WO2022085210A1 - Filtration device, filtration system, and filtration method - Google Patents

Filtration device, filtration system, and filtration method Download PDF

Info

Publication number
WO2022085210A1
WO2022085210A1 PCT/JP2021/002398 JP2021002398W WO2022085210A1 WO 2022085210 A1 WO2022085210 A1 WO 2022085210A1 JP 2021002398 W JP2021002398 W JP 2021002398W WO 2022085210 A1 WO2022085210 A1 WO 2022085210A1
Authority
WO
WIPO (PCT)
Prior art keywords
filtration
adsorbent
liquid
adsorbent layer
treated
Prior art date
Application number
PCT/JP2021/002398
Other languages
French (fr)
Japanese (ja)
Inventor
章 西村
Original Assignee
株式会社流機エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社流機エンジニアリング filed Critical 株式会社流機エンジニアリング
Priority to CN202180065483.1A priority Critical patent/CN116322930A/en
Publication of WO2022085210A1 publication Critical patent/WO2022085210A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/01Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements
    • B01D29/05Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported
    • B01D29/07Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with flat filtering elements supported with corrugated, folded or wound filtering sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D29/00Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor
    • B01D29/50Filters with filtering elements stationary during filtration, e.g. pressure or suction filters, not covered by groups B01D24/00 - B01D27/00; Filtering elements therefor with multiple filtering elements, characterised by their mutual disposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D37/00Processes of filtration
    • B01D37/02Precoating the filter medium; Addition of filter aids to the liquid being filtered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption

Definitions

  • the present invention relates to a filtration device, a filtration system and a filtration method for removing persistent substances contained in a liquid to be treated.
  • POPs Stockholm Convention on Persistent Organic Pollutants
  • POPs persistent organic pollutants
  • PFOA Perfluorooctanoic acid
  • Annex B perfluorooctanesulfonic acid
  • the above-mentioned PFOS and PFOA have been positioned as water quality management target setting items in Japan from April 1, 2020, and the target value is 0.00005 mg / sum of the amounts of these two substances. It is said to be L (provisional).
  • the Ministry of the Environment is also investigating rivers, lakes, sea areas, groundwater, and springs. As described above, there is a current situation in which the general society demands a technique for removing POPs such as PFOS and PFOA.
  • test results according to the test method specified in the notification do not meet the above criteria, and the BOD curve, etc. suggests that biodegradation continues even after the end of the test (increasing tendency, etc.). Can make a judgment based on the test results according to OECD Test Guidelines 302C. On the other hand, poorly decomposable means that it is not goodly decomposable.
  • Patent Document 1 discloses an operation method of a water treatment facility using an immersion type membrane filtration device.
  • powdered activated carbon mixed water in which powdered activated carbon is previously added to raw water is made to flow into a membrane filter tank, or raw water is made to flow into a membrane filter tank and powdered activated carbon is added to make powdered activated carbon mixed water.
  • a substance to be treated such as a trace amount of organic matter in water is adsorbed on the powdered activated carbon, and the powdered activated carbon mixed water in the membrane filtration tank is separated into solid and liquid by an immersion type membrane filtration device installed in the tank.
  • the adsorption of the substance to be treated can be promoted by keeping the powdered activated carbon at a high concentration in the membrane filter tank by setting the amount of the membrane filter water to be taken out to 99% or more with respect to the amount of the inflow water into the membrane filter tank. The effect is disclosed.
  • Patent Document 2 discloses a wastewater treatment method.
  • an adsorbent capable of adsorbing a soluble harmful component is added to raw water from an adsorbent input section, and at least the soluble harmful component is adsorbed on the adsorbent, and then filtration such as a membrane separator is performed.
  • the adsorbent and solid harmful components adsorbed by means are filtered to separate the adsorbent and solid harmful components from the raw water, and then the cleaning wastewater of the filtration means is introduced into the accelerated oxidation treatment section to perform accelerated oxidation treatment to remove the harmful components. It is to detoxify.
  • the effect that dioxin, PCB, chlorobenzene, trihalomethane and other organic chlorine compounds and pigment components contained in wastewater can be removed efficiently and at low cost is disclosed.
  • Patent Document 3 discloses a method for treating contaminated water containing a persistent substance. This method is characterized by including a treatment of adding an inorganic adsorbent to contaminated water containing a persistent substance and filtering the contaminated water to which the inorganic adsorbent is added by a filtration membrane. It is a method for treating contaminated water containing a sex substance. If necessary, the contaminated water is passed through a reverse osmosis membrane to separate and treat the contaminated water, and then the liquid content that does not pass through the reverse osmosis membrane is inorganic. A system adsorbent may be added.
  • an inorganic adsorbent is added to contaminated water so that the persistent substance is adsorbed by the adsorbent and filtered by a filtration membrane, and oxidative decomposition is performed in the reaction system. Since it does not contain a reaction, it can be applied to wastewater containing a reducing agent such as heavy sulfite, and it is not limited by the properties of the persistent substances contained in it, and it is efficiently and inexpensively contaminated with persistent substances. The effect of being able to detoxify water is disclosed.
  • Patent Document 4 discloses a method for treating water containing a persistent substance.
  • this method the following steps: (B) a step of adding an adsorbent to water containing a persistent substance (treated raw water) and adsorbing the persistent substance to the adsorbent (adsorption treatment step), (C) the difficulty.
  • a step of separating the adsorbent adsorbing the degradable substance using a filtration membrane to obtain water in which the adsorbent adsorbing the persistent substance is concentrated membrane filtration membrane to obtain water in which the adsorbent adsorbing the persistent substance is concentrated (membrane filtration treatment step), (D) the separated adsorption.
  • Patent Document 5 discloses a method for treating water containing a persistent substance.
  • a step of separating the liquid and concentrating the adsorbent adsorbing the persistent adsorbent (membrane filtration treatment step)
  • D a step of decomposing the persistent substance adsorbed on the concentrated adsorbent (difficult decomposition).
  • It includes (E) a step of returning the adsorbent after decomposition of the persistent substance to (B) an adsorption treatment step (adsorbent return step).
  • adsorption treatment step adsorbent return step
  • Patent Document 6 discloses a filtration device and a filtration method using the filtration device.
  • This filtration device has a filtration module in which a filter membrane is housed in a casing to filter filtered water from raw water, a filtered water discharge means connected to the filtration module to discharge filtered water, and raw water introduced into the filtration module. It is equipped with an activated charcoal suspension supply means for supplying a suspension in which activated charcoal is suspended in the filtration module in a non-filtered state. After that, raw water is introduced into the filtration module for filtration.
  • an activated charcoal suspension supply means for supplying a suspension in which activated charcoal is suspended in the filtration module in a non-filtered state. After that, raw water is introduced into the filtration module for filtration.
  • Japanese Unexamined Patent Publication No. 9-285779 Japanese Patent Application Laid-Open No. 2003-266090 Japanese Unexamined Patent Publication No. 2005-205300 Japanese Unexamined Patent Publication No. 2006-192378 Japanese Unexamined Patent Publication No. 2007-021347 Japanese Unexamined Patent Publication No. 2005-193075
  • the RO membrane (reverse osmosis membrane) treatment requires a water flow pressure of about 4 MPa to 7 MPa, the power of the transport pump for transporting the liquid to be treated must be increased, and the running cost is high. There is a problem. Further, since it is a cross-flow method and the amount of water passing through one RO membrane is small, many RO membranes must be prepared, and there is also a problem that the initial cost is high. Furthermore, since the RO membrane is prone to clogging due to the influence of substances other than persistent substances (for example, organic substances) contained in the liquid to be treated, there is also the problem that maintenance is required to clear the clogging on a regular basis. be.
  • the ion exchange resin used in the ion exchange resin adsorption method has a larger adsorption amount of persistent substances per unit amount than activated carbon and is excellent in adsorption performance, but has a problem of high unit price.
  • the ion exchange resin since the ion exchange resin has a fine particle size of about 0.3 mm to 1 mm ⁇ (phiscale), it has the advantages of high contact efficiency with persistent substances and adsorption efficiency of persistent substances of 90% or more.
  • the water flow resistance is large. If the water flow resistance is large, the water flow speed needs to be slow, and in order to treat a certain amount of the liquid to be treated, it is necessary to increase the number of bottles filled with the ion exchange resin, which requires an initial cost. There is also the problem.
  • the adsorption performance of the ion exchange resin tends to deteriorate due to the influence of a substance (for example, an organic substance) other than the persistent substance contained in the liquid to be treated.
  • a substance for example, an organic substance
  • the turbidity of the liquid to be treated (the degree of turbidity, which is a test method in JIS K0101) is high, the gaps between the particles of the ion exchange resin are likely to be clogged, so that the device is equipped with an ion exchange resin.
  • a filter for reducing the turbidity must be separately provided in front of the above stage.
  • the bottle filled with the ion exchange resin is expensive, there is a problem that the running cost by replacing the bottle is high and the disposal cost of the used bottle is also high.
  • the activated carbon adsorption method is typically a method using an apparatus in which activated carbon is filled into pellets (pellet packed bed method).
  • this pellet packed bed method has a problem that the efficiency (adsorption efficiency) of adsorbing the persistent substance is poor when the concentration of the persistent substance in the liquid to be treated is low.
  • the space velocity (SV) is 5 to 10 (1 / Hr)
  • only about 50 to 70% of persistent substances can be adsorbed, and there is uncertainty regarding the removal of persistent substances. High in sex.
  • the surface of the activated carbon pellet is covered (masked) with suspended solids, suspended solids, biofilm or the like in the liquid to be treated, the adsorption performance of the activated carbon pellet deteriorates.
  • a filter for removing these substances must be separately provided in front of the activated carbon adsorption layer, or hypochlorous acid must be injected into the liquid to be treated, resulting in initial cost and initial cost.
  • running cost is high.
  • the adsorption performance of activated carbon tends to deteriorate due to the influence of substances other than persistent substances (for example, organic substances) contained in the liquid to be treated.
  • the amount of activated carbon pellets required for removing the persistent substance is large and the cost (initial cost and running cost) is high.
  • the activated carbon packed bed tends to be large, and there is a problem that the equipment becomes large.
  • a dehydrator or a drying device must be installed in the subsequent stage in order to dispose of the activated carbon adsorbing the persistent substance.
  • the persistent substance is PFOS
  • PFOS decomposes when heated at 850 ° C. for 2 seconds, so a device for decomposing such PFOS must be provided after the activated carbon packed bed.
  • the liquid to be treated by the ozone oxidative decomposition method or the ultraviolet / photocatalytic method it is possible to treat the liquid to be treated by the ozone oxidative decomposition method or the ultraviolet / photocatalytic method, but the equipment cost is high, the running cost such as electric power is high, and the persistent substances are removed. Since the efficiency is low, there is a problem that it is not effective.
  • the method according to the above-mentioned Patent Documents 1 to 5 is to mix activated carbon or the like with a liquid to be treated, adsorb a persistent substance or the like on the activated carbon or the like, and then filter the liquid with a filter.
  • the persistent substances around the activated carbon (particles) are adsorbed, but the persistent substances located away from the activated carbon (particles) are not adsorbed.
  • the liquid to be treated is smoothly carried to the filter and is not carried to the filter while being vigorously agitated in the liquid to be treated. There is a problem that it passes through the filter as it is without being removed.
  • Patent Document 6 is a method in which a filtration membrane is formed in order to effectively prevent clogging of the filtration membrane due to turbidity in raw water and perform an efficient filtration treatment, and it is difficult to use the filtration membrane. It is not intended to remove degradable substances.
  • a hollow fiber membrane is used as the filtration membrane.
  • the flow velocity of the suspension passing through the inside of the hollow fiber membrane becomes high, so that it is difficult to adhere the activated carbon powder to the inside of the hollow fiber membrane, and even if it is attached, it is peeled off by the suspension flowing quickly. Therefore, it is practically difficult to attach the activated carbon powder.
  • the gap between adjacent hollow fiber membranes is generally about 0.5 mm at the maximum, and in order to secure the passage of raw water, the thickness to which activated carbon can be substantially adsorbed is 0 at the maximum. Since it is about .15 mm, it is insufficient to adsorb persistent substances and is useless. Further, generally, the surface area of one hollow fiber membrane is about 50 m 2 , and assuming that the thickness of the activated carbon attached to the surface of the hollow fiber membrane is 0.15 mm, it is held by one hollow fiber membrane. The amount of activated carbon powder produced is about 4 kg. Therefore, when trying to remove a large amount of persistent substances, a large amount of hollow fiber membranes must be prepared, which increases the initial cost.
  • the main problem to be solved by the present invention is to provide a filtration device and a filtration method having a high effect of removing persistent substances.
  • a filtration device that removes persistent substances contained in the liquid to be treated.
  • a filtration container having a supply port for the liquid to be treated and a discharge port for the treatment liquid,
  • a pleated filter provided inside the filtration vessel, the outer surface of which is the filtration surface and the inside of which is the passage of the treatment liquid, and a flat filter medium bent in a bellows shape to form a plurality of folds while forming a tubular shape.
  • the pleated filter has an adsorbent layer on the outer surface and has an adsorbent layer.
  • a filtration device characterized in that the adsorbent layer is a stack of adsorbents that adsorb the persistent substance.
  • the first aspect is characterized in that an adsorbent layer is formed on the outer surface of the filtration filter in a state before filtering the liquid to be treated.
  • the adsorbent is mixed with the liquid to be treated, the persistent substance contained in the liquid to be treated is adsorbed by the adsorbent, and then a filter or the like is used.
  • a filter or the like is used.
  • the persistent substances in the liquid to be treated those near the adsorbent particles are easily captured, but those far away from the adsorbent particles are difficult to be captured. Therefore, the persistent substance that is not captured by the adsorbent particles passes through the filtration filter and remains in the treatment liquid. That is, the effect of removing the persistent substance in the liquid to be treated is not high at all.
  • the configuration is such that all the liquid to be treated passes through a filtration filter. That is, by forming the adsorbent layer on the outer surface of the filtration filter, the persistent substance in the liquid to be treated must pass through the adsorbent layer before passing through the filtration filter, and while passing through the adsorbent layer. Will be adsorbed by the adsorbent. Therefore, it is possible to reduce the persistent substances that pass through the filtration filter without coming into contact with the adsorbent particles, which are generated by the methods of the prior patent documents 1 to 5, and are contained in the liquid to be treated at a high ratio. Persistent substances can be removed.
  • the adsorbent layer can be formed only extremely thinly on the surface thereof (according to a trial calculation, the maximum is about 0.15 mm). Therefore, the performance of removing the persistent substance in the liquid to be treated becomes extremely low. Therefore, in the present invention, a pleated filter is used as the filtration membrane. By using a pleated filter, an adsorbent layer can be formed thicker on the surface (up to about 4 mm according to a calculation), and as a result, the ability to remove persistent substances in the liquid to be treated is sufficient. Can be secured.
  • the thickness of the adsorbent layer needs to be 1 mm or more. Further, if the thickness of the adsorbent layer is too thick, the pressure becomes too large, so that the pressure is preferably 3 mm or less.
  • the surface area of the pleated filter is larger than that of a simple flat filtration filter in which the filter medium is not bent, so that the ability to remove persistent substances in the liquid to be treated is significantly increased.
  • the adsorbent constituting the adsorbent layer has adsorbed the persistent substance
  • the adsorbent must be removed and discharged, and the new adsorbent must be reattached to the filter membrane.
  • the pleated filter has a large surface area as described above, the amount of the adsorbent adhering to the pleated filter can be increased.
  • the amount of the persistent substance that can be removed increases, and the time when the adsorbent needs to be removed / discharged and reattached can be delayed. That is, the filtration process can be continued continuously for a longer period of time. According to the inventor's calculation, when the pleated filter is used, it is possible to perform the filtration treatment continuously for one year or more without removing / discharging and reattaching the adsorbent.
  • the adsorbent layer is composed of a plurality of layers.
  • the average particle size of the first adsorbent of the first adsorbent layer located inside the adsorbent layer is larger than the average particle size of the second adsorbent of the second adsorbent layer located outside the adsorbent layer.
  • the large filtration device of the first aspect is composed of a plurality of layers.
  • the average particle size of the first adsorbent of the first adsorbent layer located inside the adsorbent layer is set to the average particle size of the second adsorbent layer located outside the adsorbent layer. It was made larger than the average particle size of the second adsorbent.
  • the adsorbent layer can be easily peeled off, and the removal performance of the persistent substance by the adsorbent layer can be improved.
  • the pleated filter used as a filtration membrane has the characteristic that it is difficult to remove the adsorbent stuck to the valley between the folds. If it is an adsorbent with a small particle size, it is a grace. Therefore, by increasing the average particle size of the first adsorbent in the first adsorbent layer located near the pleated filter, the peeling becomes easy, and in particular, the peeling of the adsorbent layer in the valley portion may be facilitated. This is a big advantage.
  • a solution containing a release agent that facilitates peeling is passed through the pleated filter, and a release layer is provided between the pleated filter and the adsorbent layer. It is also possible. However, such a release layer is not for removing a persistent substance, and has no use other than for removing the adsorbent layer. If the adsorbent layer laminated on the outer surface of the pleated filter becomes thick, the liquid passage performance of the liquid to be treated deteriorates. Therefore, the thickness of the adsorbent layer must be less than a predetermined thickness.
  • the thickness of the adsorbent layer must be reduced by the thickness of the release layer, and as a result, the effect of removing the persistent substance is reduced.
  • the first adsorbent layer which plays the role of peeling, also has the effect of removing the persistent substance, there is an advantage that the effect of removing the persistent substance is higher than the case where the peeling layer is provided. ..
  • this embodiment is not limited to having two adsorbent layers, but also includes having three or more layers.
  • the average particle size of the adsorbent in the adsorbent layer located inside may be larger than the average particle size of the adsorbent in the adsorbent layer located on the outside.
  • the adsorbent layer is composed of three layers, and the laminated adsorbent layers are designated as a first adsorbent layer, a second adsorbent layer, and a third adsorbent layer in order from the inside (pleated filter side) to the outside.
  • the average particle size of the first adsorbent of the first adsorbent layer located on the innermost side is set to the second adsorbent of the second adsorbent layer located between the first adsorbent layer and the third adsorbent layer. It may be made larger than the average particle size.
  • a filtration system having the filtration device of the second aspect.
  • a first solution storage tank for storing the first solution containing the first adsorbent, and a first solution storage tank.
  • a first solution transport route for sending the first solution of the first solution storage tank to the filtration container, and
  • a second solution storage tank for storing the second solution containing the second adsorbent, and a second solution storage tank.
  • a filtration system comprising: a first solution transport route for sending a second solution of the second solution storage tank to the filtration container.
  • a solution containing the first adsorbent is sent to a filtration container in order to form the first adsorbent layer, and the second adsorbent layer is formed. It is necessary to send the solution containing the second adsorbent to the filtration vessel in order to form.
  • Liquids containing the same type of adsorbent are generally stored in the same storage tank regardless of the particle size of the adsorbent. Therefore, it is common that both the first solution containing the first adsorbent and the second solution containing the second adsorbent are stored in the same storage tank.
  • the average particle size of the first adsorbent contained in the first solution and the second solution are contained.
  • the number of storage tanks for storing the solution containing the adsorbent is not limited to two, and three or more storage tanks may be provided.
  • a first storage tank for storing the first solution a second storage tank for storing the second solution, a third storage tank for storing the third solution, and three storage tanks may be provided.
  • a filtration system in which a plurality of filtration devices according to the first aspect are provided and arranged in parallel.
  • a plurality of extraction paths provided after each filtration device to extract the treatment liquid discharged from each filtration device, and An aggregate part that aggregates the plurality of extraction paths and
  • a filtration system provided in the collecting portion and comprising a detector for detecting a persistent substance contained in the treatment liquid.
  • an extraction path for extracting the treatment liquid discharged from each filtration device for example, a tube through which the treatment liquid passes inside
  • the extraction paths are aggregated in the subsequent stage (the aggregated portion is referred to as an aggregation portion).
  • a detector for detecting persistent substances in the treatment liquid is provided in the aggregated portion.
  • a filtration system in which a plurality of filtration devices according to the first aspect are provided and arranged in parallel.
  • a timekeeper that monitors the elapsed time from the start of filtration in each filtration device,
  • a filtration system characterized by having a liquid to be supplied pump for stopping the supply of the liquid to be treated to the filtration device when a predetermined time has elapsed from the start of filtration in some filtration devices.
  • the adsorbing capacity of the adsorbent in each filtration device decreases as the amount of liquid to be treated (flowing amount) that has passed through the adsorbent layer increases.
  • the amount of liquid to be passed is determined by the speed at which the liquid to be treated is sent to the filtration device (liquid feeding speed) and the time elapsed from the start of passing the liquid to be treated through the adsorbent layer (liquid passing time). Since the liquid passing time is the same as (almost the same) the elapsed time from the start of filtration, the liquid passing time is also referred to as the filtration time.
  • the control device can be controlled to stop the supply of the liquid to be processed to the filtration device.
  • the system can be cheaper than the third aspect by adopting a method of deciding the timing to stop the supply of the liquid to be processed by using a timekeeping device. This is because the detector for a persistent substance generally used in the third aspect is expensive, while the timekeeping device is cheaper than the detector by using a general-purpose one.
  • the outer surface is the filtration surface and the inner surface is the passage for the treatment liquid.
  • a filtration method characterized by having.
  • the adsorbent layer forming step is A first adsorbent layer forming step of passing a first solution containing the first adsorbent through the pleated filter to form a first adsorbent layer on the outer surface of the pleated filter.
  • a second adsorbent layer containing a second adsorbent having an average particle size smaller than that of the first adsorbent is passed through a pleated filter to form a second adsorbent layer on the outer surface of the first adsorbent layer.
  • the liquid A to be filtered by the filtration device 10 according to the present invention is a liquid containing a persistent substance E, and is, for example, river or lake water, seawater, groundwater, spring water, or a factory (semiconductor manufacturing factory or factory). Drainage from photographic film manufacturing factories, etc.), drainage from ships and ships, etc. can be mentioned.
  • the persistently degradable substance E is a substance that is not a well-degradable substance.
  • the determination of whether it is a persistently decomposable substance E or a well-decomposable substance is determined by the "test method and determination criteria for determining the applicability to a monitored chemical substance" established by Japan (final revision 2011/4). It will be carried out based on the above-mentioned criteria described in (22nd of March).
  • the persistent substance E subject to the present invention for example, the following target substances of the POPs Convention can be mentioned. Specifically, aldrin, alpha-hexachlorocyclohexane, beta-hexachlorocyclohexane, chlordene, chlordecon, decabromodiphenyl ether, dildoline, endolin, heptachloro, hexabromobiphenyl, hexabromocyclododecane, hexabromodiphenyl ether, hepta in Annex A of the POPs Convention.
  • the persistent substances E to be particularly targeted include PFOS and its salt, PFOA and its salt and PFOA-related substances, PFHxS (perfluorohexanesulphonic acid) and its salts and PFHxS-related substances, and PFHxA (perfluorohexane). Acid) can be exemplified.
  • Adsorbent N It is preferable to use an adsorbent N for adsorbing the persistent substance E. It is preferable to use an adsorbent N of a different type as appropriate depending on the type of the persistent substance E to be removed. For example, when it is desired to remove PFOS and its salt, PFOA and its salt and PFOA-related substances, PFHxS and its salts and PFHxS-related substances, and PFHxA, it is preferable to use activated carbon as the adsorbent N. This is because it is cheaper and easier to obtain than other adsorbents N, and has a high adsorption capacity for these persistent substances E.
  • the particles of the activated charcoal have a particle size (diameter equivalent to a projected circle (diameter of a circle equal to the projected area of the particles), and refer to an average value (average particle size) of the diameter equivalent to the projected circle of each particle.
  • the average particle size is measured by measuring the particle size distribution using a laser diffraction / scattering type particle size distribution measuring device (for example, product LA-960V2 series, manufactured by Horiba Seisakusho Co., Ltd.), and the particles when the cumulative volume corresponds to 50%.
  • the diameter is determined as the average particle size. The same applies hereinafter.) It is preferable to use one having a diameter of 1 to 30 ⁇ m, and more preferably one having a diameter of 5 to 9 ⁇ m.
  • activated carbon may be used to adsorb the persistent substance E, but in this case, activated carbon having a particle size of about 4 to 6 mm is generally used.
  • activated carbon having a particle size clearly smaller than this is used in this embodiment.
  • the contact efficiency between the persistent substance E and the activated carbon is increased, and as a result, the removal performance of the persistent substance E can be dramatically improved.
  • the specific surface area of the activated carbon particles can be increased to about 80,000 to 100,000 times as compared with the case of using the activated carbon particles having a particle size of about 4 to 6 mm, the persistent substance E is used.
  • the contact efficiency of activated carbon can be significantly improved.
  • the activated carbon having a particle size of 5 to 9 ⁇ m is used as described above. It is more preferable to use it.
  • Examples of the adsorbent N other than activated carbon include organic porous materials such as ion exchange resin, zeolite, diatomaceous clay, acid clay, activated clay, inorganic porous materials such as carbon black, metal oxides and metal powders such as titanium dioxide, and the like.
  • a substance such as Prussian blue (dark blue) may be appropriately used depending on the type of the persistent substance E. That is, it is preferable to appropriately change to the adsorbent N having a high adsorption capacity of the persistent substance E according to the type of the persistent substance E to be removed.
  • Adsorbent layer 47 It is preferable to form the adsorbent layer 47 on the outer surface of the filtration filter 12 before starting the filtration of the liquid A to be treated.
  • the adsorbent layer 47 By forming the adsorbent layer 47, when the liquid A to be treated is filtered, most of the persistent substances E of A in the liquid to be treated are adsorbed on the adsorbent layer 47 (the adsorbent N constituting the adsorbent layer 47). Therefore, the persistent substance E in the liquid to be treated A can be removed at a high rate. That is, by forming the adsorbent layer 47 on the outer surface of the filtration filter 12, the persistent substance E in the liquid to be treated must pass through the adsorbent layer 47 before passing through the gap of the filtration filter 12. Therefore, most of the persistent substance E contained in the liquid to be treated A can be adsorbed by the adsorbent N while passing through the adsorbent layer 47.
  • the thickness of the adsorbent layer 47 can be arbitrarily set, but it is preferably about 1 to 4 mm, more preferably about 1.5 to 4 mm, still more preferably about 3 to 4 mm. ..
  • the thickness of the adsorbent layer 47 is thinner than 1 mm, the persistent substance E in the liquid to be treated A easily passes through the gaps between the adsorbent particles constituting the adsorbent layer 47, and as a result, the adsorbent layer 47 is contained in the treatment liquid B.
  • the concentration of the persistent substance E contained in the substance E becomes high.
  • the PFOS is removed with high efficiency unless the thickness of the activated carbon layer 47 is 1.5 mm or more, preferably 3 mm or more. Is difficult.
  • the thickness of the adsorbent layer 47 is thicker than 4 mm, the resistance for passing the liquid A to be treated through the gaps between the particles of the adsorbent layer 47 becomes too large, so that a pump for pumping the liquid A to be treated.
  • the load of (8a) is large, and the speed of the filtration process is significantly reduced.
  • the thickness of the adsorbent layer 47 is related to the distance (fold pitch) between adjacent folds of the pleated filter.
  • the thickness of the adsorbent layer 47 in order not to fill the gap space between the folds with the adsorbent N, the thickness of the adsorbent layer 47 must be reduced when the fold pitch is small, and when the fold pitch is large, the thickness of the adsorbent layer 47 must be reduced. It is possible to increase the thickness of the adsorbent layer 47. As described above, when the fold pitch is small, the thickness of the adsorbent layer 47 becomes thin (the amount of adsorbent N attached is limited), but the surface area of the pleated filter (area in which the adsorbent N is attached) becomes large. Therefore, the flow rate of the liquid to be treated A can be increased.
  • the liquid A to be treated is filtered by the filter 12 in a closed filter container 11, and the treatment liquid B (for example, a filtrate; hereinafter referred to as “filtrate B”) and an adsorbent layer are used.
  • the treatment liquid B for example, a filtrate; hereinafter referred to as “filtrate B”
  • adsorbent layer is used. It is a total amount filtration (dead end filtration) type device that discharges the adsorbent N constituting the 47 and the cake K formed on the outer surface of the adsorbent layer 47.
  • the filtration device 10 includes a filtration container 11 for storing the filtration filter 12.
  • a cake discharge chute 11S is provided in the lower part of the filtration container 11, and a cylindrical filter built-in portion 11U is continuously formed above the cake discharge chute 11S.
  • the shape of the filtration container 11 is not limited to the above-mentioned shape, and may be changed to any shape such as a shape without the cake discharge chute 11S.
  • a tubular body 12s Inside the filtration vessel 11, a tubular body 12s in which a permeation hole for the filtrate B is formed on the wall surface and a filtrate passage 12r is formed inside is provided.
  • the one shown in the figure has a cylindrical shape, and its central axis is arranged in the filtration container 11 in a posture along the vertical direction of the filtration container 11.
  • the shape and posture of the tubular body 12s are not particularly limited, and the shape of the tubular body 12s may be changed to any known shape such as a square cylinder, and the posture of the tubular body 12s may be changed to that of the tubular body 12s. It may be installed in the filtration container 11 so that the central axis is in the horizontal direction.
  • the illustrated tubular body 12s is formed by forming a flat plate having a transmission hole such as a punching metal into a cylindrical shape, and the space inside the tubular body 12s is a filtrate passage 12r.
  • a filtration film 12m is provided on the outside of the wall surface of the tubular body 12s. Since the surface area (filtration area) of this filter membrane 12 m is large, a pleated filter formed into a cylindrical shape is formed by winding a flat filter medium in a zigzag shape (bellows-like shape) and winding it around the outer peripheral surface of the tubular body 12s. It is preferable to use it.
  • a pleated filter By using a pleated filter, the surface area of the filter is increased as compared with a simple flat filtration filter in which the filter medium is not bent, so that the processing capacity of the liquid A to be treated per unit time can be significantly increased.
  • a plurality of folds can be formed by bending the filter medium in a zigzag manner as described above.
  • This pleated filter has an advantage that the cake K can be easily peeled off and discharged because the distance between the adjacent folds and the wall surface of the folds gradually increases from the inside to the outside.
  • the length L1 between the adjacent folds and the tips of the folds can be, for example, 6 mm, and the length L2 from the tips of the folds to the base can be, for example, 100 mm.
  • the filtration membrane 12 m can be made into a single layer or multiple layers.
  • the material (filter medium) of the filter membrane 12 m for example, polytetrafluoroethylene (also known as “Teflon” (registered trademark)), polyester, polyphenylene sulfide (PPS) resin, nylon, stainless steel and the like can be used.
  • the film thickness of the filtration membrane 12 m is preferably 0.3 mm to 0.7 mm, more preferably 0.6 mm.
  • the fiber diameter of the filter medium (the diameter corresponding to the projected area circle, the Heywood diameter; the same applies hereinafter) is preferably 0.1 ⁇ m to 3 ⁇ m, and more preferably 0.1 ⁇ m.
  • the resistance during filtration increases and the apparent surface area becomes narrow.
  • the adsorbent N particles for example, activated carbon particles
  • the suspended particles in the liquid A to be treated adhering to the surface of the filtration membrane 12m during filtration act as a filtration layer together with the adsorbent N.
  • the length of the filtration membrane 12 m in the longitudinal direction can be, for example, 300 mm to 2000 mm.
  • the surface 12f of the filtration membrane 12m means the surface facing the filtration container 11 and the surface in contact with the liquid A to be treated.
  • the back surface 12b of the filtration membrane 12m refers to the surface facing the tubular body 12s and the surface in contact with the filtrate B.
  • the filtration membrane 12m having a predetermined strength or higher is prevented from being damaged by the impact wave of the sprayed powder or granular material F. It is preferable to use.
  • a support plate in which a honeycomb mesh, a wire mesh, or the like is bent in a zigzag manner along the inner surface of the folds (so as to be in contact with the back surface 12b of the filtration film 12m).
  • the folds of the pleated filter may be crushed and “blockage” may occur in which the space inside the folds is lost. Can be prevented.
  • a supply port 4 for the liquid to be treated A can be provided on the side surface of the filtration container 11.
  • the supply port 4 is provided in the lower part of the filtration container 11, but in the upper part or the middle part of the filtration container 11 (the part between the upper part and the lower part in the height direction LD of the filtration container 11). It can be changed to any place, such as by installing it.
  • the storage tank 7 for storing the liquid to be treated A and the filtration container 11 are connected by supply pipes 13 and 14, and the liquid A to be treated is connected to the filtration container 11 from the storage tank 7 by the pressure pump 8 (8a). Will be sent to. More specifically, the liquid A to be treated is sent to the strainer 9 through the supply pipe 13, and after foreign matter such as dust in the liquid A to be treated is removed, it is sent to the filtration container 11 through the supply pipe 14. Be done.
  • one pump 8 (8a) is installed, but if it is desired to increase the supply amount of the liquid A to be processed, it is preferable to increase the number to two or more. Further, a level meter (not shown) may be provided in the storage tank 7 to replenish the liquid A in the storage tank 7 from the outside when the amount of the liquid A to be treated becomes less than the specified value.
  • a discharge port 15 for discharging the filtrate B is provided outside the filtration container 11.
  • the filtrate B is guided from the upper end opening of the filtrate passage 12r to the discharge pipe 16 via the discharge port 15.
  • the discharge port 15 of the filtrate B is provided in the upper part of the filtration container 11, but it may be changed to an arbitrary place such as being provided in the lower part or the middle part of the filtration container 11. be able to.
  • suspended particles in the liquid A to be treated (mainly suspended particles other than the persistent substance E; the same applies hereinafter) are deposited on the outer surface of the adsorbent layer 47, and the cake is formed. K is formed.
  • a part of the suspended solids in the liquid to be treated A is retained inside the adsorbent layer 47, but as the filtration progresses, the gap in the adsorbent layer 47 is suspended. Since most of the suspended solids in the liquid A to be treated begin to accumulate on the outer surface of the adsorbent layer 47 because they are filled with turbid substances and become less, cake K is formed on the outside of the adsorbent layer 47.
  • the cleaning device 35 may be manufactured as a part of the filtration device 10, or may be manufactured as a separate product from the filtration device 10 and retrofitted to the filtration device 10.
  • the cleaning device 35 is arranged outside the filtration filter 12.
  • the cleaning device 35 shown in FIG. 1 has a cleaning liquid tank 36 arranged on the outside of the filtration container 11 and an outlet 37 provided on the side of the cleaning liquid tank 36 facing the filtration filter 12.
  • the outlet 37 is preferably a slit extending along the axial direction of the facing filtration filter 12.
  • the cleaning liquid tank 36 has a shape that extends at least on the side facing the filtration filter 12 along the axial direction of the filtration filter 12.
  • a hollow prism extends in the same direction as the axial direction of the filtration filter 12.
  • the shape is not limited to such a shape, and can be changed to any known shape such as a cylinder.
  • the filtration filter 12 side of the cleaning liquid tank 36 is parallel to or substantially parallel to the filtration film surface 12f. This is done by making the distance between the outlet 37 and the filtration membrane surface 12f as equal as possible in the extension direction of the filtration membrane surface 12f (the direction orthogonal to the circumferential direction of the filtration membrane 12m) in the extension direction. This is to reduce cleaning spots.
  • the length of the central axis of the cleaning liquid tank 36 is preferably the same as the length of the central axis of the filtration membrane 12 m, and can be, for example, 300 mm to 2000 mm.
  • the outer surface of the cleaning liquid tank 36 on the filtration filter 12 side is in contact with the outer surface of the filtration container 11 (may be in the form of sandwiching packing or the like), and at the joint portion, the filtration container 11 also has a hole similar to the outlet 37 (shown). Not) is provided.
  • the cleaning liquid C is blown out to the outer surface of the filtration filter 12 through the holes of the outlet 37 and the filtration container 11.
  • the blown-out cleaning liquid C becomes a shock wave and collides with the cake K, the adsorbent layer 47 and the filtration filter 12, and the impact separates the cake K and the adsorbent layer 47 from the filtration filter 12.
  • the powder or granular material F means powder or granular material, and for example, beads such as spherical plastic beads and spherical pearlite beads, spherical sponge such as spherical vinyl chloride sponge, and sand such as silica sand can be used.
  • the powder or granular material F is sprayed onto the filtration filter 12 in a state of being mixed with the cleaning liquid C. Therefore, from the viewpoint of preventing deterioration of the filtration filter 12, it is not preferable that the powder or granular material F is particles having corners such as sand, and the particles are rounded such as spherical particles and ellipsoidal particles. It is preferably particles.
  • the powder / granular material F should not have a high hardness.
  • the hardness of the powder or granular material F is preferably R20 to R110.
  • the powder or granular material F is uniformly dispersed in the cleaning liquid C. Therefore, the specific gravity of the powder or granular material F is preferably, for example, 0.8 to 1.2 g / cm3.
  • the powder or granular material F preferably has a particle size suitable for recovery and reuse, that is, classification.
  • the particle size is preferably 0.2 mm to 1 mm, more preferably 0.4 mm to 0.7 mm, but even particles having the above particle size are sufficiently used as the powder or granular material F. be able to.
  • the particle size of the powder or granular material F is a value measured in accordance with JIS Z8800.
  • a purified liquid such as tap water may be used as the cleaning liquid C, but since it is necessary to purify the cleaning liquid C after being used for cleaning the filtration filter 12 by filtration or the like, from the viewpoint of economy and efficiency. It is preferable to use the liquid A to be treated.
  • the filtration filter 12 is washed with the liquid A to be treated discharged from the gap 50 between the filtration container 11 and the filtration filter 12. After the liquid A to be treated is discharged from the gap 50, the gap 50 is filled with gas, so that the momentum of the cleaning liquid C at the time of injection does not decrease so much, and the cleaning liquid C is the cake K, the adsorbent layer 47, and the adsorbent layer 47. It will hit the filtration filter 12. Therefore, the peeling force of the cake K and the adsorbent layer 47 is high.
  • a part of the cleaning liquid C goes around the side surface of the rectifying baffle 51 and blows out from the upper part of the slit 37, but the other part of the cleaning liquid C flows downward of the cleaning liquid tank 36 and is formed in the middle part of the slit 37 or. It blows out from the bottom.
  • the differential pressure of the slit nozzle 37 (differential pressure between the cleaning tank 36 and the filtration container 11) is preferably 80 kPa to 150 kPa. If it is lower than 80 kPa, the cake K is difficult to peel off. If it is higher than 150 kPa, the filter membrane 12 m will be damaged by the impact of the cleaning liquid C. This blowing pressure may be determined in consideration of the adhesive force of the cake K (type of particles constituting the cake K, water content of the cake K, etc.).
  • the peripheral edge portion of the slit 37 may have a shape protruding toward the filtration filter 12. More preferably, in the peripheral edge portion of the slit 37, both ends in the lateral direction are projected toward the filtration filter 12, and the gap S at both ends of the protruding portion 45 is narrowed toward the filtration filter 12. good. Then, it is preferable that the length of the tip portion closest to the filtration filter 12 among the gaps at both ends of the protruding portion 45 is 0.5 mm to 1.5 mm, more preferably 1 mm. With such a structure, the cake K can be effectively peeled off.
  • the width S of the slit 37 tends to widen due to the internal pressure thereof, but the protruding shape of the slit 37 increases the resistance to the internal pressure. It rises and the spread of the width S can be suppressed.
  • the adsorbent N and the diluted solution H are placed in the mixed solution storage tank 24, and the mixture is stirred with a hand mixer 65 (a stirring device other than the mixer may be used) to generate the mixed solution G.
  • a hand mixer 65 a stirring device other than the mixer may be used
  • the diluted solution H tap water, a liquid to be treated A, or the like can be used.
  • tap water as the diluent H has the advantage of lower running costs than using tap water.
  • the persistent substance E in the mixed liquid G E is sent. May pass through the filtration filter 12.
  • the mixed liquid storage tank 24 In order to prevent such inconvenience, in the mixed liquid storage tank 24, almost all of the persistent substance E in the diluted liquid H (processed liquid A) is adsorbed by the adsorbent N, and then the mixed liquid G is adsorbed. Is preferably sent to the filtration filter 12. By doing so, the adsorbent N adsorbing the persistent substance E contained in the diluted solution H (processed liquid A) is retained on the outer surface of the filtration filter 12, so that the adsorbent N is retained in the mixed liquid G. It is possible to eliminate the inconvenience that the persistent substance E passes through the filtration filter 12.
  • the amount of the adsorbent N to be put in the mixing liquid storage tank 24 may be increased. It is effective to sufficiently stir with the mixer 65.
  • the step of mixing the adsorbent N and the diluted solution H to generate a mixed solution is referred to as a mixed solution generation step.
  • the adsorbent layer 47 is generated (adsorbent layer generation step). It is preferable that the adsorbent layer 47 is evenly formed on the entire outer surface (entire surface) of the filtration filter 12. If there is a portion where the adsorbent layer 47 is not formed on the outer surface of the filtration filter 12, when the liquid A to be treated is supplied into the filtration device 20, the portion where the adsorbent layer 47 is not formed is the liquid to be treated. This is because the persistent substance E in A is not adsorbed by the adsorbent N but passes through the filtration filter 12 and is discharged in a state of being contained in the treatment liquid B.
  • the adsorbent layer 47 is formed on the entire outer surface (entire surface) of the filtration filter 12 with a uniform thickness (uniform density).
  • the liquid A to be treated cannot pass through the portion where the thickness of the adsorbent layer 47 is thick, so that the liquid A to be treated is a portion where the thickness of the adsorbent layer 47 is thin.
  • a valve installed in the supply pipe 14 (in the filtration system of FIG. 1, a common supply pipe 14 is used as the supply pipe of the liquid to be treated A and the mixed liquid G, but separate supply pipes may be used).
  • V1 and the valve V2 installed in the discharge pipe 16 are opened, and the other valves V3 to V5 are closed.
  • the mixed liquid supply pump 8b is driven to send the mixed liquid G in the mixed liquid storage tank 24 to the supply pipe 14.
  • the liquid to be treated pump 8a Immediately after starting the drive of the mixed liquid supply pump 8b, the liquid to be treated pump 8a is driven, and the liquid A to be treated in the liquid storage tank 7 to be treated is also sent to the supply pipe 14. Then, the liquid A to be treated and the mixed liquid G are mixed in the supply pipe 14, the mixed liquid G is diluted with the liquid A to be treated, and the diluted mixed liquid G is sent to the filtration device 10.
  • the reason for mixing the liquid A to be treated and the mixed liquid G in the supply pipe 14, diluting the mixed liquid G with the liquid A to be treated, and sending the diluted mixed liquid G to the filtration device 10 is as follows. That is, in order to make the thickness (density) of the activated carbon layer 47 formed on the outer surface of the pleated filter 12 substantially uniform on all the outer surfaces of the pleated filter 12, it is necessary to increase the differential pressure between the outside and the inside of the pleated filter. be.
  • the differential pressure of this filter is related to the amount of liquid flowing, and in the case of fresh water, it is about 10 KPa at 100 LMH and about 30 KPa at 300 LMH, but when activated carbon N is attached to the pleated filter, it is about 30 KPa at 100 LMH and about 80 KPa at 300 LMH. Ascend to.
  • the amount of activated carbon N attached can be made uniform at about 300 LMH, but in order to realize such a differential pressure, it is necessary to increase the flow rate to 15 m 3 / H, and the mixed liquid G alone cannot cover the flow rate. Therefore, it is preferable to mix the liquid to be treated A and the mixed liquid G to increase the flow rate, and to impregnate the activated carbon N using this diluted mixed liquid G.
  • the diluted mixed liquid G sent to the filtration device 10 has a concentration of the adsorbent N in the mixed liquid G of about 3000 to 5000 mg / L. In order to obtain this concentration, it is advisable to adjust the transport amount of the mixed liquid G by the mixed liquid supply pump 8b and the transport amount of the liquid A to be treated by the liquid supply pump 8a.
  • the adsorbent N contained in the mixed liquid G is deposited on the outer surface of the filtration filter 12 to form the adsorbent layer 47. When the adsorbent layer 47 is formed, a large differential pressure is generated between the outside (upstream side) and the inside (downstream side) of the filtration filter 12.
  • the thickness of the adsorbent layer 47 can be made uniform. That is, even if a place where the amount of adsorbent N adhered is temporarily formed in the process of forming the adsorbent layer 47, the amount of the mixed liquid G passing through the place naturally increases, so that the adsorbent layer 47 The thickness of is naturally made uniform.
  • the liquid portion of the mixed liquid G passes through the filtration filter 12, and the residual liquid J (the liquid from which the adsorbent N is removed from the mixed liquid G) discharge pipe 16 (in the filtration system of FIG. 1, the treatment liquid B and the liquid portion).
  • a common discharge pipe 16 is used as the discharge pipe of the residual liquid H, it may be discharged to the outside of the filtration system through a separate discharge pipe).
  • the liquid A to be treated is filtered. Specifically, the liquid to be processed supply pump 8a installed in the liquid to be treated storage tank 7 is started without changing the opening and closing of the valves V1 to V5. Then, the liquid A to be treated is sent to the strainer 9 through the supply pipe 13 of the liquid A to be treated, and dust and the like contained in the liquid A to be treated are removed in the strainer 9. After that, the liquid A to be treated discharged from the strainer 9 is supplied into the filtration container 11 via the supply pipe 14.
  • the flow velocity of the liquid to be treated A supplied into the filtration vessel 11 is preferably, for example, about 0.001 m / s to 0.004 m / s (FLUX is 50 LMH to 200 LMH), and is preferably 0.0017 m / s to. It is more preferable to set it to about 0.0025 m / s.
  • the high or low efficiency (adsorption efficiency) of the adsorbent N adsorbing the persistent substance E depends on the contact efficiency between the particles of the adsorbent N and the liquid A to be treated. This contact efficiency depends on the contact area between the particles of the adsorbent N and the liquid A to be treated and the contact time (that is, the flow velocity of the liquid A to be treated).
  • the particle size (average particle size) of the particles of the adsorbent N is reduced, the flow velocity of the liquid to be treated A is slowed down, and the liquid to be treated A passes through the adsorbent layer 47. You need to slow down the speed. Therefore, as described above, it is preferable to slow down the flow rate of the liquid to be treated A.
  • the liquid A to be treated that has reached the inside of the filtration container 11 in this way is filtered by the filtration filter 12. More specifically, the persistent substance E in the liquid to be treated A is captured by the adsorbent N in the adsorbent layer 47, and the liquid to be treated A from which the persistent substance E has been removed is filtered by the filtration filter 12. By this filtration, the liquid of the liquid A to be treated moves to the filtrate passage 12r through the filtration membrane 12m, and is discharged as the filtrate B from the discharge port 15. The filtrate B discharged from the discharge port 15 is discharged to the outside of the system through the discharge pipe 16.
  • the solid (suspended particles) of the liquid A to be treated adheres to and deposits on the surface 12f of the filtration film 12m, and as a result, cake K is formed.
  • the liquid passage resistance per unit area of the filtration filter 12 increases in proportion to the integrated amount of liquid passage (that is, the amount of solid content separated from the liquid A to be treated).
  • the cake K formed on the surface of the filtration filter 12 has a certain degree of liquid permeability and has an advantage that it functions as an auxiliary filter that assists the filtration filter 12, but the liquid permeability becomes higher as the cake becomes thicker.
  • the filtration filter 12 Since the amount of cake K produced is proportional to the turbidity of the liquid A to be treated and the integrated amount of water flow (that is, the amount of solid content separated from the liquid A to be treated), the filtration filter 12 starts the filtration step.
  • the tact time of clogging and performing the washing process is determined by the production time of cake K.
  • the filter clogging withstand voltage is, for example, 200 kPa.
  • the internal pressure of the supply port 4 of the liquid to be treated A of the filtration container 11 is measured by a pressure gauge (not shown), and the discharge port of the treatment liquid B is discharged.
  • the internal pressure of 15 can be measured with a pressure gauge (not shown), and the filtration step can be terminated when the differential pressure exceeds a certain value. It may be decided whether or not to stop the filtration process by another method. For example, the discharge amount of the filtrate B per unit time may be measured by a flow meter (not shown), and the filtration step may be terminated when the amount falls below a certain value.
  • the persistent substance E in the liquid A to be treated is adsorbed by the adsorbent N of the adsorbent layer 47, but the amount of the persistent substance E that the adsorbent N can adsorb. Has a limit, and gradually becomes unable to adsorb the persistent substance E. Therefore, when the adsorptive power of the persistent substance E decreases to some extent, the adsorbent layer 45 is peeled off from the filtration filter 12 and discharged, so that the filtration step is terminated.
  • the concentration of the persistent substance E in the treatment liquid B is placed in the discharge pipe 16 of the treatment liquid B. 25 is provided, and the filtration step can be terminated when the concentration of the persistent substance E in the treatment liquid B exceeds the permissible value.
  • the timing for ending this filtration step may be determined by other methods. For example, it may be determined whether or not a predetermined time has elapsed since the start of the filtration step.
  • the factors that require the stop of filtration include (1) the formation of cake K and (2) the decrease in the adsorption capacity of the persistent substance E due to the adsorbent N.
  • the factor (2) is particularly important. This is because it is the most important priority to prevent the persistent substance E in the treatment liquid B from exceeding a predetermined allowable value. Therefore, when the adsorption capacity of the adsorbent N is lowered and becomes unacceptable, it is preferable to immediately end the filtration step. Further, even if the adsorbent layer 47 still has a surplus capacity, if the cake K has a predetermined thickness or more and the filtration processing speed of the liquid to be treated A becomes unacceptably slow, the filtration step is performed at that stage. You may terminate it.
  • the persistent substance E in the liquid A to be treated is adsorbed on the adsorbent layer 47, and the liquid A to be treated is filtered by the filtration filter 12 at the same time. This process is called an adsorption / filtration process.
  • the drawing shows the flow rate sensor 46.
  • the flow rate sensor 46 can detect the flow rate of the processing liquid B passing through the pipe 16 per unit time and the integrated flow rate of the processing liquid B after the start of filtration.
  • the drive of the pump 8a is stopped and the filtration process is stopped. It is possible to perform control such as making it.
  • the filtrate B remains in the filtrate passage 12r, but the sent gas D pushes the filtrate B from the inside to the outside of the filtration membrane 12 m. As a result, the filtrate B is dropped to the lower part of the filtration container 11 and then returned to the cleaning liquid storage tank 30 through the discharge pipe 22. As this purging step progresses, the gas D fills the filtrate passage 12r in the filtration vessel 11 and the space (gap 50) outside the pleated filter 12.
  • the cleaning step after the purging step will be described.
  • the cake K and the adsorbent layer 47 formed on the filter film surface 12f are peeled off to return the filter film surface 12f to the initial state.
  • the operation of the compressor 6 is continued, the valves V1, V2 and V5 are closed, and the valves V3 and V4 are opened.
  • the cleaning liquid C stored in the cleaning liquid storage tank 30 by the cleaning liquid supply pump 8c is sent to the cleaning liquid tank 36 through the cleaning liquid supply pipe 30.
  • the cleaning liquid tank 36 is temporarily filled with the cleaning liquid C, and the filled cleaning liquid C is blown out from the slit 37 toward the filtration filter 12 by the pressure of the pump 8.
  • the differential pressure of the slit nozzle 37 (differential pressure between the cleaning tank 36 and the filtration container 11) is preferably 80 kPa to 150 kPa.
  • the nozzle jet velocity is preferably 8 m / s, and when the differential pressure is 120 kPa, the nozzle jet velocity is preferably 12 m /.
  • the cake K or the adsorbent layer 47 is thick, it is necessary to increase the blowing pressure of the cleaning liquid C.
  • the cake thickness is 2 mm (2000 g / m 2 )
  • a pressure of 150 kPa (15 m / s) is required. Will be.
  • the blown-out cleaning liquid C collides with the filtration filter 12, and the impact causes the cake K and the adsorbent N adhering to the filtration filter 12 to be peeled off. Further, since the cleaning liquid C contains the powder or granular material F, the peeling effect of the cake K and the adsorbent N is high. Since the slit 37 extends in the extending direction of the cleaning liquid tank 36, the cleaning liquid C is blown out from the slit 37 in a flat plate shape and hits in a line shape along the axial direction of the filtration filter 12, and the cake K and the adsorbent. N can be peeled off without leakage.
  • the cake K adhering to the filtration filter 12 cannot be impacted. Therefore, it is preferable to rotate the filtration filter 12 around its axis.
  • the time required to rotate the filtration filter 12 once is determined by the diameter of the filtration filter 12, the number of folds (in the case of a pleated filter), and the surface area.
  • the filtration filter 12 having a diameter of 400 mm (surface area 50 m 2 ) is 0. It may be rotated at .5 RPM (one rotation in 120 seconds).
  • the cleaning liquid tank 36 may rotate around the filtration filter 12. Further, a plurality of cleaning liquid tanks 36 may be provided along the circumferential direction of the filtration container 11 and the cleaning liquid C may be blown out from the direction of 360 degrees to obtain the same effect as when the rotation mechanism is provided.
  • the cake K and the adsorbent N that have fallen on the discharge chute 11S of the filtration container 11 are sent to the cleaning liquid storage tank 30 together with the cleaning liquid C via the return pipe 22.
  • the peeled cake K or the adsorbent N may be immediately sent to the cleaning liquid storage tank 30, but may be stored in the cake discharge chute 11S and sent after a certain amount has been accumulated.
  • the gas sent from the compressor 6 is guided to the filtrate passage 12r and then exhausted from the inside to the outside of the filtration membrane 12m. Therefore, the cake K formed on the surface 12f of the filter membrane is peeled off by the impact force of the cleaning liquid C received from the outside of the filtration membrane, and is also peeled off by the gas D discharged from the inside to the outside of the filtration membrane, so that the cleaning liquid C is peeled off. It becomes easier to peel off the cake K and the adsorbent N as compared with the case of using only the cake K.
  • the cleaning liquid C is sprayed with the gas D filled in the filtration container 11, the impact force of the cleaning liquid C is compared with the conventional example in which the liquid (processed liquid A) is filled in the filtration container 11. Increases, and the amount of peeling of the cake K and the adsorbent N increases. Further, even when the blowing force of the cleaning liquid C is strong, since the gas D is discharged from the inside to the outside of the filtration membrane, there are few cases where the cleaning liquid C and the powder or granular material F in the cleaning liquid enter the filtration passage 12r. Even if it gets in, it can be immediately pushed back into the gap 50. As described above, the cleaning process is terminated when all the cake K is discharged.
  • the cake K, the adsorbent N, the powder / granular material F, the liquid to be treated A, the filtrate B and the like (these are referred to as waste liquid U; the same shall apply hereinafter) are supplied to the cleaning liquid storage tank 30.
  • a powder / granular material classification device 34 for classifying the powder / granular material F is provided in the vicinity of the cleaning liquid storage tank 30.
  • the waste liquid U supplied into the cleaning liquid storage tank 30 is sent to the powder / granular material classification device 34 through the powder / granular material recovery pipe 33 by the waste liquid transport pump 8d, and is in the waste liquid U in the powder / granular material classification device 34.
  • the powder or granular material F is recovered.
  • the recovered powder / granular material F is returned to the cleaning liquid storage tank 30.
  • the waste liquid U from which the powder or granular material F has been removed by the powder or granular material classification device 34 is sent to the dehydration device 27 via the waste liquid discharge pipe 31 by the waste liquid transport pump 8d.
  • the dehydrating device 27 includes various filters, filter presses, and the like, and the dehydrating device 27 captures the cake K and the adsorbent N in the waste liquid U.
  • the cake K and the adsorbent N captured by the dehydrating device 27 are discharged to the outside of this filtration system and discarded.
  • the above process is called a slurry dehydration process.
  • the waste liquid U of the cleaning liquid storage tank 30 is sent to the powder / granular material classification device 34, but a part of the waste liquid U is left in the cleaning liquid storage tank 30. This is because the waste liquid U in the cleaning liquid storage tank 30 is used as the cleaning liquid C in the cleaning process.
  • the process returns to the adsorbent layer forming step, and each series of steps is carried out. If the mixed liquid is exhausted or is low in the mixed liquid storage tank 24, the process returns to the mixed liquid generation step instead of the adsorbent layer forming step. Further, the liquid (purifying liquid) from which the cake K and the adsorbent N have been removed by the dehydrating device 27 is discharged from the slurry dehydrating device 27 by the drive of the purifying liquid transport pump 8e in a new adsorption / filtration step, and is purified. It merges with the liquid to be treated A flowing through the treatment liquid supply pipe 14 via the liquid discharge pipe 32, is sent to the filtration device 10, and is adsorbed and filtered.
  • the number of installed filtration devices 10 is not limited to one, and a plurality of filtration devices 10 may be used as in the second embodiment shown in FIG. Then, in a filtration method using a filtration system in which a plurality of filtration devices 10 are arranged in parallel, after the adsorption / filtration step, the adsorbent N adsorbing the persistent substance E by the filtration treatment is transferred from the filtration filter 12.
  • It has a peeling / discharging step of peeling and discharging the peeled adsorbent N from the inside of the filtration container 11, and a part of the filtering devices 10 among the plurality of filtering devices 10 has an adsorbent layer forming step or peeling / discharging. While the step is being carried out, another filtration device 10 may carry out the adsorption / filtration step to continue the filtration treatment of the liquid A to be treated in the entire filtration system.
  • the other filtration devices 10 perform the adsorption / filtration steps while some of the filtration devices 10 perform the peeling / discharging steps. That is, it is preferable to stagger the execution time of each step such as the adsorbent layer forming step, the adsorption / filtering step, and the peeling / discharging step in the plurality of filtration devices 10. In this way, even when some of the filtration devices 10 form the adsorbent layer 47, peel off the adsorbent layer 47, and discharge the adsorbent N, the other filtration devices 10 adsorb.
  • the filtration system as a whole has an advantage that the adsorption / filtration process of the liquid A to be treated can be continued without being stopped.
  • the adsorption / filtration treatment of the liquid A to be treated is performed as the entire filtration system.
  • the formation of the adsorbent layer 47 and the adsorption / filtration must be performed at the same time.
  • the liquid A to be treated is filtered in a state where a sufficient adsorbent layer 47 cannot be formed on the surface of the filtration filter 12, so that the treatment is performed.
  • the amount of the persistent substance E contained in the liquid B may increase. In the aspect of FIG. 5, it is possible to prevent the occurrence of such a defect.
  • each filtration device 10 when there are a plurality of filtration devices 10, it is necessary to monitor whether or not the filtration process of each filtration device 10 is functioning normally. For example, when the filtration device 10 fails or the adsorbent N of the adsorbent layer 47 takes in a large amount of the persistent substance E and the adsorption capacity is lowered, a large amount of the processing liquid B discharged from the filtration device 10 is used. There is a concern that a situation may occur in which the persistent substance E is contained. In order to prevent the occurrence of such a problem, the treatment liquid discharged from each filtration device 10 is extracted, and whether or not there is an abnormality in the amount of the persistent substance E in the treatment liquid B (persistent substance).
  • an extraction tube 42 for extracting the treatment liquid B discharged from each filtration device 10 is provided, and the extraction tubes 42 are assembled in the subsequent stage, and the extraction tubes 42 are assembled. It is preferable to provide a detector 44 for detecting the persistent substance E in the treatment liquid B in the collecting portion 43 (or the subsequent stage of the collecting portion 43). With such a configuration, it is not necessary to provide 44 detectors as many as the number of filtration devices 10, and the initial cost can be reduced. For example, even when a plurality of filtration devices 10 are provided, the amount of the persistent substance E contained in the treatment liquid B discharged from each filtration device 10 becomes abnormal only by providing one detector 44. It will be possible to monitor for the absence.
  • each filtration device 10 it may be determined by another method whether or not each filtration device 10 can appropriately remove the persistent substance E.
  • the adsorption capacity of the adsorbent N in each filtration device 10 decreases as the amount of the liquid A to be treated (the amount of liquid passing through) that has passed through the adsorbent layer 47 increases.
  • the amount of liquid to be passed is determined by the speed at which the liquid to be treated A is sent to the filtration device 10 (liquid feeding speed) and the time elapsed since the liquid to be treated A is passed through the adsorbent layer 47 (liquid passing time).
  • the actual liquid passing time is measured by the time measuring device 61, and the liquid passing time is a predetermined time.
  • the control device 62 may stop driving the pump 8a and control the filtering device 10 to stop the supply of the liquid A to be processed.
  • the adsorbent layer 47 may be composed of a plurality of layers.
  • the adsorbent layer 47 has a two-layer structure.
  • the average particle size of the first adsorbent N1 of the first adsorbent layer 47A located inside the adsorbent layer 47 is adjusted to the second adsorbent of the second adsorbent layer 47B located outside the adsorbent layer 47. It is preferable to make it larger than the average particle size of N2.
  • the average particle size of the first adsorbent N1 is preferably about 20 to 50 ⁇ m, more preferably about 20 to 30 ⁇ m.
  • the average particle size of the first adsorbent N1 is smaller than 20 ⁇ m, the first adsorbent N1 penetrates deep into the gap of the pleated filter 12 and is difficult to peel off from the pleated filter 12.
  • the average particle size of the first adsorbent N1 is larger than 50 ⁇ m, the second adsorbent N2 passes through the gap of the first adsorbent layer 47A, and the second adsorbent N2 is deep in the gap of the pleated filter 12. It gets in and becomes difficult to peel off from the pleated filter 12.
  • the average particle size of the first adsorbent N1 is preferably set so as not to enter the gap of the pleated filter 12, so that the average particle size of the first adsorbent N1 is 5 times or more the gap of the pleated filter 12. It is preferably about 20 times, more preferably about 5 to 10 times.
  • the pleated filter 12 is provided with innumerable gaps, and the average value of the sizes of the gaps is preferably about 0.1 to 3 ⁇ m 2 , preferably about 0.15 to 0.5 ⁇ m 2 . It is more preferable to do so. If the size of the gap is smaller than 0.1 ⁇ m 2 , it becomes difficult for the liquid A to be treated to pass through the gap of the pleated filter 12, and the filtration treatment of the liquid A to be treated takes too much time. Further, if the size of the gap is larger than 3 ⁇ m 2 , the suspended solids in the liquid to be treated A may pass through the gap of the pleated filter 12 and be mixed in a large amount in the treatment liquid B.
  • the average particle size of the second adsorbent N2 is preferably about 1 to 15 ⁇ m, more preferably about 5 to 9 ⁇ m.
  • the average particle size of the second adsorbent N2 is smaller than 1 ⁇ m, the second adsorbent N2 passes through the gap of the first adsorbent layer 47A, and the second adsorbent N2 penetrates deep into the gap of the pleated filter 12. It becomes difficult to peel off from the pleated filter 12.
  • the average particle size of the second adsorbent N2 is larger than 15 ⁇ m, the specific surface area of the second adsorbent N2 is large, so that the adsorption capacity for adsorbing the persistent substance E is low.
  • the average particle size of the second adsorbent N2 is preferably such that the second adsorbent N1 does not pass through the first adsorbent layer 47A, so that the average particle size of the second adsorbent N2 is the first.
  • the gap is preferably about 1.5 to 5 times, more preferably about 1.5 to 3 times the gap of the adsorbent layer 47. That is, the average particle size of the second adsorbent N2 is preferably about 1 / 1.5 to 1/5 of the average particle size of the 1st adsorbent N1, and 1 / 1.5 to 3 minutes. It is more preferable to set it to about 1.
  • the thickness (length in the thickness direction) of the first adsorbent layer 47A is preferably about 0.05 to 0.1 mm, more preferably about 0.07 to 0.1 mm. If the thickness of the first adsorbent layer 47A is thinner than 0.05 mm, there is a high possibility that the second adsorbent N2 will enter the gap of the pleated filter 12. On the other hand, since the specific surface area of the first adsorbent N1 is smaller than that of the second adsorbent N2 and the adsorption capacity of the persistent substance E is lower than that of the second adsorbent N2, the thickness of the first adsorbent layer 47A is 0. If it is thicker than 1 mm, the adsorption capacity of the persistent substance E as a whole of the adsorbent layer 47 may be lowered.
  • the first adsorbent N1 and the diluted solution H are first charged into the first solution storage tank 24A, and the mixture is stirred with a hand mixer 65.
  • the first solution G1 is produced.
  • the second adsorbent N2 and the diluted solution H are put into the second solution storage tank 24B and stirred with the hand mixer 65 to generate the second solution G2.
  • the average particle size of the first adsorbent N1 is larger than the average particle size of the second adsorbent N2.
  • the first solution supply pump 8bA is operated to send the first solution G1 in the first solution storage tank 24A to the filtration vessel 11 via the first solution supply route 23A and the mixed liquid supply pipe 14.
  • the liquid to be treated transport pump 8a is operated to send the liquid A to be treated in the liquid storage tank 7 to be treated to the mixed liquid supply pipe 14, and the first solution G1 is treated inside the mixed liquid supply pipe 14. It is preferable to dilute with liquid A.
  • the first solution G1 that has entered the inside of the filtration container 11 passes through the pleated filter 12 from the outside to the inside, whereby the first adsorbent layer 47A is formed on the outer surface of the pleated filter 12.
  • the second solution supply pump 8bB is operated, and the second solution G2 in the second solution storage tank 24B is sent to the filtration container 11 via the second solution supply route 23B and the mixed liquid supply pipe 14.
  • the liquid to be treated transport pump 8a is operated to send the liquid to be treated A in the liquid to be treated storage tank 7 to the mixed liquid supply pipe 14, and the second solution G2 to be treated is inside the mixed liquid supply pipe 14. It is preferable to dilute with liquid A. In this way, the second solution G2 that has entered the inside of the filtration vessel 11 passes through the first adsorbent layer 47A and the pleated filter 12 from the outside to the inside, thereby adsorbing the second solution to the outer surface of the first adsorbent layer 47B.
  • the agent layer 47B is formed. Specifically, for example, it is preferable to impregnate the second adsorbent N2 having an average particle size of about 5 to 9 ⁇ m on the outer surface of the first adsorbent layer 47A by about 1000 to 2000 g / m 2 .
  • the first adsorbent N1 and the second adsorbent N2 may use the same type of adsorbent or different types of adsorbent.
  • activated carbon may be used as the first adsorbent N1 and activated carbon (activated carbon having a smaller average particle size than the activated carbon of the first adsorbent N1) may be used as the second adsorbent N2, or as the first adsorbent N1.
  • Prusyan blue may be used, and activated carbon (activated carbon having an average particle size smaller than that of the first adsorbent N1 Prisian blue) may be used as the second adsorbent N2.
  • the particle size of the adsorbent N refers to the diameter equivalent to the projected circle (the diameter of the circle equal to the projected area of the particles), and is the diameter equivalent to the projected circle of each particle. It refers to the average value (average particle size).
  • This average particle size is measured by measuring the particle size distribution using a laser diffraction / scattering type particle size distribution measuring device (for example, product LA-960V2 series, manufactured by Horiba Seisakusho Co., Ltd.), and when the cumulative volume corresponds to 50%.
  • the particle size is defined as the average particle size.
  • the first solution G1 and the second solution G2 are stored in different mixed liquid storage tanks 24 (solution storage tank 24)
  • the example is limited to this example. is not.
  • the first solution G1 is first stored in the solution storage tank 24, and a part of the first solution G1 is transported to the filtration container 11. Then, the first solution G1 left in the solution storage tank 24 is further stirred by the mixer 65, and the first adsorbent N1 in the first solution G1 is crushed by the stirring force.
  • the first adsorbent N1 having a smaller average particle size in this way is used as the second adsorbent N2. That is, by stirring with the mixer 65, the first adsorbent N1 is converted into the second adsorbent N2, and the second solution containing the second adsorbent N2 thus produced is sent to the filtration vessel 11. You may.
  • a third adsorbent layer 47C or the like may be provided, and the adsorbent layer 47 may have three or more layers.
  • the adsorbent layer located on the innermost side is the first adsorbent layer 47A
  • the adsorbent layer adjacent to the outside of the first adsorbent layer 47A is the second adsorbent layer 47B
  • the second adsorbent layer is the second adsorbent layer.
  • the adsorbent layer adjacent to the outside of 47B is the third adsorbent layer 47C, and so on, and the adsorbent layer 47 is counted as the first, second, third ...
  • the average particle size of the first adsorbent N1 in the first adsorbent layer 47A is larger than the gap of the pleated filter 12. It is preferable to increase the size. Further, it is preferable that the average particle size of the second adsorbent N2 of the second adsorbent layer 47B is larger than the gap of the first adsorbent layer 47B. Therefore, even if an attempt is made to reduce the average particle size of the second adsorbent N2 of the second adsorbent layer 47B, there is an inevitable restriction.
  • the average particle size of the adsorbent N becomes smaller, the specific surface area of the adsorbent N becomes larger, so that the adsorption capacity of the persistent substance E can be enhanced. Therefore, from the viewpoint of improving the adsorption capacity of the persistent substance E, it is preferable to make the average particle size of the adsorbent N constituting the adsorbent layer 47 as small as possible, but when the adsorbent layer 47 is made into two layers, it is preferable. Has the above-mentioned restrictions.
  • the persistent substance E can be obtained.
  • the adsorption capacity may be further increased.
  • a fourth adsorbent layer 47D using a fourth adsorbent N4 having an average particle size smaller than that of the third adsorbent N3 is further provided on the outside of the third adsorbent layer 47C, the persistent substance E can be obtained.
  • the adsorption capacity can be further increased.
  • the adsorbent N (first adsorbent N1, second adsorbent N2) of each layer (first adsorbent layer 47A, second adsorbent layer 47B, third adsorbent layer 47C ...) Constituting the adsorbent layer 47.
  • the average particle size of the third adsorbent N3 ) Is preferably made gradually smaller from the inside to the outside of the adsorbent layer 47.
  • the persistent substance E can be removed with a high probability regardless of the concentration of the persistent substance E in the liquid A to be treated.
  • persistent substances other than PFOS for example, PFOA, PFHxS, bisphenol A, trihalomethane, PCB, trichlorethylene, tetrachlorethylene, DDT, benzene, etc.
  • PFOS for example, PFOA, PFHxS, bisphenol A, trihalomethane, PCB, trichlorethylene, tetrachlorethylene, DDT, benzene, etc.
  • PFOS for example, PFOA, PFHxS, bisphenol A, trihalomethane, PCB, trichlorethylene, tetrachlorethylene, DDT, benzene, etc.
  • PFOS for example, PFOA, PFHxS, bisphenol A, trihalomethane, PCB, trichlorethylene, tetrachlorethylene, DDT, benzene, etc.
  • the efficiency (adsorption efficiency) at which the activated carbon N adsorbs the persistent substance E is high, and even if the activated carbon N adsorbs the difficult substance E, the adsorption capacity does not easily decrease. There is. Further, since the liquid passage resistance of the activated carbon N is also low, the power consumption of the transport pump can be suppressed, and the running cost can be reduced. Further, when activated carbon is used as the adsorbent N, the activated carbon becomes a combustible substance, so that it is easy to dispose of. Furthermore, the entire filtration system can be operated fully automatically, which can save labor.
  • Concentration meter 29 ... Filter support, 30 ... Cleaning liquid supply pipe, 31 ... Waste liquid discharge pipe, 32 ... Purifying liquid discharge pipe, 33 ... Powder and granule recovery pipe, 34 ... Powder and granule classification device, 35 ... Cleaning device, 36 ... Cleaning liquid Tank, 37 ... outlet (slit), 42 ... extraction tube, 43 ... aggregation part, 44 ... detector, 45 ... protrusion, 46 ... flow sensor, 47 ... adsorbent layer, 47A ... first adsorbent layer, 47B Second adsorbent layer, 48 ... supply port, 50 ... gap, 51 ... rectifying baffle, 61 ... time meter, 62 ... control device, 65 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)
  • Filtration Of Liquid (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

[Problem] To provide a filtration device, a filtration system, and a filtration method highly effective in removing a persistent substance. [Solution] A filtration device 10 according to the present invention comprises: a filtration container 11 having a supply port 4 for a liquid A to be treated and a discharge port 15 for a treated liquid B; and a tubular filtration filter 12 which is provided inside the filtration container 11 and in which an outer surface 12f is a filtration surface and the interior is a passage for the treated liquid B, wherein in the state before filtration, an adsorbent N that adsorbs the persistent substance E is laminated on the outer surface 12f of the filtration filter 12 and forms an adsorbent layer 47.

