WO2022083574A1 - Tsn参考时间的时延补偿方法、装置及设备 - Google Patents

Tsn参考时间的时延补偿方法、装置及设备 Download PDF

Info

Publication number
WO2022083574A1
WO2022083574A1 PCT/CN2021/124654 CN2021124654W WO2022083574A1 WO 2022083574 A1 WO2022083574 A1 WO 2022083574A1 CN 2021124654 W CN2021124654 W CN 2021124654W WO 2022083574 A1 WO2022083574 A1 WO 2022083574A1
Authority
WO
WIPO (PCT)
Prior art keywords
delay compensation
tsn
reference time
compensation parameter
terminal
Prior art date
Application number
PCT/CN2021/124654
Other languages
English (en)
French (fr)
Inventor
刘进华
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Publication of WO2022083574A1 publication Critical patent/WO2022083574A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/005Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by adjustment in the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a method, apparatus and device for delay compensation of TSN reference time.
  • the 5G network obtains the TSN reference time from the time-sensitive network (TSN) clock and sends it to the TSN working domain for delay correction in the TSN working domain.
  • TSN time-sensitive network
  • the transmission of the TSN reference time in the 5G network will experience delay, so the TSN reference time needs to be corrected before being used for the time reference of the TSN working domain.
  • TSN reference time can be corrected based on a timing advance (TA).
  • TA timing advance
  • the evaluation and generation of TA belong to the realization of the base station entirely.
  • the arrival time of the received signal of the targeted uplink time slot or symbol may not be exactly the end time of the downlink time slot.
  • Embodiments of the present application provide a method, apparatus and device for delay compensation of TSN reference time, which can improve the accuracy of delay compensation of TSN reference time.
  • an embodiment of the present application provides a method for compensating for delay of TSN reference time, including:
  • the terminal receives the delay compensation parameter of the TSN reference time
  • the terminal generates a delay compensation value of the TSN reference time according to the delay compensation parameter.
  • an embodiment of the present application provides a method for compensating for a time delay of a TSN reference time, including:
  • the network side device sends the delay compensation parameter of the TSN reference time to the terminal.
  • an embodiment of the present application provides a delay compensation device for TSN reference time, which is applied to a terminal, including:
  • the receiving module is used to receive the delay compensation parameters of the TSN reference time
  • a processing module configured to generate a delay compensation value of the TSN reference time according to the delay compensation parameter.
  • an embodiment of the present application provides a delay compensation device for TSN reference time, which is applied to a network side device, including:
  • the sending module is used for sending the delay compensation parameter of the TSN reference time to the terminal.
  • an embodiment of the present application further provides a terminal, including a processor, a memory, and a program or instruction that is stored in the memory and can be run on the processor, and the program or instruction is processed by the The steps of the method as described above are implemented when the server executes.
  • an embodiment of the present application further provides a network-side device, including a processor, a memory, and a program or instruction stored in the memory and executable on the processor, the program or instruction being The processor implements the steps of the method described above when executed.
  • an embodiment of the present application provides a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, the steps of the above method are implemented.
  • an embodiment of the present application provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the first aspect or the method described in the second aspect.
  • a computer program product is provided, the program product is stored in a non-volatile storage medium, the program product is executed by at least one processor to implement the method as described in the first aspect, or implement The method of the second aspect.
  • the network side device sends the delay compensation parameter of the TSN reference time to the terminal, and the terminal generates the delay compensation value of the TSN reference time according to the delay compensation parameter, so that the TSN reference time can be improved through additional delay compensation
  • FIG. 1 shows a schematic diagram of a wireless communication system
  • FIG. 2 shows a schematic diagram of the transmission of the TSN reference clock from the TSN clock source to the TSN working domain through the 5G network;
  • Fig. 3 is a schematic diagram showing that the TSN reference clock passes through two air interface transmissions from the TSN clock source to the TSN working domain;
  • Figure 4 shows an example of adjusting uplink transmission by TA
  • FIG. 5 is a schematic flowchart of a method for compensating for delay of TSN reference time on a terminal side according to an embodiment of the present application
  • FIG. 6 is a schematic flowchart of a method for compensating for delay of TSN reference time on the network side according to an embodiment of the present application
  • FIG. 7 is a schematic structural diagram of an apparatus for compensating for a time delay of a terminal side TSN reference time according to an embodiment of the present application
  • FIG. 8 is a schematic structural diagram of an apparatus for delay compensation of TSN reference time on a network side according to an embodiment of the present application
  • FIG. 9 shows a schematic diagram of the composition of a terminal according to an embodiment of the present application.
  • FIG. 10 shows a schematic diagram of the composition of a network side device according to an embodiment of the present application.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA single carrier frequency Division Multiple Access
  • SC-FDMA single carrier frequency Division Multiple Access
  • a CDMA system may implement radio technologies such as CDMA2000, Universal Terrestrial Radio Access (UTRA).
  • UTRA includes Wideband Code Division Multiple Access (WCDMA) and other CDMA variants.
  • a TDMA system may implement a radio technology such as the Global System for Mobile Communication (GSM).
  • GSM Global System for Mobile Communication
  • OFDMA system can realize such as UltraMobile Broadband (UMB), Evolution-UTRA (Evolution-UTRA, E-UTRA), IEEE802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802.20, Flash-OFDM, etc. radio technology.
  • UMB UltraMobile Broadband
  • Evolution-UTRA Evolution-UTRA
  • E-UTRA Evolution-UTRA
  • IEEE802.11 Wi-Fi
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Flash-OFDM Flash-OFDM
  • UTRA and E-UTRA are part of the Universal Mobile Telecommunications System (UMTS).
  • LTE and higher LTE eg LTE-A
  • UTRA, E-UTRA, UMTS, LTE, LTE-A, and GSM are described in documents from an organization named "3rd Generation Partnership Project" (3GPP
  • CDMA2000 and UMB are described in documents from an organization named "3rd Generation Partnership Project 2" (3GPP2).
  • 3GPP2 3rd Generation Partnership Project 2
  • the techniques described herein may be used for both the systems and radio technologies mentioned above, as well as for other systems and radio technologies.
  • the following description describes an NR system for example purposes, and NR terminology is used in much of the following description, but the techniques are also applicable to applications other than NR system applications.
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes a terminal 11 and a network-side device 12 .
  • the terminal 11 may also be called a terminal device or a user terminal (User Equipment, UE), and the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), a personal digital assistant (Personal Digital Assistant) , PDA), mobile Internet Device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted device and other terminal-side devices, it should be noted that the specific type of the terminal 11 is not limited in the embodiments of this application .
  • the network side device 12 may be a base station or a core network, wherein the above-mentioned base station may be a base station of 5G and later versions (for example: gNB, 5G NR NB, etc.), or a base station in other communication systems (for example: eNB, WLAN access point) , or other access points, etc.), or a location server (for example: E-SMLC or LMF (Location Manager Function)), where the base station may be referred to as Node B, Evolved Node B, Access Point, Base Transceiver Station (Base Transceiver Station, BTS), Radio Base Station, Radio Transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Node B, Evolved Node B (eNB), Home B Node, home evolved Node B, WLAN access point, WiFi node or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary, it should be noted that in this Only the base station
  • the time-sensitive network (TSN) reference clock is transmitted from the TSN working domain (right side) to the TSN end stations (left side) via the 5G network.
  • the network side TSN translator (NW-TT) will record the time point at which the TSN reference time is received (ie ingress time), which is recorded with the internal time of 5GS (ie 5G system); when the reference time is transmitted to the left UE
  • the device-side TSN converter (DS-TT) will record the time point at which the TSN reference time is received (ie egress time), which is also recorded with the internal time of 5GS, the latter minus the former time difference can be used to compensate
  • the TSN reference time is the transmission delay of the 5G network, and the accuracy of the two determines the accuracy of the 5G network transmission delay estimation.
  • TSN end stations use the delay-compensated TSN reference time to calibrate their local clocks.
  • SCS reference sub-carrier space
  • gNB is the base station
  • 5G GM is the 5G system clock
  • UPF User Plane Function
  • TSN GM is the TSN reference clock
  • TSN working Domain is the TSN working domain.
  • the TSN reference time has undergone two air interface transmissions from NW-TT to DS-TT in the 5G network, resulting in a total delay estimation error of 1080ns, plus the per-hop delay of the wired part
  • the estimated error is 40ns, causing the maximum delay error to exceed the maximum allowed delay error of 900ns.
  • the timing advance (Timing Advance, TA) is used to correct the uplink transmission time of the UE, so that after the uplink transmission signal reaches the base station receiver, the starting point of the uplink signal matches the receiving starting point of the uplink signal set by the base station.
  • the ideal situation is that the starting point of the arrival of the uplink signal is exactly the starting point of the downlink transmission signal; however, the degree of time alignment between the uplink and downlink time slots of the base station is not specified in the current protocol.
  • the state adjustment limit and the processing timing limit of the baseband digital signal processor determine the desired arrival time of the uplink signal within a certain range (such as within a cyclic prefix (CP)), and then adjust the arrival time of the uplink signal through the TA command to the target time point.
  • the TA reflects not only the transmission delay of the radio wave on the air interface, but also the uplink and downlink time offset that the base station wants to reach.
  • gNB DL TX timing is the downlink transmission time of the base station
  • gNB UL RX timing is the uplink reception time of the base station
  • UE DL RX timing is the downlink reception time of the terminal
  • UE UL TX timing is the uplink transmission time of the terminal
  • PDSCH is the physical downlink shared channel
  • PUSCH is the physical uplink shared channel.
  • the downlink transmission timing of the base station will be deviated, that is, the transmission timing of the downlink signal of the base station has some deviation from the ideal timing sequence. Incomplete synchronization will lead to the deviation of the transmitted signal, and in addition, the different carriers are not fully synchronized due to the limitation of hardware performance.
  • the 5G network obtains the TSN reference time from the TSN clock and sends it to the TSN working domain for delay correction in the TSN working domain.
  • the transmission of the TSN reference time in the 5G network will experience delay, so the TSN reference time needs to be corrected before being used for the time reference of the TSN working domain.
  • TSN reference time can be corrected based on TA/2.
  • problems in the correction of TSN reference time based on TA which lead to errors in the compensation accuracy based on TA:
  • the evaluation and generation of TA are completely implemented by the base station.
