WO2022089461A1 - 反应型阻燃剂、聚合型阻燃剂及其制备方法和应用 - Google Patents

反应型阻燃剂、聚合型阻燃剂及其制备方法和应用 Download PDF

Info

Publication number
WO2022089461A1
WO2022089461A1 PCT/CN2021/126578 CN2021126578W WO2022089461A1 WO 2022089461 A1 WO2022089461 A1 WO 2022089461A1 CN 2021126578 W CN2021126578 W CN 2021126578W WO 2022089461 A1 WO2022089461 A1 WO 2022089461A1
Authority
WO
WIPO (PCT)
Prior art keywords
flame retardant
substituted
group
unsubstituted
reactive
Prior art date
Application number
PCT/CN2021/126578
Other languages
English (en)
French (fr)
Inventor
潘庆崇
Original Assignee
广东广山新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东广山新材料股份有限公司 filed Critical 广东广山新材料股份有限公司
Publication of WO2022089461A1 publication Critical patent/WO2022089461A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/655Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms
    • C07F9/65502Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom having oxygen atoms, with or without sulfur, selenium, or tellurium atoms, as the only ring hetero atoms the oxygen atom being part of a three-membered ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/091Esters of phosphoric acids with hydroxyalkyl compounds with further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/095Compounds containing the structure P(=O)-O-acyl, P(=O)-O-heteroatom, P(=O)-O-CN
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/11Esters of phosphoric acids with hydroxyalkyl compounds without further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/22Amides of acids of phosphorus
    • C07F9/222Amides of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/22Esters containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/30Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen
    • C08G59/304Di-epoxy compounds containing atoms other than carbon, hydrogen, oxygen and nitrogen containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/504Amines containing an atom other than nitrogen belonging to the amine group, carbon and hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • C08G59/56Amines together with other curing agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/22Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen
    • C08G77/30Polysiloxanes containing silicon bound to organic groups containing atoms other than carbon, hydrogen and oxygen phosphorus-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure

Definitions

  • the present application relates to the field of flame retardants, such as a reactive flame retardant, a polymerized flame retardant and a preparation method and application thereof.
  • Traditional flame retardant technology is generally divided into halogen flame retardant and halogen-free flame retardant.
  • halogen flame retardant methods are generally made by reacting molecules containing halogen and reactive groups with other materials to obtain halogen flame retardant materials, or using decabromodiphenyl ethane without reactive groups.
  • the halogen flame retardant is directly added to the material to achieve the purpose of flame retardant.
  • antimony trioxide and other flame retardant additives that are harmful to organisms and unfriendly to the environment in the flame retardant system.
  • Halogen-containing flame retardant substances will produce non-degradable or refractory dioxin-like organic halogen chemicals and accumulate when they are decomposed or burned by heat, polluting the environment, affecting the growth and development of organisms and human health.
  • the traditional halogen-free flame retardant method is generally to add a large amount of salt flame retardants such as ammonium polyphosphate, melamine cyanurate, piperazine pyrophosphate or 2-ethyl aluminum hypophosphite into the material system, and such as triphosphate.
  • salt flame retardants such as ammonium polyphosphate, melamine cyanurate, piperazine pyrophosphate or 2-ethyl aluminum hypophosphite
  • Phosphate ester compounds of methyl ester or triphenyl phosphate are designated as environmental substances by the European Union and many countries and regions, as well as metal hydroxides containing crystal water such as aluminum hydroxide or magnesium hydroxide. achieve the purpose of flame retardant.
  • the present application provides a reactive flame retardant, a polymeric flame retardant and a preparation method and application thereof.
  • the reactive flame retardant can react with the reactive groups in the added system to obtain the desired stable flame retardant component product; it can also be self-polymerized or copolymerized by the reactive flame retardant or with other reactive flame retardants.
  • the polymerized flame retardant obtained by the polymerization of the flame retardant directly provides excellent flame retardant additives for polymer materials.
  • the flame retardant provided by the present application has a simple preparation process, is resource-saving, and is environmentally friendly.
  • the embodiment of the present application provides a reactive flame retardant, and the structure of the reactive flame retardant is shown in formula 1:
  • M is a metal element
  • m can be 0, 1, 2, 3, 4 or 5, etc.
  • n can be 0, 1, 2, 3, 4 or 5, etc.
  • q can be 0, 1, 2, 3, 4 or 5, etc.
  • the reactive flame retardant provided can directly react with other reactive groups in the added system through the reactive group, and directly introduce the flame retardant molecule into the system molecule, increasing the flame retardant and The compatibility of the added system, long-term use will not cause the precipitation and migration of the flame retardant, and the flame retardant effect is stable; at the same time, the reactive flame retardant has a high content of flame retardant elements, and only a small amount of flame retardant is required. performance; the flame retardant can also modify the added system to improve the mechanical properties of the added system.
  • the reactive group preferably includes any one or at least one of hydroxyl, amine, unsaturated group, carboxyl, epoxy, ester, acid anhydride, isocyanate or cyano. combination of the two.
  • the R 1 and R 2 each independently preferably include H, a substituted or unsubstituted alkyl group, a substituted or unsubstituted cycloalkyl group, a substituted or unsubstituted aryl group, or a substituted or unsubstituted alkyl group. Any one or a combination of at least two of the unsubstituted heteroaryl groups.
  • the R 1 and R 2 independently preferably include C1-C12 substituted or unsubstituted alkyl, C3-C12 substituted or unsubstituted cycloalkyl, C6-C12 substituted or unsubstituted Any one of substituted aryl groups or substituted or C5-C12 unsubstituted heteroaryl groups or a combination of at least two of them.
  • substituted or unsubstituted alkyl of C1-C12 may be a substituted or unsubstituted alkyl of C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11;
  • the C3-C12 cycloalkyl may be a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkyl;
  • the C5-C12 aryl group can be a substituted or unsubstituted aryl group of C6, C7, C8, C9, C10 or C11;
  • the C5-C12 heteroaryl group may be a substituted or unsubstituted heteroaryl group of C6, C7, C8, C9, C10 or C11.
  • the R, R 3 and R 4 each independently preferably include H, hydroxyl, substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted aryl , substituted or unsubstituted heteroaryl, substituted or unsubstituted alkoxy, substituted or unsubstituted cycloalkoxy, substituted or unsubstituted aryloxy or substituted or unsubstituted heteroaryloxy one or a combination of at least two.
  • the R, R 3 and R 4 independently preferably include C1-C12 substituted or unsubstituted alkyl, C3-C12 substituted or unsubstituted cycloalkyl, C6-C12 substituted or unsubstituted aryl, C5-C12 substituted or unsubstituted heteroaryl, C1-C12 substituted or unsubstituted alkoxy, C3-C12 substituted or unsubstituted cycloalkoxy, C6-C12 substituted or unsubstituted Any one of substituted aryloxy groups or C5-C12 substituted or unsubstituted heteroaryloxy groups or a combination of at least two of them.
  • substituted or unsubstituted alkyl of C1-C12 may be a substituted or unsubstituted alkyl of C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11;
  • the C3-C12 cycloalkyl may be a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkyl;
  • the C5-C12 aryl group can be a substituted or unsubstituted aryl group of C6, C7, C8, C9, C10 or C11;
  • the C5-C12 heteroaryl group may be a substituted or unsubstituted heteroaryl group of C6, C7, C8, C9, C10 or C11;
  • the substituted or unsubstituted alkoxy group of C1-C12 can be a substituted or unsubstituted alkoxy group of C2, C3, C4, C5, C6, C7, C8, C9, C10 or C11;
  • the C3-C12 cycloalkoxy group can be, for example, a C4, C5, C6, C7, C8, C9, C10 or C11 substituted or unsubstituted cycloalkoxy group;
  • the C5-C12 aryloxy group for example, can be a substituted or unsubstituted aryloxy group of C6, C7, C8, C9, C10 or C11;
  • the C5-C12 heteroaryloxy group may be, for example, a substituted or unsubstituted heteroaryloxy group of C6, C7, C8, C9, C10 or C11.
  • the R 1 to R 3 each independently preferably include an inert group.
  • R 1 to R 3 are inert groups.
  • R 1 to R 3 do not react with other groups in the reactants under the reaction conditions.
  • the M includes any one or a combination of at least two of alkaline earth metal elements, transition metal elements, group IIIA metal elements, group IVA metal elements, group VA metal elements or group VIA metal elements .
  • the alkaline earth metal element can be Be, Mg, Ca, Sr, Ba or Ra;
  • Transition metal elements can be Sc, Ti, V, Cr, Mg, Fe, Co, Ni, Cu, Zn, Y, Zr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, Hf, Ta, W, Re , Os, Ir, Pt, Au, Hg, lanthanide or actinide, etc.;
  • Group IIIA metal elements can be Al, Ga, In or Tl;
  • Group IVA metal elements can be Ge, Sn or Pb;
  • Group VA metal element can be Sb or Bi
  • the group VIA metal element may be Po.
  • An embodiment of the present application provides a preparation method of the above reactive flame retardant, the preparation method comprising: preparing an acid salt of metal M and a compound containing a reactive group through a chemical reaction.
  • the chemical reaction may be a substitution reaction or an addition reaction or the like.
  • the reactive group-containing compound may be any one or a combination of at least two of the reactive group-containing alcohol compound, ester compound or acid glycoside compound.
  • the reactive group includes any one or a combination of at least two of hydroxyl group, amine group, unsaturated group, carboxyl group, epoxy group, ester group, acid anhydride, isocyanate group or cyano group.
  • the alcohol compound may be a C2-C18 alcohol compound, such as a C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16 or C17 alcohol.
  • the ester compound can be a C3-C24 ester compound, such as C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, Esters of C19, C20, C21, C22 or C23;
  • the acid glycoside compound can be a C3-C24 acid glycoside compound, such as C3, C4, C5, C6, C7, C8, C9, C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, C20, C21, C22 or C23 nucleotides.
  • the embodiment of the present application provides a polymeric flame retardant, which is prepared from any of the above reactive flame retardants through self-polymerization or copolymerization.
  • the polymeric flame retardant is prepared from any of the above reactive flame retardants and a compound containing a reactive group through a copolymerization reaction.
  • the reactive group-containing compound preferably includes a reactive group-containing flame retardant or a reactive group-containing chain extender.
  • the synthetic method of the polymerized flame retardant can be as follows: when the reactive group of the reactive flame retardant is an unsaturated group, the polymerized flame retardant can be obtained by copolymerization through free radical polymerization. Two reactive flame retardants containing hydroxyl and carboxyl groups can be polymerized by polycondensation to obtain polymerized flame retardants. It can also be that two reactive flame retardants containing amino groups and carboxyl groups are polymerized through a polycondensation reaction to obtain a polymeric flame retardant. It can also be a compound containing an epoxy group, which can be copolymerized with a chain extender to obtain a polymeric flame retardant. All of the above-mentioned polymeric flame retardants can be used in the field of engineering plastics, such as polycarbonate plastics, PPO plastics, PPS plastics or PBT plastics.
  • engineering plastics such as polycarbonate plastics, PPO plastics, PPS plastics or PBT plastics.
  • the provided polymeric flame retardant can also be obtained by reacting the reactive flame retardant provided in the present application with the existing flame retardant containing reactive groups in the prior art.
  • the flame retardant containing an unsaturated group as provided in the present application is obtained by copolymerization with another existing flame retardant containing an unsaturated group through free radical polymerization.
  • Another example is the reactive flame retardant containing a carboxyl group provided by the present application, which is obtained by copolymerizing with another existing flame retardant containing an amino group or a hydroxyl group through a polycondensation reaction.
  • the embodiment of the present application provides an application of a reactive and polymeric flame retardant, and the application field of the flame retardant includes any one or at least two of thermoplastic resins, thermosetting resins or photocurable resins combination of species.
  • the examples of this application disclose a reactive flame retardant.
  • the reactive flame retardant can chemically react with reactive groups in the added system to obtain a flame retardant component, which is the added system. Provide excellent flame retardant properties;
  • thermosetting resins thermosetting resins, light-curing resins and thermoplastic resins to obtain permanent flame retardant properties that do not migrate, separate out, and pollute the use environment. Effect;
  • thermosetting resins thermosetting resins
  • photocurable resins thermoplastic resins
  • prepared resin compositions have excellent mechanical properties, heat resistance, electrical properties and flame retardant properties.
  • the embodiment of the present application discloses a polymerizable flame retardant, and the reactive flame retardant can be used in thermosetting resins, photocurable resins and thermoplastic resins to obtain polymerized flame retardants through reactions such as self-polymerization or copolymerization. No migration, no precipitation, no pollution to the use environment, and permanent flame retardant effects are obtained.
  • This embodiment provides a reactive flame retardant, the structure of which is shown in formula 2:
  • the preparation method of the compound shown in formula 2 is as follows: disperse 1 mol of titanium hydrogen phosphate in 100 mL of cyclohexanone, add 2 mol of isopropanol and 0.01 mol of dibutyl tin oxide, react under reflux at 120° C. for 3 h, and add 2.2 mol of cyclohexanone after the reaction is completed. Ethylene glycol was heated to 135°C and continued to react for 3h. After separating the solvent by distillation, the obtained product was added to 500mL of MIBK, and then 2.2mol of epichlorohydrin, 2mol of potassium hydroxide and 0.01mol of dibutyltin oxide were added. The reaction was stirred at °C for 240 min. After the reaction, the unreacted epichlorohydrin, the generated by-product potassium chloride and the solvent were removed by physical methods, and the product was purified to obtain the compound shown in formula 2.
  • the ICP test on the obtained flame retardant found that manganese and phosphorus elements coexisted in the obtained compound, and the molar ratio of titanium and phosphorus elements was 1:2.
  • This embodiment provides a reactive flame retardant, the structure of which is shown in formula 3:
  • the preparation method of the compound shown in formula 3 is as follows: disperse 1 mol of titanium hydrogen phosphate in 100 mL of cyclohexanone, add 2 mol of isopropanol and 0.01 mol of dibutyltin oxide, and react under reflux conditions of heating at 120 ° C for 3 h, and after the reaction is completed, add 2.2mol propenol, continue to react for 6h, after the reaction, remove unreacted propenol and solvent by physical method, and purify the product to obtain the compound shown in formula 3.
  • the ICP test of the obtained flame retardant found that titanium and phosphorus elements coexisted in the obtained compound, and the molar ratio of titanium and phosphorus elements was 1:2.
  • This embodiment provides a reactive flame retardant, the structure of which is shown in formula 4:
  • the preparation method of the compound shown in formula 4 is as follows: disperse 1 mol of zinc dihydrogen phosphate in 100 mL of DMSO, add 4 mol of isopropanol and 0.01 mol of dibutyltin oxide, react for 6 h under reflux conditions at 110 ° C, and separate the solvent by distillation, The obtained product was dispersed in toluene and reacted with 4.2 mol of epichlorohydrin, 4 mol of potassium hydroxide and 0.01 mol of dibutyl tin oxide for 180 min at 80° C. After the reaction, the unreacted epichlorohydrin was removed by physical methods. The product is acidified with propane, the generated by-product potassium chloride and solvent, washed with water until neutral, and the product is purified to obtain the compound shown in formula 4.
  • This embodiment provides a reactive flame retardant, the structure of which is shown in formula 5:
  • the preparation method of the compound shown in formula 5 is as follows: disperse 1 mol of manganese dihydrogen phosphate in 100 mL of DMSO, add 4 mol of isopropanol and 0.01 mol of dibutyltin oxide, react under reflux at 120° C. for 5 h, and separate the solvent by distillation. The obtained product was dispersed in chloroform and reacted with 2 mol of aminopropionic acid and 0.01 mol of DMAP. After the reaction, the product was purified to obtain the compound shown in formula 5.
  • the ICP test of the obtained flame retardant found that manganese and phosphorus elements coexisted in the obtained compound, and the molar ratio of calcium and phosphorus elements was 1:2.
  • This embodiment provides a reactive flame retardant, the structure of which is shown in formula 6:
  • the preparation method of the compound shown in formula 6 is as follows: disperse 1.5 mol of sodium dihydrogen phosphate in 100 mL of cyclohexanone, add 3 mol of isopropanol and 0.01 mol of dibutyltin oxide, react under reflux at 130 ° C for 2.5 h, add 1.5 mol of mol 3-aminopropyl trihydroxysilane and 0.01mol dibutyltin oxide were reacted at 170 ° C for 6 h, after the reaction was completed, molybdenum trichloride was added until no precipitation occurred, and solid-liquid separation was obtained to obtain a solid product, and the solid The product is mixed with 5 mol of methanol, 0.01 mol of dibutyltin oxide is added, and the reaction is carried out under heating and refluxing conditions for 12 h. After the reaction, the product is purified to obtain the compound shown in formula 6.
  • This embodiment provides a reactive flame retardant, the structure of which is shown in formula 7:
  • the preparation method of the compound shown in formula 7 is as follows: disperse 1 mol of aluminum dihydrogen tripolyphosphate in 100 mL of cyclohexanone, add 2 mol of ethylene glycol and 0.01 mol of dibutyltin oxide, react at 120 ° C for 8 h, and separate by distillation After the solvent, the obtained product was dispersed in toluene and reacted with 2 mol of epichlorohydrin, 2 mol of potassium hydroxide and 0.01 mol of dibutyl tin oxide for 180 min at 80° C. After the reaction, the by-products generated were removed by physical methods. The product is acidified with potassium chloride and solvent, washed with water until neutral, and the product is purified to obtain the compound represented by formula 7.
  • the performance of the above epoxy resin cured products a-d is tested.
  • the test method of flexural strength adopts GB/T 9341-2008
  • the test method of impact strength adopts GB/T 1843-2008
  • the breakdown voltage adopts GB/T 1408.1-2006.
  • the flame retardancy test method is UL-94.
  • the test results are shown in Table 1.
