WO2022089674A1 - 一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用 - Google Patents

一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用 Download PDF

Info

Publication number
WO2022089674A1
WO2022089674A1 PCT/CN2021/143692 CN2021143692W WO2022089674A1 WO 2022089674 A1 WO2022089674 A1 WO 2022089674A1 CN 2021143692 W CN2021143692 W CN 2021143692W WO 2022089674 A1 WO2022089674 A1 WO 2022089674A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
component
high temperature
temperature resistant
resistant polyamide
Prior art date
Application number
PCT/CN2021/143692
Other languages
English (en)
French (fr)
Inventor
赵元博
秦兵兵
刘修才
Original Assignee
上海凯赛生物技术股份有限公司
Cibt美国公司
山西合成生物研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海凯赛生物技术股份有限公司, Cibt美国公司, 山西合成生物研究院有限公司 filed Critical 上海凯赛生物技术股份有限公司
Priority to EP21885400.8A priority Critical patent/EP4239012A1/en
Priority to JP2023527388A priority patent/JP2023548227A/ja
Priority to KR1020237018499A priority patent/KR20230125776A/ko
Publication of WO2022089674A1 publication Critical patent/WO2022089674A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes

Definitions

  • the present invention relates to a method for producing high temperature resistant polyamide, high temperature resistant polyamide and application thereof.
  • High temperature resistant polyamide usually refers to polyamide engineering plastics that can be used above 150°C for a long time.
  • High temperature polyamide has good abrasion resistance, heat resistance, oil resistance and chemical resistance, and also greatly reduces the water absorption and shrinkage rate of raw materials, and has excellent dimensional stability and excellent mechanical strength.
  • semi-aromatic polyamides generally have excellent heat resistance properties.
  • High-temperature polyamides are increasingly used in automotive, construction, military, aerospace and other fields that require high heat resistance.
  • the industrialized high temperature resistant polyamide varieties mainly include PA46, PA6T, PA9T, etc.
  • emerging high temperature resistant materials such as PA10T, PA4T, PA12T have also begun to emerge.
  • reaction mixture in 50-80 minutes, and kept at a pressure of 32 bar for one hour.
  • the precondensate is then discharged via a nozzle.
  • post-condensation is performed in a twin-screw extruder, and the product is then extruded through a nozzle and pelletized.
  • the existing method uses water as a solvent, which is economical and environmentally friendly, the molecular weight of the prepared prepolymer is low, so it is difficult to directly apply it, and further melt polycondensation or solid phase polymerization is required to increase the molecular weight, which also increases the production cycle and cost. .
  • An embodiment of the present invention provides a method for producing a high temperature resistant polyamide, the method comprising:
  • P1 is 0.8 ⁇ 4MPa
  • T1 is 250 ⁇ 290 degreeC
  • One embodiment of the present invention provides a high-temperature-resistant polyamide, which at least includes a polyamide prepared from component (A) diamine and component (B) diacid, and the component (A) and The molar ratio of component (B) is (0.5-5):1.
  • the component (A) diamine includes:
  • the component (B) diacid includes:
  • One embodiment of the present invention provides a high-temperature-resistant polyamide, which is characterized in that it at least includes a polyamide prepared from a solution of component (C) polyamide salt as a raw material.
  • An embodiment of the present invention provides a high temperature resistant polyamide, and the structural unit of the high temperature resistant polyamide includes the following formula:
  • the n is further 4-7.
  • the m is further 4-16.
  • the melting point of the high temperature-resistant polyamide is 280-328°C, further 286-328°C.
  • the relative viscosity of the high temperature resistant polyamide is 1.80-2.70.
  • the notched impact strength of the high temperature resistant polyamide is 5-12 KJ/cm 2 , and further is 6.5-10 KJ/cm 2 .
  • the tensile strength of the high temperature-resistant polyamide is 95-140 MPa, further 105-134 MPa.
  • the flexural strength of the high temperature-resistant polyamide is 135-190 MPa, further 155-183 MPa. ;
  • the flexural modulus of the high temperature resistant polyamide is 3500-4400 MPa.
  • the heat distortion temperature of the high temperature resistant polyamide is 240-320°C, further 260-300°C.
  • An embodiment of the present invention provides the application of the high temperature-resistant polyamide, which is a raw material for injection molded parts, moldings or fibers.
  • the advantage of the method is that compared with the existing polymerization method, the method for preparing the high temperature resistant polyamide is simple, and the waste of energy consumption is reduced.
  • the correlation between pressure and temperature is used to solve the problem of high sample residue in the kettle and it is not easy to continuously prepare multiple batches. It is suitable for producing high temperature resistant polyamide with good product quality.
  • An embodiment of the present invention provides a method for producing a high temperature resistant polyamide, the method comprising the following steps:
  • the polyamide salt solution with or without concentration, is then:
  • the method includes the following steps: subjecting the polyamide salt solution with a mass concentration of 20 to 90 wt % with or without concentration treatment, and then performing the following operations:
  • the method includes the following steps:
  • the concentration of the polyamide salt solution when the concentration of the polyamide salt solution is 10wt%, the pH value is 6.5-9.0, further 7.6-8.4, such as 7.2, 7.4, 7.6, 7.8, 8.0, 8.1, 8.2, 8.3, 8.5 or 8.7.
  • the mass concentration of the polyamide salt solution is 10 wt%, which can be the original mass concentration of the unconcentrated polyamide salt solution, or it can be obtained by sampling the concentrated or unconcentrated polyamide salt solution and then diluting it. mass concentration.
  • the mass concentration of the polyamide salt solution is above 20wt%, further 20-90wt%, such as 25wt%, 30wt%, 35wt%, 40wt%, 45wt%, 48wt%, 55wt%, 57wt% %, 60wt%, 62wt%, 65wt%, 68wt%, 70wt%, 72wt%, 75wt%, 77wt%, 80wt% or 85wt%.
  • the mass concentration of the polyamide salt solution may be the original mass concentration of the unconcentrated polyamide salt solution, or the mass concentration of the concentrated polyamide salt solution.
  • the polyamide salt includes a salt formed by the reaction of component (A) diamine and component (B) diacid.
  • the molar ratio of component (A) and component (B) is (0.5-5): 1, further is (0.6-3): 1, further is (0.6-1.6): 1, further is (0.9-1.3) : 1, and further (1.01 to 1.3): 1.
  • the pH of the polyamide salt solution can be adjusted by controlling the molar ratio of diamine to diacid. For example, the pH of the polyamide salt is made basic by stoichiometric excess of the diamine relative to the diacid.
  • the polyamide salt solution contains at least ions of component (A) diamine and ions of component (B) diacid.
  • the polyamide salt solution comprises:
  • component (A) diamine obtained by mixing component (A) diamine, component (B) diacid and solvent, (2) component (C) solution obtained by mixing polyamide salt and solvent, (3) component (C) ) Any one or a combination of a solution obtained by mixing polyamide salt, component (A) diamine and/or component (B) diacid with a solvent.
  • the solvent includes, but is not limited to, water.
  • the salt formed by the reaction of diamine and diacid is polyamide salt, which is also called nylon salt.
  • Polyamide salts are polycondensed to obtain polyamides. During the polycondensation reaction from step (1) to step (3), the carboxyl groups between the polyamide salts are combined with amino groups and water is removed.
  • the diamine or diacid can be prepared by fermentation or enzymatic conversion.
  • the P1 is 0.8-4 MPa
  • the T1 is 250-290°C.
  • the P1 is 3-4 MPa.
  • T1 is 275-290°C.
  • the P1 is, for example, 1 MPa, 1.2 MPa, 1.5 MPa, 1.8 MPa, 2 MPa, 2.1 MPa, 2.2 MPa, 2.5 MPa, 3 MPa, 3.5 MPa, or 3.8 MPa.
  • the T1 is, for example, 255°C, 260°C, 262°C, 265°C, 268°C, 270°C, 272°C, 275°C, 277°C, 280°C, 283°C, or 286°C.
  • the T1 ⁇ T2, and satisfy (T2-T1)/(P1-P2) 5 ⁇ 55.
  • the T1 ⁇ T2, and satisfy (T2-T1)/(P1-P2) 10-23.
  • the (T2-T1)/(P1-P2) may be, for example, 10, 12, 14, 15, 18, 20, 22, 25, 28, 30, 35, 40, 42, 46, 50, 55, 57, 63, 66 or 68.
  • the (T2-T1) is the difference between T2 (°C) and T1 (°C);
  • the (P1-P2) is the difference between P1 (MPa) and P2 (MPa).
  • the component (A) diamine includes: (a1) aliphatic linear or branched diamine with 4 to 16 carbon atoms, (a2) aromatic diamine or alicyclic diamine Any one or a combination of several amines.
  • the component (B) diacids include: (b1) aliphatic diacids having 2 to 18 carbon atoms, (b2) diacids having 8 or more carbon atoms containing a benzene ring. any one or a combination of several.
  • the (a1) is an aliphatic straight-chain or branched-chain dimethicone having 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 or 16 carbon atoms amine.
  • the number of carbon atoms of (a2) is 5-10, further 5-6, such as 5, 6, 7, 8, 9 or 10.
  • the number of carbon atoms of (b1) may be 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17 or 18 .
  • the number of carbon atoms of the (b2) may be 8-12, further 8-10.
  • the number of carbon atoms of (b2) may be, for example, 8, 9, 10, 11 or 12.
  • the component (a1) comprises: butanediamine, pentamethylenediamine, hexamethylenediamine, heptanediamine, octanediamine, nonanediamine, decanediamine, undecanediamine, One or more of dodecanediamine, tridecanediamine, tetradecanediamine, pentadecanediamine and hexadecanediamine.
  • the component (a2) comprises: one or variety.
  • the component (b1) includes, for example: oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid Acid, undecanediacid, dodecanediacid, tridecanediacid, tetradecanediacid, pentadecanediacid, hexadecanediacid, heptadecandiacid and one or more of octadecanedioic acid.
  • the component (b2) comprises: one or more of terephthalic acid, isophthalic acid and phthalic acid.
  • the polyamide salt solution is a solution obtained by mixing at least component (A) diamine, component (B) diacid and a solvent.
  • the component (A) diamine includes: (a1) an aliphatic linear or branched diamine having 4 to 16 carbon atoms; and the component (B) diacid includes: (b1) a carbon Aliphatic diacids having 2 to 18 atoms, and (b2) one or more of terephthalic acid, isophthalic acid and phthalic acid.
  • the molar ratio of component (A) to component (B) is (0.5-5): 1, further (0.6-3): 1, further (0.6-1.6): 1, further is (0.9 ⁇ 1.3):1, further is (1.01 ⁇ 1.3):1, such as 1:1, 1.1:1, 1.15:1, 1.2:1, 1.3:1, 1.5:1, 1.8:1, 2: 1, 2.3:1, 2.5:1, 3:1, 3.5:1 or 4:1.