Description

濾過装置、濾過システムおよび濾過方法Filtration equipment, filtration system and filtration method
 本発明は、被処理液に含まれる難分解性物質を除去する濾過装置、濾過システムおよび濾過方法に関する。 The present invention relates to a filtration device, a filtration system and a filtration method for removing persistent substances contained in a liquid to be treated.
 POPs条約(残留性有機汚染物質に関するストックホルム条約)では、残留性有機汚染物質(Persistent Organic Pollutants : POPs)の製造、使用の廃絶・制限、排出の削減等が規定されている。このPOPsは、環境中で分解されにくく、生物に蓄積されやくす、移動拡散性が高い化学物質の総称であり、この条約の付属書Aには、対象物質としてペルフルオロオクタン酸(PFOA)等が挙げられており、付属書Bには、対象物質としてペルフルオロオクタンスルホン酸(PFOS)等が挙げられている。日本は2002年8月にこの条約に加入し、この条約の義務の履行が求めている。 The POPs Convention (Stockholm Convention on Persistent Organic Pollutants) stipulates the manufacture, elimination / restriction of use, reduction of emissions, etc. of persistent organic pollutants (POPs). These POPs are a general term for chemical substances that are not easily decomposed in the environment, easily accumulated in living organisms, and have high migration and diffusivity. Perfluorooctanoic acid (PFOA) and the like are included in Annex A of this Convention as target substances. In Annex B, perfluorooctanesulfonic acid (PFOS) and the like are listed as target substances. Japan joined the Convention in August 2002 and is required to fulfill its obligations.
 POPs条約で指定された物質のうちの前記PFOSやPFOAは、2020年4月1日から日本の水質管理目標設定項目に位置付けられ、その目標値がこれら2物質の量の和として 0.00005mg/L(暫定)とされている。環境省も河川、湖沼、海域、地下水、湧水を調査している。このようにPFOSやPFOAなどのPOPsを除去する技術が一般社会から求められている現状がある。 Of the substances designated by the POPs Convention, the above-mentioned PFOS and PFOA have been positioned as water quality management target setting items in Japan from April 1, 2020, and the target value is 0.00005 mg / sum of the amounts of these two substances. It is said to be L (provisional). The Ministry of the Environment is also investigating rivers, lakes, sea areas, groundwater, and springs. As described above, there is a current situation in which the general society demands a technique for removing POPs such as PFOS and PFOA.
 また、POPs以外の難分解性物質(自然環境下で分解されにくい化学物質)についても、環境汚染(例えば水質悪化)の原因となり得るため、その除去が望まれている。なお、化学物質が良分解性物質か、または難分解性物質かの判定は、国が定めた「監視化学物質への該当性の判定等に係る試験方法及び判定基準」(最終改正平成23年4月22日)に記載された以下の基準を基本とする。すなわち、良分解性とは、(1)3つの試験容器のうち2つ以上でBODによる分解度が60%以上であり、かつ3つの平均が60%以上であること。(2)あわせてHPLC、GC等の直接分析法により分解生成物が生成していないことが確認されること。なお、通達で定められた試験方法による試験成績が上記の基準を満たさない場合であって、BOD曲線等から試験終了後も引き続き生分解していることが示唆される場合(上昇傾向等)には、OECDテストガイドライン302Cによる試験成績に基づいて判定を行うことができる。他方、難分解性とは、良分解性でないことをいう。 In addition, persistent substances other than POPs (chemical substances that are not easily decomposed in the natural environment) can also cause environmental pollution (for example, deterioration of water quality), so their removal is desired. To determine whether a chemical substance is a well-degradable substance or a persistently decomposable substance, the national government has set "Test methods and criteria for determining the applicability to monitored chemical substances, etc." (Final revision 2011) Based on the following criteria described in (April 22). That is, good degradability means (1) that the degree of decomposition by BOD is 60% or more in two or more of the three test containers, and the average of the three is 60% or more. (2) At the same time, it is confirmed that no decomposition product is produced by a direct analysis method such as HPLC or GC. If the test results according to the test method specified in the notification do not meet the above criteria, and the BOD curve, etc. suggests that biodegradation continues even after the end of the test (increasing tendency, etc.). Can make a judgment based on the test results according to OECD Test Guidelines 302C. On the other hand, poorly decomposable means that it is not goodly decomposable.
 以上のような難分解性物質(POPsを含む。以下同じ。)を含む液体を浄化する方法としては、(1)RO膜処理法、(2)イオン交換樹脂吸着法、(3)活性炭吸着法、(4)オゾン酸化分解法、(5)紫外線/光触媒法などを挙げることができる。 As a method for purifying a liquid containing the above-mentioned persistent substances (including POPs; the same applies hereinafter), (1) RO membrane treatment method, (2) ion exchange resin adsorption method, and (3) activated carbon adsorption method. , (4) Ozone oxidative decomposition method, (5) Ultraviolet / photocatalytic method and the like.
 また、本発明に関する先行技術として、特許文献1~5に開示された発明がある。
 特許文献1には、浸漬型膜濾過装置を用いた水処理設備の運転方法が開示されている。この運転方法は、原水に予め粉末活性炭を添加した粉末活性炭混合水を膜濾過槽に流入させるか、または原水を膜濾過槽に流入させ粉末活性炭を添加して粉末活性炭混合水となして、原水中の微量有機物などの処理対象物質を粉末活性炭に吸着させるとともに、膜濾過槽内の粉末活性炭混合水を槽内に設置した浸漬型膜濾過装置により固液分離するものである。その際、膜濾過槽への流入水量に対する膜濾過水の取出量を99%以上として、粉末活性炭を膜濾過槽内に高濃度に保持することにより、処理対象物質の吸着を促進することができるという効果が開示されている。
Further, as a prior art relating to the present invention, there are inventions disclosed in Patent Documents 1 to 5.
Patent Document 1 discloses an operation method of a water treatment facility using an immersion type membrane filtration device. In this operation method, powdered activated carbon mixed water in which powdered activated carbon is previously added to raw water is made to flow into a membrane filter tank, or raw water is made to flow into a membrane filter tank and powdered activated carbon is added to make powdered activated carbon mixed water. A substance to be treated such as a trace amount of organic matter in water is adsorbed on the powdered activated carbon, and the powdered activated carbon mixed water in the membrane filtration tank is separated into solid and liquid by an immersion type membrane filtration device installed in the tank. At that time, the adsorption of the substance to be treated can be promoted by keeping the powdered activated carbon at a high concentration in the membrane filter tank by setting the amount of the membrane filter water to be taken out to 99% or more with respect to the amount of the inflow water into the membrane filter tank. The effect is disclosed.
 特許文献2には、排水処理方法が開示されている。この方法は、原水に、溶解性の有害成分を吸着可能な吸着材を吸着材投入部から投入し、該吸着材に少なくとも溶解性の有害成分を吸着させた後、膜分離装置のようなろ過手段でろ過処理して有害成分を吸着した 吸着材及び固形有害成分を原水から分離し、次いで、前記ろ過手段の洗浄排水を促進酸化処理部に導入して促進酸化処理を施すことにより有害成分の無害化を行うというものである。この方法を用いることによって、排水中に含まれるダイオキシン類、PCB、クロロベンゼン、トリハロメタン等の有機塩素化合物や色素成分等の除去を効率よく低コストで行うことができるという効果が開示されている。 Patent Document 2 discloses a wastewater treatment method. In this method, an adsorbent capable of adsorbing a soluble harmful component is added to raw water from an adsorbent input section, and at least the soluble harmful component is adsorbed on the adsorbent, and then filtration such as a membrane separator is performed. The adsorbent and solid harmful components adsorbed by means are filtered to separate the adsorbent and solid harmful components from the raw water, and then the cleaning wastewater of the filtration means is introduced into the accelerated oxidation treatment section to perform accelerated oxidation treatment to remove the harmful components. It is to detoxify. By using this method, the effect that dioxin, PCB, chlorobenzene, trihalomethane and other organic chlorine compounds and pigment components contained in wastewater can be removed efficiently and at low cost is disclosed.
 特許文献3には、難分解性物質を含有する汚染水の処理方法が開示されている。この方法は、難分解性物質を含有する汚染水に対して無機系吸着剤を添加し、当該無機系吸着剤を添加した汚染水をろ過膜によりろ過する処理を含むことを特徴とする難分解性物質を含有する汚染水の処理方法であり、必要により、汚染水を逆浸透膜に通過させて汚染水を分離処理した後に、当該逆浸透膜を通過しなかった液分に対して、無機系吸着剤を添加するようにしてもよいというものである。この方法によれば、汚染水に対して無機系吸着剤を添加して難分解性物質を当該吸着剤に吸着させた状態でろ過膜によりろ過処理するようにしており、反応系中に酸化分解反応を含むこともないため、重亜硫酸塩等の還元剤を含む排水にも適用できるとともに、含有される難分解性物質の性状に制限されず、効率よく低コストで難分解性物質を含む汚染水を無害化処理することができるという効果が開示されている。 Patent Document 3 discloses a method for treating contaminated water containing a persistent substance. This method is characterized by including a treatment of adding an inorganic adsorbent to contaminated water containing a persistent substance and filtering the contaminated water to which the inorganic adsorbent is added by a filtration membrane. It is a method for treating contaminated water containing a sex substance. If necessary, the contaminated water is passed through a reverse osmosis membrane to separate and treat the contaminated water, and then the liquid content that does not pass through the reverse osmosis membrane is inorganic. A system adsorbent may be added. According to this method, an inorganic adsorbent is added to contaminated water so that the persistent substance is adsorbed by the adsorbent and filtered by a filtration membrane, and oxidative decomposition is performed in the reaction system. Since it does not contain a reaction, it can be applied to wastewater containing a reducing agent such as heavy sulfite, and it is not limited by the properties of the persistent substances contained in it, and it is efficiently and inexpensively contaminated with persistent substances. The effect of being able to detoxify water is disclosed.
 特許文献4には、難分解性物質含有水の処理方法が開示されている。この方法は、下記工程:(B)難分解性物質含有水(処理原水)に吸着剤を添加し、該吸着剤に難分解性物質を吸着させる工程(吸着処理工程)、(C)該難分解性物質を吸着した吸着剤を、濾過膜を用いて分離し、難分解性物質を吸着した吸着剤が濃縮された水を得る工程(膜濾過処理工程)、(D)該分離された吸着剤に吸着された難分解性物質を、該吸着剤から脱着操作を行うことなく、該難分解性物質に対して過酸化物を接触させて、難分解性物質を化 学分解する工程(化学分解工程)、を含むものである。この方法によれば、汚染水(処理原水)に含まれるダイオキシン類等の難分解性物質を濃縮して無害化するにあたり、遊 離塩素を中和する重亜硫酸塩等の還元性物質を含む水にも適用できるとともに、含有される難分解性物質の性状に制限されず、効率よく低コストで無害化することができるという効果が開示されている。 Patent Document 4 discloses a method for treating water containing a persistent substance. In this method, the following steps: (B) a step of adding an adsorbent to water containing a persistent substance (treated raw water) and adsorbing the persistent substance to the adsorbent (adsorption treatment step), (C) the difficulty. A step of separating the adsorbent adsorbing the degradable substance using a filtration membrane to obtain water in which the adsorbent adsorbing the persistent substance is concentrated (membrane filtration treatment step), (D) the separated adsorption. A process of chemically decomposing a persistent substance adsorbed on an agent by contacting the persistent substance with a peroxide without performing a desorption operation from the adsorbent (chemical). Disassembly step). According to this method, water containing a reducing substance such as heavy sulfite that neutralizes free chlorine when concentrating and detoxifying persistent substances such as dioxins contained in contaminated water (treated raw water). It is also disclosed that the effect of being able to be detoxified efficiently and at low cost without being limited by the properties of the persistently decomposable substance contained therein.
 特許文献5には、難分解性物質含有水の処理方法が開示されている。この方法は、下記工程:(B)難分解性物質含有水に吸着剤を添加し、該吸着剤に難分解性物質を吸着させる工程(吸着処理工程)、(C)濾過膜を用いて透過液を分離し、該難分解性物質を吸着した吸着剤を濃縮する工程(膜濾過処理工程)、(D)該濃縮された吸着剤に吸着された難分解性物質を分解する工程(難分解性物質分解工程)、(E)難分解性物質分解後の吸着剤を(B)吸着処理工程に返送する工程(吸着剤返送工程)を含むものである。この方法によれば、汚染水に含まれるダイオキシン類等の難分解性物質を濃縮して無害化するにあたり、固体に吸着されている難分解性物質を、脱着等の操作を行うことなく、そのままの状態で効果的に分解処理するクローズドシステムができる等の効果が開示されている。 Patent Document 5 discloses a method for treating water containing a persistent substance. In this method, the following steps: (B) an adsorbent is added to water containing a persistent substance, and the persistent substance is adsorbed on the adsorbent (adsorption treatment step), and (C) permeation using a filter membrane. A step of separating the liquid and concentrating the adsorbent adsorbing the persistent adsorbent (membrane filtration treatment step), (D) a step of decomposing the persistent substance adsorbed on the concentrated adsorbent (difficult decomposition). It includes (E) a step of returning the adsorbent after decomposition of the persistent substance to (B) an adsorption treatment step (adsorbent return step). According to this method, when the persistent substances such as dioxins contained in the contaminated water are concentrated and detoxified, the persistent substances adsorbed on the solid are directly removed without any operation such as desorption. The effects such as the creation of a closed system that effectively decomposes in the above state are disclosed.
 特許文献6には、濾過装置および濾過装置を用いた濾過方法が開示されている。この濾過装置は、ケーシング内に濾過膜が収容されて原水から濾過水を濾過する濾過モジュールと、この濾過モジュールに接続されて濾過水を排出する濾過水排出手段と、濾過モジュールに原水が導入されていない状態で濾過モジュールに活性炭が懸濁した懸濁液を供給する活性炭懸濁液供給手段とを備えており、懸濁液を濾過膜によって濾過することにより濾 過膜に活性炭の膜あるいは層を形成し、しかる後に濾過モジュールに原水を導入して濾過を行うというものである。濾過膜に活性炭膜を確実かつ均一な膜厚で形成することにより、原水中の濁質等による濾過膜の目詰まりを効果的に防止して効率的な濾過処理を行うことができるという効果が開示されている。 Patent Document 6 discloses a filtration device and a filtration method using the filtration device. This filtration device has a filtration module in which a filter membrane is housed in a casing to filter filtered water from raw water, a filtered water discharge means connected to the filtration module to discharge filtered water, and raw water introduced into the filtration module. It is equipped with an activated charcoal suspension supply means for supplying a suspension in which activated charcoal is suspended in the filtration module in a non-filtered state. After that, raw water is introduced into the filtration module for filtration. By forming the activated carbon film on the filter membrane with a reliable and uniform film thickness, it is possible to effectively prevent clogging of the filter membrane due to turbidity in the raw water and perform efficient filtration treatment. It has been disclosed.
特開平9-285779号公報Japanese Unexamined Patent Publication No. 9-285779 特開2003-266090号公報Japanese Patent Application Laid-Open No. 2003-266090 特開2005-205300号公報Japanese Unexamined Patent Publication No. 2005-205300 特開2006-192378号公報Japanese Unexamined Patent Publication No. 2006-192378 特開2007-021347号公報Japanese Unexamined Patent Publication No. 2007-021347 特開2005-193075号公報Japanese Unexamined Patent Publication No. 2005-193075
 しかしながら、前記RO膜(逆浸透膜)処理は、通水圧力が4MPa~7MPa程度は必要であるため、被処理液を輸送する輸送ポンプの動力を大きいものにしなければならず、ランニングコストが高いという問題がある。また、クロスフロー方式であり、RO膜1個当たりの通水量が少ないため、多くのRO膜を用意しなければならず、イニシャルコストが高いという問題もある。さらに、被処理液に含まれる難分解性物質以外の物質(例えば有機物)の影響によってRO膜が目詰りを起こしやすいため、定期的に目詰りを解消するためのメンテナンスが必要であるという問題もある。 However, since the RO membrane (reverse osmosis membrane) treatment requires a water flow pressure of about 4 MPa to 7 MPa, the power of the transport pump for transporting the liquid to be treated must be increased, and the running cost is high. There is a problem. Further, since it is a cross-flow method and the amount of water passing through one RO membrane is small, many RO membranes must be prepared, and there is also a problem that the initial cost is high. Furthermore, since the RO membrane is prone to clogging due to the influence of substances other than persistent substances (for example, organic substances) contained in the liquid to be treated, there is also the problem that maintenance is required to clear the clogging on a regular basis. be.
 前記イオン交換樹脂吸着法に用いられるイオン交換樹脂は、活性炭と比べて単位量当たりの難分解性物質の吸着量が多く、吸着性能に優れているが、単価が高いという問題がある。また、イオン交換樹脂は粒度が0.3mm~1mmΦ(ファイスケール)程度と細かいため、難分解性物質との接触効率が高く、難分解性物質の吸着効率が90%以上であるという利点があるが、その細かさ故に通水抵抗が大きい。通水抵抗が大きいと、通水速度を遅く必要があり、ある程度の量の被処理液を処理するためには、イオン交換樹脂を充填したボトルの本数を多くする必要があり、イニシャルコストがかかるという問題もある。また、被処理液に含まれる難分解性物質以外の物質(例えば有機物)の影響によって、イオン交換樹脂の吸着性能が劣化しやすいという問題もある。また、被処理液の濁度(濁りの程度をいい、JIS K0101に試験方法がある。)が高いと、イオン交換樹脂の粒子間の間隙が目詰まりしやすいため、イオン交換樹脂を備えた装置の前段に濁度を下げるためのフィルタを別途設けなければならないという問題もある。さらに、イオン交換樹脂を充填したボトルは高価であるため、ボトル交換によるランニングコストが高いとともに、使用済みボトルの廃棄処理コストも高いという問題もある。 The ion exchange resin used in the ion exchange resin adsorption method has a larger adsorption amount of persistent substances per unit amount than activated carbon and is excellent in adsorption performance, but has a problem of high unit price. In addition, since the ion exchange resin has a fine particle size of about 0.3 mm to 1 mmΦ (phiscale), it has the advantages of high contact efficiency with persistent substances and adsorption efficiency of persistent substances of 90% or more. However, due to its fineness, the water flow resistance is large. If the water flow resistance is large, the water flow speed needs to be slow, and in order to treat a certain amount of the liquid to be treated, it is necessary to increase the number of bottles filled with the ion exchange resin, which requires an initial cost. There is also the problem. Further, there is also a problem that the adsorption performance of the ion exchange resin tends to deteriorate due to the influence of a substance (for example, an organic substance) other than the persistent substance contained in the liquid to be treated. Further, if the turbidity of the liquid to be treated (the degree of turbidity, which is a test method in JIS K0101) is high, the gaps between the particles of the ion exchange resin are likely to be clogged, so that the device is equipped with an ion exchange resin. There is also a problem that a filter for reducing the turbidity must be separately provided in front of the above stage. Further, since the bottle filled with the ion exchange resin is expensive, there is a problem that the running cost by replacing the bottle is high and the disposal cost of the used bottle is also high.
 前記活性炭吸着法は、活性炭をペレットにして充填した装置を用いるもの(ペレット充填層方式)が代表的である。しかし、このペレット充填層方式は、被処理液中の難分解性物質の濃度が低いときに、難分解性物質を吸着する効率(吸着効率)が悪いという問題がある。具体的には、空間速度(SV)が5~10(1/Hr)の場合に、50~70%程度の難分解性物質しか吸着することができず、難分解性物質の除去に関して不確実性が高い。また、活性炭ペレットの表面が、被処理液中の浮遊物質、懸濁物質、バイオフィルム等で覆われる(マスキングされる)と、活性炭ペレットの吸着性能が劣化する。このようなマスキングを防止するために、活性炭吸着層の前段にこれらの物質を除去するフィルタを別途設けたり、被処理液中に次亜塩素酸を注入したりしなければならず、イニシャルコストやランニングコストがかかるという問題がある。また、被処理液に含まれる難分解性物質以外の物質(例えば有機物)の影響によって、活性炭の吸着性能が劣化しやすいという問題もある。また、難分解性物質を除去するために必要となる活性炭ペレットの量が多く、コスト(イニシャルコストおよびランニングコスト)が高いという問題がある。また、活性炭充填層が大型になる傾向があり、大型の設備になるという問題がある。さらに、難分解性物質を吸着した活性炭を廃棄するために、後段に脱水装置や乾燥装置をもうけなければならないという問題がある。例えば、難分解性物質がPFOSである場合、PFOSは850度で2秒間加熱すると分解するため、活性炭充填層の後段にそのようなPFOSを分解するための装置を設けなければならない。 The activated carbon adsorption method is typically a method using an apparatus in which activated carbon is filled into pellets (pellet packed bed method). However, this pellet packed bed method has a problem that the efficiency (adsorption efficiency) of adsorbing the persistent substance is poor when the concentration of the persistent substance in the liquid to be treated is low. Specifically, when the space velocity (SV) is 5 to 10 (1 / Hr), only about 50 to 70% of persistent substances can be adsorbed, and there is uncertainty regarding the removal of persistent substances. High in sex. Further, if the surface of the activated carbon pellet is covered (masked) with suspended solids, suspended solids, biofilm or the like in the liquid to be treated, the adsorption performance of the activated carbon pellet deteriorates. In order to prevent such masking, a filter for removing these substances must be separately provided in front of the activated carbon adsorption layer, or hypochlorous acid must be injected into the liquid to be treated, resulting in initial cost and initial cost. There is a problem that running cost is high. In addition, there is also a problem that the adsorption performance of activated carbon tends to deteriorate due to the influence of substances other than persistent substances (for example, organic substances) contained in the liquid to be treated. Further, there is a problem that the amount of activated carbon pellets required for removing the persistent substance is large and the cost (initial cost and running cost) is high. In addition, the activated carbon packed bed tends to be large, and there is a problem that the equipment becomes large. Further, there is a problem that a dehydrator or a drying device must be installed in the subsequent stage in order to dispose of the activated carbon adsorbing the persistent substance. For example, when the persistent substance is PFOS, PFOS decomposes when heated at 850 ° C. for 2 seconds, so a device for decomposing such PFOS must be provided after the activated carbon packed bed.
 そのほか、前記オゾン酸化分解法や、紫外線/光触媒法などによって被処理液を処理することも可能であるが、設備費が高いとともに、電力などのランニングコストも高く、さらに難分解性物質を除去する効率も低いため、実効性がないという問題がある。 In addition, it is possible to treat the liquid to be treated by the ozone oxidative decomposition method or the ultraviolet / photocatalytic method, but the equipment cost is high, the running cost such as electric power is high, and the persistent substances are removed. Since the efficiency is low, there is a problem that it is not effective.
 また、前記特許文献1~5に係る方法は、被処理液に活性炭等を混合させて、活性炭等に難分解性物質等を吸着させた後、その液体をフィルタで濾過するというものである。しかし、これらの方法では、活性炭(粒子)の周囲にある難分解性物質は吸着されるが、活性炭(粒子)から離れた位置にある難分解性物質は吸着されない。一般的に被処理液はスムーズにフィルタへ運ばれ、被処理液中で激しく攪拌されながらフィルタまで運ばれるようなことはないため、活性炭(粒子)から離れた位置にある難分解性物質は、除去されずにそのままフィルタを通過してしまうという問題がある。 Further, the method according to the above-mentioned Patent Documents 1 to 5 is to mix activated carbon or the like with a liquid to be treated, adsorb a persistent substance or the like on the activated carbon or the like, and then filter the liquid with a filter. However, in these methods, the persistent substances around the activated carbon (particles) are adsorbed, but the persistent substances located away from the activated carbon (particles) are not adsorbed. In general, the liquid to be treated is smoothly carried to the filter and is not carried to the filter while being vigorously agitated in the liquid to be treated. There is a problem that it passes through the filter as it is without being removed.
 前記特許文献6に係る方法は、原水中の濁質等による濾過膜の目詰まりを効果的に防止して効率的な濾過処理を行うために濾過膜を形成したものであり、濾過膜によって難分解性物質を除去することを目的としたものではない。この特許文献6では濾過膜として中空糸膜を用いている。内圧型の中空糸膜は、中空糸膜の内部を通る懸濁液の流速が速くなるため、中空糸膜の内部に活性炭粉体を添着しにくく、添着したとしても速く流れる懸濁液によって剥離してしまい、実質的に活性炭粉体の添着が困難である。他方、外圧型の中空糸膜は、一般的に隣接する中空糸膜間の隙間が最大0.5mm程度であり、原水の通路を確保するため、実質的に活性炭を添着できる厚さは最大0.15mm程度であることから、難分解性物質を吸着させるには不十分であって用をなさない。また、一般的に1本の中空糸膜の表面積は50m2程度であり、その中空糸膜の表面に添着される活性炭の厚さが0.15mmと仮定すると、1本の中空糸膜に保持される活性炭粉体の量は4kg程度である。そのため、多くの難分解性物質を除去しようとすると、大量の中空糸膜を用意しなければならず、イニシャルコストが高くなってしまう。また、活性炭を添着する際は、最大で100mg/Lの低濃度でプレコーティングすることが開示されており、仮に1本の中空糸膜に活性炭を4kg添着し、その中空糸膜の数が25本あると仮定すると、100000g/0.1g/25LMH/50m2/25本=32時間かかることになり、活性炭の添着時間がかかりすぎて現実的ではない。さらに、添着する活性炭の平均粒径は20~200μmにすることが望ましいことが開示されているが、この平均粒径では接触効率が悪い。また、外圧型の中空糸膜を洗浄する際は、エアスクラビング洗浄を行っているが、この洗浄方式では濾過水を用いて逆洗を行うため、濾過水の消費が非常に多く、無駄が多い。以上のように、この特許文献6は、中空糸膜の表面に活性炭粒子を薄く添着し、その活性炭粒子を濾過助剤として使用するものであり、難分解性物質の吸着・除去に必要な活性炭層(活性炭量)を形成していない。 The method according to Patent Document 6 is a method in which a filtration membrane is formed in order to effectively prevent clogging of the filtration membrane due to turbidity in raw water and perform an efficient filtration treatment, and it is difficult to use the filtration membrane. It is not intended to remove degradable substances. In Patent Document 6, a hollow fiber membrane is used as the filtration membrane. In the internal pressure type hollow fiber membrane, the flow velocity of the suspension passing through the inside of the hollow fiber membrane becomes high, so that it is difficult to adhere the activated carbon powder to the inside of the hollow fiber membrane, and even if it is attached, it is peeled off by the suspension flowing quickly. Therefore, it is practically difficult to attach the activated carbon powder. On the other hand, in the external pressure type hollow fiber membrane, the gap between adjacent hollow fiber membranes is generally about 0.5 mm at the maximum, and in order to secure the passage of raw water, the thickness to which activated carbon can be substantially adsorbed is 0 at the maximum. Since it is about .15 mm, it is insufficient to adsorb persistent substances and is useless. Further, generally, the surface area of one hollow fiber membrane is about 50 m 2 , and assuming that the thickness of the activated carbon attached to the surface of the hollow fiber membrane is 0.15 mm, it is held by one hollow fiber membrane. The amount of activated carbon powder produced is about 4 kg. Therefore, when trying to remove a large amount of persistent substances, a large amount of hollow fiber membranes must be prepared, which increases the initial cost. Further, it is disclosed that when activated carbon is impregnated, it is pre-coated at a low concentration of 100 mg / L at the maximum. Temporarily, 4 kg of activated carbon is impregnated on one hollow fiber membrane, and the number of the hollow fiber membranes is 25. Assuming that there is a book, it will take 100,000 g / 0.1 g / 25 LMH / 50 m 2/25 = 32 hours, which is not realistic because it takes too much time for the activated carbon to be attached. Further, it is disclosed that the average particle size of the activated carbon to be impregnated is preferably 20 to 200 μm, but the contact efficiency is poor at this average particle size. In addition, when cleaning the external pressure type hollow fiber membrane, air scrubbing cleaning is performed, but in this cleaning method, backwashing is performed using filtered water, so that the filtered water is consumed very much and is wasteful. .. As described above, in Patent Document 6, activated carbon particles are thinly adhered to the surface of the hollow fiber membrane, and the activated carbon particles are used as a filtration aid, and the activated carbon necessary for adsorbing and removing persistent substances is used. No layer (amount of activated carbon) is formed.
 以上のように、被処理液中の難分解性物質の濃度の高低に関わらず、難分解性物質を高い確率で除去し、かつ、経済的に優れた処理方法は確立されていないというのが現状である。特に、難分解性物質のうちのPFOSについては、河川、井戸水、湧水の汚染濃度が、国が定めた基準の数倍~170倍程度の箇所もあり、また、基地、港湾、空港等で用いられる泡消火剤(PFOSが用いられている)の現液や希釈液の濃度は国が定めた基準の数千倍と想定されるため、難分解性物質を除去する装置や方法のニーズが非常に高いという現実がある。 As described above, regardless of the concentration of the persistent substance in the liquid to be treated, the persistent substance is removed with a high probability, and an economically excellent treatment method has not been established. The current situation. In particular, for PFOS, which is a persistent substance, the contamination concentration of rivers, well water, and spring water is several to 170 times higher than the national standard, and at bases, ports, airports, etc. Since the concentration of the current solution and diluted solution of the foam fire extinguishing agent (PFOS is used) used is expected to be several thousand times the standard set by the government, there is a need for equipment and methods for removing persistent substances. The reality is that it is very expensive.
 そこで、本発明が解決しようとする主たる課題は、難分解性物質を除去する効果が高い濾過装置や濾過方法を提供することにある。 Therefore, the main problem to be solved by the present invention is to provide a filtration device and a filtration method having a high effect of removing persistent substances.
 前記課題を解決するために、以下の各態様を採ることができる。
(第1の態様)
 被処理液に含まれる難分解性物質を除去する濾過装置であって、
被処理液の供給口と処理液の排出口を有する濾過容器と、
 前記濾過容器の内部に設けられ、外面が濾過面とされ内部が処理液の通路とされ、平坦な濾材を蛇腹状に折り曲げて複数の襞を形成しつつ、筒状に形成したプリーツフィルタと、を有し、
 濾過前の状態で、前記プリーツフィルタの外面に吸着剤層を有し、
 前記吸着剤層は前記難分解性物質を吸着する吸着剤を積層したものであることを特徴とする濾過装置。
In order to solve the above problems, the following aspects can be adopted.
(First aspect)
A filtration device that removes persistent substances contained in the liquid to be treated.
A filtration container having a supply port for the liquid to be treated and a discharge port for the treatment liquid,
A pleated filter provided inside the filtration vessel, the outer surface of which is the filtration surface and the inside of which is the passage of the treatment liquid, and a flat filter medium bent in a bellows shape to form a plurality of folds while forming a tubular shape. Have,
In the state before filtration, the pleated filter has an adsorbent layer on the outer surface and has an adsorbent layer.
A filtration device characterized in that the adsorbent layer is a stack of adsorbents that adsorb the persistent substance.
(作用効果)
 第1の態様は、被処理液を濾過する前の状態で、濾過フィルタの外面に吸着剤層が形成されていることを特徴とする。このような構成にすることで、被処理液を濾過したときに、被処理液中の難分解性物質の大部分を濾過フィルタの表面に形成された吸着剤層の吸着剤に吸着することができ、被処理液中の難分解性物質を高い割合で除去することができる。
(Action effect)
The first aspect is characterized in that an adsorbent layer is formed on the outer surface of the filtration filter in a state before filtering the liquid to be treated. With such a configuration, when the liquid to be treated is filtered, most of the persistent substances in the liquid to be treated can be adsorbed by the adsorbent of the adsorbent layer formed on the surface of the filtration filter. It is possible to remove the persistent substances in the liquid to be treated at a high rate.
 前述したように、前記先行特許文献1~5の方法によれば、被処理液に吸着剤を混ぜて、被処理液に含まれている難分解性物質を吸着剤に吸着させた後にフィルタ等で濾過するため、被処理液中の難分解性物質のうち、吸着剤粒子の近くあるものは捕捉されやすいが、吸着剤粒子から遠く離れたものは捕捉されづらい。そのため、吸着剤粒子に捕捉されなかった難分解性物質は、濾過フィルタを通って、処理液中に残ることになってしまう。すなわち、被処理液中の難分解性物質を除去する効果は決して高いものではない。 As described above, according to the methods of Prior Patent Documents 1 to 5, the adsorbent is mixed with the liquid to be treated, the persistent substance contained in the liquid to be treated is adsorbed by the adsorbent, and then a filter or the like is used. Of the persistent substances in the liquid to be treated, those near the adsorbent particles are easily captured, but those far away from the adsorbent particles are difficult to be captured. Therefore, the persistent substance that is not captured by the adsorbent particles passes through the filtration filter and remains in the treatment liquid. That is, the effect of removing the persistent substance in the liquid to be treated is not high at all.
 他方、本態様では、すべての被処理液が濾過フィルタを通ることを利用する構成とした。すなわち、濾過フィルタの外面に吸着剤層を形成したことで、被処理液中の難分解性物質は、濾過フィルタを通過する前に吸着剤層を通り抜けなければならなくなり、吸着剤層を通り抜ける間に吸着剤に吸着されてしまう。そのため、前記先行特許文献1~5の方法で発生していた、吸着剤粒子に接触することなく、濾過フィルタを通過してしまう難分解性物質を減らすことができ、高い割合で被処理液中の難分解性物質を除去することができる。 On the other hand, in this embodiment, the configuration is such that all the liquid to be treated passes through a filtration filter. That is, by forming the adsorbent layer on the outer surface of the filtration filter, the persistent substance in the liquid to be treated must pass through the adsorbent layer before passing through the filtration filter, and while passing through the adsorbent layer. Will be adsorbed by the adsorbent. Therefore, it is possible to reduce the persistent substances that pass through the filtration filter without coming into contact with the adsorbent particles, which are generated by the methods of the prior patent documents 1 to 5, and are contained in the liquid to be treated at a high ratio. Persistent substances can be removed.
 また、前記先行特許文献6の装置では、濾過膜として中空糸膜を用いているため、その表面に吸着剤層を極めて薄くしか形成できない(試算によると最大0.15mm程度)。そのため、被処理液中の難分解性物質を除去する性能が極めて低いものとなる。そこで、本発明では濾過膜としてプリーツフィルタを用いる。プリーツフィルタを用いることにより、その表面に吸着剤層をより厚く形成することができるようになり(試算によると最大4mm程度)、その結果被処理液中の難分解性物質を除去する性能を十分に確保することができる。一般的に、被処理液中の難分解性物質を十分に吸収するためには、吸着剤層の厚さを1mm以上にする必要がある。また、吸着剤層の厚さが厚すぎると圧力が大きくなりすぎるため、3mm以下にすることが好ましい。 Further, in the apparatus of the prior patent document 6, since the hollow fiber membrane is used as the filtration membrane, the adsorbent layer can be formed only extremely thinly on the surface thereof (according to a trial calculation, the maximum is about 0.15 mm). Therefore, the performance of removing the persistent substance in the liquid to be treated becomes extremely low. Therefore, in the present invention, a pleated filter is used as the filtration membrane. By using a pleated filter, an adsorbent layer can be formed thicker on the surface (up to about 4 mm according to a calculation), and as a result, the ability to remove persistent substances in the liquid to be treated is sufficient. Can be secured. Generally, in order to sufficiently absorb the persistent substance in the liquid to be treated, the thickness of the adsorbent layer needs to be 1 mm or more. Further, if the thickness of the adsorbent layer is too thick, the pressure becomes too large, so that the pressure is preferably 3 mm or less.
 また、濾材を折り曲げていない単なる平坦な濾過フィルタと比べて、プリーツフィルタを用いることで、表面積が大きくなるため、被処理液中の難分解性物質の除去能力が格段に高くなる。 In addition, the surface area of the pleated filter is larger than that of a simple flat filtration filter in which the filter medium is not bent, so that the ability to remove persistent substances in the liquid to be treated is significantly increased.
 さらに、吸着剤層を構成する吸着剤が難分解性物質を吸着した後は、その吸着剤を除去・排出して、新たな吸着剤を濾過膜に添着しなおさなければならない。しかし、前述のようにプリーツフィルタは表面積が大きいため、プリーツフィルタに付着する吸着剤の量を多くすることができる。その結果、難分解性物質を除去できる量が増え、吸着剤の除去・排出、再添着が必要になる時期を遅くすることができる。すなわち、より長く濾過処理を連続継続することができる。発明者の試算によると、プリーツフィルタを用いた場合、吸着剤の除去・排出、再添着をしなくとも、1年以上連続して濾過処理することが可能である。 Furthermore, after the adsorbent constituting the adsorbent layer has adsorbed the persistent substance, the adsorbent must be removed and discharged, and the new adsorbent must be reattached to the filter membrane. However, since the pleated filter has a large surface area as described above, the amount of the adsorbent adhering to the pleated filter can be increased. As a result, the amount of the persistent substance that can be removed increases, and the time when the adsorbent needs to be removed / discharged and reattached can be delayed. That is, the filtration process can be continued continuously for a longer period of time. According to the inventor's calculation, when the pleated filter is used, it is possible to perform the filtration treatment continuously for one year or more without removing / discharging and reattaching the adsorbent.
(第2の態様)
 前記吸着剤層は複数層からなり、
 前記吸着剤層の内側に位置する第1吸着剤層の第1吸着剤の平均粒径が、前記吸着剤層の外側に位置する第2吸着剤層の第2吸着剤の平均粒径よりも大きい前記第1の態様の濾過装置。
(Second aspect)
The adsorbent layer is composed of a plurality of layers.
The average particle size of the first adsorbent of the first adsorbent layer located inside the adsorbent layer is larger than the average particle size of the second adsorbent of the second adsorbent layer located outside the adsorbent layer. The large filtration device of the first aspect.
(作用効果)
 吸着剤は難分解性物質を吸着するにつれて吸着能力が低下する。そのため、吸着能力が一定の水準以下まで下がったときに、プリーツフィルタの表面から吸着剤層を剥離・排出し、その後、新たな吸着剤層を再度形成する必要がある。一般的に吸着剤の平均粒径は小さいものが多いため、吸着剤がプリーツフィルタの間隙に入り込んで剥離しづらい場合がある。
(Action effect)
As the adsorbent adsorbs a persistent substance, its adsorption capacity decreases. Therefore, when the adsorption capacity drops below a certain level, it is necessary to exfoliate and discharge the adsorbent layer from the surface of the pleated filter, and then form a new adsorbent layer again. Since the average particle size of the adsorbent is generally small, the adsorbent may enter the gap of the pleated filter and be difficult to peel off.
 以上のような不都合を回避するため、本態様では吸着剤層の内側に位置する第1吸着剤層の第1吸着剤の平均粒径を吸着剤層の外側に位置する第2吸着剤層の第2吸着剤の平均粒径よりも大きくした。このようにプリーツフィルタの傍に位置する第1吸着剤層の第1吸着剤の平均粒径を大きくすることによって、プリーツフィルタの間隙に第1吸着剤が入り込みづらくなり、吸着剤層を剥離する際に、剥離しやすいという利点がある。他方、吸着剤層の外側に位置する第2吸着剤層の第2吸着剤の平均粒径を小さくすることによって、第2吸着剤の比表面積が増えるため、第2吸着剤の難分解性物質の除去性能を高めることができる。以上のように、本態様によれば、吸着剤層を剥離しやすく、しかも吸着剤層による難分解性物質の除去性能を高くすることができる。 In order to avoid the above inconvenience, in this embodiment, the average particle size of the first adsorbent of the first adsorbent layer located inside the adsorbent layer is set to the average particle size of the second adsorbent layer located outside the adsorbent layer. It was made larger than the average particle size of the second adsorbent. By increasing the average particle size of the first adsorbent in the first adsorbent layer located near the pleated filter in this way, it becomes difficult for the first adsorbent to enter the gap of the pleated filter, and the adsorbent layer is peeled off. In some cases, it has the advantage of being easily peeled off. On the other hand, by reducing the average particle size of the second adsorbent in the second adsorbent layer located outside the adsorbent layer, the specific surface area of the second adsorbent increases, so that the persistent substance of the second adsorbent Removal performance can be improved. As described above, according to this aspect, the adsorbent layer can be easily peeled off, and the removal performance of the persistent substance by the adsorbent layer can be improved.
 特に、濾過膜として用いたプリーツフィルタは、襞と襞の隙間の谷部にへばりついた吸着剤を剥離しづらいという特徴がある。それが粒径の小さな吸着剤であれば猶更である。そこで、プリーツフィルタの傍に位置する第1吸着剤層の第1吸着剤の平均粒径を大きくすることによって剥離が容易になり、特にその谷部の吸着剤層の剥離が容易になることが大きな利点である。 In particular, the pleated filter used as a filtration membrane has the characteristic that it is difficult to remove the adsorbent stuck to the valley between the folds. If it is an adsorbent with a small particle size, it is a grace. Therefore, by increasing the average particle size of the first adsorbent in the first adsorbent layer located near the pleated filter, the peeling becomes easy, and in particular, the peeling of the adsorbent layer in the valley portion may be facilitated. This is a big advantage.
 なお、本態様のように第1吸着剤層を設けるのではなく、剥離を容易にする剥離剤を含む溶液をプリーツフィルタに通液して、プリーツフィルタと吸着剤層の間に剥離層を設けることも考えられる。しかし、このような剥離層は難分解性物質を除去するためのものでなく、吸着剤層を剥離するため以外に用途がないものである。プリーツフィルタの外面に積層する吸着剤層が厚くなると被処理液の通液性能が低下してしまうため、吸着剤層の厚みを所定の厚み以下にしなければならないところ、この剥離層を設けた場合、この剥離層の厚みの分だけ吸着剤層の厚みを薄くしなければならず、その結果難分解性物質の除去効果が落ちてしまう。本態様では、剥離の役割を務める第1吸着剤層でも難分解性物質を除去する効果があるため、剥離層を設けた場合と比べて、難分解性物質の除去効果が高いという利点がある。 In addition, instead of providing the first adsorbent layer as in this embodiment, a solution containing a release agent that facilitates peeling is passed through the pleated filter, and a release layer is provided between the pleated filter and the adsorbent layer. It is also possible. However, such a release layer is not for removing a persistent substance, and has no use other than for removing the adsorbent layer. If the adsorbent layer laminated on the outer surface of the pleated filter becomes thick, the liquid passage performance of the liquid to be treated deteriorates. Therefore, the thickness of the adsorbent layer must be less than a predetermined thickness. The thickness of the adsorbent layer must be reduced by the thickness of the release layer, and as a result, the effect of removing the persistent substance is reduced. In this embodiment, since the first adsorbent layer, which plays the role of peeling, also has the effect of removing the persistent substance, there is an advantage that the effect of removing the persistent substance is higher than the case where the peeling layer is provided. ..
 また、本態様は吸着剤層を2層にするものに限ったものではなく、3層以上にすることも含むものである。吸着剤層を3層以上にした場合、内側に位置する吸着剤層の吸着剤の平均粒径が外側に位置する吸着剤層の吸着剤の平均粒径よりも大きくすればよい。例えば吸着剤層を3層から構成し、積層された吸着剤層を内側(プリーツフィルタ側)から外側へ向かって順番に第1吸着剤層、第2吸着剤層、第3吸着剤層とした場合、最も内側に位置する第1吸着剤層の第1吸着剤の平均粒径を、第1吸着剤層と第3吸着剤層の間に位置する第2吸着剤層の第2吸着剤の平均粒径よりも大きくするようにすればよい。 Further, this embodiment is not limited to having two adsorbent layers, but also includes having three or more layers. When the number of adsorbent layers is three or more, the average particle size of the adsorbent in the adsorbent layer located inside may be larger than the average particle size of the adsorbent in the adsorbent layer located on the outside. For example, the adsorbent layer is composed of three layers, and the laminated adsorbent layers are designated as a first adsorbent layer, a second adsorbent layer, and a third adsorbent layer in order from the inside (pleated filter side) to the outside. In the case, the average particle size of the first adsorbent of the first adsorbent layer located on the innermost side is set to the second adsorbent of the second adsorbent layer located between the first adsorbent layer and the third adsorbent layer. It may be made larger than the average particle size.
(第3の態様)
 第2の態様の濾過装置を有する濾過システムであって、
 前記第1吸着剤を含む第1溶液を貯留する第1溶液貯留槽と、
 前記第1溶液貯留槽の第1溶液を前記濾過容器へ送る第1溶液輸送ルートと、
 前記第2吸着剤を含む第2溶液を貯留する第2溶液貯留槽と、
 前記第2溶液貯留槽の第2溶液を前記濾過容器へ送る第1溶液輸送ルートと、を有することを特徴とする濾過システム。
(Third aspect)
A filtration system having the filtration device of the second aspect.
A first solution storage tank for storing the first solution containing the first adsorbent, and a first solution storage tank.
A first solution transport route for sending the first solution of the first solution storage tank to the filtration container, and
A second solution storage tank for storing the second solution containing the second adsorbent, and a second solution storage tank.
