WO2022089158A1 - 一种微刃切削刀具及其制造方法 - Google Patents

一种微刃切削刀具及其制造方法 Download PDF

Info

Publication number
WO2022089158A1
WO2022089158A1 PCT/CN2021/122299 CN2021122299W WO2022089158A1 WO 2022089158 A1 WO2022089158 A1 WO 2022089158A1 CN 2021122299 W CN2021122299 W CN 2021122299W WO 2022089158 A1 WO2022089158 A1 WO 2022089158A1
Authority
WO
WIPO (PCT)
Prior art keywords
edge
micro
cutting
edges
tool
Prior art date
Application number
PCT/CN2021/122299
Other languages
English (en)
French (fr)
Inventor
王成勇
李伟秋
颜炳姜
胡小月
郑李娟
Original Assignee
广东工业大学
汇专科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学, 汇专科技集团股份有限公司 filed Critical 广东工业大学
Publication of WO2022089158A1 publication Critical patent/WO2022089158A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters

Definitions

  • the invention relates to the technical field of cutting tools, in particular, to a micro-edge cutting tool and a manufacturing method thereof.
  • High-speed cutting technology is an advanced manufacturing technology that integrates high efficiency, high quality and low consumption.
  • Cutting tools are the key to high-speed cutting; high-speed cutting tools include cemented carbide, coated tools, ceramics, cubic boron nitride and diamond tools Wait.
  • the cutting edge of the tool is the part that is in direct contact with the material in the cutting process.
  • the form of the cutting edge plays a crucial role in its physical properties and cutting performance, and is the key to affecting the machining quality and tool life.
  • sharpening is a processing procedure that must be passed through to obtain the finished tool.
  • Sharpening is a machining process in which the cutting edge of the tool is finished after the basic shape of the tool is machined to obtain high quality, high straightness, high integrity and appropriate geometric angle; traditional sharpening usually uses grinding wheels for grinding.
  • abrasive jet, laser, ion beam, electrochemical and other methods it can also be processed by abrasive jet, laser, ion beam, electrochemical and other methods.
  • Knives put forward higher requirements.
  • the commonly used machining tools have been unable to achieve the super-finishing requirements, so new requirements are put forward for the design and manufacturing methods of new tool shapes.
  • the design of the cutting edge and the selection of machining methods are particularly important.
  • the cutting edge must have high straightness and high integrity, that is, under macroscopic conditions, the cutting edge It is a long straight edge or a large curvature curve edge, which presents a high-precision straight edge under the microscopic level.
  • a micro-blade cutting tool which comprises a handle and a cutter head connected with it, the cutter head is provided with a plurality of cutting edges, and the cutting edge of the cutting edge is macroscopically presented as a long straight edge or a curved edge, Microscopically, there are randomly distributed irregular serrated micro-edges, the width and depth of the micro-edges are 5 ⁇ m to 20 ⁇ m, and there is a chip flute between two adjacent cutting edges.
  • micro-edge is used for directly contacting the material processing surface during the cutting process, and participating in the cutting process.
  • the width of the cutting edge is 0.015mm-0.05mm, and the depth of the cutting edge is 1mm-4mm.
  • the number of the cutting edges is 8-100.
  • the rake angle of the cutting edge is ⁇ 10° to +10°, and the relief angle of the cutting edge is 15° to 50°.
  • micro-edge cutting tool is one of a ball cutter, a round nose cutter, a flat-bottom cutter, a side milling cutter, and a chamfering cutter.
  • the material of the cutter head is one of PCD, MCD, PCBN, cemented carbide, and ceramics.
  • the outer diameter of the cutter head is 1 mm ⁇ 25 mm.
  • a manufacturing method of the micro-edge cutting tool comprising the following steps:
  • the cutting edge is subjected to finishing machining, and the micro-edge of the cutting edge is machined to produce irregular sawtooth-shaped micro-edges that are randomly distributed on a microscopic scale, and the width and depth of the micro-edge are both 5 ⁇ m to 20 ⁇ m.
  • finishing is any one of grinding, abrasive jet, laser, ion beam, electrical discharge machining, or a combination thereof.
  • the tool is subjected to a large instantaneous impact during processing and reduces the processing quality and life. It maintains a certain straightness (no serrations on the macroscopic scale), and has randomly distributed irregular serrated micro-edges on the microscopic scale (micron scale).
  • the micro-edge cutting tool of the present invention includes a plurality of cutting edges, the cutting edges perform milling processing on a macro level, and the removal paths are overlapped for many times during processing.
  • the micro-blade simulates the grinding processing characteristics to perform micro-grinding on the material.