  • the molar ratio of component (a1) to component (b1) is (0.5-12): 1, further (1-10): 1, further (1-8): 1, further It is (2 ⁇ 5): 1, further is (2.3 ⁇ 3.3): 1, such as 0.8:1, 1.2:1, 1.4:1, 1.5:1, 1.8:1, 2:1, 2.2:1, 2.5: 1, 2.7:1, 3:1, 3.2:1, 3.5:1, 4.5:1, 5:1, 6:1, 8:1 or 9:1.
  • the molar ratio of component (a1) to component (b2) is (0.1-6):1, further (0.5-5):1, further (0.5-4):1, further (1-4):1, further (1-2):1, further (1-1.7):1, further (1.4-1.7):1, such as 0.2:1, 0.3:1, 0.7: 1, 1.0:1, 1.3:1, 1.5:1, 1.6:1, 1.8:1, 2:1, 2.3:1, 2.5:1, 2.6:1, 2.8:1, 3:1, 3.5:1, 3.8:1, 4:1 or 4.6:1.
  • parameters such as tensile strength, flexural strength and/or flexural modulus of polyamide products are improved by controlling the component relationship between diamine and diacid, especially the type, content and/or relative ratio.
  • the component (b2) can improve the parameters such as tensile strength, flexural strength, flexural modulus and the like of the polyamide product within the reasonable content range as mentioned above.
  • the toughness of the polyamide product is improved by introducing long-chain dibasic acids/amines.
  • the dwell time is 1-4 hours, and further is 1.5-3 hours.
  • the pressure maintaining method is exhaust pressure maintaining.
  • the yield of the process is improved by controlling the depressurization process in step (2).
  • the relative viscosity of the obtained polyamide product is relatively high.
  • the system maintains a temperature-raising state.
  • the time for the step (2) to depressurize is 0.5-3 hours, and further is 0.8-1.5 hours.
  • the T2 is 295-340°C, further 305-335°C, and further 325-335°C.
  • the T2 is, for example, 300°C, 310°C, 315°C, 320°C or 330°C.
  • the P2 is 0 to 0.05 MPa, further 0 to 0.02 MPa.
  • the P2 is, for example, 0.01 MPa, 0.02 MPa, 0.03 MPa, 0.035 MPa or 0.04 MPa.
  • the P1 >P2.
  • the water present in the system includes the water produced during the polycondensation process in addition to the water originally contained in the polyamide salt solution.
  • water vapor is discharged to the outside to adjust the reaction process, especially to reduce the system pressure.
  • step (1) and step (2) water vapor is discharged to the outside, so as to reduce the pressure of the system.
  • water vapor is discharged to the outside, and the ratio of the discharged water vapor (mol) to the water content (mol) in the polyamide salt solution (referred to as the drainage ratio) is (60.6 ⁇ 93.9): 100, further (75.4 ⁇ 90.9): 100, further (80 ⁇ 90.9): 100, further (87 ⁇ 90.9): 100, such as 65: 100, 70: 100, 72: 100, 75 : 100, 78:100, 82:100, 84:100, 85:100, 86:100, 88:100, 90:100 or 91:100.
  • step (1) water vapor is discharged to the outside, and the ratio of the discharged water vapor (mol) to the water content (mol) in the polyamide salt solution (referred to as the drainage ratio) is (60.6 to 93.9): 100, further to (75.4 to 93.9): 100, further to (80 to 93.9): 100, and further to (87 to 93.9): 100.
  • step (2) water vapor is discharged to the outside, and the ratio of the discharged water vapor (mol) to the water content (mol) in the polyamide salt solution (referred to as the drainage ratio) is (93.9).
  • step (2) water vapor is discharged to the outside, and the ratio of the discharged water vapor (mol) to the water content (mol) in the polyamide salt solution (referred to as the drainage ratio) is (93.9).
  • the polyamide salt solution before performing the reaction in step (1), is subjected to a concentration treatment, and the drainage ratios in steps (1) and (2) are based on the concentrated polyamide salt solution.
  • the polyamide salt solution is concentrated to a concentration of 50% to 85% by weight, further 55% to 70% by weight, and further 60% to 60% by weight.
  • 70wt% eg 52wt%, 55wt%, 57wt%, 60wt%, 62wt%, 65wt%, 68wt%, 70wt%, 72wt%, 75wt%, 77wt%, 80wt%, 85wt%.
  • step (3) the vacuum is evacuated to a pressure of -0.09 to -0.005MPa, further to -0.09 to -0.01MPa, further to -0.09 to -0.02MPa, further to -0.065 to -0.04 MPa.
  • the temperature of the system is 310-340°C, further 315-335°C, such as 312°C, 318°C, 320°C, 325°C, 328°C, 330°C °C or 333 °C.
  • the vacuuming time in step (3) is 1-40 minutes, and further is 4-20 minutes.
  • the method further includes step (4): discharging the polyamide melt and dicing, thereby obtaining a polyamide resin.
  • the pellets may be water-cooled pellets, and the temperature of the cooling water is 10-30°C.
  • the polyamide salt solution further includes a component (D) additive.
  • the component (D) additive is added at any stage of steps (1) to (3).
  • the component (D) includes antioxidants, defoamers, UV stabilizers, heat stabilizers, crystallization accelerators, free radical scavengers, lubricants, plasticizers, impact modifiers One or more of additives, inorganic fillers, brighteners, dyes, flame retardants and minerals.
  • the molar amount of the component (D) is (0.001-1)% of the molar amount of the component (A) and/or the component (C), and further is (0.01-0.8)%, Furthermore, it is (0.02-0.4) %.
  • the thermal stabilizer further comprises phosphoric acid, phosphorous acid, trimethyl phosphite, triphenyl phosphite, trimethyl phosphate, triphenyl phosphate, sodium hypophosphite, zinc hypophosphite, hypophosphorous acid One or more of calcium and potassium hypophosphite.
  • the crystallization accelerator further comprises a metal salt of a long carbon chain carboxylic acid, the number of carbon atoms of the long carbon chain carboxylic acid is preferably 10-30, and the metal preferably comprises one of calcium, magnesium and zinc. species or multiple species.
  • the inorganic filler further includes one or more of glass fibers, glass beads, carbon fibers, carbon black and graphite.
  • the minerals further include one or more of titanium dioxide, calcium carbonate and barium sulfate.
  • the component (D) additive contains at least an antioxidant.
  • the component (D) additive contains at least an antifoaming agent.
  • the component (D) additive contains at least a heat stabilizer.
  • the component (D) additive contains at least an antioxidant, a defoaming agent, and a heat stabilizer.
  • the entire preparation process of the high temperature resistant polyamide is carried out in an inert gas atmosphere.
  • the step (1) and/or the step (2) and/or the step (3) and/or the step (4) are performed in an inert gas atmosphere.
  • the inert gas includes nitrogen, argon or helium.
  • One embodiment of the present invention provides a high temperature resistant polyamide, including a polyamide prepared from component (A) diamine and component (B) diacid, the component (A) and component The molar ratio of (B) is (0.5 to 5):1.
  • the component (A) diamine includes:
  • the component (B) diacid includes:
  • the high temperature resistant polyamide at least includes a polyamide prepared from a solution of component (C) polyamide salt as a raw material.
  • the structural unit of the high temperature resistant polyamide comprises the following formula:
  • n 4 to 16, further 4 to 10, and further 4 to 8, and the n is, for example, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 , 16.
  • the m 2 to 18, further 4 to 16, and the m is, for example, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, or 16.
  • a high temperature resistant polyamide is provided, the melting point of the high temperature resistant polyamide is 280-328°C, further 286-328°C, further 293-320°C, such as 290, 294, 298, 301 , 304, 307, 309, 312, 315, 317, 321 or 325°C.
  • the relative viscosity of the high temperature resistant polyamide is 1.80-2.70, further 2.0-2.5, such as 1.85, 1.9, 1.95, 2.1, 2.2, 2.3, 2.4, 2.55, 2.6, 2.67 or 2.7.
  • the notched impact strength of the high temperature-resistant polyamide is 5-12KJ/cm 2 , further 7.0-10KJ/cm 2 , and further 6.5-10KJ/cm 2 , such as 5.5, 6.5, 7.5, 8.0, 8.2, 8.5, 8.7, 9.3, 9.6, 9.8, 10.2 or 10.5 KJ/cm 2 .
  • the tensile strength of the high temperature-resistant polyamide is 95-140 MPa, further 105-134 MPa, and further 105-131 MPa, for example, 100, 110, 112, 116, 119, 121, 125, 132, 135 or 138 MPa.
  • the flexural strength of the high temperature resistant polyamide is 135-190 MPa, further 155-183 MPa, and further 155-173 MPa, such as 140, 145, 150, 154, 157, 161, 164, 169, 172, 175, 178, 183 or 185MPa.
  • the flexural modulus of the high temperature resistant polyamide is 3500-4400 MPa, further 3700-4200 MPa, such as 3600, 3650, 3750, 3800, 3850, 3890, 3920, 3950, 3995, 4050, 4130, 4200 or 4300 MPa.
  • the heat distortion temperature of the high temperature resistant polyamide is 240-320°C, further 270-310°C, further 260-300°C, such as 249, 250, 251, 252, 253, 254, 255, 256, 257, 258 , 259, 260, 261, 262, 263, 264, 265, 266, 267, 268, 269, 270, 271, 272, 273, 274, 275, 276 or 277 o C.
  • the application of the high temperature resistant polyamide is provided, and the high temperature resistant polyamide is a raw material for injection molded parts, moldings or fibers.
  • the high temperature polyamide is a raw material for injection moldings, moldings or fibers of machines, automobiles, household devices, toys, fabrics, sporting goods, mobile phones, computers, laptops, GPS devices or High temperature accessories for optics.
  • Flexural strength and flexural modulus test The test refers to the standard ISO 178-2010, test conditions: 2mm/min, spline size 10mm*4mm*80mm.
  • Tensile strength test The test refers to the standard ISO 572-2-2012, test condition: 50mm/min.
  • Notched impact strength test It is the notched impact of Izod beam, refer to the test standard ISO 180/1A, test condition: 23°C.
  • Relative viscosity Concentrated sulfuric acid method by Ubbelohde viscometer: accurately weigh 0.25 ⁇ 0.0002 g of the dried polyamide resin chips, add 50 mL of concentrated sulfuric acid (96 wt%) to dissolve the polyamide resin chips, thereby obtaining a polyamide sample solution; measure and record the flow time t 0 of concentrated sulfuric acid and the flow time t of the polyamide sample solution in a constant temperature water bath at 25°C.
  • Heat distortion temperature The polyamide prepared in the example was blended with 30 wt % glass fiber to obtain a glass fiber reinforced polyamide. Then test the thermal deformation temperature, the test refers to the national standard GB/T1634.2-2004, the sample size is 120mm*10mm*4mm (length*width*thickness), and the applied bending stress is 1.8MPa.
  • the unit of temperature in the present invention is °C
  • the pressure is all gauge pressure
  • the unit of pressure is MPa.
  • the antioxidant H10 used in the examples is BRUGGOLEN H10 antioxidant
  • the defoamer used in the examples is Dow Corning 3168 defoamer.
  • a method for producing high temperature resistant polyamide comprising the steps of:
  • the polyamide salt solution was heated to 138°C to concentrate to a concentration of 65 wt%, followed by the following steps:
  • Step (1) the polyamide salt solution is continuously heated and pressurized, the pressure in the reaction system is raised to 3.5MPa (P1), the pressure is exhausted and maintained, and the temperature of the reaction system is 279° C. (T1) when the pressure is maintained.
  • Step (2) start the depressurization while maintaining the temperature-raising state until the pressure in the reaction system is reduced to 0MPa (P2, gauge pressure), and the temperature of the reaction system is at 330° C. (T2) at this time; in the depressurization process, the pressure When (P) was 1.8 MPa, the temperature (T) of the system was 303°C, and when the pressure (P) was 0.7 MPa, the temperature (T) of the system was 319°C.
  • P2 gauge pressure
  • Step (3) maintaining the vacuum at -0.06MPa, the vacuuming time is 15min, and when the vacuuming is completed, the temperature of the system is 335° C. to obtain a polyamide melt.
  • Step (4) discharging, cooling and dicing with water to obtain polyamide resin.
  • the ratio of the water vapor discharge amount (mol) of step (1) to the water content (mol) of the concentrated polyamide salt solution (65wt%) (abbreviated as drainage ratio) is 90.2:100;
  • the ratio of the water vapor discharge amount (mol) to the water content (mol) of the concentrated polyamide salt solution (65 wt %) (abbreviated as drainage ratio) was 113.1:100.
  • a method for producing high temperature resistant polyamide comprising the steps of:
  • the polyamide salt solution was heated to 130°C to concentrate to a concentration of 68 wt%, followed by the following steps:
  • Step (1) continue to heat up and pressurize the polyamide salt solution, the pressure in the reaction system rises to 2.5MPa (P1), exhaust and maintain the pressure, and the temperature of the reaction system is 267° C. (T1) when the pressure is maintained.
  • P1 2.5MPa
  • T1 267° C.
  • Step (2) start depressurizing until the pressure in the reaction system is reduced to 0MPa (P2, gauge pressure) while maintaining the temperature-raising state, and the temperature of the reaction system is at 315° C. (T2) at this time; in the depressurization process, the pressure When (P) was 1.2 MPa, the temperature (T) of the system was 295°C, and when the pressure (P) was 0.4 MPa, the temperature (T) of the system was 308°C.
  • P2 gauge pressure
  • Step (3) maintaining the vacuum at -0.04MPa, the vacuuming time is 10min, and when the vacuum is finished, the temperature of the system is 321° C. to obtain a polyamide melt.
  • Step (4) discharging, cooling and dicing with water to obtain polyamide resin.
  • the ratio of the water vapor discharge amount (mol) of step (1) to the water content (mol) of the concentrated polyamide salt solution (68wt%) (abbreviated as drainage ratio) is 83.3:100;
  • the ratio of the water vapor discharge amount (mol) to the water content (mol) of the concentrated polyamide salt solution (68 wt %) (abbreviated as drainage ratio) was 106.9:100.
  • a method for producing high temperature resistant polyamide comprising the steps of:
  • the polyamide salt solution was heated to 122°C to concentrate to a concentration of 62 wt%, followed by the following steps:
  • Step (1) the polyamide salt solution is continuously heated and pressurized, the pressure in the reaction system is raised to 1.4MPa (P1), the pressure is exhausted and maintained, and the temperature of the reaction system is 255°C (T1) when the pressure is maintained.
  • Step (2) start the depressurization while maintaining the temperature-raising state until the pressure in the reaction system is reduced to 0MPa (P2, gauge pressure), and the temperature of the reaction system is at 299° C. (T2) at this time; in the depressurization process, the pressure When (P) was 0.7 MPa, the temperature (T) of the system was 287°C, and when the pressure (P) was 0.2 MPa, the temperature (T) of the system was 298°C.
  • P2 gauge pressure
  • Step (3) maintaining the vacuum at -0.02MPa, the vacuuming time is 5min, when the vacuum is finished, the temperature of the system is 313° C. to obtain a polyamide melt.
  • Step (4) discharging, cooling and dicing with water to obtain polyamide resin.
  • the ratio of the water vapor discharge amount (mol) of step (1) to the water content (mol) of the concentrated polyamide salt solution (62wt%) (abbreviated as drainage ratio) is 77.6:100;
  • the ratio of the water vapor discharge amount (mol) to the water content (mol) of the concentrated polyamide salt solution (62 wt %) (abbreviated as drainage ratio) was 99.8:100.
  • a method for producing high temperature resistant polyamide comprising the steps of:
  • the polyamide salt solution was heated to 130°C so as to be concentrated to a concentration of 65 wt%, and then the following steps were performed.
  • Step (1) the polyamide salt solution is continued to heat up, the pressure in the reaction system is raised to 2.5MPa (P1), the exhaust pressure is maintained, and the temperature of the reaction system is 270° C. (T1) when the pressure-holding finishes;
  • Step (2) start depressurizing until the pressure in the reaction system is reduced to 0MPa (P2, gauge pressure) while maintaining the temperature-raising state, and the temperature of the reaction system is at 320° C. (T2) at this time; in the depressurization process, the pressure When (P) was 1.1 MPa, the temperature (T) of the system was 305°C, and when the pressure (P) was 0.8 MPa, the temperature (T) of the system was 318°C.
  • P2 gauge pressure
  • Step (3) maintaining the vacuum at -0.04MPa, the vacuuming time is 10min, and at the end of the vacuum, the temperature of the system is 320° C. to obtain a polyamide melt.
  • Step (4) discharging, cooling and dicing with water to obtain polyamide resin.
  • the ratio of the water vapor discharge amount (mol) of step (1) to the water content (mol) in the concentrated polyamide salt solution (65 wt %) (abbreviated as drainage ratio) is 83.1:100;
  • step (2) The ratio of the amount of water vapor discharged (mol) to the water content (mol) in the concentrated polyamide salt solution (65wt%) (abbreviated as drainage ratio) is 106.9:100.
  • a method for producing high temperature resistant polyamide comprising the steps of:
  • the polyamide salt solution was heated to 130°C so as to be concentrated to a concentration of 65 wt%, and then the following steps were performed.
  • Step (1) the polyamide salt solution is continuously heated and pressurized, the pressure in the reaction system is raised to 2.5MPa (P1), the pressure is exhausted and maintained, and the temperature of the reaction system is 275°C (T1) when the pressure is maintained.
  • P1 2.5MPa
  • T1 the temperature of the reaction system is 275°C
  • Step (2) start depressurizing until the pressure in the reaction system is reduced to 0MPa (P2, gauge pressure) while maintaining the temperature-raising state, and the temperature of the reaction system is at 315° C. (T2) at this time; in the depressurization process, the pressure When (P) was 1.3 MPa, the temperature (T) of the system was 300°C, and when the pressure (P) was 0.7 MPa, the temperature (T) of the system was 314°C.
  • P2 gauge pressure
  • Step (3) maintaining the vacuum at -0.04MPa, the vacuuming time is 10min, and at the end of the vacuum, the temperature of the system is 318° C. to obtain a polyamide melt.
  • Step (4) discharging, cooling and dicing with water to obtain polyamide resin.
  • the ratio of the water vapor discharge amount (mol) of step (1) to the water content (mol) of the concentrated polyamide salt solution (65wt%) (abbreviated as drainage ratio) is 81.0:100;
  • the ratio of the water vapor discharge amount (mol) to the water content (mol) of the concentrated polyamide salt solution (65 wt %) (abbreviated as drainage ratio) was 110.5:100.
  • step (2) while maintaining the temperature rise state, the pressure is reduced until the pressure in the reaction system is reduced to 0MPa (gauge pressure), and the reaction is performed at this time.
  • the temperature of the system is 330°C; during the depressurization process, when the pressure is 1.5MPa, the temperature of the system is 283°C, and when the pressure is 0.7MPa, the temperature of the system is 319°C.
  • step (2) while maintaining the temperature rise state, the pressure is reduced until the pressure in the reaction system is reduced to 0MPa (gauge pressure), and the reaction is performed at this time.
  • the temperature of the system is 330°C; during the depressurization process, when the pressure is 1.8MPa, the temperature of the system is 303°C, and when the pressure is 0.6MPa, the temperature of the system is 330°C.
  • step (2) while maintaining the temperature rise state, the pressure is reduced until the pressure in the reaction system is reduced to 0MPa (gauge pressure), and the reaction is performed at this time.
  • the temperature of the system is 330°C; during the depressurization process, when the pressure is 1.5MPa, the temperature of the system is 283°C, and when the pressure is 0.6MPa, the temperature of the system is 330°C.
  • the steps and conditions for the preparation of the high-temperature polyamide are the same as those in Example 1, except that the water vapor discharge amount (mol) of the step (1) is the same as the water content of the concentrated polyamide salt solution (65wt%) ( mol) ratio (abbreviated as drainage ratio) is 69.5:100; the ratio of the water vapor discharge (mol) of step (2) to the water content (mol) of the concentrated polyamide salt solution (65wt%) (abbreviated as drainage). ratio) is 113.1:100.
  • the steps and conditions for the preparation of the high-temperature polyamide are the same as those in Example 1, except that the water vapor discharge amount (mol) of the step (1) is the same as the water content of the concentrated polyamide salt solution (65wt%) ( mol) ratio (abbreviated as drainage ratio) is 70.2:100; the ratio of the water vapor discharge (mol) of step (2) to the water content (mol) of the concentrated polyamide salt solution (65wt%) (abbreviated as drainage). ratio) is 116.7:100.
  • Step (2) While maintaining the temperature rise state, the pressure is reduced until the pressure in the reaction system is reduced to 0MPa (gauge pressure), and the reaction is performed at this time.
  • the temperature of the system is 330°C; in the depressurization process, when the pressure is 1.5MPa, the temperature of the system is 275°C, and when the pressure is 0.7MPa, the temperature of the system is 319°C.
  • the ratio of the water vapor discharge amount (mol) of the step (1) to the water content (mol) of the concentrated polyamide salt solution (65wt%) (referred to as the drainage ratio) is 71.4:100; the water vapor of the step (2)
  • the ratio of the discharge amount (mol) to the water content (mol) of the concentrated polyamide salt solution (65 wt %) (abbreviated as the discharge ratio) was 113.1:100.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyamides (AREA)