  • the arrival time of the received signal of the targeted uplink time slot or symbol may not be exactly the end time of the downlink time slot.
  • the current TA reflects not only the propagation delay of radio waves in the air interface, but also the time relationship between base station transmission and reception; based on problem B, the accuracy of TA is relative to the TSN reference time in the allowable error range of 5G network transmission. It is relatively large; considering the above two factors, the TA-based TSN reference time transmission delay compensation needs to be improved.
  • the resulting delay compensation error will exceed the upper limit of 900ns, which needs to be enhanced.
  • An embodiment of the present application provides a time delay compensation method for a time-sensitive network TSN reference time, as shown in FIG. 5 , including:
  • Step 101 the terminal receives the delay compensation parameter of the TSN reference time
  • Step 102 The terminal generates a delay compensation value of the TSN reference time according to the delay compensation parameter.
  • the network side device sends the delay compensation parameter of the TSN reference time to the terminal, and the terminal generates the delay compensation value of the TSN reference time according to the delay compensation parameter, so that the TSN reference time can be improved through additional delay compensation
  • the delay compensation parameter for the terminal to receive the TSN reference time includes at least one of the following:
  • the terminal receives the first dedicated signaling of the network side device, where the first dedicated signaling carries the delay compensation parameter;
  • the terminal receives a handover request response message of the target cell, where the handover request response message carries the delay compensation parameter.
  • the handover request response message may include a handover command, and the handover command carries the delay compensation parameter.
  • the system message includes multiple cell identities and delay compensation parameters corresponding to the cell identities one-to-one.
  • the first dedicated signaling includes at least one of the following:
  • the method before the terminal receives the delay compensation parameter of the TSN reference time, the method further includes:
  • the terminal sends a delay compensation configuration request to the network side device, requesting to obtain the delay compensation parameter.
  • the delay compensation parameter includes at least one of the following:
  • the offset caused by the timing of the network side equipment including the time offset ⁇ of the uplink and downlink signals, the downlink transmission time offset, and/or the sum of the time offset of the uplink and downlink signals and the downlink transmission time offset;
  • the time delay compensation value Z of the TSN reference time that is generated by the terminal according to the time delay compensation parameter includes any of the following:
  • the terminal preferentially uses the delay compensation parameter.
  • the second delay compensation parameter is used to calculate the delay compensation value.
  • the embodiment of the present application also provides a time delay compensation method for the TSN reference time of a time-sensitive network, as shown in FIG. 6 , including:
  • Step 201 The network side device sends the delay compensation parameter of the TSN reference time to the terminal.
  • the network side device sends the delay compensation parameter of the TSN reference time to the terminal, and the terminal generates the delay compensation value of the TSN reference time according to the delay compensation parameter, so that the TSN reference time can be improved through additional delay compensation
  • the delay compensation parameter of the TSN reference time sent by the network side device to the terminal includes at least one of the following:
  • the handover request response message may include a handover command, and the handover command carries the delay compensation parameter.
  • the system message includes multiple cell identities and delay compensation parameters corresponding to the cell identities one-to-one.
  • the first dedicated signaling includes at least one of the following:
  • the method before the network-side device sends the delay compensation parameter of the TSN reference time to the terminal, the method further includes:
  • the delay compensation parameter includes at least one of the following:
  • the offset brought by the network side equipment timing including the time offset ⁇ of the uplink and downlink signals, the downlink transmission time offset, and/or the sum of the time offset of the uplink and downlink signals and the downlink transmission time offset;
  • a network-side device (such as a base station) can broadcast a delay compensation amount ⁇ through a system message to compensate for the time offset of the uplink and downlink signals, and this time offset is consistent for all UEs in the same cell Yes, the base station can perform periodic broadcast to save signaling overhead.
  • the base station can also send the time offset ⁇ of the uplink and downlink signals to each terminal respectively through dedicated signaling.
  • the Industrial Internet of Things (I-IoT) terminal can generate the delay compensation value of the TSN reference time by the following two methods:
  • a delay compensation parameter may be added in a system information block (System Information Block, SIB).
  • SIB System Information Block
  • the LTE cell in the EN-DC (EUTRA-NR Dual Connection, dual connection with EUTRA as the main and NR as the auxiliary) mode, can broadcast delay compensation parameters for one or more NR cells, and multiple The delay compensation parameters of an NR cell can be broadcast in a message, and the delay compensation parameters of each NR cell correspond to a cell ID and a delay compensation value.
  • the base station can use the PDCCH to broadcast delay compensation parameters, such as the time offset ⁇ of uplink and downlink signals, to multiple I-IoT terminals or all I-IoT terminals in a cell.
  • delay compensation parameters such as the time offset ⁇ of uplink and downlink signals
  • dedicated signaling can be used to send delay compensation parameters, and the base station can send delay compensation parameters to a single I-IoT terminal through RRC signaling, MAC CE or PDCCH, including the time offset of uplink and downlink signals ⁇ . and/or TA precision error compensation parameter ⁇ , using this delay compensation parameter can be implemented as follows:
  • the delay compensation parameters in the dedicated signaling include: the time offset ⁇ of the uplink and downlink signals, and the TA precision error compensation parameter ⁇ . Similar to mode 1, the I-IoT terminal needs to jointly consider these two parameters and the TA to determine the delay compensation value of the TSN reference time. For the same delay compensation parameter, if the I-IoT terminal receives the configuration corresponding to the parameter broadcasted by the system message and the configuration corresponding to the parameter sent by the dedicated signaling, the I-IoT terminal should preferentially use the dedicated message for this parameter. parameter configuration.
  • Mode 4 For modes 1, 2 and 3, the I-IoT terminal does not consider TA when determining the delay compensation value of the TSN reference time. This method is suitable for the situation where the I-IoT terminal is close to the base station, that is, the path loss to the base station is less than the preset threshold.
  • the I-IoT terminal when the I-IoT terminal initially accesses the 5G system, it can request the serving base station to send the configuration of the delay compensation parameter, or the serving base station can actively send the configuration of the delay compensation parameter to the I-IoT terminal during the access process.
  • the target 5G cell may include the delay compensation parameter in the handover request response message (ie, the handover command).
  • the I-IoT terminal uses the delay compensation parameter received in the handover command to generate the delay compensation value of the TSN reference time.
  • the delay compensation parameter may also be used to compensate other timing errors of the base station, such as errors caused by downlink transmission time offset.
  • the delay compensation parameter can include the downlink transmission time offset (that is, the offset at the beginning of the downlink frame).
  • the I-IoT terminal After receiving the TSN reference time, the I-IoT terminal determines the TSN and the delay compensation value according to the beginning of a radio frame to determine the validity. TSN reference time.
  • the offset at the beginning of the downlink frame may also be taken into consideration.
  • the execution subject may be a TSN reference time delay compensation device, or the TSN reference time delay compensation device in the TSN reference time delay compensation device for performing loading TSN A module for the delay compensation method of the reference time.
  • the delay compensation method for the TSN reference time provided by the embodiment of the present application is described by taking the delay compensation method for loading the TSN reference time performed by the delay compensation device of the TSN reference time as an example.
  • An embodiment of the present application provides a time delay compensation device for TSN reference time, which is applied to the terminal 300.
  • the device includes:
  • a receiving module 310 configured to receive the delay compensation parameter of the TSN reference time
  • the processing module 320 is configured to generate a delay compensation value of the TSN reference time according to the delay compensation parameter.
  • the network side device sends the delay compensation parameter of the TSN reference time to the terminal, and the terminal generates the delay compensation value of the TSN reference time according to the delay compensation parameter, so that the TSN reference time can be improved through additional delay compensation
  • the receiving module is specifically configured to perform at least one of the following:
  • a handover request response message from the target cell is received, where the handover request response message carries the delay compensation parameter.
  • the system message includes multiple cell identities and delay compensation parameters corresponding to the cell identities one-to-one.
  • the first dedicated signaling includes at least one of the following:
  • the apparatus further includes:
  • the sending module is configured to send a delay compensation configuration request to the network side device to request to obtain the delay compensation parameter.
  • the delay compensation parameter includes at least one of the following:
  • the offset caused by the timing of the network side equipment including the time offset ⁇ of the uplink and downlink signals, the downlink transmission time offset, and/or the sum of the time offset of the uplink and downlink signals and the downlink transmission time offset;
  • the processing module is specifically configured to generate the delay compensation value Z of the TSN reference time according to the delay compensation parameter, including any of the following:
  • the processing module has priority.
  • the delay compensation value is calculated using the second delay compensation parameter.
  • the apparatus for compensating for the delay of the TSN reference time in this embodiment of the present application may be an apparatus, or may be a component, an integrated circuit, or a chip in a terminal.
  • the apparatus may be a mobile electronic device or a non-mobile electronic device.
  • the mobile electronic device may be a mobile phone, a tablet computer, a notebook computer, a palmtop computer, an in-vehicle electronic device, a wearable device, an ultra-mobile personal computer (UMPC), a netbook, or a personal digital assistant (personal digital assistant).
  • UMPC ultra-mobile personal computer
  • netbook or a personal digital assistant
  • the non-mobile electronic device may be a network attached storage (Network Attached Storage, NAS), a personal computer (personal computer, PC), a television (television, TV), a teller machine or a self-service machine, etc., the embodiment of the present application There is no specific limitation.
  • Network Attached Storage NAS
  • personal computer personal computer, PC
  • television television
  • teller machine a self-service machine
  • the device for compensating for the delay of the TSN reference time in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • the execution subject may be a TSN reference time delay compensation device, or the TSN reference time delay compensation device for performing loading TSN A module for the delay compensation method of the reference time.
