WO2022091169A1 - Metal member - Google Patents

Metal member Download PDF

Info

Publication number
WO2022091169A1
WO2022091169A1 PCT/JP2020/040055 JP2020040055W WO2022091169A1 WO 2022091169 A1 WO2022091169 A1 WO 2022091169A1 JP 2020040055 W JP2020040055 W JP 2020040055W WO 2022091169 A1 WO2022091169 A1 WO 2022091169A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
metal
metal structure
corrosion
reaction
Prior art date
Application number
PCT/JP2020/040055
Other languages
French (fr)
Japanese (ja)
Inventor
翔太 大木
真悟 峯田
守 水沼
宗一 岡
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2022558603A priority Critical patent/JP7420282B2/en
Priority to PCT/JP2020/040055 priority patent/WO2022091169A1/en
Publication of WO2022091169A1 publication Critical patent/WO2022091169A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material

Definitions

  • the present invention relates to a metal member.
  • Non-Patent Document 1 Metallic materials such as steel materials lose their thickness due to corrosion when exposed to the natural environment for a long period of time. Due to the corrosion phenomenon, metal structures are deteriorating, and serious accidents such as the collapse of tunnels and the collapse of bridges are occurring all over the world. It is known that the corrosion reaction proceeds as a set of an oxidation reaction (anode reaction) in which a metal is ionized and a reduction reaction (cathode reaction) in which water or dissolved oxygen receives electrons. In addition, the corrosion reaction is promoted by the presence of various ions such as chloride ions.
  • the electron receiver in the cathode reaction is blocked, and various ions that contribute to the promotion of corrosion are used. It may be removed.
  • untreated metal is exposed to the natural environment, it is exposed to corrosive factors and the corrosive reaction proceeds.
  • the metal surface by coating the metal surface with plating or powder coating, the metal can be protected from corrosion factors.
  • the exposed metal substrate becomes a macroscopic anode region, and the other coating region becomes a macroscopic cathode region, which may cause so-called macrocell corrosion. Since the anode region of this macrocell corrosion is extremely small compared to the cathode region, the corrosion rate in the anode region is high, and holes may occur depending on the thickness of the base metal, which may lead to a serious accident.
  • the most effective method is to carry out regular inspections. Since the corrosion rate and corrosion mode vary greatly depending on the type of metal used as the base material of the structure and the natural environment to which it is exposed, it is preferable to visually inspect the deterioration status.
  • the measures to suppress corrosion by the metal coating mentioned above can extend the life of the structure and reduce the inspection cycle, but the inspection cannot be reduced to zero because of the risk of macrocell corrosion mentioned above. ..
  • the first measure can contribute to extending the life of equipment, but from the viewpoint of preventing accidents caused by deterioration of metal structures, it is not known how many years it can be extended. In many cases, it is unclear when to renew. According to the first measure, there is no need to worry about the deterioration of the structure due to urgency, but from a long-term perspective, it is considered insufficient to prevent serious accidents.
  • the coating may cause the macrocell corrosion described above depending on the exposed environment and conditions, and the risk of failure due to deterioration may be higher than usual.
  • Macrocell corrosion is a deterioration phenomenon of the mode in which the local anode region where the coating is peeled off is concentrated and corroded, and there are some cases where holes are generated in the anode region. This perforation may lead to a serious accident for equipment such as water pipes and gas pipes.
  • time-based maintenance where the timing of renewal is determined by the number of years since installation, without knowing when to renew. I have no choice but to do it.
  • the corrosion rate of metal materials varies depending on the type and environment. For this reason, in time-based maintenance, there is a high risk of deterioration in places where corrosion progresses quickly, and in places where corrosion progresses slowly, the ones that can still be used are removed, resulting in cost waste.
  • the present invention has been made to solve the above problems, and an object thereof is to prevent deterioration of a metal structure without incurring unnecessary costs.
  • the metal member according to the present invention has a metal structure composed of an oxidizing metal, a first coating formed by covering the surface of the metal structure and in contact with the surface of the metal structure, and an outer surface of the first coating. It is provided with a second coating formed by covering and contacting the outer surface of the first coating, and a third coating formed by covering the outer surface of the second coating and contacting the outer surface of the second coating, and the first coating is dissolved. It is composed of pure water containing no oxygen, one of the second and third coatings is composed of a first material that blocks the infiltration of water and oxygen into the side of the metal structure, and the other is of the metal structure. It is composed of a second material that blocks the infiltration of ions to the side.
  • the metal structure since the surface of the metal structure is covered with the first coating film composed of pure water containing no dissolved oxygen, the metal structure is used without incurring unnecessary costs. Deterioration of metal structures can be prevented.
  • FIG. 1 is a cross-sectional view showing the configuration of a metal member according to an embodiment of the present invention.
  • This metal member includes a metal structure 101 composed of an oxidizing metal, a first coating 102 covering the surface of the metal structure 101, a second coating 103 covering the outer surface of the first coating 102, and a second coating 103.
  • a third coating 104 that covers the outer surface of the surface is provided.
  • the first coating 102 is formed in contact with the surface of the metal structure 101 and covers the entire surface of the metal structure 101.
  • the second coating film 103 is formed in contact with the outer surface of the first coating film 102 and covers the entire outer surface of the first coating film 102.
  • the third coating film 104 is formed in contact with the outer surface of the second coating film 103 and covers the entire outer surface of the second coating film 103.
  • the metal structure 101 is composed of a metal used as a base material for a metal structure such as a steel material.
  • the metal structure 101 can be made of any metal as long as it is a metal to be oxidized.
  • the size, shape, thickness, etc. of the metal structure 101 can be arbitrarily determined according to the specifications of the metal structure used.