  • the width and depth of the micro-blade are in the range of 5 ⁇ m to 20 ⁇ m. Compared with the ordinary milling cutter processing, the subsequent grinding time of the processed material is shorter, and the micro-blade is small.
  • the edge is located on the cutting edge, which is relatively more suitable for the processing of complex parts, so the combination of the two processing methods can realize the super-finishing of hard and brittle materials.
  • the micro-edge cutting tool has a plurality of cutting edges, when the tool rotates once and the cutting amount is constant, the cutting amount of a single cutting edge is reduced compared to a tool with a small number of cutting edges; at the same time, the cutting edge is in microscopic There are serrated micro-edges with random distribution and irregularity, which are relatively not so sharp, so chipping is not easy to occur, thereby improving the service life of the micro-edge cutting tool.
  • Fig. 1 is the micro-blade cutting tool structure schematic diagram in embodiment 1;
  • Fig. 2 is a top view in Fig. 1;
  • Fig. 3 is the sectional view of the A ⁇ A section of Fig. 2;
  • Fig. 4 is the enlarged view of S place in Fig. 3;
  • Fig. 5 is the SEM image of the micro-edge cutting tool in Fig. 1;
  • Example 6 is a schematic diagram of scratches on the surface of the material during the cutting process of the micro-edge cutting tool in Example 3.
  • a micro-edge cutting tool 100 is provided in this embodiment, which includes a handle 2 and a cutter head 1 connected thereto, and the cutter head 1 has a plurality of cutting edges 3 , two adjacent cutting edges 3 .
  • a chip flute 4 is formed between each cutting edge 3, and the chip flute 4 is used to discharge the chips generated by cutting in time;
  • the cutting edge of the cutting edge 3 is a curved edge macroscopically, and has randomly distributed Irregular serrated micro-edge 5, that is, when no magnifying tool is used (that is, macroscopic observation), the cutting edge of the cutting edge 3 is curved and has no notch, but after magnification, under the micron-scale size (that is, microscopically).
  • micro-edges 5 there are serrated micro-edges 5 on the cutting edge, and the distance between two adjacent micro-edges 5 can be equal or unequal (that is, the micro-edges 5 are randomly distributed on the cutting edge), and each micro-edge The dimensions of the edges 5 are not identical (ie the micro-edges 5 are irregular).
  • the width and depth of the micro-blade are both in the range of 5 ⁇ m to 20 ⁇ m, the width of the micro-blade specifically refers to the width of the bottom end of the serrated micro-blade, and the depth of the micro-blade refers to the top of the serrated micro-blade. Vertical distance to the bottom.
  • the micro-edge cutting tool 100 has a plurality of cutting edges 3, which reduces the single-edge cutting amount compared to a tool with a small number of cutting edges, and each cutting edge 3 is relatively less worn;
  • the serrated micro-edges are randomly distributed and irregular, so they are relatively less sharp and less prone to chipping, thus prolonging the service life of the micro-edge cutting tool 100 .
  • the cutting edge of the cutting edge can also be a long straight edge macroscopically.
  • the above-mentioned micro-edge cutting tool 100 still maintains a certain straightness macroscopically.
  • Edge 5 when machining the workpiece, the micro-edge is used for direct contact with the processing surface of the material during the cutting process, and participates in the cutting process; due to the partial overlap of the processing area, the micro-edge on the tool head 1 is formed on the processing material.
  • These scratches form a form similar to the abrasive grains and material processing in the grinding process, that is, the micro-edge cutting tool 100 can perform micro-grinding on the processed material. Combined with the milling of the tool, the above-mentioned micro-edge cutting tool 100 can be used for processing.
  • the cutting edge 3 of the micro-edge cutting tool 100 in this embodiment is a curved edge without notches (macroscopic observation); as shown in FIG. 5 , the cutting edge of the micro-edge cutting tool 100 is randomly distributed with different Regular serrated micro-edges 5 (microscopic observation), these micro-edges 5 can play the role of micro-grinding when machining a workpiece.
  • the depth a of the cutting edge is 1mm to 4mm. If the depth of the cutting edge is too large, the micro-edge will not have the effect of grinding, thereby affecting the machining accuracy, while the depth of the cutting edge is too small. Therefore, in this embodiment, the depth range of the cutting edge is set to 1 mm to 4 mm, which can not only ensure higher machining accuracy, but also achieve better cutting effect.
