) among the first filter chamber 400, the second filter chamber 405, and the third filter chamber 415.
  • a stronger repulsive force is generated in the first particle 71 located near the first electrode 401, and a stronger attractive force is generated in the first particle 71 located near the third electrode 403. Occur.
  • the repulsive force and the attractive force generated in the first particle 71 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 401 and approaching the third electrode 403.
  • the negatively charged first particle 71 moves to the third electrode 403 side by electrophoresis.
  • the positively charged water molecule 73 generates an attractive force with the first electrode 401.
  • the attractive force acting on the positively charged water molecule 73 acts in the direction indicated by the arrow F2, that is, in the direction from the third electrode 403 to the first electrode 401.
  • the positively charged water molecule 73 moves to the first electrode 401 side.
  • an electric field is formed from the first electrode 401 to the second electrode 402 so as to penetrate the first filter medium 404 in the thickness direction due to the potential difference between the first electrode 401 and the second electrode 402. .
  • the water molecule 73 that has moved to the first electrode 401 side receives a force by the electric field, is pulled toward the second electrode 402 side, and passes through the first filter medium 404. With the movement of the positively charged water molecule 73, the uncharged water molecule is also dragged toward the second electrode 402, and an electroosmotic flow is formed. As a result, the polar solvent 72 containing the positively charged water molecule 73 flows into the second filter chamber 405. As described above, the first particle 71 is separated from the first electrode 401 by electrophoresis and moved to the third electrode 403 side, and the polar solvent 72 from which the first particle 71 is separated is discharged. , The concentration of the first particle 71 of the slurry (stock solution) 70 in the first filter chamber 400 can be increased.
  • the particle level (particle diameter) passing through the first filter medium 404 can also be controlled.
  • the electric field of is formed.
  • the filtration device 10 suppresses the first particle 71 from passing through the first filter medium 404, and allows the second particle 75 and the third particle 74 to pass through the first filter medium 404. Therefore, the concentration of the first particles 71 of the slurry (stock solution) 70 in the first filter chamber 400 can be increased.
  • the filtration device 10 suppresses the second particle 75 from passing through the second filter medium 414, and allows the third particle 74 to pass through the second filter medium 414. Therefore, the concentration of the second particles 75 of the first intermediate treatment liquid 79a in the second filter chamber 405 can be increased.
  • the filtration device 10 prevents the third particle 74 from passing through the third filter medium 424. Therefore, the concentration of the third particles 74 of the second intermediate treatment liquid 79b in the third filter chamber 415 can be increased.
  • the filtration device 10 of the second embodiment is provided with a first electrode 401 provided with a plurality of first openings 401b and a plurality of second openings 402b, and is provided with one surface of the first electrode 401.
  • a second electrode 402 provided opposite to the first electrode 402, a first filter medium 404 provided between the first electrode 401 and the second electrode 402, and a first electrode 401 are provided with a plurality of first opening 404b.
  • a first filter chamber 400 provided in contact with the other surface of the first filter chamber, a third electrode 403 provided in the first filter chamber 400 facing the first electrode 401, and a third electrode 403 provided in contact with the other surface of the second electrode 402. It has a second filter chamber 405 and the like.
  • the filtration device 10 has a second filter chamber 405 sandwiched between the second electrode 402 and a fourth electrode 411 provided with a plurality of fourth openings 411b, and a plurality of fifth openings 412b provided.
  • a fifth electrode 412 provided facing one surface of the four electrodes 411 and a plurality of second opening 414b are provided, and a second filter medium provided between the fourth electrode 411 and the fifth electrode 412. It has a 414 and a third filter chamber 415 provided in contact with the other surface of the fifth electrode 412.
  • the potential difference between the first potential V1 of the first electrode 401 and the third potential V3 of the third electrode 403 is larger than the potential difference between the first potential and the second potential V2 of the second electrode 402.
  • the potential difference between the fourth potential V4 and the third potential V3 of the fourth electrode 411 is larger than the potential difference between the fourth potential V4 and the fifth potential V5 of the fifth electrode 412.
  • the potential difference between the fourth potential V4 and the third potential V3 is larger than the potential difference between the first potential and the third potential.
  • the particles move in the direction from the first electrode 401 to the third electrode 403 due to the Coulomb force F generated in the particles between the first electrode 401 and the third electrode 403.
  • electrophoresis it is possible to suppress the formation of a cake layer on the surface of the first electrode 401 and the surface of the first filter medium 404.
  • the particles can be separated by electroosmosis in which the water molecule 73 is moved by the electric field between the first electrode 401 and the second electrode 402 and permeates through the first filter medium 404, and the slurry in the first filter chamber 400 ( The concentration of the particles of the undiluted solution) 70 can be increased.
  • the filtration rate is increased several to 10 times or more compared to the method of simply applying pressure to the slurry (stock solution) 70 to separate particles having a particle size larger than that of the first opening 404b of the first filter medium 404. Can be improved. Further, different particles are separated in each of the first filter chamber 400 and the second filter chamber 405. The filtration device 10 can separately separate the first particles 71 and the second particles 75 from the slurry (stock solution) 70 containing the two types of particles.
  • the filtration device 10 of the second embodiment has a sixth electrode 421 having a third filter chamber 415 sandwiched between the fifth electrode 412 and a plurality of sixth openings 421b, and a plurality of seventh openings 422b. Is provided, and a seventh electrode 422 provided facing one surface of the sixth electrode 421 and a plurality of third opening 424b are provided, and are provided between the sixth electrode 421 and the seventh electrode 422. It has a third filter medium 424 and a fourth filter chamber 425 provided in contact with the other surface of the seventh electrode 422.
  • the potential difference between the sixth potential V6 and the third potential V3 of the sixth electrode 421 is larger than the potential difference between the sixth potential V6 and the seventh potential V7 of the seventh electrode 422.
  • the potential difference between the sixth potential V6 and the third potential V3 is larger than the potential difference between the fourth potential V4 and the third potential V3.
  • the filtration device 10 can separately separate the first particles 71, the second particles 75, and the third particles 74 from the slurry (stock solution) 70 containing three types of particles.

Abstract

This filtration system comprises a first filtration device and a second filtration device. The first filtration device and the second filtration device each include: a first electrode in which a plurality of first openings are provided; a second electrode in which a plurality of second openings are provided and which is disposed facing one surface of the first electrode; a filtration material in which a plurality of apertures are provided and which is disposed between the first electrode and the second electrode; a first filter chamber disposed in contact with the other surface of the first electrode; a third electrode which is disposed in the first filter chamber and faces the first electrode; and a second filter chamber disposed in contact with the other surface of the second electrode. A first intermediate treatment liquid is supplied to the first filter chamber of the second filtration device from the second filter chamber of the first filtration device.