  • the first coating 102 is composed of pure water that does not contain dissolved oxygen.
  • the first coating film 102 can be formed from pure water produced by degassing pure water.
  • a degassing method for example, there is bubbling using nitrogen gas. Not limited to bubbling, a method capable of removing dissolved oxygen in pure water can be used. Further, the pure water used shall not contain ions or the like.
  • One of the second coating 103 and the third coating 104 is composed of a first material that blocks the infiltration of water and oxygen into the side of the metal structure 101, and the other is the infiltration of ions into the side of the metal structure 101. It is composed of a second material that blocks.
  • the first coating 102 is formed by confining pure water containing no dissolved oxygen around the metal structure 101 by the second coating 103.
  • the second coating 103 prevents the pure water constituting the first coating 102 from flowing out to the outside.
  • a first coating 102 composed of pure water containing no dissolved oxygen is provided (inserted) between the metal structure 101 and the second coating 103.
  • the coating film made of the first material plays a role of blocking water and oxygen reaching the metal structure 101 or the first coating film 102 from the environment in which the metal structure 101 is arranged.
  • the first material is a material capable of blocking oxygen and water, and can be a plastic film having a gas barrier film formed on its surface.
  • a film obtained by coating (forming) a gas barrier film on PET (polyethylene terephthalate) used in the food and medical fields can be used.
  • the gas barrier film can be a thin film made of silicon oxide formed by vapor deposition, sputtering, or the like. Further, the gas barrier film can be a thin film made of silicon nitride formed by a plasma-excited chemical vapor deposition (PECVD) method.
  • PECVD plasma-excited chemical vapor deposition
  • the first material can be a graphene membrane capable of blocking the permeation of water by applying an electric field. Further, by adopting both a gas barrier film and a graphene film, water and oxygen as a gas and water as a liquid may be blocked to strengthen the environmental blocking property, and the combination of these may be the first. More preferable as a material.
  • the second material only needs to be able to block ions, and the composition and material are not important.
  • the second material can be a cell membrane.
  • the cell membrane is a so-called lipid bilayer membrane, the main component of which is phospholipids, which is composed of two layers of amphipathic lipid molecules having a highly hydrophilic head with high hydrophilicity and a hydrophobic tail. It is a membrane that has become.
  • the lipid bilayer membrane is configured such that the hydrophobic tails of the two layers of lipid molecules face each other and the hydrophilic head is located on the outside.
  • the lipid bilayer membrane can freely permeate non-polar molecules such as oxygen and molecules with small molecular weight such as water even if it has polarity.
  • highly polar molecules such as saccharides and molecules with ions and charges cannot penetrate the lipid bilayer membrane. Therefore, the cell membrane composed of the lipid bilayer membrane can be used as the second material. Since the lipid bilayer membrane can be artificially produced, the artificial cell membrane can be used as the second material.
  • the corrosion phenomenon is a redox reaction, in which an oxidation reaction in which a metal is ionized (anode reaction) and a reduction reaction in which dissolved oxygen or the like receives electrons (cathode reaction) proceed as a set.
  • an oxidation reaction in which a metal is ionized anode reaction
  • a reduction reaction in which dissolved oxygen or the like receives electrons cathode reaction
  • the corrosion reaction in iron is "Fe ⁇ Fe 2 + + 2e -... (1), O 2 + 2H 2 O + 4e- ⁇ 4OH -... ( 2 ) ".
  • Equation (1) is an anodic reaction in which a metal (iron) is ionized.
  • Equation (2) is a cathode reaction that receives electrons.
  • the metal structure 101 Since the term derived from the corrosion factor in the environment is water and oxygen described in equation (2), that is, dissolved oxygen, if water or oxygen can be blocked from interacting with the metal surface, the metal structure 101 It is possible to suppress the occurrence of a corrosion reaction in.
  • the metal structure 101 is in contact with the first coating film 102 made of pure water in which dissolved oxygen does not exist, so that water itself serves as an electron receiver and corrosion progresses.
  • the corrosion rate of the steel material is said to be 0.1 mm / year, although it depends on the presence or absence of convection of water on the surface of the steel material.
  • the corrosion rate of the steel material is approximately. It is 0.002 mm in one year.
  • the corrosion rate of the metal structure 101 provided with the first coating 102, the second coating 103, and the third coating is about 1/1 as compared with the corrosion reaction of the steel material that can occur in a normal natural environment. It can be suppressed to 50.
  • the corrosion depth reaches 5 mm in about 50 years in a normal corrosion reaction, and the steel material disappears.
  • the water reduction corrosion reaction in the embodiment it takes 2500 years to reach the corrosion depth of 5 mm.
  • the thickness of the base metal is maintained at more than half even after 1000 years have passed. It is possible to guarantee the safety and security of equipment while maintaining a high safety factor. Further, in the state due to the water reduction corrosion reaction in which oxygen cannot interact with the metal surface, the rate of corrosion progress is constant because there is no influence such as convection of dissolved oxygen. Therefore, according to the embodiment, if the deterioration rate of the metal structure 101 is obtained in advance, a schedule such as renewal of equipment can be easily set.
  • the second coating 103 and the third coating 104 maintain a healthy state of the metal member by performing maintenance treatment such as replacement before the desired function is lost due to deterioration. For example, it is preferable to check the durability of each of the second coating 103 and the third coating 104 under the environment in which they are used, reflect this result, and perform maintenance at an appropriate time. If the second coating 103 and the third coating 104 are maintained in a healthy state, the metal structure 101 will be corroded at a slow corrosion rate based on the reduction of water ( H2O ). The metal member can maintain its soundness with a high safety factor.
  • the metal structure since the surface of the metal structure is covered with the first coating film composed of pure water containing no dissolved oxygen, the metal structure is used without incurring unnecessary costs. Deterioration of metal structures can be prevented.
  • 101 metal structure, 102 ... first coating, 103 ... second coating, 104 ... third coating.

Abstract

This metal member comprises: a metal structure (101) formed of an oxidizable metal; a first coating film (102) covering a surface of the metal structure (101); a second coating film (103) covering the outer surface of the first coating film (102); and a third coating film (104) covering the outer surface of the second coating film (103). The first coating film (102) is formed in contact with the surface of the metal structure (101), and covers the entire surface of the metal structure (101). The first coating film (102) comprises pure water which does not contain dissolved oxygen.

Description

金属部材Metal parts
 本発明は、金属部材に関する。 The present invention relates to a metal member.
 鋼材などの金属材料は、自然環境下に長期間曝されると、腐食により自身の厚みが減少する(非特許文献1)。腐食現象により金属製構造物は劣化が進行し、トンネルの崩落や橋梁の崩壊といった重大な事故が、世界各国で発生している。腐食反応は、金属がイオン化する酸化反応(アノード反応)と、水や溶存酸素などが電子を受け取る還元反応(カソード反応)とがセットとなり進行すると知られている。また、腐食反応は、塩化物イオン等の各種イオンの存在によって促進される。 Metallic materials such as steel materials lose their thickness due to corrosion when exposed to the natural environment for a long period of time (Non-Patent Document 1). Due to the corrosion phenomenon, metal structures are deteriorating, and serious accidents such as the collapse of tunnels and the collapse of bridges are occurring all over the world. It is known that the corrosion reaction proceeds as a set of an oxidation reaction (anode reaction) in which a metal is ionized and a reduction reaction (cathode reaction) in which water or dissolved oxygen receives electrons. In addition, the corrosion reaction is promoted by the presence of various ions such as chloride ions.
 前述した金属製構造物の劣化に由来する事故を防ぐためには、大きく分けて2つの対策が考えられる。第1の対策として、腐食反応の発生および進行を抑制する対策がある。第2の対策として、構造物の劣化度を正しく認識して。適切にメンテナンスをする対策がある。 In order to prevent accidents caused by the deterioration of the metal structure mentioned above, two major measures can be considered. As the first measure, there is a measure for suppressing the occurrence and progress of the corrosion reaction. As a second measure, correctly recognize the degree of deterioration of the structure. There are measures for proper maintenance.
 第1の対策では、腐食反応の抑制を実現するために、アノード反応における金属のイオン化を抑制するために、カソード反応における電子の受け取り手を遮断することや、腐食促進に寄与する各種イオン類を除去することなどが考えられる。当然ながら、何も処理を施していない金属を自然環境中に暴露すると、腐食因子に曝されているので、腐食反応が進行する。これに対し、金属表面にめっきや粉体塗装などの被覆をすることで、腐食因子から金属を守ることができる。 In the first measure, in order to suppress the corrosion reaction, in order to suppress the ionization of the metal in the anode reaction, the electron receiver in the cathode reaction is blocked, and various ions that contribute to the promotion of corrosion are used. It may be removed. Of course, when untreated metal is exposed to the natural environment, it is exposed to corrosive factors and the corrosive reaction proceeds. On the other hand, by coating the metal surface with plating or powder coating, the metal can be protected from corrosion factors.
 ただし、被覆の一部が破壊されると、露出された金属素地が巨視的なアノード領域となり、これ以外の被覆領域が巨視的なカソード領域となり、いわゆるマクロセル腐食が発生する恐れが考えられる。このマクロセル腐食は、カソード領域と比べてアノード領域が極端に小さいために、アノード領域における腐食速度は大きく、母材の厚みによっては穴あきが発生し、重大な事故につながりかねない。 However, if a part of the coating is destroyed, the exposed metal substrate becomes a macroscopic anode region, and the other coating region becomes a macroscopic cathode region, which may cause so-called macrocell corrosion. Since the anode region of this macrocell corrosion is extremely small compared to the cathode region, the corrosion rate in the anode region is high, and holes may occur depending on the thickness of the base metal, which may lead to a serious accident.
 第2の対策では、最も効果的な方法として、定期的な点検を実施することが挙げられる。構造物の母材に使用される金属の種類や、曝される自然環境によって腐食速度や腐食モードは大きく異なるため、目視による点検で劣化状況を確認することが好ましい。前述した金属被覆により腐食を抑制する対策により、構造物の寿命が延伸して点検の周期を減らすことができるが、先に述べたマクロセル腐食によるリスクがある以上、点検をゼロにすることはできない。 In the second measure, the most effective method is to carry out regular inspections. Since the corrosion rate and corrosion mode vary greatly depending on the type of metal used as the base material of the structure and the natural environment to which it is exposed, it is preferable to visually inspect the deterioration status. The measures to suppress corrosion by the metal coating mentioned above can extend the life of the structure and reduce the inspection cycle, but the inspection cannot be reduced to zero because of the risk of macrocell corrosion mentioned above. ..
 第1の対策では、設備の長寿命化に貢献することができるが、具体的に何年長寿命化できるか分からず、金属製構造物の劣化に由来する事故を防ぐという観点では、次にいつ更改すれば良いかが不明なケースが多い。第1の対策によれば、喫緊で構造物の劣化を心配する必要はなくなるが、長期的な視点で考えると重大な事故を防ぐためには不十分であると考えられる。また、被覆を施したことで、曝される環境や状況によっては、先に述べたマクロセル腐食が発生し、通常よりも劣化による故障リスクが大きくなる可能性もある。 The first measure can contribute to extending the life of equipment, but from the viewpoint of preventing accidents caused by deterioration of metal structures, it is not known how many years it can be extended. In many cases, it is unclear when to renew. According to the first measure, there is no need to worry about the deterioration of the structure due to urgency, but from a long-term perspective, it is considered insufficient to prevent serious accidents. In addition, the coating may cause the macrocell corrosion described above depending on the exposed environment and conditions, and the risk of failure due to deterioration may be higher than usual.
 マクロセル腐食は、被覆が剥がれた局所的なアノード領域が集中して腐食するモードの劣化現象であり、アノード領域に穴あきが発生するケースも散見される。この穴あきは、水道管やガス管等の設備にとっては重大な事故に繋がる恐れがある。 Macrocell corrosion is a deterioration phenomenon of the mode in which the local anode region where the coating is peeled off is concentrated and corroded, and there are some cases where holes are generated in the anode region. This perforation may lead to a serious accident for equipment such as water pipes and gas pipes.
