WO2022083510A1 - 电子设备、无线通信方法和非暂态计算机可读存储介质 - Google Patents

电子设备、无线通信方法和非暂态计算机可读存储介质 Download PDF

Info

Publication number
WO2022083510A1
WO2022083510A1 PCT/CN2021/124064 CN2021124064W WO2022083510A1 WO 2022083510 A1 WO2022083510 A1 WO 2022083510A1 CN 2021124064 W CN2021124064 W CN 2021124064W WO 2022083510 A1 WO2022083510 A1 WO 2022083510A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam failure
reference signal
electronic device
failure recovery
configuration information
Prior art date
Application number
PCT/CN2021/124064
Other languages
English (en)
French (fr)
Inventor
徐瑨
周颖
王鑫丽
陶小峰
曹建飞
Original Assignee
索尼集团公司
徐瑨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 徐瑨 filed Critical 索尼集团公司
Priority to US18/246,035 priority Critical patent/US20230362687A1/en
Priority to CN202180070355.6A priority patent/CN116491150A/zh
Priority to EP21881928.2A priority patent/EP4207862A4/en
Publication of WO2022083510A1 publication Critical patent/WO2022083510A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06964Re-selection of one or more beams after beam failure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity

Definitions

  • the present application relates to the technical field of wireless communication, and more particularly, to an electronic device, wireless device suitable for beam failure recovery in the scenario of multiple transmission and reception points (TRP) (also referred to as multiple transmission points).
  • TRP transmission and reception points
  • a communication method and a non-transitory computer readable storage medium are also referred to as multiple transmission points.
  • BFR beam failure recovery
  • the user equipment monitors each reference signal in the reference signal set configured by the base station for beam failure detection (Beam Failure Detection, BFD), and monitors all reference signals (that is, the beams corresponding to all reference signals)
  • BFD beam failure detection
  • all reference signals that is, the beams corresponding to all reference signals
  • an object of at least one aspect of the present disclosure is to provide an electronic device, a wireless communication method, and a non-transitory computer-readable storage medium, which are suitable for beam failure recovery processing in a multi-TRP scenario.
  • an electronic device comprising a processing circuit configured to receive a preconfigured first reference from a first transmit and receive point and a second transmit and receive point, respectively
  • a signal set and a second reference signal set, each reference signal set includes at least one reference signal; based on the measured signal quality of each reference signal of each reference signal set, determine the beam failure reference signal in which the beam failure event occurs; when it is determined that at least When a beam failure event occurs on a reference signal, a beam failure recovery request is sent to the base station.
  • an electronic device comprising a processing circuit configured to provide a user equipment with beam failure recovery configuration information, the configuration information including information about a first transmit and receive point Configuration information of the first reference signal set and the second reference signal set of the second transmission and reception point, each reference signal set includes at least one reference signal, for the user equipment to measure the signal quality of each reference signal of each reference signal set and A beam failure reference signal in which a beam failure event occurs is determined based on the measured signal quality; a beam failure recovery request sent by the user equipment when it is determined that at least one reference signal occurs in a beam failure event is received.
  • a wireless communication method comprising: receiving a preconfigured first set of reference signals and a second reference signal from a first transmission and reception point and a second transmission and reception point, respectively Signal sets, each reference signal set includes at least one reference signal; based on the measured signal quality of each reference signal in each reference signal set, determine the beam failure reference signal in which the beam failure event occurs; when it is determined that the beam failure occurs in at least one reference signal In the event of an event, a beam failure recovery request is sent to the base station.
  • a wireless communication method comprising: providing beam failure recovery configuration information for a user equipment, the configuration information including a first reference signal set related to a first transmission and reception point and a first 2.
  • Configuration information of the second reference signal sets at the transmission and reception points, each reference signal set includes at least one reference signal for the user equipment to measure the signal quality of each reference signal of each reference signal set and determine based on the measured signal quality A beam failure reference signal in which a beam failure event occurs; receiving a beam failure recovery request sent by the user equipment when it is determined that at least one reference signal has a beam failure event.
  • a non-transitory computer-readable storage medium storing executable instructions, the executable instructions, when executed by a processor, cause the processor to execute the above wireless communication method or electronic device of each function.
  • the user equipment can perform beam failure detection on an individually configured reference signal set of each TRP, and can detect beam failures in some (at least one) reference signals in the set of reference signals. That is, the beam failure recovery process is triggered, thereby avoiding the performance degradation caused by ignoring the beam failure of some TRPs in the prior art.
  • FIG. 1 is a schematic diagram illustrating an example of a beam failure event in a multi-TRP scenario in the prior art
  • FIG. 2 is a block diagram illustrating a configuration example of an electronic device on the user equipment side according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram for illustrating an example application scenario according to an embodiment of the present disclosure
  • FIG. 4 is an explanatory diagram for explaining a first example scenario in which the electronic device shown in FIG. 2 sends a failure recovery request;
  • FIG. 5 is an explanatory diagram for explaining a second example scenario in which the electronic device shown in FIG. 2 sends a failure recovery request;
  • FIG. 6 is an explanatory diagram for explaining a third example scenario in which the electronic device shown in FIG. 2 sends a failure recovery request;
  • FIG. 7 is an explanatory diagram for explaining an example format of a part of a beam failure recovery request sent by the electronic device shown in FIG. 2 using a MAC CE;
  • FIG. 8 is an explanatory diagram for explaining an example MAC CE sent in the example format shown in FIG. 7 in the example shown in FIG. 5;
  • FIG. 9 is an explanatory diagram for explaining another example format of a part of a beam failure recovery request sent by the electronic device shown in FIG. 2 using a MAC CE;
  • Figure 10 is an explanatory diagram for explaining an example MAC CE sent in the example format shown in Figure 9 in the example shown in Figure 5;
  • FIG. 11 is an explanatory diagram for explaining an example format of a part of a beam failure recovery request sent by the electronic device shown in FIG. 2 using a CSI report;
  • FIG. 12 is an explanatory diagram for explaining an example CSI report sent in the example format shown in FIG. 11 in the example shown in FIG. 5;
  • FIG. 13 is a block diagram illustrating a configuration example of an electronic device on the base station side according to an embodiment of the present disclosure
  • FIG. 14 is a schematic diagram illustrating an example of an information interaction process according to an embodiment of the present disclosure.
  • 15 is a flowchart illustrating a process example of a wireless communication method on the user equipment side according to an embodiment of the present disclosure
  • 16 is a flowchart illustrating a process example of a wireless communication method on the base station side according to an embodiment of the present disclosure
  • 17 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of this disclosure may be applied;
  • FIG. 18 is a block diagram illustrating a second example of a schematic configuration of an eNB to which techniques of this disclosure may be applied;
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smartphone to which the techniques of the present disclosure may be applied;
  • 20 is a block diagram showing an example of a schematic configuration of a car navigation apparatus to which the technology of the present disclosure can be applied.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known structures and well-known technologies are not described in detail.
  • the user equipment monitors each reference signal in the reference signal set for beam failure detection configured by the base station for the user equipment, When the beams corresponding to the reference signal) all have beam failures, report the beam failure instance (Beam Failure Instance) to its own high-level layer, so as to confirm the occurrence of beam failure events when the high-level count of beam failure instances reaches a predetermined threshold, so as to request the base station. Beam failure recovery processing.
  • FIG. 1 is a schematic diagram illustrating an example of beam failure in a multi-TRP scenario in the prior art.
  • the user equipment UE shown in FIG. 1 is pre-configured with a set of reference signals ⁇ RS 0 , RS 1 ⁇ for beam failure detection, and monitors the reference signals RS 0 and RS 1 from TRP0 and TRP1 .
  • the reference signal RS 1 works normally. In the beam failure recovery mechanism of the prior art, for the UE, at least the reference signal RS 1 has no beam failure, so beam failure recovery processing is not requested, thereby affecting the performance of the UE.
  • the present disclosure provides an electronic device, a wireless communication method in the electronic device, and a non-transitory computer-readable storage medium, which are suitable for beam failure recovery processing in a multi-TRP scenario.
  • the electronic device on the user equipment side may be implemented as various user equipment such as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital camera) or in-vehicle terminals (such as car navigation devices).
  • the user equipment described above may also be implemented as a terminal (also referred to as a machine type communication (MTC) terminal) performing machine-to-machine (M2M) communication.
  • the user equipment may include a wireless communication module (such as an integrated circuit module including a single die) or the like mounted on each of the above-mentioned terminals.
  • the electronic device on the base station side may be the base station device itself, for example, an eNB (evolved node B), or a gNB.
  • the TRP that interacts with the electronic device on the base station side and/or the electronic device on the user equipment side can be of any type.
  • the TRP may have sending and receiving functions, for example, it may receive information from user equipment and base station equipment, and may also send information to user equipment and base station equipment.
  • the TRP may serve user equipment and be controlled by base station equipment. That is, the base station equipment can provide services to the user equipment through the TRP.
  • the base station device is directly described as an example of the electronic device on the base station side, but the present disclosure is not limited to this, but can be appropriately applied to the situation of electronic devices with similar functions.
  • FIG. 2 is a block diagram illustrating one configuration example of an electronic device on the user equipment side according to an embodiment of the present disclosure.
  • the electronic device 200 may include a receiving unit 210 , a determining unit 220 and a requesting unit 230 .
  • each unit of the electronic device 200 may be included in the processing circuit.
  • the electronic device 200 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 200 is described here as an example of the user equipment itself; however, those skilled in the art can understand that the electronic device 200 can also be implemented to have the functions of the receiving unit 210, the determining unit 220, and the requesting unit 230 and attached to, for example, User equipment or other electronic equipment that communicates with user equipment.
  • the receiving unit 210 of the electronic device 200 may be configured to receive the preconfigured first transmission and reception point (first TRP) and the second transmission and reception point (second TRP), respectively.
  • first TRP first transmission and reception point
  • second TRP second transmission and reception point
  • the determination unit 220 may be configured to determine the beam failure reference signal at which the beam failure event occurred based on the signal quality of the respective reference signals of the respective reference signal sets measured (by the determination unit 220 itself or by other suitable components of the electronic device 200).
  • the requesting unit 230 may be configured to send a beam failure recovery request to the base station when it is determined that at least one reference signal has a beam failure event.
  • each reference signal set includes two reference signals, but the embodiment is not limited thereto.
  • the number of reference signals in each reference signal set depends on the configuration of the base station, and is determined by the base station according to the electronic The capabilities of the example UE of device 200 are appropriately configured.
  • the reference signal (BFD-RS) used for beam failure detection in the reference signal set may be, for example, a pre-configured aperiodic channel state information reference signal (Channel State Information Reference Signal, CSI-RS) signal or the like.
  • CSI-RS Channel State Information Reference Signal
  • the receiving unit 210 of the electronic device 200 may receive from the base station in advance, for example, through radio resource control (RRC)
  • the beam sent by the signaling fails to restore the configuration information.
  • the beam failure recovery configuration information pre-received by the electronic device 200 through the receiving unit 210 may include, for example, information including the first reference signal set (q 01 ) about the first transmission and reception point (TRP1) and the second transmission and reception point (TRP2).
  • Such configuration information on a reference signal set may include, for example, information for indicating each reference signal BFD-RS of each reference signal set.
  • such configuration information may include an index (ie, an example of identification information) of each BFD-RS (eg, periodic CSI-RS).
  • the beam failure recovery configuration information pre-received by the electronic device 200 may, for example, further include standard configuration information about beam failure events.
  • the standard configuration information about beam failure events may include, but is not limited to, for example: indicating a signal quality threshold (such as a block error rate (Block Error Rate, BLER) threshold BLER_s) used to determine the beam failure instances of each BFD-RS.
  • BLER_s Block Error Rate
  • Configuration information where BLER_s as the signal quality threshold can be configured individually for each BFD-RS or can be configured uniformly; configuration information about the counter configured for each BFD-RS and counting beam failure instances (eg, including an initial value of the counter, eg, 0, and a maximum count threshold value for determining beam failure events), and so on.
  • the beam failure recovery configuration information received by the electronic device 200 from the base station in advance through the receiving unit 210 may also include, for example, the first candidate beam set (q 11 ) and the second transmission and reception point (TRP1) related to the first transmission and reception point (TRP1).
  • the base station may pre-configure a candidate beam set for each TRP, where each candidate beam set may include at least one candidate beam, and the electronic device 200 on the user equipment side may use the receiving unit 210 Acquires configuration information of the base station about such a candidate beam set in advance.
  • such configuration information may include, for example, periodic CSI-RS and/or a synchronization signal and a physical broadcast channel (PBCH) block (Synchronization Signal and PBCH) corresponding to each candidate beam in each candidate beam set , SSB) index of the reference signal (ie, an example of identification information).
  • PBCH physical broadcast channel
  • the beam failure recovery configuration information pre-received by the electronic device 200 may, for example, further include configuration information about a criterion for determining a candidate beam.
  • the configuration information about the criteria for determining the candidate beam may include, for example, configuration information indicating a signal quality threshold (such as a reference signal received power (RSRP) threshold) for determining the candidate beam, and the like.
  • RSRP reference signal received power
  • the beam failure recovery configuration information pre-received by the electronic device 200 may, for example, further include configuration information about a beam failure recovery request to be sent by the electronic device 200 serving as the user equipment.
  • the configuration information about the beam failure recovery request may include, for example, information for indicating a scheduling request that can be at least a part of the beam failure recovery request (for example, information indicating an identifier of the scheduling request), and is used to convert at least the scheduling request that can be the beam failure recovery request.
  • a portion of the scheduling requests are associated with beam failure reference signals, and so on.
  • the electronic device 200 may transmit the beam failure recovery request in an appropriate manner according to the configuration information about the beam failure recovery request, which will be further described in the section "Example manner of sending the beam failure recovery request" later.
  • the beam failure recovery configuration information pre-received by the electronic device 200 may, for example, further include configuration information about priorities, for example, may include setting the priority of the beam failure recovery request to be higher than that of the hybrid automatic repeat request. level configuration information.
  • the configuration information about the priority enables, for example, when a beam failure recovery request or at least a part of a beam failure recovery request (such as a scheduling request described in detail later) sent through the Physical Uplink Control Channel (PUCCH) is associated with a hybrid automatic
  • PUCCH Physical Uplink Control Channel
  • the electronic device preferentially sends the beam failure recovery request, for example, discards the collided hybrid automatic retransmission request, and sends the hybrid automatic retransmission request at a subsequent appropriate timing.
  • the determining unit 220 may be based on the respective references of the respective reference signal sets measured (by the determining unit 220 itself or by other suitable components of the electronic device 200 ) The signal quality of the signal, which determines the beam failure reference signal in which the beam failure event occurs. For example, for a given BFD-RS in the reference signal set, the determining unit 210 may periodically measure the BLER of the BFD-RS, and whenever the measured BLER is lower than the BLER threshold indicated by the beam failure recovery configuration information , determine the occurrence of a beam failure instance and increment the count of the counter of the BFD-RS by 1.
  • the determining unit 220 may determine that a beam failure event occurs in the BFD-RS.
  • the counts of the counters of two or more BFD-RSs reach the maximum count threshold at the same time, the determining unit 220 may determine that beam failure events occur simultaneously for these BFD-RSs.
  • the determining unit 220 may further determine, in the pre-configured candidate beam set from the transmission and reception points corresponding to the reference signal set to which the beam failure reference signal belongs, determine candidate beam.
  • the determined candidate beams may be, for example, one or more candidate beams whose signal quality (for example, represented by RSRP) in the corresponding candidate beam set is higher than, for example, a predetermined threshold indicated by the beam failure recovery configuration information, or may also be the corresponding candidate beams.
  • a candidate beam with the highest signal quality in the beam set may be, for example, one or more candidate beams whose signal quality (for example, represented by RSRP) in the corresponding candidate beam set is higher than, for example, a predetermined threshold indicated by the beam failure recovery configuration information, or may also be the corresponding candidate beams.
  • a candidate beam with the highest signal quality in the beam set may be, for example, a predetermined threshold indicated by the beam failure recovery configuration information.
  • the requesting unit 230 may send a beam failure recovery request (Beam failure recovery request, BFRQ) to the base station.
  • the beam failure recovery request sent by the requesting unit 230 may, for example, indicate a beam failure event, a beam failure reference signal and/or a corresponding candidate beam to the base station.
  • the requesting unit 230 may divide the beam failure recovery request into different parts such as the first and second parts and send the parts through different steps.
  • the requesting unit 230 may send the first part of the beam failure recovery request through a scheduling request (SR) of the physical layer, the scheduling request may request the base station for uplink resources for sending the second part, and the requesting unit 230 may utilize The uplink resource sends the second part of the beam failure recovery request.
  • SR scheduling request
  • the base station may send a corresponding response or confirmation message to the electronic device 200 .
  • the electronic device 200 may, for example, receive the response or determination message from the base station via the receiving unit 210, and perform subsequent beam failure recovery processing accordingly.
  • the response or determination message of the base station means the confirmation of the corresponding candidate beam, so that the electronic device 200 can use the corresponding candidate beam based on the message.
  • the beam failure reference signal it is used as the reference signal BFD-RS in the corresponding reference signal set, and appropriate subsequent processing is performed, for example, in various prior art manners.
  • an electronic device can perform beam failure detection on an individually configured reference signal set of each TRP, and can detect beam failures in some (at least one) reference signals in which a beam failure occurs That is, the beam failure recovery process is triggered, thereby avoiding the performance degradation caused by ignoring the beam failure of some TRPs in the prior art.
  • FIG. 4 shows the first example of the electronic device 200 sending failure request (eg, by determining the unit 220) of the electronic device in Figure 2 - Schematic diagram of BLER curves (BLER1-0, BLER1-1, BLER2-0, BLER2-1) measured by RS1-1, BFD-RS2-0, BFD-RS2-1).
  • BLER1-0, BLER1-1, BLER2-0, BLER2-1 BLER1-0, BLER1-1, BLER2-0, BLER2-1
  • Point A in FIG. 4 indicates that the electronic device 200 detects that the BLER2-0 corresponding to the BFD-RS 2-0 in the second reference signal set q02 configured for TRP2 exceeds the threshold BLER_s for the first time (the threshold BLER_s is set to 10%, for example), this
  • Point B in FIG. 4 indicates that the counter Counter 2_0 of the BFD-RS 2-0 maintained by the determination unit 220 has reached the maximum count threshold MaxCount_Num 2_0 .
  • the determining unit 220 may determine that a beam failure event has occurred for the BFD-RS 2-0 (or its corresponding beam) in the second reference signal set q 02 configured for TRP2.
  • the electronic device 200 may further determine, through the determining unit 220, a candidate beam with higher signal quality (eg, a candidate beam with the highest RSRP) in the second candidate beam set configured for TRP2.
  • the electronic device 200 may send a beam failure recovery request to the base station through the request unit 230, the request may for example indicate the beam failure reference signal BFD-RS 2-0 and the corresponding candidate beam.
  • FIG. 5 schematically shows a schematic diagram of BLER curves measured for each reference signal in a second example scenario in which the electronic device 200 sends a failure recovery request.
  • points A and A' in FIG. 5 represent that the electronic device 200 detects BFD-RS 1-0 and BFD-RS 1- in the first reference signal set q 01 configured for TRP1, respectively.
  • the first time that a BLER of 1 exceeds the threshold BLER_s the counts Count_Num 1-0 and Count_Num 1-1 of the corresponding counters Counter 1-0 and Counter 1-1 are incremented by one for the first time.
  • points B and B' in FIG. 5 indicate that the counts Count_Num 1-0 and Count_Num 1-1 of the counters Counter 1-0 and Counter 1-1 , respectively, have reached their respective maximum count thresholds MaxCount_Num 1-0 and MaxCount_Num 1-1 .
  • the determining unit 220 may determine that a beam failure event occurs simultaneously for BFD-RS 1-0 and BFD-RS 1-1 (or their corresponding beams) in the first reference signal set q 01 configured for TRP1 .
  • the electronic device 200 may further determine, through the determining unit 220, a candidate beam with higher signal quality in the first candidate beam set configured for TRP1.
  • the determination unit 220 may determine, for example, two candidate beams with the highest RSRP; when the first candidate beam set includes two candidate beams, the determination unit 220 These two candidate beams can be directly determined as candidate beams.
  • the electronic device 200 may send a beam failure recovery request to the base station through the requesting unit 230, and the request may, for example, indicate beam failure reference signals BFD-RS 1-0 and BFD-RS 1-1 and corresponding candidates beam.
  • the electronic device 200 may, for example, send a beam failure recovery request indicating candidate beams of these reference signals through the requesting unit 230 .
  • This configuration enables the electronic device to perform the beam failure recovery procedure only once, thereby reducing signaling overhead.
  • FIG. 6 schematically shows a schematic diagram of BLER curves measured for each reference signal in a third example scenario in which the electronic device 200 sends a failure recovery request.
  • Points A and A' in Fig. 6 are similar to points A and A' in Fig. 5, and points B and B' in Fig. 6 are similar to points B and B' in Fig. 5, which show reference signals, respectively
  • the BLER curves of BFD-RS 1-0 and BFD-RS 2-0 exceed the threshold BLER_s for the first time so that, for example, the determination unit 220 counts Count_Num 1-0 and Count_Num 2-0 of the corresponding counters Counter 1-0 and Counter 2-0 for the first time Add one and the point at which these counts reach the maximum thresholds MaxCount_Num 1-0 and MaxCount_Num 2-0 , respectively.
  • the determination unit 220 may determine that a beam failure event occurs for BFD-RS 1-0 and BFD-RS 2-0 .
  • the determining unit 220 may determine a candidate beam with higher signal quality in the respective candidate beam sets of TRP1 and TRP2.
  • the determining unit 220 may determine one candidate beam with the highest RSRP in the first and second candidate beam sets, respectively, as the candidate beams of BFD-RS 1-0 and BFD-RS 2-0 , respectively.
  • the electronic device 200 may send a beam failure recovery request to the base station through the request unit 230, and the request may, for example, indicate beam failure reference signals BFD-RS 1-0 and BFD-RS 2-0 and corresponding candidates beam.
  • FIG. 6 The difference between FIG. 6 and the example shown in FIG. 5 is that, in the example of FIG. 6 , a plurality of reference signals (BFD-RS 1-0 and BFD-RS 2-0 ) in which a beam failure event occurs belong to the first reference signal, respectively.
  • the electronic device in this embodiment can determine beam failure events that occur simultaneously across TRPs, for example, through the determining unit 220, and send a beam failure recovery request for these beam failure events, thereby reducing signaling overhead.
  • the electronic device 200 may, for example, use the requesting unit 230 to divide the beam failure recovery request into different parts, such as the first part and the second part, and use different steps/different ways to send these parts.
  • the electronic device 200 may send the beam failure recovery request in an appropriate manner according to the configuration information about the beam failure recovery request.
  • the beam failure recovery request sent by the electronic device 200 may include: a first part reporting a beam failure event and a second part indicating a beam failure reference signal and a corresponding candidate beam.
  • the electronic device 200 may send the first part of the beam failure event to the base station with a scheduling request (SR) of the physical layer through the requesting unit 230 to indicate the beam failure reference event to the base station and request uplink resources.
  • SR scheduling request
  • the scheduling request is used for the beam failure recovery request, so in the context of this application, it may be referred to as a link recovery request (LRR).
  • LRR link recovery request
  • Such a scheduling request or link recovery request can be triggered by the user equipment to be sent to the base station side at any time, which provides conditions for the user equipment to report to the base station side in time after beam failure occurs.
  • the electronic device 200 After the electronic device 200 receives an uplink grant (UL grant) sent by the base station based on the scheduling request, for example, through the receiving unit 210, the electronic device 200 can utilize the requested (granted) uplink resource (for example, a physical uplink shared channel (Physical Uplink Shared Channel). Uplink Shared CHannel, PUSCH) resource) sends the second part of the beam failure recovery request to the base station to indicate the beam failure reference signal and the corresponding candidate beam.
  • the scheduling request adopted by the electronic device 200 may be pre-configured for it by the base station.
  • the beam failure recovery configuration information pre-received by the electronic device 200 through the receiving unit 210 may include configuration information about the beam failure recovery request.
  • the configuration information about the beam failure recovery request may, for example, indicate an identifier (SchedulingRequestID) of one or more scheduling requests configured for the electronic device, and the one or more scheduling requests can be used by the electronic device to send the first part of the beam failure recovery request, to report the beam failure event to the base station and simultaneously request uplink resources for sending the second part of the beam failure recovery request.
  • the configuration information about the beam failure recovery request may preferably, for example, indicate the identifier of a scheduling request configured for the electronic device ( SchedulingRequestID).
  • the electronic device 200 may send any scheduling request pre-configured for it by the base station through the receiving unit 210 as the first part of the beam failure recovery request.
  • the scheduling request may be sent through the PUCCH, and may, for example, be in the form of a bit sequence, and different values of the bit sequence may, for example, correspond to IDs of different scheduling requests.
  • the electronic device 200 may send an indication beam failure to the base station through the control element (MAC CE) of the medium access layer to the base station through the requesting unit 230 using the uplink resources (authorized by the base station) such as requested through the above scheduling request The second part of the beam failure recovery request for the reference signal and the corresponding candidate beam.
  • MAC CE control element
  • the MAC CE as the second part of the beam failure recovery request may include first information indicating whether a beam failure event occurs for each reference signal of each reference signal set and second information indicating candidate beams of the beam failure reference signal.
  • FIG. 7 schematically shows an example format of the second part of the beam failure recovery request sent by the electronic device 200 using MAC CE, for example, for the example application scenario (two TRPs) shown in FIG. 3 .
  • the remaining octets (oct) in FIG. 7 are examples of the second information for indicating the candidate beams of the beam failure reference signal.
  • AC indicates by 0 or 1 whether the candidate beam information for that octet exists. For example, if AC is 1 and indicates that the information exists, the index of the corresponding candidate beam (the ID of the candidate beam) is indicated in the six bits after the reserved bit R; if AC is 0, it indicates that the information does not exist, then the reserved bit R In the next six bits, 6 reserved bits (for example, a bit sequence of all 0s) are continued to be transmitted.
  • the number of such octets may correspond to the number of BFD-RSs in which the beam failure event occurs, wherein each octet is used to indicate the corresponding candidate beam information of the BFD-RS in which the beam failure event occurs.
  • all candidate beams in each candidate beam set may be coded in advance, for example, a total of 4 candidate beams in the two candidate beam sets are coded uniformly, eg ⁇ 000001 ⁇ to ⁇ 000011 ⁇ , and the rest are reserved bits.
  • beam failure events for up to all 4 BFD-RSs occur simultaneously, so up to 4 such octets may be included.
  • FIG. 8 schematically illustrates an example MAC CE sent in the example shown in FIG. 5 using the example format shown in FIG. 7 .
  • BFD-RS 1-0 and BFD-RS 1-1 in the first reference signal set q 01 of TRP1 have a beam failure event at the same time.
  • both C 1 and C 2 corresponding to BFD-RS 1-0 and BFD-RS 1-1 in the first octet are both 1, indicating that these two A beam failure event occurs in BFD-RS;
  • C 3 and C 4 corresponding to BFD-RS 2-0 and BFD-RS 2-1 in the second reference signal set q 02 of TRP2 are both 0, indicating that these two BFD -RS has no beam failure events.
  • the next two octets in Figure 8 are sequentially associated with BFD-RS 1-0 and BFD-RS 1-1 where the beam failure event occurred. These two octets each indicate the presence of candidate beam information with their first bit AC set to 1, and each indicate the presence of candidate beams of BFD-RS 1-0 or BFD-RS 1-1 with their last six bits, respectively. ID.
  • the beam failure recovery request sent by the electronic device 200 may include: a first part indicating a beam failure reference signal and a second part indicating a corresponding candidate beam.
  • the electronic device 200 may send the first part of the beam failure event to the base station with a scheduling request (SR) of the physical layer through the requesting unit 230 to indicate the beam failure reference signal to the base station and request uplink resources.
  • the scheduling request sent by the electronic device 200 may be associated with a beam failure reference signal.
  • the electronic device 200 may use the requested (granted) uplink resource (eg, PUSCH resource) to send the UL grant to the base station.
  • the second part of the beam failure recovery request to indicate the corresponding candidate beam for the beam failure reference signal.
  • the scheduling request adopted by the electronic device 200 may be pre-configured by the base station for it.
  • the beam failure recovery configuration information pre-received by the electronic device 200 through the receiving unit 210 may include configuration information about the beam failure recovery request.
  • the configuration information about the beam failure recovery request may include, for example, configuration information that associates multiple scheduling requests with each reference signal BFD-RS of each reference signal set, respectively.
  • the configuration information may indicate the association between the identifiers (SchedulingRequestID) of multiple scheduling requests configured for the electronic device and each BFD-RS.
  • These scheduling requests can be used by the electronic device to send a first part of a beam failure recovery request to indicate to the base station that a beam failure event occurs on the reference signal associated with the scheduling request, and at the same time request to send a second part of a beam failure recovery request the uplink resources.
  • the base station can pre-configure the corresponding 4 scheduling requests, namely SR0, SR1, SR2, SR3, which are respectively used to indicate that the corresponding BFD-RSs have beam failures event.
  • the configuration information about the beam failure recovery request may indicate a relationship between SR0, SR1, SR2, SR3 and BFD-RS 1-0 , BFD-RS 1-1 , BFD-RS 2-0 , BFD-RS 2-1 A corresponding correspondence or association.
  • the electronic device 200 may, according to the configuration information about the beam failure recovery request, pass the beam failure reference signal associated with the beam failure reference signal.
  • the scheduling request sends the first part of the beam failure recovery request.
  • the scheduling request may be sent through the PUCCH, and may, for example, be in the form of a bit sequence, and different values of the bit sequence may, for example, correspond to IDs of different scheduling requests.
  • all scheduling requests (IDs of all scheduling requests) associated with all reference signals in each reference signal set may be uniformly encoded in advance, for example, ⁇ 001 ⁇ to ⁇ 011 ⁇ , and the rest are reserved bits (considering that all 0 bit sequences may be used as reserved bits, it is necessary to send a non-0 sequence as a valid scheduling request).
  • the electronic device 200 may send a scheduling request SR0 corresponding thereto, which has ⁇ 001 for example ⁇ format.
  • the electronic device 200 may send a scheduling request SR3 corresponding thereto, which for example has the format of ⁇ 011 ⁇ .
  • a scheduling request SR3 corresponding thereto, which for example has the format of ⁇ 011 ⁇ .
  • multiple corresponding scheduling requests may be sent.
  • the base station may determine that it is a beam failure event that occurs at the same time, and uniformly allocates uplink resources.
  • the electronic device 200 may utilize the uplink resources (eg, PUSCH resources) requested (authorized by the base station) through the requesting unit 230, such as through the above scheduling request, through the control element (MAC CE) of the medium access layer or the
  • the aperiodic channel state information report (aperiodic CSI report) sends the second part of the beam failure recovery request indicating the candidate beam of the beam failure reference signal to the base station.
  • the MAC CE or aperiodic CSI report used to send the second part of the beam failure recovery request may directly include the identification information of the candidate beams of the beam failure reference signal.
  • an example format of such a MAC CE and an example format of aperiodic CSI reporting will be described with reference to FIGS. 9-10 and 11-12, respectively.
  • FIG. 9 it schematically shows that in the case where the second part of the beam failure recovery request is used to indicate candidate beams, for example, for the example application scenario (two TRPs) shown in FIG. 3 , the electronic device 200 utilizes Example format of the second part of the beam failure recovery request sent by the MAC CE.
  • AC indicates by 0 or 1 whether the candidate beam information of the octet exists. For example, if AC is 1 to indicate that the information exists, the index of the corresponding candidate beam (the ID of the candidate beam) is indicated in the six bits after the reserved bit R; if AC is 0 to indicate that the information does not exist, the reserved bit In the six bits after R, 6 reserved bits (for example, a bit sequence of all 0s) are continued to be transmitted.
  • all candidate beams in each candidate beam set may be coded in advance, for example, a total of 4 candidate beams in the two candidate beam sets are coded uniformly, eg ⁇ 000001 ⁇ to ⁇ 000011 ⁇ , and the rest are reserved bits.
  • the number of such octets may correspond to the number of BFD-RSs (beam failure reference signals) in which beam failure events occur, wherein each octet is sequentially used to indicate the corresponding BFD-RS in which beam failure events occur.
  • BFD-RSs beam failure reference signals
  • candidate beam information In this example, beam failure events for up to all 4 BFD-RSs occur simultaneously, so up to 4 such octets may be included.
  • FIG. 10 schematically illustrates an example MAC CE sent in the example shown in FIG. 5 using the example format shown in FIG. 9 .
  • BFD-RS 1-0 and BFD-RS 1-1 in the first reference signal set q 01 of TRP1 have a beam failure event at the same time.
  • two octets are sequentially associated with BFD-RS 1-0 and BFD-RS 1-1 where the beam failure event occurred, and each is set with its first bit AC When it is 1, it indicates that the candidate beam exists, and the last six bits are used to indicate the ID of the candidate beam of BFD-RS 1-0 or BFD-RS 1-1 , respectively.
  • FIG. 11 it schematically shows that in the case where the second part of the beam failure recovery request is used to indicate a candidate beam, for example, for the example application scenario (two TRPs) shown in FIG. 3 , the electronic device 200 utilizes Example format of the second part of the beam failure recovery request sent by the aperiodic CSI report.
  • the CSI field of the example CSI report of FIG. 11 may include two parts.
  • the first part is the first several (at most 4) fields (each field may be, for example, 6 bits) used to sequentially indicate the identification information (ID of the candidate beam) of the corresponding BFD-RS candidate beams in which the beam failure event occurs.
  • ID of the candidate beam the identification information
  • all candidate beams in each candidate beam set may be coded in advance, for example, a total of 4 candidate beams in the two candidate beam sets are coded uniformly, eg ⁇ 000001 ⁇ to ⁇ 000011 ⁇ , and the rest are reserved bits.
  • beam failure events for all 4 BFD-RSs occur simultaneously at most, therefore, at most 4 such fields may be included as the first part of the CSI.
  • the second part of the example CSI field of FIG. 11 is optional, and several (eg, at most 4) fields (each field may be, for example, 7 bits) following the first part are used to sequentially represent the indicated in the first part RSRP of the candidate beam.
  • the first RSRP may be the RSRP value corresponding to the first candidate beam in the first part, and the next one or more may be corresponding to the second or more candidate beams in the first part Differential RSRP value indicating the difference between the RSRP value of this candidate beam and the first candidate beam in the first part.
  • FIG. 11 schematically shows CSI fields illustrating an example CSI report sent in the example shown in FIG. 5 using the example format shown in FIG. 11 .
  • BFD-RS 1-0 and BFD-RS 1-1 in the first reference signal set q 01 of TRP1 have a beam failure event at the same time. Therefore, in the example CSI field shown in FIG. 11 , the two fields in the first part sequentially indicate the identifiers (IDs of the candidate beams) of the candidate beams of the BFD-RS 1-0 and BFD-RS 1-1 in which the beam failure event occurred, And the two fields of the second part indicate the RSRP of these candidate beams in turn.
  • IDs of the candidate beams the identifiers of the candidate beams
  • FIG. 13 is a block diagram showing one configuration example of an electronic device on the base station side according to an embodiment of the present disclosure.
  • the electronic device 1300 may include a configuration unit 1310 and a receiving unit 1320 and an optional response unit 1330 .
  • each unit of the electronic device 1300 may be included in the processing circuit.
  • the electronic device 1300 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 1300 is described here as an example of the base station itself; however, those skilled in the art can understand that the electronic device 1300 can also be implemented as having the functions of the configuration unit 1310, the receiving unit 1320 and the optional response unit 1330 and, for example, attached Other electronic equipment connected to or in communication with a base station.
  • the configuration unit 1310 may provide the user equipment with beam failure recovery configuration information, where the configuration information includes a first reference signal set for the first transmission and reception point and a second reference for the second transmission and reception point Configuration information of signal sets, each reference signal set includes at least one reference signal for the user equipment to determine the beam failure reference signal in which the beam failure event occurs based on the measured signal quality of each reference signal of each reference signal set.
  • each reference signal set includes two reference signals, but the embodiment is not limited thereto.
  • the number of reference signals in each reference signal set depends on the configuration of the electronic device 1300 and is determined by the electronic device 1300 is appropriately configured by the configuration unit 1310 according to the capability of the user equipment, for example.
  • the reference signal (BFD-RS) used for beam failure detection in the reference signal set may be, for example, an aperiodic CSI-RS signal or the like.
  • the configuration unit 1310 may send the user an The device restores the configuration information when it fails to send beams.
  • the electronic device 1300 on the base station side may preconfigure a reference signal set for each TRP through the configuration unit 1310, and provide configuration information about the reference signal set to the user equipment.
  • the beam failure recovery configuration information may include, for example, configurations regarding the first reference signal set (q 01 ) of the first transmission and reception point (TRP1) and the second reference signal set (q 02 ) of the second transmission and reception point (TRP2) information.
  • Such configuration information on a reference signal set may include, for example, information for indicating each reference signal BFD-RS of each reference signal set.
  • such configuration information may include an index of each BFD-RS (eg, periodic CSI-RS).
  • the electronic device 1300 can also provide the configuration information about the corresponding reference signal set to the corresponding TRP through the configuration unit 1310, so that the TRP sends the reference signal in the reference signal set for the user equipment to perform beam failure detection. Repeat.
  • the beam failure recovery configuration information may further include standard configuration information about beam failure events.
  • the standard configuration information about beam failure events may include, but is not limited to, for example: a configuration indicating a signal quality threshold (such as a block error rate (BLER) threshold BLER_s) for determining beam failure instances of each BFD-RS information, where the BLER_s as the signal quality threshold can be individually configured for each BFD-RS or uniformly configured; configuration information about the counter configured for each BFD-RS and counting beam failure instances ( For example, it includes an initial value of the counter, eg, 0, and a maximum count threshold for determining beam failure events), and so on.
  • BLER block error rate
  • the beam failure recovery configuration information may also include, for example, a first candidate beam set (q 11 ) for the first transmission and reception point (TRP1) and a second candidate beam set (q 12 ) for the second transmission and reception point (TRP2). ) configuration information.
  • the electronic device 1300 on the base station side may pre-configure a candidate beam set for each TRP through the configuration unit 1310, where each candidate beam set may include at least one candidate beam, and the electronic device 1300 may send configuration information about such a candidate beam set to the user equipment in advance through the configuration unit 1310 .
  • such configuration information may include indices, such as periodic CSI-RS and/or SSB reference signals, corresponding to each candidate beam in each candidate beam set.
  • the electronic device 1300 can also provide the configuration information about the corresponding candidate beam set to the corresponding TRP through the configuration unit 1310, so that the TRP sends the candidate beam for the user equipment to detect and determine the candidate beam when necessary. Repeat.
  • the beam failure recovery configuration information may further include configuration information about the criteria for determining candidate beams.
  • the configuration information about the criteria for determining the candidate beam may include, for example, configuration information indicating a signal quality threshold (such as a reference signal received power (RSRP) threshold) for determining the candidate beam, and the like.
  • RSRP reference signal received power
  • the beam failure recovery configuration information may further include configuration information about a beam failure recovery request to be sent by the user equipment.
  • the configuration information about the beam failure recovery request may include, for example, information for indicating a scheduling request that can be at least a part of the beam failure recovery request (eg, information indicating an identifier of the scheduling request), and is used to convert at least a scheduling request that can be a beam failure recovery request.
  • a portion of the scheduling requests are associated with beam failure reference signals, and so on.
  • the configuration information about the beam failure recovery request may, for example, enable the user equipment that receives the information to, for example, as described in the "Example Way of Sending a Beam Failure Recovery Request" section in the configuration example on the user equipment side, based on the configuration information Send a beam failure recovery request in a corresponding manner.
  • the beam failure recovery configuration information may, for example, further include configuration information about the priority of the beam failure recovery request, for example, may include setting the priority of the beam failure recovery request to be higher than the priority of the HARQ request configuration information.
  • the configuration information about the priority of the beam failure recovery request can enable the user equipment receiving the information, for example, when the beam failure recovery request sent through the PUCCH or at least a part of the beam failure recovery request (eg, the scheduling request described in detail later) is mixed with the When the automatic retransmission request collides, the user equipment preferentially sends the beam failure recovery request, for example, discards the collided hybrid automatic retransmission request, and sends the hybrid automatic retransmission request at a subsequent appropriate timing.
  • the user equipment receiving the above beam failure configuration information may monitor the BFD-RS in each reference signal set from each TRP accordingly to determine the beam failure reference signal, and optionally in the reference signal set from the reference signal set to which the beam failure reference signal belongs.
  • a candidate beam is determined from a set of pre-configured candidate beams of the corresponding TRP.
  • the user equipment may send a beam failure recovery request (Beam failure recovery request, BFRQ) to the electronic device 1300 on the base station side when determining that a beam failure event occurs in at least one reference signal.
  • BFRQ beam failure recovery request
  • the electronic device 1300 may receive, through the receiving unit 1320, a beam failure recovery request sent by the user equipment when it is determined that a beam failure event occurs on at least one reference signal.
  • the beam failure recovery request received by the electronic device 1300 from the user equipment may, for example, indicate a beam failure event, a beam failure reference signal, and/or a corresponding candidate beam.
  • the beam failure recovery request received by the receiving unit 1320 of the electronic device 1300 on the base station side may be divided into different parts such as the first and second parts, and the receiving unit 1320 may receive these requests sent by the user equipment through different steps. part.
  • the electronic device 1300 may receive, through the receiving unit 1320, the first part of the beam failure recovery request sent by the user equipment through a scheduling request (SR) of the physical layer, and the scheduling request may request the electronic device 1300 for sending the second part upstream resources.
  • the electronic device 1300 can send the information (UL grant) about the authorized uplink resource to the user equipment through the optional response unit 1330, and can receive the information sent by the electronic device using the uplink resource (eg PUSCH resource) through the receiving unit 1320.
  • the uplink resource eg PUSCH resource
  • the electronic device 1300 on the base station side can receive these parts sent by the user equipment through different steps, corresponding to the "Example Way of Sending a Beam Failure Recovery Request" previously described in the configuration example on the user equipment side, which will be described later in “ This is further described in the "Example of Received Beam Failure Recovery Request” section.
  • the electronic device 1300 on the base station side can send a corresponding response or confirmation message to the user equipment through the optional response unit 1330, so that the user equipment performs subsequent beam failure recovery processing accordingly.
  • the response or determination message of the electronic device 1300 on the base station side means confirmation of the corresponding candidate beams, so that the user equipment can respond to the corresponding candidate beams based on the message.
  • the candidate beam of replaces the beam failure reference signal as the reference information BFD-RS in the corresponding reference signal set, and, for example, adopts various methods in the prior art to perform appropriate subsequent processing.
  • the electronic device 1300 can also send a message to the corresponding TRP through the response unit 1330, so that the TRP replaces the reference signal in the reference signal set with the beam failure event with the corresponding candidate beam, which is not repeated here.
  • the electronic device on the base station side can configure a reference signal set independently for each TRP, and provide the user equipment with corresponding beam failure recovery configuration information, so that the user equipment can Beam failure detection is performed for the individually configured reference signal set of each TRP, and the beam failure recovery process can be triggered when some (at least one) reference signals of the reference signal fail to be beamed, thereby avoiding the beam failure of some TRPs in the prior art. Degraded performance due to failed ignoring.
  • the electronic device 1300 may be corresponding to three example scenarios, for example, only one BFD-RS has a beam failure event, multiple BFD-RSs of the same TRP have a beam failure event at the same time, or multiple BFD-RSs of different TRPs have a beam failure event at the same time. There are three scenarios in which beam failure events occur simultaneously for each BFD-RS. Therefore, the beam failure recovery request received by the electronic device 1300 may, for example, indicate one or more beam failure reference signals and corresponding candidate beams.
  • the electronic device 1300 when the electronic device 1300 receives, for example, through the receiving unit 1310, a beam failure recovery request from the user equipment that indicates the respective candidate beams of the multiple reference signals that occur simultaneously with the beam failure event, the electronic device 1300 can send the request through the response unit 1330 to the user equipment.
  • the user equipment sends a response message to confirm each candidate beam indicated by the beam failure recovery request.
  • the multiple reference signals in which the beam failure event occurs may belong to the same reference signal set, or may belong to the first reference signal set and the second reference signal set respectively. This configuration enables the user equipment to perform the beam failure recovery procedure only once, thereby reducing signaling overhead.
  • the beam failure recovery configuration information provided by the electronic device 1300 on the base station side for the user equipment through the configuration unit 1310 may include, for example, configuration information about a beam failure recovery request to be sent by the user equipment.
  • configuration information can, for example, enable the user equipment that receives the information to send beams in a corresponding manner based on the configuration information as described in the section "Example Mode for Sending a Beam Failure Recovery Request" in the configuration example on the user equipment side. Failed recovery request.
  • the electronic device 1300 on the base station side can receive the beam failure recovery request sent by the user equipment in a corresponding manner.
  • the electronic equipment The beam failure recovery request received by 1300 may be sent by the user equipment in different ways, and these sending ways are optionally related to the beam failure request configured for it by the electronic device 1300 .
  • the beam failure recovery request received by the electronic device 1300 from the user equipment, eg, through the receiving unit 1310, may include: a first part reporting a beam failure event and a second part indicating a beam failure reference signal and a corresponding candidate beam .
  • the electronic device 1300 may receive, through the receiving unit 1320, the first part of the beam failure event sent by the user equipment through a scheduling request (SR) of the physical layer, where the first part is used to indicate the beam failure reference event and request uplink resources .
  • SR scheduling request
  • Such a scheduling request or link recovery request can be triggered by the user equipment and sent to the electronic device 1300 on the base station side at any time, which provides conditions for the user equipment to report to the base station side in time after beam failure occurs.
  • the electronic device 1300 can grant uplink resources (eg, PUSCH) to the user equipment through the response unit 1330, and send an uplink grant (UL grant) to the user equipment, so that the user equipment can utilize the
  • uplink resources eg, PUSCH
  • UL grant uplink grant
  • the authorized uplink resource sends the second part of the beam failure recovery request to the electronic device 1300 on the base station side to indicate the beam failure reference signal and the corresponding candidate beam.
  • the scheduling request adopted by the user equipment may be pre-configured for it by the electronic device 1300 through the configuration unit 1310 .
  • the beam failure recovery configuration information pre-provided by the electronic device 1300 for the user equipment through the configuration unit 1310 may include configuration information about the beam failure recovery request.
  • the configuration information about the beam failure recovery request may, for example, indicate the identifiers (SchedulingRequestID) of one or more scheduling requests configured for the user equipment, and the one or more scheduling requests can be used by the user equipment to send the first part of the beam failure recovery request, To report the beam failure event to the electronic device 1300 on the base station side and request the uplink resources for sending the second part of the beam failure recovery request at the same time.
  • the configuration information about the beam failure recovery request may preferably, for example, indicate the identifier of a scheduling request configured for the electronic device ( SchedulingRequestID).
  • the user equipment may send any scheduling request pre-configured by the electronic device 1300 on the base station side as the first part of the beam failure recovery request.
  • the scheduling request may be sent through the PUCCH, and may, for example, be in the form of a bit sequence, and different values of the bit sequence may, for example, correspond to IDs of different scheduling requests.
  • the second part of the beam failure recovery request received by the electronic device 1300 from the user equipment may be that the user equipment utilizes uplink resources (authorized by the electronic device 1300 on the base station side) such as requested through the above scheduling request.
  • uplink resources authorized by the electronic device 1300 on the base station side
  • PUSCH resources sent through the control element (MAC CE) of the medium access layer, which is used to indicate the beam failure reference signal and the corresponding candidate beam.
  • the MAC CE received by the electronic device 1300 as the second part of the beam failure recovery request may include first information indicating whether each reference signal of each reference signal set has a beam failure event and a candidate beam indicating the beam failure reference signal the second information.
  • a MAC CE may, for example, have the example format described with reference to Figures 7 and 8, which will not be repeated here.
  • the beam failure recovery request received by the electronic device 1300 from the user equipment, eg, through the receiving unit 1310 may include: a first part of a reference signal indicating a beam failure and a second part of a corresponding candidate beam.
  • the electronic device 1300 may receive, through the receiving unit 1320, the first part of the beam failure request sent by the user equipment through a scheduling request (SR) of the physical layer, where the first part is used to indicate the beam failure reference signal and request uplink resources .
  • SR scheduling request
  • the scheduling request received by the electronic device 1300 may be associated with the beam failure reference signal according to the configuration information on the beam failure request.
  • the response unit 1330 can grant the user equipment an uplink resource PUSCH, and send an uplink grant (UL grant) to the user equipment, so that the user equipment can use the authorized uplink
  • the link resource eg PUSCH resource
  • the scheduling request adopted by the user equipment may be pre-configured by the electronic device 1300 through the configuration unit 1310 .
  • the beam failure recovery configuration information pre-provided by the electronic device 1300 for the user equipment through the configuration unit 1310 may include configuration information about the beam failure recovery request.
  • the configuration information about the beam failure recovery request may include, for example, configuration information that associates multiple scheduling requests with each reference signal BFD-RS of each reference signal set, respectively.
  • the configuration information may indicate the association between the identifiers (SchedulingRequestID) of multiple scheduling requests configured for the user equipment and each BFD-RS.
  • These scheduling requests can be used by the user equipment to send the first part of the beam failure recovery request, so as to indicate to the electronic device 1300 on the base station side that a beam failure event occurs on the reference signal associated with the scheduling request, and at the same time request for sending beam failure recovery Uplink resources for the second portion of the request.
  • the electronic device 1300 on the base station side can pre-configure the corresponding 4 scheduling requests, namely SR0, SR1, SR2, SR3, which are respectively used to indicate the corresponding BFD-RS - A beam failure event occurs for the RS.
  • the configuration information about the beam failure recovery request may indicate a relationship between SR0, SR1, SR2, SR3 and BFD-RS 1-0 , BFD-RS 1-1 , BFD-RS 2-0 , BFD-RS 2-1 A corresponding correspondence or association.
  • the user equipment when, for example, the user equipment determines that a beam failure event occurs, that is, the beam failure reference signal is determined, it can send the beam through a scheduling request associated with the beam failure reference signal according to the configuration information about the beam failure recovery request The first part of a failed recovery request.
  • the scheduling request received by the electronic device 1300 on the base station side may be sent through PUCCH, and may be in the form of a bit sequence, for example, different values of the bit sequence may correspond to different IDs of the scheduling request.
  • all scheduling requests (IDs of all scheduling requests) associated with all reference signals in each reference signal set may be uniformly encoded in advance, such as ⁇ 001 ⁇ to ⁇ 011 ⁇ , and the rest are reserved bits (considering that all 0 bit sequences may be used as reserved bits, it is necessary to send a non-0 sequence as a valid scheduling request).
  • IDs of all scheduling requests may be uniformly encoded in advance, such as ⁇ 001 ⁇ to ⁇ 011 ⁇ , and the rest are reserved bits (considering that all 0 bit sequences may be used as reserved bits, it is necessary to send a non-0 sequence as a valid scheduling request).
  • the electronic device 1300 on the base station side can receive the BFD-RS sent from the user equipment with the BFD-RS 1-0 corresponds to a scheduling request SR0, which for example has the format of ⁇ 001 ⁇ .
  • the electronic device 1300 on the base station side may receive a scheduling request SR3 corresponding to BFD-RS 2-1 sent from the user equipment , which, for example, has the format ⁇ 011 ⁇ .
  • the electronic device 1300 on the base station side may, for example, receive multiple corresponding scheduling requests.
  • the electronic device 1300 may determine that it is a beam failure event that occurs simultaneously, and allocate uplink resources uniformly.
  • the second part of the beam failure recovery request received by the electronic device 1300 may be that the user equipment utilizes uplink resources (eg, PUSCH resources) requested by the above scheduling request (authorized by the electronic device 1300 on the base station side) ), sent through the control element (MAC CE) of the medium access layer or the aperiodic channel state information report (aperiodic CSI report), and used to indicate the candidate beam of the beam failure reference signal.
  • uplink resources eg, PUSCH resources
  • MAC CE control element
  • aperiodic channel state information report aperiodic CSI report
  • the MAC CE or aperiodic CSI report received by the electronic device 1300 as the second part of the beam failure recovery request may directly include the identification information of the candidate beams of the beam failure reference signal.
  • Such a MAC CE or aperiodic CSI report may, for example, have the example formats previously described with reference to FIGS. 9-10 or 11-12, which are not repeated here.
  • FIG. 14 is an exemplary schematic diagram illustrating an information exchange process according to an embodiment of the present disclosure, in which a user equipment UE and a base station gNB are schematically illustrated, and multiple possible TRPs such as TRP1 and TRP2 are omitted.
  • the base station gNB provides beam failure recovery configuration information for the user equipment UE.
  • the beam failure recovery configuration information may include, for example, configuration information about the reference signal sets configured by the gNB for TRP1 and TRP2 respectively for beam failure detection.
  • the beam failure recovery configuration information may further include configuration information about the candidate beam sets respectively configured by the gNB for TRP1 and TRP2, and configuration information about the criteria for determining the candidate beams.
  • the beam failure recovery configuration information may further include one or more of standard configuration information about beam failure events, configuration information about beam failure recovery requests, and configuration information about priorities.
  • step S1402 the UE measures the signal quality of each reference signal of each reference signal set based on the received configuration information, and determines the beam failure reference signal in which the beam failure event occurs based on the measured signal quality.
  • step S1403 when the UE determines that a beam failure event occurs in at least one reference signal, the UE sends the first part of the beam failure recovery request to the gNB through a scheduling request.
  • the scheduling request may only indicate a beam failure recovery event; alternatively, it may directly indicate a beam failure reference signal.
  • the gNB Based on the scheduling request from the UE in step S1403, the gNB sends the UE an uplink grant UL_grant.
  • the UE sends the second part of the beam failure recovery request to the gNB using the uplink resources granted through the UL_grant.
  • the scheduling request in step S1403 only indicates a beam failure recovery event
  • the second part in step S1404 may, for example, indicate a beam failure reference signal and a corresponding candidate beam; alternatively, when the scheduling request in step S1403 directly indicates When the beam fails the reference signal, the second part in step S1404 may, for example, indicate the corresponding candidate beam.
  • step S1405 the gNB sends a response message to the beam failure recovery request to confirm the candidate beam indicated by the beam failure recovery request in step S1404.
  • the example flow shown in FIG. 14 can be implemented by the electronic device 200 on the user equipment side and the electronic device 1300 on the base station side described above with reference to FIGS. 2 to 13 , so the advantages and The benefits are not described here.
  • 15 is a flowchart illustrating a process example of a wireless communication method on the user equipment side according to an embodiment of the present disclosure, which may be implemented by, for example, the electronic device 200 on the user equipment side described with reference to FIGS. 2 to 12 .
  • each reference signal set includes at least one reference signal.
  • step S1502 based on the measured signal quality of each reference signal of each reference signal set, a beam failure reference signal in which a beam failure event occurs is determined.
  • step S1503 when it is determined that a beam failure event occurs in at least one reference signal, a beam failure recovery request is sent to the base station.
  • step S1503 when it is determined that a beam failure event occurs simultaneously for multiple reference signals, a beam failure recovery request indicating respective candidate beams of the multiple reference signals may be sent.
  • the multiple reference signals may belong to the first reference signal set and the second reference signal set, respectively.
  • the method may further include: determining candidate beams from a set of preconfigured candidate beams from transmission and reception points corresponding to the reference signal set to which the beam failure reference signal belongs.
  • the beam failure recovery request may include a first part reporting a beam failure event and a second part indicating a beam failure reference signal and corresponding candidate beams.
  • the first part may be sent to the base station through a scheduling request of the physical layer to request uplink resources from the base station.
  • the second part may also be sent to the base station through the medium access control element by using the requested uplink resource.
  • the medium access control element may include first information indicating whether a beam failure event occurs for each reference signal of each reference signal set and second information indicating a candidate beam for the beam failure reference signal.
  • the beam failure recovery request may also include: a first part of the reference signal indicating beam failure and a second part indicating a corresponding candidate beam.
  • the first part may be sent to the base station through a scheduling request of the physical layer to request uplink resources from the base station.
  • the sent scheduling request may be associated with a beam failure reference signal.
  • the method may further include: pre-receiving beam failure recovery configuration information from the base station, the configuration information including associating multiple scheduling requests with respective reference signals of respective reference signal sets respectively configuration information.
  • the first part may be sent through a scheduling request associated with a beam failure reference signal.
  • the second part may also be sent to the base station through the medium access control element or the aperiodic channel state information report by using the requested uplink resource.
  • the medium access control element or the aperiodic channel state information report may include identification information of a candidate beam of the beam failure reference signal.
  • the subject performing the above method may be the electronic device 200 according to the embodiment of the present disclosure, so various aspects of the foregoing embodiments about the electronic device 200 and its functional units are applicable to this.
  • FIG. 16 is a flowchart illustrating a process example of a wireless communication method on the base station side according to an embodiment of the present disclosure, which may be implemented by, for example, the electronic device 1300 on the base station side described with reference to FIG. 13 .
  • step S1601 beam failure recovery configuration information is provided for a user equipment (UE), the configuration information including information about the first transmission and reception point
  • the configuration information of the first reference signal set and the second reference signal set of the second transmission and reception point, each reference signal set includes at least one reference signal for the user equipment based on the measured reference signal set of each reference signal set.
  • the signal quality determines the beam-fail reference signal where the beam-fail event occurs.
  • step S1602 a beam failure recovery request sent by a user equipment (UE) when it is determined that a beam failure event occurs on at least one reference signal is received.
  • UE user equipment
  • step S1602 when receiving a beam failure recovery request from the user equipment indicating the respective candidate beams of multiple reference signals that occur simultaneously with beam failure events, a response message may be sent to the user equipment to confirm the beams Each candidate beam indicated by the failed recovery request.
  • the multiple reference signals may belong to the first reference signal set and the second reference signal set, respectively.
  • the beam failure recovery configuration information provided for the user equipment in step S1601 may also include configuration information about the first candidate beam set of the first transmission and reception point and the second candidate beam set of the second transmission and reception point. .
  • the beam failure recovery configuration information may further include configuration information associating multiple scheduling requests with each reference signal of each reference signal set.
  • step S1602 optionally, at least a part of the beam failure recovery request sent by the user equipment through the scheduling request associated with the beam failure reference signal may be received.
  • the beam failure recovery configuration information may further include configuration information for setting the priority of the beam failure recovery request to be higher than the priority of the hybrid automatic repeat request.
  • the subject performing the above method may be the electronic device 1300 according to the embodiment of the present disclosure, so various aspects of the foregoing embodiments about the electronic device 1300 and its functional units are applicable to this.
  • the electronic device 1300 may be implemented as any type of base station device, such as macro eNB and small eNB, and may also be implemented as any type of gNB (base station in a 5G system).
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • RRHs remote radio heads
  • the electronic device 200 may be various user equipments, which may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras ) or an in-vehicle terminal (such as a car navigation device).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the above-mentioned user equipments.
  • eNB 1800 includes one or more antennas 1810 and base station equipment 1820.
  • the base station apparatus 1820 and each antenna 1810 may be connected to each other via an RF cable.
  • Each of the antennas 1810 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 1820 to transmit and receive wireless signals.
  • eNB 1800 may include multiple antennas 1810.
  • multiple antennas 1810 may be compatible with multiple frequency bands used by eNB 1800.
  • FIG. 17 shows an example in which the eNB 1800 includes multiple antennas 1810, the eNB 1800 may also include a single antenna 1810.
  • the base station apparatus 1820 includes a controller 1821 , a memory 1822 , a network interface 1823 , and a wireless communication interface 1825 .
  • the controller 1821 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1820 .
  • the controller 1821 generates data packets from the data in the signal processed by the wireless communication interface 1825, and communicates the generated packets via the network interface 1823.
  • the controller 1821 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1821 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 1822 includes RAM and ROM, and stores programs executed by the controller 1821 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1823 is a communication interface for connecting the base station apparatus 1820 to the core network 1824 .
  • Controller 1821 may communicate with core network nodes or further eNBs via network interface 1823 .
  • the eNB 1800 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1823 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1823 is a wireless communication interface, the network interface 1823 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1825 .
  • Wireless communication interface 1825 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 1800 via antenna 1810.
  • the wireless communication interface 1825 may generally include, for example, a baseband (BB) processor 1826 and RF circuitry 1827.
  • the BB processor 1826 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1826 may have some or all of the above-described logical functions.
  • the BB processor 1826 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1826 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1820. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1827 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1810 .
  • the wireless communication interface 1825 may include multiple BB processors 1826 .
  • multiple BB processors 1826 may be compatible with multiple frequency bands used by eNB 1800.
  • the wireless communication interface 1825 may include a plurality of RF circuits 1827 .
  • multiple RF circuits 1827 may be compatible with multiple antenna elements.
  • FIG. 17 shows an example in which the wireless communication interface 1825 includes multiple BB processors 1826 and multiple RF circuits 1827 , the wireless communication interface 1825 may also include a single BB processor 1826 or a single RF circuit 1827 .
  • the configuration unit 1310 in the electronic device 1300 previously described with reference to FIG. 13 may be implemented by the controller 1821 and the wireless communication interface 1825 (optionally together with the antenna 1810) and the like.
  • the receiving unit 1320 in the electronic device 1300 may be implemented through the wireless communication interface 1825 (optionally together with the antenna 1810) or the like.
  • the response unit 1330 in the electronic device 1300 may be implemented by the controller 1821 (optionally together with the wireless communication interface 1825 and the antenna 1810) or the like.
  • eNB 1930 includes one or more antennas 1940, base station equipment 1950, and RRH 1960.
  • the RRH 1960 and each antenna 1940 may be connected to each other via RF cables.
  • the base station apparatus 1950 and the RRH 1960 may be connected to each other via high-speed lines such as fiber optic cables.
  • Each of the antennas 1940 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1960 to transmit and receive wireless signals.
  • the eNB 1930 may include multiple antennas 1940.
  • multiple antennas 1940 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 18 shows an example in which the eNB 1930 includes multiple antennas 1940, the eNB 1930 may also include a single antenna 1940.
  • the base station apparatus 1950 includes a controller 1951 , a memory 1952 , a network interface 1953 , a wireless communication interface 1955 , and a connection interface 1957 .
  • the controller 1951 , the memory 1952 and the network interface 1953 are the same as the controller 1821 , the memory 1822 and the network interface 1823 described with reference to FIG. 17 .
  • the network interface 1953 is a communication interface for connecting the base station apparatus 1950 to the core network 1954 .
  • Wireless communication interface 1955 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1960 and antenna 1940 to terminals located in a sector corresponding to RRH 1960.
  • the wireless communication interface 1955 may generally include, for example, a BB processor 1956.
  • the BB processor 1956 is the same as the BB processor 1826 described with reference to FIG. 17, except that the BB processor 1956 is connected to the RF circuit 1964 of the RRH 1960 via the connection interface 1957.
  • the wireless communication interface 1955 may include a plurality of BB processors 1956.
  • multiple BB processors 1956 may be compatible with multiple frequency bands used by eNB 1930.
  • FIG. 18 shows an example in which the wireless communication interface 1955 includes multiple BB processors 1956 , the wireless communication interface 1955 may include a single BB processor 1956 .
  • connection interface 1957 is an interface for connecting the base station apparatus 1950 (the wireless communication interface 1955 ) to the RRH 1960.
  • the connection interface 1957 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1950 (the wireless communication interface 1955) to the RRH 1960.
  • the RRH 1960 includes a connection interface 1961 and a wireless communication interface 1963.
  • connection interface 1961 is an interface for connecting the RRH 1960 (the wireless communication interface 1963 ) to the base station apparatus 1950.
  • the connection interface 1961 may also be a communication module for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1963 transmits and receives wireless signals via the antenna 1940 .
  • Wireless communication interface 1963 may typically include RF circuitry 1964, for example.
  • RF circuitry 1964 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1940 .
  • the wireless communication interface 1963 may include a plurality of RF circuits 1964 .
  • multiple RF circuits 1964 may support multiple antenna elements.
  • FIG. 18 shows an example in which the wireless communication interface 1963 includes multiple RF circuits 1964 , the wireless communication interface 1963 may include a single RF circuit 1964 .
  • the configuration unit 1310 in the electronic device 1300 previously described with reference to FIG. 13 can be implemented by the controller 1821 and the wireless communication interface 1825 (optionally together with the antenna 1810) and the like.
  • the receiving unit 1320 in the electronic device 1300 may be implemented through the wireless communication interface 1963 (optionally together with the antenna 1940) or the like.
  • the response unit 1330 in the electronic device 1300 may be implemented by the controller 1951 and the wireless communication interface 1963 (optionally together with the antenna 1940) and the like.
  • FIG. 19 is a block diagram showing an example of a schematic configuration of a smartphone 2000 to which the technology of the present disclosure can be applied.
  • Smartphone 2000 includes processor 2001, memory 2002, storage device 2003, external connection interface 2004, camera device 2006, sensor 2007, microphone 2008, input device 2009, display device 2010, speaker 2011, wireless communication interface 2012, one or more Antenna switch 2015, one or more antennas 2016, bus 2017, battery 2018, and auxiliary controller 2019.
  • the processor 2001 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 2000 .
  • the memory 2002 includes RAM and ROM, and stores data and programs executed by the processor 2001 .
  • the storage device 2003 may include a storage medium such as a semiconductor memory and a hard disk.
  • the external connection interface 2004 is an interface for connecting external devices such as memory cards and Universal Serial Bus (USB) devices to the smartphone 2000 .
  • the camera 2006 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 2007 may include a set of sensors, such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 2008 converts the sound input to the smartphone 2000 into an audio signal.
  • the input device 2009 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 2010, and receives operations or information input from a user.
  • the display device 2010 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 2000 .
  • the speaker 2011 converts the audio signal output from the smartphone 2000 into sound.
  • the wireless communication interface 2012 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2012 may typically include, for example, BB processor 2013 and RF circuitry 2014.
  • the BB processor 2013 can perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2014 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 2016 .
  • the wireless communication interface 2012 may be a chip module on which the BB processor 2013 and the RF circuit 2014 are integrated. As shown in FIG. 19 , the wireless communication interface 2012 may include multiple BB processors 2013 and multiple RF circuits 2014 .
  • FIG. 19 shows an example in which the wireless communication interface 2012 includes multiple BB processors 2013 and multiple RF circuits 2014, the wireless communication interface 2012 may include a single BB processor 2013 or a single RF circuit 2014.
  • the wireless communication interface 2012 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 2012 may include a BB processor 2013 and an RF circuit 2014 for each wireless communication scheme.
  • Each of the antenna switches 2015 switches the connection destination of the antenna 916 between a plurality of circuits included in the wireless communication interface 2012 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 2016 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2012 to transmit and receive wireless signals.
  • smartphone 2000 may include multiple antennas 2016 .
  • FIG. 19 shows an example in which the smartphone 2000 includes multiple antennas 2016
  • the smartphone 2000 may also include a single antenna 2016 .
  • the smartphone 2000 may include an antenna 2016 for each wireless communication scheme.
  • the antenna switch 2015 can be omitted from the configuration of the smartphone 2000 .
  • the bus 2017 connects the processor 2001, the memory 2002, the storage device 2003, the external connection interface 2004, the camera device 2006, the sensor 2007, the microphone 2008, the input device 2009, the display device 2010, the speaker 2011, the wireless communication interface 2012, and the auxiliary controller 2019 to each other connect.
  • the battery 2018 provides power to the various blocks of the smartphone 2000 shown in FIG. 19 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 2019 operates the minimum necessary functions of the smartphone 2000, eg, in a sleep mode.
  • the receiving unit 210 in the electronic device 200 previously described with reference to FIG. 2 may be implemented through a wireless communication interface 2012 (optionally together with an antenna 2016 ) or the like.
  • the determination unit 220 in the electronic device 200 may be implemented by the processor 2001 (optionally together with the wireless communication interface 2012 and the antenna 2016) or the like.
  • the requesting unit 230 in the electronic device 200 may be implemented by the processor 2001 and the wireless communication interface 2012 (optionally together with the antenna 2016) and the like.
  • FIG. 20 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 2120 to which the technology of the present disclosure can be applied.
  • the car navigation device 2120 includes a processor 2121, a memory 2122, a global positioning system (GPS) module 2124, a sensor 2125, a data interface 2126, a content player 2127, a storage medium interface 2128, an input device 2129, a display device 2130, a speaker 2131, a wireless A communication interface 2133, one or more antenna switches 2136, one or more antennas 2137, and a battery 2138.
  • GPS global positioning system
  • the processor 2121 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 2120 .
  • the memory 2122 includes RAM and ROM, and stores data and programs executed by the processor 2121 .
  • the GPS module 2124 measures the position (such as latitude, longitude, and altitude) of the car navigation device 2120 using GPS signals received from GPS satellites.
  • Sensors 2125 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 2126 is connected to, for example, the in-vehicle network 2141 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 2127 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 2128 .
  • the input device 2129 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 2130, and receives an operation or information input from a user.
  • the display device 2130 includes a screen such as an LCD or OLED display, and displays an image of a navigation function or reproduced content.
  • the speaker 2131 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 2133 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 2133 may generally include, for example, BB processor 2134 and RF circuitry 2135.
  • the BB processor 2134 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 2135 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 2137 .
  • the wireless communication interface 2133 can also be a chip module on which the BB processor 2134 and the RF circuit 2135 are integrated. As shown in FIG.
  • the wireless communication interface 2133 may include a plurality of BB processors 2134 and a plurality of RF circuits 2135 .
  • FIG. 20 shows an example in which the wireless communication interface 2133 includes multiple BB processors 2134 and multiple RF circuits 2135
  • the wireless communication interface 2133 may include a single BB processor 2134 or a single RF circuit 2135 .
  • the wireless communication interface 2133 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 2133 may include the BB processor 2134 and the RF circuit 2135 for each wireless communication scheme.
  • Each of the antenna switches 2136 switches the connection destination of the antenna 2137 among a plurality of circuits included in the wireless communication interface 2133, such as circuits for different wireless communication schemes.
  • Each of the antennas 2137 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 2133 to transmit and receive wireless signals.
  • the car navigation device 2120 may include a plurality of antennas 2137 .
  • FIG. 20 shows an example in which the car navigation device 2120 includes a plurality of antennas 2137 , the car navigation device 2120 may also include a single antenna 2137 .
  • the car navigation device 2120 may include an antenna 2137 for each wireless communication scheme.
  • the antenna switch 2136 may be omitted from the configuration of the car navigation device 2120.
  • the battery 2138 provides power to the various blocks of the car navigation device 2120 shown in FIG. 20 via feeders, which are partially shown in the figure as dashed lines.
  • the battery 2138 accumulates power supplied from the vehicle.
  • the receiving unit 210 in the electronic device 200 previously described with reference to FIG. 2 may be implemented through a wireless communication interface 2133 (optionally together with an antenna 2137 ) or the like.
  • the determination unit 220 in the electronic device 200 may be implemented by the processor 2121 (optionally together with the wireless communication interface 2133 and the antenna 2137) or the like.
  • the request unit 230 in the electronic device 200 may be implemented by the processor 2121 and the wireless communication interface 2133 (optionally together with the antenna 2137 ) and the like.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 2140 that includes one or more blocks of a car navigation device 2120 , an in-vehicle network 2141 , and a vehicle module 2142 .
  • the vehicle module 2142 generates vehicle data such as vehicle speed, engine speed, and failure information, and outputs the generated data to the in-vehicle network 2141 .
  • the present disclosure also proposes a program product storing machine-readable instruction codes.
  • the instruction code is read and executed by a machine, the above-mentioned method according to the embodiment of the present disclosure can be executed.
  • a storage medium for carrying the above-mentioned program product storing the machine-readable instruction code is also included in the disclosure of the present disclosure.
  • the storage medium includes, but is not limited to, a floppy disk, an optical disk, a magneto-optical disk, a memory card, a memory stick, and the like.
  • a program constituting the software is installed from a storage medium or a network to a computer having a dedicated hardware configuration that can execute various functions and the like when various programs are installed.
  • the units shown in dotted boxes in the functional block diagram shown in the accompanying drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to realize the required function .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了电子设备、无线通信方法和非暂态计算机可读存储介质。电子设备包括处理电路,该处理电路被配置为:接收分别来自第一发送和接收点及第二发送和接收点的、预先配置的第一参考信号集合和第二参考信号集合,每个参考信号集合包括至少一个参考信号;基于所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号;当确定至少一个参考信号发生波束失败事件时,向基站发送波束失败恢复请求。 (图2)

Description

电子设备、无线通信方法和非暂态计算机可读存储介质
本申请要求于2020年10月22日提交中国专利局、申请号为202011140258.3、发明名称为“电子设备、无线通信方法和非暂态计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及适合于在多个发送和接收点(transmission and receiption point,TRP)(也称为多传输点)的场景下进行波束失败恢复的电子设备、无线通信方法以及非暂态计算机可读存储介质。
背景技术
为了确保诸如第五代(5th generation,5G)移动通信技术的高频无线通信***中采用方向性波束进行的通信的可靠性,现有技术中已经提出了波束失败恢复(Beam Failure Recovery,BFR)机制。在该机制中,用户设备监听基站为其配置的用于波束失败探测(Beam Failure Detection,BFD)的参考信号集合中的各个参考信号,并在所有参考信号(即,所有参考信号对应的波束)都发生波束失败时,向自己的高层上报波束失败实例(Beam Failure Instance),以便例如在高层对波束失败实例的计数达到预定阈值时确认发生波束失败事件,从而向基站请求波束失败恢复处理。
然而,在多TRP场景中,由于不同TRP的位置不同,因此波束方向也会不同,这导致可能存在一个TRP发生波束失败而另一个TRP正常工作的情况。在现有技术的波束失败恢复机制中,用户设备在这种情况下不会请求进行波束失败恢复处理,从而影响了用户设备的性能。
因此,需提出适合于多TRP场景的波束失败恢复流程。
发明内容
在下文中给出了关于本公开的简要概述,以便提供关于本公开的某些方面的基本理解。但是,应当理解,这个概述并不是关于本公开的穷举性概述。它并不是意图用来确定本公开的关键性部分或重要部分,也不是意图用来限定本 公开的范围。其目的仅仅是以简化的形式给出关于本公开的某些概念,以此作为稍后给出的更详细描述的前序。
鉴于上述问题,本公开的至少一方面的目的是提供一种电子设备、无线通信方法以及非暂态计算机可读存储介质,其适合于在多TRP场景下进行波束失败恢复处理。
根据本公开的一个方面,提供了一种电子设备,其包括处理电路,该处理电路被配置为:接收分别来自第一发送和接收点及第二发送和接收点的、预先配置的第一参考信号集合和第二参考信号集合,每个参考信号集合包括至少一个参考信号;基于所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号;当确定至少一个参考信号发生波束失败事件时,向基站发送波束失败恢复请求。
根据本公开的另一方面,提供了一种电子设备,其包括处理电路,该处理电路被配置为:为用户设备提供波束失败恢复配置信息,所述配置信息包括关于第一发送和接收点的第一参考信号集合以及第二发送和接收点的第二参考信号集合的配置信息,每个参考信号集合包括至少一个参考信号,以供用户设备测量各个参考信号集合的各个参考信号的信号质量并基于所测量的信号质量确定发生波束失败事件的波束失败参考信号;接收用户设备在确定至少一个参考信号发生波束失败事件时发送的波束失败恢复请求。
根据本公开的又一方面,还提供了一种无线通信方法,其包括:接收分别来自第一发送和接收点及第二发送和接收点的、预先配置的第一参考信号集合和第二参考信号集合,每个参考信号集合包括至少一个参考信号;基于所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号;当确定至少一个参考信号发生波束失败事件时,向基站发送波束失败恢复请求。
根据本公开的又一方面,还提供了一种无线通信方法,其包括:为用户设备提供波束失败恢复配置信息,所述配置信息包括关于第一发送和接收点的第一参考信号集合以及第二发送和接收点的第二参考信号集合的配置信息,每个参考信号集合包括至少一个参考信号,以供用户设备测量各个参考信号集合的各个参考信号的信号质量并基于所测量的信号质量确定发生波束失败事件的波束失败参考信号;接收用户设备在确定至少一个参考信号发生波束失败事件 时发送的波束失败恢复请求。
根据本公开的再一方面,还提供了一种存储有可执行指令的非暂态计算机可读存储介质,该可执行指令当由处理器执行时,使得处理器执行上述无线通信方法或电子设备的各个功能。
根据本公开的其它方面,还提供了用于实现上述根据本公开的无线通信方法的计算机程序代码和计算机程序产品。
根据本公开的实施例的至少一方面,针对多TRP场景,用户设备能够对每个TRP的单独配置的参考信号集合进行波束失败探测,并且可以在其中部分(至少一个)参考信号发生波束失败时即触发波束失败恢复流程,从而避免了现有技术中对部分TRP的波束失败的无视所导致的性能降低。
在下面的说明书部分中给出本公开实施例的其它方面,其中,详细说明用于充分地公开本公开实施例的优选实施例,而不对其施加限定。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出现有技术中多TRP场景下的波束失败事件的示例的示意图;
图2是示出根据本公开实施例的用户设备侧的电子设备的一个配置示例的框图;
图3是用于说明根据本公开实施例的一个示例应用场景的示意图;
图4是用于说明图2所示的电子设备发送失败恢复请求的第一示例场景的说明图;
图5是用于说明图2所示的电子设备发送失败恢复请求的第二示例场景的说明图;
图6是用于说明图2所示的电子设备发送失败恢复请求的第三示例场景的说明图;
图7是用于说明图2所示的电子设备利用MAC CE发送的波束失败恢复请求的一部分的示例格式的说明图;
图8是用于说明在图5所示的示例中采用图7所示的示例格式发送的示例MAC CE的说明图;
图9是用于说明图2所示的电子设备利用MAC CE发送的波束失败恢复请求的一部分的另一示例格式的说明图;
图10是用于说明在图5所示的示例中采用图9所示的示例格式发送的示例MAC CE的说明图;
图11是用于说明图2所示的电子设备利用CSI报告发送的波束失败恢复请求的一部分的示例格式的说明图;
图12是用于说明在图5所示的示例中采用图11所示的示例格式发送的示例CSI报告的说明图;
图13是示出根据本公开实施例的基站侧的电子设备的一个配置示例的框图;
图14是示出根据本公开实施例的信息交互过程的示例的示意图;
图15是示出根据本公开实施例的用户设备侧的无线通信方法的过程示例的流程图;
图16是示出根据本公开实施例的基站侧的无线通信方法的过程示例的流程图;
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图;
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图;
图19是示出可以应用本公开内容的技术的智能电话的示意性配置的示例的框图;
图20是示出可以应用本公开内容的技术的汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.问题的描述
2.电子设备的配置示例
2.1用户设备侧的电子设备的配置示例
2.1.1配置示例
2.1.2发送波束失败恢复请求的示例场景
2.1.3发送波束失败恢复请求的示例方式
2.2基站侧的电子设备的配置示例
2.2.1配置示例
2.2.2接收波束失败恢复请求的示例场景
2.2.3接收的波束失败恢复请求的示例
3.信息交互过程的示例
4.方法实施例
4.1用户设备侧的方法实施例
4.2基站侧的方法实施例
5.应用示例
<1.问题的描述>
在现有技术的波束失败恢复(Beam Failure Recovery,BFR)机制中,用户设备监听基站为其配置的用于波束失败探测的参考信号集合中的各个参考信号,并在所有参考信号(即,所有参考信号对应的波束)都发生波束失败时,向自己的高层上报波束失败实例(Beam Failure Instance),以便例如在高层对波束失败实例的计数达到预定阈值时确认发生波束失败事件,从而向基站请求 波束失败恢复处理。
然而,在诸如图1所示的多TRP场景中,现有技术的上述波束失败恢复机制可能会导致用户性能的降低。图1是示出现有技术中多TRP场景下的波束失败的示例的示意图。图1所示的用户设备UE被预先配置了用于波束失败探测的参考信号集合{RS 0,RS 1},并且监控来自TRP0和TRP1的参考信号RS 0和RS 1。由于TRP 0和TRP 1的位置不同,其发送的参考信号的波束方向也不同,导致可能存在来自TRP 0的参考信号RS 0和RS 1(图中未标记)均发生波束失败事件而来自TRP 1的参考信号RS 1正常工作的情况。在现有技术的波束失败恢复机制中,对UE而言,至少参考信号RS 1没有发生波束失败,因此不会请求波束失败恢复处理,从而影响了UE性能。
为此,本公开提供了一种电子设备、电子设备中的无线通信方法和非暂态计算机可读存储介质,其适合于在多TRP场景下进行波束失败恢复处理。
根据本公开的用户设备侧的电子设备可以被实现为各种用户设备,例如移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。上述用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以包括安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)等。
根据本公开的基站侧的电子设备可以是基站设备本身,例如可以是eNB(演进型节点B),也可以是gNB。另外,在根据本公开的上下文中,与基站侧的电子设备和/或用户设备侧的电子设备进行交互的TRP可以是任何类型。该TRP可以具备发送和接收功能,例如可以从用户设备和基站设备接收信息,也可以向用户设备和基站设备发送信息。在一个示例中,TRP可以为用户设备提供服务,并且受基站设备的控制。也就是说,基站设备可以通过TRP向用户设备提供服务。在下文的一些具体实施例或示例中,直接以基站设备作为基站侧的电子设备的示例进行描述,但本公开不限于此,而是可以适当地适用于具有类似功能的电子设备的情形。
<2.电子设备的配置示例>
[2.1用户设备侧的电子设备的配置示例]
(2.1.1配置示例)
图2是示出根据本公开的实施例的用户设备侧的电子设备的一个配置示例的框图。
如图2所示,电子设备200可以包括接收单元210、确定单元220以及请求单元230。
这里,电子设备200的各个单元都可以包括在处理电路中。需要说明的是,电子设备200既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
此外,这里将电子设备200作为用户设备本身的示例进行描述;但本领域技术人员可以理解,电子设备200也可以实现为具有接收单元210、确定单元220以及请求单元230的功能并且例如附接至用户设备或与用户设备通信的其他的电子设备。
根据本公开的实施例,电子设备200的接收单元210可以被配置为接收分别来自第一发送和接收点(第一TRP)及第二发送和接收点(第二TRP)的、预先配置的第一参考信号集合和第二参考信号集合,每个参考信号集合包括至少一个参考信号。确定单元220可以被配置为基于(通过确定单元220自身或电子设备200的其他适当部件)所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号。请求单元230可以被配置为当确定至少一个参考信号发生波束失败事件时,向基站发送波束失败恢复请求。
接下来,将结合图3所示的示例,说明电子设备200及其各个单元执行的处理的进一步的细节。图3是用于说明根据本公开的实施例的一个示例应用场景的示意图,其中,第一TRP和第二TRP即TRP1和TRP2分别被配置了用于进行波束失败探测的第一参考信号集合q 01={BFD-RS 1-0,BFD-RS 1-1}和第二参考信号集合q 02={BFD-RS 2-0,BFD-RS 2-1}。
作为示例,这里示出了每个参考信号集合包括两个参考信号,但本实施例不限于此,每个参考信号集合的参考信号的个数取决于基站的配置,并且是由基站根据作为电子设备200的示例的UE的能力适当配置的。参考信号集合中 用于波束失败探测的参考信号(BFD-RS)例如可以是预先配置的非周期性信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)信号等。
优选地,在诸如图3所示的示例应用中,在电子设备200的接收单元210接收来自各个TRP的参考信号集合之前,其可以预先从基站接收例如通过无线资源控制(radio resource control,RRC)信令发送的波束失败恢复配置信息。电子设备200通过接收单元210预先接收的波束失败恢复配置信息例如可以包括包括关于第一发送和接收点(TRP1)的第一参考信号集合(q 01)以及第二发送和接收点(TRP2)的第二参考信号集合(q 02)的配置信息。关于参考信号集合的这种配置信息例如可以包括用于指示各个参考信号集合的各个参考信号BFD-RS的信息。作为示例,这种配置信息可以包括各个BFD-RS(例如周期性CSI-RS)的索引(index)(即,标识信息的示例)。
此外,可选地,电子设备200预先接收的波束失败恢复配置信息例如还可以包括关于波束失败事件的标准的配置信息。关于波束失败事件的标准的的配置信息例如可以包括但不限于:指示用于确定各个BFD-RS发生波束失败实例的信号质量阈值(例如块差错率(Block Error Rate,BLER)的阈值BLER_s)的配置信息,其中,作为信号质量阈值的BLER_s可以是针对每个BFD-RS单独配置的也可以是统一配置的;关于为每个BFD-RS单独配置的、对波束失败实例计数的计数器的配置信息(例如包括计数器的初始值例如0以及用于确定波束失败事件的最大计数阈值值),等等。
优选地,电子设备200通过接收单元210预先从基站接收的波束失败恢复配置信息还可以例如包括关于第一发送和接收点(TRP1)的第一候选波束集合(q 11)以及第二发送和接收点(TRP2)的第二候选波束集合(q 12)的配置信息。换言之,在本公开实施例的示例场景中,基站可以针对每个TRP预先配置了候选波束集合,其中每个候选波束集合可以包括至少一个候选波束,并且用户设备侧的电子设备200可以经由接收单元210预先获取基站关于这样的候选波束集合的配置信息。作为示例,这种配置信息可以包括与各个候选波束集合中的各个候选波束对应的诸如周期性CSI-RS和/或同步信号和物理广播信道(Physical Broadcast Channel,PBCH)块(Synchronization Signal and PBCH block,SSB)参考信号的索引(即,标识信息的示例)。
此外,可选地,电子设备200预先接收的波束失败恢复配置信息例如还可以包括关于确定候选波束的标准的配置信息。关于确定候选波束的标准的配置信息例如可以包括指示用于确定候选波束的信号质量阈值(诸如参考信号接收功率(Reference Signal Receive Power,RSRP)阈值)的配置信息,等等。
可选地,电子设备200预先接收的波束失败恢复配置信息例如还可以包括关于作为用户设备的电子设备200要发送的波束失败恢复请求的配置信息。关于波束失败恢复请求的配置信息例如可以包括用于指示能够作为波束失败恢复请求的至少一部分的调度请求的信息(例如指示调度请求的标识的信息),用于将能够作为波束失败恢复请求的至少一部分的调度请求与波束失败参考信号相关联的信息,等等。电子设备200可以根据关于波束失败恢复请求的配置信息,以适当的方式发送波束失败恢复请求,稍后将在“发送波束失败恢复请求的示例方式”部分对此进行进一步的描述。
此外,可选地,电子设备200预先接收的波束失败恢复配置信息例如还可以包括关于优先级的配置信息,例如可以包括将波束失败恢复请求的优先级设置为高于混合自动重传请求的优先级的配置信息。关于优先级的配置信息能够使得例如当通过物理上行控制信道(Physical Uplink Control Channel,PUCCH)发送的波束失败恢复请求或者波束失败恢复请求的至少一部分(例如稍后具体描述的调度请求)与混合自动重传请求发生碰撞时,电子设备优先发送波束失败恢复请求而例如丢弃冲突的混合自动重传请求并在后续的适当时机进行混合自动重传请求的发送。
在一个示例中,基于接收单元210从基站预先接收的波束失败恢复配置信息,确定单元220可以基于(通过确定单元220自身或电子设备200的其他适当部件)所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号。例如,针对参考信号集合的中的给定BFD-RS,确定单元210可以周期性地测量该BFD-RS的BLER,并且每当所测量的BLER低于波束失败恢复配置信息所指示的的BLER阈值时,确定发生一次波束失败实例并对该BFD-RS的计数器的计数加1。当BFD-RS的计数器的计数达到波束失败恢复配置信息所指示的该计数器的最大计数阈值时,确定单元220可以确定该BFD-RS发生波束失败事件。当两个或更多个BFD-RS的计数器的计数同时达到最大计数阈值时,确定单元220可以确定这些BFD-RS 同时发生波束失败事件。
当确定单元220确定发生波束失败事件时,可选地,确定单元220还可以进一步在来自与波束失败参考信号属于的参考信号集合对应的发送和接收点的、预先配置的候选波束集合中,确定候选波束。所确定的候选波束例如可以是相应的候选波束集合中的信号质量(例如以RSRP表示)高于例如波束失败恢复配置信息所指示的预定阈值的一个或多个候选波束,也可以是相应的候选波束集合中的信号质量最高的一个候选波束。
此外,当确定单元220确定一个或更多个参考信号发生波束失败事件时,请求单元230可以向基站发送波束失败恢复请求(Beam failure recovery request,BFRQ)。请求单元230所发送的波束失败恢复请求例如可以向基站指示波束失败事件、波束失败参考信号和/或相应的候选波束。
可选地,请求单元230可以将波束失败恢复请求分为不同的部分例如第一和第二部分并且通过不同的步骤发送这些部分。例如,请求单元230可以通过物理层的调度请求(scheduling request,SR)发送波束失败恢复请求的第一部分,该调度请求可以向基站请求用于发送第二部分的上行资源,并且请求单元230可以利用该上行资源发送波束失败恢复请求的第二部分。稍后在“发送波束失败恢复请求的示例方式”的部分对此进行详细描述。
对于电子设备200通过请求单元230发送的波束失败恢复请求,基站可以向电子设备200发送相应的响应或确认消息。电子设备200例如可以经由接收单元210接收来自基站的这种响应或确定消息,并据此进行后续的波束失败恢复处理。例如,当电子设备200发送的波束失败恢复请求包括指示候选波束的信息时,则基站的响应或确定消息意味着对相应的候选波束的确认,使得电子设备200可以基于该消息以相应的候选波束取代波束失败参考信号,作为相应的参考信号集合中的参考信号BFD-RS,并且例如采用各种现有技术中的方式进行适当的后续处理。
以上描述了本公开的实施例的用户设备侧的电子设备的配置示例。如上所述,针对多TRP场景,根据本公开的实施例的电子设备能够对每个TRP的单独配置的参考信号集合进行波束失败探测,并且可以在其中部分(至少一个)参考信号发生波束失败时即触发波束失败恢复流程,从而避免了现有技术中对部分TRP的波束失败的无视所导致的性能降低。
接下来,将继续结合图3所示的示例应用,描述电子设备200发送波束失败恢复请求的示例发送场景以及示例发送方式。
(2.1.2发送波束失败恢复请求的示例场景)
第一示例场景
图4示意性地示出了图2所示的电子设备200发送失败恢复请求的第一示例场景中(例如通过确定单元220)针对各个参考信号集合中的参考信号(BFD-RS1-0,BFD-RS1-1,BFD-RS2-0,BFD-RS2-1)测量的BLER曲线(BLER1-0、BLER1-1、BLER2-0、BLER2-1)的示意图。
图4中的点A表示电子设备200检测到针对TRP2配置的第二参考信号集合q 02中BFD-RS 2-0对应的BLER2-0首次超过阈值BLER_s(阈值BLER_s例如设置为10%),此时确定单元220可以启动预先配置的、BFD-RS 2-0对应的计数器Counter 2_0,并将其计数Count_Num 2-0更新为加一(Count_Num 2-0=1),并且随后每当BLER2-0超过阈值BLER_s时都再加一。注意,为便于描述,在本示例场景以及后续的第二和第三示例场景中,针对各个BFD-RS设置了相同的阈值BLER_s。本领域技术人员可以理解,可以针对各个BFD-RS设置了不同的阈值。
图4中的点B表示由确定单元220维持的BFD-RS 2-0的计数器Counter 2_0达到了最大计数阈值MaxCount_Num 2_0。在这种情况下,确定单元220可以确定针对TRP2配置的第二参考信号集合q 02中的BFD-RS 2-0(或其对应的波束)发生了波束失败事件。此时,可选地,电子设备200还可以通过确定单元220确定针对TRP2配置的第二候选波束集合中的信号质量较高的候选波束(例如具有最高的RSRP的候选波束)。
基于确定单元220的上述确定,电子设备200可以通过请求单元230向基站发送波束失败恢复请求,该请求例如可以指示波束失败参考信号BFD-RS 2-0以及相应的候选波束。
第二示例场景
图5示意性地示出了电子设备200发送失败恢复请求的第二示例场景中针对各个参考信号测量的BLER曲线的示意图。
与图4中的点A类似地,图5中的点A和A’分别表示电子设备200检测到针对TRP1配置的第一参考信号集合q 01中BFD-RS 1-0和BFD-RS 1-1的BLER 首次超过阈值BLER_s,使得相应的计数器Counter 1-0和Counter 1-1的计数Count_Num 1-0和Count_Num 1-1首次加一。
此外,与图4中的点B类似地,图5中的点B和B’分别表示计数器Counter 1-0和Counter 1-1的计数Count_Num 1-0和Count_Num 1-1达到了各自最大计数阈值MaxCount_Num 1-0和MaxCount_Num 1-1。在这种情况下,确定单元220可以确定针对TRP1配置的第一参考信号集合q 01中的BFD-RS 1-0和BFD-RS 1-1(或其对应的波束)同时发生了波束失败事件。此时,可选地,电子设备200还可以通过确定单元220确定针对TRP1配置的第一候选波束集合中的信号质量较高的候选波束。作为示例,当第一候选波束集合包括两个以上的候选波束时,确定单元220可以确定例如具有最高的RSRP的两个候选波束;当第一候选波束集合包括两个候选波束时,确定单元220可以直接将这两个候选波束确定为候选波束。
基于确定单元220的上述确定,电子设备200可以通过请求单元230向基站发送波束失败恢复请求,该请求例如可以指示波束失败参考信号BFD-RS 1-0和BFD-RS 1-1以及相应的候选波束。
换言之,优选地,当确定多个参考信号同时发生波束失败事件时,电子设备200可以例如通过请求单元230发送指示这些参考信号的候选波束的波束失败恢复请求。这种配置使得电子设备可以只需执行一次波束失败恢复流程,从而可以降低信令开销。
第三示例场景
图6示意性地示出了电子设备200发送失败恢复请求的第三示例场景中针对各个参考信号测量的BLER曲线的示意图。
图6中的点A和A’与图5中的点A和A’类似,并且图6中的点B和B’与图5中的点B和B’类似,其分别示出了参考信号BFD-RS 1-0和BFD-RS 2-0的BLER曲线首次超过阈值BLER_s使得例如确定单元220将相应的计数器Counter 1-0和Counter 2-0的计数Count_Num 1-0和Count_Num 2-0首次加一以及这些计数分别达到最大阈值MaxCount_Num 1-0和MaxCount_Num 2-0的点。
在与点B和B’对应的时间,确定单元220可以确定BFD-RS 1-0和BFD-RS 2-0发生波束失败事件。此外,可选地,确定单元220可以确定TRP1和TRP2各自的候选波束集合中的信号质量较高的候选波束。作为示例,确定单元220 可以确定第一和第二候选波束集合中各自具有最高的RSRP的一个候选波束,分别作为BFD-RS 1-0和BFD-RS 2-0的候选波束。
基于确定单元220的上述确定,电子设备200可以通过请求单元230向基站发送波束失败恢复请求,该请求例如可以指示波束失败参考信号BFD-RS 1-0和BFD-RS 2-0以及相应的候选波束。
图6与图5所示的示例的区别在于,在图6的示例中,发生波束失败事件的多个参考信号(BFD-RS 1-0和BFD-RS 2-0)分别属于第一参考信号集合和第二参考信号集合,即,分别对应于第一和第二TRP。换言之,本实施例的电子设备例如通过确定单元220可以确定跨TRP的同时发生的波束失败事件,并且针对这些波束失败事件发送一个波束失败恢复请求,从而可以降低信令开销。
(2.1.3发送波束失败恢复请求的示例方式)
如前所述,电子设备200例如可以通过请求单元230将波束失败恢复请求分为不同的部分,例如第一部分和第二部分,并且利用通过不同步骤/通过不同方式发送这些部分。可选地,电子设备200可以根据关于波束失败恢复请求的配置信息,以适当的方式发送波束失败恢复请求。
接下来,将描述发送波束失败恢复请求的示例方式。
第一示例方式
在本示例中,电子设备200例如通过请求单元230发送的波束失败恢复请求可以包括:报告波束失败事件的第一部分以及指示波束失败参考信号和相应的候选波束的第二部分。
例如,电子设备200可以通过请求单元230以物理层的调度请求(scheduling request,SR)向基站发送波束失败事件的第一部分,以向基站指示波束失败参考事件并请求上行链路资源。这里,调度请求被用于波束失败恢复请求,因此,在本申请的上下文中,可以将其称为链路恢复请求(link recovery request,LRR)。这样的调度请求或链路恢复请求可以在任何时候被用户设备触发发送给基站侧,其为用户设备在发生波束失败后及时向基站侧进行报告提供了条件。当电子设备200例如通过接收单元210接收基站基于该调度请求发送的上行链路授权(UL grant)之后,可以利用所请求到的(所授权的)上行链路资源(例如物理上行共享信道(Physical Uplink Shared CHannel,PUSCH) 资源)向基站发送波束失败恢复请求的第二部分,以指示波束失败参考信号和相应的候选波束。可选地,电子设备200所采用的调度请求可以是基站为其预先配置的。例如,电子设备200通过接收单元210预先接收的波束失败恢复配置信息中可以包括关于波束失败恢复请求的配置信息。关于波束失败恢复请求的配置信息例如可以指示为电子设备配置的一个或多个调度请求的标识(SchedulingRequestID),该一个或多个调度请求能够被电子设备用来发送波束失败恢复请求的第一部分,以向基站报告波束失败事件并且同时请求用于发送波束失败恢复请求的第二部分的上行链路资源。这里,由于所配置的调度请求除了指示波束失败事件之外没有提供其他信息,因此在本示例中,关于波束失败恢复请求的配置信息优选地例如可以指示为电子设备配置的一个调度请求的标识(SchedulingRequestID)。
在这种情况下,电子设备200可以通过接收单元210发送基站为其预先配置的任一调度请求,作为波束失败恢复请求的第一部分。作为示例,调度请求可以通过PUCCH发送,并且例如可以具有比特序列的形式,该比特序列的不同取值例如可以对应不同的调度请求的ID。
作为示例,电子设备200可以通过请求单元230利用诸如通过以上调度请求所请求到的(基站所授权的)上行链路资源,通过媒体接入层的控制元素(MAC CE)向基站发送指示波束失败参考信号和相应的候选波束的、波束失败恢复请求的第二部分。
优选地,作为波束失败恢复请求的第二部分的MAC CE可以包括指示各个参考信号集合的各个参考信号是否发生波束失败事件的第一信息以及指示波束失败参考信号的候选波束的第二信息。
图7示意性地示出了例如针对图3所示的示例应用场景(两个TRP),电子设备200利用MAC CE发送的波束失败恢复请求的第二部分的示例格式。图7中的第一个八位组(oct)是用于指示各个参考信号集合的各个参考信号BFD-RS是否发生波束失败事件的第一信息的示例,其中,C i(i=1,2,3,4)表示全部两个参考信号集合中统一编号的4个BFD-RS中第i个BFD-RS是否发生波束失败事件(例如以1表示发生波束失败事件,0表示没有发生);R表示保留位,例如可以为0。
图7中的其余八位组(oct)是用于指示波束失败参考信号的候选波束的 第二信息的示例。在每个八位组中,AC通过0或1表示该八位组的候选波束信息是否存在。例如,若AC为1并且表示存在该信息,则在保留位R之后的六位中指示对应候选波束的索引(候选波束的ID);若AC为0表示不存在该信息,则在保留位R之后的六位中继续发送6位的保留比特(例如全0的比特序列)。这种八位组的个数可以与发生波束失败事件的BFD-RS的个数对应,其中,各个八位组依次用于指示相应的发生波束失败事件的BFD-RS的候选波束信息。例如,可以预先对各个候选波束集合中的全部候选波束进行编码,例如统一针对两个候选波束集合中的共4个候选波束编码,例如为{000001}至{000011},其余为保留位。在本示例中,最多同时发生全部4个BFD-RS的波束失败事件,因此,最多可以包括4个这样的八位组。
为便于理解,图8示意性地示出了说明在图5所示的示例中采用图7所示的示例格式发送的示例MAC CE。在该示例场景下,TRP1的第一参考信号集合q 01中的BFD-RS 1-0和BFD-RS 1-1同时发生波束失败事件。因此,在图8所示的示例MAC CE中,第一个八位组中分别与BFD-RS 1-0和BFD-RS 1-1对应的C 1和C 2均为1,表示这两个BFD-RS发生波束失败事件;分别与TRP2的第二参考信号集合q 02中的BFD-RS 2-0和BFD-RS 2-1对应的C 3和C 4均为0,表示这两个BFD-RS没有发生波束失败事件。图8中的接下来的两个八位组依次与发生波束失败事件的BFD-RS 1-0和BFD-RS 1-1相关联。这两个八位组各自利用其第一位AC设置为1表示存在候选波束的信息,并且各自利用其后六位分别指示了BFD-RS 1-0或BFD-RS 1-1的候选波束的ID。
第二示例方式
在本示例中,电子设备200例如通过请求单元230发送的波束失败恢复请求可以包括:指示波束失败参考信号的第一部分以及指示相应的候选波束的第二部分。
例如,电子设备200可以通过请求单元230以物理层的调度请求(scheduling request,SR)向基站发送波束失败事件的第一部分,以向基站指示波束失败参考信号并请求上行链路资源。优选地,电子设备200所发送的调度请求可以与波束失败参考信号相关联。当电子设备200例如通过接收单元210接收基站基于该调度请求发送的上行链路授权(UL grant)之后,可以利用所请求到的(所授权的)上行链路资源(例如PUSCH资源)向基站发送波 束失败恢复请求的第二部分,以指示针对波束失败参考信号的相应的候选波束。
优选地,电子设备200所采用的调度请求可以是基站为其预先配置的。例如,电子设备200通过接收单元210预先接收的波束失败恢复配置信息中可以包括关于波束失败恢复请求的配置信息。关于波束失败恢复请求的配置信息例如可以包括将多个调度请求分别与各个参考信号集合的各个参考信号BFD-RS相关联的配置信息。例如,该配置信息可以指示为电子设备配置的多个调度请求的标识(SchedulingRequestID)与各个BFD-RS之间的关联。这些调度请求能够被电子设备用来发送波束失败恢复请求的第一部分,以向基站指示与该调度请求相关联的参考信号发生波束失败事件,并且同时请求用于发送波束失败恢复请求的第二部分的上行链路资源。举例而言,对于图5的示例应用中存在4个BFD-RS,基站可以预先配置相应的4个调度请求,即SR0,SR1,SR2,SR3,分别用于表示相应的BFD-RS发生波束失败事件。即,关于波束失败恢复请求的配置信息可以指示SR0,SR1,SR2,SR3与BFD-RS 1-0,BFD-RS 1-1,BFD-RS 2-0,BFD-RS 2-1之间一一对应的对应关系或关联。
在这种情况下,当例如通过确定单元230确定发生波束失败事件、即确定了波束失败参考信号时,电子设备200可以根据关于波束失败恢复请求的配置信息,通过与波束失败参考信号相关联的调度请求发送波束失败恢复请求的第一部分。作为示例,调度请求可以通过PUCCH发送,并且例如可以具有比特序列的形式,该比特序列的不同取值例如可以对应不同的调度请求的ID。
这里,作为发送以上调度请求的方式,例如可以预先关于与各个参考信号集合中的全部参考信号相关联的所有调度请求(所有调度请求的ID)进行统一编码,例如为{001}至{011},其余为保留位(考虑到全0比特序列可能被用作保留位,因此需要发送非0序列作为有效的调度请求)。例如,对于图5的示例应用,当TRP1的第一参考信号集合q 01中的BFD-RS 1-0发生波束失败事件时,电子设备200可以发送与其对应的调度请求SR0,其例如具有{001}的格式。例如当TRP2的第二参考信号集合q 02中的BFD-RS 2-1发生波束失败事件时,电子设备200可以发送与其对应的调度请求SR3,其例如具有{011}的格式。当多个BFD-RS同时发生波束失败事件时,例如可以发送多个相应的调度请求。当基站例如在一定时间内连续接收到多个调度请求时,基站可以判定 其为同时发生的波束失败事件,并且统一分配上行链路资源。
作为示例,电子设备200可以通过请求单元230利用诸如通过以上调度请求所请求到的(基站所授权的)上行链路资源(例如PUSCH资源),通过媒体接入层的控制元素(MAC CE)或非周期信道状态信息报告(非周期CSI报告)向基站发送指示波束失败参考信号的候选波束的、波束失败恢复请求的第二部分。
例如,用于发送波束失败恢复请求的第二部分的MAC CE或非周期CSI报告可以直接包括波束失败参考信号的候选波束的标识信息。接下来,将分别参照图9至图10以及图11至图12描述这样的MAC CE的示例格式以及非周期CSI报告的示例格式。
首先参照图9,其示意性地示出了在波束失败恢复请求的第二部分用于指示候选波束的情形下,例如针对图3所示的示例应用场景(两个TRP),电子设备200利用MAC CE发送的波束失败恢复请求的第二部分的示例格式。
在图9的每个八位组(oct)中,AC通过0或1表示该八位组的候选波束信息是否存在。例如,若AC为1以表示存在该信息,则在保留位R之后的六位中指示对应候选波束的索引(候选波束的ID);若AC为0以表示不存在该信息,则在保留位R之后的六位中继续发送6位的保留比特(例如全0的比特序列)。例如,可以预先对各个候选波束集合中的全部候选波束进行编码,例如统一针对两个候选波束集合中的共4个候选波束编码,例如为{000001}至{000011},其余为保留位。这种八位组的个数可以与发生波束失败事件的BFD-RS(波束失败参考信号)的个数对应,其中,各个八位组依次用于指示相应的发生波束失败事件的BFD-RS的候选波束信息。在本示例中,最多同时发生全部4个BFD-RS的波束失败事件,因此,最多可以包括4个这样的八位组。
为便于理解,图10示意性地示出了说明在图5所示的示例中采用图9所示的示例格式发送的示例MAC CE。在该示例场景下,TRP1的第一参考信号集合q 01中的BFD-RS 1-0和BFD-RS 1-1同时发生波束失败事件。因此,在图10所示的示例MAC CE中,两个八位组依次与发生波束失败事件的BFD-RS 1-0和BFD-RS 1-1相关联,并且各自利用其第一位AC设置为1表示存在候选波束的信息,利用其后六位分别指示了BFD-RS 1-0或BFD-RS 1-1的候选波束的ID。
接着参照图11,其示意性地示出了在波束失败恢复请求的第二部分用于指示候选波束的情形下,例如针对图3所示的示例应用场景(两个TRP),电子设备200利用非周期CSI报告发送的波束失败恢复请求的第二部分的示例格式。
图11的示例CSI报告的CSI字段可以包括两个部分。第一部分是前面的若干个(最多4个)字段(每个字段例如可以为6位)用于依次指示相应的发生波束失败事件的BFD-RS的候选波束的标识信息(候选波束的ID)。例如,可以预先对各个候选波束集合中的全部候选波束进行编码,例如统一针对两个候选波束集合中的共4个候选波束编码,例如为{000001}至{000011},其余为保留位。在本示例中,最多同时发生全部4个BFD-RS的波束失败事件,因此,最多可以包括4个这样的字段作为CSI的第一部分。
图11的示例CSI字段的第二部分是可选的,其第一部分之后的若干个(例如最多4个)字段(每个字段例如可以为7位),用于依次表示第一部分中所指示的候选波束的RSRP。其中,第一个RSRP可以是与第一部分中的第一个候选波束相对应的RSRP值,接下来的一个或多个可以是与第一部分中的第二个或更多个候选波束相对应的差分RSRP值,指示该候选波束与第一部分中的第一个候选波束的RSRP值之间的差。
为便于理解,图11示意性地示出了说明在图5所示的示例中采用图11所示的示例格式发送的示例CSI报告的CSI字段。在该示例场景下,TRP1的第一参考信号集合q 01中的BFD-RS 1-0和BFD-RS 1-1同时发生波束失败事件。因此,在图11所示的示例CSI字段中,第一部分两个字段依次指示发生波束失败事件的BFD-RS 1-0和BFD-RS 1-1的候选波束的标识(候选波束的ID),并且第二部分的两个字段依次指示这些候选波束的RSRP。
[2.2基站侧的电子设备的配置示例]
与上述用户设备侧的电子设备的配置示例相对应的,下面将详细描述根据本公开的实施例的基站侧的电子设备的配置示例。
(2.2.1配置示例)
图13是示出根据本公开的实施例的基站侧的电子设备的一个配置示例的框图。
如图13所示,电子设备1300可以包括配置单元1310和接收单元1320 以及可选的响应单元1330。
这里,电子设备1300的各个单元都可以包括在处理电路中。需要说明的是,电子设备1300既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
此外,这里将电子设备1300作为基站本身的示例进行描述;但本领域技术人员可以理解,电子设备1300也可以实现为具有配置单元1310和接收单元1320以及可选的响应单元1330的功能并且例如附接至基站或与基站通信的其他的电子设备。
根据本公开的实施例,配置单元1310可以为用户设备提供波束失败恢复配置信息,所述配置信息包括关于第一发送和接收点的第一参考信号集合以及第二发送和接收点的第二参考信号集合的配置信息,每个参考信号集合包括至少一个参考信号,以供用户设备基于所测量的各个参考信号集合的各个参考信号的信号质量确定发生波束失败事件的波束失败参考信号。
接下来,将继续结合图3所示的示例,与以上用户设备侧的电子设备的配置示例相对应地,说明基站侧的电子设备1300及其各个单元执行的处理的进一步的细节。
在图3的示例中,电子设备1300的配置单元1310例如针对第一TRP和第二TRP即TRP1和TRP2分别配置了用于进行波束失败探测的第一参考信号集合q 01={BFD-RS 1-0,BFD-RS 1-1}和第二参考信号集合q 02={BFD-RS 2-0,BFD-RS 2-1}。
作为示例,这里示出了每个参考信号集合包括两个参考信号,但本实施例不限于此,每个参考信号集合的参考信号的个数取决于电子设备1300的配置,并且是由电子设备1300例如通过配置单元1310根据用户设备的能力适当配置的。参考信号集合中用于波束失败探测的参考信号(BFD-RS)例如可以是非周期性CSI-RS信号等。
优选地,在诸如图3所示的示例应用中,在用户设备UE接收来自各个TRP的参考信号集合之前,配置单元1310可以预先例如通过无线资源控制(radio resources control,RRC)信令向该用户设备发送波束失败恢复配置信 息。换言之,在本公开实施例的示例场景中,基站侧的电子设备1300可以通过配置单元1310针对每个TRP预先配置了参考信号集合,并且将关于参考信号集合的配置信息提供给用户设备。波束失败恢复配置信息例如可以包括关于第一发送和接收点(TRP1)的第一参考信号集合(q 01)以及第二发送和接收点(TRP2)的第二参考信号集合(q 02)的配置信息。关于参考信号集合的这种配置信息例如可以包括用于指示各个参考信号集合的各个参考信号BFD-RS的信息。作为示例,这种配置信息可以包括各个BFD-RS(例如周期性CSI-RS)的索引(index)。另一方面,电子设备1300也可以通过配置单元1310将关于相应的参考信号集合的配置信息分别提供给相应的TRP,以便TRP发送参考信号集合中的参考信号供用户设备进行波束失败探测,这里不再赘述。
此外,可选地,波束失败恢复配置信息例如还可以包括关于波束失败事件的标准的配置信息。关于波束失败事件的标准的配置信息例如可以包括但不限于:指示用于确定各个BFD-RS发生波束失败实例的信号质量阈值(例如块差错率(Block Error Rate,BLER)的阈值BLER_s)的配置信息,其中,作为信号质量阈值的BLER_s可以是针对每个BFD-RS单独配置的也可以是统一配置的;关于为每个BFD-RS单独配置的、对波束失败实例计数的计数器的配置信息(例如包括计数器的初始值例如0以及用于确定波束失败事件的最大计数阈值),等等。
此外,波束失败恢复配置信息还可以例如包括关于第一发送和接收点(TRP1)的第一候选波束集合(q 11)以及第二发送和接收点(TRP2)的第二候选波束集合(q 12)的配置信息。换言之,在本公开实施例的示例场景中,基站侧的电子设备1300可以通过配置单元1310针对每个TRP预先配置了候选波束集合,其中每个候选波束集合可以包括至少一个候选波束,并且电子设备1300可以通过配置单元1310预先向用户设备发送关于这样的候选波束集合的配置信息。作为示例,这种配置信息可以包括与各个候选波束集合中的各个候选波束对应的诸如周期性CSI-RS和/或SSB参考信号的索引。另一方面,电子设备1300也可以通过配置单元1310将关于相应的候选波束集合的配置信息分别提供给相应的TRP,以便TRP发送候选波束供用户设备进行检测以在必要时确定候选波束,这里不再赘述。
此外,可选地,波束失败恢复配置信息例如还可以包括关于确定候选波束的标准的配置信息。关于确定候选波束的标准的配置信息例如可以包括指示用于确定候选波束的信号质量阈值(诸如参考信号接收功率(Reference Signal Receive Power,RSRP)阈值)的配置信息,等等。
可选地,波束失败恢复配置信息例如还可以包括关于用户设备要发送的波束失败恢复请求的配置信息。关于波束失败恢复请求的配置信息例如可以包括用于指示能够作为波束失败恢复请求的至少一部分的调度请求的信息(例如指示调度请求的标识的信息),用于将能够作为波束失败恢复请求的至少一部分的调度请求与波束失败参考信号相关联的信息,等等。关于波束失败恢复请求的配置信息例如可以使得接收到该信息的用户设备如例如此前在用户设备侧的配置示例中的“发送波束失败恢复请求的示例方式”部分所描述的那样,基于该配置信息以相应的方式发送波束失败恢复请求。
此外,可选地,波束失败恢复配置信息例如还可以包括关于波束失败恢复请求的优先级的配置信息,例如可以包括将波束失败恢复请求的优先级设置为高于混合自动重传请求的优先级的配置信息。关于波束失败恢复请求的优先级的配置信息能够使得接收到该信息的用户设备例如当通过PUCCH发送的波束失败恢复请求或者波束失败恢复请求的至少一部分(例如稍后具体描述的调度请求)与混合自动重传请求发生碰撞时,用户设备优先发送波束失败恢复请求而例如丢弃冲突的混合自动重传请求并在后续的适当时机进行混合自动重传请求的发送。
接收到上述波束失败配置信息的用户设备可以相应地监控来自各个TRP的各个参考信号集合中的BFD-RS以确定波束失败参考信号,并且可选地在来自与波束失败参考信号属于的参考信号集合对应的TRP的、预先配置的候选波束集合中,确定候选波束。用户设备可以在确定至少一个参考信号发生波束失败事件时,向基站侧的电子设备1300发送波束失败恢复请求(Beam failure recovery request,BFRQ)。
电子设备1300例如可以通过接收单元1320接收用户设备在确定至少一个参考信号发生波束失败事件时所发送的波束失败恢复请求。电子设备1300从用户设备接收的波束失败恢复请求例如可以指示波束失败事件、波束失败参考信号和/或相应的候选波束。
可选地,基站侧的电子设备1300的接收单元1320所接收的波束失败恢复请求可以分为不同的部分例如第一和第二部分,并且接收单元1320可以接收用户设备通过不同的步骤发送的这些部分。例如,电子设备1300可以通过接收单元1320接收用户设备通过物理层的调度请求(scheduling request,SR)发送的波束失败恢复请求的第一部分,该调度请求可以向电子设备1300请求用于发送第二部分的上行资源。电子设备1300可以通过可选的响应单元1330向用户设备发送关于所授权的上行链路资源的信息(UL grant),并且可以通过接收单元1320接收电子设备利用该上行资源(例如PUSCH资源)发送的波束失败恢复请求的第二部分。基站侧的电子设备1300可以与此前在用户设备侧的配置示例所描述的“发送波束失败恢复请求的示例方式”相对应地,接收用户设备通过不同的步骤发送的这些部分,稍后将在“接收的波束失败恢复请求的示例”部分对此进行进一步描述。
对于从用户设备接收的波束失败恢复请求,基站侧的电子设备1300可以通过可选的响应单元1330向用户设备发送相应的响应或确认消息,以使得用户设备据此进行后续的波束失败恢复处理。例如,当用户设备发送的波束失败恢复请求包括指示候选波束的信息时,则基站侧的电子设备1300的响应或确定消息意味着对相应的候选波束的确认,使得用户设备可以基于该消息以相应的候选波束取代波束失败参考信号,作为相应的参考信号集合中的参考信息BFD-RS,并且例如采用各种现有技术中的方式进行适当的后续处理。另一方面,电子设备1300也可以通过响应单元1330向相应的TRP发送消息,以使TRP将参考信号集合中的发生波束失败事件的参考信号替换为相应的候选波束,这里不再赘述。
以上描述了本公开的实施例的基站侧的电子设备的配置示例。如上所述,针对多TRP场景,根据本公开的实施例的基站侧的电子设备能够为每个TRP单独配置的参考信号集合,并向用户设备提供相应的波束失败恢复配置信息,使得用户设备能够针对每个TRP的单独配置的参考信号集合进行波束失败探测,并且可以在其中部分(至少一个)参考信号发生波束失败时即触发波束失败恢复流程,从而避免了现有技术中对部分TRP的波束失败的无视所导致的性能降低。
接下来,将继续结合图3所示的示例应用,简要描述基站侧的电子设备 1300接收波束失败恢复请求的示例场景以及接收的波束失败恢复请求的示例。
(2.2.2接收波束失败恢复请求的示例场景)
这里,与此前在针对用户设备侧的电子设备的配置示例中在“发送波束失败恢复请求的示例场景”的部分结合图4至图6描述的第一至第三示例场景相对应地,电子设备1300接收波束失败恢复请求的示例场景可以是相应的三种示例场景,例如,仅一个BFD-RS发生波束失败事件、同一个TRP的多个BFD-RS同时发生波束失败事件、或者不同TRP的多个BFD-RS同时发生波束失败事件这三种场景。因此,电子设备1300所接收的波束失败恢复请求例如可以指示一个或多个波束失败参考信号以及相应的候选波束。
优选地,当电子设备1300例如通过接收单元1310接收到来自用户设备的、指示同时发生波束失败事件的多个参考信号各自的候选波束的波束失败恢复请求时,电子设备1300可以通过响应单元1330向用户设备发送一个响应消息以确认该波束失败恢复请求所指示的各个候选波束。这里,发生波束失败事件的多个参考信号可以属于同一个参考信号集合,也可以分别属于第一参考信号集合和第二参考信号集合。这种配置使得用户设备可以只需执行一次波束失败恢复流程,从而可以降低信令开销。
(2.2.3接收的波束失败恢复请求的示例)
如前所述,基站侧的电子设备1300例如通过配置单元1310为用户设备提供的波束失败恢复配置信息例如可以包括关于用户设备要发送的波束失败恢复请求的配置信息。这样的配置信息例如可以使得接收到该信息的用户设备如此前在用户设备侧的配置示例中的“发送波束失败恢复请求的示例方式”部分所描述的那样,基于该配置信息以相应方式发送波束失败恢复请求。与之相对,基站侧的电子设备1300可以按照相应的方式接收用户设备所发送的波束失败恢复请求。
换言之,与此前在针对用户设备侧的电子设备的配置示例中在“发送波束失败恢复请求的示例方式”的部分结合图7至图12描述的第一至第二示例方式相对应地,电子设备1300所接收的波束失败恢复请求可以是用户设备以不同方式发送的,并且这些发送方式可选地与电子设备1300为其配置的波束失败请求相关。
例如,在第一示例中,电子设备1300例如通过接收单元1310从用户设备接收的波束失败恢复请求可以包括:报告波束失败事件的第一部分以及指示波束失败参考信号和相应的候选波束的第二部分。
例如,电子设备1300可以通过接收单元1320接收用户设备通过物理层的调度请求(scheduling request,SR)发送的波束失败事件的第一部分,该第一部分用于指示波束失败参考事件并请求上行链路资源。这样的调度请求或链路恢复请求可以在任何时候被用户设备触发发送给基站侧的电子设备1300,其为用户设备在发生波束失败后及时向基站侧进行报告提供了条件。当电子设备1300接收到这样的调度请求之后,可以通过响应单元1330向用户设备授权上行链路资源(例如PUSCH),并且向用户设备发送上行链路授权(UL grant),使得用户设备可以利用所授权的上行链路资源向基站侧的电子设备1300发送波束失败恢复请求的第二部分,以指示波束失败参考信号和相应的候选波束。
这里,可选地,用户设备所采用的调度请求可以是电子设备1300通过配置单元1310为其预先配置的。例如,电子设备1300通过配置单元1310为用户设备预先提供的波束失败恢复配置信息中可以包括关于波束失败恢复请求的配置信息。关于波束失败恢复请求的配置信息例如可以指示为用户设备配置的一个或多个调度请求的标识(SchedulingRequestID),该一个或多个调度请求能够被用户设备用来发送波束失败恢复请求的第一部分,以向基站侧的电子设备1300报告波束失败事件并且同时请求用于发送波束失败恢复请求的第二部分的上行链路资源。这里,由于所配置的调度请求除了指示波束失败事件之外没有提供其他信息,因此在本示例中,关于波束失败恢复请求的配置信息优选地例如可以指示为电子设备配置的一个调度请求的标识(SchedulingRequestID)。
在这种情况下,用户设备可以发送基站侧的电子设备1300为其预先配置的任一调度请求,作为波束失败恢复请求的第一部分。作为示例,调度请求可以通过PUCCH发送,并且例如可以具有比特序列的形式,该比特序列的不同取值例如可以对应不同的调度请求的ID。
作为示例,电子设备1300从用户设备接收到的波束失败恢复请求的第二部分可以是用户设备利用诸如通过以上调度请求所请求到的(基站侧的电子设备1300所授权的)上行链路资源(例如PUSCH资源)、通过媒体接入层的控 制元素(MAC CE)发送的,其用于指示波束失败参考信号和相应的候选波束。
优选地,电子设备1300所接收的作为波束失败恢复请求的第二部分的MAC CE可以包括指示各个参考信号集合的各个参考信号是否发生波束失败事件的第一信息以及指示波束失败参考信号的候选波束的第二信息。这样的MAC CE例如可以具有参照图7和图8描述的示例格式,这里不再重复。
此外,在第二示例方式中,电子设备1300例如通过接收单元1310从用户设备接收的波束失败恢复请求可以包括:指示波束失败参考信号的第一部分以及指示相应的候选波束的第二部分。
例如,电子设备1300可以通过接收单元1320接收用户设备通过物理层的调度请求(scheduling request,SR)发送的波束失败请求的第一部分,该第一部分用于指示波束失败参考信号并请求上行链路资源。优选地,电子设备1300所接收的调度请求可以根据关于波束失败请求的配置信息而与波束失败参考信号相关联。当电子设备1300接收到这样的调度请求之后,可以通过响应单元1330向用户设备授权上行链路资源PUSCH,并且向用户设备发送上行链路授权(UL grant),使得用户设备可以利用所授权的上行链路资源(例如PUSCH资源)向基站侧的电子设备1300发送波束失败恢复请求的第二部分,以指示针对波束失败参考信号的相应的候选波束。
如前所述,这种情况下,优选地,用户设备所采用的调度请求可以是电子设备1300通过配置单元1310为其预先配置的。例如,电子设备1300通过配置单元1310为用户设备预先提供的波束失败恢复配置信息中可以包括关于波束失败恢复请求的配置信息。关于波束失败恢复请求的配置信息例如可以包括将多个调度请求分别与各个参考信号集合的各个参考信号BFD-RS相关联的配置信息。例如,该配置信息可以指示为用户设备配置的多个调度请求的标识(SchedulingRequestID)与各个BFD-RS之间的关联。这些调度请求能够被用户设备用来发送波束失败恢复请求的第一部分,以向基站侧的电子设备1300指示与该调度请求相关联的参考信号发生波束失败事件,并且同时请求用于发送波束失败恢复请求的第二部分的上行链路资源。举例而言,对于图5的示例应用中存在4个BFD-RS,基站侧的电子设备1300可以预先配置相应的4个调度请求,即SR0,SR1,SR2,SR3,分别用于表示相应的BFD-RS发生波束失败事件。即,关于波束失败恢复请求的配置信息可以指示SR0,SR1,SR2,SR3与 BFD-RS 1-0,BFD-RS 1-1,BFD-RS 2-0,BFD-RS 2-1之间一一对应的对应关系或关联。
在这种情况下,当例如用户设备确定发生波束失败事件、即确定了波束失败参考信号时,其可以根据关于波束失败恢复请求的配置信息,通过与波束失败参考信号相关联的调度请求发送波束失败恢复请求的第一部分。作为示例,基站侧的电子设备1300所接收的这种调度请求可以是通过PUCCH发送的,并且例如可以具有比特序列的形式,该比特序列的不同取值例如可以对应不同的调度请求的ID。
这里,作为发送或接收以上调度请求的方式,例如可以预先关于与各个参考信号集合中的全部参考信号相关联的所有调度请求(所有调度请求的ID)进行统一编码,例如为{001}至{011},其余为保留位(考虑到全0比特序列可能被用作保留位,因此需要发送非0序列作为有效的调度请求)。例如,对于图5的示例应用,当TRP1的第一参考信号集合q 01中的BFD-RS 1-0发生波束失败事件时,基站侧的电子设备1300可以接收从用户设备发送的与BFD-RS 1-0对应的调度请求SR0,其例如具有{001}的格式。例如当TRP2的第二参考信号集合q 02中的BFD-RS 2-1发生波束失败事件时,基站侧的电子设备1300可以接收从用户设备发送的与BFD-RS 2-1对应的调度请求SR3,其例如具有{011}的格式。当多个BFD-RS同时发生波束失败事件时,基站侧的电子设备1300可以例如接收多个相应的调度请求。当电子设备1300例如在一定时间内连续接收到多个调度请求时,其可以判定其为同时发生的波束失败事件,并且统一分配上行链路资源。
作为示例,电子设备1300所接收的波束失败恢复请求的第二部分可以是用户设备利用诸如通过以上调度请求所请求到的(基站侧的电子设备1300所授权的)上行链路资源(例如PUSCH资源),通过媒体接入层的控制元素(MAC CE)或非周期信道状态信息报告(非周期CSI报告)发送的,用于指示波束失败参考信号的候选波束。
例如,电子设备1300所接收的作为波束失败恢复请求的第二部分的MAC CE或非周期CSI报告可以直接包括波束失败参考信号的候选波束的标识信息。这样的MAC CE或非周期CSI报告例如可以具有此前参照图9至图10或者图11至图12描述的示例格式,这里不再重复。
<3.信息交互过程的示例>
接下来,将参照图14描述本公开实施例的信息交互过程的示例。
图14是示出本公开实施例的信息交互过程的示例示意图,其中示意性地示出了用户设备UE和基站gNB,并且省略了可能存在的多个TRP例如TRP1和TRP2等。
如图14所示,首先,在步骤S1401中,基站gNB为用户设备UE提供波束失败恢复配置信息。波束失败恢复配置信息例如可以包括关于gNB为TRP1和TRP2分别配置的用于波束失败探测的参考信号集合的配置信息。可选地,波束失败恢复配置信息还可以包括关于gNB为TRP1和TRP2分别配置的候选波束集合的配置信息、关于确定候选波束的标准的配置信息。此外,可选地,波束失败恢复配置信息还可以包括关于波束失败事件的标准的配置信息、关于波束失败恢复请求的配置信息、关于优先级的配置信息中的一个或更多个。
接着,在步骤S1402中,UE例如基于所接收到的配置信息,测量各个参考信号集合的各个参考信号的信号质量,并基于所测量的信号质量确定发生波束失败事件的波束失败参考信号。在步骤S1403中,UE在确定至少一个参考信号发生波束失败事件时,通过调度请求向gNB发送波束失败恢复请求的第一部分。作为示例,该调度请求可以仅指示波束失败恢复事件;替选地,其也可以直接指示波束失败参考信号。
基于步骤S1403中的来自UE的调度请求,gNB向UE发送上行链路授权UL_grant。在步骤S1404中,UE利用通过UL_grant授权的上行链路资源,向gNB发送波束失败恢复请求的第二部分。作为示例,当步骤S1403的调度请求仅指示波束失败恢复事件时,步骤S1404中的该第二部分例如可以指示波束失败参考信号以及相应的候选波束;替选地,当步骤S1403的调度请求直接指示波束失败参考信号时,步骤S1404中的该第二部分例如可以指示相应的候选波束。
在步骤S1405中,gNB发送对于波束失败恢复请求的响应消息,以确认步骤S1404中的波束失败恢复请求所指示的候选波束。
图14所示的示例流程可以由以上参照图2至图13描述的用户设备侧的电子设备200以及基站侧的电子设备1300来实现,因此可以获得以上各个电子设备的配置示例中描述的优点和益处,在此不再展开描述。
<4.方法实施例>
接下来将详细描述根据本公开实施例的电子设备中执行的方法。注意,这些方法实施与以上参照图2至图13描述的装置配置示例相对应,因此,以上装置配置示例的各个细节及益处适当地适用于以下方法实施例。
[4.1用户设备侧的方法实施例]
图15是示出根据本公开实施例的用户设备侧的无线通信方法的过程示例的流程图,其例如可以由参照图2至图12描述的用户设备侧的电子设备200实现。
如图15所示,在例如作为用户设备的电子设备的无线通信方法中,首先,步骤S1501中,接收分别来自第一发送和接收点及第二发送和接收点(TRP1和TRP2)的、预先配置的第一参考信号集合和第二参考信号集合,每个参考信号集合包括至少一个参考信号。接下来,在步骤S1502中,基于所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号。接着,在步骤S1503中,当确定至少一个参考信号发生波束失败事件时,向基站发送波束失败恢复请求。
作为示例,在步骤S1503中,当确定多个参考信号同时发生波束失败事件时,可以发送指示所述多个参考信号各自的候选波束的波束失败恢复请求。
可选地,所述多个参考信号可以分别属于第一参考信号集合和第二参考信号集合。
可选地,尽管图15中未示出,该方法可以进一步包括:在来自与波束失败参考信号属于的参考信号集合对应的发送和接收点的、预先配置的候选波束集合中,确定候选波束。
可选地,波束失败恢复请求可以包括:报告波束失败事件的第一部分以及指示波束失败参考信号和相应的候选波束的第二部分。
可选地,在步骤S1503中,可以通过物理层的调度请求向基站发送所述第一部分,以向基站请求上行链路资源。
可选地,在步骤S1503中,还可以利用所请求到的上行链路资源,通过媒体接入控制元素向基站发送所述第二部分。
作为示例,所述媒体接入控制元素可以包括指示各个参考信号集合的各个参考信号是否发生波束失败事件的第一信息以及指示波束失败参考信号的候 选波束的第二信息。
可选地,波束失败恢复请求也可以包括:指示波束失败参考信号的第一部分以及指示相应的候选波束的第二部分。
可选地,在步骤S1503中,可以通过物理层的调度请求向基站发送所述第一部分,以向基站请求上行链路资源。
作为示例,所发送的调度请求可以与波束失败参考信号相关联。
可选地,尽管图15中未示出,该方法可以进一步包括:从基站预先接收波束失败恢复配置信息,所述配置信息包括将多个调度请求分别与各个参考信号集合的各个参考信号相关联的配置信息。此外,可选地,在步骤S1503中,可以通过与波束失败参考信号相关联的调度请求发送所述第一部分。
可选地,在步骤S1503中,还可以利用所请求到的上行链路资源,通过媒体接入控制元素或非周期信道状态信息报告向基站发送所述第二部分。
作为示例,所述媒体接入控制元素或非周期信道状态信息报告可以包括波束失败参考信号的候选波束的标识信息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开实施例的电子设备200,因此前文中关于电子设备200及其功能单元的实施例的各种方面均适用于此。
[4.2基站侧的方法实施例]
图16是示出根据本公开实施例的基站侧的无线通信方法的过程示例的流程图,其例如可以由参照图13描述的基站侧的电子设备1300实现。
如图16所示,在例如作为基站的电子设备的无线通信方法中,在步骤S1601中,为用户设备(UE)提供波束失败恢复配置信息,所述配置信息包括关于第一发送和接收点的第一参考信号集合以及第二发送和接收点的第二参考信号集合的配置信息,每个参考信号集合包括至少一个参考信号,以供用户设备基于所测量的各个参考信号集合的各个参考信号的信号质量确定发生波束失败事件的波束失败参考信号。接下来,在步骤S1602中,接收用户设备(UE)在确定至少一个参考信号发生波束失败事件时发送的波束失败恢复请求。
作为示例,在步骤S1602中,当接收来自用户设备的、指示同时发生波束失败事件的多个参考信号各自的候选波束的波束失败恢复请求时,可以向用户 设备发送一个响应消息以确认所述波束失败恢复请求所指示的各个候选波束。
可选地,所述多个参考信号可以分别属于第一参考信号集合和第二参考信号集合。
可选地,在步骤S1601中为用户设备提供的波束失败恢复配置信息还可以包括关于第一发送和接收点的第一候选波束集合以及第二发送和接收点的第二候选波束集合的配置信息。
可选地,波束失败恢复配置信息还可以包括将多个调度请求与各个参考信号集合的各个参考信号相关联的配置信息。此时,在步骤S1602中,可选地,可以接收用户设备通过与波束失败参考信号相关联的调度请求发送的波束失败恢复请求的至少一部分。
可选地,波束失败恢复配置信息还可以包括将波束失败恢复请求的优先级设置为高于混合自动重传请求的优先级的配置信息。
根据本公开的实施例,执行上述方法的主体可以是根据本公开实施例的电子设备1300,因此前文中关于电子设备1300及其功能单元的实施例的各种方面均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,电子设备1300可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G***中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
另外,电子设备200可以为各种用户设备,其可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
[关于基站的应用示例]
(第一应用示例)
图17是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1800包括一个或多个天线1810以及基站设备1820。基站设备1820和每个天线1810可以经由RF线缆彼此连接。
天线1810中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1820发送和接收无线信号。如图17所示,eNB 1800可以包括多个天线1810。例如,多个天线1810可以与eNB 1800使用的多个频带兼容。虽然图17示出其中eNB 1800包括多个天线1810的示例,但是eNB 1800也可以包括单个天线1810。
基站设备1820包括控制器1821、存储器1822、网络接口1823以及无线通信接口1825。
控制器1821可以为例如CPU或DSP,并且操作基站设备1820的较高层的各种功能。例如,控制器1821根据由无线通信接口1825处理的信号中的数据来生成数据分组,并经由网络接口1823来传递所生成的分组。控制器1821可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1821可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1822包括RAM和ROM,并且存储由控制器1821执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1823为用于将基站设备1820连接至核心网1824的通信接口。控制器1821可以经由网络接口1823而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1800与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1823还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1823为无线通信接口,则与由无线通信接口1825使用的频带相比,网络接口1823可以使用较高频带用于无线通信。
无线通信接口1825支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1810来提供到位于eNB 1800的小区中的终端的无线连接。无线通信接口1825通常可以包括例如基带(BB)处理器1826和RF电路 1827。BB处理器1826可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1821,BB处理器1826可以具有上述逻辑功能的一部分或全部。BB处理器1826可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1826的功能改变。该模块可以为***到基站设备1820的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1827可以包括例如混频器、滤波器和放大器,并且经由天线1810来传送和接收无线信号。
如图17所示,无线通信接口1825可以包括多个BB处理器1826。例如,多个BB处理器1826可以与eNB 1800使用的多个频带兼容。如图17所示,无线通信接口1825可以包括多个RF电路1827。例如,多个RF电路1827可以与多个天线元件兼容。虽然图17示出其中无线通信接口1825包括多个BB处理器1826和多个RF电路1827的示例,但是无线通信接口1825也可以包括单个BB处理器1826或单个RF电路1827。
在图17所示的eNB 1800中,此前参照图13描述的电子设备1300中的配置单元1310可以通过控制器1821以及无线通信接口1825(可选地连同天线1810)等实现。电子设备1300中的接收单元1320可以通过无线通信接口1825(可选地连同天线1810)等实现。电子设备1300中的响应单元1330可以通过控制器1821(可选地连同无线通信接口1825和天线1810)等实现。
(第二应用示例)
图18是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1930包括一个或多个天线1940、基站设备1950和RRH 1960。RRH 1960和每个天线1940可以经由RF线缆而彼此连接。基站设备1950和RRH 1960可以经由诸如光纤线缆的高速线路而彼此连接。
天线1940中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1960发送和接收无线信号。如图18所示,eNB 1930可以包括多个天线1940。例如,多个天线1940可以与eNB 1930使用的多个频带兼容。虽然图18示出其中eNB 1930包括多个天线1940的示例,但是eNB 1930也可以包括单个天线1940。
基站设备1950包括控制器1951、存储器1952、网络接口1953、无线通信接口1955以及连接接口1957。控制器1951、存储器1952和网络接口1953与参照图17描述的控制器1821、存储器1822和网络接口1823相同。网络接口1953为用于将基站设备1950连接至核心网1954的通信接口。
无线通信接口1955支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1960和天线1940来提供到位于与RRH 1960对应的扇区中的终端的无线通信。无线通信接口1955通常可以包括例如BB处理器1956。除了BB处理器1956经由连接接口1957连接到RRH 1960的RF电路1964之外,BB处理器1956与参照图17描述的BB处理器1826相同。如图18所示,无线通信接口1955可以包括多个BB处理器1956。例如,多个BB处理器1956可以与eNB 1930使用的多个频带兼容。虽然图18示出其中无线通信接口1955包括多个BB处理器1956的示例,但是无线通信接口1955也可以包括单个BB处理器1956。
连接接口1957为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的接口。连接接口1957还可以为用于将基站设备1950(无线通信接口1955)连接至RRH 1960的上述高速线路中的通信的通信模块。
RRH 1960包括连接接口1961和无线通信接口1963。
连接接口1961为用于将RRH 1960(无线通信接口1963)连接至基站设备1950的接口。连接接口1961还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1963经由天线1940来传送和接收无线信号。无线通信接口1963通常可以包括例如RF电路1964。RF电路1964可以包括例如混频器、滤波器和放大器,并且经由天线1940来传送和接收无线信号。如图18所示,无线通信接口1963可以包括多个RF电路1964。例如,多个RF电路1964可以支持多个天线元件。虽然图18示出其中无线通信接口1963包括多个RF电路1964的示例,但是无线通信接口1963也可以包括单个RF电路1964。
在图18所示的eNB 1930中,此前参照图13描述的电子设备1300中的配置单元1310可以通过控制器1821以及无线通信接口1825(可选地连同天线1810)等实现。电子设备1300中的接收单元1320可以通过无线通信接口1963(可选地连同天线1940)等实现。电子设备1300中的响应单元1330可 以通过控制器1951和无线通信接口1963(可选地连同天线1940)等实现。
[关于用户设备的应用示例]
(第一应用示例)
图19是示出可以应用本公开内容的技术的智能电话2000的示意性配置的示例的框图。智能电话2000包括处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012、一个或多个天线开关2015、一个或多个天线2016、总线2017、电池2018以及辅助控制器2019。
处理器2001可以为例如CPU或片上***(SoC),并且控制智能电话2000的应用层和另外层的功能。存储器2002包括RAM和ROM,并且存储数据和由处理器2001执行的程序。存储装置2003可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口2004为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话2000的接口。
摄像装置2006包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器2007可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风2008将输入到智能电话2000的声音转换为音频信号。输入装置2009包括例如被配置为检测显示装置2010的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置2010包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话2000的输出图像。扬声器2011将从智能电话2000输出的音频信号转换为声音。
无线通信接口2012支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2012通常可以包括例如BB处理器2013和RF电路2014。BB处理器2013可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2014可以包括例如混频器、滤波器和放大器,并且经由天线2016来传送和接收无线信号。无线通信接口2012可以为其上集成有BB处理器2013和RF电路2014的一个芯片模块。如图19所示,无线通信接口2012可以包括多个BB处理器2013和多个RF电路2014。虽然图19示出其中无线通信接口2012包括多个 BB处理器2013和多个RF电路2014的示例,但是无线通信接口2012也可以包括单个BB处理器2013或单个RF电路2014。
此外,除了蜂窝通信方案之外,无线通信接口2012可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口2012可以包括针对每种无线通信方案的BB处理器2013和RF电路2014。
天线开关2015中的每一个在包括在无线通信接口2012中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线916的连接目的地。
天线2016中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2012传送和接收无线信号。如图19所示,智能电话2000可以包括多个天线2016。虽然图19示出其中智能电话2000包括多个天线2016的示例,但是智能电话2000也可以包括单个天线2016。
此外,智能电话2000可以包括针对每种无线通信方案的天线2016。在此情况下,天线开关2015可以从智能电话2000的配置中省略。
总线2017将处理器2001、存储器2002、存储装置2003、外部连接接口2004、摄像装置2006、传感器2007、麦克风2008、输入装置2009、显示装置2010、扬声器2011、无线通信接口2012以及辅助控制器2019彼此连接。电池2018经由馈线向图19所示的智能电话2000的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器2019例如在睡眠模式下操作智能电话2000的最小必需功能。
在图19所示的智能电话2000中,此前参照图2描述的电子设备200中的接收单元210可以通过无线通信接口2012(可选地连同天线2016)等实现。电子设备200中的确定单元220可以通过处理器2001(可选地连同无线通信接口2012和天线2016)等实现。电子设备200中的请求单元230可以通过处理器2001以及无线通信接口2012(可选地连同天线2016)等实现。
(第二应用示例)
图20是示出可以应用本公开内容的技术的汽车导航设备2120的示意性配置的示例的框图。汽车导航设备2120包括处理器2121、存储器2122、全球定位***(GPS)模块2124、传感器2125、数据接口2126、内容播放器2127、 存储介质接口2128、输入装置2129、显示装置2130、扬声器2131、无线通信接口2133、一个或多个天线开关2136、一个或多个天线2137以及电池2138。
处理器2121可以为例如CPU或SoC,并且控制汽车导航设备2120的导航功能和另外的功能。存储器2122包括RAM和ROM,并且存储数据和由处理器2121执行的程序。
GPS模块2124使用从GPS卫星接收的GPS信号来测量汽车导航设备2120的位置(诸如纬度、经度和高度)。传感器2125可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口2126经由未示出的终端而连接到例如车载网络2141,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器2127再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口2128中。输入装置2129包括例如被配置为检测显示装置2130的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置2130包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器2131输出导航功能的声音或再现的内容。
无线通信接口2133支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口2133通常可以包括例如BB处理器2134和RF电路2135。BB处理器2134可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路2135可以包括例如混频器、滤波器和放大器,并且经由天线2137来传送和接收无线信号。无线通信接口2133还可以为其上集成有BB处理器2134和RF电路2135的一个芯片模块。如图20所示,无线通信接口2133可以包括多个BB处理器2134和多个RF电路2135。虽然图20示出其中无线通信接口2133包括多个BB处理器2134和多个RF电路2135的示例,但是无线通信接口2133也可以包括单个BB处理器2134或单个RF电路2135。
此外,除了蜂窝通信方案之外,无线通信接口2133可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口2133可以包括BB处理器2134和RF电路2135。
天线开关2136中的每一个在包括在无线通信接口2133中的多个电路(诸 如用于不同的无线通信方案的电路)之间切换天线2137的连接目的地。
天线2137中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口2133传送和接收无线信号。如图20所示,汽车导航设备2120可以包括多个天线2137。虽然图20示出其中汽车导航设备2120包括多个天线2137的示例,但是汽车导航设备2120也可以包括单个天线2137。
此外,汽车导航设备2120可以包括针对每种无线通信方案的天线2137。在此情况下,天线开关2136可以从汽车导航设备2120的配置中省略。
电池2138经由馈线向图20所示的汽车导航设备2120的各个块提供电力,馈线在图中被部分地示为虚线。电池2138累积从车辆提供的电力。
在图20示出的汽车导航设备2120中,此前参照图2描述的电子设备200中的接收单元210可以通过无线通信接口2133(可选地连同天线2137)等实现。电子设备200中的确定单元220可以通过处理器2121(可选地连同无线通信接口2133和天线2137)等实现。电子设备200中的请求单元230可以通过处理器2121以及无线通信接口2133(可选地连同天线2137)等实现。
本公开内容的技术也可以被实现为包括汽车导航设备2120、车载网络2141以及车辆模块2142中的一个或多个块的车载***(或车辆)2140。车辆模块2142生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络2141。
以上结合具体实施例描述了本公开的基本原理,但是,需要指出的是,对本领域的技术人员而言,能够理解本公开的方法和装置的全部或者任何步骤或部件,可以在任何计算装置(包括处理器、存储介质等)或者计算装置的网络中,以硬件、固件、软件或者其组合的形式实现,这是本领域的技术人员在阅读了本公开的描述的情况下利用其基本电路设计知识或者基本编程技能就能实现的。
而且,本公开还提出了一种存储有机器可读取的指令代码的程序产品。所述指令代码由机器读取并执行时,可执行上述根据本公开实施例的方法。
相应地,用于承载上述存储有机器可读取的指令代码的程序产品的存储介质也包括在本公开的公开中。所述存储介质包括但不限于软盘、光盘、磁光盘、存储卡、存储棒等等。
在通过软件或固件实现本公开的情况下,从存储介质或网络向具有专用硬件结构的计算机安装构成该软件的程序,该计算机在安装有各种程序时,能够执行各种功能等。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (20)

  1. 一种电子设备,包括
    处理电路,配置为:
    接收分别来自第一发送和接收点及第二发送和接收点的、预先配置的第一参考信号集合和第二参考信号集合,每个参考信号集合包括至少一个参考信号;
    基于所测量的各个参考信号集合的各个参考信号的信号质量,确定发生波束失败事件的波束失败参考信号;
    当确定至少一个参考信号发生波束失败事件时,向基站发送波束失败恢复请求。
  2. 如权利要求1所述的电子设备,其中,处理电路进一步被配置为:当确定多个参考信号同时发生波束失败事件时,发送指示所述多个参考信号各自的候选波束的波束失败恢复请求。
  3. 如权利要求2所述的电子设备,其中,所述多个参考信号分别属于第一参考信号集合和第二参考信号集合。
  4. 如权利要求1所述的电子设备,其中,处理电路进一步被配置为:在来自与波束失败参考信号属于的参考信号集合对应的发送和接收点的、预先配置的候选波束集合中,确定候选波束。
  5. 如权利要求1至4中任一项所述的电子设备,其中,波束失败恢复请求包括:报告波束失败事件的第一部分以及指示波束失败参考信号和相应的候选波束的第二部分。
  6. 如权利要求5所述的电子设备,其中,处理电路进一步被配置为:通过物理层的调度请求向基站发送所述第一部分,以向基站请求上行链路资源。
  7. 如权利要求6所述的电子设备,其中,处理电路进一步被配置为:利 用所请求到的上行链路资源,通过媒体接入控制元素向基站发送所述第二部分。
  8. 如权利要求7所述的电子设备,其中,所述媒体接入控制元素包括指示各个参考信号集合的各个参考信号是否发生波束失败事件的第一信息以及指示波束失败参考信号的候选波束的第二信息。
  9. 如权利要求1至4中任一项所述的电子设备,其中,波束失败恢复请求包括:指示波束失败参考信号的第一部分以及指示相应的候选波束的第二部分。
  10. 如权利要求9所述的电子设备,其中,处理电路进一步被配置为:通过物理层的调度请求向基站发送所述第一部分,以向基站请求上行链路资源。
  11. 如权利要求10所述的电子设备,其中,所发送的调度请求与波束失败参考信号相关联。
  12. 如权利要求11所述的电子设备,其中,处理电路进一步被配置为:
    从基站预先接收波束失败恢复配置信息,所述配置信息包括将多个调度请求分别与各个参考信号集合的各个参考信号相关联的配置信息;以及
    通过与波束失败参考信号相关联的调度请求发送所述第一部分。
  13. 如权利要求10所述的电子设备,其中,处理电路进一步被配置为:利用所请求到的上行链路资源,通过媒体接入控制元素或非周期信道状态信息报告向基站发送所述第二部分。
  14. 如权利要求13所述的电子设备,其中,所述媒体接入控制元素或非周期信道状态信息报告包括波束失败参考信号的候选波束的标识信息。
  15. 一种电子设备,包括
    处理电路,配置为:
    为用户设备提供波束失败恢复配置信息,所述配置信息包括关于第一发送和接收点的第一参考信号集合以及第二发送和接收点的第二参考信号集合的配置信息,每个参考信号集合包括至少一个参考信号,以供用户设备基于所测量的各个参考信号集合的各个参考信号的信号质量确定发生波束失败事件的波束失败参考信号;
    接收用户设备在确定至少一个参考信号发生波束失败事件时发送的波束失败恢复请求。
  16. 如权利要求15所述的电子设备,其中,处理电路进一步被配置为:当接收来自用户设备的、指示同时发生波束失败事件的多个参考信号各自的候选波束的波束失败恢复请求时,向用户设备发送一个响应消息以确认所述波束失败恢复请求所指示的各个候选波束。
  17. 如权利要求16所述的电子设备,其中,所述多个参考信号分别属于第一参考信号集合和第二参考信号集合。
  18. 如权利要求15所述的电子设备,其中,波束失败恢复配置信息还包括关于第一发送和接收点的第一候选波束集合以及第二发送和接收点的第二候选波束集合的配置信息。
  19. 如权利要求15所述的电子设备,其中,
    波束失败恢复配置信息还包括将多个调度请求与各个参考信号集合的各个参考信号相关联的配置信息;以及
    处理电路进一步被配置为:接收用户设备通过与波束失败参考信号相关联的调度请求发送的波束失败恢复请求的至少一部分。
  20. 如权利要求15至19中任一项所述的电子设备,其中,波束失败恢复配置信息还包括将波束失败恢复请求的优先级设置为高于混合自动重传请求的优先级的配置信息。
PCT/CN2021/124064 2020-10-22 2021-10-15 电子设备、无线通信方法和非暂态计算机可读存储介质 WO2022083510A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/246,035 US20230362687A1 (en) 2020-10-22 2021-10-15 Electronic device, wireless communication method, and non-transitory computer-readable storage medium
CN202180070355.6A CN116491150A (zh) 2020-10-22 2021-10-15 电子设备、无线通信方法和非暂态计算机可读存储介质
EP21881928.2A EP4207862A4 (en) 2020-10-22 2021-10-15 ELECTRONIC DEVICE, WIRELESS COMMUNICATION METHOD AND NON-TRANSITORY COMPUTER-READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011140258.3 2020-10-22
CN202011140258.3A CN114390566A (zh) 2020-10-22 2020-10-22 电子设备、无线通信方法和非暂态计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2022083510A1 true WO2022083510A1 (zh) 2022-04-28

Family

ID=81194943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/124064 WO2022083510A1 (zh) 2020-10-22 2021-10-15 电子设备、无线通信方法和非暂态计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230362687A1 (zh)
EP (1) EP4207862A4 (zh)
CN (2) CN114390566A (zh)
WO (1) WO2022083510A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230118940A1 (en) * 2021-10-19 2023-04-20 Qualcomm Incorporated Beam failure detection per beam for multi-beam communications

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081675A1 (en) * 2017-09-11 2019-03-14 Lenovo (Singapore) Pte. Ltd. Methods and devices for transmitting device capability information
CN109474950A (zh) * 2017-09-07 2019-03-15 北京展讯高科通信技术有限公司 波束信息上报方法、装置及终端
US20190379506A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
CN110896546A (zh) * 2018-09-13 2020-03-20 展讯通信(上海)有限公司 波束失败恢复方法及装置、存储介质、用户设备

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7279044B2 (ja) * 2018-07-12 2023-05-22 株式会社Nttドコモ 端末、無線通信方法及びシステム
EP3847861A4 (en) * 2018-09-07 2022-06-22 Intel Corporation BEAM FAILURE RECOVERY DEVICE AND METHOD
US11363516B2 (en) * 2019-03-27 2022-06-14 Mediatek Singapore Pte. Ltd. Electronic device and method for beam failure recovery

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109474950A (zh) * 2017-09-07 2019-03-15 北京展讯高科通信技术有限公司 波束信息上报方法、装置及终端
US20190081675A1 (en) * 2017-09-11 2019-03-14 Lenovo (Singapore) Pte. Ltd. Methods and devices for transmitting device capability information
US20190379506A1 (en) * 2018-06-08 2019-12-12 FG Innovation Company Limited Methods and apparatuses for multi-trp transmission
CN110896546A (zh) * 2018-09-13 2020-03-20 展讯通信(上海)有限公司 波束失败恢复方法及装置、存储介质、用户设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP4207862A4
VIVO: "Discussion on MTRP multi-beam enhancement", 3GPP DRAFT; R1-2005366, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917391 *

Also Published As

Publication number Publication date
EP4207862A4 (en) 2024-02-28
US20230362687A1 (en) 2023-11-09
CN116491150A (zh) 2023-07-25
EP4207862A1 (en) 2023-07-05
CN114390566A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
US20230141536A1 (en) Electronic device, wireless communication method and computer-readable medium
US11985640B2 (en) Terminal device, base station device, and method
US11997716B2 (en) Electronic device for wireless communication system, method and storage medium
EP3826404A1 (en) Electronic device and communication method
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2020063525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US11057918B2 (en) Electronic device and radio communication method
WO2021249336A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20190090228A1 (en) User equipment and base station in wireless communications system, and wireless communications method
EP4152798A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2022083510A1 (zh) 电子设备、无线通信方法和非暂态计算机可读存储介质
WO2021159999A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022033402A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022028318A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2023185659A1 (zh) 用户设备、电子设备、无线通信方法和存储介质
WO2022078272A1 (zh) 用于无线通信的发送电子设备和接收电子设备以及方法
US20240171522A1 (en) Electronic device, communication method, and computer-readable storage medium
US20230262700A1 (en) Electronic device, wireless communication method, and computer readable storage medium
CN114245995B (zh) 无线通信***中的用户设备、电子设备、方法及存储介质
WO2021147713A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
US20240155647A1 (en) Electronic device, wireless communication method, and computer-readable storage medium
US20240260014A1 (en) Terminal device, base station device, and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21881928

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021881928

Country of ref document: EP

Effective date: 20230331

WWE Wipo information: entry into national phase

Ref document number: 202180070355.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE