WO2022088086A1 - 光学成像***、取像模组及电子装置 - Google Patents

光学成像***、取像模组及电子装置 Download PDF

Info

Publication number
WO2022088086A1
WO2022088086A1 PCT/CN2020/125458 CN2020125458W WO2022088086A1 WO 2022088086 A1 WO2022088086 A1 WO 2022088086A1 CN 2020125458 W CN2020125458 W CN 2020125458W WO 2022088086 A1 WO2022088086 A1 WO 2022088086A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
imaging system
optical imaging
object side
optical
Prior art date
Application number
PCT/CN2020/125458
Other languages
English (en)
French (fr)
Inventor
王妮妮
刘彬彬
李明
Original Assignee
欧菲光集团股份有限公司
江西晶超光学有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 欧菲光集团股份有限公司, 江西晶超光学有限公司 filed Critical 欧菲光集团股份有限公司
Priority to PCT/CN2020/125458 priority Critical patent/WO2022088086A1/zh
Publication of WO2022088086A1 publication Critical patent/WO2022088086A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Definitions

  • the invention relates to the technical field of optical imaging, in particular to an optical imaging system, an imaging module and an electronic device.
  • An embodiment of the present application provides an optical imaging system, which includes sequentially from the object side to the image side:
  • At least one lens among the first lens to the fourth lens has a non-rotationally symmetrical aspheric surface
  • optical imaging system satisfies the following conditional formula:
  • BL is the shortest distance from the image side surface of the fourth lens to the imaging surface of the optical imaging system parallel to the optical axis
  • f is the effective focal length of the optical imaging system.
  • the above-mentioned optical imaging system realizes the lightness and thinness and short overall length of the imaging module through compact space arrangement and reasonable distribution of bending force, and has low optical sensitivity and excellent imaging quality;
  • the non-rotationally symmetrical aspheric surface increases the degree of freedom of the meridional plane and corrects the image quality, which can be mass-produced and processed to meet the current market demand.
  • it also includes:
  • a diaphragm is arranged between any two lenses among the first lens to the fourth lens.
  • the diaphragm can limit the amount of light passing through the optical imaging system.
  • the optical imaging system satisfies the following conditional formula:
  • bh is the maximum effective radius of the image side of the lens closest to the object side of the aperture
  • ah is the maximum effective radius of the object side of the lens closest to the object side of the aperture
  • the change of the refraction angle of the incident light is relatively moderate, which can prevent the refraction change from being too strong and cause more aberrations, and can realize a large angle of view.
  • the optical imaging system satisfies the following conditional formula:
  • hmax is the maximum effective radius of each surface of the first lens to the fourth lens
  • FOV is the maximum angle of view of the optical imaging system.
  • the optical imaging system satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • f34 is the combined focal length of the third lens and the fourth lens.
  • the optical imaging system satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system
  • FOV is the maximum field angle of the optical imaging system
  • the optical imaging system satisfies the following conditional formula:
  • V1 is the Abbe number of the first lens
  • V2 is the Abbe number of the second lens
  • V3 is the Abbe number of the third lens
  • V4 is the Abbe number of the fourth lens.
  • the optical imaging system satisfies the following conditional formula:
  • TTL is the distance on the optical axis from the object side of the first lens to the imaging surface of the optical imaging system
  • IMGH is half of the image height corresponding to the maximum angle of view of the optical imaging system.
  • An embodiment of the present application also provides an imaging module, including:
  • a photosensitive element, the photosensitive element is arranged on the image side of the optical imaging system.
  • the optical imaging system in the above-mentioned imaging module realizes the lightness and thinness and short overall length of the imaging module through compact spatial arrangement and reasonable distribution of bending force, and has low optical sensitivity and excellent imaging.
  • the degree of freedom of the meridional plane is increased and the image quality is corrected through the non-rotationally symmetrical aspheric surface, which can be mass-produced and processed to meet the current market demand.
  • An embodiment of the present application also provides an electronic device, including:
  • the image capturing module is installed on the casing.
  • the optical imaging system in the above electronic device realizes the lightness and thinness of the imaging module and the short overall length through compact spatial arrangement and reasonable distribution of bending force, and has low optical sensitivity and excellent imaging quality; At the same time, under the limited number of lenses, through the non-rotationally symmetrical aspheric surface, the degree of freedom of the meridional plane is increased and the image quality is corrected, which can be mass-produced and processed to meet the needs of the current market.
  • FIG. 1 is a schematic structural diagram of an optical imaging system according to a first embodiment of the present invention.
  • FIG. 2 is the case where the RMS spot diameter of the optical imaging system according to the first embodiment of the present invention is within the first quadrant.
  • FIG. 3 is a schematic structural diagram of an optical imaging system according to a second embodiment of the present invention.
  • FIG. 4 is a case where the RMS spot diameter of the optical imaging system according to the second embodiment of the present invention is within the first quadrant.
  • FIG. 5 is a schematic structural diagram of an optical imaging system according to a third embodiment of the present invention.
  • FIG. 6 is the case where the RMS spot diameter of the optical imaging system according to the third embodiment of the present invention is within the first quadrant.
  • FIG. 7 is a schematic structural diagram of an optical imaging system according to a fourth embodiment of the present invention.
  • FIG. 8 shows the case where the RMS spot diameter of the optical imaging system according to the fourth embodiment of the present invention is within the first quadrant.
  • FIG. 9 is a schematic structural diagram of an optical imaging system according to a fifth embodiment of the present invention.
  • FIG. 10 shows the case where the RMS spot diameter of the optical imaging system according to the fifth embodiment of the present invention is within the first quadrant.
  • FIG. 11 is a schematic structural diagram of an optical imaging system according to a sixth embodiment of the present invention.
  • FIG. 12 shows the case where the RMS spot diameter of the optical imaging system according to the sixth embodiment of the present invention is within the first quadrant.
  • FIG. 13 is a schematic structural diagram of an optical imaging system according to a seventh embodiment of the present invention.
  • FIG. 14 shows the case where the RMS spot diameter of the optical imaging system of the seventh embodiment of the present invention is within the first quadrant.
  • FIG. 15 is a schematic structural diagram of an electronic device according to an embodiment of the present invention.
  • the first lens L1 The first lens L1
  • the third lens L3 is the third lens L3
  • an embodiment of the present invention provides an optical imaging system 10 , which includes a first lens L1 having a bending force, a second lens L2 having a bending force, and a first lens having A triple lens L3 and a fourth lens L4 having a bending power.
  • the first lens L1 has an object side S1 and an image side S2; the second lens L2 has an object side S4 and an image side S5; the third lens L3 has an object side S6 and an image side S7; the fourth lens L4 has an object side S8 and an image side S9; At least one lens among the first lens L1 to the fourth lens L4 has a rotationally asymmetric aspheric surface.
  • optical imaging system 10 satisfies the following conditional formula:
  • BL is the shortest distance from the image side S9 of the fourth lens L4 to the imaging surface S12 of the optical imaging system 10 parallel to the optical axis direction
  • f is the effective focal length of the optical imaging system 10 .
  • the above-mentioned optical imaging system 10 realizes the lightness and thinness of the imaging module and the characteristics of short overall length, low optical sensitivity and excellent imaging quality through compact spatial arrangement and reasonable bending force distribution; and Under the limited number of lenses, the non-rotationally symmetrical aspheric surface increases the degree of freedom of the meridian plane and corrects the image quality, which can be mass-produced and processed to meet the needs of the current market.
  • the optical imaging system 10 further satisfies the following conditional formula: 0.539 ⁇ BL/f ⁇ 1.218; in this way, the back focal length of the optical imaging system 10 can be shortened, and the overall volume can be avoided to be too large, which is beneficial to be mounted on a miniaturized electronic device; at the same time, it can be The adjustment range of the auto focus assembly when the optical imaging system 10 is equipped with a photosensitive chip is increased. However, when the value of BL/f exceeds the above range, it is unfavorable to shorten the back focal length of the optical imaging system 10 , making the overall volume too large, and it is unfavorable to be mounted on a miniaturized electronic device.
  • the optical imaging system 10 further includes a stop STO.
  • the diaphragm STO is disposed between any two lenses among the first lens L1 to the fourth lens L4 , so that the diaphragm STO can limit the light passing amount of the optical imaging system 10 .
  • the optical imaging system 10 further includes an infrared filter L5, and the infrared filter L5 has an object side S10 and an image side S11.
  • the infrared filter L5 is arranged on the image side of the fourth lens L4 to filter out light in other wavelength bands such as visible light, and only let the infrared light pass through, so that the optical imaging system 10 can be used in a dark environment and other special application scenarios It can also be imaged below.
  • the first lens L1 , the second lens L2 , the third lens L3 and the fourth lens L4 are all made of plastic.
  • the lenses made of plastic can reduce the weight of the optical imaging system 10 and the production cost.
  • the first lens L1 , the second lens L2 , the third lens L3 and the fourth lens L4 are all made of glass.
  • the optical imaging system 10 can withstand higher temperatures and has better performance optical performance.
  • only the first lens L1 may be made of glass, and other lenses may be made of plastic.