  • the reactive flame retardant provided in Example 1 of the present application is pre-mixed with epoxy resin, and then the flame retardant molecules can be incorporated into the epoxy resin molecules through a curing reaction, While improving the flame retardant properties of epoxy resins, the mechanical properties of epoxy resins are also improved.
  • the reactive flame retardant provided in Example 5 of the present application has active hydrogen, when adding it to the epoxy resin system, the amount of curing agent can be appropriately reduced, so that the reactive flame retardant provided in Example 5 can be added to the epoxy resin system through the curing reaction In the epoxy resin molecule, the flame retardant properties and mechanical properties of the epoxy resin can also be improved.
  • MCA and APP cannot react with epoxy resin molecules, so they do not contribute to the mechanical properties of epoxy resin, and their added amount is large, but the flame retardant effect is limited.
  • the properties of the silicone resins a-c obtained above are tested.
  • the tensile strength and elongation test methods are GB/T 1701-2001
  • the shear strength test method is GB/T 1700-2001
  • the flame retardancy test method is UL- 94.
  • the test condition for water resistance is immersion in boiling water for 2 hours. The test results are shown in Table 2.
  • the reactive flame retardant provided in Example 5 of the present application has a similar structure to trimethylethoxysiloxane and tetraethoxysiloxane. It can be inserted into the silicone resin molecule to provide excellent flame retardant properties for the silicone resin, and at the same time, it can also improve the mechanical properties of the silicone resin.
  • the reactive flame retardant provided in Example 5 is not added, and APP is used as the flame retardant, the flame retardant properties and mechanical properties similar to those in Example 9 cannot be achieved.
  • Example 2 25 parts by weight of the flame retardant prepared in Example 2 was mixed with 15 parts by weight of methyl methacrylate, 15 parts by weight of butyl methacrylate, 11 parts by weight of ethyl acrylate, and 1 part by weight of methacrylic acid. , 13 parts by weight of hydroxypropyl acrylate, 45 parts by weight of trifluoroethyl methacrylate, 2 parts by weight of benzoyl peroxide, 70 parts by weight of xylene, 20 parts by weight of methyl ethyl ketone and 10 parts by weight of cyclohexanone to prepare the cross Linked acrylic resin composition a.
  • the compressive strength, tensile strength, water resistance and flame retardancy of the acrylic resin compositions a-c prepared above were tested, and the results are shown in Table 3.
  • the compression test method adopts GB/T 20467-2008
  • the tensile strength test method adopts GB/T 6344-2008
  • the flame retardancy test method is UL-94.
  • the water resistance is that after the acrylic resin composition after the compressive strength test is soaked in boiling water for 2 hours, the compressive strength test is performed again.
  • Example 2 of the present application After the reactive flame retardant provided in Example 2 of the present application is added to the acrylic resin composition system, it can undergo a polymerization reaction with the unsaturated groups on the acrylic resin monomer, thereby The reactive flame retardant provided in Example 2 can be connected to the acrylic resin molecule, thereby improving the flame retardancy and mechanical properties of the acrylic resin. Compared with the existing flame retardant with the same addition amount, the prepared acrylic resin composition has more excellent flame retardant properties and mechanical properties.
  • 30 parts by weight of APP are combined with 81 parts by weight of nylon 610, 23 parts by weight of nylon 66, 0.7 parts by weight of vinyltriethoxysilane, 12 parts by weight of magnesium hydroxide, and 0.6 parts by weight of antioxidant 1010 , 55 parts by weight of glass fiber and 0.8 part by weight of bis-stearic acid amide, and mixed to prepare nylon composite material b.
  • Example 1 and Example 4 were dispersed in DMSO, reacted at 180 °C for 2 hours, 19 °C for 2 hours and 200 °C for 2 hours. After separating the solvent by distillation, the product was purified to obtain a polymeric flame retardant.
  • Agent I The compounds provided in Example 1 and Example 4 were dispersed in DMSO, reacted at 180 °C for 2 hours, 19 °C for 2 hours and 200 °C for 2 hours. After separating the solvent by distillation, the product was purified to obtain a polymeric flame retardant.
  • Agent I Agent I.
  • polymeric flame retardant I 15 parts by weight of polymeric flame retardant I, 100 parts by weight of 2,2'-bis(4-hydroxyphenyl) propane polycarbonate, 0.5 part by weight of polytetrafluoroethylene (anti-drip agent), and light stabilizer 944 0.5 parts by weight, mixed to prepare polycarbonate plastic a.
  • Example 12 The tensile properties, Izod impact strength and flame retardant properties of polycarbonate plastics a-c provided in Example 12 and Comparative Examples 9 and 10 were tested. GB/T1843-2008 is tested, and the flame retardancy test method is UL-94. The results are shown in Table 5.
  • the polymeric flame retardant provided in Example 12 of the present application because of its good compatibility with polycarbonate plastics, can not only provide good flame retardant properties for polycarbonate plastics It can also improve the mechanical properties of polycarbonate plastics.
  • the conventional additive flame retardants MCA and APP are not only added in higher amounts than the polymeric flame retardants provided in Example 12, but also have limited flame retardant effect due to poor compatibility and are not beneficial to the mechanical properties of polycarbonate plastics. Influence.
  • Example 6 1 mol of each of the reactive flame retardants provided in Example 6 and Example 4 was dispersed in NMP, 0.01 mol of dibutyltin oxide was added, and the reaction was performed at 160 °C for 3 hours, 180 °C for 3 hours, and 200 °C for 3 hours. After the reaction was carried out for 3 h, the solvent was separated by distillation, and the product was purified to obtain the polymerized flame retardant II.
  • PPS plastic a 15 parts by weight of polymeric flame retardant II, 100 parts by weight of PPS, 10 parts by weight of talc, 8 parts by weight of polyvinyl acetate, and 5 parts by weight of zirconia were mixed to prepare PPS plastic a.
  • the PPS used is linear PPS with a molecular weight of about 50,000 and a melt index of 30 g/min.
  • PPS plastic b 20 parts by weight of APP flame retardant, 100 parts by weight of PPS, 10 parts by weight of talc, 8 parts by weight of polyvinyl acetate, and 5 parts by weight of zirconia were mixed to prepare PPS plastic b.
  • the PPS used is linear PPS with a molecular weight of about 50,000 and a melt index of 30 g/min.
  • PPS plastic c 20 parts by weight of MCA flame retardant, 100 parts by weight of PPS, 10 parts by weight of talc, 8 parts by weight of polyvinyl acetate, and 5 parts by weight of zirconia were mixed to prepare PPS plastic c.
  • the PPS used is linear PPS with a molecular weight of about 50,000 and a melt index of 30 g/min.
  • the flame retardant provided in Example 13 of the present application has good compatibility with PPS, which can not only improve the flame retardant properties of PPS plastics, but also improve the mechanical properties of PPS plastics.
  • PPA and MCA which are additive flame retardants, have poor compatibility with PPS. Not only are they added in large amounts, but their flame retardant properties are average, and they have no beneficial effect on the mechanical properties of PPS plastics.
  • Example 2 15 parts by weight of reactive flame retardants provided in Example 2, 0.05 parts by weight of azobisisobutyronitrile, 100 parts by weight of PBT, 5 parts by weight of POE, 2 parts by weight of calcium carbonate, 5 parts by weight of glycerol monostearate , 10 parts by weight of glass fiber, mixed and smelted to obtain PBT plastic a.
  • the tensile properties, Izod impact strength and flame retardant properties of the PBT plastics a-c provided in Example 14 and Comparative Examples 13 and 14 were tested, the tensile properties were tested according to GB/T14884-2008, and the Izod impact strength was tested according to GB/ T1843-2008 is tested, and the flame retardancy test method is UL-94.
  • the results are shown in Table 7.
  • the reactive flame retardant provided in Example 2 of the present application is directly added into the PBT plastic system.
  • the reactive flame retardant can self-polymerize, so that it can be dispersed in the PBT plastic, which can not only improve the flame retardant performance of the PBT plastic, but also improve the mechanical properties of the PBT plastic.
  • PPA and MCA have poor compatibility with PBT, not only the addition amount is large, but also the flame retardant performance is average, and it has no beneficial effect on the mechanical properties of PBT plastics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