  • the delay compensation method for TSN reference time provided by the embodiments of the present application is described by taking the delay compensation method for loading TSN reference time performed by a delay compensation device for TSN reference time as an example.
  • An embodiment of the present application provides a delay compensation apparatus for TSN reference time, which is applied to the network side device 400.
  • the apparatus includes:
  • the sending module 410 is configured to send the delay compensation parameter of the TSN reference time to the terminal.
  • the sending module is specifically configured to perform at least one of the following:
  • the system message includes multiple cell identities and delay compensation parameters corresponding to the cell identities one-to-one.
  • the first dedicated signaling includes at least one of the following:
  • the apparatus further includes:
  • a receiving module configured to receive a delay compensation configuration request sent by the terminal, and request to obtain the delay compensation parameter.
  • the delay compensation parameter includes at least one of the following:
  • the offset caused by the timing of the network side equipment including the time offset ⁇ of the uplink and downlink signals, the downlink transmission time offset, and/or the sum of the time offset of the uplink and downlink signals and the downlink transmission time offset;
  • the device for compensating for the delay of the TSN reference time in the embodiment of the present application may be a device having an operating system.
  • the operating system may be an Android (Android) operating system, an ios operating system, or other possible operating systems, which are not specifically limited in the embodiments of the present application.
  • an embodiment of the present application further provides an electronic device, including a processor, a memory, a program or an instruction stored in the memory and executable on the processor, and the program or instruction is executed by the processor to implement the above.
  • an electronic device including a processor, a memory, a program or an instruction stored in the memory and executable on the processor, and the program or instruction is executed by the processor to implement the above.
  • the electronic devices in the embodiments of the present application include the aforementioned mobile electronic devices and non-mobile electronic devices.
  • the electronic device in this embodiment may be a terminal.
  • 9 is a schematic diagram of the hardware structure of a terminal implementing various embodiments of the present application.
  • the terminal 50 includes but is not limited to: a radio frequency unit 51, a network module 52, an audio output unit 53, an input unit 54, a sensor 55, a display unit 56, The user input unit 57 , the interface unit 58 , the memory 59 , the processor 510 , and the power supply 511 and other components.
  • the terminal structure shown in FIG. 9 does not constitute a limitation on the terminal, and the terminal may include more or less components than the one shown, or combine some components, or arrange different components.
  • the terminals include but are not limited to mobile phones, tablet computers, notebook computers, handheld computers, vehicle-mounted terminals, wearable devices, and pedometers.
  • the radio frequency unit 51 may be used for receiving and sending signals in the process of sending and receiving information or during a call. Specifically, after receiving the downlink data from the base station, it is processed by the processor 510; The uplink data is sent to the base station.
  • the radio frequency unit 51 includes, but is not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency unit 51 can also communicate with the network and other devices through a wireless communication system.
  • the memory 59 may be used to store software programs as well as various data.
  • the memory 59 may mainly include a stored program area and a stored data area, wherein the stored program area may store an operating system, an application program (such as a sound playback function, an image playback function, etc.) required for at least one function, and the like; Data created by the use of the mobile phone (such as audio data, phone book, etc.), etc.
  • memory 59 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other volatile solid state storage device.
  • the processor 510 is the control center of the terminal, uses various interfaces and lines to connect various parts of the entire terminal, and executes by running or executing the software programs and/or modules stored in the memory 59, and calling the data stored in the memory 59. Various functions of the terminal and processing data, so as to monitor the terminal as a whole.
  • the processor 510 may include one or at least two processing units; preferably, the processor 510 may integrate an application processor and a modem processor, wherein the application processor mainly processes the operating system, user interface, and application programs, etc., and the modem
  • the modulation processor mainly handles wireless communication. It can be understood that, the above-mentioned modulation and demodulation processor may not be integrated into the processor 510.
  • the terminal 50 may also include a power supply 511 (such as a battery) for supplying power to various components.
  • a power supply 511 (such as a battery) for supplying power to various components.
  • the power supply 511 may be logically connected to the processor 510 through a power management system, so as to manage charging, discharging, and power consumption management through the power management system.
  • the terminal 50 includes some unshown functional modules, which are not repeated here.
  • the processor 510 is configured to receive a delay compensation parameter of the TSN reference time, and generate a delay compensation value of the TSN reference time according to the delay compensation parameter.
  • the network side device sends the delay compensation parameter of the TSN reference time to the terminal, and the terminal generates the delay compensation value of the TSN reference time according to the delay compensation parameter, so that the TSN reference time can be improved through additional delay compensation
  • the processor 510 is specifically configured to execute at least one of the following:
  • a handover request response message from the target cell is received, where the handover request response message carries the delay compensation parameter.
  • the system message includes multiple cell identities and delay compensation parameters corresponding to the cell identities one-to-one.
  • the first dedicated signaling includes at least one of the following:
  • the processor 510 is further configured to send a delay compensation configuration request to the network side device, requesting to acquire the delay compensation parameter.
  • the delay compensation parameter includes at least one of the following:
  • the offset caused by the timing of the network side equipment including the time offset ⁇ of the uplink and downlink signals, the downlink transmission time offset, and/or the sum of the time offset of the uplink and downlink signals and the downlink transmission time offset;
  • the processor 510 is specifically configured to generate the delay compensation value Z of the TSN reference time according to the delay compensation parameter, including any of the following:
  • the processor 510 is specifically configured to preferentially use all the delay compensation parameters.
  • the second delay compensation parameter is used to calculate the delay compensation value.
  • the electronic device in this embodiment may also be a network-side device.
  • the network side device 600 includes: an antenna 61 , a radio frequency device 62 , and a baseband device 63 .
  • the antenna 61 is connected to the radio frequency device 62 .
  • the radio frequency device 62 receives information through the antenna 61, and sends the received information to the baseband device 63 for processing.
  • the baseband device 63 processes the information to be sent and sends it to the radio frequency device 62
  • the radio frequency device 62 processes the received information and sends it out through the antenna 61 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 63 , and the method performed by the network side device in the above embodiments may be implemented in the baseband apparatus 63 , where the baseband apparatus 63 includes a processor 64 and a memory 65 .
  • the baseband device 63 may include, for example, at least one baseband board on which a plurality of chips are arranged. As shown in FIG. 10 , one of the chips is, for example, the processor 64 and is connected to the memory 65 to call the program in the memory 65 to execute The network-side device shown in the above method embodiments operates.
  • the baseband device 63 may further include a network interface 66 for exchanging information with the radio frequency device 62, and the interface is, for example, a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the processor here may be a processor, or a collective term for multiple processing elements.
  • the processor may be a CPU, or an ASIC, or configured to implement one or more of the methods performed by the above network-side device.
  • Multiple integrated circuits such as: one or more microprocessors DSP, or, one or more field programmable gate array FPGA, etc.
  • the storage element may be one memory or a collective term for multiple storage elements.
  • Memory 65 may be volatile memory or nonvolatile memory, or may include both volatile and nonvolatile memory.
  • the non-volatile memory may be Read-Only Memory (ROM), Programmable Read-Only Memory (PROM), Erasable Programmable Read-Only Memory (ErasablePROM, EPROM), Electrically Erasable Program read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be Random Access Memory (RAM), which is used as an external cache.
  • RAM Static RAM
  • DRAM Dynamic RAM
  • SDRAM Synchronous DRAM
  • SDRAM Double data rate synchronous dynamic random access memory
  • DoubleDataRateSDRAM DDRSDRAM
  • EnhancedSDRAM ESDRAM
  • SynchlinkDRAM SLDRAM
  • DirectRambusRAM Direct memory bus random access memory
  • the processor 64 is configured to send the delay compensation parameter of the TSN reference time to the terminal.
  • the processor 64 is specifically configured to perform at least one of the following:
  • the system message includes multiple cell identities and delay compensation parameters corresponding to the cell identities one-to-one.
  • the first dedicated signaling includes at least one of the following:
  • the processor 64 is further configured to receive a delay compensation configuration request sent by the terminal, and request to acquire the delay compensation parameter.
  • the delay compensation parameter includes at least one of the following:
  • the offset caused by the timing of the network side equipment including the time offset ⁇ of the uplink and downlink signals, the downlink transmission time offset, and/or the sum of the time offset of the uplink and downlink signals and the downlink transmission time offset;
  • Embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each of the foregoing embodiments of the TSN reference time delay compensation method is implemented process, and can achieve the same technical effect, in order to avoid repetition, it will not be repeated here.
  • the processor is the processor in the electronic device described in the foregoing embodiments.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned delay of the TSN reference time.
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-a-chip, or a system-on-a-chip, or the like.
  • the terms “comprising”, “comprising” or any other variation thereof are intended to encompass a non-exclusive inclusion such that a process, method, article or device comprising a series of elements does not include those elements, It also includes other elements not expressly listed or inherent to such a process, method, article or apparatus. Without further limitation, an element qualified by the phrase “comprising a" does not preclude the presence of additional identical elements in a process, method, article or apparatus that includes the element.
  • the scope of the methods and apparatus in the embodiments of the present application is not limited to performing the functions in the order shown or discussed, but may also include performing the functions in a substantially simultaneous manner or in the reverse order depending on the functions involved. To perform functions, for example, the described methods may be performed in an order different from that described, and various steps may also be added, omitted, or combined. Additionally, features described with reference to some examples may be combined in other examples.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开一种TSN参考时间的时延补偿方法、装置及设备,属于通信技术领域。TSN参考时间的时延补偿方法包括:终端接收TSN参考时间的时延补偿参数;所述终端根据所述时延补偿参数生成TSN参考时间的时延补偿值。