  • the first lens L1 closest to the object side can better withstand the influence of the ambient temperature on the object side , and because the other lenses are made of plastic materials, the optical imaging system 10 maintains a low production cost.
  • the material of the first lens L1 is glass, and the materials of other lenses can be arbitrarily combined.
  • the optical imaging system 10 satisfies the following conditional formula:
  • bh is the maximum effective radius of the image side of the lens closest to the object side of the stop STO
  • ah is the maximum effective radius of the object side of the lens closest to the object side of the stop STO.
  • the optical imaging system 10 further satisfies the following conditional formula: 0.216 ⁇ bh-ah ⁇ 1.174; in this way, the change of the refraction angle of the incident light is relatively gentle, which can prevent the refraction change from being too strong and cause more aberrations, and can realize a large field of view horn.
  • the value of bh-ah exceeds the above-mentioned range, the change of the refraction angle of the incident light is too strong and more aberrations are likely to be generated.
  • the optical imaging system 10 satisfies the following conditional formula:
  • hmax is the maximum effective radius of each surface of the first lens L1 to the fourth lens L4
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the optical imaging system 10 further satisfies the following conditional formula: 0.01 mm/° ⁇ hmax/FOV ⁇ 0.013 mm/°; in this way, miniaturization and a large field of view can be achieved.
  • conditional formula 0.01 mm/° ⁇ hmax/FOV ⁇ 0.013 mm/°; in this way, miniaturization and a large field of view can be achieved.
  • hmax/FOV exceeds the above-mentioned range, it is disadvantageous to achieve miniaturization and a large angle of view of the optical imaging system 10 .
  • the optical imaging system 10 satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system 10
  • f34 is the combined focal length of the third lens L3 and the fourth lens L4.
  • the optical imaging system 10 further satisfies the following conditional formula: 0.13 ⁇ f/f34 ⁇ 0.983; in this way, through the distribution of the bending force, a large angle of view can be realized.
  • conditional formula 0.13 ⁇ f/f34 ⁇ 0.983
  • the optical imaging system 10 satisfies the following conditional formula:
  • f is the effective focal length of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the optical imaging system 10 further satisfies the following conditional formula: 0.01 mm/° ⁇ f/FOV ⁇ 0.015 mm/°; in this way, the large field of view and the effective focal length of the optical imaging system 10 can be balanced. However, when the value of f/FOV exceeds the above range, it is unfavorable to balance the large angle of view and the effective focal length of the optical imaging system 10 .
  • the optical imaging system 10 satisfies the following conditional formula:
  • V1 is the Abbe number of the first lens L1 under d light
  • V2 is the Abbe number of the second lens L2 under d light
  • V3 is the Abbe number of the third lens L3 under d light
  • V4 is the first Abbe number of four-lens L4 in d light.
  • the optical imaging system 10 further satisfies the following conditional formula: 46.755 ⁇ (V1+V2+V3+V4)/4 ⁇ 47.036; in this way, chromatic aberration can be corrected.
  • conditional formula 46.755 ⁇ (V1+V2+V3+V4)/4 ⁇ 47.036; in this way, chromatic aberration can be corrected.
  • the value of (V1+V2+V3+V4)/4 exceeds the above-mentioned range, it is disadvantageous to correct the chromatic aberration.
  • the optical imaging system 10 satisfies the following conditional formula:
  • TTL is the distance on the optical axis from the object side S1 of the first lens L1 to the imaging surface S12 of the optical imaging system 10
  • IMGH is half of the image height corresponding to the maximum angle of view of the optical imaging system 10 .
  • the optical imaging system 10 further satisfies the following conditional formula: 2.053 ⁇ TTL/IMGH ⁇ 3.608; in this way, the miniaturization of the imaging module can be realized.
  • TTL/IMGH exceeds the above range, it is not conducive to realizing the miniaturization of the image capturing module.
  • the optical imaging system 10 satisfies the following conditional formula:
  • L4S1C5 is the coefficient of the fourth term Zernike polynomial of the object side surface S8 of the fourth lens L4, and V4 is the Abbe number of the fourth lens L4.
  • the optical imaging system 10 further satisfies the following conditional formula: -0.08 ⁇ L4S1C5*V4 ⁇ 0.128; in this way, mutually orthogonal polynomials can be used to fit a non-rotationally symmetric aspheric surface inside the unit circle, in particular, the x-direction can be balanced by L4S1C5
  • the primary astigmatism and the use of materials with small dispersion can realize a free-form surface through a resin molding process, and improve the image quality of the optical imaging system 10 with a large field of view.
  • the optical imaging system 10 satisfies the following conditional formula:
  • L4S1C6 is the coefficient of the fifth term Zernike polynomial of the object side surface S8 of the fourth lens L4, and V4 is the Abbe number of the fourth lens L4.
  • the optical imaging system 10 further satisfies the following conditional formula: -7.041 ⁇ L4S1C6*V4 ⁇ -2.351; in this way, mutually orthogonal polynomials can be used to fit a non-rotationally symmetric aspheric surface inside the unit circle, in particular, the y-direction is balanced by L4S1C6
  • the primary astigmatism and the use of materials with small dispersion can enable the surface of any shape to be fitted with multiple base surfaces, thereby improving the image quality of the optical imaging system 10 with a large field of view.
  • the optical imaging system 10 satisfies the following conditional formula:
  • L4S1C2 is the coefficient of the first term of the Zernike polynomial of the object side surface S8 of the fourth lens L4
  • FOV is the maximum angle of view of the optical imaging system 10 .
  • the optical imaging system 10 further satisfies the following conditional formula: -30.626 ⁇ L4S1C2*FOV ⁇ -11.752; in this way, by increasing the meridional tilt control, the wide-angle and distortion of the optical imaging system 10 can be balanced.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a negative inflection force, a second lens L2 with a positive inflection force, and a positive inflection force.
  • the object side S1 of the first lens L1 is convex at the near optical axis
  • the image side S2 of the first lens L1 is concave at the near optical axis
  • the object side S4 of the second lens L2 is concave at the near optical axis
  • the second lens L2 is concave at the near optical axis.
  • the image side S5 of the lens L2 is convex at the near optical axis
  • the object side S6 of the third lens L3 is convex at the near optical axis
  • the image side S7 of the third lens L3 is convex at the near optical axis
  • the fourth lens L4 The object side S8 is convex at the near optical axis
  • the image side S9 of the fourth lens L4 is concave at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is concave near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 1 shows a table of characteristics of the optical imaging system 10 of the present embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 2 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surfaces in the first embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 3 gives the aspherical coefficients that can be used in the lens of the first embodiment for a rotational symmetry.
  • FIG. 2 shows the size of the RMS spot diameter of the optical imaging system in the first embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm. It can be seen from FIG. 2 that the optical imaging system provided in the first embodiment can achieve good imaging quality.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a negative inflection force, a second lens L2 with a positive inflection force, and a negative inflection force.
  • the object side S1 of the first lens L1 is concave at the near optical axis
  • the image side S2 of the first lens L1 is convex at the near optical axis
  • the object side S4 of the second lens L2 is convex at the near optical axis
  • the second lens L2 is convex at the near optical axis.
  • the image side S5 of the lens L2 is convex at the near optical axis
  • the object side S6 of the third lens L3 is convex at the near optical axis
  • the image side S7 of the third lens L3 is concave at the near optical axis
  • the fourth lens L4 The object side S8 is convex at the near optical axis
  • the image side S9 of the fourth lens L4 is concave at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is concave near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 4 shows a table of characteristics of the optical imaging system of the present embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 5 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surfaces in the second embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 6 gives the non-rotationally symmetric aspherical coefficients that can be used for the lenses in the second embodiment.
  • FIG. 4 shows the size of the RMS spot diameter of the optical imaging system in the second embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a negative inflection force, a second lens L2 with a positive inflection force, and a positive inflection force.
  • the object side S1 of the first lens L1 is convex at the near optical axis
  • the image side S2 of the first lens L1 is concave at the near optical axis
  • the object side S4 of the second lens L2 is convex at the near optical axis
  • the second lens L2 is convex at the near optical axis.
  • the image side S5 of the lens L2 is convex at the near optical axis
  • the object side S6 of the third lens L3 is convex at the near optical axis
  • the image side S7 of the third lens L3 is convex at the near optical axis
  • the fourth lens L4 The object side S8 is convex at the near optical axis
  • the image side S8 of the fourth lens L4 is concave at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is concave near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 7 shows a table of characteristics of the optical imaging system of this embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 8 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surface in the third embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 9 gives the aspherical coefficients that can be used in the third embodiment of the lens asymmetrically.
  • FIG. 6 shows the size of the RMS spot diameter of the optical imaging system in the third embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a negative inflection force, a second lens L2 with a positive inflection force, and a positive inflection force.
  • the object side S1 of the first lens L1 is concave at the near optical axis
  • the image side S2 of the first lens L1 is convex at the near optical axis
  • the object side S4 of the second lens L2 is convex at the near optical axis
  • the second lens L2 is convex at the near optical axis.