Description

ろ過システム及びろ過装置Filtration system and filtration equipment
 本発明は、ろ過システム及びろ過装置に関する。 The present invention relates to a filtration system and a filtration device.
 粒子流体系スラリーのろ過による固液分離において、電気浸透や電気泳動を利用して分離対象の粒子と液体を分離する方法が知られている(例えば特許文献1、2参照)。電気浸透を利用した固液分離は、電極間に挟んだケーキ層に電圧と圧力を加え、ケーキ層中の水分を電気浸透作用によりろ材を通して追い出す方法である。また、電気泳動を利用した固液分離は、スラリー中の粒子を電気泳動により移動させてろ材に直接接触させて、スラリー中の粒子を分離する方法である。 In solid-liquid separation by filtration of a particle-fluid slurry, a method of separating a particle and a liquid to be separated by using electro-osmosis or electrophoresis is known (see, for example, Patent Documents 1 and 2). Solid-liquid separation using electroosmosis is a method in which voltage and pressure are applied to a cake layer sandwiched between electrodes, and water in the cake layer is expelled through a filter medium by electroosmosis. Further, the solid-liquid separation using electrophoresis is a method in which the particles in the slurry are moved by electrophoresis and brought into direct contact with the filter medium to separate the particles in the slurry.
特開昭61-018410号公報Japanese Unexamined Patent Publication No. 61-018410 国際公開第2004/045748号International Publication No. 2004/045748
 スラリー中の粒子をろ材に直接接触させて固液分離する方法では、ろ材の目詰まりによるろ過速度の低下が生じる可能性がある。 The method of directly contacting the particles in the slurry with the filter medium for solid-liquid separation may cause a decrease in the filtration rate due to clogging of the filter medium.
 本発明は、ろ過速度を向上させることが可能なろ過システム及びろ過装置を提供することを目的とする。 An object of the present invention is to provide a filtration system and a filtration device capable of improving the filtration rate.
 本発明の一側面のろ過システムは、第1ろ過装置と、第2ろ過装置とを備え、前記第1ろ過装置及び前記第2ろ過装置は、それぞれ、複数の第1開口が設けられた第1電極と、複数の第2開口が設けられ、前記第1電極の一方の面と対向して設けられた第2電極と、複数の目開きが設けられ、前記第1電極と前記第2電極との間に設けられたろ材と、前記第1電極の他方の面と接して設けられる第1ろ室と、前記第1ろ室に設けられ、前記第1電極と対向する第3電極と、前記第2電極の他方の面と接して設けられる第2ろ室と、を有し、前記第1ろ過装置の第2ろ室の中間処理液が、前記第2ろ過装置の第1ろ室へ供給される。 The filtration system according to one aspect of the present invention includes a first filtration device and a second filtration device, and the first filtration device and the second filtration device are each provided with a plurality of first openings. An electrode, a second electrode provided with a plurality of second openings and facing one surface of the first electrode, and a plurality of openings provided with the first electrode and the second electrode. A filter medium provided between the two, a first filter chamber provided in contact with the other surface of the first electrode, a third electrode provided in the first filter chamber and facing the first electrode, and the said. It has a second filter chamber provided in contact with the other surface of the second electrode, and the intermediate treatment liquid in the second filter chamber of the first filtration device is supplied to the first filter chamber of the second filtration device. Will be done.
 本発明のろ過システム及びろ過装置によれば、ろ過速度を向上させることが可能である。 According to the filtration system and the filtration device of the present invention, it is possible to improve the filtration rate.
図1は、第1実施形態に係るろ過システムの構成例を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a configuration example of a filtration system according to the first embodiment. 図2は、第1実施形態に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置の構成例を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a configuration example of the first filtration device, the second filtration device, and the third filtration device according to the first embodiment. 図3は、第1実施形態に係る第1ろ過装置の模式図である。FIG. 3 is a schematic view of the first filtration device according to the first embodiment. 図4は、第1実施形態に係る第2ろ過装置の模式図である。FIG. 4 is a schematic view of the second filtration device according to the first embodiment. 図5は、第1実施形態に係る第3ろ過装置の模式図である。FIG. 5 is a schematic view of the third filtration device according to the first embodiment. 図6は、第1電極、ろ材及び第2電極の構成を模式的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the configurations of the first electrode, the filter medium, and the second electrode. 図7は、第1実施形態に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置を示す電気的等価回路図である。FIG. 7 is an electrical equivalent circuit diagram showing a first filtration device, a second filtration device, and a third filtration device according to the first embodiment. 図8は、第1実施形態の第1変形例に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置の模式図である。FIG. 8 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the first modification of the first embodiment. 図9は、第1実施形態の第2変形例に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置の模式図である。FIG. 9 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the second modification of the first embodiment. 図10は、第2実施形態に係るろ過装置の模式図である。FIG. 10 is a schematic diagram of the filtration device according to the second embodiment.
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、下記の発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記第1実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiments for carrying out the following inventions (hereinafter referred to as embodiments). Further, the components in the first embodiment described below include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that have a so-called equal range. Further, the components disclosed in the following embodiments can be appropriately combined.
 図1は、第1実施形態に係るろ過システムの構成例を模式的に示す断面図である。図2は、第1実施形態に係るろ過装置の構成例を模式的に示す断面図である。第1実施形態に係るろ過システム200は、極性溶媒72中に第1粒子71、第2粒子75及び第3粒子74が分散されたスラリー(原液)70から、第1粒子71、第2粒子75及び第3粒子74を分離する装置である。具体的には、ろ過システム200は、ライフサイエンス分野や、下水処理、排水処理分野等に適用できる。ライフサイエンス分野では、培養細胞、微細藻類、細菌、バクテリア、ウイルス等の微生物体培養を行うバイオ産業や、培養微生物体が体外、体内に生産する酵素、タンパク質、多糖類、脂質等の利用、応用分野であるバイオ創薬や化粧品業界、又は、醸造、発酵、搾汁、飲料等を扱うビバレッジ産業に適用できる。下水処理、排水処理分野では、難ろ過性の微細バイオマス水系スラリーで、バイオマス粒子の分離に適用できる。あるいは、ろ過システム200は、表面帯電した微粒子が電気的反発作用で高分散したコロイド粒子系スラリーで、コロイド微粒子の濃縮回収用途に適用できる。図1に示すように、第1実施形態に係るろ過システム200は、第1ろ過装置91と、第2ろ過装置92と、第3ろ過装置93と、第1加圧装置95と、第2加圧装置96と、第3加圧装置97と、第4加圧装置98と、を備える。 FIG. 1 is a cross-sectional view schematically showing a configuration example of the filtration system according to the first embodiment. FIG. 2 is a cross-sectional view schematically showing a configuration example of the filtration device according to the first embodiment. In the filtration system 200 according to the first embodiment, the first particles 71, the second particles 75, and the second particles 75 are obtained from the slurry (stock solution) 70 in which the first particles 71, the second particles 75, and the third particles 74 are dispersed in the polar solvent 72. And a device for separating the third particle 74. Specifically, the filtration system 200 can be applied to the life science field, the sewage treatment field, the wastewater treatment field, and the like. In the field of life science, the bio-industry for culturing microorganisms such as cultured cells, microalgae, bacteria, bacteria, and viruses, and the utilization and application of enzymes, proteins, polysaccharides, lipids, etc. produced by cultured microorganisms outside and inside the body. It can be applied to the biopharmaceutical and cosmetics industries, which are the fields, or the beverage industry, which deals with brewing, fermentation, squeezing, beverages, and the like. In the fields of sewage treatment and wastewater treatment, it is a fine biomass water-based slurry that is difficult to filter and can be applied to the separation of biomass particles. Alternatively, the filtration system 200 is a colloidal particle-based slurry in which surface-charged fine particles are highly dispersed by an electric repulsive action, and can be applied to a concentrated recovery application of colloidal fine particles. As shown in FIG. 1, the filtration system 200 according to the first embodiment includes a first filtration device 91, a second filtration device 92, a third filtration device 93, a first pressurizing device 95, and a second addition. A pressure device 96, a third pressurizing device 97, and a fourth pressurizing device 98 are provided.
 図2に示すように、第1実施形態に係る第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93は、直列に接続される。第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93のそれぞれは、上部筐体11と、蓋部12と、側部筐体13と、下部筐体14と、導体15と、を有する。第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93のそれぞれは、さらに、上部筐体11、側部筐体13及び下部筐体14で囲まれた内部空間に、第1ろ室30と、第1電極31と、第2電極32と、第3電極33と、ろ材34(図3から図5参照)と、を有する。第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93のそれぞれは、さらに、第1電極31、第2電極32及び第3電極33に電気的に接続された、第1電源51と、第2電源52と、第3電源53と、を有する。 As shown in FIG. 2, the first filtration device 91, the second filtration device 92, and the third filtration device 93 according to the first embodiment are connected in series. Each of the first filtration device 91, the second filtration device 92, and the third filtration device 93 has an upper housing 11, a lid portion 12, a side housing 13, a lower housing 14, and a conductor 15. Have. Each of the first filtration device 91, the second filtration device 92, and the third filtration device 93 further has a first filter chamber in an internal space surrounded by an upper housing 11, a side housing 13, and a lower housing 14. It has 30, a first electrode 31, a second electrode 32, a third electrode 33, and a filter medium 34 (see FIGS. 3 to 5). Each of the first filtration device 91, the second filtration device 92, and the third filtration device 93 further has a first power supply 51 electrically connected to the first electrode 31, the second electrode 32, and the third electrode 33. , A second power source 52 and a third power source 53.
 具体的には、上部筐体11は、絶縁材料で形成された円柱状の部材である。側部筐体13は、絶縁材料で形成され、貫通孔を有する環状の部材である。上部筐体11の下端側の一部が側部筐体13の貫通孔に挿入される。下部筐体14は、絶縁材料で形成され、側部筐体13を支持する。蓋部12は、上部筐体11の上面を覆って設けられる。 Specifically, the upper housing 11 is a columnar member made of an insulating material. The side housing 13 is an annular member made of an insulating material and having a through hole. A part of the lower end side of the upper housing 11 is inserted into the through hole of the side housing 13. The lower housing 14 is made of an insulating material and supports the side housing 13. The lid portion 12 is provided so as to cover the upper surface of the upper housing 11.
 第1電極31、第2電極32及びろ材34(図3から図5参照)の外縁は、側部筐体13と下部筐体14との間に挟まれて固定される。第3電極33は、上部筐体11の下面(下部筐体14と対向する面)に、ボルト等の接続部材(図示しない)により固定され、側部筐体13の貫通孔の内部に位置する。また、導体15は、側部筐体13の周囲を囲むように設けられた環状の部材であり、側部筐体13と下部筐体14との間に設けられる。導体15の下端側は、第1電極31の外縁と接続される。 The outer edges of the first electrode 31, the second electrode 32 and the filter medium 34 (see FIGS. 3 to 5) are sandwiched and fixed between the side housing 13 and the lower housing 14. The third electrode 33 is fixed to the lower surface of the upper housing 11 (the surface facing the lower housing 14) by a connecting member (not shown) such as a bolt, and is located inside the through hole of the side housing 13. .. Further, the conductor 15 is an annular member provided so as to surround the periphery of the side housing 13, and is provided between the side housing 13 and the lower housing 14. The lower end side of the conductor 15 is connected to the outer edge of the first electrode 31.
 上部筐体11と側部筐体13とは、ガイド部21aにより固定される。また、側部筐体13と下部筐体14と導体15とは、ボルト21b、21cにより固定される。これにより、各筐体の位置が固定され、第1電極31、第2電極32及びろ材34と、側部筐体13の内壁と、第3電極33とで囲まれた空間に第1ろ室30が形成される。また、各筐体間及び各電極間の接続部分には、それぞれOリング等の封止部材が設けられ、第1ろ室30が密閉して設けられる。また、上部筐体11は、下部筐体14との距離が調整可能に設けられている。これにより、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93は、スラリー(原液)70の種類や量に応じて、第1ろ室30の体積を適切に設定できる。 The upper housing 11 and the side housing 13 are fixed by the guide portion 21a. Further, the side housing 13, the lower housing 14, and the conductor 15 are fixed by bolts 21b and 21c. As a result, the position of each housing is fixed, and the first filter chamber is in the space surrounded by the first electrode 31, the second electrode 32, the filter medium 34, the inner wall of the side housing 13, and the third electrode 33. 30 is formed. Further, sealing members such as O-rings are provided at the connection portions between the housings and the electrodes, and the first filter chamber 30 is hermetically provided. Further, the upper housing 11 is provided so that the distance from the lower housing 14 can be adjusted. As a result, the first filtration device 91, the second filtration device 92, and the third filtration device 93 can appropriately set the volume of the first filter chamber 30 according to the type and amount of the slurry (stock solution) 70.
 上部筐体11には、スラリー供給通路11aと、排気通路11bと、貫通孔11cとが設けられる。スラリー供給通路11aの一端側は、上部筐体11の側面に開口し、スラリー供給部16に接続される。スラリー供給通路11aの他端側は、上部筐体11の下面に開口し、第3電極33の貫通孔33aと繋がって設けられる。スラリー供給バルブ17は、スラリー供給通路11aの内部に設けられた棒状部材を有し、棒状部材がスラリー供給通路11a内を上下方向に移動することで、貫通孔33aの開閉状態を切り替えることができる。 The upper housing 11 is provided with a slurry supply passage 11a, an exhaust passage 11b, and a through hole 11c. One end side of the slurry supply passage 11a opens on the side surface of the upper housing 11 and is connected to the slurry supply unit 16. The other end side of the slurry supply passage 11a is opened on the lower surface of the upper housing 11 and is provided so as to be connected to the through hole 33a of the third electrode 33. The slurry supply valve 17 has a rod-shaped member provided inside the slurry supply passage 11a, and the rod-shaped member moves vertically in the slurry supply passage 11a to switch the open / closed state of the through hole 33a. ..
 これにより、例えば、スラリー供給バルブ17の動作により貫通孔33aが開放状態の場合に、スラリー(原液)70は、スラリー供給部16、スラリー供給通路11a、第3電極33の貫通孔33aを介して第1ろ過装置91の第1ろ室30に供給される。また、スラリー供給バルブ17により貫通孔33aが閉じられた状態の場合には、スラリー(原液)70の第1ろ過装置91の第1ろ室30への供給が停止される。 As a result, for example, when the through hole 33a is opened by the operation of the slurry supply valve 17, the slurry (stock solution) 70 passes through the slurry supply unit 16, the slurry supply passage 11a, and the through hole 33a of the third electrode 33. It is supplied to the first filter chamber 30 of the first filtration device 91. When the through hole 33a is closed by the slurry supply valve 17, the supply of the slurry (stock solution) 70 to the first filter chamber 30 of the first filtration device 91 is stopped.
 排気通路11bの一端側は、上部筐体11の側面に開口し、エア排出部18に接続される。スラリー供給通路11aの他端側は、上部筐体11の下面に開口し、第3電極33の貫通孔33bと繋がって設けられる。エア排出バルブ19は、排気通路11bの内部に設けられた棒状部材を有し、棒状部材が排気通路11b内を上下方向に移動することで、貫通孔33bの開閉状態を切り替えることができる。 One end side of the exhaust passage 11b opens on the side surface of the upper housing 11 and is connected to the air exhaust portion 18. The other end side of the slurry supply passage 11a is opened on the lower surface of the upper housing 11 and is provided so as to be connected to the through hole 33b of the third electrode 33. The air exhaust valve 19 has a rod-shaped member provided inside the exhaust passage 11b, and the rod-shaped member moves vertically in the exhaust passage 11b to switch the open / closed state of the through hole 33b.
 第1ろ過装置91において、第1ろ室30にスラリー(原液)70が供給される際に、エア排出バルブ19は、貫通孔33bを開放状態にする。これにより、第1ろ室30内の空気は、貫通孔33b、排気通路11b及びエア排出部18を介して外部に排気される。エア排出部18にはエア排出弁18aが接続されている。エア排出弁18aは、例えばフロート弁であり、第1ろ室30内の所定量の空気が排気されるとエア排出弁18aが閉じられるように設けられている。第1ろ室30内の排気が完了した後、エア排出バルブ19は貫通孔33bを閉じる。これにより、第1ろ室30内に充填されたスラリー(原液)70には、第1加圧装置95により、スラリー供給部16を介して所定の圧力が加えられる。 In the first filtration device 91, when the slurry (stock solution) 70 is supplied to the first filter chamber 30, the air discharge valve 19 opens the through hole 33b. As a result, the air in the first filter chamber 30 is exhausted to the outside through the through hole 33b, the exhaust passage 11b, and the air exhaust portion 18. An air discharge valve 18a is connected to the air discharge unit 18. The air discharge valve 18a is, for example, a float valve, and is provided so that the air discharge valve 18a is closed when a predetermined amount of air in the first filter chamber 30 is exhausted. After the exhaust in the first filter chamber 30 is completed, the air discharge valve 19 closes the through hole 33b. As a result, a predetermined pressure is applied to the slurry (stock solution) 70 filled in the first filter chamber 30 by the first pressurizing device 95 via the slurry supply unit 16.
 貫通孔11cの一端側は上部筐体11の上面に開口する。貫通孔11cの他端側は上部筐体11の下面に開口し、第3電極33の凹部33cと繋がって設けられる。貫通孔11cには、接続導体56が挿入され、凹部33cで接続導体56と第3電極33とが接続される。これにより、第3電極33は、接続導体56を介して第3電源53の第1端子53aと電気的に接続される。 One end side of the through hole 11c opens on the upper surface of the upper housing 11. The other end side of the through hole 11c is opened on the lower surface of the upper housing 11 and is provided so as to be connected to the recess 33c of the third electrode 33. A connecting conductor 56 is inserted into the through hole 11c, and the connecting conductor 56 and the third electrode 33 are connected by a recess 33c. As a result, the third electrode 33 is electrically connected to the first terminal 53a of the third power supply 53 via the connecting conductor 56.
 第1電極31は、導体15及び接続導体54を介して第1電源51の第2端子51bと電気的に接続される。また、第1電極31は、導体15及び接続導体55aを介して第2電源52の第1端子52aと電気的に接続される。第3電源53の第2端子53b及び第1電源51の第1端子51aは、基準電位GNDに接続される。基準電位GNDは、例えばグランド電位である。ただし、これに限定されず、基準電位GNDは、所定の固定された電位であってもよい。 The first electrode 31 is electrically connected to the second terminal 51b of the first power supply 51 via the conductor 15 and the connecting conductor 54. Further, the first electrode 31 is electrically connected to the first terminal 52a of the second power supply 52 via the conductor 15 and the connecting conductor 55a. The second terminal 53b of the third power supply 53 and the first terminal 51a of the first power supply 51 are connected to the reference potential GND. The reference potential GND is, for example, a ground potential. However, the present invention is not limited to this, and the reference potential GND may be a predetermined fixed potential.
 下部筐体14には、凹状の第2ろ室35と、貫通孔14a、14bと、接続孔14cとが設けられている。第2ろ室35は、下部筐体14の上面で、第1ろ室30と重なる位置に設けられる。貫通孔14aは、第2ろ室35と排出部22とを繋ぐ。 The lower housing 14 is provided with a concave second filter chamber 35, through holes 14a and 14b, and a connection hole 14c. The second filter chamber 35 is provided on the upper surface of the lower housing 14 at a position overlapping the first filter chamber 30. The through hole 14a connects the second filter chamber 35 and the discharge portion 22.
 第1ろ過装置91において、各電極の駆動によりスラリー(原液)70の第1粒子71に斥力が働くので、第1粒子71の分散状況に濃度勾配が生じる。第1粒子71が分離されたスラリー(原液)70は、第1電極31、第2電極32及びろ材34を通して、第2ろ室35に流れる。第1ろ過装置91の第2ろ室35にある第1中間処理液79aは、排出部22に導かれる。第1ろ過装置91の排出部22は、第2加圧装置96を介して、第2ろ過装置92の第1ろ室30と接続される。第1中間処理液79aは、第2ろ過装置92の第1ろ室30へ供給される。 In the first filtration device 91, a repulsive force acts on the first particles 71 of the slurry (stock solution) 70 by driving each electrode, so that a concentration gradient occurs in the dispersion state of the first particles 71. The slurry (stock solution) 70 from which the first particles 71 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34. The first intermediate treatment liquid 79a in the second filter chamber 35 of the first filtration device 91 is guided to the discharge unit 22. The discharge unit 22 of the first filtration device 91 is connected to the first filter chamber 30 of the second filtration device 92 via the second pressurizing device 96. The first intermediate treatment liquid 79a is supplied to the first filter chamber 30 of the second filtration device 92.
 第2ろ過装置92において、各電極の駆動により第1中間処理液79aの第2粒子75に斥力が働くので、第2粒子75の分散状況に濃度勾配が生じる。第2粒子75が分離された第1中間処理液79aは、第1電極31、第2電極32及びろ材34を通して、第2ろ室35に流れる。第2ろ過装置92の第2ろ室35にある第2中間処理液79bは、排出部22に導かれる。第2ろ過装置92の排出部22は、第3加圧装置97を介して、第3ろ過装置93の第1ろ室30と接続される。第2中間処理液79bは、第3ろ過装置93の第1ろ室30へ供給される。 In the second filtration device 92, a repulsive force acts on the second particles 75 of the first intermediate treatment liquid 79a by driving each electrode, so that a concentration gradient occurs in the dispersion state of the second particles 75. The first intermediate treatment liquid 79a from which the second particles 75 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34. The second intermediate treatment liquid 79b in the second filter chamber 35 of the second filtration device 92 is guided to the discharge unit 22. The discharge unit 22 of the second filtration device 92 is connected to the first filter chamber 30 of the third filtration device 93 via the third pressurizing device 97. The second intermediate treatment liquid 79b is supplied to the first filter chamber 30 of the third filtration device 93.
 第3ろ過装置93において、各電極の駆動により第2中間処理液79bの第3粒子74に斥力が働くので、第3粒子74の分散状況に濃度勾配が生じる。第3粒子74が分離された第2中間処理液79bは、第1電極31、第2電極32及びろ材34を通して、第2ろ室35に流れる。第3ろ過装置93の第2ろ室35にあるろ液79cは、排出部22に導かれる。第3ろ過装置93の排出部22は、第4加圧装置98を介してタンク80と接続される。ろ液79cは、タンク80へ供給される。ろ液79cは、極性溶媒72である。 In the third filtration device 93, a repulsive force acts on the third particles 74 of the second intermediate treatment liquid 79b by driving each electrode, so that a concentration gradient occurs in the dispersion state of the third particles 74. The second intermediate treatment liquid 79b from which the third particles 74 are separated flows to the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34. The filtrate 79c in the second filter chamber 35 of the third filtration device 93 is guided to the discharge unit 22. The discharge unit 22 of the third filtration device 93 is connected to the tank 80 via the fourth pressurizing device 98. The filtrate 79c is supplied to the tank 80. The filtrate 79c is a polar solvent 72.
 第1加圧装置95は、タンク80に貯留されたスラリー(原液)70を加圧し、第1ろ過装置91の第1ろ室30に供給する。第2加圧装置96は、第1ろ過装置91の第2ろ室35から排出された第1中間処理液79aを加圧し、第2ろ過装置92の第1ろ室30に供給する。第3加圧装置97は、第2ろ過装置92の第2ろ室35から排出された第2中間処理液79bを加圧し、第3ろ過装置93の第1ろ室30に供給する。第4加圧装置98は、第3ろ過装置93の第2ろ室35から排出されたろ液79cを加圧し、タンク80に戻す。第1加圧装置95、第2加圧装置96、第3加圧装置97及び第4加圧装置98は、例えば加圧ポンプである。第4加圧装置98及び配管を用いて液体を搬送することは、流体コンベアとも呼ばれる。第4加圧装置98は、清澄な極性溶媒72を搬送流体として粒子を系内に循環させる。なお、ろ過システム200においては、ダイアフィルトレーション(ろ過液量と同量の溶媒をスラリー(原液)70中に加えながらろ過することによってスラリー(原液)70中の分離対象を回収する方法)が用いられてもよい。 The first pressurizing device 95 pressurizes the slurry (stock solution) 70 stored in the tank 80 and supplies it to the first filter chamber 30 of the first filtration device 91. The second pressurizing device 96 pressurizes the first intermediate treatment liquid 79a discharged from the second filter chamber 35 of the first filtration device 91 and supplies it to the first filter chamber 30 of the second filtration device 92. The third pressurizing device 97 pressurizes the second intermediate treatment liquid 79b discharged from the second filter chamber 35 of the second filtration device 92 and supplies it to the first filter chamber 30 of the third filtration device 93. The fourth pressurizing device 98 pressurizes the filtrate 79c discharged from the second filter chamber 35 of the third filtering device 93 and returns it to the tank 80. The first pressurizing device 95, the second pressurizing device 96, the third pressurizing device 97 and the fourth pressurizing device 98 are, for example, a pressurizing pump. Transporting the liquid using the fourth pressurizing device 98 and piping is also called a fluid conveyor. The fourth pressurizing device 98 circulates the particles in the system using the clear polar solvent 72 as the transport fluid. In the filtration system 200, diafiltration (a method of recovering a separation target in the slurry (stock solution) 70 by filtering while adding a solvent in the same amount as the amount of the filtrate in the slurry (stock solution) 70) is used. It may be used.
 接続孔14cの一端側は、下部筐体14の上面に開口し、第2電極32の外縁は、接続孔14cを覆って設けられる。また、接続孔14cの他端側は、下部筐体14の側面に開口する。接続孔14cには接続導体55bが挿入され、接続導体55bと第2電極32とが接続される。これにより、第2電極32は、第2電源52の第2端子52bと電気的に接続される。 One end side of the connection hole 14c is opened on the upper surface of the lower housing 14, and the outer edge of the second electrode 32 is provided so as to cover the connection hole 14c. Further, the other end side of the connection hole 14c opens on the side surface of the lower housing 14. A connecting conductor 55b is inserted into the connecting hole 14c, and the connecting conductor 55b and the second electrode 32 are connected to each other. As a result, the second electrode 32 is electrically connected to the second terminal 52b of the second power supply 52.
 なお、図2に示す第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93のそれぞれの構成は、あくまで一例であり、第1電極31、第2電極32及びろ材34(図3参照)と、第3電極33とで挟まれた第1ろ室30を形成できればどのような構成であってもよい。 The configurations of the first filtration device 91, the second filtration device 92, and the third filtration device 93 shown in FIG. 2 are merely examples, and the first electrode 31, the second electrode 32, and the filter medium 34 (see FIG. 3). ) And the first filter chamber 30 sandwiched between the third electrode 33 and the like, any configuration may be used.
 次に、図3から図7を参照して、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93の動作について説明する。図3は、第1実施形態に係る第1ろ過装置の模式図である。図4は、第1実施形態に係る第2ろ過装置の模式図である。図5は、第1実施形態に係る第3ろ過装置の模式図である。図3から図5では、説明を分かりやすくするために、第1電極31、第2電極32、第3電極33及びろ材34と、第1ろ室30及び第2ろ室35との配置関係を模式的に示している。 Next, the operations of the first filtration device 91, the second filtration device 92, and the third filtration device 93 will be described with reference to FIGS. 3 to 7. FIG. 3 is a schematic view of the first filtration device according to the first embodiment. FIG. 4 is a schematic view of the second filtration device according to the first embodiment. FIG. 5 is a schematic view of the third filtration device according to the first embodiment. In FIGS. 3 to 5, in order to make the explanation easy to understand, the arrangement relationship between the first electrode 31, the second electrode 32, the third electrode 33 and the filter medium 34, and the first filter chamber 30 and the second filter chamber 35 is shown. It is shown schematically.
 図3から図5に示すように、第1電極31及び第2電極32は、メッシュ状の電極である。具体的には、第1電極31は、複数の導電細線31aを有し、複数の導電細線31aの間に複数の第1開口31bが設けられる。第2電極32は、複数の導電細線32aを有し、複数の導電細線32aの間に複数の第2開口32bが設けられる。第2電極32は、ろ材34を介して第1電極31の一方の面(下面)と対向して設けられる。言い換えると、ろ材34は、第1電極31と第2電極32との間に設けられる。第1電極31及び第2電極32は、ろ材34と直接、接して設けられる。複数の導電細線31a及び複数の導電細線32aは、導電性素材であれば特に限定されず、例えば金属でもよいし炭素繊維でもよい。なお、第1電極31及び第2電極32は、ろ材34と直接、接する構成に限定されず、ろ材34との間に隙間を有して配置されていてもよい。 As shown in FIGS. 3 to 5, the first electrode 31 and the second electrode 32 are mesh-shaped electrodes. Specifically, the first electrode 31 has a plurality of conductive thin wires 31a, and a plurality of first openings 31b are provided between the plurality of conductive thin wires 31a. The second electrode 32 has a plurality of conductive thin wires 32a, and a plurality of second openings 32b are provided between the plurality of conductive thin wires 32a. The second electrode 32 is provided so as to face one surface (lower surface) of the first electrode 31 via the filter medium 34. In other words, the filter medium 34 is provided between the first electrode 31 and the second electrode 32. The first electrode 31 and the second electrode 32 are provided in direct contact with the filter medium 34. The plurality of conductive thin wires 31a and the plurality of conductive thin wires 32a are not particularly limited as long as they are conductive materials, and may be, for example, metal or carbon fiber. The first electrode 31 and the second electrode 32 are not limited to the configuration in which they are in direct contact with the filter medium 34, and may be arranged with a gap between the first electrode 31 and the second electrode 32.
 ろ材34は、ろ過膜34aと、目開き34bと、を含む。ろ過膜34aに複数の目開き34bが設けられている。ろ過膜34aに対して電界が働く。ろ材34は、例えば、精密ろ過膜(MF膜(Microfiltation Membrane))が用いられる。第1実施形態では、ろ材34は、樹脂材料等の絶縁材料で形成されている。なお、図3から図5では、第1電極31の第1開口31b、第2電極32の第2開口32b及びろ材34の目開き34bは同じ大きさで示しているが、あくまで説明のために模式的に示したものであり、第1開口31b、第2開口32b及び目開き34bの大きさは異なっていてもよい。 The filter medium 34 includes a filtration membrane 34a and an opening 34b. The filtration membrane 34a is provided with a plurality of openings 34b. An electric field acts on the filtration membrane 34a. As the filter medium 34, for example, a microfiltration membrane (MF membrane (Microfiltration Membrane)) is used. In the first embodiment, the filter medium 34 is formed of an insulating material such as a resin material. In FIGS. 3 to 5, the first opening 31b of the first electrode 31, the second opening 32b of the second electrode 32, and the opening 34b of the filter medium 34 are shown to have the same size, but for the sake of explanation only. It is schematically shown, and the sizes of the first opening 31b, the second opening 32b, and the opening 34b may be different.
 図6は、第1電極、ろ材及び第2電極の構成を模式的に示す断面図である。図6に示すうように、ろ材34に設けられた目開き34bの径D3は、第1電極31の第1開口31bの径D1よりも小さく、かつ、第2電極32の第2開口32bの径D2よりも小さい。言い換えると、複数の導電細線31aの配置ピッチと、複数の導電細線32aの配置ピッチと、ろ過膜34aの配置ピッチは、互いに異なって設けられる。例えば、第1電極31の第1開口31bの径D1は、0.5μm以上500μm以下、例えば70μm程度である。第2電極32の第2開口32bの径D2は、0.5μm以上1000μm以下、例えば100μm程度である。ろ材34に設けられた複数の目開き34bの径D3は、0.1μm以上100μm以下、より好ましくは1μm以上7μm以下程度である。 FIG. 6 is a cross-sectional view schematically showing the configurations of the first electrode, the filter medium, and the second electrode. As shown in FIG. 6, the diameter D3 of the opening 34b provided in the filter medium 34 is smaller than the diameter D1 of the first opening 31b of the first electrode 31, and the diameter D1 of the second opening 32b of the second electrode 32. It is smaller than the diameter D2. In other words, the arrangement pitch of the plurality of conductive thin wires 31a, the arrangement pitch of the plurality of conductive thin wires 32a, and the arrangement pitch of the filtration membrane 34a are provided differently from each other. For example, the diameter D1 of the first opening 31b of the first electrode 31 is 0.5 μm or more and 500 μm or less, for example, about 70 μm. The diameter D2 of the second opening 32b of the second electrode 32 is 0.5 μm or more and 1000 μm or less, for example, about 100 μm. The diameter D3 of the plurality of openings 34b provided on the filter medium 34 is 0.1 μm or more and 100 μm or less, more preferably 1 μm or more and 7 μm or less.
 また、第1電極31の第1開口31bの径D1は、第2電極32の第2開口32bの径D2よりも小さい。ただしこれに限定されず、第1電極31の第1開口31bの径D1は、第2電極32の第2開口32bの径D2と同じ大きさで形成されてもよい。このような構成により、少なくとも第1開口31b及び第2開口32bと重なる領域で、ろ材34の目開き34bは、複数の導電細線31a及び複数の導電細線32aと非重畳に設けられる。また、第1電極31と第2電極32との間の距離は、ろ材34の厚さで規定される。 Further, the diameter D1 of the first opening 31b of the first electrode 31 is smaller than the diameter D2 of the second opening 32b of the second electrode 32. However, the present invention is not limited to this, and the diameter D1 of the first opening 31b of the first electrode 31 may be formed to have the same size as the diameter D2 of the second opening 32b of the second electrode 32. With such a configuration, the opening 34b of the filter medium 34 is provided non-superimposing with the plurality of conductive thin wires 31a and the plurality of conductive thin wires 32a at least in the region overlapping the first opening 31b and the second opening 32b. The distance between the first electrode 31 and the second electrode 32 is defined by the thickness of the filter medium 34.
 図3から図5に示すように、第3電極33は、板状の部材であり、第1ろ室30を挟んで第1電極31の他方の面(上面)と対向して設けられる。なお、図3から図5では、第3電極33の貫通孔33a、33b及び凹部33c(図2参照)は図示を省略している。 As shown in FIGS. 3 to 5, the third electrode 33 is a plate-shaped member, and is provided so as to face the other surface (upper surface) of the first electrode 31 with the first filter chamber 30 interposed therebetween. In FIGS. 3 to 5, the through holes 33a and 33b and the recess 33c (see FIG. 2) of the third electrode 33 are not shown.
 第1ろ室30は、第1電極31の他方の面(上面)と接して設けられる。第1ろ室30には、上述したように、分離対象の第1粒子71、第2粒子75、及び第3粒子74、並びに極性溶媒72含むスラリー(原液)70が供給される。第1粒子71は、例えば、バイオマス粒子やコロイド粒子であり、粒子表面がマイナスに帯電している。具体的には、第1粒子71は、クロレラ、微細藻類スピルリナ、コロイダルシリカ、大腸菌、下水活性汚泥等である。第1粒子71の径は、適用される技術分野、分離対象の種類に応じて異なるが、100nm以上2000μm以下、例えば200nm以上100μm以下程度である。第2粒子75は、例えば高分子量の多糖体であり、粒子表面がマイナスに帯電している。第2粒子75の径は、第1粒子71の径よりも小さい。第2粒子75の径は、適用される技術分野、分離対象の種類に応じて異なるが、30nm以上500nm以下、例えば100nm程度である。第3粒子74は、例えば低分子量の多糖体であり、粒子表面がマイナスに帯電している。第3粒子74の径は、第2粒子75の径よりも小さい。第3粒子74の径は、適用される技術分野、分離対象の種類に応じて異なるが、5nm以上100nm以下、例えば20nm程度である。 The first filter chamber 30 is provided in contact with the other surface (upper surface) of the first electrode 31. As described above, the first filter chamber 30 is supplied with the slurry (stock solution) 70 containing the first particles 71, the second particles 75, the third particles 74, and the polar solvent 72 to be separated. The first particles 71 are, for example, biomass particles or colloidal particles, and the surface of the particles is negatively charged. Specifically, the first particle 71 is chlorella, microalgae spirulina, colloidal silica, Escherichia coli, sewage activated sludge, or the like. The diameter of the first particle 71 varies depending on the technical field to which it is applied and the type of separation target, but is 100 nm or more and 2000 μm or less, for example, 200 nm or more and 100 μm or less. The second particle 75 is, for example, a high molecular weight polysaccharide, and the surface of the particle is negatively charged. The diameter of the second particle 75 is smaller than the diameter of the first particle 71. The diameter of the second particle 75 varies depending on the technical field to which it is applied and the type of separation target, but is 30 nm or more and 500 nm or less, for example, about 100 nm. The third particle 74 is, for example, a low molecular weight polysaccharide, and the surface of the particle is negatively charged. The diameter of the third particle 74 is smaller than the diameter of the second particle 75. The diameter of the third particle 74 varies depending on the technical field to which it is applied and the type of separation target, but is 5 nm or more and 100 nm or less, for example, about 20 nm.
 第1粒子71、第2粒子75、及び第3粒子74が分散される極性溶媒72は、水であり、一部の水分子73はプラスに帯電している。これにより、スラリー(原液)70は全体として電気的に平衡状態となっている。極性溶媒72は、水に限られず、アルコールなどでもよい。 The polar solvent 72 in which the first particle 71, the second particle 75, and the third particle 74 are dispersed is water, and some water molecules 73 are positively charged. As a result, the slurry (stock solution) 70 is in an electrically equilibrium state as a whole. The polar solvent 72 is not limited to water, and may be alcohol or the like.
 第1電源51は、第1電極31に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性の第1電位V1を供給する。第1ろ過装置91における第1電位V1は、例えば-20Vである。第2ろ過装置92における第1電位V1は、例えば-40Vである。第3ろ過装置93における第1電位V1は、例えば-60Vである。 The first power source 51 supplies the first electrode 31 with a first potential V1 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74. The first potential V1 in the first filtration device 91 is, for example, −20 V. The first potential V1 in the second filtration device 92 is, for example, −40 V. The first potential V1 in the third filtration device 93 is, for example, −60 V.
 第2電源52は、第2電極32に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性であって、第1電位V1の絶対値よりも大きい絶対値の第2電位V2を供給する。第1ろ過装置91における第2電位V2は、例えば-30Vである。第2ろ過装置92における第2電位V2は、例えば-50Vである。第3ろ過装置93における第2電位V2は、例えば-70Vである。 The second power source 52 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the second electrode 32, and has an absolute value larger than the absolute value of the first potential V1. Two potentials V2 are supplied. The second potential V2 in the first filtration device 91 is, for example, −30 V. The second potential V2 in the second filtration device 92 is, for example, −50 V. The second potential V2 in the third filtration device 93 is, for example, −70 V.
 第3電源53は、第3電極33に、第1粒子71の極性と異なる極性の第3電位V3を供給する。第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93における第3電位V3は、例えば+30Vである。第1電位V1、第2電位V2及び第3電位は、絶対値で1mV以上1000V以下の範囲で設定することができる。 The third power source 53 supplies the third electrode 33 with a third potential V3 having a polarity different from that of the first particle 71. The third potential V3 in the first filtration device 91, the second filtration device 92, and the third filtration device 93 is, for example, + 30V. The first potential V1, the second potential V2, and the third potential can be set in the range of 1 mV or more and 1000 V or less in absolute value.
 第1ろ過装置91において、第1電極31の第1電位V1(-20V)と第3電極33の第3電位V3(+30V)との第1電位差(50V)は、第1電位V1(-20V)と第2電極32の第2電位V2(-30V)との第2電位差(10V)よりも大きい。 In the first filtration device 91, the first potential difference (50V) between the first potential V1 (-20V) of the first electrode 31 and the third potential V3 (+ 30V) of the third electrode 33 is the first potential V1 (-20V). ) And the second potential difference (10V) between the second potential V2 (-30V) of the second electrode 32.
 第2ろ過装置92において、第1電極31の第1電位V1(-40V)と第3電極33の第3電位V3(+30V)との第1電位差(70V)は、第1電位V1(-40V)と第2電極32の第2電位V2(-50V)との第2電位差(10V)よりも大きい。 In the second filtering device 92, the first potential difference (70V) between the first potential V1 (-40V) of the first electrode 31 and the third potential V3 (+ 30V) of the third electrode 33 is the first potential V1 (-40V). ) And the second potential difference (10V) between the second potential V2 (-50V) of the second electrode 32.
 第3ろ過装置93において、第1電極31の第1電位V1(-60V)と第3電極33の第3電位V3(+30V)との第1電位差(90V)は、第1電位V1(-60V)と第2電極32の第2電位V2(-70V)との第2電位差(10V)よりも大きい。 In the third filtration device 93, the first potential difference (90V) between the first potential V1 (-60V) of the first electrode 31 and the third potential V3 (+ 30V) of the third electrode 33 is the first potential V1 (-60V). ) And the second potential difference (10V) between the second potential V2 (-70V) of the second electrode 32.
 第2ろ過装置92における第1電位差(70V)は、第1ろ過装置91における第1電位差(50V)よりも大きい。第3ろ過装置93における第1電位差(90V)は、第1ろ過装置91における第1電位差(50V)、及び第2ろ過装置92における第1電位差(70V)よりも大きい。 The first potential difference (70V) in the second filtration device 92 is larger than the first potential difference (50V) in the first filtration device 91. The first potential difference (90V) in the third filtration device 93 is larger than the first potential difference (50V) in the first filtration device 91 and the first potential difference (70V) in the second filtration device 92.
 図7は、第1実施形態に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置を示す電気的等価回路図である。図7に示すように、第1電源51及び第3電源53は定電圧源であり、第2電源52は定電流源である。第1電極31と第2電極32との間に抵抗成分R1と容量成分Cとが並列に接続される。抵抗成分R1及び容量成分Cは、多数の目開き34bが設けられたろ材34により等価的に表される成分である。また、第1電極31と第3電極33との間に抵抗成分R2が接続される。抵抗成分R2は、第1ろ室30のスラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bにより等価的に表される抵抗成分である。 FIG. 7 is an electrical equivalent circuit diagram showing a first filtration device, a second filtration device, and a third filtration device according to the first embodiment. As shown in FIG. 7, the first power supply 51 and the third power supply 53 are constant voltage sources, and the second power supply 52 is a constant current source. The resistance component R1 and the capacitance component C are connected in parallel between the first electrode 31 and the second electrode 32. The resistance component R1 and the capacitance component C are components equivalently represented by the filter medium 34 provided with a large number of openings 34b. Further, the resistance component R2 is connected between the first electrode 31 and the third electrode 33. The resistance component R2 is a resistance component equivalently represented by the slurry (stock solution) 70 of the first filter chamber 30, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b.
 第2電源52は、定電圧電源であっても、定電流電源であってもよい。本実施形態では、第2電源52は、定電流源であるので、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93のろ過の状態に応じて、すなわち、ろ材34の抵抗成分R1及び第1ろ室30の抵抗成分R2の変動に応じて、第2電位V2は変化する。ただし、第2電位V2は第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性であって、第1電位V1の絶対値よりも大きい値を維持している。 The second power supply 52 may be a constant voltage power supply or a constant current power supply. In the present embodiment, since the second power source 52 is a constant current source, it depends on the filtration state of the first filtration device 91, the second filtration device 92, and the third filtration device 93, that is, the resistance component of the filter medium 34. The second potential V2 changes according to the fluctuation of the resistance component R2 of R1 and the first filter chamber 30. However, the second potential V2 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74, and maintains a value larger than the absolute value of the first potential V1.
 図3に示すように、第1ろ過装置91において、第1ろ室30にスラリー(原液)70が供給されると、クーロンの法則に基づいて、マイナスに帯電した第1粒子71と第1電極31との間には斥力が発生する。また、マイナスに帯電した第1粒子71と第3電極33との間には引力が発生する。 As shown in FIG. 3, when the slurry (stock solution) 70 is supplied to the first filter chamber 30 in the first filtration device 91, the negatively charged first particles 71 and the first electrode are based on Coulomb's law. A repulsive force is generated between the 31 and the 31. Further, an attractive force is generated between the negatively charged first particle 71 and the third electrode 33.
 ここで、クーロンの法則は、下記の式(1)で示される。
 F=k×(q1×q2/s) ・・・ (1)
Here, Coulomb's law is expressed by the following equation (1).
F = k × (q1 × q2 / s 2 ) ・ ・ ・ (1)
 ここで、kは定数であり、k=4πεで表される。q1及びq2は、電荷であり、sは電荷間の距離である。すなわち、距離sが小さいほど第1粒子71には大きいクーロン力Fが作用する。具体的には、第1ろ過装置91において、第1電極31に近い位置の第1粒子71には、より強力な斥力が発生し、第3電極33に近い位置の第1粒子71には、より強力な引力が発生する。第1粒子71に発生する斥力及び引力は、矢印F1に示す方向、すなわち第1電極31から離れ第3電極33に近づく方向に作用する。マイナスに帯電した第1粒子71は、電気泳動により第3電極33側に移動する。 Here, k is a constant and is represented by k = 4πε. q1 and q2 are electric charges, and s is the distance between the electric charges. That is, the smaller the distance s, the larger the Coulomb force F acts on the first particle 71. Specifically, in the first filtration device 91, a stronger repulsive force is generated in the first particle 71 located near the first electrode 31, and the first particle 71 located near the third electrode 33 is generated. A stronger attractive force is generated. The repulsive force and the attractive force generated in the first particle 71 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 31 and approaching the third electrode 33. The negatively charged first particle 71 moves to the third electrode 33 side by electrophoresis.
 これにより、第1ろ過装置91は、第1粒子71が第1電極31の表面及びろ材34の表面に堆積してケーキ層が形成されることを抑制することができる。つまり、ろ材34の目開き34bのろ過抵抗が増大することを抑制することができる。 As a result, the first filtration device 91 can prevent the first particles 71 from accumulating on the surface of the first electrode 31 and the surface of the filter medium 34 to form a cake layer. That is, it is possible to suppress an increase in the filtration resistance of the opening 34b of the filter medium 34.
 また、プラスに帯電した水分子73は、第1電極31との間に引力が発生する。プラスに帯電した水分子73に作用する引力は、矢印F2に示す方向、すなわち第3電極33から第1電極31に向かう方向に作用する。プラスに帯電した水分子73は、第1電極31側に移動する。この際、第1電極31と第2電極32との間の電位差により、ろ材34を厚さ方向に貫通するように、第1電極31から第2電極32に向かう電界が形成されている。 Further, the positively charged water molecule 73 generates an attractive force with the first electrode 31. The attractive force acting on the positively charged water molecule 73 acts in the direction indicated by the arrow F2, that is, in the direction from the third electrode 33 toward the first electrode 31. The positively charged water molecule 73 moves to the first electrode 31 side. At this time, an electric field is formed from the first electrode 31 to the second electrode 32 so as to penetrate the filter medium 34 in the thickness direction due to the potential difference between the first electrode 31 and the second electrode 32.
 第1電極31側に移動した水分子73は、電界により力を受けて、第2電極32側に引っ張られてろ材34を通過する。プラスに帯電した水分子73の移動に伴って、帯電していない水分子も第2電極32側に引きずられて、電気浸透流が形成される。これにより、プラスに帯電した水分子73を含む極性溶媒72は、第2ろ室35に流れる。上述したように、第1粒子71は、電気泳動により第1電極31から引き離され、第3電極33側に移動しており、第1粒子71が分離された極性溶媒72が排出されることで、第1ろ室30内のスラリー(原液)70の第1粒子71の濃度を高めることができる。 The water molecule 73 that has moved to the first electrode 31 side receives a force by the electric field, is pulled toward the second electrode 32 side, and passes through the filter medium 34. With the movement of the positively charged water molecule 73, the uncharged water molecule is also dragged toward the second electrode 32, and an electroosmotic flow is formed. As a result, the polar solvent 72 containing the positively charged water molecule 73 flows into the second filter chamber 35. As described above, the first particle 71 is separated from the first electrode 31 by electrophoresis and moved to the third electrode 33 side, and the polar solvent 72 from which the first particle 71 is separated is discharged. , The concentration of the first particle 71 of the slurry (stock solution) 70 in the first filter chamber 30 can be increased.
 また、第1電極31と第2電極32との間に形成される電界を制御することで、ろ材34を通過する粒子レベル(粒子径)も制御することができる。例えば、第1ろ過装置91において、第1電極31に第1電位V1=-20Vを印加し、第2電極32に第2電位V2=-30Vを印加することで、第1電極31と第2電極32との間にバリアの電界が形成される。これにより、第1ろ過装置91は、第1粒子71がろ材34を通過することを抑制し、第2粒子75及び第3粒子74がろ材34を通過することを許容する。このため、第1ろ室30内のスラリー(原液)70の第1粒子71の濃度を高めることができる。 Further, by controlling the electric field formed between the first electrode 31 and the second electrode 32, the particle level (particle diameter) passing through the filter medium 34 can also be controlled. For example, in the first filtration device 91, the first electrode V1 = -20V is applied to the first electrode 31, and the second potential V2 = -30V is applied to the second electrode 32, whereby the first electrode 31 and the second electrode 31 and the second electrode 31 are applied. A barrier electric field is formed between the electrode 32 and the electrode 32. As a result, the first filtration device 91 suppresses the passage of the first particle 71 through the filter medium 34, and allows the second particle 75 and the third particle 74 to pass through the filter medium 34. Therefore, the concentration of the first particles 71 of the slurry (stock solution) 70 in the first filter chamber 30 can be increased.
 つまり、精密ろ過膜(MF膜)相当のろ材34を用いた場合であっても、第1電源51、第2電源52及び第3電源53での各電極間の電界制御により、限外ろ過膜(UF膜)、あるいはナノろ過膜(NF膜)相当まで、分離対象の粒子径を変更することができる。限外ろ過膜(UF膜)は、開口の径が10nm以上100nm以下程度のろ過膜である。ナノろ過膜(NF膜)は、開口の径が1nm以上10nm以下程度のろ過膜である。 That is, even when a filter medium 34 equivalent to a microfiltration membrane (MF membrane) is used, the ultrafiltration membrane is controlled by the electric field control between the electrodes of the first power supply 51, the second power supply 52, and the third power supply 53. The particle size to be separated can be changed to the equivalent of (UF membrane) or nanofiltration membrane (NF membrane). The ultrafiltration membrane (UF membrane) is a filtration membrane having an opening diameter of 10 nm or more and 100 nm or less. The nanofiltration membrane (NF membrane) is a filtration membrane having an opening diameter of 1 nm or more and 10 nm or less.