A filtration system comprising: a first solution transport route for sending a second solution of the second solution storage tank to the filtration container.
(作用効果)
 第2の態様に示すような複数層からなる吸着剤層を形成する場合、例えば、第1吸着剤層を形成するために第1吸着剤を含む溶液を濾過容器へ送り、第2吸着剤層を形成するために第2吸着剤を含む溶液を濾過容器へ送る必要がある。同じ種類の吸着剤を含む液体は、その吸着剤の粒径に関わらず、同一の貯留槽に貯留することが一般的である。そのため、第1吸着剤を含む第1溶液も第2吸着剤を含む第2溶液も同一の貯留槽に貯留することが一般である。
(Action effect)
When forming an adsorbent layer composed of a plurality of layers as shown in the second aspect, for example, a solution containing the first adsorbent is sent to a filtration container in order to form the first adsorbent layer, and the second adsorbent layer is formed. It is necessary to send the solution containing the second adsorbent to the filtration vessel in order to form. Liquids containing the same type of adsorbent are generally stored in the same storage tank regardless of the particle size of the adsorbent. Therefore, it is common that both the first solution containing the first adsorbent and the second solution containing the second adsorbent are stored in the same storage tank.
 しかし、プリーツフィルタの外面に設ける吸着剤層を複数層にするためには、第1溶液を濾過容器へ送るタイミングと第2溶液を濾過容器へ送るタイミングをずらす必要がある。そのため、第1吸着剤を含む第1溶液も第2吸着剤を含む第2溶液も同一の貯留槽に貯留する場合、例えば、貯留槽(第1溶液を貯留した貯留槽)から濾過容器へ第1溶液を送った後、その貯留槽の中を空にして、空になった貯留槽の内部に第2溶液を生成し、その後に貯留槽から濾過容器へ第2溶液を送るというような工夫をしなければならない。しかし、第1溶液を送り終えた後から第2溶液を送り始める前までのタイムラグが大きく、非効率である。 However, in order to make the adsorbent layer provided on the outer surface of the pleated filter into a plurality of layers, it is necessary to stagger the timing of sending the first solution to the filtration vessel and the timing of sending the second solution to the filtration vessel. Therefore, when both the first solution containing the first adsorbent and the second solution containing the second adsorbent are stored in the same storage tank, for example, from the storage tank (the storage tank in which the first solution is stored) to the filtration vessel. After sending one solution, the inside of the storage tank is emptied, a second solution is generated inside the empty storage tank, and then the second solution is sent from the storage tank to the filtration container. Must be done. However, there is a large time lag between the completion of feeding the first solution and the start of feeding the second solution, which is inefficient.
 そこで、本態様においては、たとえ第1溶液と第2溶液に含まれる吸着剤の種類が同じ場合であっても、第1溶液に含まれる第1吸着剤の平均粒径と第2溶液に含まれる第2吸着剤の平均粒径が異なることに意味があると考えて、第1溶液と第2溶液を異なる貯留槽で保管することとした。そして、第1溶液貯留槽から第1溶液輸送ルートを経て濾過容器へ第1溶液を送った後、第2溶液貯留槽から第2溶液輸送ルートを経て濾過容器へ第2溶液を送るようにした。このような構成にすることで、第1溶液を送り終えた後から第2溶液を送り始める前までのタイムラグを小さくすることが可能となり、効率性の高い濾過システムとなる。 Therefore, in this embodiment, even if the types of the adsorbent contained in the first solution and the second solution are the same, the average particle size of the first adsorbent contained in the first solution and the second solution are contained. Considering that it is meaningful that the average particle size of the second adsorbent is different, it was decided to store the first solution and the second solution in different storage tanks. Then, after the first solution was sent from the first solution storage tank to the filtration vessel via the first solution transport route, the second solution was sent from the second solution storage tank to the filtration vessel via the second solution transport route. .. With such a configuration, it is possible to reduce the time lag between the completion of feeding the first solution and the start of feeding the second solution, resulting in a highly efficient filtration system.
 本態様は、吸着剤を含む溶液を貯留するための貯留槽の数を2つに限定したものではなく、3つ以上の貯留槽を設けても良い。例えば、第1溶液を貯留する第1貯留槽、第2溶液を貯留する第2貯留槽、第3溶液を貯留する第3貯留槽と、3つの貯留槽を設けるようにしてもよい。 In this embodiment, the number of storage tanks for storing the solution containing the adsorbent is not limited to two, and three or more storage tanks may be provided. For example, a first storage tank for storing the first solution, a second storage tank for storing the second solution, a third storage tank for storing the third solution, and three storage tanks may be provided.
(第4の態様)
 前記第1の態様の濾過装置を複数個設け、それらを並列に配置した濾過システムであって、
 各濾過装置の後段に設けられ、各濾過装置から排出された処理液をそれぞれ抽出する複数の抽出経路と、
 前記複数の抽出経路を集合させた集合部と、
 前記集合部に設けられ、前記処理液に含まれる難分解性物質を検出する検出器と、を有することを特徴とする濾過システム。
(Fourth aspect)
A filtration system in which a plurality of filtration devices according to the first aspect are provided and arranged in parallel.
A plurality of extraction paths provided after each filtration device to extract the treatment liquid discharged from each filtration device, and
An aggregate part that aggregates the plurality of extraction paths and
A filtration system provided in the collecting portion and comprising a detector for detecting a persistent substance contained in the treatment liquid.
(作用効果)
 濾過装置が複数個ある場合、各濾過装置の濾過処理が正常に機能しているかどうかを監視する必要がある。例えば、濾過装置が故障したり、吸着剤層の吸着剤が難分解性物質を多量に取り込んで吸着能力が低下したりした場合、濾過装置から排出される処理液に多量の難分解性物質が含まれる事態の発生が危惧される。このような不具合の発生を防止するため、各濾過装置から排出された処理液をそれぞれ抽出し、その処理液中の難分解性物質の量に異常がないかどうか(難分解性物質の含有量が所定値よりも高くないかどうか)を検出するため、濾過装置の数と同数の検出器を設ける必要がある。このように1つの濾過装置に対して1つの検出器を設けた場合、イニシャルコストが高くなるという問題がある。
(Action effect)
If there are multiple filtration devices, it is necessary to monitor whether the filtration process of each filtration device is functioning normally. For example, if the filtration device fails or the adsorbent in the adsorbent layer takes in a large amount of persistent substances and the adsorption capacity decreases, a large amount of persistent substances will be contained in the treatment liquid discharged from the filtration device. There is a concern that the situation involved may occur. In order to prevent the occurrence of such problems, the treatment liquid discharged from each filtration device is extracted, and whether there is any abnormality in the amount of persistent substances in the treatment liquid (content of persistent substances). Is not higher than the predetermined value), it is necessary to provide the same number of detectors as the number of filtration devices. When one detector is provided for one filtration device as described above, there is a problem that the initial cost becomes high.
 そこで本態様においては、各濾過装置から排出される処理液を抽出する抽出経路(例えば、処理液が内部を通る管)を設け、その抽出経路を後段で集合させ(集合した部分を集合部という)、その集合部に処理液中の難分解性物質を検出する検出器が設ける構成とした。このような構成にすることで、濾過装置の数と同数の検出器を設ける必要がなくなり、イニシャルコストを削減することができる。例えば、濾過装置を複数台設けた場合であっても、検出器を1つ設けるだけで、各濾過装置から排出される処理液に含まれる難分解性物質の量に異常がないかどうかを監視することが可能になる。 Therefore, in this embodiment, an extraction path for extracting the treatment liquid discharged from each filtration device (for example, a tube through which the treatment liquid passes inside) is provided, and the extraction paths are aggregated in the subsequent stage (the aggregated portion is referred to as an aggregation portion). ), A detector for detecting persistent substances in the treatment liquid is provided in the aggregated portion. With such a configuration, it is not necessary to provide the same number of detectors as the number of filtration devices, and the initial cost can be reduced. For example, even if a plurality of filtration devices are provided, only one detector is provided to monitor whether or not there is an abnormality in the amount of persistent substances contained in the treatment liquid discharged from each filtration device. It will be possible to do.
(第5の態様)
 前記第1の態様の濾過装置を複数個設け、それらを並列に配置した濾過システムであって、
 各濾過装置における濾過開始からの経過時間をモニタリングする計時器と、
 一部の濾過装置で濾過開始から所定時間が経過した段階で、その濾過装置に被処理液の供給を停止する被処理液供給ポンプと、を有することを特徴とする濾過システム。
(Fifth aspect)
A filtration system in which a plurality of filtration devices according to the first aspect are provided and arranged in parallel.
A timekeeper that monitors the elapsed time from the start of filtration in each filtration device,
A filtration system characterized by having a liquid to be supplied pump for stopping the supply of the liquid to be treated to the filtration device when a predetermined time has elapsed from the start of filtration in some filtration devices.
(作用効果)
 濾過装置が複数個ある場合、各濾過装置で難分解性物質を適切に除去できているかどうかを監視する必要がある。吸着剤層の吸着剤は、難分解性物質を吸着するにつれて難分解性物質の吸着能力が低下する。そのため、難分解性物質を一定量吸着した吸着剤は、新たな吸着剤と交換する必要がある。
(Action effect)
When there are multiple filtration devices, it is necessary to monitor whether each filtration device can properly remove persistent substances. As the adsorbent in the adsorbent layer adsorbs the persistent substance, the adsorption capacity of the persistent substance decreases. Therefore, it is necessary to replace the adsorbent that has adsorbed a certain amount of the persistent substance with a new adsorbent.
 各濾過装置における吸着剤の吸着能力は、吸着剤層を通過した被処理液の量(通液量)が増えるにつれて低下する。この通液量は、被処理液を濾過装置に送る速度(送液速度)と、吸着剤層に被処理液を通し始めてから経過した時間(通液時間)によって決まる。なお、前記通液時間は、濾過を開始してからの経過時間と同じ(ほぼ同じ)であるため、通液時間を濾過時間ともいう。 The adsorbing capacity of the adsorbent in each filtration device decreases as the amount of liquid to be treated (flowing amount) that has passed through the adsorbent layer increases. The amount of liquid to be passed is determined by the speed at which the liquid to be treated is sent to the filtration device (liquid feeding speed) and the time elapsed from the start of passing the liquid to be treated through the adsorbent layer (liquid passing time). Since the liquid passing time is the same as (almost the same) the elapsed time from the start of filtration, the liquid passing time is also referred to as the filtration time.
 以上の関係を利用するために、本態様においては、計時器と制御装置を設けることとした。例えば、送液速度と通液時間と吸着能力の低下度合いの関係性についてシミュレーションで予め確認した上で、計時器によって実際の通液時間を計測し、通液時間が予め定めた時間(一定時間)に達した時点で、制御装置によって、濾過装置に対して被処理液の供給を停止するように制御することができる。 In order to utilize the above relationship, it was decided to provide a timekeeping device and a control device in this embodiment. For example, after confirming the relationship between the liquid feeding rate, the liquid passing time, and the degree of decrease in the adsorption capacity in advance by simulation, the actual liquid passing time is measured by a timekeeping device, and the liquid passing time is a predetermined time (constant time). ) Is reached, the control device can be controlled to stop the supply of the liquid to be processed to the filtration device.
 第3の態様とは異なり、計時器を用いて被処理液の供給を停止するタイミングを決める方式にすることで、第3の態様よりも安価なシステムとすることができる。一般的に第3の態様で用いる難分解性物質の検出器は高価である一方、計時器は汎用のものを用いることによって検出器よりも安価になるためである。 Unlike the third aspect, the system can be cheaper than the third aspect by adopting a method of deciding the timing to stop the supply of the liquid to be processed by using a timekeeping device. This is because the detector for a persistent substance generally used in the third aspect is expensive, while the timekeeping device is cheaper than the detector by using a general-purpose one.
(第6の態様)
 外面が濾過面とされ内部が処理液の通路とされ、平坦な濾材を蛇腹状に折り曲げて複数の襞を形成しつつ筒状に形成したプリーツフィルタに、難分解性物質を吸着する吸着剤を含む溶液を通して、そのプリーツフィルタの外面に吸着剤層を形成する吸着剤層形成工程と、
 前記吸着剤層を形成した前記プリーツフィルタに被処理液を通し、前記吸着剤層に前記難分解性物質を吸着させながら濾過する吸着・濾過工程と、
 を有することを特徴とする濾過方法。
(Sixth aspect)
The outer surface is the filtration surface and the inner surface is the passage for the treatment liquid. An adsorbent layer forming step of forming an adsorbent layer on the outer surface of the pleated filter through the containing solution,
The adsorption / filtration step of passing the liquid to be treated through the pleated filter on which the adsorbent layer is formed and filtering while adsorbing the persistent substance on the adsorbent layer.
A filtration method characterized by having.
(作用効果)
 前記第1の態様と同様の作用効果を奏する。
(Action effect)
It has the same effect as the first aspect.
(第7の態様)
 前記吸着剤層形成工程は、
 第1吸着剤を含む第1溶液を前記プリーツフィルタに通して、前記プリーツフィルタの外面に第1の吸着剤層を形成する第1吸着剤層形成工程と、
 前記第1吸着剤よりも平均粒径が小さい第2吸着剤を含む第2溶液をプリーツフィルタに通して、前記第1吸着剤層の外面に第2吸着剤層を形成する第2吸着剤層形成工程と、
 を有する前記第6の態様の濾過方法。
(7th aspect)
The adsorbent layer forming step is
A first adsorbent layer forming step of passing a first solution containing the first adsorbent through the pleated filter to form a first adsorbent layer on the outer surface of the pleated filter.
A second adsorbent layer containing a second adsorbent having an average particle size smaller than that of the first adsorbent is passed through a pleated filter to form a second adsorbent layer on the outer surface of the first adsorbent layer. The formation process and
The filtration method according to the sixth aspect.
(作用効果)
 前記第2の態様と同様の作用効果を奏する。
(Action effect)
It has the same effect as the second aspect.
 本発明によれば、難分解性物質を除去する効果が高い濾過装置や濾過方法を提供することができる。 According to the present invention, it is possible to provide a filtration device and a filtration method having a high effect of removing persistent substances.
本発明に係る濾過装置の構造図である。(A)は正面図、(B)は平面図(プリーツフィルタは存在するが、図面ではプリーツフィルタの表示を省略した)である。It is a structural drawing of the filtration apparatus which concerns on this invention. (A) is a front view, and (B) is a plan view (the pleated filter exists, but the display of the pleated filter is omitted in the drawing). 濾過フィルタの説明図である(洗浄装置は図示省略)。It is explanatory drawing of the filtration filter (the cleaning apparatus is not shown). 洗浄手段の変形例の説明図である。(C)は平面図、(D)は突出部の拡大図、(E)は正面図である。It is explanatory drawing of the modification of the cleaning means. (C) is a plan view, (D) is an enlarged view of a protruding portion, and (E) is a front view. 本発明の第一実施形態に係る濾過システムの構造図である。It is a structural drawing of the filtration system which concerns on 1st Embodiment of this invention. 本発明の第二実施形態に係る濾過システムの構造図である。It is a structural drawing of the filtration system which concerns on the 2nd Embodiment of this invention. 本発明の第三実施形態に係る濾過システムの構造図である。It is a structural drawing of the filtration system which concerns on 3rd Embodiment of this invention. (7A)第一実施形態および第二実施形態における濾過フィルタの一部の断面図である。(7B)第三実施形態における濾過フィルタの一部の断面図である。(7A) It is sectional drawing of a part of the filtration filter in 1st Embodiment and 2nd Embodiment. (7B) It is sectional drawing of a part of the filtration filter in 3rd Embodiment.
 以下、本発明の好適な実施形態について説明する。なお、以下の説明及び図面は、本発明の一実施形態を示したものにすぎず、本発明の内容をこの実施形態に限定して解釈すべきでない。 Hereinafter, preferred embodiments of the present invention will be described. It should be noted that the following description and drawings merely show one embodiment of the present invention, and the contents of the present invention should not be construed as being limited to this embodiment.
(被処理液A)
 本発明に係る濾過装置10によって濾過される被処理液Aとしては、難分解性物質Eを含む液体であり、例えば、河川や湖沼の水、海水、地下水、湧水、工場(半導体製造工場や写真フィルム製造工場など)からの排水、艦艇や船舶からの排水等を挙げることができる。
(Liquid A to be treated)
The liquid A to be filtered by the filtration device 10 according to the present invention is a liquid containing a persistent substance E, and is, for example, river or lake water, seawater, groundwater, spring water, or a factory (semiconductor manufacturing factory or factory). Drainage from photographic film manufacturing factories, etc.), drainage from ships and ships, etc. can be mentioned.
(難分解性物質E)
 難分解性物質Eとは良分解性物質でないものをいう。本発明において、難分解性物質Eか良分解性物質かの判定は、日本国が定めた「監視化学物質への該当性の判定等に係る試験方法及び判定基準」(最終改正平成23年4月22日)に記載された前記基準を基に行う。
(Persistent substance E)
The persistently degradable substance E is a substance that is not a well-degradable substance. In the present invention, the determination of whether it is a persistently decomposable substance E or a well-decomposable substance is determined by the "test method and determination criteria for determining the applicability to a monitored chemical substance" established by Japan (final revision 2011/4). It will be carried out based on the above-mentioned criteria described in (22nd of March).
 本発明の対象となる難分解性物質Eとして、例えばPOPs条約の以下の対象物質を挙げることができる。具体的には、POPs条約の付属書Aのアルドリン、アルファーヘキサクロロシクロヘキサン、ベーターヘキサクロロシクロヘキサン、クロルデン、クロルデコン、デカブロモジフェニルエーテル、ディルドリン、エンドリン、ヘプタクロル、ヘキサブロモビフェニル、ヘキサブロモシクロドデカン、ヘキサブロモジフェニルエーテル、ヘプタブロモジフェニルエーテル、ヘキサクロロベンゼン、ヘキサクロロブタジエン、リンデン、マイレックス、ペンタクロロベンゼン、ペンタクロロフェノール、その塩及びエステル類、ポリ塩化ビフェニル(PCB)、ポリ塩化ナフタレン(塩素数2~8のものを含む)、短鎖塩素化パラフィン(SCCP)、エンドスルファン、テトラブロモジフェニルエーテル、ペンタブロモジフェニルエーテル、トキサフェン、ジコホル、ペルフルオロオクタン酸(PFOA)とその塩及びPFOA関連物質、付属書Bの1, 1, 1-トリクロロ-2, 2-ビス(4-クロロフェニル)エタン(DDT)、ペルフルロオクタンスルホン酸(PFOS)とその塩、ペルフルオロオクタンスルホニルフオリド(PFOSF)、付属書Cのヘキサクロロベンゼン(HCB)、ヘキサクロロブタジエン、ペンタクロロベンゼン(PeCB)、ポリ塩化ビフェニル(PCB)、ポリ塩化ジベンゾ-パラ-ジオキシン(PCDD)、ポリ塩化ジベンゾフラン(PCDF)、ポリ塩化ナフタレン(塩素数2~8のものを含む)を挙げることができる(なお、付属書Aと付属書Cには重複しているものが存在する)。 As the persistent substance E subject to the present invention, for example, the following target substances of the POPs Convention can be mentioned. Specifically, aldrin, alpha-hexachlorocyclohexane, beta-hexachlorocyclohexane, chlordene, chlordecon, decabromodiphenyl ether, dildoline, endolin, heptachloro, hexabromobiphenyl, hexabromocyclododecane, hexabromodiphenyl ether, hepta in Annex A of the POPs Convention. Bromodiphenyl ether, hexachlorobenzene, hexachlorobutadiene, linden, mylex, pentachlorobenzene, pentachlorophenol, salts and esters thereof, polychlorinated biphenyl (PCB), polychlorinated naphthalene (including those with 2 to 8 chlorine numbers), short Chain Chlorinated Paraffin (SCCP), Endosulfane, Tetrabromodiphenyl Ether, Pentabromodiphenyl Ether, Toxaphen, Dicoform, Perfluorooctanoic Acid (PFOA) and its Salts and PFOA Related Substances, Annex B 1, 1, 1-Trichloro-2, 2-Bis (4-chlorophenyl) ethane (DDT), perflulooctanesulfonic acid (PFOS) and its salts, perfluorooctanesulfonylforme (PFOSF), Annex C hexachlorobenzene (HCB), hexachlorobutadiene, pentachlorobenzene (PeCB), polychlorinated biphenyl (PCB), polychlorinated dibenzo-para-dioxin (PCDD), polychlorinated dibenzofuran (PCDF), polychlorinated naphthalene (including those having a chlorine number of 2 to 8) can be mentioned (note that). , Annex A and Annex C have some overlap).
 本発明において、特に対象となる難分解性物質Eとしては、PFOSとその塩、PFOAとその塩及びPFOA関連物質、PFHxS(ペルフルオロヘキサンスルホン酸)とその塩及びPFHxS関連物質、PFHxA(パーフロロヘキサン酸)を例示することができる。 In the present invention, the persistent substances E to be particularly targeted include PFOS and its salt, PFOA and its salt and PFOA-related substances, PFHxS (perfluorohexanesulphonic acid) and its salts and PFHxS-related substances, and PFHxA (perfluorohexane). Acid) can be exemplified.
(吸着剤N)
 難分解性物質Eを吸着するための吸着剤Nを用いることが好ましい。この吸着剤Nは、除去したい難分解性物質Eの種類に応じて適宜異なった種類のものを用いることが好ましい。例えば、PFOSとその塩、PFOAとその塩及びPFOA関連物質、PFHxSとその塩及びPFHxS関連物質、PFHxAを除去したい場合は、吸着剤Nとして活性炭を用いることが好ましい。他の吸着剤Nと比べて安価で入手しやすいとともに、これらの難分解性物質Eの吸着能力が高いからである。そして、この活性炭の粒子は、粒径(投影円相当径(粒子の投影面積に等しい円の直径)をいい、各粒子の投影円相当径の平均値(平均粒径)のことをいう。この平均粒径は、レーザー回折/散乱式粒子径分布測定装置(例えば、商品LA-960V2シリーズ、株式会社堀場製作所製)を用いて粒度分布を測定し、累積体積が50%に相当する時の粒子径を平均粒径として定める。以下同じ。)が1~30μmのものを用いることが好ましく、粒径が5~9μmのものを用いることがより好ましい。活性炭粒子の粒径が1μmよりも小さいと、活性炭粒子間の間隙が狭すぎるため、被処理液Aの濾過処理速度が著しく遅くなってしまう。他方、活性炭粒子の粒径が30μmよりも大きいと、活性炭粒子間の間隙が広くなり、難分解性物質Eが活性炭に吸着されずに、活性炭粒子間の間隙を通りぬけて、処理液Bに多く混入してしまう。なお、前記各先行特許文献に記載されているように、難分解性物質Eを吸着するために活性炭を用いることもあるが、この場合は一般的に4~6mm程度の粒径の活性炭を用いることが多いが、本実施形態ではこれよりも明らかに小さな粒径の活性炭を用いている。このような小さい粒径の活性炭を用いることで、難分解性物質Eと活性炭の接触効率が高くなり、その結果、難分解性物質Eの除去性能を飛躍的に高めることができる。具体的には、前記4~6mm程度の粒径の活性炭粒子を用いた場合と比べて、活性炭粒子の比表面積を8万~10万倍程度にすることができるため、難分解性物質Eと活性炭の接触効率を著しく向上することができる。活性炭の比表面積を高めて、難分解性物質Eと活性炭の接触効率を向上させ、難分解性物質Eの除去効果をより高めるためには、前述のように粒径が5~9μmの活性炭を用いることがより好ましい。
(Adsorbent N)
It is preferable to use an adsorbent N for adsorbing the persistent substance E. It is preferable to use an adsorbent N of a different type as appropriate depending on the type of the persistent substance E to be removed. For example, when it is desired to remove PFOS and its salt, PFOA and its salt and PFOA-related substances, PFHxS and its salts and PFHxS-related substances, and PFHxA, it is preferable to use activated carbon as the adsorbent N. This is because it is cheaper and easier to obtain than other adsorbents N, and has a high adsorption capacity for these persistent substances E. The particles of the activated charcoal have a particle size (diameter equivalent to a projected circle (diameter of a circle equal to the projected area of the particles), and refer to an average value (average particle size) of the diameter equivalent to the projected circle of each particle. The average particle size is measured by measuring the particle size distribution using a laser diffraction / scattering type particle size distribution measuring device (for example, product LA-960V2 series, manufactured by Horiba Seisakusho Co., Ltd.), and the particles when the cumulative volume corresponds to 50%. The diameter is determined as the average particle size. The same applies hereinafter.) It is preferable to use one having a diameter of 1 to 30 μm, and more preferably one having a diameter of 5 to 9 μm. If the particle size of the activated carbon particles is smaller than 1 μm, the gap between the activated carbon particles is too narrow, and the filtration treatment speed of the liquid A to be treated becomes significantly slow. On the other hand, when the particle size of the activated carbon particles is larger than 30 μm, the gap between the activated carbon particles becomes wide, and the persistent substance E is not adsorbed by the activated carbon but passes through the gap between the activated carbon particles and becomes the treatment liquid B. It will be mixed in a lot. As described in each of the prior patent documents, activated carbon may be used to adsorb the persistent substance E, but in this case, activated carbon having a particle size of about 4 to 6 mm is generally used. In many cases, activated carbon having a particle size clearly smaller than this is used in this embodiment. By using activated carbon having such a small particle size, the contact efficiency between the persistent substance E and the activated carbon is increased, and as a result, the removal performance of the persistent substance E can be dramatically improved. Specifically, since the specific surface area of the activated carbon particles can be increased to about 80,000 to 100,000 times as compared with the case of using the activated carbon particles having a particle size of about 4 to 6 mm, the persistent substance E is used. The contact efficiency of activated carbon can be significantly improved. In order to increase the specific surface area of the activated carbon, improve the contact efficiency between the persistent substance E and the activated carbon, and further enhance the effect of removing the persistent substance E, the activated carbon having a particle size of 5 to 9 μm is used as described above. It is more preferable to use it.
 なお、活性炭以外の吸着剤Nとして、例えば、イオン交換樹脂等の有機質多孔体、ゼオライト、珪藻土、酸性白土、活性白土、カーボンブラック等の無機質多孔体、二酸化チタン等の金属酸化物や金属粉末、プルシアンブルー(紺青)などの物質を、難分解性物質Eの種類に応じて適宜用いてもよい。すなわち、除去したい難分解性物質Eの種類に応じて、その難分解性物質Eの吸着能力が高い吸着剤Nに適宜変えることが好ましい。 Examples of the adsorbent N other than activated carbon include organic porous materials such as ion exchange resin, zeolite, diatomaceous clay, acid clay, activated clay, inorganic porous materials such as carbon black, metal oxides and metal powders such as titanium dioxide, and the like. A substance such as Prussian blue (dark blue) may be appropriately used depending on the type of the persistent substance E. That is, it is preferable to appropriately change to the adsorbent N having a high adsorption capacity of the persistent substance E according to the type of the persistent substance E to be removed.
(吸着剤層47)
 被処理液Aの濾過を開始する前に、濾過フィルタ12の外面に吸着剤層47を形成することが好ましい。吸着剤層47を形成しておくことで、被処理液Aを濾過したときに、被処理液中Aの難分解性物質Eの多くを吸着剤層47(を構成する吸着剤N)に吸着することができるため、被処理液A中の難分解性物質Eを高い割合で除去することができる。すなわち、濾過フィルタ12の外面に吸着剤層47を形成することで、被処理液A中の難分解性物質Eは、濾過フィルタ12の間隙を通過する前に、吸着剤層47を通り抜けなければならないため、その吸着剤層47を通り抜ける間に、被処理液A中に含まれる難分解性物質Eの大部分を吸着剤Nに吸着させることができる。
(Adsorbent layer 47)
It is preferable to form the adsorbent layer 47 on the outer surface of the filtration filter 12 before starting the filtration of the liquid A to be treated. By forming the adsorbent layer 47, when the liquid A to be treated is filtered, most of the persistent substances E of A in the liquid to be treated are adsorbed on the adsorbent layer 47 (the adsorbent N constituting the adsorbent layer 47). Therefore, the persistent substance E in the liquid to be treated A can be removed at a high rate. That is, by forming the adsorbent layer 47 on the outer surface of the filtration filter 12, the persistent substance E in the liquid to be treated must pass through the adsorbent layer 47 before passing through the gap of the filtration filter 12. Therefore, most of the persistent substance E contained in the liquid to be treated A can be adsorbed by the adsorbent N while passing through the adsorbent layer 47.
 この吸着剤層47の厚みは任意に設定することができるが、1~4mm程度にすることが好ましく、1.5~4mm程度にすることがより好ましく、3~4mm程度にすることがさらに好ましい。吸着剤層47の厚みが1mmよりも薄いと、被処理液A中の難分解性物質Eが吸着剤層47を構成する吸着剤粒子の間隙を通過しやすくなり、その結果、処理液B中に含まれる難分解性物質Eの濃度が高くなってしまう。例えば、PFOSを吸着・除去するために、平均粒径が10μm程度の活性炭粒子を用いる場合、活性炭層47の厚みを1.5mm以上、好ましくは3mm以上にしないと、PFOSを高効率で除去することが困難である。他方、吸着剤層47の厚みが4mmよりも厚いと、被処理液Aを吸着剤層47の粒子間の間隙に通すための抵抗が大きくなりすぎるため、被処理液Aを圧送するためのポンプ(8a)の負荷が大きいとともに、濾過処理のスピードが著しく落ちてしまう。なお、吸着剤層47の厚みはプリーツフィルタの隣接する襞と襞の間の距離(襞ピッチ)と関係している。すなわち、襞と襞の間の隙間空間を吸着剤Nで埋めてしまわないためには、襞ピッチが小さい場合には吸着剤層47の厚みを薄くしなければならず、襞ピッチが大きい場合は吸着剤層47の厚みを厚くすることが可能である。以上のように、襞ピッチが小さいと吸着剤層47の厚みが薄くなる(吸着剤Nを添着する量が制限される)が、プリーツフィルタの表面積(吸着剤Nを添着した面積)が大きくなるため、被処理液Aの通液流量を多くすることができる。 The thickness of the adsorbent layer 47 can be arbitrarily set, but it is preferably about 1 to 4 mm, more preferably about 1.5 to 4 mm, still more preferably about 3 to 4 mm. .. When the thickness of the adsorbent layer 47 is thinner than 1 mm, the persistent substance E in the liquid to be treated A easily passes through the gaps between the adsorbent particles constituting the adsorbent layer 47, and as a result, the adsorbent layer 47 is contained in the treatment liquid B. The concentration of the persistent substance E contained in the substance E becomes high. For example, when activated carbon particles having an average particle size of about 10 μm are used to adsorb and remove PFOS, the PFOS is removed with high efficiency unless the thickness of the activated carbon layer 47 is 1.5 mm or more, preferably 3 mm or more. Is difficult. On the other hand, if the thickness of the adsorbent layer 47 is thicker than 4 mm, the resistance for passing the liquid A to be treated through the gaps between the particles of the adsorbent layer 47 becomes too large, so that a pump for pumping the liquid A to be treated. The load of (8a) is large, and the speed of the filtration process is significantly reduced. The thickness of the adsorbent layer 47 is related to the distance (fold pitch) between adjacent folds of the pleated filter. That is, in order not to fill the gap space between the folds with the adsorbent N, the thickness of the adsorbent layer 47 must be reduced when the fold pitch is small, and when the fold pitch is large, the thickness of the adsorbent layer 47 must be reduced. It is possible to increase the thickness of the adsorbent layer 47. As described above, when the fold pitch is small, the thickness of the adsorbent layer 47 becomes thin (the amount of adsorbent N attached is limited), but the surface area of the pleated filter (area in which the adsorbent N is attached) becomes large. Therefore, the flow rate of the liquid to be treated A can be increased.
(濾過装置10)
 実施形態に係る濾過装置10は、密閉された濾過容器11内で、被処理液Aを濾過フィルタ12で濾過し、処理液B(例えば濾液。以下、「濾液B」という。)、吸着剤層47を構成していた吸着剤N、および吸着剤層47の外面に形成されたケーキKを排出する全量濾過(デッドエンド濾過)型の装置である。
(Filtration device 10)
In the filtration device 10 according to the embodiment, the liquid A to be treated is filtered by the filter 12 in a closed filter container 11, and the treatment liquid B (for example, a filtrate; hereinafter referred to as “filtrate B”) and an adsorbent layer are used. It is a total amount filtration (dead end filtration) type device that discharges the adsorbent N constituting the 47 and the cake K formed on the outer surface of the adsorbent layer 47.
(濾過容器11)
 濾過装置10は濾過フィルタ12を格納する濾過容器11を備えている。この濾過容器11の下部にはケーキ排出シュート11Sが設けられ、ケーキ排出シュート11Sの上方に筒状の濾過フィルタ内蔵部11Uが連続する形状になっている。この濾過容器11の形状は、前記の形状に限られるものではなく、ケーキ排出シュート11Sがない形状など、任意の形状に変更しても良い。
(Filtration container 11)
The filtration device 10 includes a filtration container 11 for storing the filtration filter 12. A cake discharge chute 11S is provided in the lower part of the filtration container 11, and a cylindrical filter built-in portion 11U is continuously formed above the cake discharge chute 11S. The shape of the filtration container 11 is not limited to the above-mentioned shape, and may be changed to any shape such as a shape without the cake discharge chute 11S.
(筒状体12s)
 濾過容器11内には、壁面に濾液Bの透過孔が形成され、内部に濾液通路12rが形成された筒状体12sが設けられる。図に示したものは円筒形であって、その中心軸が濾過容器11の上下方向に沿う姿勢で、濾過容器11内に配されている。筒状体12sの形状や姿勢は特に限定されず、筒状体12sの形状を角筒形等の任意の公知形状に変更しても良いし、筒状体12sの姿勢を筒状体12sの中心軸が水平方向になるように濾過容器11内に設置しても良い。なお、図示した筒状体12sは、パンチングメタルなどの透過孔を有する平板を円筒状に成形したものであり、筒状体12s内の空間は濾液通路12rとなる。
(Cylindrical body 12s)
Inside the filtration vessel 11, a tubular body 12s in which a permeation hole for the filtrate B is formed on the wall surface and a filtrate passage 12r is formed inside is provided. The one shown in the figure has a cylindrical shape, and its central axis is arranged in the filtration container 11 in a posture along the vertical direction of the filtration container 11. The shape and posture of the tubular body 12s are not particularly limited, and the shape of the tubular body 12s may be changed to any known shape such as a square cylinder, and the posture of the tubular body 12s may be changed to that of the tubular body 12s. It may be installed in the filtration container 11 so that the central axis is in the horizontal direction. The illustrated tubular body 12s is formed by forming a flat plate having a transmission hole such as a punching metal into a cylindrical shape, and the space inside the tubular body 12s is a filtrate passage 12r.
(濾過膜12m)
 前記筒状体12sの壁面の外側には、濾過膜12mが設けられている。この濾過膜12mとしては、表面積(濾過面積)が大きいことから、平坦な濾材をジグザグに(蛇腹状に)折り曲げつつ、筒状体12sの外周面に巻き付けて、円筒状に形成したプリーツフィルタを用いることが好ましい。濾材を折り曲げていない単なる平坦な濾過フィルタと比べて、プリーツフィルタを用いることで、フィルタの表面積が大きくなるため、被処理液Aの単位時間当たりの処理能力を格段に高くすることができる。被処理液A中の難分解性物質Eをできるだけ多く除去するためには、被処理液Aが濾過フィルタ12を通る速度をできる限り遅くする必要があるため、一般的に単位時間当たりの濾過処理量が少なくなる傾向がある。しかし、そのような場合であっても、平坦なフィルタではなく、プリーツフィルタを用いることで、被処理液Aの濾過処理量が少なくなってしまうことを抑止できる。
(Filtration membrane 12m)
A filtration film 12m is provided on the outside of the wall surface of the tubular body 12s. Since the surface area (filtration area) of this filter membrane 12 m is large, a pleated filter formed into a cylindrical shape is formed by winding a flat filter medium in a zigzag shape (bellows-like shape) and winding it around the outer peripheral surface of the tubular body 12s. It is preferable to use it. By using a pleated filter, the surface area of the filter is increased as compared with a simple flat filtration filter in which the filter medium is not bent, so that the processing capacity of the liquid A to be treated per unit time can be significantly increased. In order to remove as much persistent substance E as possible in the liquid A to be treated, it is necessary to slow down the speed at which the liquid A to be treated passes through the filtration filter 12 as much as possible. Therefore, the filtration treatment per unit time is generally performed. The amount tends to be small. However, even in such a case, by using a pleated filter instead of a flat filter, it is possible to prevent the amount of the liquid to be treated A from being reduced.
 なお、前記のように濾材をジグザグに折り曲げることで複数の襞を形成することができる。このプリーツフィルタは、隣り合う襞と襞の壁面間の間隔が内側から外側へ向かって次第に広くなるため、ケーキKを剥離・排出しやすいという利点がある。なお、隣り合う襞と襞の先端部間の長さL1は、例えば6mmにすることができ、襞の先端から基端までの長さL2は、例えば100mmにすることができる。 It should be noted that a plurality of folds can be formed by bending the filter medium in a zigzag manner as described above. This pleated filter has an advantage that the cake K can be easily peeled off and discharged because the distance between the adjacent folds and the wall surface of the folds gradually increases from the inside to the outside. The length L1 between the adjacent folds and the tips of the folds can be, for example, 6 mm, and the length L2 from the tips of the folds to the base can be, for example, 100 mm.
 濾過膜12mは、単層または多層にすることができる。この濾過膜12mの素材(濾材)としては、例えば、ポリテトラフルオロエチレン(別名「テフロン」(登録商標))、ポリエステル、ポリフェニレンサルファイド(PPS)樹脂、ナイロン、ステンレス等を用いることができる。濾過膜12mの膜厚は、好ましくは0.3mm~0.7mm、より好ましくは0.6mmである。また、濾材の繊維径(投影面積円相当径、Heywood径をいう。以下、同じ。)は、好ましくは0.1μm~3μmであり、より好ましくは0.1μmである。繊維径が0.1μmより細い繊維を用いると、濾過時の抵抗が大きくなるとともに、見かけの表面積が狭くなってしまう。また、繊維径が3μmよりも太い繊維を用いると、吸着剤N粒子(例えば、活性炭粒子)が濾過膜12mの繊維間の隙間を透過してしまう。したがって、繊維径が0.1μm~3μmの濾材を用いて、ある程度の目の粗さを持つ濾過膜12mを形成することが好ましい。このような濾過膜12mによって、濾過時に、濾過膜12mの表面に付着した被処理液A中の懸濁粒子が、吸着剤Nとともに、濾過層として作用する。なお、この濾過膜12mの長手方向の長さは、例えば300mm~2000mmにすることができる。 The filtration membrane 12 m can be made into a single layer or multiple layers. As the material (filter medium) of the filter membrane 12 m, for example, polytetrafluoroethylene (also known as “Teflon” (registered trademark)), polyester, polyphenylene sulfide (PPS) resin, nylon, stainless steel and the like can be used. The film thickness of the filtration membrane 12 m is preferably 0.3 mm to 0.7 mm, more preferably 0.6 mm. The fiber diameter of the filter medium (the diameter corresponding to the projected area circle, the Heywood diameter; the same applies hereinafter) is preferably 0.1 μm to 3 μm, and more preferably 0.1 μm. If a fiber having a fiber diameter smaller than 0.1 μm is used, the resistance during filtration increases and the apparent surface area becomes narrow. Further, if fibers having a fiber diameter larger than 3 μm are used, the adsorbent N particles (for example, activated carbon particles) permeate the gaps between the fibers of the filtration membrane 12 m. Therefore, it is preferable to use a filter medium having a fiber diameter of 0.1 μm to 3 μm to form a filter film 12 m having a certain degree of coarseness. With such a filtration membrane 12m, the suspended particles in the liquid A to be treated adhering to the surface of the filtration membrane 12m during filtration act as a filtration layer together with the adsorbent N. The length of the filtration membrane 12 m in the longitudinal direction can be, for example, 300 mm to 2000 mm.
 本形態において、濾過膜12mの表面12fとは、濾過容器11と向かい合う面をいい、被処理液Aと接する面をいう。一方、濾過膜12mの裏面12bとは、筒状体12sと向かい合う面をいい、濾液Bと接する面をいう。 In the present embodiment, the surface 12f of the filtration membrane 12m means the surface facing the filtration container 11 and the surface in contact with the liquid A to be treated. On the other hand, the back surface 12b of the filtration membrane 12m refers to the surface facing the tubular body 12s and the surface in contact with the filtrate B.
 また、濾過膜12mの表面12fに洗浄用の粉粒体Fが噴き付けられるため、濾過膜12mが噴き付けられた粉粒体Fの衝撃波で破損しないように、所定の強度以上の濾過膜12mを用いることが好ましい。例えば、JIS L‐1906の測定方法において、引張強度(N/5cm)タテ:1200、ヨコ:700、破裂強力(kgf/cm2)タテ:25のものを用いると良い。 Further, since the powder or granular material F for cleaning is sprayed on the surface 12f of the filtration membrane 12m, the filtration membrane 12m having a predetermined strength or higher is prevented from being damaged by the impact wave of the sprayed powder or granular material F. It is preferable to use. For example, in the measuring method of JIS L-1906, it is preferable to use one having a tensile strength (N / 5 cm) vertical: 1200, a horizontal: 700, and a bursting strength (kgf / cm 2 ) vertical: 25.
(フィルタ支持体29)
 襞の内面に(濾過膜12mの裏面12bと接するように)、その襞形状に沿うように、ハニカムメッシュや金網等をジグザグに折り曲げた支持板(フィルタ支持体29)を配することが好ましい。濾過膜12mの表面12fにケーキKが積層するにつれて、プリーツフィルタの襞が押し潰され、襞内の空間が無くなる「閉塞」の生じる可能性があるが、フィルタ支持板29を設けることでこの閉塞を防ぐことができる。
(Filter support 29)
It is preferable to arrange a support plate (filter support 29) in which a honeycomb mesh, a wire mesh, or the like is bent in a zigzag manner along the inner surface of the folds (so as to be in contact with the back surface 12b of the filtration film 12m). As the cake K is laminated on the surface 12f of the filtration film 12m, the folds of the pleated filter may be crushed and “blockage” may occur in which the space inside the folds is lost. Can be prevented.
(被処理液Aの供給)
 濾過容器11の側面に被処理液Aの供給口4を設けることができる。図1の実施形態では、この供給口4を濾過容器11の下部に設けているが、濾過容器11の上部または中間部(濾過容器11の高さ方向LDにおける上部と下部の間の部分)に設けたりするなど、任意の箇所に変更することができる。
(Supply of liquid A to be treated)
A supply port 4 for the liquid to be treated A can be provided on the side surface of the filtration container 11. In the embodiment of FIG. 1, the supply port 4 is provided in the lower part of the filtration container 11, but in the upper part or the middle part of the filtration container 11 (the part between the upper part and the lower part in the height direction LD of the filtration container 11). It can be changed to any place, such as by installing it.
 なお、被処理液Aを貯留する貯留槽7と濾過容器11の間は、供給管13、14によって繋がれており、被処理液Aは圧送ポンプ8(8a)によって貯留槽7から濾過容器11へ送られる。より詳しくは、被処理液Aは供給管13を通ってストレーナ9へ送られ、被処理液A中のゴミなどの異物が除去された後、供給管14を通って、濾過容器11へと送られる。なお、本実施形態では1台の圧送ポンプ8(8a)を設置しているが、被処理液Aの供給量を増やしたい場合などには、2台以上に増設すると良い。また、貯留槽7に図示しないレベル計を設け、貯留槽7内の被処理液Aが規定値よりも少なくなったときに、外部から補充する構造としてもよい。 The storage tank 7 for storing the liquid to be treated A and the filtration container 11 are connected by supply pipes 13 and 14, and the liquid A to be treated is connected to the filtration container 11 from the storage tank 7 by the pressure pump 8 (8a). Will be sent to. More specifically, the liquid A to be treated is sent to the strainer 9 through the supply pipe 13, and after foreign matter such as dust in the liquid A to be treated is removed, it is sent to the filtration container 11 through the supply pipe 14. Be done. In this embodiment, one pump 8 (8a) is installed, but if it is desired to increase the supply amount of the liquid A to be processed, it is preferable to increase the number to two or more. Further, a level meter (not shown) may be provided in the storage tank 7 to replenish the liquid A in the storage tank 7 from the outside when the amount of the liquid A to be treated becomes less than the specified value.
(濾液Bの排出)
 濾過容器11の上部には、濾過容器11の外に濾液Bを排出する排出口15が設けられている。濾液Bは、濾液通路12rの上端開口から排出口15を経て排出管16へ導かれる。なお、前述のように図1の実施形態では、濾液Bの排出口15を濾過容器11の上部に設けたが、濾過容器11の下部または中間部に設けたりするなど、任意の箇所に変更することができる。
(Discharge of Filtration B)
At the upper part of the filtration container 11, a discharge port 15 for discharging the filtrate B is provided outside the filtration container 11. The filtrate B is guided from the upper end opening of the filtrate passage 12r to the discharge pipe 16 via the discharge port 15. As described above, in the embodiment of FIG. 1, the discharge port 15 of the filtrate B is provided in the upper part of the filtration container 11, but it may be changed to an arbitrary place such as being provided in the lower part or the middle part of the filtration container 11. be able to.
(フィルタ洗浄装置35)
 濾過装置10で濾過を行うと、被処理液A中の難分解性物質Eが吸着剤層47の吸着剤Nに吸着されるが、吸着剤Nが吸着できる難分解性物質Eの量には限界があり、次第に難分解性物質Eを吸着できなくなる。そのため、難分解性物質Eの吸着力が低下した吸着剤層45を濾過フィルタ12から剥離して、濾過装置10から排出する必要がある。
(Filter cleaning device 35)
When filtration is performed by the filtration device 10, the persistent substance E in the liquid A to be treated is adsorbed by the adsorbent N of the adsorbent layer 47, but the amount of the persistent substance E that the adsorbent N can adsorb is There is a limit, and it gradually becomes impossible to adsorb the persistent substance E. Therefore, it is necessary to peel off the adsorbent layer 45 having a reduced adsorptivity of the persistent substance E from the filtration filter 12 and discharge the adsorbent layer 45 from the filtration device 10.