  • the image side S5 of the lens L2 is convex at the near optical axis
  • the object side S6 of the third lens L3 is convex at the near optical axis
  • the image side S7 of the third lens L3 is convex at the near optical axis
  • the fourth lens L4 The object side S8 is convex at the near optical axis
  • the image side S9 of the fourth lens L4 is concave at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is concave near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 10 shows a table of characteristics of the optical imaging system of this embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 11 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surfaces in the fourth embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 12 gives the aspherical coefficients that can be used for the lenses in the fourth embodiment, which are not rotationally symmetric.
  • FIG. 8 shows the size of the RMS spot diameter of the optical imaging system in the fourth embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm. It can be seen from FIG. 8 that the optical imaging system provided in the fourth embodiment can achieve good imaging quality.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a positive inflection force, a second lens L2 with a negative inflection force, and a positive inflection force.
  • the object side S1 of the first lens L1 is concave at the near optical axis
  • the image side S2 of the first lens L1 is convex at the near optical axis
  • the object side S4 of the second lens L2 is concave at the near optical axis
  • the second lens L2 is concave at the near optical axis.
  • the image side S5 of the lens L2 is concave at the near optical axis
  • the object side S6 of the third lens L3 is convex at the near optical axis
  • the image side S7 of the third lens L3 is convex at the near optical axis
  • the fourth lens L4 The object side S8 is convex at the near optical axis
  • the image side S9 of the fourth lens L4 is concave at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is concave near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 13 shows a table of characteristics of the optical imaging system of the present embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 14 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surface in the fifth embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 15 gives the aspherical coefficients that can be used for the lenses in the fifth embodiment, which are not rotationally symmetric.
  • FIG. 10 shows the size of the RMS spot diameter of the optical imaging system in the fifth embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm. It can be seen from Fig. 10 that the optical imaging system provided in the fifth embodiment can achieve good imaging quality.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a negative inflection force, a second lens L2 with a positive inflection force, and a positive inflection force.
  • the object side S1 of the first lens L1 is concave at the near optical axis
  • the image side S2 of the first lens L1 is convex at the near optical axis
  • the object side S4 of the second lens L2 is convex at the near optical axis
  • the second lens L2 is convex at the near optical axis.
  • the image side S5 of the lens L2 is convex at the near optical axis
  • the object side S6 of the third lens L3 is concave at the near optical axis
  • the image side S7 of the third lens L3 is convex at the near optical axis
  • the fourth lens L4 The object side S8 is convex at the near optical axis
  • the image side S9 of the fourth lens L4 is concave at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is concave near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 16 shows a table of characteristics of the optical imaging system of the present embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 17 gives the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surface in the sixth embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 18 gives the non-rotationally symmetric aspherical coefficients that can be used for the lenses in the sixth embodiment.
  • FIG. 12 shows the size of the RMS spot diameter of the optical imaging system in the sixth embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm. It can be seen from FIG. 12 that the optical imaging system provided in the sixth embodiment can achieve good imaging quality.
  • the optical imaging system 10 in this embodiment includes a diaphragm STO from the object side to the image side, a first lens L1 with a negative inflection force, a second lens L2 with a positive inflection force, and a positive inflection force.
  • the object side S1 of the first lens L1 is concave at the near optical axis
  • the image side S2 of the first lens L1 is concave at the near optical axis
  • the object side S4 of the second lens L2 is concave at the near optical axis
  • the second lens L2 is concave at the near optical axis.
  • the image side S5 of the lens L2 is convex at the near optical axis
  • the object side S6 of the third lens L3 is convex at the near optical axis
  • the image side S7 of the third lens L3 is convex at the near optical axis
  • the fourth lens L4 The object side S8 is concave at the near optical axis
  • the image side S9 of the fourth lens L4 is convex at the near optical axis.
  • the object side S1 of the first lens L1 is convex at the near circumference
  • the image side S2 of the first lens L1 is concave at the near circumference
  • the object side S4 of the second lens L2 is concave at the near circumference
  • the second lens L2 is concave at the near circumference.
  • the image side S5 is convex near the circumference
  • the object side S6 of the third lens L3 is convex near the circumference
  • the image side S7 of the third lens L3 is convex near the circumference
  • the object side S8 of the fourth lens L4 is near the circumference.
  • the circumference is concave
  • the image side S9 of the fourth lens L4 is convex near the circumference.
  • the light emitted or reflected by the subject enters the optical imaging system 10 from the object side direction, and sequentially passes through the diaphragm STO, the first lens L1, the second lens L2, and the third lens L3 , the fourth lens L4 and the infrared filter L5, and finally converge on the imaging surface S12.
  • Table 19 shows a table of characteristics of the optical imaging system of the present embodiment, the reference wavelength of focal length, refractive index and Abbe number is 587.56 nm, and the units of Y radius, thickness and focal length are all millimeters (mm).
  • f is the effective focal length of the optical imaging system 10
  • FNO is the aperture size of the optical imaging system 10
  • FOV is the maximum field angle of the optical imaging system 10 .
  • the rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • is the distance vector height of the aspheric surface from the vertex of the aspheric surface when the height is h along the optical axis;
  • k is the conic coefficient;
  • Ai is the i-th order coefficient of the aspheric surface.
  • Table 20 shows the higher order coefficients A4, A6, A8, A10, A12, A14, A16, A18 and A20 that can be used for the rotationally symmetric aspheric surface in the seventh embodiment.
  • the non-rotationally symmetric aspheric surface type in the first lens L1 to the fourth lens L4 is defined by the following formula:
  • Table 21 gives the aspherical coefficients that can be used for the lenses in the seventh embodiment of the present invention.
  • FIG. 14 shows the size of the RMS spot diameter of the optical imaging system in the seventh embodiment at different image height positions in the first quadrant, that is, the relationship between the RMS spot diameter and the real light image height.
  • the unit of the smallest RMS spot diameter is mm
  • the unit of the largest RMS spot diameter is mm
  • the unit of the mean value of the RMS spot diameter is mm
  • the unit of the standard deviation of the RMS spot diameter is mm. It can be seen from FIG. 14 that the optical imaging system provided in the seventh embodiment can achieve good imaging quality.
  • Table 22 shows BL/f, bh-ah, hmax/FOV, f/f34, f/FOV, (V1+V2+V3+V4)/4 in the optical imaging systems of the first to seventh embodiments , TTL/IMGH, L4S1C5*V4, L4S1C6*V4, and L4S1C2*FOV values.
  • the optical imaging system 10 of the embodiment of the present invention can be applied to the imaging module 100 of the embodiment of the present invention.
  • the imaging module 100 includes the photosensitive element 20 and the optical imaging system 10 of any of the above embodiments.
  • the photosensitive element 20 is provided on the image side of the optical imaging system 10 .
  • the photosensitive element 20 can be a complementary metal oxide semiconductor (CMOS, Complementary Metal Oxide Semiconductor) image sensor or a charge-coupled device (CCD, Charge-coupled Device).
  • CMOS complementary metal oxide semiconductor
  • CCD Charge-coupled Device
  • the optical imaging system 10 in the above-mentioned imaging module 100 realizes the lightness and thinness of the imaging module, has the characteristics of short overall length, and has low optical sensitivity and Excellent imaging quality; and under the limited number of lenses, through the non-rotationally symmetrical aspheric surface, the degree of freedom of the meridian plane is increased and the image quality is corrected, which can be mass-produced and processed to meet the needs of the current market.
  • the image capturing module 100 of the embodiment of the present invention can be applied to the electronic device 1000 of the embodiment of the present invention.
  • the electronic device 1000 includes a casing 200 and an imaging module 100 , and the imaging module 100 is installed on the casing 200 .
  • the electronic device 1000 of the embodiment of the present invention includes, but is not limited to, a driving recorder, a smart phone, a tablet computer, a notebook computer, an electronic book reader, a portable multimedia player (PMP), a portable telephone, a video telephone, and a digital still camera , mobile medical devices, wearable devices and other electronic devices that support imaging.
  • a driving recorder a smart phone
  • a tablet computer a notebook computer
  • an electronic book reader a portable multimedia player (PMP)
  • PMP portable telephone
  • video telephone a digital still camera
  • mobile medical devices wearable devices and other electronic devices that support imaging.
  • the optical imaging system 10 in the above-mentioned electronic device 1000 realizes the lightness and thinness of the imaging module and has the characteristics of short overall length, low optical sensitivity and excellent bending force distribution through compact space arrangement and reasonable bending force distribution. Image quality; and under the limited number of lenses, through the non-rotationally symmetrical aspheric surface, the degree of freedom of the meridian plane is increased and the image quality is corrected, which can be mass-produced and processed to meet the needs of the current market.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