  • the number of the cutting edges 3 is 8-100. Too many cutting edges will increase the difficulty of tool machining, and too few will reduce the cutting effect. Appropriately increasing the number of cutting edges can make the removal paths of the cutting edges overlap multiple times during processing, thereby enhancing the effect of micro-edge grinding, improving the machining accuracy, reducing the amount of single-edge cutting and reducing the degree of tool wear.
  • the micro-edge cutting tool 100 is a round nose tool.
  • it can also be one of a ball cutter, a flat-bottom cutter, a side milling cutter, and a chamfering cutter.
  • the outer diameter d of the cutter head 1 is 1 mm ⁇ 25 mm.
  • the blade length L is 1.0mm to 4.0mm, and the blade length refers to the length of the cutting edge of the cutting edge 3, which is in the aforementioned ideal range, ensuring the effective range of the cutting edge 3 and making it have ideal cutting efficiency.
  • the rake angle ⁇ 0 of the cutting edge 3 is ⁇ 10° to +10°, and the relief angle ⁇ 0 of the cutting edge is 15° to 50°.
  • the width b of the cutting edge is 0.015-0.05 mm.
  • the cutting edge width refers to the cutting edge width of the cutting edge 3, which is in the aforementioned ideal range, which can not only ensure the strength of the cutting edge 3, make it have a better service life, but also ensure a better cutting efficiency.
  • the material of the tool head 1 of the micro-edge cutting tool 100 is PCD, of course, in other embodiments, it can also be one of MCD, PCBN, cemented carbide, and ceramics.
  • the helix angle of the cutter head 1 is 0-65°.
  • the helix angle of the cutter head 1 that is, the helix angle of the cutting edge 3 , refers to the helix angle of the cutting edge 3 .
  • the helix angle of the secondary cutting edge on the ball cutter may be 0°.
  • the comparative example adopts Van Horn diamond coated milling cutter (Netherlands Van Horn Carbide Tool Company, marked as 2#) and IMC coated milling cutter (Germany).
  • Noble IMC marked as 3#
  • the above two kinds of tools are commonly used in graphite machining, using the above two tools and the micro-edge cutting tool 100 in this example (marked as 1#) under the same test conditions for POCO.
  • ⁇ XL graphite was subjected to plane milling, and the test results are shown in Table 1 below. (Among them, the model of 1#: 2# model: VHGTC304006004L20, 3# model: IMCVHGSB042060)
  • the present embodiment discloses a processing method of a micro-edge cutting tool, and the processing method includes the following steps:
  • the parameters include helix angle, drill tip angle, edge length, groove length, etc.
  • the cutting edge is processed by finishing, and the micro-edge of the cutting edge is machined to produce irregular sawtooth-shaped micro-edges that are randomly distributed on a microscopic scale, and the width and depth of the micro-edge are both in the range of 5 ⁇ m to 20 ⁇ m.
  • the micro-edge cutting tool can be obtained by the above-mentioned manufacturing method.
  • finishing is any one of grinding, abrasive jet, laser, ion beam, electrical discharge machining, or a combination thereof.
  • the rough machining is any one or a combination of machining, grinding, laser, electrochemical machining.
  • the micro-edge of the micro-edge cutting tool 200 is in direct contact with the processing surface of the material during the cutting process, and participates in the cutting process.
  • the cutting edge 23 When the cutting edge 23 is in contact with the processing material, as the tool rotates, the cutting edge 23 will The micro-edges form micron-scale irregular scratches on the machined surface, and the cutting edges 23 are plural, and the machining area is partially overlapped, and all the micro-edges on the cutting edges 23 cause the scratches on the machined material to repeat for many times (as shown in FIG. 6 ), a form similar to abrasive grains and material processing in grinding is formed, that is, the micro-edge cutting tool 200 can perform micro-grinding on materials, combined with milling of the tool, and multi-edge paths in the processing process.
  • the use of the above-mentioned micro-edge cutting tool 200 can simultaneously realize the composite processing of milling and grinding, so as to achieve high surface quality and low damage ultra-finishing for hard and brittle materials such as graphite, ceramics, sapphire, and glass. .
  • the micro-edge cutting tool 200 is a flat-bottom milling cutter, the cutting edge is a long straight edge, and its structural parameters conform to the definitions in Embodiment 1.
  • the utility model realizes cutting and grinding compound machining, which not only has the flexibility and high efficiency of milling machining, but also has the high precision of grinding machining.
  • the cutting edge is not so sharp compared with the existing cutting tools, it is not easy to chip and bulge when machining the workpiece, and the wear is relatively small, which prolongs the service life of the micro-edge cutting tool.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)

Abstract

一种微刃切削刀具及其制造方法,微刃切削刀具(100)包括刀柄(2)及与其连接的刀头(1),刀头(1)的一端具有复数个切削刃(3),切削刃(3)的刃口在宏观上为长直刃或者曲线刃,在微观上具有随机分布的不规则锯齿状的微刃(5),微刃(5)的宽度和深度的范围均为5μm~20μm,相邻的两个切削刃之间具有排屑槽(4)。微刃切削刀具在宏观上进行铣削加工,在微观下,刃口上分布的不规则微小锯齿模拟磨削加工特性对材料进行微量磨削,复数个切削刃在加工中进行去除路径多次重叠,两种加工方式复合实现难加工硬脆材料的超精加工。

Description

一种微刃切削刀具及其制造方法 技术领域
本发明涉及切削刀具技术领域,具体地来说,是一种微刃切削刀具及其制造方法。
背景技术
高速切削加工技术是一项集高效、优质、低耗于一身的先进制造技术,切削刀具是高速切削的关键;高速切削刀具包括硬质合金、涂层刀具、陶瓷、立方氮化硼和金刚石刀具等。其中,刀具切削刃是在切削加工中与材料直接接触的部分,切削刃的形式对其物理性能和切削性能起到至关重要的作用,是影响加工质量及刀具寿命影响的关键。
在刀具的制造过程中,刃磨是获得成品刀具必须经过的一道加工工序。刃磨是在加工出刀具基本形状后,对刀具切削刃进行精加工,以获得高质量高直线度高完整度以及合适的几何角度的一种加工工序;传统刃磨通常使用砂轮进行磨削加工,现在随着技术的发展还可以使用磨料射流、激光、离子束、电化学等方法进行加工。
随着现代技术的发展,制造业也在高速发展,对零件的材料选择和加工质量要求越来越高,加工件表面质量要达到纳米级粗糙度,加工尺寸也越来越小,这对加工刀具提出了更高的要求。普遍使用的加工刀具已经无法实现超精加工要求,因此对新的刀具形貌设计及制造方法提出了新的要求。要实现超精加工,切削刃的设计和加工方法选择尤为重要,理论上,要获得高加工质量高寿命的刀具,切削刃必须具有高直线度及高完整度,即在宏观条件下,切削刃呈长直刃或者大曲率曲线刃,在微观下呈现高精度直刃,刃口越锋利越好且不能有崩 缺及凸起,这样才不会使加工表面形成损伤。但是实际上在加工中,切削刃与工件呈线接触形式,过于锋利的刀具在接触的一瞬间切削刃会受到瞬时机械冲击的作用,在这种极大的力的作用下刃口极容易直接崩缺,因此在实际加工过程中通常需要给刀具切削刃进行倒圆角的设计,就是让刃口拥有一定的圆弧度,使刀具的切削刃不会在接触到材料的一瞬间产生崩缺。但是切削刃圆角设计在某种程度上是降低了刀具锋利度的。
为实现刀具既有较高的锋利度又有高的刚度,实现刀具质量与寿命的统一,很多学者都对刀具切削刃进行了大量的研究,但是查阅文献可知,现有对刀具切削刃的设计都集中在宏观刃口设计上,包括刀具前后角度、断屑槽、前后刀面微结构等,对刃口的加工质量要求追求高直线度及钝圆形式与半径设计,并未对刃口的微观形貌进行详细的研究。
发明内容
基于此,有必要针对上述技术问题,提出一种微刃切削刀具及制造方法,实现针对石墨、陶瓷、蓝宝石、玻璃等难加工硬脆材料高表面质量、低损伤的超精加工。
上述目的通过以下方案实现:
一种微刃切削刀具,其包括刀柄及与其连接的刀头,所述刀头上设置有复数个切削刃,所述切削刃的刃口在宏观上呈现为长直刃或者曲线刃,在微观上具有随机分布的不规则的锯齿状的微刃,所述微刃的宽度和深度为5μm~20μm,相邻的两个所述切削刃之间具有排屑槽。
进一步的,所述微刃用于在切削过程中与材料加工面直接接触,并参与切削过程。
进一步的,所述切削刃的刃宽为0.015mm~0.05mm,所述切削刃的深度为 1mm~4mm。
进一步的,所述切削刃的数量为8~100个。
进一步的,所述切削刃的前角为~10°~+10°,所述切削刃的后角为15°~50°。
进一步的,所述微刃切削刀具为球刀、圆鼻刀、平底刀、侧铣刀、倒角刀中的一种。
进一步的,所述刀头的材质为PCD、MCD、PCBN、硬质合金、陶瓷中的一种。
进一步的,所述刀头的外径为1mm~25mm。
一种所述微刃切削刀具的制造方法,包括以下步骤:
确定微刃切削刀具整体刀具结构,选择切削刃的刃型及参数;
对刀头胚料进行粗加工,获得具有复数个切削刃的刀头,所述切削刃的刃口在宏观上为长直刃或者曲线刃;
对所述切削刃进行精加工,在切削刃刃口加工出微观上呈现随机分布的不规则锯齿状的微刃,所述微刃的宽度和深度均为5μm~20μm。