提供反应型阻燃剂、聚合型阻燃剂及其制备方法和应用,所述反应型阻燃剂可以与被添加体系中的反应性基团反应得到所需的阻燃组分产物,还可以通过自聚或共聚得到聚合型阻燃剂,阻燃剂制备工艺简单,节约资源且绿色环保。

Description

[根据细则37.2由ISA制定的发明名称] 反应型阻燃剂、聚合型阻燃剂及其制备方法和应用 技术领域
本申请涉及属于阻燃剂领域,例如一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用。
背景技术
传统的阻燃技术一般分为卤素阻燃和无卤素阻燃。
现有技术中,卤素阻燃的方式一般为将含有卤素和反应性基团的分子与其它材料一起反应制得有卤阻燃材料,或使用如十溴二苯乙烷等不含反应基团的卤素阻燃剂直接添加到材料中,达到阻燃的目的。同时,为了提高阻燃效果,还经常需要在阻燃体系中添加三氧化二锑等对生物体有害、对环境不友好的阻燃助剂。含卤阻燃物质在受热分解或燃烧时会产生无降解性或难降解的高毒性二噁英类有机卤素化学物质并积累,污染环境、影响生物体的生长发育以及人类的健康。
传统的无卤阻燃方式一般为向材料体系中大量添加如聚磷酸铵、三聚氰胺氰尿酸盐、焦磷酸哌嗪或2-乙基次磷酸铝类的盐类阻燃剂,和如磷酸三甲酯或磷酸三苯酯类的被欧盟和不少的国家和地区指定为环境物质的磷酸酯类化合物,以及如氢氧化铝或氢氧化镁类的含结晶水的金属氢氧化物的方式来达到阻燃的目的。向阻燃材料体系中需大量添加上述阻燃剂,不仅造成严重的资源浪费,降低或者损害材料的力学性能、耐水性能、耐热性能以及电性能,同时因上述阻燃成分的迁移、析出,会对使用环境和自然环境造成污染,还会对材料的阻燃性能、力学性能以及耐热性能造成进一步损害,添加被指定为环境物质的磷酸酯类阻燃剂直接污染环境和影响人类健康。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用。所述反应型阻燃剂可以与被添加体系中的反应性基团反应得到所需的稳定的阻燃组分产物;还可以通过所述反应型阻燃剂自聚或共聚或与其它反应型阻燃剂聚合得到聚合型阻燃剂直接为高分子材料提供优异的阻燃添加剂,本申请提供的阻燃剂制备工艺简单,节约资源且绿色环保。
本申请实施例提供一种反应型阻燃剂,所述反应型阻燃剂的结构如式1所示:
Figure PCTCN2021126578-appb-000001
其中,M为金属元素,R、R 1、R 2、R 3以及R 4为满足其化学环境的任意基团,n≥1,R、R 1、R 2、R 3以及R 4中至少一个含有反应性基团,m和q≥0,m+n+q=1~5。
其中,m可以是0、1、2、3、4或5等,n可以是0、1、2、3、4或5等,q可以是0、1、2、3、4或5等,但并不仅限于所列举的数值,上述各数值范围内其他未列举的数值同样适用。
本申请中,提供的反应型阻燃剂,可以通过反应基团直接与被添加体系中的其他反应性基团进行反应,将阻燃剂分子直接引入到体系分子中,增加了阻燃剂与被添加体系的相容性,长期使用不会出现阻燃剂的析出以及迁移问题, 阻燃效果稳定;同时该反应型阻燃剂阻燃元素元素含量高,仅需少量添加具备优异的阻燃性能;所述阻燃剂还可以对被添加体系进行改性,提高被添加体系的机械性能。
作为本申请优选的技术方案,所述反应性基团优选的包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、异氰酸酯基或氰基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述R 1和R 2分别独立地优选的包括H、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基或取代或未取代的杂芳基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述R 1和R 2分别独立地优选的包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基或取代或C5~C12未取代的杂芳基中的任意一种或至少两种的组合。
其中,所述C1~C12的取代或未取代的烷基可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷基;
所述C3~C12的环烷基可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷基;
所述C5~C12芳香基可以是C6、C7、C8、C9、C10或C11的取代或未取代的芳香基;
所述C5~C12杂芳基可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳基。
作为本申请优选的技术方案,述R、R 3以及R 4分别独立地优选的包括H、羟基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基、取代或未取代的杂芳基、取代或未取代的烷氧基、取代或未取代的环烷氧基、 取代或未取代的芳香氧基或取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
作为本申请优选的技术方案,所述R、R 3以及R 4分别独立地优选的包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基、C5~C12取代或未取代的杂芳基、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或、C5~C12取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
其中,所述C1~C12的取代或未取代的烷基可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷基;
所述C3~C12的环烷基可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷基;
所述C5~C12芳香基可以是C6、C7、C8、C9、C10或C11的取代或未取代的芳香基;
所述C5~C12杂芳基可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳基;
所述C1~C12的取代或未取代的烷氧基,例如可以是C2、C3、C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的烷氧基;
所述C3~C12的环烷氧基,例如可以是C4、C5、C6、C7、C8、C9、C10或C11的取代或未取代的环烷氧基;
所述C5~C12芳香氧基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的芳香氧基;
所述C5~C12杂芳氧基,例如可以是C6、C7、C8、C9、C10或C11的取代或未取代的杂芳氧基。
作为本申请优选的技术方案,所述R 1~R 3分别独立地优选的包括惰性基团。
本申请中,R 1~R 3为惰性基团优选为在合成式1所示化合物的过程中,R 1~R 3在该反应条件下不与反应物中的其他基团反应。
作为本申请优选的技术方案,所述M包括碱土金属元素、过渡金属元素、IIIA族金属元素、IVA族金属元素、VA族金属元素或VIA族金属元素中的任意一种或至少两种的组合。
其中,碱土金属元素可以是Be、Mg、Ca、Sr、Ba或Ra;
过渡金属元素可以是Sc、Ti、V、Cr、Mg、Fe、Co、Ni、Cu、Zn、Y、Zr、Nb、Mo、Ru、Rh、Pd、Ag、Cd、Hf、Ta、W、Re、Os、Ir、Pt、Au、Hg、镧系元素或锕系元素等;
IIIA族金属元素可以是Al、Ga、In或Tl;
IVA族金属元素可以是Ge、Sn或Pb;
VA族金属元素可以是Sb或Bi;
VIA族金属元素可以是Po。
本申请实施例提供一种上述反应型阻燃剂的制备方法,所述制备方法包括:将金属M的酸式盐与含有反应性基团的化合物通过化学反应制备得到。
本申请中,所述化学反应可以是取代反应或加成反应等。
本申请中,所述含有反应性基团的化合物可以是含有反应性基团的醇类化合物、酯类化合物或酸苷类化合物中的任意一种或至少两种的组合。
其中,反应性基团包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、异氰酸酯基或氰基中的任意一种或至少两种的组合。
所述醇类化合物可以是C2~C18的醇类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16或C17的醇。
所述酯类化合物可以是C3~C24的酯类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22或C23的酯;
所述酸苷类化合物可以是C3~C24的酸苷类化合物,例如可以是C3、C4、C5、C6、C7、C8、C9、C10、C11、C12、C13、C14、C15、C16、C17、C18、C19、C20、C21、C22或C23的酸苷。
本申请实施例提供一种聚合型阻燃剂,所述聚合型阻燃剂由上述任一种反应型阻燃剂通过自聚或共聚反应制备得到。
作为本申请优选的技术方案,所述聚合型阻燃剂由上述任一种反应型阻燃剂与含有反应基的化合物通过共聚反应制备得到。
其中,所述含有反应基的化合物优选地包括含有反应基的阻燃剂或含有反应基的扩链剂。
本申请中,所述聚合型阻燃剂的合成方式可以是:当反应型阻燃剂的反应基团为不饱和基团时,可以通过自由基聚合发生共聚得到聚合型阻燃剂。可以是含有羟基和羧基的两种反应型阻燃剂通过缩聚反应聚得到聚合型阻燃剂。还可以是含有氨基和羧基的两种反应型阻燃剂通过缩聚反应聚得到聚合型阻燃剂。也可以是含有环氧基团的化合物,与扩链剂共聚得到聚合型阻燃剂。上述聚合型阻燃剂均可以应用于工程塑料领域,如聚碳酸酯塑料、PPO塑料、PPS塑料或PBT塑料等。
本申请中,提供的聚合型阻燃剂还可以是本申请提供的反应型阻燃剂与现有技术中已有的含有反应基团的阻燃剂进行反应得到。如本申请提供的含有不饱和基团的阻燃剂,与另一中含有不饱和基团的现有阻燃剂通过自由基聚合共聚得到。再如本申请提供的含有羧基的反应型阻燃剂,与另一含有氨基或羟基 的现有阻燃剂通过缩聚反应共聚得到。
本申请实施例提供一种上反应型以及聚合型阻燃剂的应用,所述阻燃剂的应用领域包括热塑型树脂、热固型树脂或光固型树脂中的任意一种或至少两种的组合。
与相关技术相比,本申请实施例至少具有以下有益效果:
(1)本申请实施例公开一种反应型阻燃剂,所述反应型阻燃剂可以通过化学反应与被添加体系中的反应性基团发生化学反应得到阻燃组分,为被添加体系提供优异的阻燃性能;
(2)本申请实施例公开一种反应型阻燃剂,所述阻燃剂应用范围广,适合于用作各种热固性树脂、光固化树脂和热塑型树脂;
(3)本申请实施例公开一种反应型阻燃剂,所述阻燃剂可应用于热固性树脂、光固化树脂和热塑性树脂中,得到不迁移、不析出、不污染使用环境,永久阻燃的效果;
(4)本申请实施例公开一种反应型阻燃剂,添加于热固性树脂、光固化树脂和热塑性树脂中,制备得到的树脂组合物优异的机械性能、耐热性能、电性能和阻燃性能(UL-94)达V-0级别;
(5)本申请实施例公开一种聚合型阻燃剂,所述反应型阻燃剂通过自聚或共聚等反应可以得到聚合型阻燃剂应用于热固性树脂、光固化树脂和热塑性树脂中,得到不迁移、不析出、不污染使用环境,永久阻燃的效果。
在阅读并理解了详细描述后,可以明白其他方面。
具体实施方式
为便于理解本申请,本申请列举实施例如下。本领域技术人员应该明了, 所述实施例仅仅是帮助理解本申请,不应视为对本申请的具体限制。
实施例1
本实施例提供一种反应型阻燃剂,其结构如式2所示:
Figure PCTCN2021126578-appb-000002
式2所示化合物的制备方法为:将1mol磷酸氢钛分散于100mL环己酮,加入2mol异丙醇以及0.01mol二丁基氧化锡,在120℃回流下反应3h,反应结束后加入2.2mol乙二醇升温至135℃继续反应3h,采用蒸馏分离溶剂后,将得到的产物加入500mL MIBK后再加入2.2mol环氧氯丙烷和2mol的氢氧化钾以及0.01mol二丁基氧化锡,在90℃搅拌反应240min,反应结束后用物理方法去除未反应的环氧氯丙烷、生成的副产物氯化钾和溶剂,对产物进行提纯得到式2所示化合物。
1H NMR(CDCl 3,500MHz):δ4.27~4.21(t,4H,CH 2),3.81~3.74(t,4H,CH 2),3.67~3.61(d,2H,CH 2),3.45~3.37(d,2H,CH 2),2.85~2.77(m,2H,CH),2.63~2.56(d,2H,CH 2),2.42~2.34(t,2H,CH 2)。
对得到的阻燃剂进行ICP测试发现,所得化合物中锰元素以及磷元素同时存在,且钛元素以及磷元素的摩尔比为1:2。
实施例2
本实施例提供一种反应型阻燃剂,其结构如式3所示:
Figure PCTCN2021126578-appb-000003
Figure PCTCN2021126578-appb-000004
式3所示化合物的制备方法为:将1mol磷酸氢钛分散于100mL环己酮,加入2mol异丙醇以及0.01mol二丁基氧化锡,在加热120℃回流条件下反应3h,反应结束后加入2.2mol丙烯醇,继续反应6h,反应结束后用物理方法去除未反应的丙烯醇和溶剂,对产物进行提纯得到式3所示化合物。
1H NMR(CDCl 3,500MHz):δ6.03~5.95(m,2H, HC=CH 2),5.41~5.36(t,2H,HC=C H 2),5.28~5.20(t,2H,HC=C H 2),4.58~4.52(d,4H,CH 2)。
对得到的阻燃剂进行ICP测试发现,所得化合物中钛元素以及磷元素同时存在,且钛元素以及磷元素的摩尔比为1:2。
实施例3
本实施例提供一种反应型阻燃剂,其结构如式4所示:
Figure PCTCN2021126578-appb-000005
式4所示化合物的制备方法为:将1mol磷酸二氢锌分散于100mL DMSO,加入4mol异丙醇以及0.01mol二丁基氧化锡,在110℃回流条件下反应6h,采用蒸馏分离溶剂后,将得到的产物分散于甲苯中与4.2mol环氧氯丙烷、4mol的氢氧化钾以及0.01mol二丁基氧化锡在80℃下搅拌反应180min,反应结束后用物理方法去除未反应的环氧氯丙烷、生成的副产物氯化钾和溶剂,对产物进 行酸化,水洗至中性对产物进行提纯得到式4所示化合物。
1H NMR(CDCl 3,500MHz):δ4.10~4.02(t,8H,CH 2),3.68~3.60(t,4H,OH),3.52~3.45(m,8H,CH 2),1.99~1.92(m,8H,CH 2)。
对得到的阻燃剂进行ICP测试发现,所得化合物中锌元素以及磷元素同时存在,且锌元素与磷元素的摩尔比为1:2。
实施例4
本实施例提供一种反应型阻燃剂,其结构如式5所示:
Figure PCTCN2021126578-appb-000006
式5所示化合物的制备方法为:将1mol磷酸二氢锰分散于100mL DMSO,加入4mol异丙醇以及0.01mol二丁基氧化锡,在120℃回流下反应5h,采用蒸馏分离溶剂后,将得到的产物分散于氯仿中与2mol氨基丙酸以及0.01mol DMAP反应,反应结束后对产物进行提纯得到式5所示化合物。
1H NMR(CDCl 3,500MHz):δ11.13~11.05(s,2H,COOH),4.59~4.52(s,2H,CH),2.96~2.88(m,4H,CH 2),2.68~2.61(t,4H,CH 2),2.34~2.25(d,2H,NH),1.31~1.23(d,12H,CH 3)。
对得到的阻燃剂进行ICP测试发现,所得化合物中锰元素以及磷元素同时存在,且钙元素以及磷元素的摩尔比为1:2。
实施例5
本实施例提供一种反应型阻燃剂,其结构如式6所示:
Figure PCTCN2021126578-appb-000007
式6所示化合物的制备方法为:将1.5mol磷酸二氢钠分散于100mL环己酮中,加入3mol异丙醇以及0.01mol二丁基氧化锡,在130℃回流下反应2.5h,加入1.5mol 3-胺丙基三羟基硅烷以及0.01mol二丁基氧化锡,在170℃条件下反应6h,反应结束后加入三氯化钼至无沉淀产生,固液分离得到固体产物,将所述固体产物与5mol甲醇混合,加入0.01mol二丁基氧化锡,加热回流条件下反应12h,反应后对产物进行提纯得到式6所示化合物。
1H NMR(CDCl 3,500MHz):δ11.96~11.88(s,3H,OH),5.17~5.07(t,6H,NH 2),3.81~3.73(s,9H,CH 3),3.55~3.47(s,18H,CH 3),2.66~2.60(m,6H,CH 2),1.57~1.50(m,6H,CH 2),0.63~0.55(t,6H,CH 2)。
对得到的阻燃剂进行ICP测试发现,所得化合物中钼元素、磷元素以及硅元素同时存在,且钼元素、磷元素以及硅元素的摩尔比为1:3:3。
实施例6
本实施例提供一种反应型阻燃剂,其结构如式7所示:
Figure PCTCN2021126578-appb-000008
式7所示化合物的制备方法为:将1mol三聚磷酸二氢铝分散于100mL环己酮,加入2mol乙二醇以及0.01mol二丁基氧化锡,在120℃条件下反应8h,采用蒸馏分离溶剂后,将得到的产物分散于甲苯中与2mol环氧氯丙烷、2mol的氢氧化钾以及0.01mol二丁基氧化锡在80℃下搅拌反应180min,反应结束后用物理方法去除生成的副产物氯化钾和溶剂,对产物进行酸化,水洗至中性对产物进行提纯得到式7所示化合物。
1H NMR(CDCl 3,500MHz):δ4.22~4.15(t,4H,CH 2),3.76~3.68(t,4H,CH 2),3.66~3.58(t,2H,OH),3.55~3.48(m,4H,CH 2),3.39~3.31(m,4H,CH 2),1.96~1.88(m,4H,CH 2)。
对得到的阻燃剂进行ICP测试发现,所得化合物中铝元素以及磷元素同时存在,且铝元素与磷元素的摩尔比为1:3。
环氧树脂中的应用
实施例7
本实施例中,将环氧当量为360/eq的双酚A型环氧树脂100重量份与20重量份实施例1所示的反应型阻燃剂混合,再与双腈胺6重量份,2-甲基咪唑0.2重量份,在180℃下固化2h,得到环氧树脂固化物a。
实施例8
本实施例中,将环氧当量为360/eq的双酚A型环氧树脂100重量份,与双 腈胺4重量份,2-甲基咪唑0.2重量份以及实施例5所示反应型阻燃剂混合3重量份,在120℃下固化1.5h,得到环氧树脂固化物b。
对比例1
本对比例中,将环氧当量为360/eq的环氧树脂100重量份,加入6重量份双腈胺,再加入30重量份APP,在180℃下固化2h,得到环氧树脂固化物c。
对比例2
本对比例中,将环氧当量为360/eq的环氧树脂100重量份,加入6重量份双腈胺,再加入30重量份MCA,在180℃下固化2h,得到环氧树脂固化物d。
对上述环氧树脂固化物a-d的性能进行测试,弯曲强度的测试方法采用GB/T 9341-2008,抗冲击强度测试方法采用GB/T 1843-2008,击穿电压采用GB/T 1408.1-2006,阻燃性测试方法为UL-94。测试结果表1所示。
表1
Figure PCTCN2021126578-appb-000009
从表1的测试结果可以看出,本申请实施例1提供的反应型阻燃剂,其与环氧树脂预先混合,再通过固化反应即可将阻燃剂分子接入环氧树脂分子中,在提高环氧树脂阻燃性能的同时,还提高了环氧树脂的机械性能。本申请实施例5提供的反应型阻燃剂,由于具有活泼氢,在加入环氧树脂体系中时,可以适当减少固化剂用量,使实施例5提供的反应型阻燃剂通过固化反应接入环氧树脂分子中,同样可以提高环氧树脂的阻燃性能以及机械性能。而MCA以及APP作为添加型阻燃剂不能与环氧树脂分子发生反应,因此对环氧树脂的机械性能没有贡献,且其添加量大,而起到的阻燃效果有限。
硅树脂的应用:
实施例9
本实施例中,将114重量份三甲基乙氧基硅氧烷、186重量份四乙氧基硅氧烷以及50重量份九水硅酸钠,与50重量份实施例5制备得到的反应型阻燃剂混合,并在20℃下固化5h,制备得到硅树脂a。