一种光学成像***(10)、取像模组(100)及电子装置(1000)。光学成像***(10)由物侧到像侧依次包括:具有曲折力的第一透镜(L1);具有曲折力的第二透镜(L2);具有曲折力的第三透镜(L3);及有曲折力的第四透镜(L4);第一透镜(L1)至第四透镜(L4)中的至少一个透镜具有非旋转对称的非球面;光学成像***满足以下条件式:0≤BL/f≤2。光学成像***(10)通过紧凑的空间排布和合理的曲折力分配,实现了取像模组(100)的轻薄化及较短的总长,并具有较低的光学敏感度和优良的成像品质;同时,在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足了当前市场的需求。

Description

光学成像***、取像模组及电子装置 技术领域
本发明涉及光学成像技术领域,具体涉及一种光学成像***、取像模组及电子装置。
背景技术
随着手机、平板电脑、无人机、计算机等电子产品在生活中的广泛应用,各种科技产品逐渐改进并推陈出新,其中,电子产品拍摄效果的改进创新成为人们关注的重心之一。
在实现本申请过程中,发明人发现现有技术中至少存在如下问题:为扩大拍摄范围,轻薄化的光学成像***逐渐成为了市场趋势,但是,对于广角取像模组而言,实现轻薄化的同时保证高像素仍是改进难点。
发明内容
鉴于以上内容,有必要提出一种光学成像***、取像模组及电子装置,以解决上述问题。
本申请的一实施例提供了一种光学成像***,由物侧到像侧依次包括:
具有曲折力的第一透镜;
具有曲折力的第二透镜;
具有曲折力的第三透镜;及
具有曲折力的第四透镜;
所述第一透镜至所述第四透镜中的至少一个透镜具有非旋转对称非球面;
所述光学成像***满足以下条件式:
0≤BL/f≤2;
其中,BL为所述第四透镜的像侧面至所述光学成像***的成像面平行于光轴方向的最短距离,f为所述光学成像***的有效焦距。
上述的光学成像***通过紧凑的空间排布和合理的曲折力分配,实现了取像模组的轻薄化及较短的总长,并具有较低的光学敏感度和优良的成像品质;同时,在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足了当前市场的需求。
在一些实施例中,还包括:
光阑,设于所述第一透镜至所述第四透镜中的任意两个透镜之间。
如此,光阑可限制光学成像***的通光量。
在一些实施例中,所述光学成像***满足以下条件式:
0mm≤bh-ah≤2mm;
其中,bh为最靠近所述光阑物侧的透镜的像侧面的最大有效半径,ah为最靠近光阑物侧的透镜的物侧面的最大有效半径。
如此,入射光的折射角度变化较为缓和,可避免折射变化过于强烈而产生较多像差,并可实现大视场角。
在一些实施例中,所述光学成像***满足以下条件式:
0mm/°≤hmax/FOV≤0.5mm/°;
其中,hmax为所述第一透镜至所述第四透镜各个表面中的最大有效半径,FOV为所述光学成像***的最大视场角。
如此,可实现小型化及具有大视场角。
在一些实施例中,所述光学成像***满足以下条件式:
0≤f/f34≤1;
其中,f为所述光学成像***的有效焦距,f34为所述第三透镜和所述第四透镜的组合焦距。
如此,通过曲折力分布,可实现大视场角。
在一些实施例中,所述光学成像***满足以下条件式:
0mm/°≤f/FOV≤0.5mm/°;
其中,f为所述光学成像***的有效焦距,FOV为所述光学成像***的最大视场角。
如此,可平衡光学成像***的大视场角与有效焦距。
在一些实施例中,所述光学成像***满足以下条件式:
45≤(V1+V2+V3+V4)/4≤50;
其中,V1为所述第一透镜的阿贝数,V2为所述第二透镜的阿贝数,V3为所述第三透镜的阿贝数,V4为所述第四透镜的阿贝数。
如此,可修正色差。
在一些实施例中,所述光学成像***满足以下条件式:
2≤TTL/IMGH≤4;
其中,TTL为所述第一透镜的物侧面至所述光学成像***的成像面在光轴上的距离,IMGH为所述光学成像***的最大视场角所对应的像高的一半。
如此,可实现取像模组的小型化。
本申请的一实施例还提供了一种取像模组,包括:
上述的光学成像***;及
感光元件,所述感光元件设置在所述光学成像***的像侧。
上述取像模组中的光学成像***通过紧凑的空间排布和合理的曲折力分配,实现了取像模组的轻薄化及较短的总长,并具有较低的光学敏感度和优良的成像品质;同时,在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足了当前市场的需求。
本申请的一实施例还提供了一种电子装置,包括:
壳体;及
上述的取像模组,所述取像模组安装在所述壳体上。
上述电子装置中的光学成像***通过紧凑的空间排布和合理的曲折力分配,实现了取像模组的轻薄化及较短的总长,并具有较低的光学敏感度和优良的成像品质;同时,在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足了当前市场的需求。
附图说明
图1是本发明第一实施例的光学成像***的结构示意图。
图2是本发明第一实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图3是本发明第二实施例的光学成像***的结构示意图。
图4是本发明第二实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图5是本发明第三实施例的光学成像***的结构示意图。
图6是本发明第三实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图7是本发明第四实施例的光学成像***的结构示意图。
图8是本发明第四实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图9是本发明第五实施例的光学成像***的结构示意图。
图10是本发明第五实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图11是本发明第六实施例的光学成像***的结构示意图。
图12是本发明第六实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图13是本发明第七实施例的光学成像***的结构示意图。
图14是本发明第七实施例的光学成像***的RMS光斑直径在第一象限内的情况。
图15是本发明实施例的电子装置的结构示意图。
主要元件符号说明
电子装置                           1000
取像模组                           100
光学成像***                       10
第一透镜                           L1
第二透镜                           L2
第三透镜                           L3
第四透镜                           L4
红外滤光片                         L5
光阑                               STO
物侧面                             S1、S4、S6、S8、S10
像侧面                             S2、S5、S7、S9、S11
成像面                               S12
感光元件                             20
壳体                                 200
具体实施方式
下面详细描述本发明的实施方式,实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
请参见图1,本发明的实施例提出了一种光学成像***10,从物侧至像侧依次包括具有曲折力的第一透镜L1、具有曲折力的第二透镜L2、具有曲折力的第三透镜L3及具有曲折力的第四透镜L4。
第一透镜L1具有物侧面S1及像侧面S2;第二透镜L2具有物侧面S4及像侧面S5;第三透镜L3具有物侧面S6及像侧面S7;第四透镜L4具有物侧面S8及像侧面S9;第一透镜L1至第四透镜L4中的至少一个透镜具有非旋转对称非球面。
该光学成像***10满足以下条件式:
0≤BL/f≤2;
其中,BL为第四透镜L4的像侧面S9至光学成像***10的成像面S12平行于光轴方向的最短距离,f为光学成像***10的有效焦距。
上述光学成像***10通过紧凑的空间排布和合理的曲折力分配,实现了取像模组的轻薄化及具有总长较短的特点,具有较低的光学敏感度和优良的成像品质;并且在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足当前市场的需求。
其中,光学成像***10进一步满足以下条件式:0.539≤BL/f≤1.218;如此,可缩短光学成像***10的后焦长度,避免整体体积过大,利于搭载在小型化电子装置;同时,可增加光学成像***10搭载感光芯片时自动对焦组装的调整范围。然而,当BL/f的值超出上述范围时,不利于缩短光学成像***10的后焦长度,使得整体体积过大,不利于搭载在小型化电子装置。
在一些实施例中,光学成像***10还包括光阑STO。光阑STO设于第一透镜L1至第四透镜L4中的任意两个透镜之间,如此,光阑STO可限制光学成像***10的通光量。
在一些实施例中,光学成像***10还包括红外滤光片L5,红外滤光片L5具有物侧面S10及像侧面S11。红外滤光片L5设置在第四透镜L4的像侧,以滤除例如可见光等其他波段的光线,而仅让红外光通过,以使光学成像***10能够在昏暗的环境及其他特殊的应用场景下也能成像。
在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为塑料,此时,塑料材质的透镜能够减少光学成像***10的重量并降低生成成本。在一些实施例中,第一透镜L1、第二透镜L2、第三透镜L3及第四透镜L4的材质均为玻璃,此时,光 学成像***10能够耐受较高的温度且具有较好的光学性能。在另一些实施例中,也可以仅是第一透镜L1为玻璃材质,而其他透镜为塑料材质,此时,最靠近物侧的第一透镜L1能够较好地耐受物侧的环境温度影响,且由于其他透镜为塑料材质的关系,从而使光学成像***10保持较低的生产成本。在其他实施例中,第一透镜L1的材质为玻璃,其他透镜的材质可任意组合。
在一些实施例中,光学成像***10满足以下条件式:
0mm≤bh-ah≤2mm;
其中,bh为最靠近光阑STO物侧的透镜的像侧面的最大有效半径,ah为最靠近光阑STO物侧的透镜的物侧面的最大有效半径。
其中,光学成像***10进一步满足以下条件式:0.216≤bh-ah≤1.174;如此,入射光的折射角度变化较为缓和,可避免折射变化过于强烈而产生较多像差,并可实现大视场角。然而,当bh-ah的值超出上述范围时,入射光的折射角度变化过于强烈而容易产生较多像差。
在一些实施例中,光学成像***10满足以下条件式:
0mm/°≤hmax/FOV≤0.5mm/°;