 図4に示すように、第2ろ過装置92において、第1電極31に近い位置の第2粒子75には、より強力な斥力が発生し、第3電極33に近い位置の第2粒子75には、より強力な引力が発生する。第2粒子75に発生する斥力及び引力は、矢印F1に示す方向、すなわち第1電極31から離れ第3電極33に近づく方向に作用する。マイナスに帯電した第2粒子75は、電気泳動により第3電極33側に移動する。 As shown in FIG. 4, in the second filtration device 92, a stronger repulsive force is generated in the second particle 75 located near the first electrode 31, and the second particle 75 located near the third electrode 33. Generates a stronger attractive force. The repulsive force and the attractive force generated in the second particle 75 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 31 and closer to the third electrode 33. The negatively charged second particle 75 moves to the third electrode 33 side by electrophoresis.
 これにより、第2ろ過装置92は、第2粒子75が第1電極31の表面及びろ材34の表面に堆積してケーキ層が形成されることを抑制することができる。つまり、ろ材34の目開き34bのろ過抵抗が増大することを抑制することができる。 As a result, the second filtration device 92 can prevent the second particles 75 from accumulating on the surface of the first electrode 31 and the surface of the filter medium 34 to form a cake layer. That is, it is possible to suppress an increase in the filtration resistance of the opening 34b of the filter medium 34.
 例えば、第2ろ過装置92において、第1電極31に第1電位V1=-40Vを印加し、第2電極32に第2電位V2=-50Vを印加することで、第1電極31と第2電極32との間にバリアの電界が形成される。これにより、第2ろ過装置92は、第2粒子75がろ材34を通過することを抑制し、第3粒子74がろ材34を通過することを許容する。このため、第1ろ室30内の第1中間処理液79aの第2粒子75の濃度を高めることができる。 For example, in the second filtration device 92, the first electrode V1 = -40V is applied to the first electrode 31, and the second potential V2 = -50V is applied to the second electrode 32, whereby the first electrode 31 and the second electrode 31 and the second electrode 32 are applied. A barrier electric field is formed between the electrode 32 and the electrode 32. As a result, the second filtration device 92 suppresses the second particle 75 from passing through the filter medium 34, and allows the third particle 74 to pass through the filter medium 34. Therefore, the concentration of the second particles 75 of the first intermediate treatment liquid 79a in the first filter chamber 30 can be increased.
 図5に示すように、第3ろ過装置93において、第1電極31に近い位置の第3粒子74には、より強力な斥力が発生し、第3電極33に近い位置の第3粒子74には、より強力な引力が発生する。第3粒子74に発生する斥力及び引力は、矢印F1に示す方向、すなわち第1電極31から離れ第3電極33に近づく方向に作用する。マイナスに帯電した第3粒子74は、電気泳動により第3電極33側に移動する。 As shown in FIG. 5, in the third filtration device 93, a stronger repulsive force is generated in the third particle 74 located near the first electrode 31, and the third particle 74 located near the third electrode 33. Generates a stronger attractive force. The repulsive force and the attractive force generated in the third particle 74 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 31 and closer to the third electrode 33. The negatively charged third particle 74 moves to the third electrode 33 side by electrophoresis.
 これにより、第3ろ過装置93は、第3粒子74が第1電極31の表面及びろ材34の表面に堆積してケーキ層が形成されることを抑制することができる。つまり、ろ材34の目開き34bのろ過抵抗が増大することを抑制することができる。 As a result, the third filtration device 93 can prevent the third particles 74 from accumulating on the surface of the first electrode 31 and the surface of the filter medium 34 to form a cake layer. That is, it is possible to suppress an increase in the filtration resistance of the opening 34b of the filter medium 34.
 例えば、第3ろ過装置93において、第1電極31に第1電位V1=-60Vを印加し、第2電極32に第2電位V2=-70Vを印加することで、第1電極31と第2電極32との間にバリアの電界が形成される。これにより、第3ろ過装置93は、第3粒子74がろ材34を通過することを抑制する。このため、第1ろ室30内の第2中間処理液79bの第3粒子74の濃度を高めることができる。 For example, in the third filtration device 93, the first electrode V1 = -60V is applied to the first electrode 31, and the second potential V2 = −70V is applied to the second electrode 32, whereby the first electrode 31 and the second electrode 31 and the second electrode 32 are applied. A barrier electric field is formed between the electrode 32 and the electrode 32. As a result, the third filtration device 93 prevents the third particles 74 from passing through the filter medium 34. Therefore, the concentration of the third particles 74 of the second intermediate treatment liquid 79b in the first filter chamber 30 can be increased.
 このように、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93は、第1電極31と第3電極33との間で、第1粒子71、第2粒子75及び第3粒子74をクーロン力F(第1粒子71と第1電極31との間に発生する斥力)により移動させる電気泳動と、第1電極31と第2電極32との間の電界により水分子73を移動させてろ材34を通過させる電気浸透とを組み合わせることで、第1粒子71、第2粒子75及び第3粒子74を分離できる。また、第1電極31は、電気泳動の電極と、電気浸透の電極とを兼用する。これにより、単純にスラリー(原液)70、第1中間処理液79a、及び第2中間処理液79bに圧力を加え、ろ材34の目開き34bよりも大きい粒径の第1粒子71、第2粒子75及び第3粒子74を分離する方法に比べて、第1電極31の表面及びろ材34の表面にケーキ層が形成されることを抑制することができ、ろ過速度を数倍から10倍以上に向上させることができる。 As described above, in the first filtering device 91, the second filtering device 92, and the third filtering device 93, the first particle 71, the second particle 75, and the third particle are placed between the first electrode 31 and the third electrode 33. The water molecule 73 is moved by the electrophoresis that moves 74 by the Coulomb force F (the repulsive force generated between the first particle 71 and the first electrode 31) and the electric field between the first electrode 31 and the second electrode 32. The first particle 71, the second particle 75, and the third particle 74 can be separated by combining with the electric permeation that allows the filter medium 34 to pass through. Further, the first electrode 31 also serves as an electrode for electrophoresis and an electrode for electroosmosis. As a result, pressure is simply applied to the slurry (stock solution) 70, the first intermediate treatment liquid 79a, and the second intermediate treatment liquid 79b, and the first particles 71 and the second particles having a particle size larger than the opening 34b of the filter medium 34 are applied. Compared with the method of separating 75 and the third particle 74, it is possible to suppress the formation of a cake layer on the surface of the first electrode 31 and the surface of the filter medium 34, and the filtration rate can be increased from several times to 10 times or more. Can be improved.
 結果的に、単純にスラリー(原液)70、第1中間処理液79a、及び第2中間処理液79bに圧力を加えた方法に比べて、それぞれの第1ろ室30内での第1粒子71、第2粒子75及び第3粒子74の濃縮度を高めることができる。また、ろ材34の清掃、交換の頻度を少なくすることができ、効率よくスラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bのろ過を行うことができる。あるいは、単純にスラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bに圧力を加えてろ過を行う場合に比べて、第1ろ室30の体積を小さくし、ろ材34の面積を小さくしても、従来と同程度のろ過速度を実現できる。すなわち、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93は、小型化を図ることができる。 As a result, the first particle 71 in each of the first filter chambers 30 is compared with the method of simply applying pressure to the slurry (stock solution) 70, the first intermediate treatment liquid 79a, and the second intermediate treatment liquid 79b. , The enrichment of the second particle 75 and the third particle 74 can be increased. In addition, the frequency of cleaning and replacement of the filter medium 34 can be reduced, and the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b can be efficiently filtered. Alternatively, the volume of the first filter chamber 30 is reduced as compared with the case where pressure is simply applied to the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b to perform filtration, and the filter medium 34 is used. Even if the area of the above is reduced, the same level of filtration speed as before can be achieved. That is, the first filtration device 91, the second filtration device 92, and the third filtration device 93 can be miniaturized.
 なお、上述した第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93の構成はあくまで一例であり、適宜変更することができる。例えば、第1電極31、ろ材34及び第2電極32が積層されて形成される負極ろ板と、第3電極33とは、平行平板状に対向配置される。これに限定されず、第1電極31、ろ材34及び第2電極32が積層されて形成される負極ろ板と、第3電極33とは、それぞれ曲面を有して形成されていてもよい。負極ろ板及び第3電極33の形状や配置は、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93の形状、構造に応じて適宜変更できる。また、第1ろ室30に供給されるスラリー(原液)70、第1中間処理液79a、及び第2中間処理液79bの濃度は、特に限定されず、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93が適用される分野に応じて変更できる。 The configurations of the first filtration device 91, the second filtration device 92, and the third filtration device 93 described above are merely examples and can be changed as appropriate. For example, the negative electrode filter plate formed by laminating the first electrode 31, the filter medium 34, and the second electrode 32 and the third electrode 33 are arranged so as to face each other in a parallel plate shape. The present invention is not limited to this, and the negative electrode filter plate formed by laminating the first electrode 31, the filter medium 34 and the second electrode 32 and the third electrode 33 may each have a curved surface. The shape and arrangement of the negative electrode filter plate and the third electrode 33 can be appropriately changed according to the shape and structure of the first filtration device 91, the second filtration device 92, and the third filtration device 93. The concentrations of the slurry (stock solution) 70, the first intermediate treatment liquid 79a, and the second intermediate treatment liquid 79b supplied to the first filter chamber 30 are not particularly limited, and the first filtration device 91 and the second filtration device It can be changed depending on the field to which the 92 and the third filtration device 93 are applied.
 実施形態では、第1ろ室30の内部圧力は、加圧されており、第2ろ室35の内部圧力よりも大きい。他の態様としては、第2ろ室35の内部圧力を真空引きするなどにより陰圧することで、第1ろ室30の内部圧力が、第2ろ室35の内部圧力よりも相対的に大きくするようにしてもよい。 In the embodiment, the internal pressure of the first filter chamber 30 is pressurized and is larger than the internal pressure of the second filter chamber 35. As another aspect, the internal pressure of the first filter chamber 30 is made relatively larger than the internal pressure of the second filter chamber 35 by applying a negative pressure by vacuuming the internal pressure of the second filter chamber 35 or the like. You may do so.
 また、第1電位V1、第2電位V2及び第3電位V3は、分離対象の第1粒子71、第2粒子75及び第3粒子74の種類や、要求されるろ過特性に応じて適宜変更することが好ましい。 Further, the first potential V1, the second potential V2, and the third potential V3 are appropriately changed according to the types of the first particle 71, the second particle 75, and the third particle 74 to be separated, and the required filtration characteristics. Is preferable.
 第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93は、第3電源53を備えていなくてもよい。この場合、第3電極33は、例えば基準電位GNDに接続される。第3電極33を基準電位GNDに接続する場合、第1電極31、第2電極32、第3電極33のそれぞれに電源を設ける場合に比べ、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93の小型化を図ることができる。 The first filtration device 91, the second filtration device 92, and the third filtration device 93 do not have to include the third power supply 53. In this case, the third electrode 33 is connected to, for example, the reference potential GND. When the third electrode 33 is connected to the reference potential GND, the first filtration device 91, the second filtration device 92, and the second filtration device 92 are compared with the case where a power source is provided for each of the first electrode 31, the second electrode 32, and the third electrode 33. 3 The size of the filtration device 93 can be reduced.
 第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93から排出された第1中間処理液79a、第2中間処理液79b、及びろ液79cは、必ずしも加圧装置によって搬送されなくてもよく、例えば作業者によって手動で搬送されてもよい。すなわち、ろ過システム200を用いるろ過方法が、第1ろ過装置91の第2ろ室35の第1中間処理液79aを、第2ろ過装置92の第1ろ室30へ供給するステップと、第2ろ過装置92の第2ろ室35の第2中間処理液79bを、第3ろ過装置93の第1ろ室30へ供給するステップと、第3ろ過装置93の第2ろ室35のろ液79cを、タンク80に戻すステップと、を有していてもよい。 The first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, and the filtrate 79c discharged from the first filtration device 91, the second filtration device 92, and the third filtration device 93 are not necessarily conveyed by the pressurizing device. It may also be transported manually, for example by an operator. That is, the filtration method using the filtration system 200 includes a step of supplying the first intermediate treatment liquid 79a of the second filter chamber 35 of the first filtration device 91 to the first filter chamber 30 of the second filtration device 92, and a second. The step of supplying the second intermediate treatment liquid 79b of the second filter chamber 35 of the filtration device 92 to the first filter chamber 30 of the third filtration device 93 and the filtrate 79c of the second filter chamber 35 of the third filtration device 93. May have a step of returning to the tank 80.
 以上説明したように、第1実施形態のろ過システム200は、第1ろ過装置91と、第2ろ過装置92とを備える。第1ろ過装置91及び第2ろ過装置92は、それぞれ、複数の第1開口31bが設けられた第1電極31と、複数の第2開口32bが設けられ、第1電極31の一方の面と対向して設けられた第2電極32と、複数の第3開34b口が設けられ、第1電極31と第2電極32との間に設けられたろ材34と、第1電極31の他方の面と接して設けられる第1ろ室30と、第1ろ室30に設けられ、第1電極31と対向する第3電極33と、第2電極32の他方の面と接して設けられる第2ろ室35と、を有する。第1ろ過装置91の第2ろ室35の中間処理液(第1中間処理液79a)が、第2ろ過装置92の第1ろ室30へ供給される。 As described above, the filtration system 200 of the first embodiment includes a first filtration device 91 and a second filtration device 92. The first filtration device 91 and the second filtration device 92 are each provided with a first electrode 31 provided with a plurality of first openings 31b and a plurality of second openings 32b with one surface of the first electrode 31. A second electrode 32 provided so as to face each other, a filter medium 34 provided between the first electrode 31 and the second electrode 32 provided with a plurality of third opening 34b ports, and the other of the first electrode 31. A first filter chamber 30 provided in contact with a surface, a third electrode 33 provided in the first filter chamber 30 facing the first electrode 31, and a second filter provided in contact with the other surface of the second electrode 32. It has a filter chamber 35 and. The intermediate treatment liquid (first intermediate treatment liquid 79a) of the second filter chamber 35 of the first filtration device 91 is supplied to the first filter chamber 30 of the second filtration device 92.
 これによれば、第1ろ過装置91及び第2ろ過装置92では、第1電極31と第3電極33との間で粒子に発生するクーロン力F(第1粒子71と第1電極31との間に発生する斥力)により粒子が第1電極31から第3電極33に向かう方向に移動する。このような電気泳動により、第1電極31の表面及びろ材34の表面にケーキ層が形成されることを抑制することができる。また、第1電極31と第2電極32との間の電界により水分子73を移動させてろ材34を透過させる電気浸透により、粒子を分離でき、第1ろ室30内でのスラリー(原液)70の粒子の濃縮度を高めることができる。これにより、単純にスラリー(原液)70に圧力を加え、ろ材34の目開き34bよりも大きい粒径の粒子を分離する方法に比べて、ろ過速度を数倍から10倍以上に向上させることができる。 According to this, in the first filtration device 91 and the second filtration device 92, the Coulomb force F (the first particle 71 and the first electrode 31) generated in the particles between the first electrode 31 and the third electrode 33 The particles move in the direction from the first electrode 31 to the third electrode 33 due to the repulsive force generated between them. By such electrophoresis, it is possible to suppress the formation of a cake layer on the surface of the first electrode 31 and the surface of the filter medium 34. Further, particles can be separated by electroosmosis in which water molecules 73 are moved by an electric field between the first electrode 31 and the second electrode 32 and permeate through the filter medium 34, and the slurry (stock solution) in the first filter chamber 30. The concentration of 70 particles can be increased. As a result, the filtration rate can be improved several to 10 times or more as compared with the method of simply applying pressure to the slurry (stock solution) 70 to separate particles having a particle size larger than the opening 34b of the filter medium 34. can.
 また、ろ過システム200において、第2電極32の第2電位V2の絶対値は、第1電極31の第1電位V1の絶対値よりも大きい。第1電位V1と第3電極33の第3電位V3との第1電位差は、第1電位V1と第2電位V2との第2電位差よりも大きい。第2ろ過装置92における第1電位差は、第1ろ過装置91における第1電位差よりも大きい。 Further, in the filtration system 200, the absolute value of the second potential V2 of the second electrode 32 is larger than the absolute value of the first potential V1 of the first electrode 31. The first potential difference between the first potential V1 and the third potential V3 of the third electrode 33 is larger than the second potential difference between the first potential V1 and the second potential V2. The first potential difference in the second filtration device 92 is larger than the first potential difference in the first filtration device 91.
 これによれば、第1電極31と第2電極32との距離に比べ、ろ材34を挟んで対向する第1電極31と第3電極33との距離が大きい場合でも、電気泳動により、良好に第1粒子71を第3電極33側に移動させることができる。また、第1ろ過装置91及び第2ろ過装置92のそれぞれにおいて、異なる粒子が分離される。ろ過システム200は、2種類の粒子を含むスラリー(原液)70から、第1粒子71及び第2粒子75を別々に分離することができる。 According to this, even when the distance between the first electrode 31 and the third electrode 33 facing each other across the filter medium 34 is larger than the distance between the first electrode 31 and the second electrode 32, the distance is good by electrophoresis. The first particle 71 can be moved to the third electrode 33 side. Further, different particles are separated in each of the first filtration device 91 and the second filtration device 92. The filtration system 200 can separately separate the first particles 71 and the second particles 75 from the slurry (stock solution) 70 containing the two types of particles.
 また、ろ過システム200は、第2ろ過装置92における第1ろ室30へ、第1ろ過装置91における、第2ろ室35の中間処理液(第1中間処理液79a)を供給するための第2加圧装置96をさらに備える。 Further, the filtration system 200 is a first for supplying the intermediate treatment liquid (first intermediate treatment liquid 79a) of the second filter chamber 35 in the first filtration device 91 to the first filter chamber 30 in the second filtration device 92. 2 The pressurizing device 96 is further provided.
 これによれば、第2ろ過装置92における第1ろ室30の圧力を高めることができる。このため、ろ過システム200は、第2ろ過装置92のろ過速度をより向上させることができる。 According to this, the pressure of the first filter chamber 30 in the second filtration device 92 can be increased. Therefore, the filtration system 200 can further improve the filtration rate of the second filtration device 92.
 また、ろ過システム200は、第3ろ過装置93をさらに備える。第3ろ過装置93は、複数の第1開口31bが設けられた第1電極31と、複数の第2開口32bが設けられ、当該第1電極31の一方の面と対向して設けられた第2電極32と、複数の目開き34bが設けられ、当該第1電極31と当該第2電極32との間に設けられたろ材34と、当該第1電極31の他方の面と接して設けられる第1ろ室30と、当該第1ろ室30に設けられ、当該第1電極31と対向する第3電極33と、当該第2電極32の他方の面と接して設けられる第2ろ室35と、を有する。第3ろ過装置93において、第1電極31の第1電位V1と第3電極33の第3電位V3との第1電位差は、第1電位V1と第2電極32の第2電位V2との第2電位差よりも大きい。第2ろ過装置92における、第2ろ室35の中間処理液(第2中間処理液79b)が、第3ろ過装置93における第1ろ室30へ供給される。第3ろ過装置93における第1電位差は、第2ろ過装置92における第1電位差よりも大きい。 Further, the filtration system 200 further includes a third filtration device 93. The third filtration device 93 is provided with a first electrode 31 provided with a plurality of first openings 31b and a second electrode 31 provided with a plurality of second openings 32b facing the one surface of the first electrode 31. The two electrodes 32 and a plurality of openings 34b are provided, and the filter medium 34 provided between the first electrode 31 and the second electrode 32 is provided in contact with the other surface of the first electrode 31. The first filter chamber 30, the third electrode 33 provided in the first filter chamber 30 and facing the first electrode 31, and the second filter chamber 35 provided in contact with the other surface of the second electrode 32. And have. In the third filtration device 93, the first potential difference between the first potential V1 of the first electrode 31 and the third potential V3 of the third electrode 33 is the second potential V2 between the first potential V1 and the second electrode 32. Greater than 2 potential differences. The intermediate treatment liquid (second intermediate treatment liquid 79b) of the second filter chamber 35 in the second filtration device 92 is supplied to the first filter chamber 30 in the third filtration device 93. The first potential difference in the third filtration device 93 is larger than the first potential difference in the second filtration device 92.
 これによれば、第1ろ過装置91、第2ろ過装置92及び第3ろ過装置93のそれぞれにおいて、異なる粒子が分離される。ろ過システム200は、3種類の粒子を含むスラリー(原液)70から、第1粒子71、第2粒子75及び第3粒子74を別々に分離することができる。 According to this, different particles are separated in each of the first filtration device 91, the second filtration device 92, and the third filtration device 93. The filtration system 200 can separately separate the first particle 71, the second particle 75, and the third particle 74 from the slurry (stock solution) 70 containing three kinds of particles.
(第1実施形態の第1変形例)
 図8は、第1実施形態の第1変形例に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置の模式図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(First modification of the first embodiment)
FIG. 8 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the first modification of the first embodiment. The same components as those described in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
 図8に示すように、第1実施形態の第1変形例に係るろ過システム200Aは、直列に接続された第1ろ過装置91Aと、第2ろ過装置92Aと、第3ろ過装置93Aと、を備える。第1ろ過装置91A、第2ろ過装置92A及び第3ろ過装置93Aのそれぞれは、筐体20と、筐体20の内部に配置される4つのろ過ユニット100と、第2ろ室35と、2つの第1電源51と、2つの第2電源52と、2つの第3電源53と、を備える。4つのろ過ユニット100は、ろ過ユニット101と、ろ過ユニット102と、ろ過ユニット105と、ろ過ユニット106と、を含む。ろ過ユニット101及びろ過ユニット102は、一方向Xに並んで配置される。ろ過ユニット105及びろ過ユニット106は、一方向Xに並んで配置される。ろ過ユニット101及びろ過ユニット105は、一方向Xに対して直交する他方向Yに並んで配置される。ろ過ユニット102及びろ過ユニット106は、他方向Yに並んで配置される。それぞれのろ過ユニット100は、第1ろ室30と、第1電極31と、第2電極32と、第3電極33と、ろ材34と、を有する。 As shown in FIG. 8, the filtration system 200A according to the first modification of the first embodiment includes a first filtration device 91A, a second filtration device 92A, and a third filtration device 93A connected in series. Be prepared. Each of the first filtration device 91A, the second filtration device 92A, and the third filtration device 93A has a housing 20, four filtration units 100 arranged inside the housing 20, a second filter chamber 35, and two. It includes one first power source 51, two second power sources 52, and two third power sources 53. The four filtration units 100 include a filtration unit 101, a filtration unit 102, a filtration unit 105, and a filtration unit 106. The filtration unit 101 and the filtration unit 102 are arranged side by side in one direction X. The filtration unit 105 and the filtration unit 106 are arranged side by side in one direction X. The filtration unit 101 and the filtration unit 105 are arranged side by side in the other direction Y orthogonal to the one direction X. The filtration unit 102 and the filtration unit 106 are arranged side by side in the other direction Y. Each filtration unit 100 has a first filter chamber 30, a first electrode 31, a second electrode 32, a third electrode 33, and a filter medium 34.
 1つのろ過ユニット100が備える第1電極31、第2電極32、第3電極33、及びろ材34は、他方向Yで隣り合うろ過ユニット100と共用される。言い換えると、1つの第1電極31、1つの第2電極32、1つの第3電極33及び1つのろ材34は、他方向Yで隣り合うろ過ユニット100(ろ過ユニット101及びろ過ユニット105の組、並びにろ過ユニット102及びろ過ユニット106の組)で共用される。 The first electrode 31, the second electrode 32, the third electrode 33, and the filter medium 34 included in one filtration unit 100 are shared with the adjacent filtration units 100 in the other direction Y. In other words, one first electrode 31, one second electrode 32, one third electrode 33, and one filter medium 34 are adjacent filtration units 100 (a set of filtration unit 101 and filtration unit 105) in the other direction Y. And the set of filtration unit 102 and filtration unit 106).
 ろ過ユニット101及びろ過ユニット105では、一方向Xにおいて(図8の上から下に向かって)、複数の電極が、第3電極33、第1電極31、第2電極32の順に並ぶ。ろ過ユニット102及びろ過ユニット106では、一方向Xにおいて(図8の上から下に向かって)、複数の電極が、第2電極32、第1電極31、第3電極33の順に並ぶ。 In the filtration unit 101 and the filtration unit 105, in one direction X (from top to bottom in FIG. 8), a plurality of electrodes are arranged in the order of the third electrode 33, the first electrode 31, and the second electrode 32. In the filtration unit 102 and the filtration unit 106, in one direction X (from top to bottom in FIG. 8), a plurality of electrodes are arranged in the order of the second electrode 32, the first electrode 31, and the third electrode 33.