进一步的,所述精加工为磨削、磨料射流、激光、离子束、电火花加工任意一种或其组合加工。
有别于传统切削刀具一味追求切削刃直线度及精度,使刀具在加工中受到大的瞬时冲击而降低加工质量和寿命,而本发明结合铣削与磨削的加工特点,使切削刀具在宏观上保持一定的直线度(宏观上无锯齿),在微观下(微米级尺度)具有随机分布的不规则锯齿状的微刃。
本发明的微刃切削刀具包括了复数个切削刃,所述切削刃在宏观上进行铣削加工,在加工中进行去除路径多次重叠,而在微观下,刃口上分布的不规则 微小锯齿状的微刃模拟磨削加工特性对材料进行微量磨削,所述微刃的宽度和深度均在5μm~20μm范围内,相对于普通的铣刀加工,加工材料后续磨削耗时较短,且微刃位于切削刃上,相对更适于进行复杂零件的加工,所以两种加工方式复合可实现难加工硬脆材料的超精加工。此外,由于所述微刃切削刀具具有复数个切削刃,在刀具旋转一周且切削量一定时,相对于切削刃数量较少的刀具,其单个切削刃的切削量降低;同时,刃口在微观下具有随机分布不规则的锯齿状微刃,其相对来说没有那么锋利,所以不易出现崩缺,进而提高了所述微刃切削刀具的使用寿命。
附图说明
图1为实施例1中的微刃切削刀具结构示意图;
图2为图1中俯视图;
图3为图2的A~A截面的剖视图;
图4为图3中S处的放大图;
图5为图1中微刃切削刀具的SEM图;
图6为实施例3中的微刃切削刀具在切削过程中材料表面划痕示意图;
图中,100~微刃切削刀具,1~刀头,2~刀柄,3~切削刃,4~排屑槽,5~微刃,200~微刃切削刀具,21~刀头,23~切削刃。
具体实施方式
为使本实用新型的上述目的、特征和优点能够更加明显易懂,下面结合附图对本实用新型的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本实用新型。但是本实用新型能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本实用新型内涵的情况下 做类似改进,因此本实用新型不受下面公开的具体实施的限制。
需要说明的是,当元件被称为“固定于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
实施例1
请结合参考图1~4,本实施例中提供一种微刃切削刀具100,包括刀柄2和与其连接的刀头1,且所述刀头1上具有复数个切削刃3,相邻两个切削刃3之间形成排屑槽4,所述排屑槽4用于及时排出切削加工产生的切屑;所述切削刃3的刃口在宏观上呈曲线刃,在微观上具有随机分布的不规则的锯齿状的微刃5,即不借助放大工具时(即宏观上观察),所述切削刃3的刃口呈曲线,无缺口,但经放大后,在微米级尺寸下(即微观上观察),刃口上具有锯齿状的微刃5,且两相邻所述微刃5之间的间距可相等,也可不等(即微刃5在所述刃口上随机分布),以及各微刃5的尺寸不完全相同(即微刃5是不规则的)。所述微刃的宽度和深度的均在5μm~20μm范围内,所述微刃的宽度,具体是指锯齿状微刃的底端的宽度,所述微刃的深度是指锯齿状微刃的顶端至底端的垂直距离。 上述微刃5的尺寸过小时起不到磨削的效果,引起加工精度下降,而微刃5尺寸过大会导致切削效果较差,所以将微刃5的尺寸限定在5μm~20μm范围内,从而保证磨削的效果,进而提高加工精度,同时保证切削的效果。而且所述微刃切削刀具100具有复数个切削刃3,相对于切削刃数量较少的刀具,其减少了单刃切削量,每个切削刃3相对磨损较少;同时刃口上在微观尺度下具有随机分布不规则的锯齿状的微刃,因此其相对来说没有那么锋利,不易出现崩缺,所以延长了所述微刃切削刀具100的使用寿命。当然在其他实施例中,所述切削刃的刃口在宏观上也可为长直刃。
有别于传统铣削刀具一味追求切削刃直线度及精度,上述微刃切削刀具100宏观上还是保持一定的直线度,微观上切削刃3的刃口上具有一定尺寸随机分布的不规则锯齿状的微刃5,加工工件时,所述微刃用于在切削过程中与材料加工面直接接触,并参与切削过程;由于加工区域的部分重叠,导致刀头1上的微刃在加工材料上形成多个划痕,形成类似磨削加工中磨粒与材料加工的形式,即所述微刃切削刀具100能够对加工材料进行微量磨削,结合刀具的铣削,使用上述微刃切削刀具100加工时能够同时实现铣削和磨削的复合加工;普通铣刀加工材料后,需要辅助磨削加工以提高加工精度,但磨削耗时较长,而且磨削加工范围与路径有一定的局限性,不适合进行复杂零件的加工;相对于上述普通铣刀加工,由于本实施例中的所述微刃切削刀具100能够同时实现铣削与磨削的复合加工,相对减少了后续的磨削加工的时间,以及微刃位于切削刃的刃口上,拓展了磨削的加工范围和路径,相对更适合进行复杂零件的加工,从而实现针对石墨、陶瓷、蓝宝石、玻璃等难加工硬脆材料高表面质量、低损伤的超精加工。