其中,hmax为第一透镜L1至第四透镜L4各个表面中的最大有效半径,FOV为光学成像***10的最大视场角。
其中,光学成像***10进一步满足以下条件式:0.01mm/°≤hmax/FOV≤0.013mm/°;如此,可实现小型化及具有大视场角。然而,当hmax/FOV的值超出上述范围时,不利于实现光学成像***10的小型化及大视场角。
在一些实施例中,光学成像***10满足以下条件式:
0≤f/f34≤1;
其中,f为光学成像***10的有效焦距,f34为第三透镜L3和第四透镜L4的组合焦距。
其中,光学成像***10进一步满足以下条件式:0.13≤f/f34≤0.983;如此,通过曲折力分布,可实现大视场角。然而,当f/f34的值超出上述范围时,不利于实现大视场角。
在一些实施例中,光学成像***10满足以下条件式:
0mm/°≤f/FOV≤0.5mm/°;
其中,f为光学成像***10的有效焦距,FOV为光学成像***10的最大视场角。
其中,光学成像***10进一步满足以下条件式:0.01mm/°≤f/FOV≤0.015mm/°;如此,可平衡光学成像***10的大视场角与有效焦距。然而,当f/FOV的值超出上述范围时,不利于平衡光学成像***10的大视场角与有效焦距。
在一些实施例中,光学成像***10满足以下条件式:
45≤(V1+V2+V3+V4)/4≤50;
其中,V1为第一透镜L1在d光下的阿贝数,V2为第二透镜L2在d光下的阿贝数,V3为第三透镜L3在d光下的阿贝数,V4为第四透镜L4在d光下的阿贝数。
其中,光学成像***10进一步满足以下条件式:46.755≤(V1+V2+V3+V4)/4≤47.036;如此,可修正色差。然而,当(V1+V2+V3+V4)/4的值超出上述范围时,不利于修正色差。
在一些实施例中,光学成像***10满足以下条件式:
2≤TTL/IMGH≤4;
其中,TTL为第一透镜L1的物侧面S1至所述光学成像***10的成像面S12在光轴上的距离,IMGH为光学成像***10的最大视场角所对应的像高的一半。
其中,光学成像***10进一步满足以下条件式:2.053≤TTL/IMGH≤3.608;如此,可实现取像模组的小型化。然而,当TTL/IMGH的值超出上述范围时,不利于实现取像模组的小型化。
在一些实施例中,光学成像***10满足以下条件式:
-0.5≤L4S1C5*V4≤0.5;
其中,L4S1C5为第四透镜L4的物侧面S8的第四项泽尼克多项式的系数,V4为第四透镜L4的阿贝数。
其中,光学成像***10进一步满足以下条件式:-0.08≤L4S1C5*V4≤0.128;如此,可在单位圆内部使用相互正交多项式拟合非旋转对称非球面,特别地,通过L4S1C5可平衡x方向的初级像散,并采用色散小的材料,可通过树脂成型工艺实现自由曲面,并提高大视场角光学成像***10的像质。
在一些实施例中,光学成像***10满足以下条件式:
-10≤L4S1C6*V4≤0;
其中,L4S1C6为第四透镜L4的物侧面S8的第五项泽尼克多项式的系数,V4为第四透镜L4的阿贝数。
其中,光学成像***10进一步满足以下条件式:-7.041≤L4S1C6*V4≤-2.351;如此,可在单位圆内部使用相互正交多项式拟合非旋转对称非球面,特别地,通过L4S1C6平衡y方向的初级像散,并采用色散小的材料,可使任意形状的表面使用多个基面拟合,提高大视场角光学成像***10的像质。
在一些实施例中,光学成像***10满足以下条件式:
-40≤L4S1C2*FOV≤-10;
其中,L4S1C2为第四透镜L4的物侧面S8的第一项泽尼克多项式的系数,FOV为光学成像***10的最大视场角。
其中,光学成像***10进一步满足以下条件式:-30.626≤L4S1C2*FOV≤-11.752;如此,通过增加子午方向倾斜控制,可平衡光学成像***10的广角性和畸变。
第一实施例
请参见图1,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有负曲折力的第一透镜L1、具有正曲折力的第二透镜L2、具有正曲折力的第三透镜L3、具有负曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凸面,第一透镜L1的像侧面S2在近光轴处为凹面,第二透镜L2的物侧面S4在近光轴处为凹面,第二透镜L2的像侧面S5在近光轴处为凸面,第三透镜L3的物侧面S6在近光轴处为凸面,第三透镜L3的像侧面S7在近光轴处为凸 面,第四透镜L4的物侧面S8在近光轴处为凸面,第四透镜L4的像侧面S9在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为凸面,第三透镜L3的物侧面S6在近圆周处为凹面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像***10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格1示出了本实施例的光学成像***10的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格1
Figure PCTCN2020125458-appb-000001
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000002
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c 0为旋转对称非球面的近轴曲率,c 0=1/R(即,近轴曲率c 0为表2中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表2给出了可用于第一实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表2
Figure PCTCN2020125458-appb-000003
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000004
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000005
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表3给出了可用于第一实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表3
Figure PCTCN2020125458-appb-000006
Figure PCTCN2020125458-appb-000007
图2示出了第一实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图2中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图2可知,第一实施例中所给出的光学成像***能够实现良好的成像品质。
第二实施例
请参见图3,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有负曲折力的第一透镜L1、具有正曲折力的第二透镜L2、具有负曲折力的第三透镜L3、具有正曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凹面,第一透镜L1的像侧面S2在近光轴处为凸面,第二透镜L2的物侧面S4在近光轴处为凸面,第二透镜L2的像侧面S5在近光轴处为凸面,第三透镜L3的物侧面S6在近光轴处为凸面,第三透镜L3的像侧面S7在近光轴处为凹面,第四透镜L4的物侧面S8在近光轴处为凸面,第四透镜L4的像侧面S9在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为凸面,第三透镜L3的物侧面S6在近圆周处为凹面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像***10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格4示出了本实施例的光学成像***的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格4
Figure PCTCN2020125458-appb-000008
Figure PCTCN2020125458-appb-000009
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000010
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c 0为旋转对称非球面的近轴曲率,c 0=1/R(即,近轴曲率c 0为表5中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表5给出了可用于第二实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表5
Figure PCTCN2020125458-appb-000011
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000012
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000013
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表6给出了可用于第二实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表6
Figure PCTCN2020125458-appb-000014
图4示出了第二实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图4中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图4可知,第二实施例中所给出的光学成像***能够实现良好的成像品质。
第三实施例
请参阅图5,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有负曲折力的第一透镜L1、具有正曲折力的第二透镜L2、具有正曲折力的第三透镜L3、具有负曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凸面,第一透镜L1的像侧面S2在近光轴处为凹面,第二透镜L2的物侧面S4在近光轴处为凸面,第二透镜L2的像侧面S5在近光轴处为凸面,第三透镜L3的物侧面S6在近光轴处为凸面,第三透镜L3的像侧面S7在近光轴处为凸面,第四透镜L4的物侧面S8在近光轴处为凸面,第四透镜L4的像侧面S8在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为 凸面,第三透镜L3的物侧面S6在近圆周处为凹面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像***10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格7示出了本实施例的光学成像***的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格7