 また、濾過装置10で濾過を行うと、被処理液A中の懸濁粒子(主に難分解性物質E以外の懸濁粒子。以下同じ。)が吸着剤層47の外面に堆積し、ケーキKが形成される。詳しくは、濾過を開始した直後の段階では、被処理液A中の懸濁物質の一部が吸着剤層47の内部に保持されるが、濾過が進むにつれて吸着剤層47内の間隙が懸濁物質で埋められて少なくなるため、被処理液A中の懸濁物質の大部分が吸着剤層47の外面に堆積し始めて、吸着剤層47の外側にケーキKを形成する。ケーキKが形成されると、被処理液Aが吸着剤層47や濾過フィルタ12まで到達しにくくなり、濾過能力が低下する。そのため、ケーキKが所定の厚みに達した時点で、ケーキKを剥離して、濾過装置10から排出する必要がある。 Further, when filtration is performed by the filtration device 10, suspended particles in the liquid A to be treated (mainly suspended particles other than the persistent substance E; the same applies hereinafter) are deposited on the outer surface of the adsorbent layer 47, and the cake is formed. K is formed. Specifically, at the stage immediately after the start of filtration, a part of the suspended solids in the liquid to be treated A is retained inside the adsorbent layer 47, but as the filtration progresses, the gap in the adsorbent layer 47 is suspended. Since most of the suspended solids in the liquid A to be treated begin to accumulate on the outer surface of the adsorbent layer 47 because they are filled with turbid substances and become less, cake K is formed on the outside of the adsorbent layer 47. When the cake K is formed, it becomes difficult for the liquid A to be treated to reach the adsorbent layer 47 and the filtration filter 12, and the filtration capacity is lowered. Therefore, when the cake K reaches a predetermined thickness, it is necessary to peel off the cake K and discharge it from the filtration device 10.
 そこで、このような吸着剤層47やケーキKを剥離するために、フィルタ洗浄装置35を設けることが好ましい。この洗浄装置35は、濾過装置10の一部品として製造しても良いし、濾過装置10とは別製品として製造し、濾過装置10に後付けしても良い。 Therefore, it is preferable to provide a filter cleaning device 35 in order to peel off the adsorbent layer 47 and the cake K. The cleaning device 35 may be manufactured as a part of the filtration device 10, or may be manufactured as a separate product from the filtration device 10 and retrofitted to the filtration device 10.
 洗浄装置35は、濾過フィルタ12の外側に配置される。
 図1に示した洗浄装置35は、濾過容器11の外側に配置した洗浄液タンク36と、洗浄液タンク36のうち、濾過フィルタ12と対面する側に設けられた吹き出し口37を有している。この吹き出し口37は、対面する濾過フィルタ12の軸方向に沿って延在するスリットにすることが好ましい。
The cleaning device 35 is arranged outside the filtration filter 12.
The cleaning device 35 shown in FIG. 1 has a cleaning liquid tank 36 arranged on the outside of the filtration container 11 and an outlet 37 provided on the side of the cleaning liquid tank 36 facing the filtration filter 12. The outlet 37 is preferably a slit extending along the axial direction of the facing filtration filter 12.
 洗浄液タンク36は、少なくとも濾過フィルタ12と対面する側を濾過フィルタ12の軸方向に沿って延在する形状にすることが好ましい。図示した洗浄液タンク36の形状は、中空の角柱が濾過フィルタ12の軸方向と同じ方向に延在している。しかし、このような形状に限られるものではなく、円柱などの任意の公知形状に変更することもできる。 It is preferable that the cleaning liquid tank 36 has a shape that extends at least on the side facing the filtration filter 12 along the axial direction of the filtration filter 12. In the shape of the cleaning liquid tank 36 shown in the figure, a hollow prism extends in the same direction as the axial direction of the filtration filter 12. However, the shape is not limited to such a shape, and can be changed to any known shape such as a cylinder.
 洗浄液タンク36を配置する際は、洗浄液タンク36の濾過フィルタ12側が、濾過膜表面12fと平行に、または略平行となるようにすることが好ましい。これは、濾過膜表面12fの延在方向(濾過膜12mの周方向と直交する方向)において、吹き出し口37と濾過膜表面12fの間の距離をできる限り等しくすることにより、前記延在方向における洗浄斑を少なくするためである。また、洗浄液タンク36の中心軸の長さは、濾過膜12mの中心軸の長さと同じにすることが好ましく、例えば300mm~2000mmにすることができる。 When arranging the cleaning liquid tank 36, it is preferable that the filtration filter 12 side of the cleaning liquid tank 36 is parallel to or substantially parallel to the filtration film surface 12f. This is done by making the distance between the outlet 37 and the filtration membrane surface 12f as equal as possible in the extension direction of the filtration membrane surface 12f (the direction orthogonal to the circumferential direction of the filtration membrane 12m) in the extension direction. This is to reduce cleaning spots. Further, the length of the central axis of the cleaning liquid tank 36 is preferably the same as the length of the central axis of the filtration membrane 12 m, and can be, for example, 300 mm to 2000 mm.
 洗浄液タンク36の濾過フィルタ12側の外面は、濾過容器11の外面と接しており(パッキン等を挟む形態でも良い)、その接合部分において、濾過容器11にも吹き出し口37と同様の孔(図示しない)が設けられている。洗浄液Cは、吹き出し口37および濾過容器11の孔を通って、濾過フィルタ12の外面へ吹き出される。吹き出された洗浄液Cは、衝撃波となってケーキK、吸着剤層47および濾過フィルタ12に衝突し、その衝撃によって濾過フィルタ12からケーキKと吸着剤層47を剥離する。 The outer surface of the cleaning liquid tank 36 on the filtration filter 12 side is in contact with the outer surface of the filtration container 11 (may be in the form of sandwiching packing or the like), and at the joint portion, the filtration container 11 also has a hole similar to the outlet 37 (shown). Not) is provided. The cleaning liquid C is blown out to the outer surface of the filtration filter 12 through the holes of the outlet 37 and the filtration container 11. The blown-out cleaning liquid C becomes a shock wave and collides with the cake K, the adsorbent layer 47 and the filtration filter 12, and the impact separates the cake K and the adsorbent layer 47 from the filtration filter 12.
 なお、濾過時においては、濾過膜の表面で吸着剤Nが表面濾過されている状態であるため、濾過膜の外面から濾過膜内に吸着剤Nが侵入する可能性は低い。また、剥離時においては、濾過膜の表面は剥離しやすくなっているため(特に、濾過膜がPTFE膜である場合に顕著である)、剥離層を形成する必要はない。 At the time of filtration, since the adsorbent N is surface-filtered on the surface of the filter membrane, it is unlikely that the adsorbent N will invade the filter membrane from the outer surface of the filter membrane. Further, at the time of peeling, since the surface of the filter film is easily peeled off (particularly when the filter film is a PTFE film), it is not necessary to form a peeling layer.
(粉粒体F)
 洗浄液Cには粉粒体Fを混入させることが好ましい。洗浄液C中の粉粒体FがケーキK、吸着剤層47および濾過フィルタ12に衝突することで、濾過フィルタ12からケーキKと吸着剤層47を剥離しやすくなる。
(Granular material F)
It is preferable to mix the powder or granular material F with the cleaning liquid C. When the powder or granular material F in the cleaning liquid C collides with the cake K, the adsorbent layer 47, and the filtration filter 12, the cake K and the adsorbent layer 47 can be easily peeled off from the filtration filter 12.
 粉粒体Fとは、粉体及び粒体を意味し、例えば、球状プラスチックビーズや球状パーライトビーズ等のビーズ、球状塩ビスポンジ等の球状スポンジ、珪砂等の砂などを用いることができる。ただし、粉粒体Fは洗浄液Cに混入された状態で濾過フィルタ12に吹き付けられるものである。したがって、濾過フィルタ12の劣化を防止するという観点からは、粉粒体Fが砂等の角を有する粒子であるのは好ましくなく、球体状の粒子、楕円体状の粒子等の丸みを帯びた粒子であるのが好ましい。また、同様に観点から、粉粒体Fは,硬度が高くない方がよい。具体的には、粉粒体Fの硬度は、好ましくはR20~R110である。さらに、粉粒体Fは、洗浄液C中において均一に分散しているのが好ましい。したがって、粉粒体Fの比重は、例えば、0.8~1.2g/cm3であるのが好ましい。加えて、粉粒体Fは、回収再利用、つまり分級に適する粒径であるのが好ましい。具体的には、粒径が0.2mm~1mmであるのが好ましく、0.4mm~0.7mmであるのがより好ましいが、上記粒径の粒子でも、粉粒体Fとして十分に使用することができる。なお、粉粒体Fの粒径は、JIS Z8800に準拠して測定した値である。 The powder or granular material F means powder or granular material, and for example, beads such as spherical plastic beads and spherical pearlite beads, spherical sponge such as spherical vinyl chloride sponge, and sand such as silica sand can be used. However, the powder or granular material F is sprayed onto the filtration filter 12 in a state of being mixed with the cleaning liquid C. Therefore, from the viewpoint of preventing deterioration of the filtration filter 12, it is not preferable that the powder or granular material F is particles having corners such as sand, and the particles are rounded such as spherical particles and ellipsoidal particles. It is preferably particles. Similarly, from the same viewpoint, the powder / granular material F should not have a high hardness. Specifically, the hardness of the powder or granular material F is preferably R20 to R110. Further, it is preferable that the powder or granular material F is uniformly dispersed in the cleaning liquid C. Therefore, the specific gravity of the powder or granular material F is preferably, for example, 0.8 to 1.2 g / cm3. In addition, the powder or granular material F preferably has a particle size suitable for recovery and reuse, that is, classification. Specifically, the particle size is preferably 0.2 mm to 1 mm, more preferably 0.4 mm to 0.7 mm, but even particles having the above particle size are sufficiently used as the powder or granular material F. be able to. The particle size of the powder or granular material F is a value measured in accordance with JIS Z8800.
(洗浄液C)
 洗浄液Cとしては水道水などの浄化された液体を用いてもよいが、濾過フィルタ12の洗浄に用いた後の洗浄液Cを濾過などによって浄化する必要があるため、経済性や効率性の観点から被処理液Aを用いることが好ましい。
(Cleaning liquid C)
A purified liquid such as tap water may be used as the cleaning liquid C, but since it is necessary to purify the cleaning liquid C after being used for cleaning the filtration filter 12 by filtration or the like, from the viewpoint of economy and efficiency. It is preferable to use the liquid A to be treated.
(間隙50)
 なお、濾過フィルタ12の洗浄は、濾過容器11と濾過フィルタ12の間の間隙50から被処理液Aを排出した状態で行うことが好ましい。間隙50から被処理液Aを排出した後は、その間隙50に気体が充満した状態になるため、洗浄液Cの噴射時の勢いがそれほど落ちることなく、洗浄液CがケーキK、吸着剤層47および濾過フィルタ12に当たることになる。そのため、ケーキKおよび吸着剤層47の剥離力が高いものになる。反対に、間隙50に被処理液Aが充満した状態で洗浄液Cを噴射すると、洗浄液Cの噴射時の勢いが間隙50にある被処理液Aによって減衰するため、ケーキKおよび吸着剤層47の剥離力が弱くなる。
(Gap 50)
It is preferable that the filtration filter 12 is washed with the liquid A to be treated discharged from the gap 50 between the filtration container 11 and the filtration filter 12. After the liquid A to be treated is discharged from the gap 50, the gap 50 is filled with gas, so that the momentum of the cleaning liquid C at the time of injection does not decrease so much, and the cleaning liquid C is the cake K, the adsorbent layer 47, and the adsorbent layer 47. It will hit the filtration filter 12. Therefore, the peeling force of the cake K and the adsorbent layer 47 is high. On the contrary, when the cleaning liquid C is sprayed with the gap 50 filled with the liquid A to be treated, the momentum of the cleaning liquid C at the time of spraying is attenuated by the liquid A to be treated in the gap 50, so that the cake K and the adsorbent layer 47 The peeling force becomes weak.
(整流バッフル51)
 洗浄液タンク36の供給口48の近傍には、平板をV字状に折り曲げた整流バッフル51を、洗浄液タンク36の上端から下方へ向かって延在するように設けることが好ましい。このとき、図示したように、折り曲げ部分を供給口48側に、先端部分をスリット37側に配置すると良い。この整流バッフル51を設けることにより、供給口48から洗浄液タンク36内に供給された洗浄液Cが、整流バッフル51に当たって、その流れ方向を変える。具体的には、洗浄液Cの一部は、整流バッフル51の側面を回ってスリット37の上部から吹き出るが、洗浄液Cの他部は、洗浄液タンク36の下方へ向かって流れ、スリット37の中部または下部から吹き出る。このように整流バッフル51を設けることで、スリット37から吹き出される洗浄液C量を、スリット37の上部、中部、下部に関わらず、均質にすることができる。
(Rectifying baffle 51)
In the vicinity of the supply port 48 of the cleaning liquid tank 36, it is preferable to provide a rectifying baffle 51 in which a flat plate is bent in a V shape so as to extend downward from the upper end of the cleaning liquid tank 36. At this time, as shown in the drawing, it is preferable to arrange the bent portion on the supply port 48 side and the tip portion on the slit 37 side. By providing the rectifying baffle 51, the cleaning liquid C supplied from the supply port 48 into the cleaning liquid tank 36 hits the rectifying baffle 51 and changes its flow direction. Specifically, a part of the cleaning liquid C goes around the side surface of the rectifying baffle 51 and blows out from the upper part of the slit 37, but the other part of the cleaning liquid C flows downward of the cleaning liquid tank 36 and is formed in the middle part of the slit 37 or. It blows out from the bottom. By providing the rectifying baffle 51 in this way, the amount of cleaning liquid C blown out from the slit 37 can be made uniform regardless of the upper part, the middle part, or the lower part of the slit 37.
(その他)
 スリットノズル37の差圧(洗浄タンク36と濾過容器11の差圧)は、80kPa~150kPaが好適である。80kPaより低い場合は、ケーキKが剥離しづらい。また、150kPaよりも高い場合は、洗浄液Cが当たった衝撃によって濾過膜12mが痛んでしまう。この吹き出し圧力は、ケーキKの付着力(ケーキKを構成する粒子の種類、ケーキKの含水量等)を考慮して決めると良い。
(others)
The differential pressure of the slit nozzle 37 (differential pressure between the cleaning tank 36 and the filtration container 11) is preferably 80 kPa to 150 kPa. If it is lower than 80 kPa, the cake K is difficult to peel off. If it is higher than 150 kPa, the filter membrane 12 m will be damaged by the impact of the cleaning liquid C. This blowing pressure may be determined in consideration of the adhesive force of the cake K (type of particles constituting the cake K, water content of the cake K, etc.).
 また、ケーキKを万遍なく剥離するため、洗浄液Cを濾過フィルタ12の外周面全体に当てることが望ましい。そのため、洗浄時には、濾過装置10の上部に設けたモータMによって、濾過フィルタ12の軸心を中心に、濾過フィルタ12を回転させると良い。 Further, in order to peel the cake K evenly, it is desirable to apply the cleaning liquid C to the entire outer peripheral surface of the filtration filter 12. Therefore, at the time of cleaning, it is preferable to rotate the filtration filter 12 around the axis of the filtration filter 12 by the motor M provided on the upper part of the filtration device 10.
(変形例)
 図3に示すように、スリット37の周縁部が、濾過フィルタ12に向かって突出した形状にしても良い。より好適には、スリット37の周縁部のうち、横方向の両端部を濾過フィルタ12へ向かって突出させ、突出部45の両端部の隙間Sが、濾過フィルタ12へ向かうにつれて狭くなる構造にすると良い。そして、この突出部45の両端部の隙間のうち、最も濾過フィルタ12に近い先端部の長さを0.5mm~1.5mm、より好ましくは1mmにすることが好ましい。このような構造にすることで、ケーキKを効果的に剥離することができる。また、洗浄液Cによって、洗浄タンク36の内側から外側へ向かって常に圧力がかかるため、その内圧によってスリット37の幅Sが広がりやすいが、スリット37を突出形状にすることで、内圧に対する抵抗力が上がり、幅Sの広がりを抑えることができる。
(Modification example)
As shown in FIG. 3, the peripheral edge portion of the slit 37 may have a shape protruding toward the filtration filter 12. More preferably, in the peripheral edge portion of the slit 37, both ends in the lateral direction are projected toward the filtration filter 12, and the gap S at both ends of the protruding portion 45 is narrowed toward the filtration filter 12. good. Then, it is preferable that the length of the tip portion closest to the filtration filter 12 among the gaps at both ends of the protruding portion 45 is 0.5 mm to 1.5 mm, more preferably 1 mm. With such a structure, the cake K can be effectively peeled off. Further, since the cleaning liquid C constantly applies pressure from the inside to the outside of the cleaning tank 36, the width S of the slit 37 tends to widen due to the internal pressure thereof, but the protruding shape of the slit 37 increases the resistance to the internal pressure. It rises and the spread of the width S can be suppressed.
(濾過方法)
 以下に図4を参照しながら濾過方法の一例を説明する。
(Filtration method)
An example of the filtration method will be described below with reference to FIG.
(混合液生成工程)
 まず、混合液貯留槽24に吸着剤Nと希釈液Hを入れ、ハンドミキサー65(ミキサー以外の攪拌装置を用いてもよい)でそれらを攪拌して混合液Gを生成する。この希釈液Hとしては水道水や被処理液Aなどを用いることができる。希釈液Hとして水道水を用いるよりも被処理液Aを用いる方が、ランニングコストが安いという利点がある。ただし、被処理液A中には難分解性物質Eが含まれているため、吸着剤層47を形成しようとして混合液Gを濾過フィルタ12へ送ると、混合液G中の難分解性物質Eが濾過フィルタ12を通り抜けてしまうおそれがある。このような不都合を防止するため、混合液貯留槽24内において、希釈液H(被処理液A)中の難分解性物質Eのほぼすべてを吸着剤Nに吸着させた後で、混合液Gを濾過フィルタ12へ送るようにすることが好ましい。このようにすることで、希釈液H(被処理液A)中に含まれていた難分解性物質Eを吸着した吸着剤Nが濾過フィルタ12の外面に留め置かれるため、混合液G中の難分解性物質Eが濾過フィルタ12を通り抜けてしまう不都合を解消することができる。なお、希釈液H(被処理液A)中の難分解性物質Eのほぼすべてを吸着剤Nに吸着させるためには、混合液貯留槽24内に入れる吸着剤Nの量を多くしたり、ミキサー65によって攪拌を十分に行ったりすることが有効である。以上のように、吸着剤Nと希釈液Hを混合して混合液を生成する工程を混合液生成工程という。
(Mixed liquid generation process)
First, the adsorbent N and the diluted solution H are placed in the mixed solution storage tank 24, and the mixture is stirred with a hand mixer 65 (a stirring device other than the mixer may be used) to generate the mixed solution G. As the diluted solution H, tap water, a liquid to be treated A, or the like can be used. Using tap water as the diluent H has the advantage of lower running costs than using tap water. However, since the persistent substance E is contained in the liquid A to be treated, when the mixed liquid G is sent to the filtration filter 12 in an attempt to form the adsorbent layer 47, the persistent substance E in the mixed liquid G E is sent. May pass through the filtration filter 12. In order to prevent such inconvenience, in the mixed liquid storage tank 24, almost all of the persistent substance E in the diluted liquid H (processed liquid A) is adsorbed by the adsorbent N, and then the mixed liquid G is adsorbed. Is preferably sent to the filtration filter 12. By doing so, the adsorbent N adsorbing the persistent substance E contained in the diluted solution H (processed liquid A) is retained on the outer surface of the filtration filter 12, so that the adsorbent N is retained in the mixed liquid G. It is possible to eliminate the inconvenience that the persistent substance E passes through the filtration filter 12. In order to adsorb almost all of the persistent substance E in the diluted solution H (processed liquid A) to the adsorbent N, the amount of the adsorbent N to be put in the mixing liquid storage tank 24 may be increased. It is effective to sufficiently stir with the mixer 65. As described above, the step of mixing the adsorbent N and the diluted solution H to generate a mixed solution is referred to as a mixed solution generation step.
(吸着剤層形成工程)
 次に、吸着剤層47を生成する(吸着剤層生成工程)。この吸着剤層47は、濾過フィルタ12の外面全体(全面)に満遍なく形成することが好ましい。濾過フィルタ12の外面に吸着剤層47が形成されていない部分があると、被処理液Aを濾過装置20内に供給したときに、吸着剤層47が形成されていない部分では、被処理液A中の難分解性物質Eが吸着剤Nに吸着されずに濾過フィルタ12を通り抜け、処理液Bの中に入った状態で排出されてしまうからである。また、吸着剤層47は濾過フィルタ12の外面全体(全面)に均一な厚さ(均一な密度)で形成することが好ましい。吸着剤層47の厚さにムラがある場合、吸着剤層47の厚さが厚い部分では被処理液Aがあまり通液できないため、被処理液Aは吸着剤層47の厚さが薄い部分を通過しようとする傾向がある。そして、吸着剤層47の厚さが薄い部分には吸着剤Nの量が十分にないため、被処理液A中の難分解性物質Eの一部が吸着剤Nに吸着されずに濾過フィルタ12を通り抜けてしまうおそれがある。
(Adsorbent layer forming step)
Next, the adsorbent layer 47 is generated (adsorbent layer generation step). It is preferable that the adsorbent layer 47 is evenly formed on the entire outer surface (entire surface) of the filtration filter 12. If there is a portion where the adsorbent layer 47 is not formed on the outer surface of the filtration filter 12, when the liquid A to be treated is supplied into the filtration device 20, the portion where the adsorbent layer 47 is not formed is the liquid to be treated. This is because the persistent substance E in A is not adsorbed by the adsorbent N but passes through the filtration filter 12 and is discharged in a state of being contained in the treatment liquid B. Further, it is preferable that the adsorbent layer 47 is formed on the entire outer surface (entire surface) of the filtration filter 12 with a uniform thickness (uniform density). When the thickness of the adsorbent layer 47 is uneven, the liquid A to be treated cannot pass through the portion where the thickness of the adsorbent layer 47 is thick, so that the liquid A to be treated is a portion where the thickness of the adsorbent layer 47 is thin. Tend to try to pass. Since the amount of the adsorbent N is not sufficient in the portion where the thickness of the adsorbent layer 47 is thin, a part of the persistent substance E in the liquid to be treated A is not adsorbed by the adsorbent N and is filtered. There is a risk of passing through 12.
 濾過フィルタ12の外面全体(全面)に満遍なく、かつ均一な厚さで吸着剤層47を形成するため、例えば以下の操作を行う。まず、供給管14(図1の濾過システムでは、被処理液Aと混合液Gの供給管として、共通の供給管14を用いているが、別々の供給管としてもよい。)に設置したバルブV1と、排出管16に設置したバルブV2を開き、その他のバルブV3~V5を閉じる。そして、混合液供給ポンプ8bを駆動し、混合液貯留槽24中の混合液Gを供給管14へ送る。そして、混合液供給ポンプ8bの駆動を開始した直後に、被処理液供給ポンプ8aを駆動し、被処理液貯留槽7内の被処理液Aも供給管14へ送る。そして、供給管14内で被処理液Aと混合液Gを混合し、混合液Gを被処理液Aで希釈し、希釈した混合液Gを濾過装置10へ送る。 In order to form the adsorbent layer 47 evenly and with a uniform thickness on the entire outer surface (entire surface) of the filtration filter 12, for example, the following operation is performed. First, a valve installed in the supply pipe 14 (in the filtration system of FIG. 1, a common supply pipe 14 is used as the supply pipe of the liquid to be treated A and the mixed liquid G, but separate supply pipes may be used). V1 and the valve V2 installed in the discharge pipe 16 are opened, and the other valves V3 to V5 are closed. Then, the mixed liquid supply pump 8b is driven to send the mixed liquid G in the mixed liquid storage tank 24 to the supply pipe 14. Immediately after starting the drive of the mixed liquid supply pump 8b, the liquid to be treated pump 8a is driven, and the liquid A to be treated in the liquid storage tank 7 to be treated is also sent to the supply pipe 14. Then, the liquid A to be treated and the mixed liquid G are mixed in the supply pipe 14, the mixed liquid G is diluted with the liquid A to be treated, and the diluted mixed liquid G is sent to the filtration device 10.
 なお、供給管14内で被処理液Aと混合液Gを混合し、混合液Gを被処理液Aで希釈し、希釈した混合液Gを濾過装置10へ送る理由は次のとおりである。すなわち、プリーツフィルタ12の外面に形成する活性炭層47の厚さ(密度)をプリーツフィルタ12のすべての外面でほぼ均一にするためには、プリーツフィルタの外側と内側の差圧を大きくする必要がある。このフィルタの差圧は通液量と関係し、清水の場合は100LMHで10KPa程度、300LMHで30KPa程度であるが、プリーツフィルタに活性炭Nが添着した状態では100LMHで30KPa程度、300LMHで80KPa程度にまで上昇する。300LMHほどで活性炭Nの添着量が均一化できるが、このような差圧を実現するためには流量を15m3/Hと大流量にする必要があり、混合液Gのみではその流量を賄なうことができないため、被処理液Aと混合液Gを混合して流量を増やし、この希釈した混合液Gを用いて活性炭Nを添着することが好ましい。 The reason for mixing the liquid A to be treated and the mixed liquid G in the supply pipe 14, diluting the mixed liquid G with the liquid A to be treated, and sending the diluted mixed liquid G to the filtration device 10 is as follows. That is, in order to make the thickness (density) of the activated carbon layer 47 formed on the outer surface of the pleated filter 12 substantially uniform on all the outer surfaces of the pleated filter 12, it is necessary to increase the differential pressure between the outside and the inside of the pleated filter. be. The differential pressure of this filter is related to the amount of liquid flowing, and in the case of fresh water, it is about 10 KPa at 100 LMH and about 30 KPa at 300 LMH, but when activated carbon N is attached to the pleated filter, it is about 30 KPa at 100 LMH and about 80 KPa at 300 LMH. Ascend to. The amount of activated carbon N attached can be made uniform at about 300 LMH, but in order to realize such a differential pressure, it is necessary to increase the flow rate to 15 m 3 / H, and the mixed liquid G alone cannot cover the flow rate. Therefore, it is preferable to mix the liquid to be treated A and the mixed liquid G to increase the flow rate, and to impregnate the activated carbon N using this diluted mixed liquid G.
 以上のようにして、濾過装置10へ送られる希釈された混合液Gは、混合液G中の吸着剤Nの濃度が3000~5000mg/L程度となるようにすることが好ましい。この濃度にするために、混合液供給ポンプ8bによる混合液Gの輸送量と被処理液供給ポンプ8aによる被処理液Aの輸送量を調整するとよい。濾過装置10に供給された混合液Gのうち、混合液Gに含まれる吸着剤Nは濾過フィルタ12の外面に堆積されて吸着剤層47を形成する。なお、吸着剤層47を形成する際、濾過フィルタ12の外側(上流側)と内側(下流側)では大きな差圧が発生している。このような差圧の発生により、濾過フィルタ12に対する吸着剤Nの添着量のムラが生じることを抑制することができ(吸着剤Nが多く添着する場所と少なく添着する場所の発生が少なくなる)、吸着剤層47の厚みを均一化することができる。すなわち、吸着剤層47を形成する過程で、吸着剤Nの添着量が少ない場所が一時的にできたとしても、その場所を通過する混合液Gの量が自然に増えるため、吸着剤層47の厚みが自然に均一化される。そして、混合液Gの液体部分は、濾過フィルタ12を通過し、残液J(混合液Gから吸着剤Nが除去された液体)の排出管16(図1の濾過システムでは、処理液Bと残液Hの排出管として、共通の排出管16を用いているが、別々の排出管としてもよい。)を通って、濾過システム外に排出される。吸着剤層47の厚みが所定の厚さに達したら、ポンプ8bの運転を止めて、混合液Gの輸送を停止し、吸着剤層形成工程を終える。吸着剤層47の厚みは特に限定されず、任意に定めることができる。吸着剤層47の厚みの望ましい値については前述したので、ここでは記載を省略する。 As described above, it is preferable that the diluted mixed liquid G sent to the filtration device 10 has a concentration of the adsorbent N in the mixed liquid G of about 3000 to 5000 mg / L. In order to obtain this concentration, it is advisable to adjust the transport amount of the mixed liquid G by the mixed liquid supply pump 8b and the transport amount of the liquid A to be treated by the liquid supply pump 8a. Of the mixed liquid G supplied to the filtration device 10, the adsorbent N contained in the mixed liquid G is deposited on the outer surface of the filtration filter 12 to form the adsorbent layer 47. When the adsorbent layer 47 is formed, a large differential pressure is generated between the outside (upstream side) and the inside (downstream side) of the filtration filter 12. Due to the generation of such a differential pressure, it is possible to suppress the occurrence of unevenness in the amount of the adsorbent N adhered to the filtration filter 12 (the occurrence of the place where the adsorbent N is abundantly attached and the place where the adsorbent N is a little attached is reduced). , The thickness of the adsorbent layer 47 can be made uniform. That is, even if a place where the amount of adsorbent N adhered is temporarily formed in the process of forming the adsorbent layer 47, the amount of the mixed liquid G passing through the place naturally increases, so that the adsorbent layer 47 The thickness of is naturally made uniform. Then, the liquid portion of the mixed liquid G passes through the filtration filter 12, and the residual liquid J (the liquid from which the adsorbent N is removed from the mixed liquid G) discharge pipe 16 (in the filtration system of FIG. 1, the treatment liquid B and the liquid portion). Although a common discharge pipe 16 is used as the discharge pipe of the residual liquid H, it may be discharged to the outside of the filtration system through a separate discharge pipe). When the thickness of the adsorbent layer 47 reaches a predetermined thickness, the operation of the pump 8b is stopped, the transportation of the mixed liquid G is stopped, and the adsorbent layer forming step is completed. The thickness of the adsorbent layer 47 is not particularly limited and can be arbitrarily determined. Since the desirable value of the thickness of the adsorbent layer 47 has been described above, the description thereof is omitted here.
 なお、プリーツフィルタを用いた場合、懸濁濃度5000mg/L、300LMHで通水プレコーティングするため、100000/5g/300LMH/50m2=1.33時間でコーティングが完成し、前記特許文献6よりも圧倒的に早くコーティングを完成させることができる。 When a pleated filter is used, water flow precoating is performed at a suspension concentration of 5000 mg / L and 300 LMH, so that the coating is completed in 100,000 / 5 g / 300 LMH / 50 m 2 = 1.33 hours, which is higher than that of Patent Document 6. The coating can be completed overwhelmingly quickly.
(吸着・濾過工程)
 濾過フィルタ12の表面に吸着剤層47を形成し終えた後、被処理液Aの濾過を行う。具体的には、バルブV1~V5の開閉を特に変更せずに、被処理液貯留槽7中に設置された被処理液供給ポンプ8aを起動する。すると、被処理液Aが被処理液Aの供給管13を介してストレーナ9へ送られ、ストレーナ9内で被処理液Aに含まれるゴミなどが除去される。その後、ストレーナ9から排出された被処理液Aは、供給管14を介して、濾過容器11内に供給される。なお、濾過容器11内に供給される被処理液Aの流速は、例えば0.001m/s~0.004m/s(FLUXが50LMH~200LMH)程度とすることが好ましく、0.0017m/s~0.0025m/s程度にすることがより好ましい。吸着剤Nが難分解性物質Eを吸着する効率(吸着効率)の高低は、吸着剤Nの粒子と被処理液Aの接触効率が重要な因子となる。この接触効率は、吸着剤Nの粒子と被処理液Aの接触面積と接触時間(すなわち被処理液Aの流速)に依存する。そのため、吸着効率を高めるためには、吸着剤Nの粒子の粒径(平均粒径)を小さくするとともに、被処理液Aの流速を遅くして、被処理液Aが吸着剤層47を通過する速度を遅くする必要がある。そのため、前述のように、被処理液Aの流速を遅くすることが好ましい。
(Adsorption / filtration process)
After forming the adsorbent layer 47 on the surface of the filtration filter 12, the liquid A to be treated is filtered. Specifically, the liquid to be processed supply pump 8a installed in the liquid to be treated storage tank 7 is started without changing the opening and closing of the valves V1 to V5. Then, the liquid A to be treated is sent to the strainer 9 through the supply pipe 13 of the liquid A to be treated, and dust and the like contained in the liquid A to be treated are removed in the strainer 9. After that, the liquid A to be treated discharged from the strainer 9 is supplied into the filtration container 11 via the supply pipe 14. The flow velocity of the liquid to be treated A supplied into the filtration vessel 11 is preferably, for example, about 0.001 m / s to 0.004 m / s (FLUX is 50 LMH to 200 LMH), and is preferably 0.0017 m / s to. It is more preferable to set it to about 0.0025 m / s. The high or low efficiency (adsorption efficiency) of the adsorbent N adsorbing the persistent substance E depends on the contact efficiency between the particles of the adsorbent N and the liquid A to be treated. This contact efficiency depends on the contact area between the particles of the adsorbent N and the liquid A to be treated and the contact time (that is, the flow velocity of the liquid A to be treated). Therefore, in order to increase the adsorption efficiency, the particle size (average particle size) of the particles of the adsorbent N is reduced, the flow velocity of the liquid to be treated A is slowed down, and the liquid to be treated A passes through the adsorbent layer 47. You need to slow down the speed. Therefore, as described above, it is preferable to slow down the flow rate of the liquid to be treated A.
 このようにして濾過容器11内に到達した被処理液Aは、濾過フィルタ12によって濾過される。より詳しくは、被処理液A中の難分解性物質Eが吸着剤層47の吸着剤Nに捕捉され、難分解性物質Eが除去された被処理液Aが濾過フィルタ12によって濾過される。この濾過によって、被処理液Aの液体は濾過膜12mを通って濾液通路12rへ移動し、濾液Bとして排出口15から排出される。排出口15から排出された濾液Bは、排出管16を通って系外へ排出される。他方、被処理液Aの固体(懸濁粒子)は濾過膜12mの表面12fに付着して堆積し、結果としてケーキKが形成される。なお、濾過フィルタ12の単位面積当たりの通液抵抗は、通液積算量(すなわち、被処理液Aから分離される固形分量)に比例して大きくなる。 The liquid A to be treated that has reached the inside of the filtration container 11 in this way is filtered by the filtration filter 12. More specifically, the persistent substance E in the liquid to be treated A is captured by the adsorbent N in the adsorbent layer 47, and the liquid to be treated A from which the persistent substance E has been removed is filtered by the filtration filter 12. By this filtration, the liquid of the liquid A to be treated moves to the filtrate passage 12r through the filtration membrane 12m, and is discharged as the filtrate B from the discharge port 15. The filtrate B discharged from the discharge port 15 is discharged to the outside of the system through the discharge pipe 16. On the other hand, the solid (suspended particles) of the liquid A to be treated adheres to and deposits on the surface 12f of the filtration film 12m, and as a result, cake K is formed. The liquid passage resistance per unit area of the filtration filter 12 increases in proportion to the integrated amount of liquid passage (that is, the amount of solid content separated from the liquid A to be treated).
 濾過フィルタ12の表面に形成されたケーキKは、ある程度の通液性を有しており、濾過フィルタ12を補助する補助フィルタとして機能するという利点を有するが、ケーキが厚くなるにつれて通液性が悪くなるという不利益が生じる。すなわち、ケーキが厚くなるにつれて、通液抵抗が比例して大きくなってしまう。そのため、一定量のケーキKが堆積したら、濾過フィルタ12の通液抵抗を減らして、濾過流量を増やす必要がある。そこで、ケーキKの生成量が所定レベルまで増えたとき、すなわち濾過フィルタ12が目詰まりしたときに、濾過工程を終了する。 The cake K formed on the surface of the filtration filter 12 has a certain degree of liquid permeability and has an advantage that it functions as an auxiliary filter that assists the filtration filter 12, but the liquid permeability becomes higher as the cake becomes thicker. There is a disadvantage that it gets worse. That is, as the cake becomes thicker, the liquid passage resistance increases proportionally. Therefore, when a certain amount of cake K is deposited, it is necessary to reduce the liquid passage resistance of the filtration filter 12 and increase the filtration flow rate. Therefore, when the amount of cake K produced increases to a predetermined level, that is, when the filtration filter 12 is clogged, the filtration step is terminated.
 ケーキKの生成量は、被処理液Aの濁度と通水積算量(すなわち、被処理液Aから分離される固形分量)に比例するため、濾過工程を開始してから、濾過フィルタ12が目詰まりし、洗浄工程を行うというタクトタイムは、ケーキKの生成時間で決定する。なお、フィルタ目詰耐圧は、例えば200kPaである。 Since the amount of cake K produced is proportional to the turbidity of the liquid A to be treated and the integrated amount of water flow (that is, the amount of solid content separated from the liquid A to be treated), the filtration filter 12 starts the filtration step. The tact time of clogging and performing the washing process is determined by the production time of cake K. The filter clogging withstand voltage is, for example, 200 kPa.
 ケーキKの生成を原因として濾過処理を停止する際には、例えば、濾過容器11の被処理液Aの供給口4の内圧を圧力計(図示しない)で計測するとともに、処理液Bの排出口15の内圧を圧力計(図示しない)で計測し、その差圧が一定値以上になったときに、濾過工程を終了する構成とすることができる。その他の方法によって濾過処理を停止するか否かを決定してもよい。例えば、流量計(図示しない)によって、単位時間当たりの濾液Bの排出量を計測し、その量が一定値を下回った場合に、濾過工程を終了するようにしてもよい。また、濾過工程を開始してから所定時間が経過したか否かで判定したり、ケーキKの厚さを計測して、ケーキ厚が約1mm~2mmになった時点で、ケーキKが濾過不可能な状態になったと判定したりしても良い。 When the filtration process is stopped due to the formation of the cake K, for example, the internal pressure of the supply port 4 of the liquid to be treated A of the filtration container 11 is measured by a pressure gauge (not shown), and the discharge port of the treatment liquid B is discharged. The internal pressure of 15 can be measured with a pressure gauge (not shown), and the filtration step can be terminated when the differential pressure exceeds a certain value. It may be decided whether or not to stop the filtration process by another method. For example, the discharge amount of the filtrate B per unit time may be measured by a flow meter (not shown), and the filtration step may be terminated when the amount falls below a certain value. Further, it is determined whether or not a predetermined time has elapsed since the start of the filtration process, or the thickness of the cake K is measured, and when the cake thickness reaches about 1 mm to 2 mm, the cake K is not filtered. It may be determined that the state is possible.
 また、濾過装置10で濾過を行うと、被処理液A中の難分解性物質Eが吸着剤層47の吸着剤Nに吸着されるが、吸着剤Nが吸着できる難分解性物質Eの量には限界があり、次第に難分解性物質Eを吸着できなくなる。そのため、難分解性物質Eの吸着力がある程度低下したら、吸着剤層45を濾過フィルタ12から剥離して排出するため、濾過工程を終了させる。 Further, when the filtration is performed by the filtration device 10, the persistent substance E in the liquid A to be treated is adsorbed by the adsorbent N of the adsorbent layer 47, but the amount of the persistent substance E that the adsorbent N can adsorb. Has a limit, and gradually becomes unable to adsorb the persistent substance E. Therefore, when the adsorptive power of the persistent substance E decreases to some extent, the adsorbent layer 45 is peeled off from the filtration filter 12 and discharged, so that the filtration step is terminated.
 吸着剤層47における難分解性物質Eの吸着性能の低下を原因として濾過処理を停止する際には、例えば、処理液Bの排出管16に、処理液B中の難分解性物質Eの濃度を計測する濃度計25を設け、処理液B中の難分解性物質Eの濃度が許容値を超えたときに、濾過工程を終了させることができる。この濾過工程を終了するタイミングは、その他の方法によって決めても良い。例えば、濾過工程を開始してから所定時間が経過したか否かで判定したりしてもよい。 When the filtration treatment is stopped due to a decrease in the adsorption performance of the persistent substance E in the adsorbent layer 47, for example, the concentration of the persistent substance E in the treatment liquid B is placed in the discharge pipe 16 of the treatment liquid B. 25 is provided, and the filtration step can be terminated when the concentration of the persistent substance E in the treatment liquid B exceeds the permissible value. The timing for ending this filtration step may be determined by other methods. For example, it may be determined whether or not a predetermined time has elapsed since the start of the filtration step.
 前述のように、濾過の停止が必要となる要因として、(1)ケーキKの形成、(2)吸着剤Nによる難分解性物質Eの吸着能力の低下を挙げることができる。この2つの要因のうち、特に重要なのは前記(2)の要因である。処理液B中の難分解性物質Eが予め定めた許容値を超えることは、最も防ぐべき優先事項だからである。そのため、吸着剤Nの吸着能力が低下して許容できない状態になった場合は、直ちに濾過工程を終了させることが好ましい。また、吸着剤層47の吸着能力にまだ余力がある場合でも、ケーキKが所定の厚み以上となり、被処理液Aの濾過処理速度が許容できないほど遅くなった場合は、その段階で濾過工程を終了させてもよい。 As described above, the factors that require the stop of filtration include (1) the formation of cake K and (2) the decrease in the adsorption capacity of the persistent substance E due to the adsorbent N. Of these two factors, the factor (2) is particularly important. This is because it is the most important priority to prevent the persistent substance E in the treatment liquid B from exceeding a predetermined allowable value. Therefore, when the adsorption capacity of the adsorbent N is lowered and becomes unacceptable, it is preferable to immediately end the filtration step. Further, even if the adsorbent layer 47 still has a surplus capacity, if the cake K has a predetermined thickness or more and the filtration processing speed of the liquid to be treated A becomes unacceptably slow, the filtration step is performed at that stage. You may terminate it.
 以上のとおり、被処理液A中の難分解性物質Eが吸着剤層47に吸着されることと、被処理液Aを濾過フィルタ12で濾過することが、同時に行われる。この工程を吸着・濾過工程という。 As described above, the persistent substance E in the liquid A to be treated is adsorbed on the adsorbent layer 47, and the liquid A to be treated is filtered by the filtration filter 12 at the same time. This process is called an adsorption / filtration process.
 なお、図面には流量センサー46を示している。この流量センサー46は、パイプ16内を通る処理液Bの単位時間当たりの流量や、濾過を開始してからの処理液Bの積算流量を検知することができる。処理液Bの単位時間当たりの流量が異常に少なかったり、濾過を開始してからの処理液Bの積算流量が所定値を超えたりした場合に、ポンプ8aの駆動を停めて、濾過処理を停止させるなどの制御を行うことができる。 The drawing shows the flow rate sensor 46. The flow rate sensor 46 can detect the flow rate of the processing liquid B passing through the pipe 16 per unit time and the integrated flow rate of the processing liquid B after the start of filtration. When the flow rate of the treatment liquid B per unit time is abnormally low or the integrated flow rate of the treatment liquid B exceeds a predetermined value after the start of filtration, the drive of the pump 8a is stopped and the filtration process is stopped. It is possible to perform control such as making it.
(パージ工程)
 次に、濾過工程の後に行う、気体を用いたパージ(purge)工程(「気体パージ工程」ともいう。)について説明する。
 まず、バルブV1、V2、V4を閉じ、バルブV3、V5を開いて、コンプレッサー6を起動する。コンプレッサー6の圧力は、例えば20kPa程度にすることができる。すると、コンプレッサー6から送られた気体D(例えば空気。空気を用いた場合は、エアパージという。また、空気に換えて窒素等の他の気体を用いても良い。)は、送気管19、16(送気管16は濾液Bの排出管を兼ねている。)を経て、濾液通路12r内へ導かれる。濾過工程の終了直後は、濾液通路12r内に濾液Bが残存しているが、送られた気体Dにより、濾液Bが濾過膜12mの内側から外側へ押し出される。その結果、濾液Bは濾過容器11の下部に落下した後、排出管22を通って洗浄液貯留タンク30へ返送される。このパージ工程が進むにつれて、濾過容器11内の濾液通路12rやプリーツフィルタ12の外側の空間(間隙50)に、気体Dが充満した状態となる。
(Purge process)
Next, a purging step using a gas (also referred to as a “gas purging step”) performed after the filtration step will be described.
First, the valves V1, V2 and V4 are closed, the valves V3 and V5 are opened, and the compressor 6 is started. The pressure of the compressor 6 can be, for example, about 20 kPa. Then, the gas D sent from the compressor 6 (for example, air. When air is used, it is called air purge. Further, another gas such as nitrogen may be used instead of air) is used in the air supply tubes 19 and 16. (The air supply pipe 16 also serves as a discharge pipe for the filtrate B), and is guided into the filtrate passage 12r. Immediately after the completion of the filtration step, the filtrate B remains in the filtrate passage 12r, but the sent gas D pushes the filtrate B from the inside to the outside of the filtration membrane 12 m. As a result, the filtrate B is dropped to the lower part of the filtration container 11 and then returned to the cleaning liquid storage tank 30 through the discharge pipe 22. As this purging step progresses, the gas D fills the filtrate passage 12r in the filtration vessel 11 and the space (gap 50) outside the pleated filter 12.
 なお、このパージ工程の時間は5秒~15秒にすることができる。具体的には、コンプレッサー6の送風能力が2.5L/min、濾過容器11の容積(濾過フィルタ12の下端よりも下側の部分を除く)が190Lである場合、パージが完了するまでに、190L÷2500×60秒=4.56秒が必要となり、バルブV2、V3を開く時間や、フィルタ12の空気抵抗などを考慮すると、約10秒でパージ工程が終了する。このエアパージ工程によって、濾過容器11内を気体で満たした状態を作り出すことにより、後工程の洗浄工程において、気体中で洗浄を行えるようにしている。 The time of this purging process can be 5 to 15 seconds. Specifically, when the air blowing capacity of the compressor 6 is 2.5 L / min and the volume of the filtration vessel 11 (excluding the portion below the lower end of the filtration filter 12) is 190 L, by the time the purge is completed, 190L ÷ 2500 × 60 seconds = 4.56 seconds is required, and considering the time for opening the valves V2 and V3, the air resistance of the filter 12, and the like, the purging process is completed in about 10 seconds. By creating a state in which the inside of the filtration container 11 is filled with gas by this air purging step, it is possible to perform cleaning in gas in the cleaning step of the subsequent step.
(洗浄工程)
 次に、パージ工程後の洗浄工程について説明する。
 洗浄工程では、濾過膜表面12fに形成されたケーキK、吸着剤層47を剥離して濾過膜表面12fを初期状態に戻す。この洗浄工程では、コンプレッサー6の運転を継続し、バルブV1、V2、V5を閉じ、バルブV3、V4を開ける。洗浄液供給ポンプ8cにより、洗浄液貯留タンク30に貯留された洗浄液Cは、洗浄液供給管30を通って、洗浄液タンク36へ送られる。洗浄液タンク36には、洗浄液Cが一時的に充満するが、充満した洗浄液Cは、ポンプ8の圧力によって、スリット37から濾過フィルタ12へ向かって吹き出される。このとき、スリットノズル37の差圧(洗浄タンク36と濾過容器11の差圧)は、80kPa~150kPaとすることが好適である。差圧が80kPaの時のノズル噴流速度は8m/s、120kPaの時のノズル噴流速度は12m/とすることが好ましい。なお、ケーキKや吸着剤層47が厚い場合は、洗浄液Cの吹き出し圧力を強める必要があり、例えばケーキ厚が2mm(2000g/m2)のときは、150kPa(15m/s)の圧力が必要となる。吹き出された洗浄液Cは、濾過フィルタ12に衝突し、その衝撃によって濾過フィルタ12に付着したケーキKや吸着剤Nを剥離する。また、前記洗浄液Cには粉粒体Fが含まれているため、ケーキKや吸着剤Nの剥離効果が高いものとなる。なお、スリット37は洗浄液タンク36の延在方向に延在しているため、洗浄液Cがスリット37から平板状に吹き出され、濾過フィルタ12の軸方向に沿ってライン状に当たり、ケーキKや吸着剤Nを漏れなく剥離することができる。
(Washing process)
Next, the cleaning step after the purging step will be described.