请参见图2,该实施例中所述微刃切削刀具100的切削刃3是曲线刃,无缺 口(宏观观察);如图5所示,所述微刃切削刀具100刃口上随机分布有不规则的锯齿状的微刃5(微观观察),当加工工件时,这些微刃5可起到微量磨削的作用。
进一步的,参见图4,切削刃的深度a为1mm~4mm,切削刃的深度过大将导致微刃起不到磨削的效果,进而影响加工精度,而切削刃的深度过小会导致切削效果较差,所以本实施例中把切削刃的深度范围设定为1mm~4mm,既能保证较高的加工精度,也可达到较佳的切削效果。
进一步的,所述切削刃3的数量为8~100个。切削刃数量过多将提高刀具加工难度,过少会降低切削效果。适当增加切削刃的数量,可使得切削刃在加工中的去除路径多次重叠,进而增强微刃磨削的效果,提高加工精度,以及减少单刃切削量,降低刀具磨损程度。
进一步的,如图1所示,所述微刃切削刀具100为圆鼻刀。当然在其他实施方式中,也可为球刀、平底刀、侧铣刀、倒角刀中的一种。
进一步的,如图1所示,所述刀头1的外径d为1mm~25mm。刃长L为1.0mm~4.0mm,刃长是指切削刃3的刃口长度,其处于前述理想范围,保证切削刃3的有效作用范围,使之具有理想的切削效率。
进一步的,如图4所示,所述切削刃3的前角α 0为~10°~+10°,所述切削刃的后角γ 0为15°~50°。
进一步的,请参见图4,所述切削刃的刃宽b为0.015~0.05mm。刃宽是指切削刃3的刃口宽度,其处于前述理想范围,既能保证切削刃3的强度,使之具有较佳的使用寿命,又能保证较佳的切削效率。
进一步的,所述微刃切削刀具100的刀头1的材质为PCD,当然,在其他实施方式中,也可为MCD、PCBN、硬质合金、陶瓷中的一种。
进一步的,所述刀头1的螺旋角为0~65°。所述刀头1的螺旋角即切削刃3的螺旋角,是指切削刃3的螺旋角度。具体的,当所述微刃切削刀具为球刀时,球刀上的副切削刃的螺旋角可为0°。
为对比本实施例中的微刃切削刀具的加工性能,对比例采用范霍恩金刚石涂层铣刀(荷兰范霍恩硬质合金刀具公司,标记为2#)和IMC涂层铣刀(德国来宝IMC,标记为3#),上述两种刀具均为石墨加工中常用刀具,使用上述两种刀具和本实施例中微刃切削刀具100(标记为1#)在相同试验条件下对POCO~XL石墨进行平面铣削加工,测试结果如下表1所示。(其中,1#的型号:
Figure PCTCN2021122299-appb-000001
Figure PCTCN2021122299-appb-000002
2#的型号:VHGTC304006004L20,3#的型号:IMCVHGSB042060)
表1 1#~3#测试结果对比
Figure PCTCN2021122299-appb-000003
从表1中可知,相同的主轴转速下,1#刀具(本实施例的微刃切削刀具100),累积加工3520m的石墨试坯时,所述微刃切削刀具仍旧未失效,且此时Z向轮廓度偏差仅为0.026mm(Z向轮廓度偏差常作为判断刀具磨损的定性指标,且该值达到0.04mm时即认定刀具失效),以及加工面表面粗糙度Ra仅为0.1935μm;而2#刀具,累积加工880m的石墨试坯时Z向轮廓度偏差已达到0.04mm,即2#刀具失效,以及加工面表面粗糙度Ra已经达到了0.2640μm;对于3#刀具,累积加工1540m的石墨试坯时Z向轮廓度偏差已达到0.1mm,即3#刀具失效, 以及加工面表面粗糙度Ra达到了0.1580μm。即本实施例中的微刃切削刀具100相对于上述2#和3#刀具,加工精度有一定程度的改善,且使用寿命得到很大的提高。
实施例2
本实施例公开一种微刃切削刀具的加工方法,该加工方法包括以下步骤:
确定微刃切削刀具的整体刀具结构,然后选择切削刃的刃型及参数,所述参数包括螺旋角、钻尖角度、刃长、槽长等;
对刀头胚料进行粗加工,获得具有复数个切削刃的刀头,所述切削刃的刃口在宏观上为长直刃或者曲线刃;
对所述切削刃进行精加工,在切削刃刃口加工出微观上呈现随机分布的不规则锯齿状的微刃,所述微刃的宽度和深度的范围均为5μm~20μm。