Figure PCTCN2020125458-appb-000015
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000016
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c 0为旋转对称非球面的近轴曲率,c 0=1/R(即,近轴曲率c 0为表8中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表8给出了可用于第三实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表8
Figure PCTCN2020125458-appb-000017
Figure PCTCN2020125458-appb-000018
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000019
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000020
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表9给出了可用于第三实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表9
Figure PCTCN2020125458-appb-000021
图6示出了第三实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图6中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图6可知,第三实施例中所给出的光学成像***能够实现良好的成像品质。
第四实施例
请参阅图7,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有负曲折力的第一透镜L1、具有正曲折力的第二透镜L2、具有正曲折力的第三透镜L3、具有负曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凹面,第一透镜L1的像侧面S2在近光轴处为凸面,第二透镜L2的物侧面S4在近光轴处为凸面,第二透镜L2的像侧面S5在近光轴处为凸面,第三透镜L3的物侧面S6在近光轴处为凸面,第三透镜L3的像侧面S7在近光轴处为凸面,第四透镜L4的物侧面S8在近光轴处为凸面,第四透镜L4的像侧面S9在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为凸面,第三透镜L3的物侧面S6在近圆周处为凹面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像***10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格10示出了本实施例的光学成像***的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格10
Figure PCTCN2020125458-appb-000022
Figure PCTCN2020125458-appb-000023
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000024
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c 0为旋转对称非球面的近轴曲率,c 0=1/R(即,近轴曲率c 0为表11中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表11给出了可用于第四实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表11
Figure PCTCN2020125458-appb-000025
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000026
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000027
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表12给出了可用于第四实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表12
Figure PCTCN2020125458-appb-000028
Figure PCTCN2020125458-appb-000029
图8示出了第四实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图8中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图8可知,第四实施例中所给出的光学成像***能够实现良好的成像品质。
第五实施例
请参阅图9,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有正曲折力的第一透镜L1、具有负曲折力的第二透镜L2、具有正曲折力的第三透镜L3、具有负曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凹面,第一透镜L1的像侧面S2在近光轴处为凸面,第二透镜L2的物侧面S4在近光轴处为凹面,第二透镜L2的像侧面S5在近光轴处为凹面,第三透镜L3的物侧面S6在近光轴处为凸面,第三透镜L3的像侧面S7在近光轴处为凸面,第四透镜L4的物侧面S8在近光轴处为凸面,第四透镜L4的像侧面S9在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为凸面,第三透镜L3的物侧面S6在近圆周处为凹面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像系 统10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格13示出了本实施例的光学成像***的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格13
Figure PCTCN2020125458-appb-000030
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000031
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c 0为旋转对称非球面的近轴曲率,c 0=1/R(即,近轴曲率c 0为表14中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表14给出了可用于第五实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表14
Figure PCTCN2020125458-appb-000032
Figure PCTCN2020125458-appb-000033
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000034
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000035
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表15给出了可用于第五实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表15
Figure PCTCN2020125458-appb-000036
图10示出了第五实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图10中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图10可知,第五实施例中所给出的光学成像***能够 实现良好的成像品质。
第六实施例
请参阅图11,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有负曲折力的第一透镜L1、具有正曲折力的第二透镜L2、具有正曲折力的第三透镜L3、具有负曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凹面,第一透镜L1的像侧面S2在近光轴处为凸面,第二透镜L2的物侧面S4在近光轴处为凸面,第二透镜L2的像侧面S5在近光轴处为凸面,第三透镜L3的物侧面S6在近光轴处为凹面,第三透镜L3的像侧面S7在近光轴处为凸面,第四透镜L4的物侧面S8在近光轴处为凸面,第四透镜L4的像侧面S9在近光轴处为凹面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为凸面,第三透镜L3的物侧面S6在近圆周处为凹面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像***10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格16示出了本实施例的光学成像***的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格16
Figure PCTCN2020125458-appb-000037
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000038
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c 0为旋转对称非球面的近轴曲率,c 0=1/R(即,近轴曲率c 0为表17中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表17给出了可用于第六实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表17
Figure PCTCN2020125458-appb-000039
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000040
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000041