 筐体20には、供給部81と、第1排出部83と、第2排出部85とが接続されている。供給部81は、スラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bを第1ろ室30に供給する配管である。第1排出部83は、スラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bの一部を第1ろ室30から排出するための配管である。第1排出部83は、供給部81とは異なる位置に設けられる。第1排出部83は、バルブ84を備える。バルブ84が開放された場合に、第1排出部83は、第1ろ室30のスラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bを排出する。第1排出部83は、濃縮液76を排出するためにも用いられる。濃縮液76は、濃縮されたスラリー(原液)70である。第2排出部85は、第2ろ室35にある第1中間処理液79a、第2中間処理液79b、又はろ液92cを第2ろ室35から排出するための配管である。第2ろ室35は、筐体20の内壁、及び2つの第2電極32で囲まれる。第2ろ室35は、一方向Xに並んだ2つのろ過ユニット100の間に配置される。 A supply unit 81, a first discharge unit 83, and a second discharge unit 85 are connected to the housing 20. The supply unit 81 is a pipe that supplies the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b to the first filter chamber 30. The first discharge unit 83 is a pipe for discharging a part of the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b from the first filter chamber 30. The first discharge unit 83 is provided at a position different from that of the supply unit 81. The first discharge unit 83 includes a valve 84. When the valve 84 is opened, the first discharge unit 83 discharges the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b of the first filter chamber 30. The first discharge unit 83 is also used to discharge the concentrated liquid 76. The concentrate 76 is a concentrated slurry (stock solution) 70. The second discharge unit 85 is a pipe for discharging the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, or the filtrate 92c in the second filter chamber 35 from the second filter chamber 35. The second filter chamber 35 is surrounded by the inner wall of the housing 20 and the two second electrodes 32. The second filter chamber 35 is arranged between two filtration units 100 arranged in one direction X.
 第1ろ過装置91Aにおいて、各電極の駆動によりスラリー(原液)70の第1粒子71(図3参照)に斥力が働くので、第1粒子71の分散状況に濃度勾配が生じる。第1粒子71が分離されたスラリー(原液)70は、第1電極31、第2電極32及びろ材34を通して、第2ろ室35に流れる。第1ろ過装置91Aの第2ろ室35にある第1中間処理液79aは、第2排出部85を介して第2ろ過装置92Aに供給される。 In the first filtration device 91A, a repulsive force acts on the first particle 71 (see FIG. 3) of the slurry (stock solution) 70 by driving each electrode, so that a concentration gradient occurs in the dispersion state of the first particle 71. The slurry (stock solution) 70 from which the first particles 71 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34. The first intermediate treatment liquid 79a in the second filter chamber 35 of the first filtration device 91A is supplied to the second filtration device 92A via the second discharge unit 85.
 第2ろ過装置92Aにおいて、各電極の駆動により第1中間処理液79aの第2粒子75(図4参照)に斥力が働くので、第2粒子75の分散状況に濃度勾配が生じる。第2粒子75が分離された第1中間処理液79aは、第1電極31、第2電極32及びろ材34を通して、第2ろ室35に流れる。第2ろ過装置92Aの第2ろ室35にある第2中間処理液79bは、第2排出部85を介して第3ろ過装置93Aに供給される。 In the second filtration device 92A, a repulsive force acts on the second particles 75 (see FIG. 4) of the first intermediate treatment liquid 79a by driving each electrode, so that a concentration gradient occurs in the dispersion state of the second particles 75. The first intermediate treatment liquid 79a from which the second particles 75 are separated flows into the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34. The second intermediate treatment liquid 79b in the second filter chamber 35 of the second filtration device 92A is supplied to the third filtration device 93A via the second discharge unit 85.
 第3ろ過装置93Aにおいて、各電極の駆動により第2中間処理液79bの第3粒子74(図5参照)に斥力が働くので、第3粒子74の分散状況に濃度勾配が生じる。第3粒子74が分離された第2中間処理液79bは、第1電極31、第2電極32及びろ材34を通して、第2ろ室35に流れる。第3ろ過装置93Aの第2ろ室35にあるろ液79cは、第2排出部85を介してスラリー(原液)70が貯留されたタンク80に戻される。ろ液79cは、極性溶媒72である。 In the third filtration device 93A, a repulsive force acts on the third particle 74 (see FIG. 5) of the second intermediate treatment liquid 79b by driving each electrode, so that a concentration gradient occurs in the dispersion state of the third particle 74. The second intermediate treatment liquid 79b from which the third particles 74 are separated flows to the second filter chamber 35 through the first electrode 31, the second electrode 32 and the filter medium 34. The filtrate 79c in the second filter chamber 35 of the third filtration device 93A is returned to the tank 80 in which the slurry (stock solution) 70 is stored via the second discharge unit 85. The filtrate 79c is a polar solvent 72.
 なお、ろ過システム200Aにおいて、複数のろ過ユニット100は、一方向X及び他方向Yの両方に対して直交する方向(図8における紙面の奥行き方向)に並んで配置されてもよい。すなわち、複数のろ過ユニット100は、3次元的に並んで配置されてもよい。 In the filtration system 200A, the plurality of filtration units 100 may be arranged side by side in a direction orthogonal to both the one direction X and the other direction Y (the depth direction of the paper surface in FIG. 8). That is, the plurality of filtration units 100 may be arranged three-dimensionally side by side.
 第1ろ過装置91A、第2ろ過装置92A及び第3ろ過装置93Aのそれぞれは、必ずしも第1電源51、第2電源52、及び第3電源53を2つずつ備えていなくてもよい。第1電源51、第2電源52、及び第3電源53のうち定電圧電源である電源の数は、1つであってもよい。例えば、第1電源51及び第3電源53が定電圧電源である場合、第1電源51及び第3電源53の数が1つであってもよい。この場合、1つの第1電源51が複数の第1電極31に接続され、1つの第3電源53が複数の第3電極33に接続される。 Each of the first filtration device 91A, the second filtration device 92A, and the third filtration device 93A does not necessarily have to include two first power sources 51, two second power sources 52, and two third power sources 53. Of the first power supply 51, the second power supply 52, and the third power supply 53, the number of power supplies that are constant voltage power supplies may be one. For example, when the first power supply 51 and the third power supply 53 are constant voltage power supplies, the number of the first power supply 51 and the third power supply 53 may be one. In this case, one first power source 51 is connected to the plurality of first electrodes 31, and one third power source 53 is connected to the plurality of third electrodes 33.
(第1実施形態の第2変形例)
 図9は図8にならって変形したものである。図9は、第1実施形態の第2変形例に係る第1ろ過装置、第2ろ過装置及び第3ろ過装置の模式図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Second variant of the first embodiment)
FIG. 9 is a modification of FIG. 8. FIG. 9 is a schematic view of the first filtration device, the second filtration device, and the third filtration device according to the second modification of the first embodiment. The same components as those described in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
 図9に示すように、第1実施形態の第2変形例に係るろ過システム200Bは、直列に接続された第1ろ過装置91Bと、第2ろ過装置92Bと、第3ろ過装置93Bと、を備える。第1ろ過装置91B、第2ろ過装置92B、及び第3ろ過装置93Bのそれぞれは、8つのろ過ユニット100と、2つの第2ろ室35と、4つの第1電源51と、4つの第2電源52と、4つの第3電源53と、を備える。8つのろ過ユニット100は、ろ過ユニット101と、ろ過ユニット102と、ろ過ユニット103と、ろ過ユニット104と、ろ過ユニット105と、ろ過ユニット106と、ろ過ユニット107と、ろ過ユニット108と、を含む。ろ過ユニット101、ろ過ユニット102、ろ過ユニット103と、及びろ過ユニット104は、一方向Xに並んで配置される。ろ過ユニット105及びろ過ユニット106、ろ過ユニット107、及びろ過ユニット108は、一方向Xに並んで配置される。ろ過ユニット103及びろ過ユニット107は、他方向Yに並んで配置される。ろ過ユニット104及びろ過ユニット108は、他方向Yに並んで配置される。 As shown in FIG. 9, the filtration system 200B according to the second modification of the first embodiment includes a first filtration device 91B, a second filtration device 92B, and a third filtration device 93B connected in series. Be prepared. Each of the first filtration device 91B, the second filtration device 92B, and the third filtration device 93B has eight filtration units 100, two second filter chambers 35, four first power supplies 51, and four second filters. It includes a power source 52 and four third power sources 53. The eight filtration units 100 include a filtration unit 101, a filtration unit 102, a filtration unit 103, a filtration unit 104, a filtration unit 105, a filtration unit 106, a filtration unit 107, and a filtration unit 108. The filtration unit 101, the filtration unit 102, the filtration unit 103, and the filtration unit 104 are arranged side by side in one direction X. The filtration unit 105, the filtration unit 106, the filtration unit 107, and the filtration unit 108 are arranged side by side in one direction X. The filtration unit 103 and the filtration unit 107 are arranged side by side in the other direction Y. The filtration unit 104 and the filtration unit 108 are arranged side by side in the other direction Y.
 1つのろ過ユニット100が備える第1電極31、第2電極32、第3電極33、及びろ材34は、他方向Yで隣り合うろ過ユニット100と共用される。言い換えると、1つの第1電極31、1つの第2電極32、1つの第3電極33及び1つのろ材34は、他方向Yで隣り合うろ過ユニット100(ろ過ユニット103及びろ過ユニット107の組、並びにろ過ユニット104及びろ過ユニット108の組)で共用される。 The first electrode 31, the second electrode 32, the third electrode 33, and the filter medium 34 included in one filtration unit 100 are shared with the adjacent filtration units 100 in the other direction Y. In other words, one first electrode 31, one second electrode 32, one third electrode 33, and one filter medium 34 are adjacent filtration units 100 (a set of filtration unit 103 and filtration unit 107) in the other direction Y. And is shared by the set of filtration unit 104 and filtration unit 108).
 ろ過ユニット103及びろ過ユニット107では、一方向Xにおいて(図9の上から下に向かって)、複数の電極が、第3電極33、第1電極31、第2電極32の順に並ぶ。ろ過ユニット104及びろ過ユニット108では、一方向Xにおいて(図9の上から下に向かって)、複数の電極が、第2電極32、第1電極31、第3電極33の順に並ぶ。 In the filtration unit 103 and the filtration unit 107, in one direction X (from top to bottom in FIG. 9), a plurality of electrodes are arranged in the order of the third electrode 33, the first electrode 31, and the second electrode 32. In the filtration unit 104 and the filtration unit 108, in one direction X (from top to bottom in FIG. 9), a plurality of electrodes are arranged in the order of the second electrode 32, the first electrode 31, and the third electrode 33.
 ろ過ユニット102が備える第3電極33は、一方向Xで隣り合うろ過ユニット103と共用される。ろ過ユニット106が備える第3電極33は、一方向Xで隣り合うろ過ユニット107と共用される。言い換えると、一方向Xに2つの並んだ第1ろ室30の間は、一方向Xに隣り合うろ過ユニット100(ろ過ユニット102及びろ過ユニット103の組、並びにろ過ユニット106及びろ過ユニット107の組)で共用される第3電極33で区画されている。 The third electrode 33 included in the filtration unit 102 is shared with the adjacent filtration units 103 in one direction X. The third electrode 33 included in the filtration unit 106 is shared with the adjacent filtration units 107 in one direction X. In other words, between the two side-by-side first filter chambers 30 in one direction X, the filtration unit 100 (the set of the filtration unit 102 and the filtration unit 103, and the set of the filtration unit 106 and the filtration unit 107) adjacent to each other in the one direction X. ) Is partitioned by the third electrode 33 shared by.
 第1排出部831は、ろ過ユニット105及びろ過ユニット106の第1ろ室30のスラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bを排出する。第1排出部831は、濃縮液76を排出するためにも用いられる。第2排出部851は、ろ過ユニット105及びろ過ユニット106の間の第2ろ室35にある第1中間処理液79a、第2中間処理液79b、又はろ液92cを第2ろ室35から排出するための配管である。第2排出部851は、ろ過ユニット103及びろ過ユニット104の第1ろ室30に接続される。 The first discharge unit 831 discharges the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b in the first filter chamber 30 of the filtration unit 105 and the filtration unit 106. The first discharge unit 831 is also used to discharge the concentrated liquid 76. The second discharge unit 851 discharges the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, or the filtrate 92c in the second filter chamber 35 between the filtration unit 105 and the filtration unit 106 from the second filter chamber 35. It is a piping for doing. The second discharge unit 851 is connected to the filtration unit 103 and the first filter chamber 30 of the filtration unit 104.
 第3排出部832は、ろ過ユニット107及びろ過ユニット108の第1ろ室30のスラリー(原液)70、第1中間処理液79a、又は第2中間処理液79bを排出する。第3排出部832は、濃縮液76を排出するためにも用いられる。第4排出部852は、ろ過ユニット107及びろ過ユニット108の間の第2ろ室35にある第1中間処理液79a、第2中間処理液79b、又はろ液92cを第2ろ室35から排出するための配管である。 The third discharge unit 832 discharges the slurry (stock solution) 70, the first intermediate treatment liquid 79a, or the second intermediate treatment liquid 79b in the first filter chamber 30 of the filtration unit 107 and the filtration unit 108. The third discharge unit 832 is also used to discharge the concentrated liquid 76. The fourth discharge unit 852 discharges the first intermediate treatment liquid 79a, the second intermediate treatment liquid 79b, or the filtrate 92c in the second filter chamber 35 between the filtration unit 107 and the filtration unit 108 from the second filter chamber 35. It is a piping for doing.
 なお、第1ろ過装置91Bと、第2ろ過装置92Bと、第3ろ過装置93Bにおいては、必ずしも4のろ過ユニット100が一方向Xに並んでいなくてもよい。一方向Xに並ぶろ過ユニット100の数は、3つであってもよいし、5つ以上であってもよい。また、一方向Xに2つの並んだ第1ろ室30の間に配置される第3電極33は、必ずしも2つのろ過ユニット100で共用されなくてもよい。すなわち、一方向Xに2つの並んだ第1ろ室30の間に、互いに絶縁された2つの第3電極33が配置されてもよい。 In the first filtration device 91B, the second filtration device 92B, and the third filtration device 93B, the filtration units 100 of 4 do not necessarily have to be arranged in one direction X. The number of filtration units 100 arranged in one direction X may be three or five or more. Further, the third electrode 33 arranged between the two arranged first filter chambers 30 in one direction X does not necessarily have to be shared by the two filtration units 100. That is, two third electrodes 33 isolated from each other may be arranged between the two arranged first filter chambers 30 in one direction X.
 なお、ろ過システム200Bにおいて、複数のろ過ユニット100は、一方向X及び他方向Yの両方に対して直交する方向(図9における紙面の奥行き方向)に並んで配置されてもよい。すなわち、複数のろ過ユニット100は、3次元的に並んで配置されてもよい。 In the filtration system 200B, the plurality of filtration units 100 may be arranged side by side in a direction orthogonal to both one direction X and the other direction Y (the depth direction of the paper surface in FIG. 9). That is, the plurality of filtration units 100 may be arranged three-dimensionally side by side.
 第1ろ過装置91B、第2ろ過装置92B及び第3ろ過装置93Bのそれぞれは、必ずしも第1電源51、第2電源52、及び第3電源53を4つずつ備えていなくてもよい。第1電源51、第2電源52、及び第3電源53のうち定電圧電源である電源の数は、1つであってもよい。例えば、第1電源51及び第3電源53が定電圧電源である場合、第1電源51及び第3電源53の数が1つであってもよい。この場合、1つの第1電源51が複数の第1電極31に接続され、1つの第3電源53が複数の第3電極33に接続される。 Each of the first filtration device 91B, the second filtration device 92B, and the third filtration device 93B does not necessarily have to include four first power sources 51, four second power sources 52, and four third power sources 53. Of the first power supply 51, the second power supply 52, and the third power supply 53, the number of power supplies that are constant voltage power supplies may be one. For example, when the first power supply 51 and the third power supply 53 are constant voltage power supplies, the number of the first power supply 51 and the third power supply 53 may be one. In this case, one first power source 51 is connected to the plurality of first electrodes 31, and one third power source 53 is connected to the plurality of third electrodes 33.
(第2実施形態)
 図10は、第2実施形態に係るろ過装置の模式図である。なお、上述した実施形態で説明したものと同じ構成要素には同一の符号を付して重複する説明は省略する。
(Second Embodiment)
FIG. 10 is a schematic diagram of the filtration device according to the second embodiment. The same components as those described in the above-described embodiment are designated by the same reference numerals, and duplicated description will be omitted.
 図10に示すように、第2実施形態のろ過装置10は、筐体40と、第1ろ室400と、第1電極401と、第2電極402と、第3電極403と、第1ろ材404と、第2ろ室405と、第4電極411と、第5電極412と、第2ろ材414と、第3ろ室415と、第6電極421と、第7電極422と、第3ろ材424と、第4ろ室425と、第1電源61と、第2電源62と、第4電源64と、第5電源65と、第6電源66と、第7電源67と、を有する。 As shown in FIG. 10, the filtration device 10 of the second embodiment includes a housing 40, a first filter chamber 400, a first electrode 401, a second electrode 402, a third electrode 403, and a first filter medium. 404, 2nd filter chamber 405, 4th electrode 411, 5th electrode 412, 2nd filter medium 414, 3rd filter chamber 415, 6th electrode 421, 7th electrode 422, and 3rd filter medium. It has a 424, a fourth filter chamber 425, a first power supply 61, a second power supply 62, a fourth power supply 64, a fifth power supply 65, a sixth power supply 66, and a seventh power supply 67.
 第1ろ室400は、筐体40の内壁、第1電極401、及び第3電極403で囲まれた空間である。第1電極401及び第2電極402は、メッシュ状の電極である。具体的には、第1電極401は、複数の導電細線401aを有し、複数の導電細線401aの間に複数の第1開口401bが設けられる。第2電極402は、複数の導電細線402aを有し、複数の導電細線402aの間に複数の第2開口402bが設けられる。第2電極402は、第1ろ材404を介して第1電極401の一方の面(下面)と対向して設けられる。言い換えると、第1ろ材404は、第1電極401と第2電極402との間に設けられる。第1電極401及び第2電極402は、第1ろ材404と直接、接して設けられる。第3電極403は、板状の部材であり、第1ろ室400を挟んで第1電極401の他方の面(上面)と対向して設けられる。 The first filter chamber 400 is a space surrounded by the inner wall of the housing 40, the first electrode 401, and the third electrode 403. The first electrode 401 and the second electrode 402 are mesh-shaped electrodes. Specifically, the first electrode 401 has a plurality of conductive thin wires 401a, and a plurality of first openings 401b are provided between the plurality of conductive thin wires 401a. The second electrode 402 has a plurality of conductive thin wires 402a, and a plurality of second openings 402b are provided between the plurality of conductive thin wires 402a. The second electrode 402 is provided so as to face one surface (lower surface) of the first electrode 401 via the first filter medium 404. In other words, the first filter medium 404 is provided between the first electrode 401 and the second electrode 402. The first electrode 401 and the second electrode 402 are provided in direct contact with the first filter medium 404. The third electrode 403 is a plate-shaped member, and is provided so as to face the other surface (upper surface) of the first electrode 401 with the first filter chamber 400 interposed therebetween.
 第1ろ材404は、ろ過膜404aと、第1目開き404bと、を含む。ろ過膜404aに複数の第1目開き404bが設けられている。ろ過膜404aに対して電界が働く。第1ろ材404は、例えば、精密ろ過膜(MF膜(Microfiltation Membrane))が用いられる。実施形態では、第1ろ材404は、樹脂材料等の絶縁材料で形成されている。第2ろ室405は、第2電極402を挟んで第1電極401とは反対側に配置される。第2ろ室405は、第2電極402と接して設けられる。 The first filter medium 404 includes a filtration membrane 404a and a first opening 404b. The filtration membrane 404a is provided with a plurality of first opening 404b. An electric field acts on the filtration membrane 404a. As the first filter medium 404, for example, a microfiltration membrane (MF membrane) is used. In the embodiment, the first filter medium 404 is formed of an insulating material such as a resin material. The second filter chamber 405 is arranged on the side opposite to the first electrode 401 with the second electrode 402 interposed therebetween. The second filter chamber 405 is provided in contact with the second electrode 402.
 第1電極401は、第1電源61の第2端子61bと電気的に接続される。また、第1電極401は、第2電源62の第1端子62aと電気的に接続される。第2電極402は、第2電源62の第2端子62bと電気的に接続される。第3電極403及び第1電源61の第1端子61aは、基準電位GNDに接続される。 The first electrode 401 is electrically connected to the second terminal 61b of the first power supply 61. Further, the first electrode 401 is electrically connected to the first terminal 62a of the second power supply 62. The second electrode 402 is electrically connected to the second terminal 62b of the second power supply 62. The third electrode 403 and the first terminal 61a of the first power supply 61 are connected to the reference potential GND.
 第1電源61は、第1電極401に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性の第1電位V1を供給する。第1電位V1は、例えば-20Vである。第2電源62は、第2電極402に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性であって、第1電位V1の絶対値よりも大きい絶対値の第2電位V2を供給する。第2電位V2は、例えば-30Vである。第1電極401の第1電位V1(-20V)と第3電極403の第3電位(0V)との電位差(20V)は、第1電位V1(-20V)と第2電極402の第2電位V2(-30)との電位差(10V)よりも大きい。なお、ろ過装置10がさらに第3電源を備えており、第3電源が第3電極403に第1粒子71、第2粒子75、及び第3粒子74の極性と異なる極性の第3電位V3(例えば+30V)を供給してもよい。第1電位V1、第2電位V2及び第3電位V3は、絶対値で1mV以上1000V以下の範囲で設定することができる。 The first power supply 61 supplies the first electrode 401 with a first potential V1 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74. The first potential V1 is, for example, −20 V. The second power source 62 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the second electrode 402, and has an absolute value larger than the absolute value of the first potential V1. Two potentials V2 are supplied. The second potential V2 is, for example, −30 V. The potential difference (20V) between the first potential V1 (-20V) of the first electrode 401 and the third potential (0V) of the third electrode 403 is the second potential of the first potential V1 (-20V) and the second electrode 402. It is larger than the potential difference (10V) from V2 (-30). The filtration device 10 is further provided with a third power source, and the third power source has a third potential V3 (3rd potential V3) having a polarity different from that of the first particle 71, the second particle 75, and the third particle 74 on the third electrode 403. For example, + 30V) may be supplied. The first potential V1, the second potential V2, and the third potential V3 can be set in an absolute value in the range of 1 mV or more and 1000 V or less.
 第4電極411及び第5電極412は、メッシュ状の電極である。具体的には、第4電極411は、複数の導電細線411aを有し、複数の導電細線411aの間に複数の第4開口411bが設けられる。第4電極411は、第2電極402との間に第2ろ室405を挟んで配置される。第5電極412は、複数の導電細線412aを有し、複数の導電細線412aの間に複数の第5開口412bが設けられる。第5電極412は、第2ろ材414を介して第4電極411の一方の面(下面)と対向して設けられる。言い換えると、第2ろ材414は、第4電極411と第5電極412との間に設けられる。第4電極411及び第5電極412は、第2ろ材414と直接、接して設けられる。 The 4th electrode 411 and the 5th electrode 412 are mesh-shaped electrodes. Specifically, the fourth electrode 411 has a plurality of conductive thin wires 411a, and a plurality of fourth openings 411b are provided between the plurality of conductive thin wires 411a. The fourth electrode 411 is arranged so as to sandwich the second filter chamber 405 with the second electrode 402. The fifth electrode 412 has a plurality of conductive thin wires 412a, and a plurality of fifth openings 412b are provided between the plurality of conductive thin wires 412a. The fifth electrode 412 is provided so as to face one surface (lower surface) of the fourth electrode 411 via the second filter medium 414. In other words, the second filter medium 414 is provided between the fourth electrode 411 and the fifth electrode 412. The fourth electrode 411 and the fifth electrode 412 are provided in direct contact with the second filter medium 414.
 第2ろ材414は、ろ過膜414aと、第2目開き414bと、を含む。ろ過膜414aに複数の第2目開き414bが設けられている。ろ過膜414aに対して電界が働く。第2目開き414bの大きさは、第1ろ材404の第1目開き404bと同じである。第2ろ材414は、例えば、精密ろ過膜(MF膜(Microfiltation Membrane))が用いられる。第2ろ材414は、樹脂材料等の絶縁材料で形成されている。第3ろ室415は、第5電極412を挟んで第4電極411とは反対側に配置される。第3ろ室415は、第5電極412と接して設けられる。 The second filter medium 414 includes a filtration membrane 414a and a second opening 414b. The filtration membrane 414a is provided with a plurality of second opening 414b. An electric field acts on the filtration membrane 414a. The size of the second opening 414b is the same as that of the first opening 404b of the first filter medium 404. As the second filter medium 414, for example, a microfiltration membrane (MF membrane (Microfiltration Membrane)) is used. The second filter medium 414 is made of an insulating material such as a resin material. The third filter chamber 415 is arranged on the side opposite to the fourth electrode 411 with the fifth electrode 412 interposed therebetween. The third filter chamber 415 is provided in contact with the fifth electrode 412.
 第4電極411は、第4電源64の第2端子64bと電気的に接続される。また、第4電極411は、第5電源65の第1端子65aと電気的に接続される。第5電極412は、第5電源65の第2端子65bと電気的に接続される。第4電源64の第1端子64aは、基準電位GNDに接続される。 The fourth electrode 411 is electrically connected to the second terminal 64b of the fourth power supply 64. Further, the fourth electrode 411 is electrically connected to the first terminal 65a of the fifth power supply 65. The fifth electrode 412 is electrically connected to the second terminal 65b of the fifth power supply 65. The first terminal 64a of the fourth power supply 64 is connected to the reference potential GND.