Description

TSN参考时间的时延补偿方法、装置及设备
相关申请的交叉引用
本申请主张在2020年10月19日在中国提交的中国专利申请No.202011120085.9的优先权,其全部内容通过引用包含于此。
技术领域
本申请涉及通信技术领域,尤其涉及一种TSN参考时间的时延补偿方法、装置及设备。
背景技术
5G网络从时间敏感型网络(timesensitive network,TSN)时钟获得TSN参考时间再发送到TSN工作域,用作TSN工作域的时延校正。TSN参考时间在5G网络中的传输会经历时延,因此TSN参考时间需要经过校正后再用于TSN工作域的时间参考。
目前一般认为可基于时间提前量(TA)对TSN参考时间进行校正。但是目前基于TA对TSN参考时间进行校正存在以下两个问题,导致基于TA的补偿精度会出现误差:
(A)TA的评估和产生完全属于基站实现,基站为一个终端产生TA时,瞄准的上行时隙或符号的接收信号到达时间不一定正好是下行时隙的结束时间。
(B)根据目前的TA的颗粒度,TA的误差在[-8,+8]·T C/2 μ,目前参考子载波间隔(SCS)=15KHz,μ=0,TA的精度误差在260ns,考虑其他误差,目前普遍认为经过一次5G空口传输的时延误差在540ns。
发明内容
本申请实施例提供了一种TSN参考时间的时延补偿方法、装置及设备,能够提高TSN参考时间的时延补偿精确度。
第一方面,本申请实施例提供了一种TSN参考时间的时延补偿方法,包括:
终端接收TSN参考时间的时延补偿参数;
所述终端根据所述时延补偿参数生成TSN参考时间的时延补偿值。
第二方面,本申请实施例提供了一种TSN参考时间的时延补偿方法,包括:
网络侧设备向终端发送TSN参考时间的时延补偿参数。
第三方面,本申请实施例提供了一种TSN参考时间的时延补偿装置,应用于终端,包括:
接收模块,用于接收TSN参考时间的时延补偿参数;
处理模块,用于根据所述时延补偿参数生成TSN参考时间的时延补偿值。
第四方面,本申请实施例提供了一种TSN参考时间的时延补偿装置,应用于网络侧设备,包括:
发送模块,用于向终端发送TSN参考时间的时延补偿参数。
第五方面,本申请实施例还提供了一种终端,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如上所述的方法的步骤。
第六方面,本申请实施例还提供了一种网络侧设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如上所述的方法的步骤。
第七方面,本申请实施例提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如上所述的方法的步骤。
第八方面,本申请实施例提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面或第二方面所述的方法。
第九方面,提供了一种计算机程序产品,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如第一方面所述 的方法,或实现如第二方面所述的方法。
在本申请实施例中,网络侧设备向终端发送TSN参考时间的时延补偿参数,终端根据时延补偿参数生成TSN参考时间的时延补偿值,这样可以通过额外的时延补偿来提高TSN参考时间经历无线通信网络传输到TSN工作域终端的时延补偿精度。
附图说明
图1表示无线通信***的示意图;
图2表示TSN参考时钟经过5G网络从TSN时钟源传输到TSN工作域的示意图;
图3表示TSN参考时钟从TSN时钟源到TSN工作域经过两次空口传输的示意图;
图4表示通过TA调整上行传输示例
图5表示本申请实施例终端侧TSN参考时间的时延补偿方法的流程示意图;
图6表示本申请实施例网络侧TSN参考时间的时延补偿方法的流程示意图;
图7表示本申请实施例终端侧TSN参考时间的时延补偿装置的结构示意图;
图8表示本申请实施例网络侧TSN参考时间的时延补偿装置的结构示意图;
图9表示本申请实施例的终端的组成示意图;
图10表示本申请实施例的网络侧设备的组成示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”,一般表示前后关联对象是一种“或”的关系。
本文所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)***,并且也可用于各种无线通信***,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他***。术语“***”和“网络”常被可互换地使用。CDMA***可实现诸如CDMA2000、通用地面无线电接入(Universal Terrestrial Radio Access,UTRA)等无线电技术。UTRA包括宽带CDMA(Wideband Code Division Multiple Access,WCDMA)和其他CDMA变体。TDMA***可实现诸如全球移动通信***(Global System for Mobile Communication,GSM)之类的无线电技术。OFDMA***可实现诸如超移动宽带(UltraMobile Broadband,UMB)、演进型UTRA(Evolution-UTRA,E-UTRA)、IEEE802.11(Wi-Fi)、IEEE 802.16(WiMAX)、IEEE 802.20、Flash-OFDM等无线电技术。UTRA和E-UTRA是通用移动电信***(Universal Mobile Telecommunications System,UMTS)的部分。LTE和更高级的LTE(如LTE-A)是使用E-UTRA的新UMTS版本。UTRA、E-UTRA、UMTS、LTE、LTE-A以及GSM在来自名为“第三代伙伴项目”(3rd Generation Partnership Project,3GPP)的组织的文献中描述。CDMA2000和UMB在来自名为“第三代伙伴项目2”(3GPP2)的组织的文献中描述。本文所描述的技术既可用于以上提及的***和无线电技术,也可用于其他***和无线电技术。以下描述出于示例目的描述了NR***,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR***应用以外的应用。
以下描述提供示例而并非限定权利要求中阐述的范围、适用性或者配置。可以对所讨论的要素的功能和布置作出改变而不会脱离本公开的精神和范围。各种示例可恰适地省略、替代、或添加各种规程或组件。例如,可以按不同于所描述的次序来执行所描述的方法,并且可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
请参见图1,图1示出本申请实施例可应用的一种无线通信***的框图。无线通信***包括终端11和网络侧设备12。其中,终端11也可以称作终端设备或者用户终端(User Equipment,UE),终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)、个人数字助理(Personal Digital Assistant,PDA)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备等终端侧设备,需要说明的是,在本申请实施例中并不限定终端11的具体类型。网络侧设备12可以是基站或核心网,其中,上述基站可以是5G及以后版本的基站(例如:gNB、5G NR NB等),或者其他通信***中的基站(例如:eNB、WLAN接入点、或其他接入点等),或者为位置服务器(例如:E-SMLC或LMF(Location Manager Function)),其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR***中的基站为例,但是本申请实施例并不限定基站的具体类型和具体通信***。
如图2所示,为时间敏感型网络(timesensitive network,TSN)参考时钟从TSN工作域(右侧)经5G网络传输到TSN终端站(end stations)(左侧)的情形。网络侧TSN翻译器(NW-TT)会记录收到TSN参考时间的时间点(即ingress time),该时间点以5GS(即5G***)的内部时间记录;当该参考时间传输到左侧UE后,设备端TSN转换器(DS-TT)会记录接收到TSN参考时间的时间点(即egress time),该时间点同样以5GS的内部时间记录,后 者减去前者的时间差可以用来补偿TSN参考时间在5G网络的传输时延,两者的精确度决定了5G网络传输时延估计的精确度。TSN终端站使用经过时延补偿的TSN参考时间来校对其当地时钟。在参考子载波间隔(sub-carrier space,SCS)是15KHz的情况下,一次空口传输带来的时延误差是540ns。其中,gNB为基站,5G GM(Grandmaster)为5G***时钟,UPF(User Plane Function)为用户面功能实体,TSN GM为TSN参考时钟,TSN working Domain为TSN工作域。
5G网络传输时延补偿的精确度影响TSN参考时间校对的精确度。当前5G网络传输时延较大一部分来自空口,图2中显示了TSN参考时间从NW-TT(network time translator)到DS-TT(device side time translator)经历了一次空口传输。
此外如图3所示,TSN参考时间在5G网络中从NW-TT到DS-TT经历两次空口传输,带来的总的时延估计误差为1080ns,再加上有线部分的每跳时延估计误差是40ns,导致最大时延误差超出允许的最大时延误差——900ns。
目前,时间提前量(Timing Advance,TA)用来校正UE的上行发送时间,使得上行发送信号到达基站接收机后,上行信号的起始点跟基站设定的上行信号的接收起始点相匹配。在基站中,理想的情况是上行信号到达的起始点正好是下行发送信号的起点;然而,基站的上下行时隙时间对齐的程度当前协议并没有规定,原则上基站可以根据其收发信机的状态调整限制和基带数字信号处理器的处理时序限制,在一定范围内(如循环前缀(Cyclic Prefix,CP)之内)确定想要的上行信号到达时间,然后通过TA命令把上行信号到达时间调整到目标时间点。此时,TA体现的不仅有电波在空口的传输时延,还有基站想要到达的上下行时间偏移。图4显示了TA调整上行发送时间和真实传输时延(Td)的关系示例:基站想要的上行信号到达时间点滞后与下行时隙结束点Δ,假设UE通过TA/2来确定相对于下行时隙接收起点的提前量,则TA/2=Td-Δ/2。其中,gNB DL TX timing为基站下行发送时间,gNB UL RX timing为基站上行接收时间,UE DL RX timing为终端下行接收时间,UE UL TX timing为终端上行发送时间,PDSCH为物理下行链路共享信道,PUSCH为物理上行链路共享信道。在另外一些情况下,基站的下行发送定时 会出现偏差,即基站下行信号的发送时序跟理想的定时时序有一些偏移,这些偏移可以是基站内部的射频单元引起,如发射天线之间的不完全同步会导致发射信号偏移,另外不同载波之间由于硬件性能的限制不完全同步等。
5G网络从TSN时钟获得TSN参考时间再发送到TSN工作域,用作TSN工作域的时延校正。TSN参考时间在5G网络中的传输会经历时延,因此TSN参考时间需要经过校正后再用于TSN工作域的时间参考。
目前一般认为可基于TA/2对TSN参考时间进行校正。但是目前基于TA对TSN参考时间进行校正存在以下两个问题,导致基于TA的补偿精度会出现误差:
(A)TA的评估和产生完全属于基站实现,基站为一个UE产生TA时,瞄准的上行时隙或符号的接收信号到达时间不一定正好是下行时隙的结束时间。
(B)根据目前的TA的颗粒度,TA的误差在[-8,+8]·T C/2 μ,目前参考SCS=15KHz,μ=0,TA的精度误差在260ns,考虑其他误差,目前普遍认为经过一次5G空口传输的时延误差在540ns。
基于问题A,目前的TA反映的不仅仅是电波在空口的传播时延,且反映了基站收发的时间关系;基于问题B,TA的精度相对于TSN参考时间在5G网络传输中允许的误差范围来说,比较大;综合考虑以上两个因素,基于TA的TSN参考时间传输时延补偿需要改进。
另外,在TSN参考时间经历两次空口传输时,带来的时延补偿误差会超过900ns的上限,需要增强。
本申请实施例提供一种时间敏感型网络TSN参考时间的时延补偿方法,如图5所示,包括:
步骤101:终端接收TSN参考时间的时延补偿参数;
步骤102:所述终端根据所述时延补偿参数生成TSN参考时间的时延补偿值。
在本申请实施例中,网络侧设备向终端发送TSN参考时间的时延补偿参数,终端根据时延补偿参数生成TSN参考时间的时延补偿值,这样可以通过额外的时延补偿来提高TSN参考时间经历无线通信网络传输到TSN工作域 终端的时延补偿精度。
一些实施例中,所述终端接收TSN参考时间的时延补偿参数包括以下至少一项:
所述终端接收广播的***消息,所述***消息中携带所述时延补偿参数;
所述终端接收网络侧设备的第一专用信令,所述第一专用信令中携带所述时延补偿参数;
所述终端接收目标小区的切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。具体地,可以是切换请求响应消息中包含切换命令,切换命令中携带所述时延补偿参数。
一些实施例中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
一些实施例中,所述第一专用信令包括以下至少一项:
无线资源控制RRC信令;
媒体接入控制MAC控制元素CE;
物理下行链路控制信道PDCCH承载的信令。
一些实施例中,所述终端接收TSN参考时间的时延补偿参数之前,所述方法还包括:
所述终端向网络侧设备发送时延补偿配置请求,请求获取所述时延补偿参数。
一些实施例中,所述时延补偿参数包括以下至少一项:
由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
时间提前量TA精度误差补偿参数Ω。
一些实施例中,所述终端根据所述时延补偿参数生成TSN参考时间的时延补偿值Z包括以下任一项:
Z=μ+TA/2+Ω,其中,TA为时间提前量;
Z=μ+TA/2;
Z=μ。
一些实施例中,在所述终端到网络侧设备的路损小于预设门限值时,Z=μ。
一些实施例中,若所述终端获取到的时延补偿参数包括***消息中的第一时延补偿参数和所述第一专用信令中的第二时延补偿参数,所述终端优先使用所述第二时延补偿参数计算所述时延补偿值。
本申请实施例还提供了一种时间敏感型网络TSN参考时间的时延补偿方法,如图6所示,包括:
步骤201:网络侧设备向终端发送TSN参考时间的时延补偿参数。
在本申请实施例中,网络侧设备向终端发送TSN参考时间的时延补偿参数,终端根据时延补偿参数生成TSN参考时间的时延补偿值,这样可以通过额外的时延补偿来提高TSN参考时间经历无线通信网络传输到TSN工作域终端的时延补偿精度。
一些实施例中,所述网络侧设备向终端发送TSN参考时间的时延补偿参数包括以下至少一项:
通过***消息向所述终端广播所述时延补偿参数;
向所述终端发送第一专用信令,所述第一专用信令中携带所述时延补偿参数;
向所述终端发送切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。具体地,可以是切换请求响应消息中包含切换命令,切换命令中携带所述时延补偿参数。
一些实施例中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
一些实施例中,所述第一专用信令包括以下至少一项:
无线资源控制RRC信令;
媒体接入控制MAC控制元素CE;
物理下行链路控制信道PDCCH承载的信令。
一些实施例中,所述网络侧设备向终端发送TSN参考时间的时延补偿参数之前,所述方法还包括:
接收所述终端发送的时延补偿配置请求,请求获取所述时延补偿参数。
一些实施例中,所述时延补偿参数包括以下至少一项:
由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行 发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
时间提前量TA精度误差补偿参数Ω。
一具体实施例中,网络侧设备(比如基站)可以通过***消息广播一个时延补偿量μ,用来补偿上下行信号的时间偏移量,这个时间偏移量对同一小区的所有UE是一致的,基站可以进行周期性的广播,节省信令开销,当然基站也可以通过专用信令将上下行信号的时间偏移量μ分别发送给每个终端。工业物联网(I-IoT)终端在收到上下行信号的时间偏移量μ后,可以通过以下两种方法生成TSN参考时间的时延补偿值:
方法1:基于收到的TA命令和上下行信号的时间偏移量μ生成TSN参考时间的时延补偿值。TSN参考时间的时延补偿值=TA/2+μ。
方法2:不考虑TA,仅基于上下行信号的时间偏移量μ进行补偿:时延补偿值=μ;这一方式适用于I-IoT终端距离基站较近,即到基站的路损小于预设门限的情形。
一具体示例中,可以在***信息块(System Information Block,SIB)中添加时延补偿参数。
另一具体示例中,在EN-DC(EUTRA-NR Dual Connection,以EUTRA为主,NR为辅的双连接)模式下,LTE cell可以为一个或多个NR cell广播时延补偿参数,多个NR cell的时延补偿参数可以放在一条消息中广播,每个NR cell的时延补偿参数对应一个小区标识和时延补偿值。
作为另外一种广播方式,基站可以使用PDCCH向多个I-IoT终端或小区所有的I-IoT终端广播时延补偿参数,比如上下行信号的时间偏移量μ。
另一具体实施例中,可以利用专用信令发送时延补偿参数,基站可以通过RRC信令,MAC CE或PDCCH向单个I-IoT终端发送时延补偿参数包括上下行信号的时间偏移量μ和/或TA精度误差补偿参数Ω,利用该时延补偿参数有如下实现方式:
方式1:时延补偿参数Ω仅补偿除上下行时间偏移之外的时延误差,例如TA精度误差;在这种情况下,I-IoT终端需要联合考虑***消息提供的上下行信号的时间偏移量μ(如果有)、TA和TA精度误差补偿参数Ω来生成TSN参考时间的时延补偿值:TSN参考时间的时延补偿值=μ+TA/2+Ω;
方式2:该时延补偿参数Ω同时补偿上下行时间偏移和TA精度误差;在这种情况下,I-IoT终端需要联合考虑TA和时延补偿参数Ω来生成TSN参考时间的时延补偿值:TSN参考时间的时延补偿值=Ω+TA/2;
方式3:专用信令中的时延补偿参数包括:上下行信号的时间偏移量μ,TA精度误差补偿参数Ω。跟方式1中类似,I-IoT终端需要联合考虑这两个参数和TA确定TSN参考时间的时延补偿值。对于同一个时延补偿参数,如果I-IoT终端收到***消息广播的对应于该参数的配置和专用信令发送的对应于该参数的配置,则I-IoT终端应该优先使用专用消息对该参数的配置。
方式4:对方式1、2和3,I-IoT终端在确定TSN参考时间的时延补偿值时,不考虑TA。这一方式适用于I-IoT终端距离基站较近,即到基站的路损小于预设门限的情形。
另外,I-IoT终端在初始接入5G***时,可以请求服务基站发送该时延补偿参数的配置或在接入流程中服务基站主动向I-IoT终端发送该时延补偿参数的配置。
另一个方面,I-IoT终端从一个5G小区切换到另一个5G小区(即目标5G小区)时,目标5G小区可以在切换请求响应消息(即切换命令)中包含所述时延补偿参数。I-IoT终端在与目标小区建立连接后,使用切换命令中收到的时延补偿参数生成TSN参考时间的时延补偿值。
另一具体实施例中,所述时延补偿参数也可以用来补偿基站的其他定时误差,例如下行发送时间偏移带来的误差。时延补偿参数可以包括下行发送时间偏移量(即下行帧开头的偏移),I-IoT终端接收到TSN参考时间后,根据一个无线帧的开头来确定TSN和时延补偿值来确定有效TSN参考时间。基站在上述实施例中发给UE的时延补偿参数μ或Ω中,可以把下行帧开头的偏移也考虑进去。
上述实施例以NR I-IoT环境为例进行说明,本实施例的技术方案同样适用于TSN参考时间在LTE网络传输的时间补偿。
需要说明的是,本申请实施例提供的TSN参考时间的时延补偿方法,执行主体可以为TSN参考时间的时延补偿装置,或者该TSN参考时间的时延补偿装置中的用于执行加载TSN参考时间的时延补偿方法的模块。本申请实 施例中以TSN参考时间的时延补偿装置执行加载TSN参考时间的时延补偿方法为例,说明本申请实施例提供的TSN参考时间的时延补偿方法。
本申请实施例提供了一种TSN参考时间的时延补偿装置,应用于终端300,如图7所示,所述装置包括:
接收模块310,用于接收TSN参考时间的时延补偿参数;
处理模块320,用于根据所述时延补偿参数生成TSN参考时间的时延补偿值。
在本申请实施例中,网络侧设备向终端发送TSN参考时间的时延补偿参数,终端根据时延补偿参数生成TSN参考时间的时延补偿值,这样可以通过额外的时延补偿来提高TSN参考时间经历无线通信网络传输到TSN工作域终端的时延补偿精度。
一些实施例中,所述接收模块具体用于执行以下至少一项:
接收广播的***消息,所述***消息中携带所述时延补偿参数;
接收网络侧设备的第一专用信令,所述第一专用信令中携带所述时延补偿参数;
接收目标小区的切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
一些实施例中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
一些实施例中,所述第一专用信令包括以下至少一项:
无线资源控制RRC信令;
媒体接入控制MAC控制元素CE;
物理下行链路控制信道PDCCH承载的信令。
一些实施例中,所述装置还包括:
发送模块,用于向网络侧设备发送时延补偿配置请求,请求获取所述时延补偿参数。
一些实施例中,所述时延补偿参数包括以下至少一项:
由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
时间提前量TA精度误差补偿参数Ω。
一些实施例中,所述处理模块具体用于根据所述时延补偿参数生成TSN参考时间的时延补偿值Z,包括以下任一项:
Z=μ+TA/2+Ω,其中,TA为时间提前量;
Z=μ+TA/2;
Z=μ。
一些实施例中,在终端到网络侧设备的路损小于预设门限值时,Z=μ。
一些实施例中,若所述接收模块获取到的时延补偿参数包括***消息中的第一时延补偿参数和所述第一专用信令中的第二时延补偿参数,所述处理模块优先使用所述第二时延补偿参数计算所述时延补偿值。
本申请实施例中的TSN参考时间的时延补偿装置可以是装置,也可以是终端中的部件、集成电路、或芯片。该装置可以是移动电子设备,也可以为非移动电子设备。示例性的,移动电子设备可以为手机、平板电脑、笔记本电脑、掌上电脑、车载电子设备、可穿戴设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本或者个人数字助理(personal digital assistant,PDA)等,非移动电子设备可以为网络附属存储器(Network Attached Storage,NAS)、个人计算机(personal computer,PC)、电视机(television,TV)、柜员机或者自助机等,本申请实施例不作具体限定。