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表18给出了可用于第六实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表18
Figure PCTCN2020125458-appb-000042
Figure PCTCN2020125458-appb-000043
图12示出了第六实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图12中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图12可知,第六实施例中所给出的光学成像***能够实现良好的成像品质。
第七实施例
请参见图13,本实施例中的光学成像***10中,从物侧至像侧包括光阑STO、具有负曲折力的第一透镜L1、具有正曲折力的第二透镜L2、具有正曲折力的第三透镜L3、具有负曲折力的第四透镜L4及红外滤光片L5。
第一透镜L1的物侧面S1在近光轴处为凹面,第一透镜L1的像侧面S2在近光轴处为凹面,第二透镜L2的物侧面S4在近光轴处为凹面,第二透镜L2的像侧面S5在近光轴处为凸面,第三透镜L3的物侧面S6在近光轴处为凸面,第三透镜L3的像侧面S7在近光轴处为凸面,第四透镜L4的物侧面S8在近光轴处为凹面,第四透镜L4的像侧面S9在近光轴处为凸面。
第一透镜L1的物侧面S1在近圆周处为凸面,第一透镜L1的像侧面S2在近圆周处为凹面,第二透镜L2的物侧面S4在近圆周处为凹面,第二透镜L2的像侧面S5在近圆周处为凸面,第三透镜L3的物侧面S6在近圆周处为凸面,第三透镜L3的像侧面S7在近圆周处为凸面,第四透镜L4的物侧面S8在近圆周处为凹面,第四透镜L4的像侧面S9在近圆周处为凸面。
当光学成像***10用于成像时,被摄物发出或反射的光线从物侧方向进入光学成像***10,并依次穿过光阑STO、第一透镜L1、第二透镜L2、第三透镜L3、第四透镜L4及红外滤光片L5,最终汇聚到成像面S12上。
表格19示出了本实施例的光学成像***的特性的表格,焦距、折射率及阿贝数的参考波长为587.56nm,Y半径、厚度和焦距的单位均为毫米(mm)。
表格19
Figure PCTCN2020125458-appb-000044
其中,f为光学成像***10的有效焦距,FNO为光学成像***10的光圈大小,FOV为光学成像***10的最大视场角。
第一透镜L1至第四透镜L4中的旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000045
其中,χ为非球面沿光轴方向在高度为h的位置时,距非球面顶点的距离矢高;c0为旋转对称非球面的近轴曲率,c0=1/R(即,近轴曲率c0为表20中曲率半径R的倒数);k为圆锥系数;Ai是非球面的第i阶系数。表20给出了可用于第七实施例中的旋转对称非球面的高次项系数A4、A6、A8、A10、A12、A14、A16、A18和A20。
表20
Figure PCTCN2020125458-appb-000046
第一透镜L1至第四透镜L4中的非旋转对称非球面面型由以下公式限定:
Figure PCTCN2020125458-appb-000047
其中,z为平行于z轴方向的面的矢高;c为非旋转对称非球面的顶点曲率;k为圆锥系数;
Figure PCTCN2020125458-appb-000048
r为半径值;ZP j为第j个Zernike多项式;C (j+1)是ZP j的系数。表21给出了可用于第七实施例中透镜非旋转对称非球面系数。Zernike项从ZP 1到ZP 66,具有相应的系数C 2到C 67,未给出的系数为0,以下为C 2、C 5、C 6、C 12、C 13、C 14、C 23、C 24、C 25、C 26、C 38、C 39、C 40、C 41、C 42、C 57、C 58、C 59、C 60、C 61、C 62系数。
表21
Figure PCTCN2020125458-appb-000049
图14示出了第七实施例中的光学成像***的RMS光斑直径在第一象限内不同像高位置处的大小情况,即RMS光斑直径与真实光线像高的关系。图14中,最小的RMS光斑直径的单位为mm,最大的RMS光斑直径的单位为mm,RMS光斑直径的均值的单位为mm,RMS光斑直径的标准差的单位为mm。根据图14可知,第七实施例中所给出的光学成像***能够实现良好的成像品质。
表格22示出了第一实施例至第七实施例的光学成像***中BL/f、bh-ah、hmax/FOV、f/f34、f/FOV、(V1+V2+V3+V4)/4、TTL/IMGH、L4S1C5*V4、L4S1C6*V4和L4S1C2*FOV的值。
表格22
  BL/f bh-ah(mm) hmax/FOV(mm/°) f/f34 f/FOV(mm/°)
0.612 0.216 0.012 0.411 0.011
0.549 1.174 0.013 0.13 0.015
0.672 0.388 0.01 0.524 0.01
0.588 0.35 0.012 0.604 0.012
0.539 0.861 0.013 0.983 0.015
0.597 0.56 0.012 0.276 0.013
1.218 0.975 0.011 0.41 0.011
  (V1+V2+V3+V4)/4 TTL/IMGH L4S1C5*V4 L4S1C6*V4 L4S1C2*FOV
46.755 2.319 -0.006 -5.533 -27.061
46.755 3.06 0.028 -6.77 -30.626
47.036 2.053 0.128 -4.223 -14.931
47.036 2.198 -0.080 -7.041 -26.565
47.036 2.125 -0.006 -4.171 -11.752
47.036 2.396 0.011 -4.431 -16.297
46.755 3.608 -0.011 -2.351 -12.958
请参见图15,本发明实施例的光学成像***10可应用于本发明实施例的取像模组100。取像模组100包括感光元件20及上述任一实施例的光学成像***10。感光元件20设置在光学成像***10的像侧。
感光元件20可以采用互补金属氧化物半导体(CMOS,Complementary Metal OxideSemiconductor)影像感测器或者电荷耦合元件(CCD,Charge-coupled Device)。
上述取像模组100中的光学成像***10通过紧凑的空间排布和合理的曲折力分配,实现了取像模组的轻薄化及具有总长较短的特点,具有较低的光学敏感度和优良的成像品质;并且在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足当前市场的需求。
请继续参见图15,本发明实施例的取像模组100可应用于本发明实施例的电子装置1000。电子装置1000包括壳体200及取像模组100,取像模组100安装在壳体200上。
本发明实施例的电子装置1000包括但不限于为行车记录仪、智能手机、平板电脑、笔记本电脑、电子书籍阅读器、便携多媒体播放器(PMP)、便携电话机、视频电话机、数码静物相机、移动医疗装置、可穿戴式设备等支持成像的电子装置。
上述电子装置1000中的光学成像***10通过紧凑的空间排布和合理的曲折力分配,实现了取像模组的轻薄化及具有总长较短的特点,具有较低的光学敏感度和优良的成像品质;并且在有限的镜片数量下,通过非旋转对称非球面,增加子午面的自由度并矫正了像质,可进行批量生产加工,满足当前市场的需求。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种光学成像***,其特征在于,由物侧到像侧依次包括:
    具有曲折力的第一透镜;
    具有曲折力的第二透镜;
    具有曲折力的第三透镜;及
    具有曲折力的第四透镜;
    所述第一透镜至所述第四透镜中的至少一个透镜具有非旋转对称非球面;
    所述光学成像***满足以下条件式:
    0≤BL/f≤2;
    其中,BL为所述第四透镜的像侧面至所述光学成像***的成像面平行于光轴方向的最短距离,f为所述光学成像***的有效焦距。
  2. 如权利要求1所述的光学成像***,其特征在于,还包括:
    光阑,设于所述第一透镜至所述第四透镜中的任意两个透镜之间。
  3. 如权利要求2所述的光学成像***,其特征在于,所述光学成像***满足以下条件式:
    0mm≤bh-ah≤2mm;
    其中,bh为最靠近所述光阑物侧的透镜的像侧面的最大有效半径,ah为最靠近光阑物侧的透镜的物侧面的最大有效半径。
  4. 如权利要求1所述的光学成像***,其特征在于,所述光学成像***满足以下条件式:
    0mm/°≤hmax/FOV≤0.5mm/°;
    其中,hmax为所述第一透镜至所述第四透镜各个表面中的最大有效半径,FOV为所述光学成像***的最大视场角。
  5. 如权利要求1所述的光学成像***,其特征在于,所述光学成像***满足以下条件式:
    0≤f/f34≤1;
    其中,f为所述光学成像***的有效焦距,f34为所述第三透镜和所述第四透镜的组合焦距。
  6. 如权利要求1所述的光学成像***,其特征在于,所述光学成像***满足以下条件式:
    0mm/°≤f/FOV≤0.5mm/°;
    其中,f为所述光学成像***的有效焦距,FOV为所述光学成像***的最大视场角。
  7. 如权利要求1所述的光学成像***,其特征在于,所述光学成像***满足以下条件式:
    45≤(V1+V2+V3+V4)/4≤50;
    其中,V1为所述第一透镜的阿贝数,V2为所述第二透镜的阿贝数,V3为所述第三透镜的阿贝数,V4为所述第四透镜的阿贝数。
  8. 如权利要求1所述的光学成像***,其特征在于,所述光学成像***满足以下条件式:
    2≤TTL/IMGH≤4;
    其中,TTL为所述第一透镜的物侧面至所述光学成像***的成像面在光轴上的距离,IMGH为所述光学成像***的最大视场角所对应的像高的一半。
  9. 一种取像模组,其特征在于,包括:
    如权利要求1至8中任意一项所述的光学成像***;及
    感光元件,所述感光元件设置在所述光学成像***的像侧。
  10. 一种电子装置,其特征在于,包括:
    壳体;及
    如权利要求9所述的取像模组,所述取像模组安装在所述壳体上。
PCT/CN2020/125458 2020-10-30 2020-10-30 光学成像***、取像模组及电子装置 WO2022088086A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125458 WO2022088086A1 (zh) 2020-10-30 2020-10-30 光学成像***、取像模组及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/125458 WO2022088086A1 (zh) 2020-10-30 2020-10-30 光学成像***、取像模组及电子装置