对比例3
本对比例中,将114重量份三甲基乙氧基硅氧烷、186重量份四乙氧基硅氧烷以及50重量份九水硅酸钠混合,并在20℃下固化5h,制备得到硅树脂b。
对比例4
本对比例中,将114重量份三甲基乙氧基硅氧烷、186重量份四乙氧基硅氧烷、50重量份九水硅酸钠以及60重量份APP混合,并在20℃下固化5h,制备得到硅树脂c。
对上述得到的硅树脂a-c的性能进行测试,拉伸强度和伸长率的测试方法采 用GB/T 1701-2001,剪切强度测试方法采用GB/T 1700-2001,阻燃性测试方法为UL-94,耐水性能的测试条件为沸水中浸泡2h。测试结果如表2所示。
表2
Figure PCTCN2021126578-appb-000010
根据表2的测试结果可以看出,本申请实施例5提供的反应型阻燃剂与三甲基乙氧基硅氧烷以及四乙氧基硅氧烷具有相似的结构,其在固化反应后可以接入硅树脂分子中,为硅树脂提供优异的阻燃性能,同时还可以提高硅树脂的机械性能。而在不添加实施例5提供的反应型阻燃剂,以及使用APP作为阻燃剂时,均不能达到与实施例9相近的阻燃性能和机械性能。
不饱和树脂中的应用:
实施例10
本实施例中,将实施例2制备的阻燃剂25重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物a。
对比例5
本对比例中,将APP 30重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物b。
对比例6
本对比例中,将MCA 30重量份,与甲基丙烯酸甲酯15重量份、甲基丙烯酸丁酯15重量份、丙烯酸乙酯11重量份、甲基丙烯酸1重量份、丙烯酸羟丙酯13重量份、甲基丙烯酸三氟乙酯45重量份、过氧化苯甲酰2重量份、二甲苯70重量份、丁酮20重量份以及环己酮10重量份混合制备交联型丙烯酸树脂组合物c。
对上述制备得到的丙烯酸树脂组合物a-c的抗压强度、抗拉强度、耐水性能以及阻燃性能进行测试,结果如表3所示。其中抗压的测试方法采用GB/T 20467-2008,抗拉强度测试方法采用GB/T 6344-2008,阻燃性测试方法为UL-94。耐水性能为将抗压强度测试后的丙烯酸树脂组合物在沸水中浸泡2h后,再次进行抗压强度测试。
表3
Figure PCTCN2021126578-appb-000011
根据表3的测试结果可以看出,本申请实施例2提供的反应型阻燃剂在添加入丙烯酸树脂组合物体系后,可以通过与丙烯酸树脂单体上的不饱和基团发生聚合反应,从而使得实施例2提供的反应型阻燃剂可以连接于丙烯酸树脂分子中,提高丙烯酸树脂的阻燃性能以及机械性能。与同样添加量的现有阻燃剂相比,制备得到的丙烯酸树脂组合物的阻燃性能以及机械性能更为优异。
尼龙复合材料中的应用:
实施例11
在本实施例中,将实施例2制备得到的阻燃剂15重量份,偶氮二异丁腈0.05重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维55重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料a。
对比例7
在本实施例中,将APP 30重量份,与尼龙610 81重量份、尼龙66 23重量 份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维55重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料b。
对比例8
在本实施例中,将MCA 30重量份,与尼龙610 81重量份、尼龙66 23重量份、乙烯基三乙氧基硅烷0.7重量份、氢氧化镁12重量份、抗氧剂1010 0.6重量份、玻璃纤维55重量份以及双硬脂酸酰胺0.8重量份,混合制备得到尼龙复合材料c。
对实施例9以及对比例7和8制备得到的尼龙复合材料a-c的抗压强度(GB/T15231-2008)、抗拉强度(ASTM C1557-2003(2008))以及燃烧性进行测试,结果如表4所示。
表4
Figure PCTCN2021126578-appb-000012
根据表4的测试结果可以看出,本申请实施例4提供的反应型阻燃剂在添加入尼龙复合材料体系后,对于添加量更多的现有阻燃剂而言MCA和APP,制 备得到的尼龙复合材料的阻燃性能以及机械性能更为优异。
聚碳酸酯塑料中的应用
实施例12
将实施例1和实施例4提供的化合物分散于DMSO中,依次在180℃下反应2h,19℃反应2h以及200℃下反应2h,采用蒸馏分离溶剂后,对产物进行提纯得到聚合型阻燃剂I。
将聚合型阻燃剂I 15重量份,与2,2'-双(4-羟基苯基)丙烷聚碳酸酯100重量份,聚四氟乙烯(抗滴落剂)0.5重量份,光稳定剂944 0.5重量份,混合制备聚碳酸酯塑料a。
对比例9
在本对比例中,将APP阻燃剂20重量份,与2,2'-双(4-羟基苯基)丙烷聚碳酸酯100重量份,聚四氟乙烯(抗滴落剂)0.5重量份,光稳定剂944 0.5重量份,混合制备聚碳酸酯塑料c。
对比例10
在本对比例中,将MCA阻燃剂20重量份,与2,2'-双(4-羟基苯基)丙烷聚碳酸酯100重量份,聚四氟乙烯(抗滴落剂)0.5重量份,光稳定剂944 0.5重量份,混合制备聚碳酸酯塑料d。
对实施例12以及对比例9和10提供的聚碳酸酯塑料a-c的拉伸性能、悬臂梁冲击强度以及阻燃性能进行测试,拉伸性能根据GB/T14884-2008进行测试,悬臂梁冲击强度根据GB/T1843-2008进行测试,阻燃性测试方法为UL-94。其结果如表5所示。
表5
  拉伸强度/MPa 冲击强度/J/m 阻燃性/UL-94
聚碳酸酯塑料a 81 90 V-0
聚碳酸酯塑料b 62 58 V-1
聚碳酸酯塑料c 65 63 V-1
从表5的测试结果可以看出,本申请实施例12提供的聚合型阻燃剂,由于其与聚碳酸酯塑料具有良好的相容性,其不仅可以为聚碳酸酯塑料提供良好的阻燃性能,还可以提高聚碳酸酯塑料的机械性能。而常规的添加型阻燃剂MCA和APP不仅添加量高于实施例12提供的聚合型阻燃剂,由于相容性差,导致其阻燃效果有限,且对聚碳酸酯塑料的机械性能没有有益影响。
PPS塑料中的应用
实施例13
本实施例中将实施例6和实施例4提供的反应型阻燃剂各1mol分散于NMP,加0.01mol二丁基氧化锡,依次在160℃下反应3h,180℃反应3h以及200℃下反应3h,采用蒸馏分离溶剂后,对产物进行提纯得到聚合型阻燃剂II。
将聚合型阻燃剂II 15重量份,PPS 100重量份,滑石粉10重量份,聚醋酸乙烯8重量份,氧化锆5重量份,混合制备得到PPS塑料a。使用的PPS为分子量为5万左右的线性PPS,熔融指数为30g/min。
对比例11
在本对比例中,将APP阻燃剂20重量份,PPS 100重量份,滑石粉10重量份,聚醋酸乙烯8重量份,氧化锆5重量份,混合制备得到PPS塑料b。使用的PPS为分子量为5万左右的线性PPS,熔融指数为30g/min。
对比例12
在本对比例中,将MCA阻燃剂20重量份,PPS 100重量份,滑石粉10重量份,聚醋酸乙烯8重量份,氧化锆5重量份,混合制备得到PPS塑料c。使用的PPS为分子量为5万左右的线性PPS,熔融指数为30g/min。
对实施例13以及对比例11和12提供的PPS塑料a-c的拉伸性能、悬臂梁冲击强度以及阻燃性能进行测试,拉伸性能根据GB/T14884-2008进行测试,悬臂梁冲击强度根据GB/T1843-2008进行测试,阻燃性测试方法为UL-94。其结果如表6所示。
表6
  拉伸强度/MPa 冲击强度/J/m 阻燃性/UL-94
PPS塑料a 127 73 V-0
PPS塑料b 72 60 V-1
PPS塑料c 70 58 V-1
从表6的测试结果看出,本申请实施例13提供的阻燃剂与PPS具有良好的相容性,不仅可以提高PPS塑料的阻燃性能,还可以提高PPS塑料的机械性能。与之相比,作为添加型阻燃剂的PPA以及MCA与PPS的相容性差,不仅添加量较大,且阻燃性能一般,对PPS塑料的机械性能也没有有益影响。
PBT塑料中的应用
实施例14
将实施例2提供的反应型阻燃剂15重量份,偶氮二异丁腈0.05重量份,PBT 100重量份,POE 5重量份,碳酸钙2重量份,单硬脂酸甘油酯5重量份,玻璃纤维10重量份,混合熔炼制备得到PBT塑料a。
对比例13
在本对比例中,将APP阻燃剂20重量份,PBT 100重量份,POE 5重量份,碳酸钙2重量份,单硬脂酸甘油酯5重量份,玻璃纤维10重量份,混合制备得到PBT塑料b。
对比例14
在本对比例中,将MCA阻燃剂20重量份,PBT 100重量份,POE 5重量份,碳酸钙2重量份,单硬脂酸甘油酯5重量份,玻璃纤维10重量份,混合制备得到PBT塑料c。
对实施例14以及对比例13和14提供的PBT塑料a-c的拉伸性能、悬臂梁冲击强度以及阻燃性能进行测试,拉伸性能根据GB/T14884-2008进行测试,悬臂梁冲击强度根据GB/T1843-2008进行测试,阻燃性测试方法为UL-94。其结果如表7所示。
表7
  拉伸强度/MPa 冲击强度/J/m 阻燃性/UL-94
PBT塑料a 129 136 V-0
PBT塑料b 111 115 V-1
PBT塑料c 106 110 V-1
从表7的测试结果看出,本申请实施例2提供的反应型阻燃剂直接添加进入PBT塑料体系中,在塑料炼胶过程中,在加入的少量引发剂的作用,所述反应型阻燃剂可以自聚,从而均与分散于PBT塑料中,不仅可以提高PBT塑料的阻燃性能,还可以提高PBT塑料的机械性能。与之相比,作为添加型阻燃剂的PPA以及MCA与PBT的相容性差,不仅添加量较大,且阻燃性能一般,对PBT塑料的机械性能也没有有益影响。
申请人声明,本申请通过上述实施例来说明本申请的详细工艺设备和工艺流程,但本申请并不局限于上述详细工艺设备和工艺流程,即不意味着本申请必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本申请的任何改进,对本申请产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本申请的保护范围和公开范围之内。