通过控制相关加工参数,即可通过上述制造方法得到所述微刃切削刀具。
进一步的,所述精加工为磨削、磨料射流、激光、离子束、电火花加工任意一种或其组合加工。
进一步的,所述粗加工为机械加工、磨削加工、激光、电化学任意一种或其组合加工。
实施例3
在该实施例中,微刃切削刀具200的微刃在切削过程中与材料加工面直接接触,并参与切削过程,切削刃23与加工材料接触时,随着刀具旋转,所述切削刃23上的微刃在加工面上形成微米尺度不规则划痕,而且切削刃23为复数个,以及加工区域的部分重叠,所述切削刃23上的所有微刃引起加工材料上的划痕多次重复(如图6所示),形成类似磨削加工中磨粒与材料加工的形式,即所述微刃切削刀具200能够对材料进行微量磨削,结合刀具的铣削,且加工过 程中多刃路径叠加进行加工,使用上述微刃切削刀具200加工时能够同时实现铣削和磨削的复合加工,从而实现针对石墨、陶瓷、蓝宝石、玻璃等难加工硬脆材料高表面质量、低损伤的超精加工。
在该实施例中,所述微刃切削刀具200为平底铣刀,切削刃为长直刃,且其结构参数符合实施例1中的限定。
本实用新型实现切削磨削复合加工,既具有铣削加工的灵活性与高效率,又具有磨削加工的高精度,两种加工方式复合可以高效高质实现难加工硬脆材料的超精加工。而且刃口相对现有的刀具并没有那么锋利,加工工件时不易崩缺和凸起,且相对磨损较少,延长了微刃切削刀具的使用寿命。
以上所述实施例仅表达了本实用新型的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对实用新型专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本实用新型构思的前提下,还可以做出若干变形和改进,这些都属于本实用新型的保护范围。因此,本实用新型专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种微刃切削刀具,其包括刀柄及与其连接的刀头,所述刀头上设置有复数个切削刃,其特征在于:所述切削刃的刃口在宏观上呈现为长直刃或者曲线刃,在微观上具有随机分布不规则的锯齿状的微刃,所述微刃的宽度和深度的范围均为5μm~20μm,相邻的两个所述切削刃之间具有排屑槽。
  2. 根据权利要求1所述的微刃切削刀具,其特征在于,所述微刃用于在切削过程中与材料加工面直接接触,并参与切削过程。
  3. 根据权利要求1所述的微刃切削刀具,其特征在于,所述切削刃的刃宽为0.015mm~0.05mm,所述切削刃的深度为1mm~4mm。
  4. 根据权利要求1所述的微刃切削刀具,其特征在于,所述切削刃的数量为8~100个。
  5. 根据权利要求1所述的微刃切削刀具,其特征在于,所述切削刃的前角的范围为~10°~+10°,所述切削刃的后角的范围为15°~50°。
  6. 根据权利要求1所述的微刃切削刀具,其特征在于,所述微刃切削刀具为球刀、圆鼻刀、平底刀、侧铣刀、倒角刀中的一种。
  7. 根据权利要求1所述的微刃切削刀具,其特征在于,所述刀头的材质为PCD、MCD、PCBN、硬质合金、陶瓷中的一种。
  8. 根据权利要求1所述的微刃切削刀具,其特征在于,所述刀头的外径为1mm~25mm。
  9. 一种如权利要求1所述的微刃切削刀具的制造方法,其特征在于,包括以下步骤:
    确定微刃切削刀具的整体刀具结构,选择切削刃的刃型及参数;
    对刀头胚料进行粗加工,获得具有复数个切削刃的刀头,所述切削刃的刃口在宏观上为长直刃或者曲线刃;
    对所述切削刃进行精加工,在切削刃的刃口上加工出微观上呈现随机分布的不规则锯齿状的微刃,所述微刃的宽度和深度的范围均为5μm~20μm。
  10. 根据权利要求9所述的微刃切削刀具的制造方法,其特征在于,所述精加工为磨削、磨料射流、激光、离子束、电火花加工任意一种或其组合加工。
PCT/CN2021/122299 2020-10-26 2021-09-30 一种微刃切削刀具及其制造方法 WO2022089158A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011158325.4 2020-10-26
CN202011158325.4A CN112355373A (zh) 2020-10-26 2020-10-26 一种微刃切削刀具及其制造方法

Publications (1)

Publication Number Publication Date
WO2022089158A1 true WO2022089158A1 (zh) 2022-05-05

Family

ID=74510512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122299 WO2022089158A1 (zh) 2020-10-26 2021-09-30 一种微刃切削刀具及其制造方法

Country Status (2)

Country Link
CN (1) CN112355373A (zh)
WO (1) WO2022089158A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112355373A (zh) * 2020-10-26 2021-02-12 广东工业大学 一种微刃切削刀具及其制造方法
CN113695653B (zh) * 2021-09-07 2024-04-02 瑞声精密制造科技(常州)有限公司 一种球头铣刀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132725A (ja) * 2011-12-27 2013-07-08 Univ Of Shiga Prefecture 切っ先部を備える工具、切っ先部を備える工具の製造方法、及び切っ先部を備える工具の製造中間体の製造方法
CN108941715A (zh) * 2018-06-29 2018-12-07 南京航空航天大学 一种cvd金刚石微铣刀的制备方法
CN108994556A (zh) * 2018-09-25 2018-12-14 汇专科技集团股份有限公司 整体式多刃轮廓刀的加工方法
CN111376396A (zh) * 2020-03-25 2020-07-07 广东工业大学 一种多刃超硬刀具铣削加工硬脆材料的加工方法
CN111497035A (zh) * 2020-03-25 2020-08-07 广东工业大学 一种实现以铣代磨加工的pcd刀具、其制备方法及应用
CN112355373A (zh) * 2020-10-26 2021-02-12 广东工业大学 一种微刃切削刀具及其制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202715874U (zh) * 2012-06-06 2013-02-06 沈阳飞机工业(集团)有限公司 鱼鳞齿铣刀
JP5683640B2 (ja) * 2013-05-20 2015-03-11 日本航空電子工業株式会社 刃物工具
KR102217842B1 (ko) * 2016-03-31 2021-02-19 가부시끼가이샤 후지세이사쿠쇼 기계 가공 공구의 칼날부 구조 및 그 표면 처리 방법
CN108262511A (zh) * 2016-12-30 2018-07-10 李仕清 一种铣刀
KR102105942B1 (ko) * 2017-02-14 2020-04-29 쓰리엠 이노베이티브 프로퍼티즈 캄파니 엔드 밀링에 의해 제조되는 미세구조체의 그룹을 포함하는 보안 물품
CN207806727U (zh) * 2017-11-27 2018-09-04 贺州学院 一种薄壁零件加工专用铣刀及铝合金外壳
CN207997452U (zh) * 2018-03-13 2018-10-23 昆山安飞特新材料刀具有限公司 一种适用于石墨电极加工的金刚石涂层圆鼻铣刀
CN109352838A (zh) * 2018-09-27 2019-02-19 基准精密工业(惠州)有限公司 圆鼻刀

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013132725A (ja) * 2011-12-27 2013-07-08 Univ Of Shiga Prefecture 切っ先部を備える工具、切っ先部を備える工具の製造方法、及び切っ先部を備える工具の製造中間体の製造方法
CN108941715A (zh) * 2018-06-29 2018-12-07 南京航空航天大学 一种cvd金刚石微铣刀的制备方法
CN108994556A (zh) * 2018-09-25 2018-12-14 汇专科技集团股份有限公司 整体式多刃轮廓刀的加工方法
CN111376396A (zh) * 2020-03-25 2020-07-07 广东工业大学 一种多刃超硬刀具铣削加工硬脆材料的加工方法
CN111497035A (zh) * 2020-03-25 2020-08-07 广东工业大学 一种实现以铣代磨加工的pcd刀具、其制备方法及应用
CN112355373A (zh) * 2020-10-26 2021-02-12 广东工业大学 一种微刃切削刀具及其制造方法

Also Published As

Publication number Publication date
CN112355373A (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
JP5764181B2 (ja) 硬質皮膜被覆切削工具
WO2022089158A1 (zh) 一种微刃切削刀具及其制造方法
TWI436840B (zh) Ball cutter
WO2021208485A1 (zh) 微纳织构超硬刀具刀头及其激光辅助磨削复合加工方法
CN105665805B (zh) 一种淬硬钢模具专用可转位冠球头铣刀
CN202291454U (zh) 凹槽定位式焊接聚晶金刚石车铣刀片
JPS59214501A (ja) 切削工具
CN214392488U (zh) 一种用于复合材料钻孔用环形刀具
WO2021190529A1 (zh) 一种实现以铣代磨加工的pcd刀具、其制备方法及应用
TWM447808U (zh) 捨棄式鑽石刀具
CN212734210U (zh) 一种微纳织构超硬刀具刀头
JP2010240818A (ja) ニック付きエンドミル
TWI775155B (zh) 旋轉切削工具
JP2013233643A (ja) ラジアスエンドミル
JP6212863B2 (ja) ラジアスエンドミル
CN212551773U (zh) 切削加工软橡胶的车刀及其车床
CN113649633A (zh) 一种用于精加工航天材料的波纹螺旋铣刀
JP2013013962A (ja) Cbnエンドミル
KR102470286B1 (ko) 경면 가공 방법 및 경면 가공 공구
CN208879723U (zh) 一种用于加工镁合金的刀具
CN217290598U (zh) 一种焊片式金刚石立铣刀
JP6968933B2 (ja) カッターヘッド構造及び切削ツール
CN215090915U (zh) 大螺旋角型涂层精铣刀
CN103934484A (zh) 刀具工具
CN218744919U (zh) 不锈钢精加工用曲线刃可转位刀片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884887

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21884887

Country of ref document: EP

Kind code of ref document: A1