 第2の対策では、メンテナンスができない箇所に設置されている設備に対しては、いつ更改すれば良いか分からず、設置されてからの年数で更改時期が決定される、タイムベースメンテナンスを採用せざるを得ない。金属材料は、その種類や環境によって腐食速度が異なる。このため、タイムベースメンテナンスでは、腐食の進行が速い場所では劣化によるリスクが高く、また、腐食の進行が遅い場所では、まだ使用できるものを撤去することからコスト面での無駄が生じる。 In the second measure, for equipment installed in places where maintenance is not possible, adopt time-based maintenance, where the timing of renewal is determined by the number of years since installation, without knowing when to renew. I have no choice but to do it. The corrosion rate of metal materials varies depending on the type and environment. For this reason, in time-based maintenance, there is a high risk of deterioration in places where corrosion progresses quickly, and in places where corrosion progresses slowly, the ones that can still be used are removed, resulting in cost waste.
 本発明は、以上のような問題点を解消するためになされたものであり、無駄なコストを発生させることなく、金属製構造物の劣化が防げるようにすることを目的とする。 The present invention has been made to solve the above problems, and an object thereof is to prevent deterioration of a metal structure without incurring unnecessary costs.
 本発明に係る金属部材は、酸化する金属から構成された金属構造体と、金属構造体の表面を覆い、金属構造体の表面に接して形成された第1被膜と、第1被膜の外面を覆い、第1被膜の外面に接して形成された第2被膜と、第2被膜の外面を覆い、第2被膜の外面に接して形成された第3被膜とを備え、第1被膜は、溶存酸素を含まない純水から構成され、第2被膜および第3被膜の一方は、金属構造体の側への水および酸素の浸入を遮断する第1材料から構成され、他方は、金属構造体の側へのイオンの浸入を遮断する第2材料から構成されている。 The metal member according to the present invention has a metal structure composed of an oxidizing metal, a first coating formed by covering the surface of the metal structure and in contact with the surface of the metal structure, and an outer surface of the first coating. It is provided with a second coating formed by covering and contacting the outer surface of the first coating, and a third coating formed by covering the outer surface of the second coating and contacting the outer surface of the second coating, and the first coating is dissolved. It is composed of pure water containing no oxygen, one of the second and third coatings is composed of a first material that blocks the infiltration of water and oxygen into the side of the metal structure, and the other is of the metal structure. It is composed of a second material that blocks the infiltration of ions to the side.
 以上に説明したように、本発明によれば、溶存酸素を含まない純水から構成された第1被膜で金属構造体の表面を覆うので、無駄なコストを発生させることなく、金属構造体による金属製構造物の劣化が防げるようになる。 As described above, according to the present invention, since the surface of the metal structure is covered with the first coating film composed of pure water containing no dissolved oxygen, the metal structure is used without incurring unnecessary costs. Deterioration of metal structures can be prevented.
図1は、本発明の実施の形態に係る金属部材の構成を示す断面図である。FIG. 1 is a cross-sectional view showing the configuration of a metal member according to an embodiment of the present invention.
 以下、本発明の実施の形態に係る金属部材について図1を参照して説明する。この金属部材は、酸化する金属から構成された金属構造体101と、金属構造体101の表面を覆う第1被膜102と、第1被膜102の外面を覆う第2被膜103と、第2被膜103の外面を覆う第3被膜104とを備える。 Hereinafter, the metal member according to the embodiment of the present invention will be described with reference to FIG. This metal member includes a metal structure 101 composed of an oxidizing metal, a first coating 102 covering the surface of the metal structure 101, a second coating 103 covering the outer surface of the first coating 102, and a second coating 103. A third coating 104 that covers the outer surface of the surface is provided.
 第1被膜102は、金属構造体101の表面に接して形成され、金属構造体101の表面の全域を覆っている。第2被膜103は、第1被膜102の外面に接して形成され、第1被膜102の外面の全域を覆っている。第3被膜104は、第2被膜103の外面に接して形成され、第2被膜103の外面の全域を覆っている。 The first coating 102 is formed in contact with the surface of the metal structure 101 and covers the entire surface of the metal structure 101. The second coating film 103 is formed in contact with the outer surface of the first coating film 102 and covers the entire outer surface of the first coating film 102. The third coating film 104 is formed in contact with the outer surface of the second coating film 103 and covers the entire outer surface of the second coating film 103.
 金属構造体101は、鋼材などの金属製構造物の母材として使用される金属から構成されている。金属構造体101は、酸化する金属であれば任意の金属から構成することができる。金属構造体101の大きさ、形状、厚さなどは、用いられる金属製構造物の仕様に合わせて任意に決定することができる。 The metal structure 101 is composed of a metal used as a base material for a metal structure such as a steel material. The metal structure 101 can be made of any metal as long as it is a metal to be oxidized. The size, shape, thickness, etc. of the metal structure 101 can be arbitrarily determined according to the specifications of the metal structure used.
 第1被膜102は、溶存酸素を含まない純水から構成されている。例えば、純水を脱気することで製造した純水から第1被膜102を構成することができる。脱気の方法としては、例えば窒素ガスを用いたバブリングがある。バブリングに限らず、純水中の溶存酸素を除去できる方法を用いることができる。また、用いる純水は、イオンなどが含まれないものとする。 The first coating 102 is composed of pure water that does not contain dissolved oxygen. For example, the first coating film 102 can be formed from pure water produced by degassing pure water. As a degassing method, for example, there is bubbling using nitrogen gas. Not limited to bubbling, a method capable of removing dissolved oxygen in pure water can be used. Further, the pure water used shall not contain ions or the like.
 第2被膜103および第3被膜104の一方は、金属構造体101の側への水および酸素の浸入を遮断する第1材料から構成し、他方は、金属構造体101の側へのイオンの浸入を遮断する第2材料から構成する。第2被膜103により、金属構造体101の周囲に溶存酸素を含まない純水を閉じ込めることで、第1被膜102を形成する。第2被膜103により、第1被膜102を構成する純水が、外部へ流出することを防ぐ。金属構造体101と第2被膜103との間に、溶存酸素を含まない純水から構成された第1被膜102が設けられ(挿入され)たものとなっている。 One of the second coating 103 and the third coating 104 is composed of a first material that blocks the infiltration of water and oxygen into the side of the metal structure 101, and the other is the infiltration of ions into the side of the metal structure 101. It is composed of a second material that blocks. The first coating 102 is formed by confining pure water containing no dissolved oxygen around the metal structure 101 by the second coating 103. The second coating 103 prevents the pure water constituting the first coating 102 from flowing out to the outside. A first coating 102 composed of pure water containing no dissolved oxygen is provided (inserted) between the metal structure 101 and the second coating 103.
 第1材料による被膜は、金属構造体101が配置される環境から、金属構造体101もしくは第1被膜102に到達する水および酸素を遮断する役割を担う。第1材料は、酸素、水を遮断することができる材料であり、ガスバリア膜を表面に形成したプラスチックフィルムとすることができる。例えば、食品や医療分野で使用されるPET( polyethylene terephthalate)にガスバリア膜をコート(形成)したフィルムとすることができる。ガスバリア膜は、蒸着やスパッタなどにより形成した酸化シリコンからなる薄膜とすることができる。また、ガスバリア膜は、プラズマ励起化学気相成長(PECVD)法により形成した窒化シリコンからなる薄膜とすることができる。 The coating film made of the first material plays a role of blocking water and oxygen reaching the metal structure 101 or the first coating film 102 from the environment in which the metal structure 101 is arranged. The first material is a material capable of blocking oxygen and water, and can be a plastic film having a gas barrier film formed on its surface. For example, a film obtained by coating (forming) a gas barrier film on PET (polyethylene terephthalate) used in the food and medical fields can be used. The gas barrier film can be a thin film made of silicon oxide formed by vapor deposition, sputtering, or the like. Further, the gas barrier film can be a thin film made of silicon nitride formed by a plasma-excited chemical vapor deposition (PECVD) method.
 また、第1材料は、電場を印加することで水の透過を遮断することが可能なグラフェン膜とすることができる。また、ガスバリア膜およびグラフェン膜の両者を採用することで気体としての水と酸素、および液体としての水を遮断することで環境遮断性を強固なものとしても良く、これらを組み合わせることは、第1材料としてより好ましい。 Further, the first material can be a graphene membrane capable of blocking the permeation of water by applying an electric field. Further, by adopting both a gas barrier film and a graphene film, water and oxygen as a gas and water as a liquid may be blocked to strengthen the environmental blocking property, and the combination of these may be the first. More preferable as a material.
 第2材料は、イオンを遮断することができれば良く、構成や素材などは不問である。例えば、第2材料は、細胞膜とすることができる。細胞膜は、いわゆる脂質二分子膜であり、主な構成要素はリン脂質であり、高い親水性を有する極性の高い頭部と、疎水性の尾部とを併せもつ両親媒性の脂質分子が二層になった膜である。脂質二分子膜は、二層になった脂質分子の疎水性の尾部が互いに向かい合い、外側に親水性の頭部が位置する構成となっている。 The second material only needs to be able to block ions, and the composition and material are not important. For example, the second material can be a cell membrane. The cell membrane is a so-called lipid bilayer membrane, the main component of which is phospholipids, which is composed of two layers of amphipathic lipid molecules having a highly hydrophilic head with high hydrophilicity and a hydrophobic tail. It is a membrane that has become. The lipid bilayer membrane is configured such that the hydrophobic tails of the two layers of lipid molecules face each other and the hydrophilic head is located on the outside.
 脂質二分子膜は、酸素などの極性をもたない分子や、極性があっても水などの分子量が小さい分子は自由に透過することができる。一方、糖類などの極性をもつ大きな分子量の分子や、イオンや電荷をもつ分子は、脂質二分子膜を透過することができない。従って、脂質二分子膜で構成される細胞膜は、第2材料とすることができる。脂質二分子膜は、人工的に作製することができるため、人工細胞膜を第2材料とすることができる。 The lipid bilayer membrane can freely permeate non-polar molecules such as oxygen and molecules with small molecular weight such as water even if it has polarity. On the other hand, highly polar molecules such as saccharides and molecules with ions and charges cannot penetrate the lipid bilayer membrane. Therefore, the cell membrane composed of the lipid bilayer membrane can be used as the second material. Since the lipid bilayer membrane can be artificially produced, the artificial cell membrane can be used as the second material.
 金属の劣化は主に腐食によって進行することが知られている。腐食現象は、酸化還元反応であり、金属がイオン化する酸化反応(アノード反応)と、溶存酸素等が電子を受け取る還元反応(カソード反応)がセットとなり進行する。例えば、鉄における腐食反応は、「Fe→Fe2 ++2e- ・・・(1)、O2+2H2O+4e-→4OH- ・・・(2)」となる。(1)式は金属(鉄)がイオン化するアノード反応である。(2)式は、電子を受け取るカソード反応である。 It is known that deterioration of metal progresses mainly by corrosion. The corrosion phenomenon is a redox reaction, in which an oxidation reaction in which a metal is ionized (anode reaction) and a reduction reaction in which dissolved oxygen or the like receives electrons (cathode reaction) proceed as a set. For example, the corrosion reaction in iron is "Fe → Fe 2 + + 2e -... (1), O 2 + 2H 2 O + 4e- → 4OH -... ( 2 ) ". Equation (1) is an anodic reaction in which a metal (iron) is ionized. Equation (2) is a cathode reaction that receives electrons.
 環境中に腐食因子に由来する項は、(2)式に記載の水と酸素、すなわち溶存酸素であるため、水もしくは酸素が金属表面と相互作用できないよう遮断することができれば、金属構造体101における腐食反応の発生を抑制することができる。 Since the term derived from the corrosion factor in the environment is water and oxygen described in equation (2), that is, dissolved oxygen, if water or oxygen can be blocked from interacting with the metal surface, the metal structure 101 It is possible to suppress the occurrence of a corrosion reaction in.
 実施の形態によれば、金属構造体101は、電子の受け取り手である溶存酸素を除去した純水による第1被膜102と、第1被膜102を金属構造体101に表面に保持するとともに、第1被膜102に対して、水および酸素の浸入およびイオンの浸入を遮断する第2被膜103,第3被膜104を設けることで、金属構造体101における腐食の抑制を実現している。 According to the embodiment, in the metal structure 101, the first coating film 102 made of pure water from which dissolved oxygen, which is a receiver of electrons, has been removed, and the first coating film 102 are held on the surface of the metal structure 101, and the first coating structure 101 is formed. Corrosion of the metal structure 101 is suppressed by providing the second coating 103 and the third coating 104 that block the infiltration of water and oxygen and the infiltration of ions into the coating 102.
 上述した実施の形態における金属部材の腐食の抑制について、より詳細に説明する。金属構造体101は、溶存酸素が存在しない純水による第1被膜102が接触しているため、水自体が電子の受け取り手となり腐食進行することが知られている。 The suppression of corrosion of metal members in the above-described embodiment will be described in more detail. It is known that the metal structure 101 is in contact with the first coating film 102 made of pure water in which dissolved oxygen does not exist, so that water itself serves as an electron receiver and corrosion progresses.
 ここで、カソード反応における電子の受け取り手が溶存酸素の場合、鋼材表面の水の対流の有無にもよるが、鋼材の腐食速度は、1年で0.1mm/であると言われている。一方、溶存酸素が含まれていない純水で鋼材の表面が覆われ、カソード反応における電子の受け取り手が水(H2O)自身の場合(水還元腐食反応)、鋼材の腐食速度は、およそ1年で0.002mmである。 Here, when the recipient of electrons in the cathode reaction is dissolved oxygen, the corrosion rate of the steel material is said to be 0.1 mm / year, although it depends on the presence or absence of convection of water on the surface of the steel material. On the other hand, when the surface of the steel material is covered with pure water containing no dissolved oxygen and the receiver of electrons in the cathode reaction is water (H 2 O) itself (water reduction corrosion reaction), the corrosion rate of the steel material is approximately. It is 0.002 mm in one year.
 これらのことから、通常の自然環境中で起こり得る鋼材の腐食反応と比べて、第1被膜102、第2被膜103、および第3被膜を設けた金属構造体101の腐食速度は、およそ1/50まで抑えることができる。例えば、金属製構造物に厚さ5mmの鋼材が使用されていた場合、通常の腐食反応ではおよそ50年で腐食深さが5mmまで達し、鋼材が消滅してしまう計算である。一方で、実施の形態における水還元腐食反応では、腐食深さ5mmに達するまで2500年を要する計算となる。 From these facts, the corrosion rate of the metal structure 101 provided with the first coating 102, the second coating 103, and the third coating is about 1/1 as compared with the corrosion reaction of the steel material that can occur in a normal natural environment. It can be suppressed to 50. For example, when a steel material having a thickness of 5 mm is used for a metal structure, the corrosion depth reaches 5 mm in about 50 years in a normal corrosion reaction, and the steel material disappears. On the other hand, in the water reduction corrosion reaction in the embodiment, it takes 2500 years to reach the corrosion depth of 5 mm.
 通常の金属製構造物では、腐食深さが母材の厚みに達する以前に、ある一定の閾値(安全率)を設けることで設備の安心・安全を担保した状態でメンテナンスを実施する。従って、金属製構造物が、通常の自然環境におかれ、酸素が金属表面と相互作用できる通常の腐食反応となっている状態では、50年を待たずして新しい設備への更改もしくは延命処理が必要となる。更に、特異的に不良が生じていないか定期的に点検する必要がある。 For ordinary metal structures, maintenance is carried out while ensuring the safety and security of the equipment by setting a certain threshold value (safety factor) before the corrosion depth reaches the thickness of the base metal. Therefore, if the metal structure is placed in a normal natural environment and has a normal corrosion reaction in which oxygen can interact with the metal surface, it will not be waited for 50 years to upgrade to new equipment or prolong the life of the metal structure. Is required. Furthermore, it is necessary to regularly inspect whether there are any specific defects.
 これらに対し、実施の形態による、酸素が金属表面と相互作用できない状態とした水還元腐食反応による状態では、1000年を経過した段階においても母材の厚さは半分以上を維持しており、高い安全率を保ったまま設備の安心・安全を担保することができる。また、酸素が金属表面と相互作用できない状態とした水還元腐食反応による状態では、溶存酸素の対流などの影響が全くないため、腐食進行の速度が一定である。このため、実施の形態によれば、金属構造体101の劣化速度を予め求めておけば、設備の更改などのスケジュールが容易に設定できる。 On the other hand, in the state of the water-reduction corrosion reaction in which oxygen cannot interact with the metal surface according to the embodiment, the thickness of the base metal is maintained at more than half even after 1000 years have passed. It is possible to guarantee the safety and security of equipment while maintaining a high safety factor. Further, in the state due to the water reduction corrosion reaction in which oxygen cannot interact with the metal surface, the rate of corrosion progress is constant because there is no influence such as convection of dissolved oxygen. Therefore, according to the embodiment, if the deterioration rate of the metal structure 101 is obtained in advance, a schedule such as renewal of equipment can be easily set.
 なお、第2被膜103、第3被膜104は、劣化によって所期の機能を失うより前に交換するなどのメンテナンス処理を施すことにより、金属部材の健全な状態を保つことが好ましい。例えば、第2被膜103、第3被膜104の各々について、使用される環境下での耐久性を調べておき、この結果を反映させて、適切な時期にメンテナンスすることが好ましい。第2被膜103、第3被膜104が健全な状態で維持されていれば、水(H2O)還元に基づく遅い腐食速度で、金属構造体101の腐食が進行するので、実施の形態に係る金属部材は、高い安全率でもって、その健全性を維持することができる。 It is preferable that the second coating 103 and the third coating 104 maintain a healthy state of the metal member by performing maintenance treatment such as replacement before the desired function is lost due to deterioration. For example, it is preferable to check the durability of each of the second coating 103 and the third coating 104 under the environment in which they are used, reflect this result, and perform maintenance at an appropriate time. If the second coating 103 and the third coating 104 are maintained in a healthy state, the metal structure 101 will be corroded at a slow corrosion rate based on the reduction of water ( H2O ). The metal member can maintain its soundness with a high safety factor.
 以上に説明したように、本発明によれば、溶存酸素を含まない純水から構成された第1被膜で金属構造体の表面を覆うので、無駄なコストを発生させることなく、金属構造体による金属製構造物の劣化が防げるようになる。 As described above, according to the present invention, since the surface of the metal structure is covered with the first coating film composed of pure water containing no dissolved oxygen, the metal structure is used without incurring unnecessary costs. Deterioration of metal structures can be prevented.
 なお、本発明は以上に説明した実施の形態に限定されるものではなく、本発明の技術的思想内で、当分野において通常の知識を有する者により、多くの変形および組み合わせが実施可能であることは明白である。 It should be noted that the present invention is not limited to the embodiments described above, and many modifications and combinations can be carried out by a person having ordinary knowledge in the art within the technical idea of the present invention. That is clear.
 101…金属構造体、102…第1被膜、103…第2被膜、104…第3被膜。 101 ... metal structure, 102 ... first coating, 103 ... second coating, 104 ... third coating.

Claims (3)

  1.  酸化する金属から構成された金属構造体と、
     前記金属構造体の表面を覆い、前記金属構造体の表面に接して形成された第1被膜と、
     前記第1被膜の外面を覆い、前記第1被膜の外面に接して形成された第2被膜と、
     前記第2被膜の外面を覆い、前記第2被膜の外面に接して形成された第3被膜と
     を備え、
     前記第1被膜は、溶存酸素を含まない純水から構成され、
     前記第2被膜および前記第3被膜の一方は、前記金属構造体の側への水および酸素の浸入を遮断する第1材料から構成され、他方は、前記金属構造体の側へのイオンの浸入を遮断する第2材料から構成されている
     ことを特徴とする金属部材。
    A metal structure composed of a metal that oxidizes,
    A first coating formed by covering the surface of the metal structure and in contact with the surface of the metal structure,
    A second coating formed by covering the outer surface of the first coating and in contact with the outer surface of the first coating,
    It covers the outer surface of the second coating and includes a third coating formed in contact with the outer surface of the second coating.
    The first coating is composed of pure water containing no dissolved oxygen.
    One of the second coating and the third coating is composed of a first material that blocks the infiltration of water and oxygen into the side of the metal structure, and the other is the infiltration of ions into the side of the metal structure. A metal member characterized by being composed of a second material that blocks the air.
  2.  請求項1記載の金属部材において、
     前記第1材料は、ガスバリア膜を表面に形成したプラスチックフィルムまたはグラフェン膜であることを特徴とする金属部材。
    In the metal member according to claim 1,
    The first material is a metal member characterized by being a plastic film or a graphene film having a gas barrier film formed on the surface thereof.
  3.  請求項1または2記載の金属部材において、
     前記第2材料は、細胞膜であることを特徴とする金属部材。
    In the metal member according to claim 1 or 2.
    The second material is a metal member characterized by being a cell membrane.
PCT/JP2020/040055 2020-10-26 2020-10-26 Metal member WO2022091169A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022558603A JP7420282B2 (en) 2020-10-26 2020-10-26 metal parts
PCT/JP2020/040055 WO2022091169A1 (en) 2020-10-26 2020-10-26 Metal member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/040055 WO2022091169A1 (en) 2020-10-26 2020-10-26 Metal member

Publications (1)

Publication Number Publication Date
WO2022091169A1 true WO2022091169A1 (en) 2022-05-05

Family

ID=81383707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040055 WO2022091169A1 (en) 2020-10-26 2020-10-26 Metal member

Country Status (2)

Country Link
JP (1) JP7420282B2 (en)
WO (1) WO2022091169A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301679A (en) * 2003-03-31 2004-10-28 Ngk Spark Plug Co Ltd Method of manufacturing temperature sensor
US20100203340A1 (en) * 2009-02-09 2010-08-12 Ruoff Rodney S Protective carbon coatings
US20140030636A1 (en) * 2012-07-26 2014-01-30 Bluestone Global Tech Corrosion resistant current collector utilizing graphene film protective layer
US20140370246A1 (en) * 2012-01-20 2014-12-18 Brown University Substrate with Graphene-based Layer
JP2016100177A (en) * 2014-11-20 2016-05-30 株式会社プラズマイオンアシスト Fuel cell separator or current collecting member, and manufacturing method thereof
CN108827817A (en) * 2018-07-05 2018-11-16 华南理工大学 A kind of preparation method of the bionic phospholipid membrane of morphology controllable

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004301679A (en) * 2003-03-31 2004-10-28 Ngk Spark Plug Co Ltd Method of manufacturing temperature sensor
US20100203340A1 (en) * 2009-02-09 2010-08-12 Ruoff Rodney S Protective carbon coatings
US20140370246A1 (en) * 2012-01-20 2014-12-18 Brown University Substrate with Graphene-based Layer
US20140030636A1 (en) * 2012-07-26 2014-01-30 Bluestone Global Tech Corrosion resistant current collector utilizing graphene film protective layer
JP2016100177A (en) * 2014-11-20 2016-05-30 株式会社プラズマイオンアシスト Fuel cell separator or current collecting member, and manufacturing method thereof
CN108827817A (en) * 2018-07-05 2018-11-16 华南理工大学 A kind of preparation method of the bionic phospholipid membrane of morphology controllable

Also Published As

Publication number Publication date
JPWO2022091169A1 (en) 2022-05-05
JP7420282B2 (en) 2024-01-23

Similar Documents

Publication Publication Date Title
Goyal et al. A review of corrosion and protection of steel in concrete
CN102618875B (en) Treatment process for concrete
KR20180007676A (en) Painting steel material and method for producing the same
WO2022091169A1 (en) Metal member
EP0186334B1 (en) Cathodic protection system for reinforcing bars in concrete, a method of carrying out such protection and an anode for use in the method and system
US6332971B1 (en) Electrochemical treatment of reinforced concrete
JP2011236485A (en) Electrolytic protection method
EP4139499B1 (en) Anode assembly for corrosion control of steel reinforced concrete structures
JP6622372B1 (en) Anticorrosion method for concrete structures
Costa Corrosion of steel reinforcing in concrete and masonry structures
Hayfield et al. Titanium based mesh anode in the catholic protection of reinforcing bars in concrete
Yaro et al. Sacrificial anode cathodic protection of low carbon steel in sea water
Manian et al. Remediation of a new reinforcing steel cathodic protection system during construction
de Araujo et al. Cathodic protection of concrete structures
Whitmore Corrosion Protection of Reinforced Concrete Columns and Piles in a Marine Environment
JP2020125529A (en) Coating film material for anode material, concrete structure and electrolytic corrosion protection method
JP3431302B2 (en) Method for preventing deterioration of concrete structures
JP2024007864A (en) Salt damage countermeasure construction method for existing reinforced concrete structure
Pajonk et al. Corrosion behaviour of coated materials
JP2005113167A (en) Efficient electrolytic corrosion protection method, corrosion-protected steel, and corrosion-protected structure
Brueckner et al. Extending the lifetime of structures–prevention of and protection against corrosion
Schwarz et al. Prevention of incipient anodes induced by patch repair by a novel type of discrete galvanic zinc anodes
NL1040129C2 (en) Impressed current anode assembly for reinforced concrete applications.
Goodwin Next Generation Galvanic Anodes
Das et al. Corrosion mitigation of chloride-contaminated reinforced concrete structures: a state-of-the-art review

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959687

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022558603

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20959687

Country of ref document: EP

Kind code of ref document: A1