In the cleaning step, the cake K and the adsorbent layer 47 formed on the filter film surface 12f are peeled off to return the filter film surface 12f to the initial state. In this cleaning step, the operation of the compressor 6 is continued, the valves V1, V2 and V5 are closed, and the valves V3 and V4 are opened. The cleaning liquid C stored in the cleaning liquid storage tank 30 by the cleaning liquid supply pump 8c is sent to the cleaning liquid tank 36 through the cleaning liquid supply pipe 30. The cleaning liquid tank 36 is temporarily filled with the cleaning liquid C, and the filled cleaning liquid C is blown out from the slit 37 toward the filtration filter 12 by the pressure of the pump 8. At this time, the differential pressure of the slit nozzle 37 (differential pressure between the cleaning tank 36 and the filtration container 11) is preferably 80 kPa to 150 kPa. When the differential pressure is 80 kPa, the nozzle jet velocity is preferably 8 m / s, and when the differential pressure is 120 kPa, the nozzle jet velocity is preferably 12 m /. When the cake K or the adsorbent layer 47 is thick, it is necessary to increase the blowing pressure of the cleaning liquid C. For example, when the cake thickness is 2 mm (2000 g / m 2 ), a pressure of 150 kPa (15 m / s) is required. Will be. The blown-out cleaning liquid C collides with the filtration filter 12, and the impact causes the cake K and the adsorbent N adhering to the filtration filter 12 to be peeled off. Further, since the cleaning liquid C contains the powder or granular material F, the peeling effect of the cake K and the adsorbent N is high. Since the slit 37 extends in the extending direction of the cleaning liquid tank 36, the cleaning liquid C is blown out from the slit 37 in a flat plate shape and hits in a line shape along the axial direction of the filtration filter 12, and the cake K and the adsorbent. N can be peeled off without leakage.
 濾過フィルタ12に付着したケーキKのうち、洗浄液タンク36のスリット37の位置から離れたケーキKに対しては、衝撃を与えることができない。そのため、濾過フィルタ12をその軸心を中心として回転させることが好ましい。濾過フィルタ12を1回転させるために必要な時間は、濾過フィルタ12の直径、襞数(プリーツフィルタの場合)や、表面積で決定し、例えば、直径400mm(表面積50m2)の濾過フィルタ12を0.5RPMで回転させる(120秒間で1回転させる)ようにしても良い。濾過フィルタ12を回転させながら、スリット37から洗浄液Cを吹き出すことで、濾過フィルタ12の全周に付着したケーキKを剥離することができる。なお、濾過フィルタ12の回転機構を設けない場合は、洗浄液タンク36が濾過フィルタ12の周囲を回転する機構にしても良い。また、濾過容器11の周方向に沿って、洗浄液タンク36を複数設け、360度の方向から洗浄液Cを吹き出すことで、回転機構を設けた場合と同様の効果を得るようにしても良い。 Of the cake K adhering to the filtration filter 12, the cake K away from the position of the slit 37 of the cleaning liquid tank 36 cannot be impacted. Therefore, it is preferable to rotate the filtration filter 12 around its axis. The time required to rotate the filtration filter 12 once is determined by the diameter of the filtration filter 12, the number of folds (in the case of a pleated filter), and the surface area. For example, the filtration filter 12 having a diameter of 400 mm (surface area 50 m 2 ) is 0. It may be rotated at .5 RPM (one rotation in 120 seconds). By blowing out the cleaning liquid C from the slit 37 while rotating the filtration filter 12, the cake K adhering to the entire circumference of the filtration filter 12 can be peeled off. If the rotation mechanism of the filtration filter 12 is not provided, the cleaning liquid tank 36 may rotate around the filtration filter 12. Further, a plurality of cleaning liquid tanks 36 may be provided along the circumferential direction of the filtration container 11 and the cleaning liquid C may be blown out from the direction of 360 degrees to obtain the same effect as when the rotation mechanism is provided.
 濾過容器11の排出シュート11Sに落下したケーキKや吸着剤Nは、洗浄液Cとともに、返送管22を経て、洗浄液貯留タンク30へ送られる。なお、剥離したケーキKや吸着剤Nを即時に洗浄液貯留タンク30へ送っても良いが、ケーキ排出シュート11Sに溜めて、ある程度の量が溜まった後に送るようにしても良い。 The cake K and the adsorbent N that have fallen on the discharge chute 11S of the filtration container 11 are sent to the cleaning liquid storage tank 30 together with the cleaning liquid C via the return pipe 22. The peeled cake K or the adsorbent N may be immediately sent to the cleaning liquid storage tank 30, but may be stored in the cake discharge chute 11S and sent after a certain amount has been accumulated.
 なお、洗浄工程においても、コンプレッサー6から送られた気体は、濾液通路12rに導かれた後、濾過膜12mの内側から外側へ排気される。したがって、濾過膜表面12fに形成されたケーキKは、濾過膜外側から受ける洗浄液Cの衝撃力によって剥離されるほか、濾過膜内側から外側へ排出される気体Dによっても剥離されるため、洗浄液Cだけを用いる場合と比べて、ケーキKや吸着剤Nを剥離しやすくなる。また、濾過容器11内に気体Dが充満した状態で洗浄液Cを吹き付けているため、濾過容器11内に液体(被処理液A)が充満している従来例と比べて、洗浄液Cの衝撃力が大きくなり、ケーキKや吸着剤Nの剥離量が多くなる。さらに、洗浄液Cの吹き出し力が強い場合であっても、濾過膜内側から外側に気体Dが排出されているため、洗浄液Cや洗浄液中の粉粒体Fが濾過通路12r内に入り込むケースが少なく、仮に入り込んだとしても直ぐに間隙50に押し戻すことができる。 以上のようにして、ケーキKを全て排出したときに、洗浄工程を終了とする。 Also in the cleaning step, the gas sent from the compressor 6 is guided to the filtrate passage 12r and then exhausted from the inside to the outside of the filtration membrane 12m. Therefore, the cake K formed on the surface 12f of the filter membrane is peeled off by the impact force of the cleaning liquid C received from the outside of the filtration membrane, and is also peeled off by the gas D discharged from the inside to the outside of the filtration membrane, so that the cleaning liquid C is peeled off. It becomes easier to peel off the cake K and the adsorbent N as compared with the case of using only the cake K. Further, since the cleaning liquid C is sprayed with the gas D filled in the filtration container 11, the impact force of the cleaning liquid C is compared with the conventional example in which the liquid (processed liquid A) is filled in the filtration container 11. Increases, and the amount of peeling of the cake K and the adsorbent N increases. Further, even when the blowing force of the cleaning liquid C is strong, since the gas D is discharged from the inside to the outside of the filtration membrane, there are few cases where the cleaning liquid C and the powder or granular material F in the cleaning liquid enter the filtration passage 12r. Even if it gets in, it can be immediately pushed back into the gap 50. As described above, the cleaning process is terminated when all the cake K is discharged.
(スラリー脱水工程)
 前述のような各工程を経て、洗浄液貯留タンク30には、ケーキK、吸着剤N、粉粒体F、被処理液Aおよび濾液Bなど(これらを廃液Uという。以下同じ。)が供給される。また、この洗浄液貯留タンク30の近傍には粉粒体Fを分級する粉粒体分級装置34が設けられている。洗浄液貯留タンク30内に供給された廃液Uは、廃液輸送ポンプ8dによって、粉粒体回収管33を通って粉粒体分級装置34へ送られ、その粉粒体分級装置34で廃液U中の粉粒体Fが回収される。回収された粉粒体Fは、洗浄液貯留タンク30内へ戻される。そして、粉粒体分級装置34によって粉粒体Fが除去された廃液Uは、廃液輸送ポンプ8dによって、廃液排出管31を介して脱水装置27へ送られる。脱水装置27は種々のフィルタやフィルタープレスなどからなり、この脱水装置27で廃液U中のケーキKや吸着剤Nが捕捉される。脱水装置27で捕捉されたケーキKや吸着剤Nは、この濾過システムの外へ排出されて、廃棄される。以上の工程をスラリー脱水工程という。なお、洗浄液貯留タンク30の廃液Uのすべてを粉粒体分級装置34へ送るのではなく、廃液Uの一部は洗浄液貯留タンク30に残したままにすることが好ましい。洗浄液貯留タンク30内の廃液Uは、洗浄工程で、洗浄液Cとして利用するからである。
(Slurry dehydration process)
Through each step as described above, the cake K, the adsorbent N, the powder / granular material F, the liquid to be treated A, the filtrate B and the like (these are referred to as waste liquid U; the same shall apply hereinafter) are supplied to the cleaning liquid storage tank 30. To. Further, a powder / granular material classification device 34 for classifying the powder / granular material F is provided in the vicinity of the cleaning liquid storage tank 30. The waste liquid U supplied into the cleaning liquid storage tank 30 is sent to the powder / granular material classification device 34 through the powder / granular material recovery pipe 33 by the waste liquid transport pump 8d, and is in the waste liquid U in the powder / granular material classification device 34. The powder or granular material F is recovered. The recovered powder / granular material F is returned to the cleaning liquid storage tank 30. Then, the waste liquid U from which the powder or granular material F has been removed by the powder or granular material classification device 34 is sent to the dehydration device 27 via the waste liquid discharge pipe 31 by the waste liquid transport pump 8d. The dehydrating device 27 includes various filters, filter presses, and the like, and the dehydrating device 27 captures the cake K and the adsorbent N in the waste liquid U. The cake K and the adsorbent N captured by the dehydrating device 27 are discharged to the outside of this filtration system and discarded. The above process is called a slurry dehydration process. It is preferable that not all of the waste liquid U of the cleaning liquid storage tank 30 is sent to the powder / granular material classification device 34, but a part of the waste liquid U is left in the cleaning liquid storage tank 30. This is because the waste liquid U in the cleaning liquid storage tank 30 is used as the cleaning liquid C in the cleaning process.
 その後は、前記吸着剤層形成工程に戻り、また一連の各工程を実施する。なお、混合液貯留槽24に混合液が無くなっている場合や少なくなっている場合は、吸着剤層形成工程ではなく、混合液生成工程に戻ることとする。また、脱水装置27によって、ケーキKや吸着剤Nが除去された液体(浄化液)は、新たな吸着・濾過工程で、浄化液輸送ポンプ8eの駆動により、スラリー脱水装置27から排出され、浄化液排出管32を経て、処理液供給管14を流れる被処理液Aと合流し、濾過装置10へ送られて吸着・濾過される。 After that, the process returns to the adsorbent layer forming step, and each series of steps is carried out. If the mixed liquid is exhausted or is low in the mixed liquid storage tank 24, the process returns to the mixed liquid generation step instead of the adsorbent layer forming step. Further, the liquid (purifying liquid) from which the cake K and the adsorbent N have been removed by the dehydrating device 27 is discharged from the slurry dehydrating device 27 by the drive of the purifying liquid transport pump 8e in a new adsorption / filtration step, and is purified. It merges with the liquid to be treated A flowing through the treatment liquid supply pipe 14 via the liquid discharge pipe 32, is sent to the filtration device 10, and is adsorbed and filtered.
(縦型脱水乾燥装置と横型脱水乾燥装置)
 上記の説明では、濾過フィルタ12の軸心が縦になる縦型濾過装置10について説明したが、濾過フィルタ12の軸心が横になる横型濾過装置10であっても良い。この横型濾過装置10では、洗浄液タンク36を濾過フィルタ12の下側に配置し、洗浄液Cを下側から噴き付けるようにすると良い。濾過フィルタ12から剥離したケーキKが、重力によって排出口11Sに落下しやすいからである。
(Vertical dehydration drying device and horizontal dehydration drying device)
In the above description, the vertical filtration device 10 in which the axis of the filtration filter 12 is vertical has been described, but the horizontal filtration device 10 in which the axis of the filtration filter 12 is horizontal may be used. In this horizontal filtration device 10, it is preferable to arrange the cleaning liquid tank 36 on the lower side of the filtration filter 12 so that the cleaning liquid C is sprayed from the lower side. This is because the cake K peeled off from the filtration filter 12 easily falls into the discharge port 11S due to gravity.
(複数台の濾過装置10)
  濾過装置10の設置数は1台に限られるものではなく、図5に示した第二実施形態のように、複数台の濾過装置10を用いることもできる。そして、複数個の濾過装置10を並列に配置した濾過システムを用いた濾過方法であって、吸着・濾過工程の後に、濾過処理によって難分解性物質Eを吸着した吸着剤Nを濾過フィルタ12から剥離し、剥離した吸着剤Nを濾過容器11内から排出する剥離・排出工程と、を有し、複数の濾過装置10のうちの一部の濾過装置10が吸着剤層形成工程または剥離・排出工程を実施しているときに、他の濾過装置10が吸着・濾過工程を実施し、濾過システム全体で被処理液Aの濾過処理を継続するようにしてもよい。
(Multiple filtration devices 10)
The number of installed filtration devices 10 is not limited to one, and a plurality of filtration devices 10 may be used as in the second embodiment shown in FIG. Then, in a filtration method using a filtration system in which a plurality of filtration devices 10 are arranged in parallel, after the adsorption / filtration step, the adsorbent N adsorbing the persistent substance E by the filtration treatment is transferred from the filtration filter 12. It has a peeling / discharging step of peeling and discharging the peeled adsorbent N from the inside of the filtration container 11, and a part of the filtering devices 10 among the plurality of filtering devices 10 has an adsorbent layer forming step or peeling / discharging. While the step is being carried out, another filtration device 10 may carry out the adsorption / filtration step to continue the filtration treatment of the liquid A to be treated in the entire filtration system.
 濾過装置10を複数台設けた場合、一部の濾過装置10が剥離・排出工程を行っている間に、その他の濾過装置10が吸着・濾過工程を行う構成とすることが好ましい。すなわち、複数台の濾過装置10において、吸着剤層形成工程、吸着・濾過工程、剥離・排出工程等の各工程の実行時期をそれぞれずらすようにすることが好ましい。このように、一部の濾過装置10が吸着剤層47の形成や、吸着剤層47の剥離や、吸着剤Nの排出を行っているときであっても、その他の濾過装置10が吸着・濾過を行うことによって、濾過システム全体としては、被処理液Aの吸着・濾過処理を停止させずに継続することができるという利点がある。 When a plurality of filtration devices 10 are provided, it is preferable that the other filtration devices 10 perform the adsorption / filtration steps while some of the filtration devices 10 perform the peeling / discharging steps. That is, it is preferable to stagger the execution time of each step such as the adsorbent layer forming step, the adsorption / filtering step, and the peeling / discharging step in the plurality of filtration devices 10. In this way, even when some of the filtration devices 10 form the adsorbent layer 47, peel off the adsorbent layer 47, and discharge the adsorbent N, the other filtration devices 10 adsorb. By performing filtration, the filtration system as a whole has an advantage that the adsorption / filtration process of the liquid A to be treated can be continued without being stopped.
 複数台の濾過装置10において、吸着剤層形成工程、吸着・濾過工程、剥離・排出工程の各工程の実行時期を全く同じにした場合に、濾過システム全体として被処理液Aの吸着・濾過処理を停止させないようにするためには、例えば、吸着剤層47の形成と吸着・濾過を同時に行わざるを得ない。このように、吸着剤層形成工程と吸着・濾過工程を同時に行う場合、濾過フィルタ12の表面に十分な吸着剤層47が形成できていない状態で被処理液Aを濾過処理することから、処理液B中に含まれる難分解性物質Eの量が増えてしまうおそれがある。図5の態様においては、このような不具合の発生を防止することができる。 When the execution times of the adsorbent layer forming step, the adsorption / filtration step, and the peeling / discharging step are exactly the same in the plurality of filtration devices 10, the adsorption / filtration treatment of the liquid A to be treated is performed as the entire filtration system. In order not to stop the above, for example, the formation of the adsorbent layer 47 and the adsorption / filtration must be performed at the same time. In this way, when the adsorbent layer forming step and the adsorption / filtering step are performed at the same time, the liquid A to be treated is filtered in a state where a sufficient adsorbent layer 47 cannot be formed on the surface of the filtration filter 12, so that the treatment is performed. The amount of the persistent substance E contained in the liquid B may increase. In the aspect of FIG. 5, it is possible to prevent the occurrence of such a defect.
 また、濾過装置10が複数台ある場合、各濾過装置10の濾過処理が正常に機能しているか否かを監視する必要がある。例えば、濾過装置10が故障したり、吸着剤層47の吸着剤Nが難分解性物質Eを多量に取り込んで吸着能力が低下したりした場合、濾過装置10から排出される処理液Bに多量の難分解性物質Eが含まれる事態の発生が危惧される。このような不具合の発生を防止するため、各濾過装置10から排出された処理液をそれぞれ抽出し、その処理液B中の難分解性物質Eの量に異常がないかどうか(難分解性物質Eの含有量が所定値よりも高くないかどうか)を検出するため、各濾過装置10から排出される処理液Bを抽出する抽出管42を設け、その抽出管42を後段で集合させ、その集合部43(または集合部43の後段)に処理液B中の難分解性物質Eを検出する検出器44を設けることが好ましい。このような構成にすることで、濾過装置10の台数と同数の検出器を44設ける必要がなくなり、イニシャルコストを削減することができる。例えば、濾過装置10を複数台設けた場合であっても、検出器44を1つ設けるだけで、各濾過装置10から排出される処理液Bに含まれる難分解性物質Eの量に異常がないかどうかを監視することが可能になる。 Further, when there are a plurality of filtration devices 10, it is necessary to monitor whether or not the filtration process of each filtration device 10 is functioning normally. For example, when the filtration device 10 fails or the adsorbent N of the adsorbent layer 47 takes in a large amount of the persistent substance E and the adsorption capacity is lowered, a large amount of the processing liquid B discharged from the filtration device 10 is used. There is a concern that a situation may occur in which the persistent substance E is contained. In order to prevent the occurrence of such a problem, the treatment liquid discharged from each filtration device 10 is extracted, and whether or not there is an abnormality in the amount of the persistent substance E in the treatment liquid B (persistent substance). In order to detect whether the content of E is higher than a predetermined value), an extraction tube 42 for extracting the treatment liquid B discharged from each filtration device 10 is provided, and the extraction tubes 42 are assembled in the subsequent stage, and the extraction tubes 42 are assembled. It is preferable to provide a detector 44 for detecting the persistent substance E in the treatment liquid B in the collecting portion 43 (or the subsequent stage of the collecting portion 43). With such a configuration, it is not necessary to provide 44 detectors as many as the number of filtration devices 10, and the initial cost can be reduced. For example, even when a plurality of filtration devices 10 are provided, the amount of the persistent substance E contained in the treatment liquid B discharged from each filtration device 10 becomes abnormal only by providing one detector 44. It will be possible to monitor for the absence.
 また、濾過装置10が複数台ある場合に、各濾過装置10で難分解性物質Eを適切に除去できているかどうかについて、別の方法によって判定してもよい。 Further, when there are a plurality of filtration devices 10, it may be determined by another method whether or not each filtration device 10 can appropriately remove the persistent substance E.
 各濾過装置10における吸着剤Nの吸着能力は、吸着剤層47を通過した被処理液Aの量(通液量)が増えるにつれて低下する。この通液量は、被処理液Aを濾過装置10に送る速度(送液速度)と、吸着剤層47に被処理液Aを通し始めてから経過した時間(通液時間)によって決まる。 The adsorption capacity of the adsorbent N in each filtration device 10 decreases as the amount of the liquid A to be treated (the amount of liquid passing through) that has passed through the adsorbent layer 47 increases. The amount of liquid to be passed is determined by the speed at which the liquid to be treated A is sent to the filtration device 10 (liquid feeding speed) and the time elapsed since the liquid to be treated A is passed through the adsorbent layer 47 (liquid passing time).
 そこで、例えば、送液速度と通液時間と吸着能力の低下度合いの関係性についてシミュレーションで予め確認した上で、計時器61によって実際の通液時間を計測し、通液時間が予め定めた時間(一定時間)に達した時点で、制御装置62がポンプ8aの駆動を停止し、濾過装置10に対して被処理液Aの供給を停止するように制御するようにするとよい。前述のように、処理液B中の難分解性物質Eの濃度を検出する機器よりも、計時器61の方が安価であるため、濾過システム全体のイニシャルコストを下げることができるという利点がある。 Therefore, for example, after confirming in advance the relationship between the liquid feeding speed, the liquid passing time, and the degree of decrease in the adsorption capacity, the actual liquid passing time is measured by the time measuring device 61, and the liquid passing time is a predetermined time. When (a certain time) is reached, the control device 62 may stop driving the pump 8a and control the filtering device 10 to stop the supply of the liquid A to be processed. As described above, since the timekeeping device 61 is cheaper than the device for detecting the concentration of the persistent substance E in the treatment liquid B, there is an advantage that the initial cost of the entire filtration system can be reduced. ..
(第三実施形態)
 図7の7Bに示すように、吸着剤層47を複数の層から構成してもよい。7Bに示した例では、吸着剤層47を2層構造にしている。このとき、吸着剤層47の内側に位置する第1吸着剤層47Aの第1吸着剤N1の平均粒径を、吸着剤層47の外側に位置する第2吸着剤層47Bの第2吸着剤N2の平均粒径よりも大きくすることが好ましい。
(Third embodiment)
As shown in 7B of FIG. 7, the adsorbent layer 47 may be composed of a plurality of layers. In the example shown in 7B, the adsorbent layer 47 has a two-layer structure. At this time, the average particle size of the first adsorbent N1 of the first adsorbent layer 47A located inside the adsorbent layer 47 is adjusted to the second adsorbent of the second adsorbent layer 47B located outside the adsorbent layer 47. It is preferable to make it larger than the average particle size of N2.
 具体的には、第1吸着剤N1の平均粒径を20~50μm程度とすることが好ましく、20~30μm程度とすることがより好ましい。第1吸着剤N1の平均粒径が20μmよりも小さいと、第1吸着剤N1がプリーツフィルタ12の間隙の奥深くに入り込み、プリーツフィルタ12から剥離しにくくなる。他方、第1吸着剤N1の平均粒径が50μmよりも大きいと、第2吸着剤N2が第1吸着剤層47Aの間隙を通り抜けて、第2吸着剤N2がプリーツフィルタ12の間隙の奥深くに入り込み、プリーツフィルタ12から剥離しにくくなる。このように、第1吸着剤N1の平均粒径は、プリーツフィルタ12の間隙に入り込まない程度にすることが好ましいため、第1吸着剤N1の平均粒径はプリーツフィルタ12の間隙の5倍~20倍程度にすることが好ましく、5倍~10倍程度にすることがより好ましい。 Specifically, the average particle size of the first adsorbent N1 is preferably about 20 to 50 μm, more preferably about 20 to 30 μm. When the average particle size of the first adsorbent N1 is smaller than 20 μm, the first adsorbent N1 penetrates deep into the gap of the pleated filter 12 and is difficult to peel off from the pleated filter 12. On the other hand, when the average particle size of the first adsorbent N1 is larger than 50 μm, the second adsorbent N2 passes through the gap of the first adsorbent layer 47A, and the second adsorbent N2 is deep in the gap of the pleated filter 12. It gets in and becomes difficult to peel off from the pleated filter 12. As described above, the average particle size of the first adsorbent N1 is preferably set so as not to enter the gap of the pleated filter 12, so that the average particle size of the first adsorbent N1 is 5 times or more the gap of the pleated filter 12. It is preferably about 20 times, more preferably about 5 to 10 times.
 なお、プリーツフィルタ12には無数の間隙が設けられているが、その各間隙の大きさの平均値を0.1~3μm2程度にすることが好ましく、0.15~0.5μm2程度にすることがより好ましい。前記間隙の大きさが0.1μm2よりも小さいと、被処理液Aがプリーツフィルタ12の間隙を通り抜けづらくなり、被処理液Aの濾過処理に時間がかかりすぎてしまう。また、前記間隙の大きさが3μm2よりも大きいと、被処理液A中の懸濁物質がプリーツフィルタ12の間隙を通り抜けて、処理液B中に多量に混入してしまうおそれがある。 The pleated filter 12 is provided with innumerable gaps, and the average value of the sizes of the gaps is preferably about 0.1 to 3 μm 2 , preferably about 0.15 to 0.5 μm 2 . It is more preferable to do so. If the size of the gap is smaller than 0.1 μm 2 , it becomes difficult for the liquid A to be treated to pass through the gap of the pleated filter 12, and the filtration treatment of the liquid A to be treated takes too much time. Further, if the size of the gap is larger than 3 μm 2 , the suspended solids in the liquid to be treated A may pass through the gap of the pleated filter 12 and be mixed in a large amount in the treatment liquid B.
 第2吸着剤N2の平均粒径は1~15μm程度とすることが好ましく、5~9μm程度とすることがより好ましい。第2吸着剤N2の平均粒径が1μmよりも小さいと、第2吸着剤N2が第1吸着剤層47Aの間隙を通り抜けて、第2吸着剤N2がプリーツフィルタ12の間隙の奥深くに入り込み、プリーツフィルタ12から剥離しにくくなる。他方、第2吸着剤N2の平均粒径が15μmよりも大きいと第2吸着剤N2の比表面積が大きいため、難分解性物質Eを吸着する吸着能力が低くなってしまう。このように、第2吸着剤N2の平均粒径は、第2吸着剤N1が第1吸着剤層47Aを通り抜けない程度にすることが好ましいため、第2吸着剤N2の平均粒径は第1吸着剤層47の間隙の1.5倍~5倍程度にすることが好ましく、1.5倍~3倍程度にすることがより好ましい。すなわち、第2吸着剤N2の平均粒径は、第1吸着剤N1の平均粒径の1.5分の1~5分の1程度にすることが好ましく、1.5分の1~3分の1程度にすることがより好ましい。 The average particle size of the second adsorbent N2 is preferably about 1 to 15 μm, more preferably about 5 to 9 μm. When the average particle size of the second adsorbent N2 is smaller than 1 μm, the second adsorbent N2 passes through the gap of the first adsorbent layer 47A, and the second adsorbent N2 penetrates deep into the gap of the pleated filter 12. It becomes difficult to peel off from the pleated filter 12. On the other hand, if the average particle size of the second adsorbent N2 is larger than 15 μm, the specific surface area of the second adsorbent N2 is large, so that the adsorption capacity for adsorbing the persistent substance E is low. As described above, the average particle size of the second adsorbent N2 is preferably such that the second adsorbent N1 does not pass through the first adsorbent layer 47A, so that the average particle size of the second adsorbent N2 is the first. The gap is preferably about 1.5 to 5 times, more preferably about 1.5 to 3 times the gap of the adsorbent layer 47. That is, the average particle size of the second adsorbent N2 is preferably about 1 / 1.5 to 1/5 of the average particle size of the 1st adsorbent N1, and 1 / 1.5 to 3 minutes. It is more preferable to set it to about 1.
 また、第1吸着剤層47Aの厚み(厚み方向の長さ)は0.05~0.1mm程度にすることが好ましく、0.07~0.1mm程度にすることがより好ましい。第1吸着剤層47Aの厚みが0.05mmよりも薄いと、第2吸着剤N2がプリーツフィルタ12の間隙に入り込む可能性が高くなる。他方、第1吸着剤N1は比表面積が第2吸着剤N2よりも小さく、難分解性物質Eの吸着能力が第2吸着剤N2よりも低いため、第1吸着剤層47Aの厚みが0.1mmよりも厚いと、吸着剤層47全体としての難分解性物質Eの吸着能力が低くなってしまうおそれがある。 Further, the thickness (length in the thickness direction) of the first adsorbent layer 47A is preferably about 0.05 to 0.1 mm, more preferably about 0.07 to 0.1 mm. If the thickness of the first adsorbent layer 47A is thinner than 0.05 mm, there is a high possibility that the second adsorbent N2 will enter the gap of the pleated filter 12. On the other hand, since the specific surface area of the first adsorbent N1 is smaller than that of the second adsorbent N2 and the adsorption capacity of the persistent substance E is lower than that of the second adsorbent N2, the thickness of the first adsorbent layer 47A is 0. If it is thicker than 1 mm, the adsorption capacity of the persistent substance E as a whole of the adsorbent layer 47 may be lowered.
 以上のような吸着剤層47を形成する際には、図6に示すように、まず第1溶液貯留槽24Aに第1吸着剤N1と希釈液Hを投入し、ハンドミキサー65で攪拌して第1溶液G1を生成する。同様に、第2溶液貯留槽24Bに第2吸着剤N2と希釈液Hを投入し、ハンドミキサー65で攪拌して第2溶液G2を生成する。ここで第1吸着剤N1の平均粒径は第2吸着剤N2の平均粒径よりも大きいものをものとする。 When forming the adsorbent layer 47 as described above, as shown in FIG. 6, first, the first adsorbent N1 and the diluted solution H are first charged into the first solution storage tank 24A, and the mixture is stirred with a hand mixer 65. The first solution G1 is produced. Similarly, the second adsorbent N2 and the diluted solution H are put into the second solution storage tank 24B and stirred with the hand mixer 65 to generate the second solution G2. Here, it is assumed that the average particle size of the first adsorbent N1 is larger than the average particle size of the second adsorbent N2.
 次に、第1溶液供給ポンプ8bAを作動させ、第1溶液供給ルート23Aと混合液供給管14を介して、第1溶液貯留槽24A内の第1溶液G1を濾過容器11へ送る。このとき、被処理液輸送ポンプ8aを作動させて、被処理液貯留槽7内の被処理液Aも混合液供給管14へ送り、混合液供給管14の内部で第1溶液G1を被処理液Aで希釈することが好ましい。このようにして、濾過容器11の内部に入った第1溶液G1は、プリーツフィルタ12を外側から内側へ通り抜け、それによってプリーツフィルタ12の外面に第1吸着剤層47Aが形成される。具体的には、例えば、平均粒径が15~30μm程度の第1吸着剤N1をプリーツフィルタ12の外面に70~100g/m2程度添着させることが好ましい。 Next, the first solution supply pump 8bA is operated to send the first solution G1 in the first solution storage tank 24A to the filtration vessel 11 via the first solution supply route 23A and the mixed liquid supply pipe 14. At this time, the liquid to be treated transport pump 8a is operated to send the liquid A to be treated in the liquid storage tank 7 to be treated to the mixed liquid supply pipe 14, and the first solution G1 is treated inside the mixed liquid supply pipe 14. It is preferable to dilute with liquid A. In this way, the first solution G1 that has entered the inside of the filtration container 11 passes through the pleated filter 12 from the outside to the inside, whereby the first adsorbent layer 47A is formed on the outer surface of the pleated filter 12. Specifically, for example, it is preferable to impregnate the first adsorbent N1 having an average particle size of about 15 to 30 μm on the outer surface of the pleated filter 12 by about 70 to 100 g / m 2 .
 その後、第2溶液供給ポンプ8bBを作動させ、第2溶液供給ルート23Bと混合液供給管14を介して、第2溶液貯留槽24B内の第2溶液G2を濾過容器11へ送る。このとき、被処理液輸送ポンプ8aを作動させて、被処理液貯留槽7内の被処理液Aも混合液供給管14へ送り、混合液供給管14の内部で第2溶液G2を被処理液Aで希釈することが好ましい。このようにして、濾過容器11の内部に入った第2溶液G2は、第1吸着剤層47Aおよびプリーツフィルタ12を外側から内側へ通り抜け、それによって第1吸着剤層47Bの外面に第2吸着剤層47Bが形成される。具体的には、例えば、平均粒径が5~9μm程度の第2吸着剤N2を第1吸着剤層47Aの外面に1000~2000g/m2程度添着させることが好ましい。 After that, the second solution supply pump 8bB is operated, and the second solution G2 in the second solution storage tank 24B is sent to the filtration container 11 via the second solution supply route 23B and the mixed liquid supply pipe 14. At this time, the liquid to be treated transport pump 8a is operated to send the liquid to be treated A in the liquid to be treated storage tank 7 to the mixed liquid supply pipe 14, and the second solution G2 to be treated is inside the mixed liquid supply pipe 14. It is preferable to dilute with liquid A. In this way, the second solution G2 that has entered the inside of the filtration vessel 11 passes through the first adsorbent layer 47A and the pleated filter 12 from the outside to the inside, thereby adsorbing the second solution to the outer surface of the first adsorbent layer 47B. The agent layer 47B is formed. Specifically, for example, it is preferable to impregnate the second adsorbent N2 having an average particle size of about 5 to 9 μm on the outer surface of the first adsorbent layer 47A by about 1000 to 2000 g / m 2 .
 なお、第1吸着剤N1と第2吸着剤N2は同一の種類の吸着剤を用いても良いし、異なる種類の吸着剤を用いても良い。例えば、第1吸着剤N1として活性炭を用いるとともに、第2吸着剤N2として活性炭(第1吸着剤N1の活性炭よりも平均粒径の小さい活性炭)を用いても良いし、第1吸着剤N1としてプルシアンブルーを用い、第2吸着剤N2として活性炭(第1吸着剤N1のプリシアンブルーよりも平均粒径の小さい活性炭)を用いても良い。 The first adsorbent N1 and the second adsorbent N2 may use the same type of adsorbent or different types of adsorbent. For example, activated carbon may be used as the first adsorbent N1 and activated carbon (activated carbon having a smaller average particle size than the activated carbon of the first adsorbent N1) may be used as the second adsorbent N2, or as the first adsorbent N1. Prusyan blue may be used, and activated carbon (activated carbon having an average particle size smaller than that of the first adsorbent N1 Prisian blue) may be used as the second adsorbent N2.
 なお、第1吸着剤N1および第2吸着剤N2等の吸着剤Nの粒径とは、投影円相当径(粒子の投影面積に等しい円の直径)をいい、各粒子の投影円相当径の平均値(平均粒径)のことをいう。この平均粒径は、レーザー回折/散乱式粒子径分布測定装置(例えば、商品LA-960V2シリーズ、株式会社堀場製作所製)を用いて粒度分布を測定し、累積体積が50%に相当する時の粒子径を平均粒径として定める。 The particle size of the adsorbent N such as the first adsorbent N1 and the second adsorbent N2 refers to the diameter equivalent to the projected circle (the diameter of the circle equal to the projected area of the particles), and is the diameter equivalent to the projected circle of each particle. It refers to the average value (average particle size). This average particle size is measured by measuring the particle size distribution using a laser diffraction / scattering type particle size distribution measuring device (for example, product LA-960V2 series, manufactured by Horiba Seisakusho Co., Ltd.), and when the cumulative volume corresponds to 50%. The particle size is defined as the average particle size.
 なお、図6に示した第3実施形態では、第1溶液G1と第2溶液G2を異なる混合液貯留槽24(溶液貯留槽24)に貯留した例を示したが、この例に限られるものではない。例えば、溶液貯留槽24にまず第1溶液G1を貯留し、その第1溶液G1の一部を濾過容器11へ輸送する。その後、溶液貯留槽24内に残された第1溶液G1をミキサー65でさらに攪拌して、その攪拌力によって第1溶液G1中の第1吸着剤N1を砕く。このようにして平均粒径が小さくなった第1吸着剤N1を第2吸着剤N2として利用する。すなわち、ミキサー65で攪拌することによって、第1吸着剤N1を第2吸着剤N2に変換し、このようにして生成された第2吸着剤N2を含む第2溶液を濾過容器11へ送るようにしてもよい。 In the third embodiment shown in FIG. 6, an example in which the first solution G1 and the second solution G2 are stored in different mixed liquid storage tanks 24 (solution storage tank 24) is shown, but the example is limited to this example. is not. For example, the first solution G1 is first stored in the solution storage tank 24, and a part of the first solution G1 is transported to the filtration container 11. Then, the first solution G1 left in the solution storage tank 24 is further stirred by the mixer 65, and the first adsorbent N1 in the first solution G1 is crushed by the stirring force. The first adsorbent N1 having a smaller average particle size in this way is used as the second adsorbent N2. That is, by stirring with the mixer 65, the first adsorbent N1 is converted into the second adsorbent N2, and the second solution containing the second adsorbent N2 thus produced is sent to the filtration vessel 11. You may.
 また、第1吸着剤層47Aと第2吸着剤層47B以外に、第3吸着剤層47C等を設け、吸着剤層47を三層以上にしてもよい。この場合、最も内側に位置する吸着剤層が第1吸着剤層47Aであり、第1吸着剤層47Aの外側に隣接する吸着剤層が第2吸着剤層47Bであり、第2吸着剤層47Bの外側に隣接する吸着剤層が第3吸着剤層47Cであり…というように、吸着剤層47の内側から外側へ向かって順番に第1、第2、第3…と数えるものとする。吸着剤層47を第1吸着剤層47Aと第2吸着剤層47Bの2層にした場合、第1吸着剤層47Aの第1吸着剤N1の平均粒径は、プリーツフィルタ12の間隙よりも大きくすることが好ましい。また、第2吸着剤層47Bの第2吸着剤N2の平均粒径は、第1吸着剤層47Bの間隙よりも大きくすることが好ましい。そのため、第2吸着剤層47Bの第2吸着剤N2の平均粒径を小さくしようと試みても必然的な制約がある。なお、吸着剤Nの平均粒径が小さくなるほど、吸着剤Nの比表面積が大きくなるため、難分解性物質Eの吸着能力が高めることができる。そのため、難分解性物質Eの吸着能力の向上という観点からは、吸着剤層47を構成する吸着剤Nの平均粒径をできるだけ小さくすることが好ましいが、吸着剤層47を2層にした場合は前述のような制約がある。そこで、第2吸着剤層47Bの外側に、第2吸着剤N2よりも平均粒径が小さい第3吸着剤N3を用いた第3吸着剤層47Cをさらに設けることによって、難分解性物質Eの吸着能力をさらに高めるようにしてもよい。同様に、第3吸着剤層47Cの外側に、第3吸着剤N3よりも平均粒径が小さい第4吸着剤N4を用いた第4吸着剤層47Dをさらに設けると、難分解性物質Eの吸着能力をさらに高めることができる。このように吸着剤層47を構成する層の数を増やすことによって、難分解性物質Eの吸着能力を高めることができる。このとき、吸着剤層47を構成する各層(第1吸着剤層47A、第2吸着剤層47B、第3吸着剤層47C…)の吸着剤N(第1吸着剤N1、第2吸着剤N2、第3吸着剤N3…)の平均粒径は、吸着剤層47の内側から外側へ向かって次第に小さくなるようにすることが好ましい。 Further, in addition to the first adsorbent layer 47A and the second adsorbent layer 47B, a third adsorbent layer 47C or the like may be provided, and the adsorbent layer 47 may have three or more layers. In this case, the adsorbent layer located on the innermost side is the first adsorbent layer 47A, the adsorbent layer adjacent to the outside of the first adsorbent layer 47A is the second adsorbent layer 47B, and the second adsorbent layer. The adsorbent layer adjacent to the outside of 47B is the third adsorbent layer 47C, and so on, and the adsorbent layer 47 is counted as the first, second, third ... In order from the inside to the outside. .. When the adsorbent layer 47 is made up of two layers, the first adsorbent layer 47A and the second adsorbent layer 47B, the average particle size of the first adsorbent N1 in the first adsorbent layer 47A is larger than the gap of the pleated filter 12. It is preferable to increase the size. Further, it is preferable that the average particle size of the second adsorbent N2 of the second adsorbent layer 47B is larger than the gap of the first adsorbent layer 47B. Therefore, even if an attempt is made to reduce the average particle size of the second adsorbent N2 of the second adsorbent layer 47B, there is an inevitable restriction. As the average particle size of the adsorbent N becomes smaller, the specific surface area of the adsorbent N becomes larger, so that the adsorption capacity of the persistent substance E can be enhanced. Therefore, from the viewpoint of improving the adsorption capacity of the persistent substance E, it is preferable to make the average particle size of the adsorbent N constituting the adsorbent layer 47 as small as possible, but when the adsorbent layer 47 is made into two layers, it is preferable. Has the above-mentioned restrictions. Therefore, by further providing the third adsorbent layer 47C using the third adsorbent N3 having a smaller average particle size than the second adsorbent N2 on the outside of the second adsorbent layer 47B, the persistent substance E can be obtained. The adsorption capacity may be further increased. Similarly, if a fourth adsorbent layer 47D using a fourth adsorbent N4 having an average particle size smaller than that of the third adsorbent N3 is further provided on the outside of the third adsorbent layer 47C, the persistent substance E can be obtained. The adsorption capacity can be further increased. By increasing the number of layers constituting the adsorbent layer 47 in this way, the adsorption capacity of the persistent substance E can be enhanced. At this time, the adsorbent N (first adsorbent N1, second adsorbent N2) of each layer (first adsorbent layer 47A, second adsorbent layer 47B, third adsorbent layer 47C ...) Constituting the adsorbent layer 47. , The average particle size of the third adsorbent N3 ...) Is preferably made gradually smaller from the inside to the outside of the adsorbent layer 47.
(本発明の効果)
 被処理液A中の難分解性物質Eの濃度に関係なく、難分解性物質Eを高い確率で除去できる。また、PFOS以外の難分解性物質(例えば、PFOA、PFHxS、ビスフェノールA、トリハロメタン、PCB、トリクロロエチレン、テトラクロロエチレン、DDT、ベンゼンなど)も、PFOSとは分子量が異なるが、分子量の違いに関わらず、吸着・除去が可能である。また、濾過フィルタ12としてプリーツフィルタを用いることで、濾過装置全体がコンパクトになるため、フットプリントを小さくすることができる。また、吸着剤Nとして活性炭を用いた場合、活性炭Nが難分解性物質Eを吸着する効率(吸着効率)が高く、活性炭Nが難解性物質Eを吸着しても吸着能力が低下しにくい利点がある。また、活性炭Nの通液抵抗も低いため、輸送ポンプの動力の消費を抑えることができ、ランニングコストを低いものにすることができる。また、吸着剤Nとして活性炭を用いた場合、その活性炭は可燃物になるため、廃棄処理が容易である。さらに、濾過システム全体を全自動で運転することが可能であり、省力化が可能である。
(Effect of the present invention)
The persistent substance E can be removed with a high probability regardless of the concentration of the persistent substance E in the liquid A to be treated. In addition, persistent substances other than PFOS (for example, PFOA, PFHxS, bisphenol A, trihalomethane, PCB, trichlorethylene, tetrachlorethylene, DDT, benzene, etc.) also have a different molecular weight from PFOS, but are adsorbed regardless of the difference in molecular weight. -Can be removed. Further, by using the pleated filter as the filtration filter 12, the entire filtration device becomes compact, so that the footprint can be reduced. Further, when activated carbon is used as the adsorbent N, the efficiency (adsorption efficiency) at which the activated carbon N adsorbs the persistent substance E is high, and even if the activated carbon N adsorbs the difficult substance E, the adsorption capacity does not easily decrease. There is. Further, since the liquid passage resistance of the activated carbon N is also low, the power consumption of the transport pump can be suppressed, and the running cost can be reduced. Further, when activated carbon is used as the adsorbent N, the activated carbon becomes a combustible substance, so that it is easy to dispose of. Furthermore, the entire filtration system can be operated fully automatically, which can save labor.
4…供給口、6…コンプレッサー、7…(被処理液)貯留槽、8a…被処理液供給ポンプ、8b…溶液(混合液)供給ポンプ、8bA…第1溶液(第1混合液)供給ポンプ、8bB…第2溶液(第2混合液)供給ポンプ、8c…洗浄液供給ポンプ、8d…廃液輸送ポンプ、8e…浄化液輸送ポンプ、9…ストレーナ、10…濾過装置、11…濾過容器、11S…排出シュート、11U…フィルタ内蔵部、12…濾過フィルタ、12b…濾過膜の裏面(濾過フィルタの内面)、12f…濾過膜の表面(濾過フィルタの外面)、12m…濾過膜、12r…濾液通路、12s…筒状体、13…(被処理液の)供給管、14…(被処理液の)供給管(混合液の供給管を兼ねてもよい)、15…(濾液の)排出口、16…排出管(送気管を兼ねてもよい)、19…送気管、23…(混合液の)供給管、23A…第1溶液供給管(第1溶液供給ルート)、23B…第2溶液供給管(第2溶液供給ルート)、24…溶液(混合液)貯留槽、24A…第1溶液(第1混合液)貯留槽、24B…第2溶液(第2混合液)貯留槽、25…濃度計、29…フィルタ支持体、30…洗浄液供給管、31…廃液排出管、32…浄化液排出管、33…粉粒体回収管、34…粉粒体分級装置、35…洗浄装置、36…洗浄液タンク、37…吹き出し口(スリット)、42…抽出管、43…集合部、44…検出器、45…突出部、46…流量センサー、47…吸着剤層、47A…第1吸着剤層、47B…第2吸着剤層、48…供給口、50…間隙、51…整流バッフル、61…計時器、62…制御装置、65…(ハンド)ミキサー、66…洗浄液貯留タンク、A…被処理液、B…処理液(濾液)、C…洗浄液、D…気体、E…難分解性物質、F…粉粒体、G…溶液(混合液)、G1…第1溶液(第1混合液)、G2…第2溶液(第2混合液)、H…希釈液、J…残液、K…ケーキ、M…モータ、N…吸着剤、N1…第1吸着剤、N2…第2吸着剤、U…廃液、V1~V5…バルブ、LD…高さ方向、US…(高さ方向の)上側、DS…(高さ方向の)下側、TD…厚み方向、IS…(厚み方向の)内側、OS…(厚み方向の)外側 4 ... Supply port, 6 ... Compressor, 7 ... (Liquid to be treated) storage tank, 8a ... Liquid to be treated supply pump, 8b ... Solution (mixed liquid) supply pump, 8bA ... First solution (first mixed liquid) supply pump , 8bB ... 2nd solution (second mixed liquid) supply pump, 8c ... cleaning liquid supply pump, 8d ... waste liquid transport pump, 8e ... purification liquid transport pump, 9 ... strainer, 10 ... filtration device, 11 ... filter container, 11S ... Discharge chute, 11U ... Filter built-in part, 12 ... Filtration filter, 12b ... Back surface of filtration membrane (inner surface of filtration filter), 12f ... Surface surface of filtration membrane (outer surface of filtration filter), 12m ... Filtration membrane, 12r ... Filtration passage, 12s ... Cylindrical body, 13 ... Supply pipe (of liquid to be treated), 14 ... Supply pipe (which may also serve as supply pipe of mixed liquid), 15 ... Discharge port (of filtrate), 16 ... Discharge pipe (which may also serve as an air supply pipe), 19 ... Air supply pipe, 23 ... Supply pipe (of mixed solution), 23A ... First solution supply pipe (first solution supply route), 23B ... Second solution supply pipe (Second solution supply route), 24 ... Solution (mixed solution) storage tank, 24A ... First solution (first mixed solution) storage tank, 24B ... Second solution (second mixed solution) storage tank, 25 ... Concentration meter , 29 ... Filter support, 30 ... Cleaning liquid supply pipe, 31 ... Waste liquid discharge pipe, 32 ... Purifying liquid discharge pipe, 33 ... Powder and granule recovery pipe, 34 ... Powder and granule classification device, 35 ... Cleaning device, 36 ... Cleaning liquid Tank, 37 ... outlet (slit), 42 ... extraction tube, 43 ... aggregation part, 44 ... detector, 45 ... protrusion, 46 ... flow sensor, 47 ... adsorbent layer, 47A ... first adsorbent layer, 47B Second adsorbent layer, 48 ... supply port, 50 ... gap, 51 ... rectifying baffle, 61 ... time meter, 62 ... control device, 65 ... (hand) mixer, 66 ... cleaning liquid storage tank, A ... liquid to be treated, B ... Treatment liquid (filtrate), C ... Cleaning liquid, D ... Gas, E ... Persistent substance, F ... Powder and granules, G ... Solution (mixed liquid), G1 ... First solution (first mixed liquid), G2 ... second solution (second mixed solution), H ... diluted solution, J ... residual liquid, K ... cake, M ... motor, N ... adsorbent, N1 ... first adsorbent, N2 ... second adsorbent, U ... Waste liquid, V1 to V5 ... Valve, LD ... Height direction, US ... Upper side (in the height direction), DS ... Lower side (in the height direction), TD ... Thickness direction, IS ... Inside (in the thickness direction), OS … Outer (thickness direction)