Claims (12)

  1. 一种反应型阻燃剂,其中,所述反应型阻燃剂的结构如式1所示:
    Figure PCTCN2021126578-appb-100001
    其中,M为金属元素,R、R 1、R 2、R 3以及R 4为满足其化学环境的任意基团,n≥1,R、R 1、R 2、R 3以及R 4中至少一个含有反应性基团,m和q≥0,m+n+q=1~5。
  2. 根据权利要求1所述的反应型阻燃剂,其中,所述反应性基团包括羟基、胺基、不饱和基团、羧基、环氧基、酯基、酸酐、甲氧基、异氰酸酯基或氰基中的任意一种或至少两种的组合。
  3. 根据权利要求1或2所述的反应型阻燃剂,其中,所述R 1和R 2分别独立地包括H、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基或取代或未取代的杂芳基中的任意一种或至少两种的组合。
  4. 根据权利要求3所述的反应型阻燃剂,其中,所述R 1和R 2分别独立地包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基或取代或C5~C12未取代的杂芳基中的任意一种或至少两种的组合。
  5. 根据权利要求1-4任一项所述的反应型阻燃剂,其中,所述R、R 3以及R 4分别独立地包括H、羟基、取代或未取代的烷基、取代或未取代的环烷基、取代或未取代的芳香基、取代或未取代的杂芳基、取代或未取代的烷氧基、取代或未取代的环烷氧基、取代或未取代的芳香氧基或取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
  6. 根据权利要求5所述的反应型阻燃剂,其中,所述R、R 3以及R 4分别独立地包括C1~C12取代或未取代的烷基、C3~C12取代或未取代的环烷基、C6~C12取代或未取代的芳香基、C5~C12取代或未取代的杂芳基、C1~C12取代或未取代的烷氧基、C3~C12取代或未取代的环烷氧基、C6~C12取代或未取代的芳香氧基或、C5~C12取代或未取代的杂芳氧基中的任意一种或至少两种的组合。
  7. 根据权利要求1-6任一项所述的反应型阻燃剂,其中,所述M包括碱土金属元素、过渡金属元素、IIIA族金属元素、IVA族金属元素、VA族金属元素或VIA族金属元素中的任意一种或至少两种的组合。
  8. 根据权利要求7所述的反应型阻燃剂,其中,所述M包括锰元素、铜元素、钼元素、钛元素、锌元素、铝元素、锂元素、钴元素或镍元素中的任意一种或至少两种的组合。
  9. 一种权利要求1-8任一项所述的反应型阻燃剂的制备方法,其包括:将金属M的酸式盐与含有反应性基团的化合物通过化学反应制备得到。
  10. 一种聚合型阻燃剂,其中,所述聚合型阻燃剂由权利要求1-8任一项所述的反应型阻燃剂通过自聚或共聚反应制备得到。
  11. 一种聚合型阻燃剂,其中,所述聚合型阻燃剂由权利要求1-8任一项所述的反应型阻燃剂与含有反应基的化合物通过共聚反应制备得到。
  12. 一种权利要求1-11任一项所述的阻燃剂的应用,其中,所述阻燃剂的应用领域包括热塑型树脂、热固型树脂或光固型树脂中的任意一种或至少两种的组合。
PCT/CN2021/126578 2020-10-29 2021-10-27 反应型阻燃剂、聚合型阻燃剂及其制备方法和应用 WO2022089461A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202011187359.6 2020-10-29
CN202011187359 2020-10-29
CN202110184292.9 2021-02-08
CN202110184292.9A CN112961184A (zh) 2020-10-29 2021-02-08 一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022089461A1 true WO2022089461A1 (zh) 2022-05-05

Family

ID=76284842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/126578 WO2022089461A1 (zh) 2020-10-29 2021-10-27 反应型阻燃剂、聚合型阻燃剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN112961184A (zh)
WO (1) WO2022089461A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112876508A (zh) * 2020-10-29 2021-06-01 广东广山新材料股份有限公司 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
CN112961184A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用
CN114736430B (zh) * 2022-02-17 2024-06-04 神马实业股份有限公司 一种含p/n多元素反应型尼龙66阻燃剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047355A (ja) * 2000-05-25 2002-02-12 Asahi Fiber Glass Co Ltd 無機質繊維補強難燃性樹脂形成用組成物及び無機質繊維補強難燃性樹脂複合体
CN112961184A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112442074A (zh) * 2019-08-28 2021-03-05 广东广山新材料股份有限公司 一种反应型阻燃剂及其制备方法和应用
CN112876508A (zh) * 2020-10-29 2021-06-01 广东广山新材料股份有限公司 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
CN112961363A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种聚合型磷硅协同阻燃剂及其制备方法和应用
CN112961362A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种聚合型阻燃剂及其制备方法和应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047355A (ja) * 2000-05-25 2002-02-12 Asahi Fiber Glass Co Ltd 無機質繊維補強難燃性樹脂形成用組成物及び無機質繊維補強難燃性樹脂複合体
CN112961184A (zh) * 2020-10-29 2021-06-15 广东广山新材料股份有限公司 一种反应型阻燃剂、聚合型阻燃剂及其制备方法和应用

Also Published As

Publication number Publication date
CN112961184A (zh) 2021-06-15

Similar Documents

Publication Publication Date Title
WO2022089461A1 (zh) 反应型阻燃剂、聚合型阻燃剂及其制备方法和应用
WO2022089459A1 (zh) 一种反应型磷硅协同阻燃剂、聚合型磷硅协同阻燃剂及其制备方法和应用
WO2022089468A1 (zh) 聚合型阻燃剂及其制备方法和应用
WO2022089469A1 (zh) 一种聚合型磷硅协同阻燃剂及其制备方法和应用
DE3887079T2 (de) Blockcopolymer aus aromatischem Polyester und Polyorganosiloxan.
GB2487455A (en) Flame retardant polyphosphonates and their use in polycarbonate resins
WO2013134900A1 (zh) 磷硅协同阻燃剂及其制备方法与应用
KR101362871B1 (ko) 가교형 폴리포스포네이트, 그의 제조 방법 및 이를 포함하는 난연성 열가소성 수지 조성물
CN110157133B (zh) 一种含磷丙烯酸酯弹性体阻燃剂及其制备方法
KR102256250B1 (ko) 난연 폴리올을 포함하는 에폭시 수지 및 이를 포함하는 조성물
EP2739656A1 (en) An oxazolidone ring containing vinyl ester resin and products therefrom
CN111518266B (zh) 一种聚酯多元醇及其制备方法和应用
CN112442081A (zh) 一种反应型阻燃剂及其制备方法和应用
CN112442074A (zh) 一种反应型阻燃剂及其制备方法和应用
JPH1025338A (ja) リンを含有するポリエステル重合体および樹脂組成物
JP3470727B2 (ja) 樹脂組成物
CN112442082A (zh) 一种反应型阻燃剂及其制备方法和应用
CN113999381B (zh) 一种共聚聚碳酸酯及其制备方法
CN113881054A (zh) 一种聚合型阻燃剂及其制备方法和应用
KR101469270B1 (ko) 폴리포스포네이트 공중합체, 그 제조 방법 및 이를 포함하는 난연성 열가소성 수지 조성물
CN118271258A (zh) 一种具有超强机械性能的阻燃环氧树脂材料的制备方法
US20030162934A1 (en) Phosphorus-containing epoxy monomer and hardening agent and composition thereof
KR940006470B1 (ko) 개량된 폴리부틸렌 테레프탈레이트 수지 조성물
CN116969992A (zh) 一种用于阻燃的含磷多元醇的合成及应用
JP4947680B2 (ja) 新規硬化性ポリアミド及び重合性組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21885188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21885188

Country of ref document: EP

Kind code of ref document: A1