Abstract

本发明提供一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用,所述方法包括:将所述聚酰胺盐溶液经过或不经过浓缩处理后,进行以下操作:加热,并加压至P1,保压,保压结束时体系温度为T1;降压至P2,降压结束时体系温度为T2;抽真空;所述P1为0.8~4MPa,T1为250~290℃,所述T1<T2且满足(T2-T1)/(P1-P2)=5~75。本方法制备耐高温聚酰胺的工艺简单,减少了能耗的浪费。获得的耐高温聚酰胺可作为如下注塑件、模制品或纤维的原料:机器、汽车、家用装置、玩具、织物、运动用品、移动电话、计算机、便携式电脑、GPS装置或光学装置高温附件。

Description

一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用 技术领域
本发明涉及一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用。
背景技术
耐高温聚酰胺通常是指可以长期在150℃以上使用的聚酰胺工程塑料。耐高温聚酰胺具有良好的耐磨性、耐热性、耐油性及耐化学药品性,还大大降低了原材料的吸水率和收缩率,具有优良的尺寸稳定性及优异的机械强度。与脂肪族聚酰胺相比,半芳香族聚酰胺一般具有优良的耐热性能。耐高温聚酰胺越来越多的被用于汽车、建筑、军事、航空航天等对耐热性要求较高的领域。目前已经实现工业化的耐高温聚酰胺品种主要有PA46、PA6T、PA9T等,同时PA10T、PA4T、PA12T等新兴耐高温材料也开始崭露头角。
目前,工业上的半芳香族聚酰胺常用溶液缩聚法制备,该方法通常分为两步:首先使用高压反应釜进行聚合得到半芳香族聚酰胺预聚物,然后采用熔融缩聚或固相聚合以提高分子量,从而得到聚酰胺聚合物,因此该方法一般也称为两步法。例如CN102372920A公开一种部分芳族的聚酰胺模塑组合物及其用途。先将聚酰胺的配方组分与催化剂、调节剂和水一起置于20升的高压釜中,用时50~80分钟加热至反应混合物的温度为260℃,在32巴的压力下保持一小时,随后经由喷嘴排放预缩合物。将预缩合物减压干燥后,在双螺杆挤出机中进行后缩合,然后将产物经喷嘴挤出并造粒。
尽管现有的方法以水为溶剂,经济环保,但是制备的预聚物的分子量较低从而难以直接应用,需要采用进一步的熔融缩聚或固相聚合以提高分子量,这也增加了生产周期和成本。
发明内容
本发明一实施方式提供了一种用于生产耐高温聚酰胺的方法,所述方法包括:
将聚酰胺盐溶液经过或不经过浓缩处理后,进行以下操作:
(1)加热,并加压至P1,保压,保压结束时体系温度为T1;
(2)降压至P2,降压结束时体系温度为T2;和
(3)抽真空,由此获得聚酰胺熔体;
其中,P1为0.8~4MPa,T1为250~290℃,T1<T2且(T2-T1)/(P1-P2)=5~75。
本发明一实施方式提供了一种耐高温聚酰胺,其至少包括以组分(A)二胺和组分(B)二酸为原料制备而成的聚酰胺,所述组分(A)与组分(B)的摩尔比为(0.5~5):1。
所述组分(A)二胺包括:
(a1)碳原子数为4~16的脂肪族直链或支链二胺、(a2)芳香族二胺或环状脂肪族二胺中的任意一种或几种的组合;和/或
所述组分(B)二酸包括:
(b1)碳原子数为2~18的脂肪族二酸、(b2)碳原子数为8以上的含有苯环的二酸中的任意一种或几种的组合。
本发明一实施方式提供了一种耐高温聚酰胺,其特征在于,至少包括以组分(C)聚酰胺盐的溶液为原料制备而成的聚酰胺。
本发明一实施方式提供了一种耐高温聚酰胺,所述耐高温聚酰胺的结构单元包括下式:
Figure PCTCN2021143692-appb-000001
其中,所述n=4~16,并且m=2~18。
于一实施方式中,所述n进一步为4~7。
于一实施方式中,所述m进一步为4~16。
所述耐高温聚酰胺的熔点为280~328℃,进一步为286~328℃。
所述耐高温聚酰胺的相对粘度为1.80~2.70。
所述耐高温聚酰胺的缺口冲击强度为5~12KJ/cm 2,进一步为6.5~10KJ/cm 2
所述耐高温聚酰胺的拉伸强度为95~140MPa,进一步为105~134MPa。
所述耐高温聚酰胺的弯曲强度为135~190MPa,进一步为155~183MPa。;
所述耐高温聚酰胺的弯曲模量为3500~4400MPa。
和/或,所述耐高温聚酰胺的热变形温度为240~320℃,进一步为260~300℃。
本发明一实施方式提供了所述耐高温聚酰胺的应用,所述耐高温聚酰胺为注塑件、模制品或纤维的原料。
本方法的优点在于:与现有的聚合方法相比,本方法制备耐高温聚酰胺的工艺简单,减少了能耗的浪费。利用压力与温度的相关性解决釜内样品残留高、不易于连续进行多批次制备的问题。适合用于生产耐高温聚酰胺,产品质量好。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式中具有各种变化,其皆不脱离本发明的范围,且其中的描述在本质上是当作说明之用,而非用以限制本发明。
本发明一实施方式提供了一种用于生产耐高温聚酰胺的方法,所述方法,包括以下步骤:
将聚酰胺盐溶液经过或不经过浓缩处理,然后进行以下操作:
(1)加热,并加压至P1,保压,保压结束时体系温度为T1;
(2)降压至P2,降压结束时体系温度为T2;和
(3)抽真空,由此获得聚酰胺熔体。
进一步地,所述方法包括以下步骤:将质量浓度为20~90wt%的聚酰胺盐溶液经过或不经过浓缩处理,然后进行以下操作:
(1)加热,并加压至P1,保压,保压结束时体系温度为T1;
(2)降压至P2,降压结束时体系温度为T2;和
(3)抽真空,由此获得聚酰胺熔体。
于一实施方式中,所述方法包括以下步骤:
将组分(A)二胺、组分(B)二酸与水混合,以制备质量浓度为20~90wt%的聚酰胺盐溶液;将所述聚酰胺盐溶液经过或不经过浓缩处理,然后进行以下操作:
(1)加热,并加压至P1,保压,保压结束时体系温度为T1;
(2)降压至P2,降压结束时体系温度为T2;和
(3)抽真空,由此获得聚酰胺熔体。
于一实施方式中,所述聚酰胺盐溶液的浓度为10wt%时,pH值为6.5~9.0,进一步为7.6~8.4,例如7.2、7.4、7.6、7.8、8.0、8.1、8.2、8.3、8.5或8.7。这里,聚酰胺盐溶液的质量浓度为10wt%,可以是未经浓缩的聚酰胺盐溶液的原本的质量浓度,也可以是将经浓缩或未经浓缩的聚酰胺盐溶液取样后,经稀释得到的质量浓度。于一实施方式中,所述聚酰胺盐溶液的质量浓度为20wt%以上,进一步为20~90wt%,例如25wt%、30wt%、35wt%、40wt%、45wt%、48wt%、55wt%、57wt%、60wt%、62wt%、65wt%、68wt%、70wt%、72wt%、75wt%、77wt%、80wt%或85wt%。这里,聚酰胺盐溶液的质量浓度可以是未经浓缩的聚酰胺盐溶液的原本的质量浓度,也可以是经浓缩后的聚酰胺盐溶液的质量浓度。
于一实施方式中,所述聚酰胺盐包括组分(A)二胺与组分(B)二酸反应形成的盐。组分(A)和组分(B)的摩尔比为(0.5~5):1,进一步为(0.6~3):1,进一步为(0.6~1.6):1,进一步为(0.9~1.3):1,进一步为(1.01~1.3):1。可以通过控制二胺与二酸的摩尔比,来调节聚酰胺盐溶液的pH值。例如,通过使二胺相对于二酸为化学计量过量,从而使聚酰胺盐的pH为碱性。
所述聚酰胺盐溶液中至少含有组分(A)二胺的离子和组分(B)二酸的离子。
于一实施方式中,所述聚酰胺盐溶液包括:
(1)组分(A)二胺、组分(B)二酸与溶剂混合得到的溶液、(2)组分(C)聚酰胺盐与溶剂混合得到的溶液、(3)组分(C)聚酰胺盐、组分(A)二胺和/或组分(B)二酸与溶剂混合得到的溶液中的任意一种或几种的组合。
所述溶剂包括但不限于水。
二胺与二酸反应形成的盐为聚酰胺盐,聚酰胺盐又称尼龙盐。聚酰胺盐通过缩聚反应得到聚酰胺。在步骤(1)至步骤(3)的缩聚反应过程中,聚酰胺盐之间的羧基与氨基结合并脱去水。
于一实施方式中,二胺或二酸可通过发酵法或酶转化法制备而成。
于一实施方式中,所述P1为0.8~4MPa,T1为250~290℃。
于一实施方式中,所述P1为3~4MPa。
于一实施方式中,T1为275~290℃。
于一些实施方式中,所述P1例如为1MPa、1.2MPa、1.5MPa、1.8MPa、2MPa、2.1MPa、2.2MPa、2.5MPa、3MPa、3.5MPa或3.8MPa。
于一些实施方式中,所述T1例如为255℃、260℃、262℃、265℃、268℃、270℃、272℃、275℃、277℃、280℃、283℃或286℃。
于一实施方式中,所述T1<T2,且满足(T2-T1)/(P1-P2)=5~75。
于一实施方式中,所述T1<T2,且满足(T2-T1)/(P1-P2)=5~55。
于一实施方式中,所述T1<T2,且满足(T2-T1)/(P1-P2)=10~45。
于一实施方式中,所述T1<T2,且满足(T2-T1)/(P1-P2)=10~23。
于一实施方式中,所述T1<T2,且满足(T2-T1)/(P1-P2)=10~16。
于一实施方式中,所述(T2-T1)/(P1-P2)例如可以为10、12、14、15、18、20、22、25、28、30、35、40、42、46、50、55、57、63、66或68。
所述(T2-T1)为T2(℃)与T1(℃)的差值;所述(P1-P2)为P1(MPa)与P2(MPa)的差值。
于一实施方式中,所述组分(A)二胺包括:(a1)碳原子数为4~16的脂肪族直链或支链二胺、(a2)芳香族二胺或脂环族二胺中的任意一种或几种的组合。
于一实施方式中,所述组分(B)二酸包括:(b1)碳原子数为2~18的脂肪族二酸、(b2)碳原子数为8以上的含有苯环的二酸中的任意一种或几种的组合。
于一些实施方式中,所述(a1)为碳原子数为4、5、6、7、8、9、10、11、12、13、14、15或16的脂肪族直链或支链二胺。
于一些实施方式中,所述(a2)的碳原子数为5~10,进一步为5~6,例如5、6、7、8、9或10。
于一些实施方式中,所述(b1)的碳原子数可以为2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17或18。
于一实施方式中,所述(b2)的碳原子数可以为8~12,进一步为8~10。
于一些实施方式中,所述(b2)的碳原子数例如可以为8、9、10、11 或12。
于一实施方式中,所述组分(a1)包括:丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、癸二胺、十一碳二元胺、十二碳二元胺、十三碳二元胺、十四碳二元胺、十五碳二元胺和十六碳二元胺中的一种或者多种。
于一实施方式中,所述组分(a2)包括:环戊二胺、甲基环戊二胺、环己二胺、对苯二胺、邻苯二胺和间苯二胺中一种或多种。
于一实施方式中,所述组分(b1)包括例如:乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一碳二元酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸、十七碳二元酸和十八碳二元酸中的一种或者多种。
于一实施方式中,所述组分(b2)包括:对苯二甲酸、间苯二甲酸和邻苯二甲酸中的一种或者多种。
于一实施方式中,所述聚酰胺盐溶液为至少将组分(A)二胺、组分(B)二酸与溶剂混合得到的溶液。
于一实施方式中,组分(A)二胺包括:(a1)碳原子数为4~16的脂肪族直链或支链二胺;并且组分(B)二酸包括:(b1)碳原子数为2~18的脂肪族二酸,以及(b2)对苯二甲酸、间苯二甲酸和邻苯二甲酸中的一种或者多种。
于一实施方式中,组分(A)与组分(B)的摩尔比为(0.5~5):1,进一步为(0.6~3):1,进一步为(0.6~1.6):1,进一步为(0.9~1.3):1,进一步为(1.01~1.3):1,例如1:1、1.1:1、1.15:1、1.2:1、1.3:1、1.5:1、1.8:1、2:1、2.3:1、2.5:1、3:1、3.5:1或4:1。
于一实施方式中,组分(a1)与组分(b1)的摩尔比为(0.5~12):1,进一步为(1~10):1,进一步为(1~8):1,进一步为(2~5):1,进一步为(2.3~3.3):1,例如0.8:1、1.2:1、1.4:1、1.5:1、1.8:1、2:1、2.2:1、2.5:1、2.7:1、3:1、3.2:1、3.5:1、4.5:1、5:1、6:1、8:1或9:1。
于一实施方式中,组分(a1)与组分(b2)的摩尔比为(0.1~6):1,进一步为(0.5~5):1,进一步为(0.5~4):1,进一步为(1~4):1,进一步为(1~2):1,进一步为(1~1.7):1,进一步为(1.4~1.7):1,例如0.2:1、0.3:1、0.7:1、1.0:1、1.3:1、1.5:1、1.6:1、1.8:1、2:1、2.3:1、2.5:1、 2.6:1、2.8:1、3:1、3.5:1、3.8:1、4:1或4.6:1。
于一实施方式中,通过控制二胺与二酸的组分关系,特别是种类、含量和/或相对比例,提高聚酰胺产品的拉伸强度、弯曲强度和/或弯曲模量等参数。
于一实施方式中,组分(b2)在如上所述的合理含量范围内,提高聚酰胺产品的拉伸强度、弯曲强度、弯曲模量等参数。
于一实施方式中,通过引入长链二元酸/胺,提高聚酰胺产品的韧性。
于一实施方式中,在步骤(1)中,所述保压时间为1~4h,进一步为1.5~3h。
于一实施方式中,在步骤(1)中,所述保压方式为排气保压。
于一实施方式中,在步骤(2)所述降压至P2的过程中,压力P与温度T满足以下条件:当P=0.4~0.65倍的P1时(例如P为0.4~0.6倍的P1时、或P为0.4~0.55倍的P1时),T=(1.01~1.18)x T1,例如1.095T1、1.097T1、1.101T1、1.102T1、1.11T1、1.115T1、1.12T1、1.13T1、1.14T1、1.145T1、1.15T1、1.16T1或1.17T1,其中,P2<P<P1,并且T1<T<T2。
于一实施方式中,在步骤(2)所述降压至P2的过程中,压力P与温度T满足以下条件:当P=0.4~0.65倍的P1时(例如P为0.4~0.6倍的P1时、或P为0.4~0.55倍的P1时),T为(1.03~1.18)x T1,进一步为(1.04~1.18)x T1,进一步为(1.04~1.16)x T1,进一步为(1.04~1.15)x T1,进一步为(1.06~1.15)x T1,进一步为(1.095~1.14)x T1,进一步为(1.095~1.13)x T1,其中,P2<P<P1,并且T1<T<T2。
于一实施方式中,在步骤(2)所述降压至P2的过程中,压力P与温度T满足以下条件:当P=0.1~0.3倍的P1时(例如P为0.12~0.3倍的P1时、或P为0.14~0.3倍的P1时),所述T为(1.132~1.26)x T1,例如1.15T1、1.17T1、1.22T1、1.23T1、1.24T1、1.25T1或1.27T1,其中,P2<P<P1,并且T1<T<T2。
于一实施方式中,步骤(2)所述降压至P2过程中,压力P与温度T满足以下条件:当P=0.1~0.3倍的P1时(例如P为0.12~0.3倍的P1时、或P为0.14~0.3倍的P1时),所述T为(1.132~1.20)x T1,进一步为(1.132~1.17)x T1,进一步为(1.132~1.16)x T1,进一步为(1.132~1.155)x T1,其中,P2<P<P1,并且T1<T<T2。
于一实施方式中,通过控制步骤(2)的降压过程,提高工艺的收率。
于一实施方式中,通过控制步骤(2)的降压过程,所获取的聚酰胺产物的相对粘度较高。
于一实施方式中,在步骤(2)所述的降压过程中,体系保持升温状态。
于一实施方式中,步骤(2)所述降压的时间为0.5~3h,进一步为0.8~1.5h。
于一实施方式中,所述T2为295~340℃,进一步为305~335℃,进一步为325~335℃。所述T2例如为300℃、310℃、315℃、320℃或330℃。
于一实施方式中,所述P2为0~0.05MPa,进一步为0~0.02MPa。所述P2例如为0.01MPa、0.02MPa、0.03MPa、0.035MPa或0.04MPa。
于一实施方式中,所述P1>P2。
在缩聚过程中,体系中存在的水除了聚酰胺盐溶液原始含有的水,还包括缩聚过程产生的水。
于一实施方式中,缩聚过程中向外排出水蒸气,调节反应过程,特别是降低体系压力。
于一实施方式中,在步骤(1)和步骤(2)的过程中向外排出水蒸气,以便降低体系压力。
于一实施方式中,在步骤(1)的过程中向外排出水蒸气,排出的水蒸气(mol)与所述聚酰胺盐溶液中含水量(mol)的比值(简称排水比)为(60.6~93.9):100,进一步为(75.4~90.9):100,进一步为(80~90.9):100,进一步为(87~90.9):100,例如65:100、70:100、72:100、75:100、78:100、82:100、84:100、85:100、86:100、88:100、90:100或91:100。
于一实施方式中,在步骤(1)的过程中向外排出水蒸气,排出的水蒸气(mol)与所述聚酰胺盐溶液中含水量(mol)的比值(简称排水比)为(60.6~93.9):100,进一步为(75.4~93.9):100,进一步为(80~93.9):100,进一步为(87~93.9):100。
于一实施方式中,在步骤(2)的过程中向外排出水蒸气,排出的水蒸气(mol)与所述聚酰胺盐溶液中含水量(mol)的比值(简称排水比)为(93.9~118.2):100,进一步为(93.9~114):100,进一步为(98.7~113.9):100,例如94:100、95:100、96:100、97:100、98:100、99:100、100:100、 102:100、103:100、105:100、107:100、110:100或112:100。
于一实施方式中,在步骤(2)的过程中向外排出水蒸气,排出的水蒸气(mol)与所述聚酰胺盐溶液中含水量(mol)的比值(简称排水比)为(93.9~118.2):100,进一步为(104~117):100,进一步为(110~117):100,进一步为(110~114):100。
于一实施方式中,进行步骤(1)反应前,所述聚酰胺盐溶液经过浓缩处理,步骤(1)和步骤(2)所述排水比是基于浓缩后的聚酰胺盐溶液。
于一实施方式中,进行步骤(1)反应前,所述聚酰胺盐溶液经过浓缩处理,浓缩至聚酰胺盐溶液的浓度为50%~85wt%,进一步为55~70wt%,进一步为60~70wt%,例如52wt%、55wt%、57wt%、60wt%、62wt%、65wt%、68wt%、70wt%、72wt%、75wt%、77wt%、80wt%、85wt%。
于一实施方式中,在步骤(3)中,抽真空至压力为-0.09~-0.005MPa,进一步为-0.09~-0.01MPa,进一步为-0.09~-0.02MPa,进一步为-0.065~-0.04MPa。
于一实施方式中,在步骤(3)所述抽真空结束时,体系温度为310~340℃,进一步为315~335℃,例如312℃、318℃、320℃、325℃、328℃、330℃或333℃。
于一实施方式中,步骤(3)所述抽真空的时间为1~40min,进一步为4~20min。
于一实施方式中,所述方法还包括步骤(4):聚酰胺熔体出料,切粒,由此得到聚酰胺树脂。
于一实施方式中,所述切粒可以为水冷却切粒,冷却水的温度为10~30℃。
于一实施方式中,所述聚酰胺盐溶液中还包括组分(D)添加剂。
于一实施方式中,在步骤(1)~(3)的任意阶段添加组分(D)添加剂。
于一实施方式中,所述组分(D)包括抗氧剂、消泡剂、UV稳定剂、热稳定剂、结晶促进剂、自由基清除剂、润滑剂、增塑剂、抗冲击改性剂、无机填料、增亮剂、染料、阻燃剂和矿物中的一种或多种。
于一实施方式中,所述组分(D)的摩尔量为组分(A)和/或组分(C)的摩尔量的(0.001~1)%,进一步为(0.01~0.8)%,进一步为(0.02~0.4)%。 例如0.03%、0.05%、0.07%、0.1%、0.12%、0.15%、0.2%、0.24%、0.27%、0.30%、0.33%、0.38%、0.45%、0.5%或0.6%。
于一实施方式中,所述热稳定剂进一步包括磷酸、亚磷酸、亚磷酸三甲酯、亚磷酸三苯酯、磷酸三甲酯、磷酸三苯酯、次磷酸钠、次磷酸锌、次磷酸钙、次磷酸钾中的一种或者多种。
于一实施方式中,所述结晶促进剂进一步包括长碳链羧酸的金属盐,长碳链羧酸的碳原子数优选为10~30,所述金属优选包括钙、镁、锌中的一种或者多种。
于一实施方式中,所述无机填料进一步包括玻璃纤维、玻璃珠、碳纤维、炭黑和石墨中的一种或者多种。
于一实施方式中,所述矿物进一步包括二氧化钛、碳酸钙和硫酸钡中的一种或者多种。
于一实施方式中,所述组分(D)添加剂中至少含有抗氧剂。
于一实施方式中,所述组分(D)添加剂中至少含有消泡剂。
于一实施方式中,所述组分(D)添加剂中至少含有热稳定剂。
于一实施方式中,所述组分(D)添加剂中至少含有抗氧剂、消泡剂、和热稳定剂。
于一实施方式中,整个耐高温聚酰胺的制备过程在惰性气体氛围中进行。
于一实施方式中,所述步骤(1)和/或步骤(2)和/或步骤(3)和/或步骤(4)在惰性气体氛围中进行。
所述惰性气体包括氮气、氩气或氦气。
本发明一实施方式提供了一种耐高温聚酰胺,包括以组分(A)二胺和组分(B)二酸为原料制备而成的聚酰胺,所述组分(A)与组分(B)的摩尔比为(0.5~5):1。
于一实施方式中,所述组分(A)二胺包括:
(a1)碳原子数为4-16的脂肪族直链或支链二胺、(a2)5~6的芳香族或环状脂肪族二胺中的任意一种或几种的组合;
于一实施方式中,所述组分(B)二酸包括:
(b1)碳原子数为2~18脂肪族二酸、(b2)碳原子数为8以上的含有苯环的二酸中的任意一种或几种的组合。
于一实施方式中,所述耐高温聚酰胺,至少包括以组分(C)聚酰胺盐的溶液为原料制备而成的聚酰胺。
于一实施方式中,所述耐高温聚酰胺的结构单元包括下式:
Figure PCTCN2021143692-appb-000002
其中,所述n=4~16,进一步为4~10,进一步为4~8,所述n例如为4、5、6、7、8、9、10、11、12、13、14、15、16。
所述m=2~18,进一步为4~16,所述m例如为2、3、4、5、6、7、8、9、10、11、12、13、14、15或16。
于一实施方式中,提供一种耐高温聚酰胺,所述耐高温聚酰胺的熔点为280~328℃,进一步为286~328℃,进一步为293~320℃,例如290、294、298、301、304、307、309、312、315、317、321或325℃。
所述耐高温聚酰胺的相对粘度为1.80~2.70,进一步为2.0~2.5,例如1.85、1.9、1.95、2.1、2.2、2.3、2.4、2.55、2.6、2.67或2.7。
所述耐高温聚酰胺的缺口冲击强度为5~12KJ/cm 2,进一步为7.0~10KJ/cm 2,再进一步为6.5~10KJ/cm 2,例如5.5、6.5、7.5、8.0、8.2、8.5、8.7、9.3、9.6、9.8、10.2或10.5KJ/cm 2
所述耐高温聚酰胺的拉伸强度为95~140MPa,进一步为105~134MPa,再进一步为105~131MPa,例如100、110、112、116、119、121、125、132、135或138MPa。
所述耐高温聚酰胺的弯曲强度为135~190MPa,进一步为155~183MPa,再进一步为155~173MPa,例如140、145、150、154、157、161、164、169、172、175、178、183或185MPa。
所述耐高温聚酰胺的弯曲模量为3500~4400MPa,进一步为3700~4200MPa,例如3600、3650、3750、3800、3850、3890、3920、3950、3995、4050、4130、4200或4300MPa。
所述耐高温聚酰胺的热变形温度为240~320℃,进一步为270~310℃,进一步为260~300℃,例如249、250、251、252、253、254、255、256、257、 258、259、260、261、262、263、264、265、266、267、268、269、270、271、272、273、274、275、276或277 oC。
于一实施方式中,提供所述耐高温聚酰胺的应用,所述耐高温聚酰胺为注塑件、模制品或纤维的原料。
于一实施方式中,所述耐高温聚酰胺为如下的注塑件、模制品或纤维的原料:机器、汽车、家用装置、玩具、织物、运动用品、移动电话、计算机、便携式电脑、GPS装置或光学装置高温附件。
以下结合具体实施例对本发明一实施方式的耐高温聚酰胺及其制备方法进行进一步说明。其中,所涉及的相关测试如下:
1)弯曲强度和弯曲模量试验:测试参照标准ISO 178-2010,测试条件:2mm/min,样条大小10mm*4mm*80mm。
2)拉伸强度试验:测试参照标准ISO 572-2-2012,测试条件:50mm/min。
3)缺口冲击强度试验:为悬臂梁缺口冲击,参照测试标准ISO 180/1A,测试条件:23℃。
4)相对粘度:通过乌氏粘度计浓硫酸法:准确称量干燥后的聚酰胺树脂切片0.25±0.0002g,加入50mL浓硫酸(96wt%)以溶解聚酰胺树脂切片,由此得到聚酰胺样品溶液;在25℃恒温水浴槽中测量并记录浓硫酸的流经时间t 0和聚酰胺样品溶液的流经时间t。
相对粘度的计算公式:相对粘度=t/t 0;t—聚酰胺样品溶液的流经时间;t 0—溶剂浓硫酸的流经时间。
5)热变形温度(HDT):将实施例制备的聚酰胺和30wt%的玻纤共混,获得玻纤增强的聚酰胺。然后测试热变形温度,测试参照国标GB/T1634.2-2004,试样尺寸为120mm*10mm*4mm(长*宽*厚),施加的弯曲应力为1.8MPa。
6)熔点测试:通过差式扫描量热仪测试。
如无特殊说明,本发明中所述温度的单位为℃,所述压力均为表压,并且压力的单位为MPa。如无特殊说明,实施例中所用抗氧剂H10为BRUGGOLEN H10抗氧剂,实施例中所用消泡剂为道康宁3168消泡剂。
实施例1
用于生产耐高温聚酰胺的方法,包括如下步骤:
氮气氛围下,将3838.73mol 1,5-戊二胺、1411.03mol己二酸、2423.04mol对苯二甲酸和水混合均匀,制得50wt%的聚酰胺盐溶液。其中,从所述聚酰胺盐溶液中取样并将其稀释至浓度为10wt%时,pH值为8.10。向聚酰胺盐溶液中加入抗氧剂次亚磷酸钠(120ppm)、H10(2000ppm)和道康宁3168消泡剂(50ppm),并混合均匀。
将聚酰胺盐溶液加热至138℃从而浓缩至浓度为65wt%,然后进行以下步骤:
步骤(1):将聚酰胺盐溶液继续升温并加压,反应体系内压力升至3.5MPa(P1),排气保压,保压结束时反应体系的温度为279℃(T1)。
步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(P2,表压),此时反应体系的温度在330℃(T2);在降压过程中,压力(P)为1.8MPa时,体系的温度(T)为303℃,压力(P)为0.7MPa时,体系的温度(T)为319℃。
步骤(3):抽真空维持在-0.06MPa,抽真空时间为15min,抽真空结束时,体系的温度为335℃,得到聚酰胺熔体。
步骤(4):出料,用水冷却切粒,得到聚酰胺树脂。
其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为90.2:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为113.1:100。
实施例2
用于生产耐高温聚酰胺的方法,包括如下步骤:
氮气氛围下,将3875mol 1,5-戊二胺、1894.80mol己二酸、1975.02mol对苯二甲酸和水混合均匀,制得50wt%的聚酰胺盐溶液。其中,从所述聚酰胺盐溶液中取样并将其稀释至浓度为10wt%时,pH值为8.20。向聚酰胺盐溶液中加入抗氧剂次亚磷酸钠(120ppm)、H10(2000ppm)和道康宁3168消 泡剂(50ppm),并混合均匀。
将聚酰胺盐溶液加热至130℃从而浓缩至浓度为68wt%,然后进行以下步骤:
步骤(1):将聚酰胺盐溶液继续升温并加压,反应体系内压力升至2.5MPa(P1),排气保压,保压结束时反应体系的温度为267℃(T1)。
步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(P2,表压),此时反应体系的温度在315℃(T2);在降压过程中,压力(P)为1.2MPa时,体系的温度(T)为295℃,压力(P)为0.4MPa时,体系的温度(T)为308℃。
步骤(3):抽真空维持在-0.04MPa,抽真空时间为10min,真空结束时,体系的温度为321℃,得到聚酰胺熔体。
步骤(4):出料,用水冷却切粒,得到聚酰胺树脂。
其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(68wt%)含水量(mol)的比值(简称排水比)为83.3:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(68wt%)含水量(mol)的比值(简称排水比)为106.9:100。
实施例3
用于生产耐高温聚酰胺的方法,包括如下步骤:
氮气氛围下,将3913.92mol 1,5-戊二胺、2418.56mol己二酸、1490.82mol对苯二甲酸和水混合均匀,制得50wt%的聚酰胺盐溶液。其中,从所述聚酰胺盐溶液中取样并将其稀释至浓度为10wt%时,pH值为8.20。向聚酰胺盐溶液中加入抗氧剂次亚磷酸钠(120ppm)、H10(2000ppm)和道康宁3168消泡剂(50ppm),并混合均匀。
将聚酰胺盐溶液加热至122℃从而浓缩至浓度为62wt%,然后进行以下步骤:
步骤(1):将聚酰胺盐溶液继续升温并加压,反应体系内压力升至1.4MPa(P1),排气保压,保压结束时反应体系的温度为255℃(T1)。
步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(P2,表压),此时反应体系的温度在299℃(T2);在降压过程中, 压力(P)为0.7MPa时,体系的温度(T)为287℃,压力(P)为0.2MPa时,体系的温度(T)为298℃。
步骤(3):抽真空维持在-0.02MPa,抽真空时间为5min,真空结束时,体系的温度为313℃,得到聚酰胺熔体。
步骤(4):出料,用水冷却切粒,得到聚酰胺树脂。
其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(62wt%)含水量(mol)的比值(简称排水比)为77.6:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(62wt%)含水量(mol)的比值(简称排水比)为99.8:100。
实施例4
用于生产耐高温聚酰胺的方法,包括如下步骤:
氮气氛围下,将2977.99mol癸二胺、625mol己二酸、2351.05mol对苯二甲酸和水混合均匀,制得50wt%的聚酰胺盐溶液。其中,从所述聚酰胺盐溶液中取样并将其稀释至浓度为10wt%时,pH值为8.20。向聚酰胺盐溶液中加入抗氧剂次亚磷酸钠(120ppm)、H10(2000ppm)和道康宁3168消泡剂(50ppm),并混合均匀。
将聚酰胺盐溶液加热至130℃从而浓缩至浓度为65wt%,然后进行以下步骤。
步骤(1):将聚酰胺盐溶液继续升温,反应体系内压力升至2.5MPa(P1),排气保压,保压结束时反应体系的温度为270℃(T1);
步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(P2,表压),此时反应体系的温度在320℃(T2);在降压过程中,压力(P)为1.1MPa时,体系的温度(T)为305℃,压力(P)为0.8MPa时,体系的温度(T)为318℃。
步骤(3):抽真空维持在-0.04MPa,抽真空时间为10min,真空结束时,体系的温度为320℃,得到聚酰胺熔体。
步骤(4):出料,用水冷却切粒,得到聚酰胺树脂。
其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)中含水量(mol)的比值(简称排水比)为83.1:100;步骤(2) 的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)中含水量(mol)的比值(简称排水比)为106.9:100。
实施例5
用于生产耐高温聚酰胺的方法,包括如下步骤:
氮气氛围下,将3587.55mol 1,5-戊二胺、602.39mol十二碳二元酸、2982.72mol对苯二甲酸和水混合均匀,制得50wt%的聚酰胺盐溶液。其中,从所述聚酰胺盐溶液中取样并将其稀释至浓度为10wt%时的pH值为8.20。向聚酰胺盐溶液中加入抗氧剂次亚磷酸钠(120ppm)、H10(2000ppm)和道康宁3168消泡剂(50ppm),并混合均匀。
将聚酰胺盐溶液加热至130℃从而浓缩至浓度为65wt%,然后进行以下步骤。
步骤(1):将聚酰胺盐溶液继续升温并加压,反应体系内压力升至2.5MPa(P1),排气保压,保压结束时反应体系的温度为275℃(T1)。
步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(P2,表压),此时反应体系的温度在315℃(T2);在降压过程中,压力(P)为1.3MPa时,体系的温度(T)为300℃,压力(P)为0.7MPa时,体系的温度(T)为314℃。
步骤(3):抽真空维持在-0.04MPa,抽真空时间为10min,真空结束时,体系的温度为318℃,得到聚酰胺熔体。
步骤(4):出料,用水冷却切粒,得到聚酰胺树脂。
其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为81.0:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为110.5:100。
实施例6
耐高温聚酰胺的制备的步骤与条件与实施例1相同,区别在于:步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(表压),此时反应体系的温度在330℃;在降压过程中,压力为1.5MPa时,体系的温 度为283℃,压力为0.7MPa时,体系的温度为319℃。
实施例7
耐高温聚酰胺的制备的步骤与条件与实施例1相同,区别在于:步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(表压),此时反应体系的温度在330℃;在降压过程中,压力为1.8MPa时,体系的温度为303℃,压力为0.6MPa时,体系的温度为330℃。
实施例8
耐高温聚酰胺的制备的步骤与条件与实施例1相同,区别在于:步骤(2):在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(表压),此时反应体系的温度在330℃;在降压过程中,压力为1.5MPa时,体系的温度为283℃,压力为0.6MPa时,体系的温度为330℃。
实施例9
耐高温聚酰胺的制备的步骤与条件与实施例1相同,区别在于:其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为69.5:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为113.1:100。
实施例10
耐高温聚酰胺的制备的步骤与条件与实施例1相同,区别在于:其中,步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为70.2:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为116.7:100。
实施例11
耐高温聚酰胺的制备的步骤与条件与实施例4相同,区别在于:步骤(2): 在保持升温状态的同时开始降压直至使反应体系内压力降至0MPa(表压),此时反应体系的温度在330℃;在降压过程中,压力为1.5MPa时,体系的温度为275℃,压力为0.7MPa时,体系的温度为319℃。
步骤(1)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为71.4:100;步骤(2)的水蒸气排出量(mol)与所述浓缩后的聚酰胺盐溶液(65wt%)含水量(mol)的比值(简称排水比)为113.1:100。
上述实施例获得的聚酰胺树脂的测试结果如表1所示。
表1
Figure PCTCN2021143692-appb-000003
除非特别限定,本发明所用术语均为本领域技术人员通常理解的含义。
本发明所描述的实施方式仅出于示例性目的,并非用以限制本发明的保护范围,本领域技术人员可在本发明的范围内作出各种其他替换、改变和改进,因而,本发明不限于上述实施方式,而仅由权利要求限定。

Claims (16)

  1. 一种用于生产耐高温聚酰胺的方法,其特征在于,所述方法包括:
    将聚酰胺盐溶液经过或不经过浓缩处理,然后进行以下操作:
    (1)加热,并加压至P1,保压,保压结束时体系温度为T1;
    (2)降压至P2,降压结束时体系温度为T2;和
    (3)抽真空,由此获得聚酰胺熔体;
    其中,P1为0.8~4MPa,T1为250~290℃,T1<T2且(T2-T1)/(P1-P2)=5~75。
  2. 根据权利要求1所述的用于生产耐高温聚酰胺的方法,其特征在于,
    所述聚酰胺盐溶液的质量浓度为20wt%以上,进一步为20~90wt%;
    和/或,在进行步骤(1)之前,当所述聚酰胺盐溶液的浓度为10wt%时,pH值为6.5~9.0。
  3. 根据权利要求1或2所述的用于生产耐高温聚酰胺的方法,其特征在于,
    所述聚酰胺盐包括组分(A)二胺与组分(B)二酸反应形成的盐;
    和/或,所述聚酰胺盐溶液中至少含有组分(A)二胺的离子和组分(B)二酸的离子;
    和/或,所述聚酰胺盐溶液包括:
    (1)组分(A)二胺、组分(B)二酸与溶剂混合得到的溶液、(2)组分(C)聚酰胺盐与溶剂混合得到的溶液、(3)组分(C)聚酰胺盐、组分(A)二胺和/或组分(B)二酸与溶剂混合得到的溶液中的任意一种或几种的组合。
  4. 根据权利要求3所述的用于生产耐高温聚酰胺的方法,其特征在于,所述组分(A)二胺包括:
    (a1)碳原子数为4~16的脂肪族直链或支链二胺、(a2)芳香族二胺或环状脂肪族二胺中的任意一种或几种的组合;
    和/或,所述组分(B)二酸包括:
    (b1)碳原子数为2~18的脂肪族二酸、(b2)碳原子数为8以上的含有苯环的二酸中的任意一种或几种的组合。
  5. 根据权利要求4所述的用于生产耐高温聚酰胺的方法,其特征在于,
    所述组分(a1)包括:丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、癸二胺、十一碳二元胺、十二碳二元胺、十三碳二元胺、十四碳二元胺、十五碳二元胺和十六碳二元胺中的一种或者多种;
    和/或,所述组分(a2)包括:环戊二胺、甲基环戊二胺、环己二胺、对苯二胺、邻苯二胺和间苯二胺中的一种或者多种;
    和/或,所述组分(b1)包括:乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、壬二酸、癸二酸、十一碳二元酸、十二碳二元酸、十三碳二元酸、十四碳二元酸、十五碳二元酸、十六碳二元酸、十七碳二元酸和十八碳二元酸中的一种或者多种;
    和/或,所述组分(b2)包括:对苯二甲酸、间苯二甲酸和邻苯二甲酸中的一种或者多种。
  6. 根据权利要求4所述的用于生产耐高温聚酰胺的方法,其特征在于,
    所述组分(A)与组分(B)的摩尔比为(0.5~5):1;
    和/或,所述组分(a1)与组分(b1)的摩尔比为(0.5~12):1;
    和/或,所述组分(a1)与组分(b2)的摩尔比为(0.1~6):1。
  7. 根据权利要求1所述的用于生产耐高温聚酰胺的方法,其特征在于,
    在步骤(2)所述降压至P2的过程中,压力P与温度T满足以下条件:当P=0.4~0.65倍的P1时,T=(1.01~1.18)x T1;
    和/或,在步骤(2)所述降压至P的过程中,压力P与温度T满足以下条件:当P=0.1~0.3倍的P1时,T=(1.132~1.26)x T1,
    其中,P2<P<P1,并且T1<T<T2。
  8. 根据权利要求1所述的用于生产耐高温聚酰胺的方法,其特征在于,
    在步骤(1)中向外排出水蒸气,排出的水蒸气(mol)与所述聚酰胺盐溶液中含水量(mol)的比值为(60.6~93.9):100。
  9. 根据权利要求1所述的用于生产耐高温聚酰胺的方法,其特征在于,
    在步骤(2)中向外排出水蒸气,排出的水蒸气(mol)与所述聚酰胺盐溶液中含水量(mol)的比值为(93.9~118.2):100。
  10. 根据权利要求1所述的用于生产耐高温聚酰胺的方法,其特征在于,
    在进行步骤(1)前,所述聚酰胺盐溶液经过浓缩处理,浓缩至聚酰胺盐溶液的浓度为50~85wt%;
    和/或,在步骤(1)~(3)的任意阶段添加组分(D)添加剂;
    和/或,所述T2为295~340℃,且T1<T2;
    和/或,所述P2为0~0.05MPa,且P1>P2;
    和/或,在步骤(3)中,抽真空至压力为-0.09~-0.005MPa;
    和/或,在步骤(3)中,抽真空结束时体系温度为310~340℃;
    和/或,所述方法还包括步骤(4):将聚酰胺熔体出料,切粒,由此得到聚酰胺树脂。
  11. 根据权利要求3所述的用于生产耐高温聚酰胺的方法,其特征在于,所述聚酰胺盐溶液中还包括组分(D)添加剂;
    所述组分(D)包括抗氧剂、消泡剂、UV稳定剂、热稳定剂、结晶促进剂、自由基清除剂、润滑剂、增塑剂、抗冲击改性剂、无机填料、增亮剂、染料、阻燃剂和矿物中的一种或多种;
    和/或,所述组分(D)的摩尔量为组分(A)和/或组分(C)的摩尔量的(0.001~1)%,进一步为(0.01~0.8)%。
  12. 一种耐高温聚酰胺,其特征在于,其至少包括以组分(A)二胺和组分(B)二酸为原料制备而成的聚酰胺,
    所述组分(A)和与组分(B)的摩尔比为(0.5~5):1,进一步为(1.01~1.3):1;
    和/或,所述组分(A)二胺包括:
    (a1)碳原子数为4~16的脂肪族直链或支链二胺、(a2)芳香族二胺或环状脂肪族二胺中的任意一种或几种的组合;
    和/或,所述组分(B)二酸包括:
    (b1)碳原子数为2~18的脂肪族二酸、(b2)碳原子数为8以上的含有苯环的二酸中的任意一种或几种的组合。
  13. 一种耐高温聚酰胺,其特征在于,其至少包括以组分(C)聚酰胺盐的溶液为原料制备而成的聚酰胺。
  14. 一种耐高温聚酰胺,其特征在于,所述耐高温聚酰胺的结构单元包括下式:
    Figure PCTCN2021143692-appb-100001
    其中,所述n=4~16,并且m=2~18。
  15. 根据权利要求12或13或14所述的耐高温聚酰胺,其特征在于:
    所述耐高温聚酰胺的熔点为280~328℃,进一步为286~328℃;
    和/或,所述耐高温聚酰胺的相对粘度为1.80~2.70;
    和/或,所述耐高温聚酰胺的缺口冲击强度为5~12KJ/cm 2,进一步为6.5~10KJ/cm 2
    和/或,所述耐高温聚酰胺的拉伸强度为95~140MPa,进一步为105~134MPa;
    和/或,所述耐高温聚酰胺的弯曲强度为135~190MPa,进一步为155~183MPa;
    和/或,所述耐高温聚酰胺的弯曲模量为3500~4400MPa;
    和/或,所述耐高温聚酰胺的热变形温度为240~320℃,进一步为260~300℃。
  16. 根据权利要求1~11中任一项所述的方法生产的耐高温聚酰胺或者根据权利要求12~15中任一项所述的耐高温聚酰胺的应用,其特征在于,所述耐高温聚酰胺作为注塑件、模制品或纤维的原料,进一步地,所述耐高温聚酰胺为如下注塑件、模制品或纤维的原料:机器、汽车、家用装置、玩具、织物、运动用品、移动电话、计算机、便携式电脑、GPS装置或光学装置高温附件。
PCT/CN2021/143692 2020-11-02 2021-12-31 一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用 WO2022089674A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21885400.8A EP4239012A1 (en) 2020-11-02 2021-12-31 Method for producing high temperature resistant polyamide, high temperature resistant polyamide and applications thereof
JP2023527388A JP2023548227A (ja) 2020-11-02 2021-12-31 高温耐性ポリアミドを製造するための方法、高温耐性ポリアミド及びその使用
KR1020237018499A KR20230125776A (ko) 2020-11-02 2021-12-31 고온 내성 폴리아미드 제조 방법, 고온 내성 폴리아미드 및 이의 용도

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011201176.5 2020-11-02
CN202011201176.5A CN114437341A (zh) 2020-11-02 2020-11-02 一种用于生产耐高温聚酰胺的方法、聚酰胺制品及其应用

Publications (1)

Publication Number Publication Date
WO2022089674A1 true WO2022089674A1 (zh) 2022-05-05

Family

ID=81357569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/143692 WO2022089674A1 (zh) 2020-11-02 2021-12-31 一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用

Country Status (6)

Country Link
US (1) US20220306804A1 (zh)
EP (1) EP4239012A1 (zh)
JP (1) JP2023548227A (zh)
KR (1) KR20230125776A (zh)
CN (1) CN114437341A (zh)
WO (1) WO2022089674A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116376011A (zh) * 2023-04-28 2023-07-04 珠海万通特种工程塑料有限公司 一种聚酰胺树脂及其聚合方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372920A (zh) 2010-07-23 2012-03-14 Ems专利股份公司 部分芳族的聚酰胺模塑组合物及其用途
CN105330846A (zh) * 2015-12-07 2016-02-17 中北大学 生物基耐高温聚酰胺及其合成方法
CN105348520A (zh) * 2015-12-07 2016-02-24 中北大学 半芳香族聚酰胺及其合成方法
CN105418918A (zh) * 2015-12-07 2016-03-23 中北大学 耐高温聚酰胺及其合成方法
CN106398193A (zh) * 2016-09-27 2017-02-15 广东中塑新材料有限公司 耐高温聚酰胺6t/11组合物及其制备方法
CN106433116A (zh) * 2016-09-27 2017-02-22 广东中塑新材料有限公司 耐高温共聚酰胺6t组合物及其制备方法
CN111378120A (zh) * 2018-12-27 2020-07-07 江苏瑞美福新材料有限公司 耐热聚酰胺材料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102372920A (zh) 2010-07-23 2012-03-14 Ems专利股份公司 部分芳族的聚酰胺模塑组合物及其用途
CN105330846A (zh) * 2015-12-07 2016-02-17 中北大学 生物基耐高温聚酰胺及其合成方法
CN105348520A (zh) * 2015-12-07 2016-02-24 中北大学 半芳香族聚酰胺及其合成方法
CN105418918A (zh) * 2015-12-07 2016-03-23 中北大学 耐高温聚酰胺及其合成方法
CN106398193A (zh) * 2016-09-27 2017-02-15 广东中塑新材料有限公司 耐高温聚酰胺6t/11组合物及其制备方法
CN106433116A (zh) * 2016-09-27 2017-02-22 广东中塑新材料有限公司 耐高温共聚酰胺6t组合物及其制备方法
CN111378120A (zh) * 2018-12-27 2020-07-07 江苏瑞美福新材料有限公司 耐热聚酰胺材料及其制备方法

Also Published As

Publication number Publication date
US20220306804A1 (en) 2022-09-29
CN114437341A (zh) 2022-05-06
KR20230125776A (ko) 2023-08-29
EP4239012A1 (en) 2023-09-06
JP2023548227A (ja) 2023-11-15

Similar Documents

Publication Publication Date Title
CN105061755B (zh) 一种半芳香尼龙的制备方法
CN110467724B (zh) 一种半芳香尼龙的制备方法
WO2010003277A1 (zh) 半芳香族聚酰胺及其低废水排放量的制备方法
CN110218311B (zh) 一种阻燃半芳香聚酰胺及其制备方法
CN113150269A (zh) 半芳香族聚酰胺共聚物及其制备
CN107446129B (zh) 一种抗老化半芳香尼龙树脂的制备方法
CN114181390A (zh) 一种生物基耐高温聚酰胺及其制备方法
CN113336938A (zh) 一种低熔点共聚尼龙树脂及其制备方法和应用
WO2022089674A1 (zh) 一种用于生产耐高温聚酰胺的方法、耐高温聚酰胺及其应用
CN113061247A (zh) 一种耐高温易加工的聚酰胺共聚物及其制备方法
CN113968965B (zh) 一种半芳香聚酰胺及其制备方法和应用
JPS61200123A (ja) 共縮合ポリアミドの製造方法
US20240174806A1 (en) High temperature resistant semi-aromatic polyamide resin, preparation method, composition and article thereof
WO2017217447A1 (ja) 半芳香族ポリアミド樹脂
CN111995746B (zh) 生物基耐高温聚酰胺复合材料、其低温预缩聚制法及应用
CN115260487B (zh) 一种低吸水性的生物基聚酰胺树脂及其制备方法与应用
EP3147305A1 (en) Copolymerized polyamide resin, method for preparing same, and molded product comprising same
JP4096446B2 (ja) 透明ポリアミド樹脂及びその製造法
TWI783134B (zh) 半芳香族聚醯胺樹脂、及其製造方法
CN112280031B (zh) 耐高温半芳香聚合物及其制备方法
CN106866980B (zh) 一种半芳香族聚酰胺树脂及其制备方法
CN115612095A (zh) 一种耐高温半芳香族共聚酰胺及其制备方法、组合物及成型品
CN115044033B (zh) 一种半芳香族聚酰胺树脂及其制备方法
CN116903851A (zh) 一种氮磷系共聚阻燃聚酰胺树脂及其制备方法和应用
CN115926150B (zh) 一种聚酰胺树脂及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023527388

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021885400

Country of ref document: EP

Effective date: 20230602