Publications (1)

Publication Number Publication Date
WO2022088086A1 true WO2022088086A1 (zh) 2022-05-05

Family

ID=81381584

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/125458 WO2022088086A1 (zh) 2020-10-30 2020-10-30 光学成像***、取像模组及电子装置

Country Status (1)

Country Link
WO (1) WO2022088086A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400492A (zh) * 2023-06-09 2023-07-07 江西欧菲光学有限公司 光学镜头、摄像模组及终端设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
US20140247505A1 (en) * 2013-03-01 2014-09-04 Ability Enterprise Co., Ltd. Zoom lens
CN104035191A (zh) * 2013-03-06 2014-09-10 佳能企业股份有限公司 变焦镜头
CN110007434A (zh) * 2019-04-04 2019-07-12 南京波长光电科技股份有限公司 一种基于自由曲面的消场曲及消像散的CO2远心f-theta镜头
CN111175948A (zh) * 2018-11-12 2020-05-19 佳能企业股份有限公司 光学镜头
WO2020174865A1 (ja) * 2019-02-27 2020-09-03 ソニー株式会社 可変焦点距離レンズ系及び撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101900868A (zh) * 2009-05-27 2010-12-01 柯尼卡美能达精密光学株式会社 超广角变形镜头
US20140247505A1 (en) * 2013-03-01 2014-09-04 Ability Enterprise Co., Ltd. Zoom lens
CN104035191A (zh) * 2013-03-06 2014-09-10 佳能企业股份有限公司 变焦镜头
CN111175948A (zh) * 2018-11-12 2020-05-19 佳能企业股份有限公司 光学镜头
WO2020174865A1 (ja) * 2019-02-27 2020-09-03 ソニー株式会社 可変焦点距離レンズ系及び撮像装置
CN110007434A (zh) * 2019-04-04 2019-07-12 南京波长光电科技股份有限公司 一种基于自由曲面的消场曲及消像散的CO2远心f-theta镜头

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116400492A (zh) * 2023-06-09 2023-07-07 江西欧菲光学有限公司 光学镜头、摄像模组及终端设备
CN116400492B (zh) * 2023-06-09 2023-11-07 江西欧菲光学有限公司 光学镜头、摄像模组及终端设备

Similar Documents

Publication Publication Date Title
CN108594407B (zh) 摄像镜头
CN110007444B (zh) 光学成像镜头
TWI434096B (zh) 光學攝像透鏡組
US12019215B2 (en) Optical imaging system
CN113341539B (zh) 光学***、镜头模组和电子设备
CN110133829B (zh) 光学成像镜头
WO2022061904A1 (zh) 光学***、摄像头模组及终端设备
CN112285885A (zh) 光学成像***、取像模组及电子装置
CN112526726A (zh) 光学成像***、取像模组和电子装置
CN114706197A (zh) 光学镜头、摄像模组及电子设备
CN112415711A (zh) 光学***、摄像头模组及终端设备
CN116027527B (zh) 光学镜头、摄像模组及电子设备
WO2022088086A1 (zh) 光学成像***、取像模组及电子装置
CN111830691A (zh) 摄像光学镜头
CN114488478B (zh) 光学镜头、摄像模组及电子设备
CN114791656B (zh) 光学成像镜头
CN213986976U (zh) 光学成像***、取像模组及电子装置
CN114509862A (zh) 光学***、摄像模组和电子设备
CN114002832A (zh) 光学***、镜头模组和电子设备
TW202232185A (zh) 光學成像系統、取像模組及電子裝置
CN112596201A (zh) 光学成像***、取像模组及电子装置
WO2022120597A1 (zh) 光学成像***、取像模组及电子装置
CN114257713A (zh) 光学镜头、摄像模组及电子设备
CN213780510U (zh) 光学成像***、取像模组及电子装置
CN111736313A (zh) 光学***、摄像模组及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20959248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20959248

Country of ref document: EP

Kind code of ref document: A1