 第4電源64は、第4電極411に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性の第4電位V4を供給する。第4電位V4は、例えば-40Vである。第5電源65は、第5電極412に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性であって、第4電位V4の絶対値よりも大きい絶対値の第5電位V5を供給する。第5電位V5は、例えば-50Vである。第4電極411の第4電位V4(-40V)と第3電位V3(0V)との電位差(40V)は、第4電位V4(-40V)と第5電極412の第5電位(-50V)との電位差(10V)よりも大きい。第4電位V4(-40V)と第3電位V3(0V)との電位差(40V)は、第1電位V1(-20)と第3電位V3(0V)との電位差(20V)よりも大きい。第4電位V4及び第5電位V5は、絶対値で1mV以上1000V以下の範囲で設定することができる。 The fourth power source 64 supplies the fourth electrode 411 with a fourth potential V4 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74. The fourth potential V4 is, for example, −40 V. The fifth power source 65 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the fifth electrode 412, and has an absolute value larger than the absolute value of the fourth potential V4. 5 Potential V5 is supplied. The fifth potential V5 is, for example, −50 V. The potential difference (40V) between the fourth potential V4 (-40V) and the third potential V3 (0V) of the fourth electrode 411 is the fifth potential (-50V) of the fourth potential V4 (-40V) and the fifth electrode 412. It is larger than the potential difference (10V) with. The potential difference (40V) between the fourth potential V4 (-40V) and the third potential V3 (0V) is larger than the potential difference (20V) between the first potential V1 (-20) and the third potential V3 (0V). The fourth potential V4 and the fifth potential V5 can be set in an absolute value in the range of 1 mV or more and 1000 V or less.
 第6電極421及び第7電極422は、メッシュ状の電極である。具体的には、第6電極421は、複数の導電細線421aを有し、複数の導電細線421aの間に複数の第6開口421bが設けられる。第6電極421は、第5電極412との間に第3ろ室415を挟んで配置される。第7電極422は、複数の導電細線422aを有し、複数の導電細線422aの間に複数の第7開口422bが設けられる。第7電極422は、第3ろ材424を介して第6電極421の一方の面(下面)と対向して設けられる。言い換えると、第3ろ材424は、第6電極421と第7電極422との間に設けられる。第6電極421及び第7電極422は、第3ろ材424と直接、接して設けられる。 The sixth electrode 421 and the seventh electrode 422 are mesh-shaped electrodes. Specifically, the sixth electrode 421 has a plurality of conductive thin wires 421a, and a plurality of sixth openings 421b are provided between the plurality of conductive thin wires 421a. The sixth electrode 421 is arranged with the third filter chamber 415 sandwiched between the sixth electrode 421 and the fifth electrode 412. The seventh electrode 422 has a plurality of conductive thin wires 422a, and a plurality of seventh openings 422b are provided between the plurality of conductive thin wires 422a. The seventh electrode 422 is provided so as to face one surface (lower surface) of the sixth electrode 421 via the third filter medium 424. In other words, the third filter medium 424 is provided between the sixth electrode 421 and the seventh electrode 422. The sixth electrode 421 and the seventh electrode 422 are provided in direct contact with the third filter medium 424.
 第3ろ材424は、ろ過膜424aと、第3目開き424bと、を含む。ろ過膜424aに複数の第3目開き424bが設けられている。ろ過膜424aに対して電界が働く。第3目開き424bの大きさは、第2ろ材414の第2目開き414bと同じである。第3ろ材424は、例えば、精密ろ過膜(MF膜(Microfiltation Membrane))が用いられる。第3ろ材424は、樹脂材料等の絶縁材料で形成されている。第4ろ室425は、第7電極422を挟んで第6電極421とは反対側に配置される。第4ろ室425は、第7電極422と接して設けられる。 The third filter medium 424 includes a filtration membrane 424a and a third opening 424b. The filtration membrane 424a is provided with a plurality of third opening 424b. An electric field acts on the filtration membrane 424a. The size of the third opening 424b is the same as that of the second opening 414b of the second filter medium 414. As the third filter medium 424, for example, a microfiltration membrane (MF membrane (Microfiltration Membrane)) is used. The third filter medium 424 is formed of an insulating material such as a resin material. The fourth filter chamber 425 is arranged on the side opposite to the sixth electrode 421 with the seventh electrode 422 interposed therebetween. The fourth filter chamber 425 is provided in contact with the seventh electrode 422.
 第6電極421は、第6電源66の第2端子66bと電気的に接続される。また、第6電極421は、第7電源67の第1端子67aと電気的に接続される。第7電極422は、第7電源67の第2端子67bと電気的に接続される。第6電源66の第1端子66aは、基準電位GNDに接続される。 The sixth electrode 421 is electrically connected to the second terminal 66b of the sixth power supply 66. Further, the sixth electrode 421 is electrically connected to the first terminal 67a of the seventh power supply 67. The seventh electrode 422 is electrically connected to the second terminal 67b of the seventh power supply 67. The first terminal 66a of the sixth power supply 66 is connected to the reference potential GND.
 第6電源66は、第6電極421に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性の第6電位V6を供給する。第6電位V6は、例えば-60Vである。第7電源67は、第7電極422に、第1粒子71、第2粒子75、及び第3粒子74の極性と同じ極性であって、第6電位V6の絶対値よりも大きい絶対値の第7電位V7を供給する。第7電位V7は、例えば-70Vである。第6電極421の第6電位V6(-60V)と第3電位V3(0V)との電位差(60V)は、第6電位V6(-60V)と第7電極422の第7電位V7(-70V)との電位差(10V)よりも大きい。第6電位V6(-60V)と第3電位V3(0V)との電位差(60V)は、第4電位V4(-40V)と第3電位(0V)との電位差(40V)よりも大きい。第6電位V6及び第7電位V7は、絶対値で1mV以上1000V以下の範囲で設定することができる。 The sixth power source 66 supplies the sixth electrode 421 with a sixth potential V6 having the same polarity as that of the first particle 71, the second particle 75, and the third particle 74. The sixth potential V6 is, for example, −60 V. The seventh power source 67 has the same polarity as the polarities of the first particle 71, the second particle 75, and the third particle 74 on the seventh electrode 422, and has an absolute value larger than the absolute value of the sixth potential V6. 7 potential V7 is supplied. The seventh potential V7 is, for example, −70 V. The potential difference (60V) between the 6th potential V6 (-60V) and the 3rd potential V3 (0V) of the 6th electrode 421 is the 7th potential V7 (-70V) of the 6th potential V6 (-60V) and the 7th electrode 422. ) Is larger than the potential difference (10V). The potential difference (60V) between the sixth potential V6 (-60V) and the third potential V3 (0V) is larger than the potential difference (40V) between the fourth potential V4 (-40V) and the third potential (0V). The sixth potential V6 and the seventh potential V7 can be set in an absolute value in the range of 1 mV or more and 1000 V or less.
 加圧装置99は、第4ろ室425のろ液79cを第1ろ室400に戻す。加圧装置99は、例えば加圧ポンプである。加圧装置99及び配管を用いて液体を搬送することは、流体コンベアとも呼ばれる。加圧装置99は、第1ろ室400、第2ろ室405及び第3ろ室415のろ過抵抗(圧力損失)の合計よりも大きな圧力を第1ろ室400に与えることができる。加圧装置99の循環流量は、第1ろ室400、第2ろ室405及び第3ろ室415のうち最もろ過速度(取得ろ液量)の少ないろ室の容量以下である。 The pressurizing device 99 returns the filtrate 79c of the fourth filter chamber 425 to the first filter chamber 400. The pressurizing device 99 is, for example, a pressurizing pump. Transporting the liquid using the pressurizing device 99 and piping is also called a fluid conveyor. The pressurizing device 99 can apply a pressure larger than the total of the filtration resistances (pressure loss) of the first filter chamber 400, the second filter chamber 405, and the third filter chamber 415 to the first filter chamber 400. The circulation flow rate of the pressurizing device 99 is equal to or less than the capacity of the filter chamber having the lowest filtration rate (acquired filtrate amount) among the first filter chamber 400, the second filter chamber 405, and the third filter chamber 415.
 第1ろ室400において、第1電極401に近い位置の第1粒子71には、より強力な斥力が発生し、第3電極403に近い位置の第1粒子71には、より強力な引力が発生する。第1粒子71に発生する斥力及び引力は、矢印F1に示す方向、すなわち第1電極401から離れ第3電極403に近づく方向に作用する。マイナスに帯電した第1粒子71は、電気泳動により第3電極403側に移動する。 In the first filter chamber 400, a stronger repulsive force is generated in the first particle 71 located near the first electrode 401, and a stronger attractive force is generated in the first particle 71 located near the third electrode 403. Occur. The repulsive force and the attractive force generated in the first particle 71 act in the direction indicated by the arrow F1, that is, in the direction away from the first electrode 401 and approaching the third electrode 403. The negatively charged first particle 71 moves to the third electrode 403 side by electrophoresis.
 これにより、第1ろ室400において、第1粒子71が第1電極401の表面及び第1ろ材404の表面に堆積してケーキ層が形成されることが抑制される。つまり、第1ろ材404の第1目開き404bのろ過抵抗が増大することを抑制することができる。 This prevents the first particles 71 from accumulating on the surface of the first electrode 401 and the surface of the first filter medium 404 to form a cake layer in the first filter chamber 400. That is, it is possible to suppress an increase in the filtration resistance of the first opening 404b of the first filter medium 404.
 また、プラスに帯電した水分子73は、第1電極401との間に引力が発生する。プラスに帯電した水分子73に作用する引力は、矢印F2に示す方向、すなわち第3電極403から第1電極401に向かう方向に作用する。プラスに帯電した水分子73は、第1電極401側に移動する。この際、第1電極401と第2電極402との間の電位差により、第1ろ材404を厚さ方向に貫通するように、第1電極401から第2電極402に向かう電界が形成されている。 Further, the positively charged water molecule 73 generates an attractive force with the first electrode 401. The attractive force acting on the positively charged water molecule 73 acts in the direction indicated by the arrow F2, that is, in the direction from the third electrode 403 to the first electrode 401. The positively charged water molecule 73 moves to the first electrode 401 side. At this time, an electric field is formed from the first electrode 401 to the second electrode 402 so as to penetrate the first filter medium 404 in the thickness direction due to the potential difference between the first electrode 401 and the second electrode 402. ..
 第1電極401側に移動した水分子73は、電界により力を受けて、第2電極402側に引っ張られて第1ろ材404を通過する。プラスに帯電した水分子73の移動に伴って、帯電していない水分子も第2電極402側に引きずられて、電気浸透流が形成される。これにより、プラスに帯電した水分子73を含む極性溶媒72は、第2ろ室405に流れる。上述したように、第1粒子71は、電気泳動により第1電極401から引き離され、第3電極403側に移動しており、第1粒子71が分離された極性溶媒72が排出されることで、第1ろ室400内のスラリー(原液)70の第1粒子71の濃度を高めることができる。 The water molecule 73 that has moved to the first electrode 401 side receives a force by the electric field, is pulled toward the second electrode 402 side, and passes through the first filter medium 404. With the movement of the positively charged water molecule 73, the uncharged water molecule is also dragged toward the second electrode 402, and an electroosmotic flow is formed. As a result, the polar solvent 72 containing the positively charged water molecule 73 flows into the second filter chamber 405. As described above, the first particle 71 is separated from the first electrode 401 by electrophoresis and moved to the third electrode 403 side, and the polar solvent 72 from which the first particle 71 is separated is discharged. , The concentration of the first particle 71 of the slurry (stock solution) 70 in the first filter chamber 400 can be increased.
 また、第1電極401と第2電極402との間に形成される電界を制御することで、第1ろ材404を通過する粒子レベル(粒子径)も制御することができる。例えば、第1電極401に第1電位V1=-20Vを印加し、第2電極402に第2電位V2=-30Vを印加することで、第1電極401と第2電極402との間にバリアの電界が形成される。これにより、ろ過装置10は、第1粒子71が第1ろ材404を通過することを抑制し、第2粒子75及び第3粒子74が第1ろ材404を通過することを許容する。このため、第1ろ室400内のスラリー(原液)70の第1粒子71の濃度を高めることができる。 Further, by controlling the electric field formed between the first electrode 401 and the second electrode 402, the particle level (particle diameter) passing through the first filter medium 404 can also be controlled. For example, by applying the first potential V1 = -20V to the first electrode 401 and applying the second potential V2 = -30V to the second electrode 402, a barrier is applied between the first electrode 401 and the second electrode 402. The electric field of is formed. As a result, the filtration device 10 suppresses the first particle 71 from passing through the first filter medium 404, and allows the second particle 75 and the third particle 74 to pass through the first filter medium 404. Therefore, the concentration of the first particles 71 of the slurry (stock solution) 70 in the first filter chamber 400 can be increased.
 例えば、第4電極411に第4電位V4=-40Vを印加し、第5電極412に第5電位V5=-50Vを印加することで、第4電極411と第5電極412との間にバリアの電界が形成される。これにより、ろ過装置10は、第2粒子75が第2ろ材414を通過することを抑制し、第3粒子74が第2ろ材414を通過することを許容する。このため、第2ろ室405内の第1中間処理液79aの第2粒子75の濃度を高めることができる。 For example, by applying the fourth potential V4 = -40V to the fourth electrode 411 and applying the fifth potential V5 = -50V to the fifth electrode 412, a barrier is applied between the fourth electrode 411 and the fifth electrode 412. The electric field of is formed. As a result, the filtration device 10 suppresses the second particle 75 from passing through the second filter medium 414, and allows the third particle 74 to pass through the second filter medium 414. Therefore, the concentration of the second particles 75 of the first intermediate treatment liquid 79a in the second filter chamber 405 can be increased.
 例えば、第6電極421に第6電位V6=-60Vを印加し、第7電極422に第7電位V7=-70Vを印加することで、第6電極421と第7電極422との間にバリアの電界が形成される。これにより、ろ過装置10は、第3粒子74が第3ろ材424を通過することを抑制する。このため、第3ろ室415内の第2中間処理液79bの第3粒子74の濃度を高めることができる。 For example, by applying the sixth potential V6 = -60V to the sixth electrode 421 and applying the seventh potential V7 = -70V to the seventh electrode 422, a barrier is applied between the sixth electrode 421 and the seventh electrode 422. The electric field of is formed. As a result, the filtration device 10 prevents the third particle 74 from passing through the third filter medium 424. Therefore, the concentration of the third particles 74 of the second intermediate treatment liquid 79b in the third filter chamber 415 can be increased.
 以上説明したように、第2実施形態のろ過装置10は、複数の第1開口401bが設けられた第1電極401と、複数の第2開口402bが設けられ、第1電極401の一方の面と対向して設けられた第2電極402と、複数の第1目開き404bが設けられ、第1電極401と第2電極402との間に設けられた第1ろ材404と、第1電極401の他方の面と接して設けられる第1ろ室400と、第1ろ室400に設けられ、第1電極401と対向する第3電極403と、第2電極402の他方の面と接して設けられる第2ろ室405と、を有する。さらに、ろ過装置10は、第2電極402との間に第2ろ室405を挟み、複数の第4開口411bが設けられた第4電極411と、複数の第5開口412bが設けられ、第4電極411の一方の面と対向して設けられた第5電極412と、複数の第2目開き414bが設けられ、第4電極411と第5電極412との間に設けられた第2ろ材414と、第5電極412の他方の面と接して設けられる第3ろ室415と、を有する。第1電極401の第1電位V1と第3電極403の第3電位V3との電位差は、第1電位と第2電極402の第2電位V2との電位差よりも大きい。第4電極411の第4電位V4と第3電位V3との電位差は、第4電位V4と第5電極412の第5電位V5との電位差よりも大きい。第4電位V4と第3電位V3との電位差は、第1電位と第3電位との電位差よりも大きい。 As described above, the filtration device 10 of the second embodiment is provided with a first electrode 401 provided with a plurality of first openings 401b and a plurality of second openings 402b, and is provided with one surface of the first electrode 401. A second electrode 402 provided opposite to the first electrode 402, a first filter medium 404 provided between the first electrode 401 and the second electrode 402, and a first electrode 401 are provided with a plurality of first opening 404b. A first filter chamber 400 provided in contact with the other surface of the first filter chamber, a third electrode 403 provided in the first filter chamber 400 facing the first electrode 401, and a third electrode 403 provided in contact with the other surface of the second electrode 402. It has a second filter chamber 405 and the like. Further, the filtration device 10 has a second filter chamber 405 sandwiched between the second electrode 402 and a fourth electrode 411 provided with a plurality of fourth openings 411b, and a plurality of fifth openings 412b provided. A fifth electrode 412 provided facing one surface of the four electrodes 411 and a plurality of second opening 414b are provided, and a second filter medium provided between the fourth electrode 411 and the fifth electrode 412. It has a 414 and a third filter chamber 415 provided in contact with the other surface of the fifth electrode 412. The potential difference between the first potential V1 of the first electrode 401 and the third potential V3 of the third electrode 403 is larger than the potential difference between the first potential and the second potential V2 of the second electrode 402. The potential difference between the fourth potential V4 and the third potential V3 of the fourth electrode 411 is larger than the potential difference between the fourth potential V4 and the fifth potential V5 of the fifth electrode 412. The potential difference between the fourth potential V4 and the third potential V3 is larger than the potential difference between the first potential and the third potential.
 これによれば、ろ過装置10では、第1電極401と第3電極403との間で粒子に発生するクーロン力Fにより粒子が第1電極401から第3電極403に向かう方向に移動する。このような電気泳動により、第1電極401の表面及び第1ろ材404の表面にケーキ層が形成されることを抑制することができる。また、第1電極401と第2電極402との間の電界により水分子73を移動させて第1ろ材404を透過させる電気浸透により、粒子を分離でき、第1ろ室400内でのスラリー(原液)70の粒子の濃縮度を高めることができる。これにより、単純にスラリー(原液)70に圧力を加え、第1ろ材404の第1目開き404bよりも大きい粒径の粒子を分離する方法に比べて、ろ過速度を数倍から10倍以上に向上させることができる。また、第1ろ室400及び第2ろ室405のそれぞれにおいて、異なる粒子が分離される。ろ過装置10は、2種類の粒子を含むスラリー(原液)70から、第1粒子71及び第2粒子75を別々に分離することができる。 According to this, in the filtration device 10, the particles move in the direction from the first electrode 401 to the third electrode 403 due to the Coulomb force F generated in the particles between the first electrode 401 and the third electrode 403. By such electrophoresis, it is possible to suppress the formation of a cake layer on the surface of the first electrode 401 and the surface of the first filter medium 404. Further, the particles can be separated by electroosmosis in which the water molecule 73 is moved by the electric field between the first electrode 401 and the second electrode 402 and permeates through the first filter medium 404, and the slurry in the first filter chamber 400 ( The concentration of the particles of the undiluted solution) 70 can be increased. As a result, the filtration rate is increased several to 10 times or more compared to the method of simply applying pressure to the slurry (stock solution) 70 to separate particles having a particle size larger than that of the first opening 404b of the first filter medium 404. Can be improved. Further, different particles are separated in each of the first filter chamber 400 and the second filter chamber 405. The filtration device 10 can separately separate the first particles 71 and the second particles 75 from the slurry (stock solution) 70 containing the two types of particles.
 また、第2実施形態のろ過装置10は、第5電極412との間に第3ろ室415を挟み、複数の第6開口421bが設けられた第6電極421と、複数の第7開口422bが設けられ、第6電極421の一方の面と対向して設けられた第7電極422と、複数の第3目開き424bが設けられ、第6電極421と第7電極422との間に設けられた第3ろ材424と、第7電極422の他方の面と接して設けられる第4ろ室425と、を有する。第6電極421の第6電位V6と第3電位V3との電位差は、第6電位V6と第7電極422の第7電位V7との電位差よりも大きい。第6電位V6と第3電位V3との電位差は、第4電位V4と第3電位V3との電位差よりも大きい。 Further, the filtration device 10 of the second embodiment has a sixth electrode 421 having a third filter chamber 415 sandwiched between the fifth electrode 412 and a plurality of sixth openings 421b, and a plurality of seventh openings 422b. Is provided, and a seventh electrode 422 provided facing one surface of the sixth electrode 421 and a plurality of third opening 424b are provided, and are provided between the sixth electrode 421 and the seventh electrode 422. It has a third filter medium 424 and a fourth filter chamber 425 provided in contact with the other surface of the seventh electrode 422. The potential difference between the sixth potential V6 and the third potential V3 of the sixth electrode 421 is larger than the potential difference between the sixth potential V6 and the seventh potential V7 of the seventh electrode 422. The potential difference between the sixth potential V6 and the third potential V3 is larger than the potential difference between the fourth potential V4 and the third potential V3.
 これによれば、第1ろ室400、第2ろ室405、及び第3ろ室415のそれぞれにおいて、異なる粒子が分離される。ろ過装置10は、3種類の粒子を含むスラリー(原液)70から、第1粒子71、第2粒子75及び第3粒子74を別々に分離することができる。 According to this, different particles are separated in each of the first filter chamber 400, the second filter chamber 405, and the third filter chamber 415. The filtration device 10 can separately separate the first particles 71, the second particles 75, and the third particles 74 from the slurry (stock solution) 70 containing three types of particles.
 なお、上記した実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るとともに、本発明にはその等価物も含まれる。 It should be noted that the above-described embodiment is for facilitating the understanding of the present invention, and is not for limiting the interpretation of the present invention. The present invention can be modified / improved without departing from the spirit thereof, and the present invention also includes an equivalent thereof.
10 ろ過装置
11 上部筐体
12 蓋部
13 側部筐体
14 下部筐体
15 導体
16 スラリー供給部
17 スラリー供給バルブ
18 エア排出部
18a エア排出弁
19 エア排出バルブ
20 筐体
21a ガイド部
21b、21c ボルト
22 排出部
30 第1ろ室
31 第1電極
31a 導電細線
31b 第1開口
32 第2電極
32a 導電細線
32b 第2開口
33 第3電極
34 ろ材
34a ろ過膜
34b 目開き
35 第2ろ室
40 筐体
51 第1電源
52 第2電源
53 第3電源
61 第1電源
62 第2電源
64 第4電源
65 第5電源
66 第6電源
67 第7電源
70 スラリー
71 第1粒子
72 極性溶媒
73 水分子
74 第3粒子
75 第2粒子
76 濃縮液
79a 第1中間処理液(中間処理液)
79b 第2中間処理液(中間処理液)
79c ろ液
80 タンク
81 供給部
83 第1排出部
84 バルブ
85 第2排出部
91、91A、91B 第1ろ過装置
92、92A、92B 第2ろ過装置
93、93A、93B 第3ろ過装置
95 第1加圧装置
96 第2加圧装置
97 第3加圧装置
98 第4加圧装置
99 加圧装置
100、101、102、103、104、105、106、107、108 ろ過ユニット
200、200A、200B ろ過システム
400 第1ろ室
401 第1電極
401a 導電細線
401b 第1開口
402 第2電極
402a 導電細線
402b 第2開口
403 第3電極
404 第1ろ材
404a ろ過膜
404b 第1目開き
405 第2ろ室
411 第4電極
411a 導電細線
411b 第4開口
412 第5電極
412a 導電細線
412b 第5開口
414 第2ろ材
414a ろ過膜
414b 第2目開き
415 第3ろ室
421 第6電極
421a 導電細線
421b 第6開口
422 第7電極
422a 導電細線
422b 第7開口
424 第3ろ材
424a ろ過膜
424b 第3目開き
425 第4ろ室
831 第1排出部
832 第3排出部
851 第2排出部
852 第4排出部
10 Filtration device 11 Upper housing 12 Lid 13 Side housing 14 Lower housing 15 Conductor 16 Slurry supply unit 17 Slurry supply valve 18 Air discharge unit 18a Air discharge valve 19 Air discharge valve 20 Housing 21a Guide parts 21b, 21c Bolt 22 Discharge section 30 1st filter chamber 31 1st electrode 31a Conductive fine wire 31b 1st opening 32 2nd electrode 32a Conductive fine wire 32b 2nd opening 33 3rd electrode 34 Filter media 34a Filter film 34b Opening 35 2nd filter chamber 40 Body 51 1st power supply 52 2nd power supply 53 3rd power supply 61 1st power supply 62 2nd power supply 64 4th power supply 65 5th power supply 66 6th power supply 67 7th power supply 70 Slurry 71 1st particle 72 Polar solvent 73 Water molecule 74 3rd particle 75 2nd particle 76 concentrate 79a 1st intermediate treatment liquid (intermediate treatment liquid)
79b Second intermediate treatment liquid (intermediate treatment liquid)
79c filtrate 80 tank 81 supply unit 83 first discharge unit 84 valve 85 second discharge unit 91, 91A, 91B first filtration device 92, 92A, 92B second filtration device 93, 93A, 93B third filtration device 95 first Pressurizing device 96 2nd pressurizing device 97 3rd pressurizing device 98 4th pressurizing device 99 Pressurizing device 100, 101, 102, 103, 104, 105, 106, 107, 108 Filtration unit 200, 200A, 200B Filtration System 400 1st filter chamber 401 1st electrode 401a Conductive thin wire 401b 1st opening 402 2nd electrode 402a Conductive thin wire 402b 2nd opening 403 3rd electrode 404 1st filter medium 404a Filter membrane 404b 1st opening 405 2nd filter chamber 411 4th electrode 411a Conductive thin wire 411b 4th opening 412 5th electrode 412a Conductive thin wire 412b 5th opening 414 2nd filter medium 414a Filter film 414b 2nd opening 415 3rd filter chamber 421 6th electrode 421a Conductive thin wire 421b 6th opening 422 7th electrode 422a Conductive thin wire 422b 7th opening 424 3rd filter medium 424a Filter film 424b 3rd opening 425 4th filter chamber 831 1st discharge part 832 3rd discharge part 851 2nd discharge part 852 4th discharge part