本申请实施例中的TSN参考时间的时延补偿装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
需要说明的是,本申请实施例提供的TSN参考时间的时延补偿方法,执行主体可以为TSN参考时间的时延补偿装置,或者该TSN参考时间的时延补偿装置中的用于执行加载TSN参考时间的时延补偿方法的模块。本申请实施例中以TSN参考时间的时延补偿装置执行加载TSN参考时间的时延补偿方法为例,说明本申请实施例提供的TSN参考时间的时延补偿方法。
本申请实施例提供了一种TSN参考时间的时延补偿装置,应用于网络侧设备400,如图8所示,所述装置包括:
发送模块410,用于向终端发送TSN参考时间的时延补偿参数。
一些实施例中,所述发送模块具体用于执行以下至少一项:
通过***消息向所述终端广播所述时延补偿参数;
向所述终端发送第一专用信令,所述第一专用信令中携带所述时延补偿参数;
向所述终端发送切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
一些实施例中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
一些实施例中,所述第一专用信令包括以下至少一项:
无线资源控制RRC信令;
媒体接入控制MAC控制元素CE;
物理下行链路控制信道PDCCH承载的信令。
一些实施例中,所述装置还包括:
接收模块,用于接收所述终端发送的时延补偿配置请求,请求获取所述时延补偿参数。
一些实施例中,所述时延补偿参数包括以下至少一项:
由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
时间提前量TA精度误差补偿参数Ω。
本申请实施例中的TSN参考时间的时延补偿装置可以为具有操作***的装置。该操作***可以为安卓(Android)操作***,可以为ios操作***,还可以为其他可能的操作***,本申请实施例不作具体限定。
可选的,本申请实施例还提供一种电子设备,包括处理器,存储器,存储在存储器上并可在所述处理器上运行的程序或指令,该程序或指令被处理器执行时实现上述TSN参考时间的时延补偿方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
需要注意的是,本申请实施例中的电子设备包括上述所述的移动电子设备和非移动电子设备。
本实施例的电子设备可以为终端。图9为实现本申请各个实施例的一种 终端的硬件结构示意图,该终端50包括但不限于:射频单元51、网络模块52、音频输出单元53、输入单元54、传感器55、显示单元56、用户输入单元57、接口单元58、存储器59、处理器510、以及电源511等部件。本领域技术人员可以理解,图9中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。在本申请实施例中,终端包括但不限于手机、平板电脑、笔记本电脑、掌上电脑、车载终端、可穿戴设备、以及计步器等。
应理解的是,本申请实施例中,射频单元51可用于收发信息或通话过程中,信号的接收和发送,具体的,将来自基站的下行数据接收后,给处理器510处理;另外,将上行的数据发送给基站。通常,射频单元51包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频单元51还可以通过无线通信***与网络和其他设备通信。
存储器59可用于存储软件程序以及各种数据。存储器59可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等)等;存储数据区可存储根据手机的使用所创建的数据(比如音频数据、电话本等)等。此外,存储器59可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
处理器510是终端的控制中心,利用各种接口和线路连接整个终端的各个部分,通过运行或执行存储在存储器59内的软件程序和/或模块,以及调用存储在存储器59内的数据,执行终端的各种功能和处理数据,从而对终端进行整体监控。处理器510可包括一个或至少两个处理单元;优选的,处理器510可集成应用处理器和调制解调处理器,其中,应用处理器主要处理操作***、用户界面和应用程序等,调制解调处理器主要处理无线通信。可以理解的是,上述调制解调处理器也可以不集成到处理器510中。
终端50还可以包括给各个部件供电的电源511(比如电池),优选的,电源511可以通过电源管理***与处理器510逻辑相连,从而通过电源管理***实现管理充电、放电、以及功耗管理等功能。
另外,终端50包括一些未示出的功能模块,在此不再赘述。
一些实施例中,处理器510用于接收TSN参考时间的时延补偿参数,根据所述时延补偿参数生成TSN参考时间的时延补偿值。
在本申请实施例中,网络侧设备向终端发送TSN参考时间的时延补偿参数,终端根据时延补偿参数生成TSN参考时间的时延补偿值,这样可以通过额外的时延补偿来提高TSN参考时间经历无线通信网络传输到TSN工作域终端的时延补偿精度。
一些实施例中,处理器510具体用于执行以下至少一项:
接收广播的***消息,所述***消息中携带所述时延补偿参数;
接收网络侧设备的第一专用信令,所述第一专用信令中携带所述时延补偿参数;
接收目标小区的切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
一些实施例中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
一些实施例中,所述第一专用信令包括以下至少一项:
无线资源控制RRC信令;
媒体接入控制MAC控制元素CE;
物理下行链路控制信道PDCCH承载的信令。
一些实施例中,处理器510还用于向网络侧设备发送时延补偿配置请求,请求获取所述时延补偿参数。
一些实施例中,所述时延补偿参数包括以下至少一项:
由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
时间提前量TA精度误差补偿参数Ω。
一些实施例中,处理器510具体用于根据所述时延补偿参数生成TSN参考时间的时延补偿值Z,包括以下任一项:
Z=μ+TA/2+Ω,其中,TA为时间提前量;
Z=μ+TA/2;
Z=μ。
一些实施例中,在终端到网络侧设备的路损小于预设门限值时,Z=μ。
一些实施例中,若获取到的时延补偿参数包括***消息中的第一时延补偿参数和所述第一专用信令中的第二时延补偿参数,处理器510具体用于优先使用所述第二时延补偿参数计算所述时延补偿值。
本实施例的电子设备还可以为网络侧设备。如图10所示,该网络侧设备600包括:天线61、射频装置62、基带装置63。天线61与射频装置62连接。在上行方向上,射频装置62通过天线61接收信息,将接收的信息发送给基带装置63进行处理。在下行方向上,基带装置63对要发送的信息进行处理,并发送给射频装置62,射频装置62对收到的信息进行处理后经过天线61发送出去。
上述频带处理装置可以位于基带装置63中,以上实施例中网络侧设备执行的方法可以在基带装置63中实现,该基带装置63包括处理器64和存储器65。
基带装置63例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图10所示,其中一个芯片例如为处理器64,与存储器65连接,以调用存储器65中的程序,执行以上方法实施例中所示的网络侧设备操作。
该基带装置63还可以包括网络接口66,用于与射频装置62交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
这里的处理器可以是一个处理器,也可以是多个处理元件的统称,例如,该处理器可以是CPU,也可以是ASIC,或者是被配置成实施以上网络侧设备所执行方法的一个或多个集成电路,例如:一个或多个微处理器DSP,或,一个或者多个现场可编程门阵列FPGA等。存储元件可以是一个存储器,也可以是多个存储元件的统称。
存储器65可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-OnlyMemory,ROM)、可编程只读存储器(ProgrammableROM,PROM)、可擦除可编程只读存储器(ErasablePROM,EPROM)、电可擦除可编程只读存储器(ElectricallyEPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(RandomAccessMemory,RAM),其用作外部高速缓存。通过示例性但 不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(StaticRAM,SRAM)、动态随机存取存储器(DynamicRAM,DRAM)、同步动态随机存取存储器(SynchronousDRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(DoubleDataRateSDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(EnhancedSDRAM,ESDRAM)、同步连接动态随机存取存储器(SynchlinkDRAM,SLDRAM)和直接内存总线随机存取存储器(DirectRambusRAM,DRRAM)。本申请描述的存储器65旨在包括但不限于这些和任意其它适合类型的存储器。
一些实施例中,处理器64用于向终端发送TSN参考时间的时延补偿参数。
一些实施例中,所述处理器64具体用于执行以下至少一项:
通过***消息向所述终端广播所述时延补偿参数;
向所述终端发送第一专用信令,所述第一专用信令中携带所述时延补偿参数;
向所述终端发送切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
一些实施例中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
一些实施例中,所述第一专用信令包括以下至少一项:
无线资源控制RRC信令;
媒体接入控制MAC控制元素CE;
物理下行链路控制信道PDCCH承载的信令。
一些实施例中,处理器64还用于接收所述终端发送的时延补偿配置请求,请求获取所述时延补偿参数。
一些实施例中,所述时延补偿参数包括以下至少一项:
由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
时间提前量TA精度误差补偿参数Ω。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程 序或指令,该程序或指令被处理器执行时实现上述TSN参考时间的时延补偿方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的电子设备中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述TSN参考时间的时延补偿方法的实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为***级芯片、***芯片、芯片***或片上***芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光 盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (35)