Claims (7)

  1.  被処理液に含まれる難分解性物質を除去する濾過装置であって、
    被処理液の供給口と処理液の排出口を有する濾過容器と、
     前記濾過容器の内部に設けられ、外面が濾過面とされ内部が処理液の通路とされ、平坦な濾材を蛇腹状に折り曲げて複数の襞を形成しつつ、筒状に形成したプリーツフィルタと、を有し、
     濾過前の状態で、前記プリーツフィルタの外面に吸着剤層を有し、
     前記吸着剤層は前記難分解性物質を吸着する吸着剤を積層したものであることを特徴とする濾過装置。
    A filtration device that removes persistent substances contained in the liquid to be treated.
    A filtration container having a supply port for the liquid to be treated and a discharge port for the treatment liquid,
    A pleated filter provided inside the filtration vessel, the outer surface of which is the filtration surface and the inside of which is the passage of the treatment liquid, and a flat filter medium bent in a bellows shape to form a plurality of folds while forming a tubular shape. Have,
    In the state before filtration, the pleated filter has an adsorbent layer on the outer surface and has an adsorbent layer.
    A filtration device characterized in that the adsorbent layer is a stack of adsorbents that adsorb the persistent substance.
  2.  前記吸着剤層は複数層からなり、
     前記吸着剤層の内側に位置する第1吸着剤層の第1吸着剤の平均粒径が、前記吸着剤層の外側に位置する第2吸着剤層の第2吸着剤の平均粒径よりも大きい請求項1記載の濾過装置。
    The adsorbent layer is composed of a plurality of layers.
    The average particle size of the first adsorbent of the first adsorbent layer located inside the adsorbent layer is larger than the average particle size of the second adsorbent of the second adsorbent layer located outside the adsorbent layer. The filtration device according to the large claim 1.
  3.  請求項2に記載した濾過装置を有する濾過システムであって、
     前記第1吸着剤を含む第1溶液を貯留する第1溶液貯留槽と、
     前記第1溶液貯留槽の第1溶液を前記濾過容器へ送る第1溶液輸送ルートと、
     前記第2吸着剤を含む第2溶液を貯留する第2溶液貯留槽と、
     前記第2溶液貯留槽の第2溶液を前記濾過容器へ送る第1溶液輸送ルートと、を有することを特徴とする濾過システム。
    A filtration system having the filtration device according to claim 2.
    A first solution storage tank for storing the first solution containing the first adsorbent, and a first solution storage tank.
    A first solution transport route for sending the first solution of the first solution storage tank to the filtration container, and
    A second solution storage tank for storing the second solution containing the second adsorbent, and a second solution storage tank.
    A filtration system comprising: a first solution transport route for sending a second solution of the second solution storage tank to the filtration container.
  4.  請求項1に記載した濾過装置を複数個設け、それらを並列に配置した濾過システムであって、
     各濾過装置の後段に設けられ、各濾過装置から排出された処理液をそれぞれ抽出する複数の抽出経路と、
     前記複数の抽出経路を集合させた集合部と、
     前記集合部に設けられ、前記処理液に含まれる難分解性物質を検出する検出器と、を有することを特徴とする濾過システム。
    A filtration system in which a plurality of filtration devices according to claim 1 are provided and arranged in parallel.
    A plurality of extraction paths provided after each filtration device to extract the treatment liquid discharged from each filtration device, and
    An aggregate part that aggregates the plurality of extraction paths and
    A filtration system provided in the collecting portion and comprising a detector for detecting a persistent substance contained in the treatment liquid.
  5.  請求項1に記載した濾過装置を複数個設け、それらを並列に配置した濾過システムであって、
     各濾過装置における濾過開始からの経過時間をモニタリングする計時器と、
     一部の濾過装置で濾過開始から所定時間が経過した段階で、その濾過装置に被処理液の供給を停止する被処理液供給ポンプと、を有することを特徴とする濾過システム。
    A filtration system in which a plurality of filtration devices according to claim 1 are provided and arranged in parallel.
    A timekeeper that monitors the elapsed time from the start of filtration in each filtration device,
    A filtration system characterized by having a liquid to be supplied pump for stopping the supply of the liquid to be treated to the filtration device when a predetermined time has elapsed from the start of filtration in some filtration devices.
  6.  外面が濾過面とされ内部が処理液の通路とされ、平坦な濾材を蛇腹状に折り曲げて複数の襞を形成しつつ筒状に形成したプリーツフィルタに、難分解性物質を吸着する吸着剤を含む溶液を通して、そのプリーツフィルタの外面に吸着剤層を形成する吸着剤層形成工程と、
     前記吸着剤層を形成した前記プリーツフィルタに被処理液を通し、前記吸着剤層に前記難分解性物質を吸着させながら濾過する吸着・濾過工程と、
     を有することを特徴とする濾過方法。
    The outer surface is the filtration surface and the inner surface is the passage for the treatment liquid. An adsorbent layer forming step of forming an adsorbent layer on the outer surface of the pleated filter through the containing solution,
    The adsorption / filtration step of passing the liquid to be treated through the pleated filter on which the adsorbent layer is formed and filtering while adsorbing the persistent substance on the adsorbent layer.
    A filtration method characterized by having.
  7.  前記吸着剤層形成工程は、
     第1吸着剤を含む第1溶液を前記プリーツフィルタに通して、前記プリーツフィルタの外面に第1の吸着剤層を形成する第1吸着剤層形成工程と、
     前記第1吸着剤よりも平均粒径が小さい第2吸着剤を含む第2溶液をプリーツフィルタに通して、前記第1吸着剤層の外面に第2吸着剤層を形成する第2吸着剤層形成工程と、
     を有する請求項6記載の濾過方法。
    The adsorbent layer forming step is
    A first adsorbent layer forming step of passing a first solution containing the first adsorbent through the pleated filter to form a first adsorbent layer on the outer surface of the pleated filter.
    A second adsorbent layer containing a second adsorbent having an average particle size smaller than that of the first adsorbent is passed through a pleated filter to form a second adsorbent layer on the outer surface of the first adsorbent layer. The formation process and
    The filtration method according to claim 6.
PCT/JP2021/002398 2020-10-23 2021-01-25 Filtration device, filtration system, and filtration method WO2022085210A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180065483.1A CN116322930A (en) 2020-10-23 2021-01-25 Filter device, filter system and filter method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-178373 2020-10-23
JP2020178373A JP7138356B2 (en) 2020-10-23 2020-10-23 Filtration device, filtration system and filtration method