Claims (6)

  1.  第1ろ過装置と、第2ろ過装置とを備え、
     前記第1ろ過装置及び前記第2ろ過装置は、それぞれ、
      複数の第1開口が設けられた第1電極と、
      複数の第2開口が設けられ、前記第1電極の一方の面と対向して設けられた第2電極と、
      複数の目開きが設けられ、前記第1電極と前記第2電極との間に設けられたろ材と、
      前記第1電極の他方の面と接して設けられる第1ろ室と、
      前記第1ろ室に設けられ、前記第1電極と対向する第3電極と、
      前記第2電極の他方の面と接して設けられる第2ろ室と、
      を有し、
     前記第1ろ過装置の第2ろ室の中間処理液が、前記第2ろ過装置の第1ろ室へ供給される、
     ろ過システム。
    It is equipped with a first filtration device and a second filtration device.
    The first filtration device and the second filtration device are each
    A first electrode provided with a plurality of first openings,
    A second electrode provided with a plurality of second openings facing one surface of the first electrode, and a second electrode.
    A filter medium provided between the first electrode and the second electrode, and a filter medium provided with a plurality of openings.
    A first filter chamber provided in contact with the other surface of the first electrode,
    A third electrode provided in the first filter chamber and facing the first electrode, and a third electrode
    A second filter chamber provided in contact with the other surface of the second electrode, and
    Have,
    The intermediate treatment liquid in the second filter chamber of the first filtration device is supplied to the first filter chamber of the second filtration device.
    Filtration system.
  2.  前記第2電極の第2電位の絶対値は、前記第1電極の第1電位の絶対値よりも大きく、
     前記第1電位と前記第3電極の第3電位との第1電位差は、前記第1電位と前記第2電位との第2電位差よりも大きく、
     前記第2ろ過装置における第1電位差は、前記第1ろ過装置における第1電位差よりも大きい、
     請求項1に記載のろ過システム。
    The absolute value of the second potential of the second electrode is larger than the absolute value of the first potential of the first electrode.
    The first potential difference between the first potential and the third potential of the third electrode is larger than the second potential difference between the first potential and the second potential.
    The first potential difference in the second filtration device is larger than the first potential difference in the first filtration device.
    The filtration system according to claim 1.
  3.  前記第2ろ過装置における第1ろ室へ、前記第1ろ過装置における、第2ろ室の中間処理液を供給するための加圧装置をさらに備える、
     請求項1又は請求項2に記載のろ過システム。
    A pressurizing device for supplying the intermediate treatment liquid in the second filter chamber in the first filter chamber to the first filter chamber in the second filter apparatus is further provided.
    The filtration system according to claim 1 or 2.
  4.  第3ろ過装置をさらに備え、
     前記第3ろ過装置は、
      複数の第1開口が設けられた第1電極と、
      複数の第2開口が設けられ、当該第1電極の一方の面と対向して設けられた第2電極と、
      複数の目開きが設けられ、当該第1電極と当該第2電極との間に設けられたろ材と、
      当該第1電極の他方の面と接して設けられる第1ろ室と、
      当該第1ろ室に設けられ、当該第1電極と対向する第3電極と、
      当該第2電極の他方の面と接して設けられる第2ろ室と、
      を有し、
     前記第3ろ過装置において、前記第1電極の第1電位と前記第3電極の第3電位との第1電位差は、前記第1電位と前記第2電極の第2電位との第2電位差よりも大きく、
     前記第2ろ過装置における、第2ろ室の中間処理液が、前記第3ろ過装置における第1ろ室へ供給され、
     前記第3ろ過装置における第1電位差は、前記第2ろ過装置における第1電位差よりも大きい、
     請求項1から請求項3のいずれか1項に記載のろ過システム。
    Further equipped with a third filtration device,
    The third filtration device is
    A first electrode provided with a plurality of first openings,
    A second electrode provided with a plurality of second openings facing one surface of the first electrode, and a second electrode.
    A filter medium provided between the first electrode and the second electrode, and a filter medium provided with a plurality of openings.
    A first filter chamber provided in contact with the other surface of the first electrode, and
    A third electrode provided in the first filter chamber and facing the first electrode, and a third electrode
    A second filter chamber provided in contact with the other surface of the second electrode, and
    Have,
    In the third filtering device, the first potential difference between the first potential of the first electrode and the third potential of the third electrode is based on the second potential difference between the first potential and the second potential of the second electrode. Also big,
    The intermediate treatment liquid in the second filter chamber in the second filtration device is supplied to the first filter chamber in the third filtration device.
    The first potential difference in the third filtration device is larger than the first potential difference in the second filtration device.
    The filtration system according to any one of claims 1 to 3.
  5.  複数の第1開口が設けられた第1電極と、
     複数の第2開口が設けられ、前記第1電極の一方の面と対向して設けられた第2電極と、
     複数の第1目開きが設けられ、前記第1電極と前記第2電極との間に設けられた第1ろ材と、
     前記第1電極の他方の面と接して設けられる第1ろ室と、
     前記第1ろ室に設けられ、前記第1電極と対向する第3電極と、
     前記第2電極の他方の面と接して設けられる第2ろ室と、
     前記第2電極との間に前記第2ろ室を挟み、複数の第4開口が設けられた第4電極と、
     複数の第5開口が設けられ、前記第4電極の一方の面と対向して設けられた第5電極と、
     複数の第2目開きが設けられ、前記第4電極と前記第5電極との間に設けられた第2ろ材と、
     前記第5電極の他方の面と接して設けられる第3ろ室と、
     を有し、
     前記第1電極の第1電位と前記第3電極の第3電位との電位差は、前記第1電位と前記第2電極の第2電位との電位差よりも大きく、
     前記第4電極の第4電位と前記第3電位との電位差は、前記第4電位と前記第5電極の第5電位との電位差よりも大きく、
     前記第4電位と前記第3電位との電位差は、前記第1電位と前記第3電位との電位差よりも大きい、
     ろ過装置。
    A first electrode provided with a plurality of first openings,
    A second electrode provided with a plurality of second openings facing one surface of the first electrode, and a second electrode.
    A first filter medium provided between the first electrode and the second electrode, and a first filter medium provided with a plurality of first openings.
    A first filter chamber provided in contact with the other surface of the first electrode,
    A third electrode provided in the first filter chamber and facing the first electrode, and a third electrode
    A second filter chamber provided in contact with the other surface of the second electrode, and
    A fourth electrode having the second filter chamber sandwiched between the second electrode and a plurality of fourth openings, and a fourth electrode.
    A fifth electrode provided with a plurality of fifth openings facing one surface of the fourth electrode, and a fifth electrode.
    A second filter medium provided between the fourth electrode and the fifth electrode, and a second filter medium provided with a plurality of second openings.
    A third filter chamber provided in contact with the other surface of the fifth electrode, and
    Have,
    The potential difference between the first potential of the first electrode and the third potential of the third electrode is larger than the potential difference between the first potential and the second potential of the second electrode.
    The potential difference between the fourth potential of the fourth electrode and the third potential is larger than the potential difference between the fourth potential and the fifth potential of the fifth electrode.
    The potential difference between the fourth potential and the third potential is larger than the potential difference between the first potential and the third potential.
    Filtration device.
  6.  前記第5電極との間に第3ろ室を挟み、複数の第6開口が設けられた第6電極と、
     複数の第7開口が設けられ、前記第6電極の一方の面と対向して設けられた第7電極と、
     複数の第3目開きが設けられ、前記第6電極と前記第7電極との間に設けられた第3ろ材と、
     前記第7電極の他方の面と接して設けられる第4ろ室と、
     を有し、
     前記第6電極の第6電位と前記第3電位との電位差は、前記第6電位と前記第7電極の第7電位との電位差よりも大きく、
     前記第6電位と前記第3電位との電位差は、前記第4電位と前記第3電位との電位差よりも大きい、
     請求項5に記載のろ過装置。
    A sixth electrode having a third filter chamber sandwiched between the fifth electrode and a plurality of sixth openings, and a sixth electrode.
    A seventh electrode provided with a plurality of seventh openings facing one surface of the sixth electrode, and a seventh electrode.
    A third filter medium provided between the sixth electrode and the seventh electrode, and a third filter medium provided with a plurality of third openings.
    A fourth filter chamber provided in contact with the other surface of the seventh electrode, and
    Have,
    The potential difference between the 6th potential of the 6th electrode and the 3rd potential is larger than the potential difference between the 6th potential and the 7th potential of the 7th electrode.
    The potential difference between the sixth potential and the third potential is larger than the potential difference between the fourth potential and the third potential.
    The filtration device according to claim 5.
PCT/JP2020/040886 2020-09-29 2020-10-30 Filtration system and filtration device WO2022091363A1 (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
PCT/JP2020/040886 WO2022091363A1 (en) 2020-10-30 2020-10-30 Filtration system and filtration device
EP21875304.4A EP4205828A4 (en) 2020-09-29 2021-09-17 Filtration device, and filtration system
CN202180066993.0A CN116390795B (en) 2020-09-29 2021-09-17 Filter device and filter system
AU2021354361A AU2021354361B2 (en) 2020-09-29 2021-09-17 Filtration device, and filtration system
CA3194303A CA3194303A1 (en) 2020-09-29 2021-09-17 Filtration device, and filtration system
KR1020237010739A KR20230090316A (en) 2020-09-29 2021-09-17 Filtration devices and filtration systems
JP2022505363A JP7117471B1 (en) 2020-09-29 2021-09-17 Filtration device and filtration system
US18/029,012 US20230294023A1 (en) 2020-09-29 2021-09-17 Filtration device, and filtration system
PCT/JP2021/034434 WO2022071002A1 (en) 2020-09-29 2021-09-17 Filtration device, and filtration system
TW110135519A TWI816184B (en) 2020-09-29 2021-09-24 Filtration devices and filtration systems