  1. 一种时间敏感型网络TSN参考时间的时延补偿方法,其中,包括:
    终端接收TSN参考时间的时延补偿参数;
    所述终端根据所述时延补偿参数生成TSN参考时间的时延补偿值。
  2. 根据权利要求1所述的TSN参考时间的时延补偿方法,其中,所述终端接收TSN参考时间的时延补偿参数包括以下至少一项:
    所述终端接收广播的***消息,所述***消息中携带所述时延补偿参数;
    所述终端接收网络侧设备的第一专用信令,所述第一专用信令中携带所述时延补偿参数;
    所述终端接收目标小区的切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
  3. 根据权利要求2所述的TSN参考时间的时延补偿方法,其中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
  4. 根据权利要求2所述的TSN参考时间的时延补偿方法,其中,所述第一专用信令包括以下至少一项:
    无线资源控制RRC信令;
    媒体接入控制MAC控制元素CE;
    物理下行链路控制信道PDCCH承载的信令。
  5. 根据权利要求1所述的TSN参考时间的时延补偿方法,其中,所述终端接收TSN参考时间的时延补偿参数之前,所述方法还包括:
    所述终端向网络侧设备发送时延补偿配置请求,请求获取所述时延补偿参数。
  6. 根据权利要求1-5中任一项所述的TSN参考时间的时延补偿方法,其中,所述时延补偿参数包括以下至少一项:
    由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
    时间提前量TA精度误差补偿参数Ω。
  7. 根据权利要求6所述的TSN参考时间的时延补偿方法,其中,所述 终端根据所述时延补偿参数生成TSN参考时间的时延补偿值Z包括以下任一项:
    Z=μ+TA/2+Ω,其中,TA为时间提前量;
    Z=μ+TA/2;
    Z=μ。
  8. 根据权利要求7所述的TSN参考时间的时延补偿方法,其中,在所述终端到网络侧设备的路损小于预设门限值时,Z=μ。
  9. 根据权利要求2-4中任一项所述的TSN参考时间的时延补偿方法,其中,若所述终端获取到的时延补偿参数包括***消息中的第一时延补偿参数和所述第一专用信令中的第二时延补偿参数,所述终端优先使用所述第二时延补偿参数计算所述时延补偿值。
  10. 一种时间敏感型网络TSN参考时间的时延补偿方法,其中,包括:
    网络侧设备向终端发送TSN参考时间的时延补偿参数。
  11. 根据权利要求10所述的TSN参考时间的时延补偿方法,其中,所述网络侧设备向终端发送TSN参考时间的时延补偿参数包括以下至少一项:
    通过***消息向所述终端广播所述时延补偿参数;
    向所述终端发送第一专用信令,所述第一专用信令中携带所述时延补偿参数;
    向所述终端发送切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
  12. 根据权利要求11所述的TSN参考时间的时延补偿方法,其中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
  13. 根据权利要求11所述的TSN参考时间的时延补偿方法,其中,所述第一专用信令包括以下至少一项:
    无线资源控制RRC信令;
    媒体接入控制MAC控制元素CE;
    物理下行链路控制信道PDCCH承载的信令。
  14. 根据权利要求10所述的TSN参考时间的时延补偿方法,其中,所述网络侧设备向终端发送TSN参考时间的时延补偿参数之前,所述方法还包 括:
    接收所述终端发送的时延补偿配置请求,请求获取所述时延补偿参数。
  15. 根据权利要求10-14中任一项所述的TSN参考时间的时延补偿方法,其中,所述时延补偿参数包括以下至少一项:
    由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
    时间提前量TA精度误差补偿参数Ω。
  16. 一种时间敏感型网络TSN参考时间的时延补偿装置,其中,包括:
    接收模块,用于接收TSN参考时间的时延补偿参数;
    处理模块,用于根据所述时延补偿参数生成TSN参考时间的时延补偿值。
  17. 根据权利要求16所述的TSN参考时间的时延补偿装置,其中,所述接收模块具体用于执行以下至少一项:
    接收广播的***消息,所述***消息中携带所述时延补偿参数;
    接收网络侧设备的第一专用信令,所述第一专用信令中携带所述时延补偿参数;
    在切换后,接收目标小区的切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
  18. 根据权利要求17所述的TSN参考时间的时延补偿装置,其中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
  19. 根据权利要求17所述的TSN参考时间的时延补偿装置,其中,所述第一专用信令包括以下至少一项:
    无线资源控制RRC信令;
    媒体接入控制MAC控制元素CE;
    物理下行链路控制信道PDCCH承载的信令。
  20. 根据权利要求16所述的TSN参考时间的时延补偿装置,其中,所述装置还包括:
    发送模块,用于向网络侧设备发送时延补偿配置请求,请求获取所述时延补偿参数。
  21. 根据权利要求16-20中任一项所述的TSN参考时间的时延补偿装置, 其中,所述时延补偿参数包括以下至少一项:
    由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
    时间提前量TA精度误差补偿参数Ω。
  22. 根据权利要求21所述的TSN参考时间的时延补偿装置,其中,所述处理模块具体用于根据所述时延补偿参数生成TSN参考时间的时延补偿值Z,包括以下任一项:
    Z=μ+TA/2+Ω,其中,TA为时间提前量;
    Z=μ+TA/2;
    Z=μ。
  23. 根据权利要求22所述的TSN参考时间的时延补偿装置,其中,在终端到网络侧设备的路损小于预设门限值时,Z=μ。
  24. 根据权利要求17-19中任一项所述的TSN参考时间的时延补偿装置,其中,若所述接收模块获取到的时延补偿参数包括***消息中的第一时延补偿参数和所述第一专用信令中的第二时延补偿参数,所述处理模块优先使用所述第二时延补偿参数计算所述时延补偿值。
  25. 一种时间敏感型网络TSN参考时间的时延补偿装置,其中,包括:
    发送模块,用于向终端发送TSN参考时间的时延补偿参数。
  26. 根据权利要求25所述的TSN参考时间的时延补偿装置,其中,所述发送模块具体用于执行以下至少一项:
    通过***消息向所述终端广播所述时延补偿参数;
    向所述终端发送第一专用信令,所述第一专用信令中携带所述时延补偿参数;
    向所述终端发送切换请求响应消息,所述切换请求响应消息中携带所述时延补偿参数。
  27. 根据权利要求26所述的TSN参考时间的时延补偿装置,其中,所述***消息包括多个小区标识及与所述小区标识一一对应的时延补偿参数。
  28. 根据权利要求26所述的TSN参考时间的时延补偿装置,其中,所述第一专用信令包括以下至少一项:
    无线资源控制RRC信令;
    媒体接入控制MAC控制元素CE;
    物理下行链路控制信道PDCCH承载的信令。
  29. 根据权利要求25所述的TSN参考时间的时延补偿装置,其中,所述装置还包括:
    接收模块,用于接收所述终端发送的时延补偿配置请求,请求获取所述时延补偿参数。
  30. 根据权利要求25-29中任一项所述的TSN参考时间的时延补偿装置,其中,所述时延补偿参数包括以下至少一项:
    由网络侧设备定时带来的偏移,包括上下行信号的时间偏移量μ,下行发送时间偏移量,和/或上下行信号的时间偏移量与下行发送时间偏移量之和;
    时间提前量TA精度误差补偿参数Ω。
  31. 一种终端,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1-9中任一项所述的方法的步骤。
  32. 一种网络侧设备,其中,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求10-15中任一项所述的方法的步骤。
  33. 一种可读存储介质,其中,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1-9中任一项所述的方法的步骤或实现如权利要求10-15中任一项所述的方法的步骤。
  34. 一种芯片,包括处理器和通信接口,其中,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1-9中任一项所述的TSN参考时间的时延补偿方法的步骤,或者实现如权利要求10-15中任一项所述的TSN参考时间的时延补偿方法的步骤。
  35. 一种计算机程序产品,其中,所述程序产品被存储在非易失的存储介质中,所述程序产品被至少一个处理器执行以实现如权利要求1-9中任一项所述的TSN参考时间的时延补偿方法的步骤,或者实现如权利要求10-15中任一项所述的TSN参考时间的时延补偿方法的步骤。
PCT/CN2021/124654 2020-10-19 2021-10-19 Tsn参考时间的时延补偿方法、装置及设备 WO2022083574A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011120085.9A CN114390662B (zh) 2020-10-19 2020-10-19 Tsn参考时间的时延补偿方法、装置及设备
CN202011120085.9 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022083574A1 true WO2022083574A1 (zh) 2022-04-28

Family

ID=81194190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124654 WO2022083574A1 (zh) 2020-10-19 2021-10-19 Tsn参考时间的时延补偿方法、装置及设备

Country Status (2)

Country Link
CN (1) CN114390662B (zh)
WO (1) WO2022083574A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116456450B (zh) * 2023-06-13 2023-10-10 北京科技大学 一种EtherCAT与5G融合组网的时间同步方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809617A (zh) * 2018-04-18 2018-11-13 京信通信***(中国)有限公司 一种时延补偿方法及终端
US20200322908A1 (en) * 2019-04-04 2020-10-08 Qualcomm Incorporated Reference timing delivery to user equipment with propagation delay compensation

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111211852B (zh) * 2018-11-21 2021-08-27 华为技术有限公司 同步的方法和装置
CN111565083A (zh) * 2019-02-14 2020-08-21 北京三星通信技术研究有限公司 时间同步的方法、ue、基站、设备及计算机可读存储介质

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108809617A (zh) * 2018-04-18 2018-11-13 京信通信***(中国)有限公司 一种时延补偿方法及终端
US20200322908A1 (en) * 2019-04-04 2020-10-08 Qualcomm Incorporated Reference timing delivery to user equipment with propagation delay compensation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI: "Feature lead summary#1 on propagation delay compensation enhancements", 3GPP TSG RAN WG1 MEETING #102-E R1-XXXXXX, 19 August 2020 (2020-08-19), pages 1 - 49, XP009535972 *
INTEL CORPORATION: "Enhancements for Support of Time Synchronization", 3GPP DRAFT; R2-2006719, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051911627 *
OPPO: "Enhancement for Propagation Delay Compensation", 3GPP DRAFT; R1-2006062, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917892 *

Also Published As

Publication number Publication date
CN114390662A (zh) 2022-04-22
CN114390662B (zh) 2023-09-08

Similar Documents

Publication Publication Date Title
TWI754075B (zh) 用於傳輸信號的方法、終端設備和網絡設備
US9698962B2 (en) Timing advance techniques for large cells
KR102198642B1 (ko) 상향링크 전송의 타이밍을 설정하는 방법 및 장치
US11483045B2 (en) Method and device of transmitting and receiving reference signal
EP3627943B1 (en) Control information transmission method and device
US11470530B2 (en) Carrier switching method, terminal and base station
WO2020173415A1 (zh) 通信方法、终端设备和网络设备
WO2019141146A1 (zh) 一种波束配置方法和装置
US10764848B2 (en) Inter-base-station synchronization method and device
WO2019228221A1 (zh) 时钟同步方法、装置、终端设备、芯片及可读存储介质
CN114270773B (zh) 一种参考时钟的确定方法及装置、终端设备、网络设备
WO2022154820A1 (en) Method for delay spread acquisition for ta validation
WO2015175291A1 (en) Timing advance techniques for large cells
WO2022083574A1 (zh) Tsn参考时间的时延补偿方法、装置及设备
WO2020029873A1 (zh) 通信方法、装置和通信***
US20210392595A1 (en) Method for information configuration, terminal, and non-transitory computer-readable storage medium
CN112655252B (zh) 同步指示方法、终端设备、网络设备、芯片及存储介质
EP3817499A1 (en) Random access method and related device
WO2020192657A1 (zh) 一种上行通信方法及通信装置
WO2021097726A1 (zh) 确定时间戳的方法、终端设备、接入网节点、核心网设备
WO2021092920A1 (zh) 一种跨载波传输方法及装置、终端设备
CN113114446B (zh) 一种资源指示方法、设备及存储介质
EP3829256A1 (en) Information transmission method and device, and computer storage medium
WO2022089566A1 (zh) 传输参数管理方法、装置及电子设备
WO2022188437A1 (zh) 信息处理方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21881990

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21881990

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 27/11/2023)