Publications (1)

Publication Number Publication Date
WO2022085210A1 true WO2022085210A1 (en) 2022-04-28

Family

ID=81290255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002398 WO2022085210A1 (en) 2020-10-23 2021-01-25 Filtration device, filtration system, and filtration method

Country Status (3)

Country Link
JP (1) JP7138356B2 (en)
CN (1) CN116322930A (en)
WO (1) WO2022085210A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143917A (en) * 1986-12-09 1988-06-16 Houjiyou Tsushin Kk Method for filtering pool water
JPH02265607A (en) * 1989-04-04 1990-10-30 I I C:Kk Water purifier
JP2000146948A (en) * 1998-11-09 2000-05-26 Meidensha Corp Filter for water-quality measurement and turbidity removal apparatus
JP2000218109A (en) * 1999-01-28 2000-08-08 Japan Organo Co Ltd Treatment of waste water
JP2004261631A (en) * 2002-02-04 2004-09-24 Idemitsu Kosan Co Ltd Method of decomposing hardly decomposable substance, method of regenerating absorbent using the same, and treatment method for waste water

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000005527A (en) * 1998-06-23 2000-01-11 Daicel Chem Ind Ltd Operation of solid-liquid separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143917A (en) * 1986-12-09 1988-06-16 Houjiyou Tsushin Kk Method for filtering pool water
JPH02265607A (en) * 1989-04-04 1990-10-30 I I C:Kk Water purifier
JP2000146948A (en) * 1998-11-09 2000-05-26 Meidensha Corp Filter for water-quality measurement and turbidity removal apparatus
JP2000218109A (en) * 1999-01-28 2000-08-08 Japan Organo Co Ltd Treatment of waste water
JP2004261631A (en) * 2002-02-04 2004-09-24 Idemitsu Kosan Co Ltd Method of decomposing hardly decomposable substance, method of regenerating absorbent using the same, and treatment method for waste water

Also Published As

Publication number Publication date
JP7138356B2 (en) 2022-09-16
JP2022069280A (en) 2022-05-11
CN116322930A (en) 2023-06-23

Similar Documents

Publication Publication Date Title
RU2396102C1 (en) Apparatus for filtration of process fluid flows, hybrid filtration element and method of its fabrication
US5236595A (en) Method and apparatus for filtration with plural ultraviolet treatment stages
US4861484A (en) Catalytic process for degradation of organic materials in aqueous and organic fluids to produce environmentally compatible products
US5626748A (en) Liquid separator
US6027642A (en) Mobile portable water disinfection/filtration and hazardous chemical oxidizing system
US8747666B2 (en) Methods and apparatuses for filtering water from a river or stream
FI73654C (en) Procedure for removing finely divided, suspended solids from wastewater.
Lopez-Morales et al. Sorption of triclosan onto tyre crumb rubber
WO2022085210A1 (en) Filtration device, filtration system, and filtration method
EP1059996A1 (en) System and method for capturing and destroying hap/voc substances using microbial degradation
RU2477706C2 (en) Method of removing organic components from mixture thereof with water and apparatus for realising said method
WO1998017364A1 (en) Method and apparatus for removing contaminants from fluid columns
WO2003076344A1 (en) System for removing organics from a wastewater stream
EP0739858A2 (en) Liquid separator and polishing filter thereof
CA2828969A1 (en) Composite media for water treatment processes and methods of using same
JP7281354B2 (en) Emission control system and method of controlling emissions
EP3154910B1 (en) Water treatment method using a composite media
JP2008000679A (en) Wastewater treatment equipment, wastewater treatment system, and wastewater treatment method
JP2000176447A (en) Water purifying tank and water purifying system using the same
CA2642031A1 (en) Process and apparatus for separating immiscible liquids from aqueous fluids
JPS5918111B2 (en) Water treatment method
KR100316818B1 (en) circulating absorption type hazardous flue gas treatment system
KR20170114089A (en) Oil water separator using cartridge type oil absorbable nonwovens roll
WO2023192580A2 (en) Potable trailer capable of treating pfas-contaminated water with gac and/or resin media
CA3235024A1 (en) Pfas treatment using gac, reactivation and thermal destruction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21882354

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21882354

Country of ref document: EP

Kind code of ref document: A1