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040886 WO2022091363A1 (en) 2020-10-30 2020-10-30 Filtration system and filtration device

Publications (1)

Publication Number Publication Date
WO2022091363A1 true WO2022091363A1 (en) 2022-05-05

Family

ID=81383850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040886 WO2022091363A1 (en) 2020-09-29 2020-10-30 Filtration system and filtration device

Country Status (1)

Country Link
WO (1) WO2022091363A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193111A (en) * 1982-12-04 1984-11-01 Asahi Okuma Ind Co Ltd Oil purification apparatus
JPS61161108A (en) * 1984-12-31 1986-07-21 ドル‐オリバー インコーポレイテツド Electric filter apparatus using improved electrode
JPS63176512U (en) * 1987-05-07 1988-11-16
JPH07100302A (en) * 1993-10-07 1995-04-18 Zeotetsuku:Kk Charge coalescer type oil-water separator
JPH11300170A (en) * 1998-04-16 1999-11-02 Matsushita Electric Ind Co Ltd Waste water treating method, waste water treating device and membrane separating device used therefor
JP2008290008A (en) * 2007-05-24 2008-12-04 Ryukoku Univ Water purifier
JP2012239946A (en) * 2011-05-17 2012-12-10 Panasonic Corp Filter

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193111A (en) * 1982-12-04 1984-11-01 Asahi Okuma Ind Co Ltd Oil purification apparatus
JPS61161108A (en) * 1984-12-31 1986-07-21 ドル‐オリバー インコーポレイテツド Electric filter apparatus using improved electrode
JPS63176512U (en) * 1987-05-07 1988-11-16
JPH07100302A (en) * 1993-10-07 1995-04-18 Zeotetsuku:Kk Charge coalescer type oil-water separator
JPH11300170A (en) * 1998-04-16 1999-11-02 Matsushita Electric Ind Co Ltd Waste water treating method, waste water treating device and membrane separating device used therefor
JP2008290008A (en) * 2007-05-24 2008-12-04 Ryukoku Univ Water purifier
JP2012239946A (en) * 2011-05-17 2012-12-10 Panasonic Corp Filter

Similar Documents

Publication Publication Date Title
US20200338499A1 (en) Permeate channel alterations for counter current filtration for use in cross-flow filtration modules useful in osmotic systems
US8435465B2 (en) Microfluidic biological extraction chip
US20190030486A1 (en) Crossflow filtration unit for continuous diafiltration
CN109996596B (en) Device and method for continuous flow separation of particles by gas dissolution
WO2001078876A1 (en) Separation of micromolecules
KR20200003054A (en) Tangential flow filtration for perfusion applications
KR102567418B1 (en) Cell culture system and cell culture method
WO2022091363A1 (en) Filtration system and filtration device
US9784710B2 (en) Bipolar electrode sample preparation devices
WO2022071002A1 (en) Filtration device, and filtration system
JP2017000922A (en) Fluid sorting type pore diffusion membrane separation module
WO2022091364A1 (en) Filtration device
WO2022153446A1 (en) Filtration device
WO2022070280A1 (en) Filter device
WO2022070281A1 (en) Filter device
JP2017087097A (en) Flow fractionation type pore diffusion membrane separation module for concentration
JP7474866B2 (en) Filtration Equipment
TWI834103B (en) Filtration device
WO2004004873A1 (en) Hollow fiber membrane systems
WO2023135657A1 (en) Filter device
WO2022130489A1 (en) Filtration device
US20230029258A1 (en) Separation device
US20190168162A1 (en) Filtration assembly and filtration system including the same
JPWO2023080199A5 (en)
CA2405027A1 (en) Separation of micromolecules

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959881

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP