WO2022037467A1 - 电子设备、无线通信方法和计算机可读存储介质 - Google Patents

电子设备、无线通信方法和计算机可读存储介质 Download PDF

Info

Publication number
WO2022037467A1
WO2022037467A1 PCT/CN2021/112195 CN2021112195W WO2022037467A1 WO 2022037467 A1 WO2022037467 A1 WO 2022037467A1 CN 2021112195 W CN2021112195 W CN 2021112195W WO 2022037467 A1 WO2022037467 A1 WO 2022037467A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
downlink
frequency domain
downlink control
uplink
Prior art date
Application number
PCT/CN2021/112195
Other languages
English (en)
French (fr)
Inventor
刘敏
孙晨
Original Assignee
索尼集团公司
刘敏
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 索尼集团公司, 刘敏 filed Critical 索尼集团公司
Priority to US18/014,180 priority Critical patent/US20230276452A1/en
Priority to CN202180048188.5A priority patent/CN115836566A/zh
Priority to EP21857562.9A priority patent/EP4192168A4/en
Publication of WO2022037467A1 publication Critical patent/WO2022037467A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • Embodiments of the present disclosure generally relate to the field of wireless communications, and in particular, to electronic devices, wireless communication methods, and computer-readable storage media. More specifically, the present disclosure relates to an electronic device as a network-side device in a wireless communication system, an electronic device as a user equipment in a wireless communication system, and a wireless communication device performed by a network-side device in a wireless communication system. A communication method, a wireless communication method performed by a user equipment in a wireless communication system, and a computer-readable storage medium.
  • NTN Non-terrestrial network, non-terrestrial network
  • satellite equipment can generate multiple beams.
  • one PCI Physical Cell ID, physical cell ID
  • PCI Physical Cell ID, physical cell ID
  • the beam and frequency domain resources may have a binding relationship
  • the frequency domain resources here include but are not limited to BWP (Bandwidth Part, bandwidth part). That is to say, a specific beam can only transmit on BWPs with a bonding relationship.
  • a wireless communication system including NTN when frequency domain resources are bound to beams, how the network side equipment indicates to the user equipment the frequency domain resources and beams for uplink transmission or downlink transmission is a technical problem that needs to be solved .
  • the downlink control information and the downlink data information need to use the same beam.
  • the uplink control information and the uplink data information need to use the same beam. Therefore, in this case, how to ensure that the beams of the uplink control information and the uplink data information are consistent, and how to ensure that the beams of the downlink control information and the downlink data information are consistent are also technical problems that need to be solved.
  • the purpose of the present disclosure is to provide an electronic device, a wireless communication method, and a computer-readable storage medium, so as to improve the indication process of the beam and the frequency domain resource when the beam and the frequency domain resource are bound.
  • an electronic device including a processing circuit configured to: generate first downlink control signaling, wherein the first downlink control signaling includes first frequency domain indication information and first beam indication information, and the frequency domain resource indicated by the first frequency domain indication information is the same as the frequency domain resource corresponding to the beam indicated by the first beam indication information; and sending the first beam to the user equipment Downlink control signaling.
  • an electronic device including a processing circuit configured to: receive first downlink control signaling, where the first downlink control signaling includes first frequency domain indication information and first downlink control signaling. a beam indication information; and in the case that the frequency domain resource indicated by the first frequency domain indication information and the frequency domain resource corresponding to the beam indicated by the first beam indication information are the same, in the frequency domain In terms of resources, downlink information is received or uplink information is sent according to the beam.
  • a wireless communication method comprising: generating first downlink control signaling, wherein the first downlink control signaling includes first frequency domain indication information and first beam indication information, and the frequency domain resource indicated by the first frequency domain indication information is the same as the frequency domain resource corresponding to the beam indicated by the first beam indication information; and sending the first downlink control to the user equipment signaling.
  • a wireless communication method including: receiving first downlink control signaling, where the first downlink control signaling includes first frequency domain indication information and first beam indication information; and when the frequency domain resource indicated by the first frequency domain indication information is the same as the frequency domain resource corresponding to the beam indicated by the first beam indication information, on the frequency domain resource according to the The beam receives downlink information or transmits uplink information.
  • a computer-readable storage medium comprising executable computer instructions that, when executed by a computer, cause the computer to perform a wireless communication method according to the present disclosure.
  • a computer program that, when executed by a computer, causes the computer to perform the wireless communication method according to the present disclosure.
  • the downlink control signaling includes frequency domain indication information and beam indication information, frequency domain resources indicated by the frequency domain indication information and beams indicated by the beam indication information
  • the corresponding frequency domain resources are the same.
  • the beam and the frequency domain resource can be correctly indicated when the beam is bound to the frequency domain resource, so as to prevent the frequency domain resource indicated by the frequency domain indication information and the frequency domain corresponding to the beam indicated by the beam indication information.
  • the domain resources are not the same, so that the user equipment cannot receive or send normally.
  • FIG. 1 is a schematic diagram illustrating a scenario in which each cell is configured with multiple beams according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram illustrating a scenario in which a beam is bound to a frequency domain resource according to an embodiment of the present disclosure
  • FIG. 3 is a block diagram illustrating an example of a configuration of an electronic device as a network-side device according to an embodiment of the present disclosure
  • FIG. 4 is a signaling flow diagram illustrating beam and frequency domain resource indication according to an embodiment of the present disclosure
  • FIG. 5 is a signaling flow diagram illustrating beam and frequency domain resource indication according to an embodiment of the present disclosure
  • FIG. 6 is a signaling flow diagram illustrating beam and frequency domain resource indication according to an embodiment of the present disclosure
  • FIG. 7 is a signaling flow diagram illustrating beam and frequency domain resource indication according to an embodiment of the present disclosure
  • FIG. 8 is a signaling flow diagram illustrating the indication of beam and frequency domain resources according to an embodiment of the present disclosure
  • FIG. 9 shows a block diagram of an example of a configuration of an electronic device as user equipment according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by an electronic device as a network-side device according to an embodiment of the present disclosure
  • FIG. 11 is a flowchart illustrating a wireless communication method performed by an electronic device as a user equipment according to an embodiment of the present disclosure
  • FIG. 12 is a block diagram showing a first example of a schematic configuration of an eNB (Evolved Node B, evolved Node B);
  • FIG. 13 is a block diagram showing a second example of a schematic configuration of an eNB
  • FIG. 14 is a block diagram showing an example of a schematic configuration of a smartphone.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation apparatus.
  • Example embodiments are provided so that this disclosure will be thorough, and will fully convey the scope to those skilled in the art. Numerous specific details are set forth such as examples of specific components, devices, and methods in order to provide a thorough understanding of embodiments of the present disclosure. It will be apparent to those skilled in the art that specific details need not be employed, that example embodiments may be embodied in many different forms, and that neither should be construed to limit the scope of the disclosure. In some example embodiments, well-known processes, well-known structures and well-known technologies are not described in detail.
  • FIG. 1 is a schematic diagram illustrating a scenario in which each cell is configured with multiple beams according to an embodiment of the present disclosure.
  • each PCI can correspond to multiple beams.
  • PCI1 may correspond to beam 1
  • PCI2 may correspond to beam 6 and beam 7,
  • PCI3 may correspond to beam 8, beam 9, beam 10, beam 12, and beam 14.
  • FIG. 2 is a schematic diagram illustrating a scenario in which beams and frequency domain resources are bound according to an embodiment of the present disclosure.
  • Figure 2 shows the coverage of an NTN cell.
  • the coverage of the NTN cell is geographically divided into areas.
  • FIG. 2 shows an example in which each area is hexagonal in shape and each area is the same size, the present disclosure is not limited thereto.
  • the NTN cell adopts the technology of frequency reuse, and the frequency reuse factor is 3. That is, the frequency domain resources are divided into BWP1, BWP2, and BWP3. Adjacent areas use different BWPs to avoid interference.
  • the transmission beam of the network side equipment can be represented by the downlink reference signal identifier.
  • the downlink reference signal includes but is not limited to SSB (Synchronization Signal Block, synchronization signal block) and CSI-RS (Channel State Information-Reference Signal, channel state information reference). Signal).
  • SSB Synchronization Signal Block
  • CSI-RS Channel State Information-Reference Signal, channel state information reference. Signal.
  • BWP0 For the BWP0, all SSBs can be transmitted on this BWP0. That is, the user equipment performs synchronization by detecting all SSBs on the BWP0.
  • the beams represented by SSB1, SSB2 and SSB3 can all be transmitted on BWP0.
  • BWP0 For other BWPs except BWP0, it has a corresponding relationship (also called a bonding relationship) with the beams represented by the CSI-RS. Specifically, for a specific area, there is a one-to-one correspondence between the BWP and the downlink transmit beam indicated by the CSI-RS.
  • the BWP1 and the CSI-RS1 have a binding relationship. That is to say, for the user equipment in the vertical bar-shaped area, the network side equipment will use the BWP1 and the downlink transmit beam represented by the CSI-RS1 to send downlink information to the user equipment.
  • the BWP3 and the CSI-RS3 have a binding relationship. That is to say, for the user equipment in the horizontal bar area, the network side equipment will use the BWP3 and the downlink transmit beam represented by the CSI-RS3 to send downlink information to the user equipment.
  • the BWP2 and the CSI-RS2 have a binding relationship. That is, for the user equipment in the grid area, the network side equipment will use the BWP2 and the downlink transmit beam represented by the CSI-RS2 to send downlink information to the user equipment.
  • the one-to-one correspondence between BWP and CSI-RS is only for a specific area.
  • other beams other than the beam indicated by CSI-RS1 may be used, and the other beams are not adjacent to the beam indicated by CSI-RS1.
  • FIG. 2 illustrates a situation in which the frequency domain resource is bound to the downlink transmit beam by taking the frequency domain resource as the BWP as an example.
  • frequency domain resources can also be bound with beams.
  • the BWP used for uplink can be bound with the uplink transmit beam of the user equipment. That is, there is a one-to-one correspondence between the uplink BWP of the user equipment and the uplink transmit beam.
  • the uplink beam can be represented by an uplink reference signal identifier, and the uplink reference signal includes but is not limited to SRS (Sounding Reference Signal, measurement reference signal).
  • FIG. 2 shows a case where the frequency reuse factor is 3, but the present disclosure does not limit the value of the frequency reuse factor.
  • the present disclosure proposes an electronic device in a wireless communication system, a wireless communication method performed by the electronic device in the wireless communication system, and a computer-readable storage medium, so that in the case of beam and frequency domain resource binding, Improve the indication process for beam and frequency domain resources.
  • the wireless communication system according to the present disclosure may be a 5G NR (New Radio) communication system. Further, the wireless communication system according to the present disclosure may include NTN. Optionally, the wireless communication system according to the present disclosure may further include a TN (Terrestrial network, terrestrial network).
  • the network side device may be any type of base station device, for example, an eNB, or a gNB (a base station in a 5th generation communication system).
  • the network-side device according to the present disclosure may be located on the ground, or may be located on a satellite device. That is, satellite equipment can be used to provide services to user equipment.
  • the network-side device may be located on the ground; if the satellite device serving the user equipment is a non-transparent satellite device, the network-side device may be located on the satellite device superior.
  • the user equipment may be a mobile terminal such as a smart phone, a tablet personal computer (PC), a notebook PC, a portable game terminal, a portable/dongle type mobile router, and a digital camera or a vehicle-mounted terminal such as a car navigation device ).
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the aforementioned terminals.
  • FIG. 3 is a block diagram illustrating an example of the configuration of the electronic device 300 according to an embodiment of the present disclosure.
  • the electronic device 300 here may be used as a network-side device in a wireless communication system, and may specifically be used as a base station device in the wireless communication system.
  • the electronic device 300 may include a first generating unit 310 and a communication unit 320 .
  • each unit of the electronic device 300 may be included in the processing circuit.
  • the electronic device 300 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the first generating unit 310 may generate the first downlink control signaling.
  • the first downlink control signaling generated by the first generating unit 310 may include first frequency domain indication information and first beam indication information, and the frequency domain resource indicated by the first frequency domain indication information and the first beam indication The frequency domain resources corresponding to the beams indicated by the information are the same.
  • the electronic device 300 may send the first downlink control signaling generated by the first generating unit 310 to the user equipment through the communication unit 320 .
  • the downlink control signaling includes frequency domain indication information and beam indication information, and the frequency domain resources indicated by the frequency domain indication information and the beams indicated by the beam indication information correspond to The frequency domain resources are the same.
  • the beam and the frequency domain resource can be correctly indicated when the beam is bound to the frequency domain resource, so as to prevent the frequency domain resource indicated by the frequency domain indication information and the frequency domain corresponding to the beam indicated by the beam indication information.
  • the domain resources are not the same, so that the user equipment cannot receive or send normally.
  • the first downlink control signaling may include downlink control signaling for downlink scheduling (that is, signaling for controlling downlink transmission) and downlink control signaling for uplink scheduling (that is, for Signaling to control uplink transmission).
  • the first downlink control signaling is a downlink control signaling used for downlink scheduling
  • the first frequency domain indication information included in the first downlink control signaling is used to indicate downlink frequency domain resources
  • the first downlink control signaling The first beam indication information included in the signaling is used to indicate the downlink transmit beam.
  • the first downlink control signaling is downlink control signaling used for uplink scheduling
  • the first frequency domain indication information included in the first downlink control signaling is used to indicate uplink frequency domain resources
  • the first The first beam indication information included in the downlink control signaling is used to indicate an uplink transmit beam.
  • frequency domain resources include, but are not limited to, BWP.
  • the frequency domain indication information may include identification information of frequency domain resources.
  • the first frequency domain indication information may be a BWP ID.
  • a beam may be represented by a reference signal.
  • the downlink transmission beam may be represented by a downlink reference signal, such as a CSI-RS.
  • the first beam indication information used to indicate the downlink transmit beam may be a TCI (Transmission Configuration Indicator, transmission configuration indicator) state. This is because there is a corresponding relationship between the TCI state and the downlink reference signal, so a unique quasi-co-location can be determined according to the TCI state.
  • Type D QL type D
  • an uplink transmit beam can be represented by an uplink reference signal, such as an SRS.
  • the first beam indication information used to indicate the uplink transmit beam may be SpatialRelationInfo (spatial relationship information) or SRI (SRS Resource Indicator, SRS resource indication), because SpatialRelationInfo or SRI has a corresponding relationship with the uplink reference signal SRS, so according to SpatialRelationInfo Or the SRI can determine a unique uplink reference signal, and thus can determine the uplink transmit beam.
  • the first beam indication information used to indicate the uplink transmit beam may also be the TCI.
  • the electronic device 300 may further include a configuration unit 330 configured to configure the corresponding relationship between frequency domain resources and beams.
  • a configuration unit 330 configured to configure the corresponding relationship between frequency domain resources and beams.
  • there is a correspondence between downlink frequency domain resources and downlink transmit beams there is a correspondence between uplink frequency domain resources and uplink transmit beams.
  • the configuration unit 330 may configure such a correspondence.
  • the electronic device 300 may send such a correspondence to the user equipment through the communication unit 320 .
  • the electronic device 300 may carry such a correspondence through RRC signaling.
  • the frequency domain resource is BWP
  • the CSI-RS is used to represent the beam
  • the TCI state is used to represent the first beam indication information
  • the TCI state ID is TCI state 1
  • the downlink transmit beam indicated by the TCI state ID is the downlink transmit beam indicated by CSI-RS resource 3
  • the frequency domain resource where CSI-RS resource 3 is located is BWP1. That is to say, through such a corresponding relationship, the user equipment can determine that the downlink transmit beam represented by the CSI-RS resource 3 has a binding relationship with the BWP1.
  • the corresponding relationship generated by the configuration unit 330 may include a plurality of such corresponding relationships, so as to configure the corresponding relationship between the downlink transmit beam and the downlink frequency domain resource for the user equipment.
  • configuration unit 330 configures the correspondence between the downlink transmit beam and the downlink frequency domain resources.
  • the configuration unit 330 may also configure the correspondence between the uplink transmit beam and the uplink frequency domain resource for the user equipment in a similar manner, which will not be repeated in this disclosure.
  • the first downlink control signaling may be DCI (Downlink Control Information, downlink control information).
  • the first generation unit 310 may generate the DCI, where the DCI includes the BWP ID and the TCI status, and the downlink BWP indicated by the BWP ID is the same as the downlink BWP corresponding to the downlink transmit beam indicated by the TCI status.
  • the first generation unit 310 may generate the DCI, where the DCI includes the BWP ID and SpatialRelationInfo/SRI, and the uplink BWP indicated by the BWP ID is the same as the uplink BWP corresponding to the uplink transmit beam indicated by SpatialRelationInfo/SRI.
  • the downlink BWP in the DCI used for downlink scheduling is usually used to indicate downlink frequency domain resources of downlink data information and downlink control information
  • the TCI status in the DCI is usually used to indicate the downlink transmit beam of downlink data information. Since the downlink BWP and TCI states are indicated separately, it cannot be guaranteed that the downlink BWP and the downlink BWP corresponding to the downlink transmit beam indicated by the TCI state are the same when the downlink BWP is bound to the downlink transmit beam.
  • the first generation unit 310 makes the downlink BWP and the downlink BWP corresponding to the downlink transmit beam indicated by the TCI state the same when generating the DCI, so that the downlink BWP and the downlink transmit beam can be bound when the downlink BWP and the downlink transmit beam are bound.
  • Downlink BWP and downlink transmit beam for correct indication This advantage also applies to DCI for uplink scheduling.
  • the first frequency domain indication information can be used to indicate downlink data information (carried by PDSCH) and downlink control information (carried by PDCCH) frequency domain resources, and can use the first beam indication information to indicate a downlink transmit beam used for downlink data information.
  • the electronic device 300 may indicate a downlink transmit beam for downlink control information in an implicit manner.
  • the electronic device 300 and the user equipment agree that the downlink transmit beam used for downlink control information is the same as the downlink transmit beam used for downlink data information.
  • the electronic device 300 may further include a processing unit 340 configured to determine a downlink transmit beam and downlink frequency domain resources for sending downlink data information and for sending downlink control information, and further It is used to determine the uplink transmit beam and uplink frequency domain resources used by the user equipment to send uplink data information and uplink control information, and according to the uplink transmit beam and
  • the uplink frequency domain resource determines the uplink receiving beam and uplink frequency domain resources used for receiving uplink data information and receiving uplink control information.
  • the electronic device 300 when the processing unit 340 determines the downlink frequency domain resources for sending downlink data information and for sending downlink control information, the electronic device 300 can use the first frequency domain indication information in the DCI to Indicates such downlink frequency domain resources. Further, in the case that the processing unit 340 determines a downlink transmit beam for transmitting downlink data information, the electronic device 300 may use the first beam indication information in the DCI to indicate such a downlink transmit beam. Further, the processing unit 340 may determine that the downlink transmit beam used for transmitting the downlink control information is the same as the downlink transmit beam used for transmitting the downlink data information.
  • the electronic device 300 may further include a downlink information generating unit 350 for generating downlink data information and downlink control information.
  • the electronic device 300 can transmit the downlink data information and downlink control information generated by the downlink information generation unit 350 on the downlink frequency domain resource determined by the processing unit 340 according to the downlink transmit beam determined by the processing unit 340.
  • the electronic device 300 can use the downlink transmit beam represented by TCI1 to send downlink control information and downlink data information on BWP1, and the user equipment can determine the corresponding downlink receive beam according to the downlink transmit beam represented by TCI1, and The downlink control information and downlink data information are received on the BWP1 by using the downlink receiving beam.
  • FIG. 4 is a signaling flow chart illustrating the indication of beam and frequency domain resources according to an embodiment of the present disclosure.
  • the base station may be implemented by the electronic device 300 .
  • the base station sends the RRC configuration to the UE to configure the binding relationship between the downlink transmit beam and the downlink frequency domain resources.
  • the base station sends DCI to the UE, which includes the first frequency domain indication information and the first beam indication information.
  • step S403 the UE determines the downlink transmit beam and downlink frequency domain resource of PDSCH and the downlink frequency domain resource of PDCCH according to the indication of DCI, and determines the downlink transmit beam of PDCCH to be the same as the downlink transmit beam of PDSCH.
  • step S404 the base station sends the PDCCH to the UE.
  • step S405 the UE performs blind detection on the PDCCH according to the downlink transmit beam and downlink frequency domain resources of the PDCCH.
  • step S406 the base station sends the PDSCH to the UE.
  • step S407 the UE receives the PDSCH according to the downlink transmit beam and downlink frequency domain resources of the PDSCH.
  • FIG. 4 shows a signaling flow chart for indicating beams and frequency domain resources when the DCI is DCI for downlink scheduling and the base station indicates the downlink transmit beam of the PDCCH in an implicit manner.
  • the electronic device 300 may also indicate the downlink transmit beam used for transmitting downlink control information in an explicit manner.
  • the downlink information generating unit 350 may generate the downlink data information such that the downlink data information includes beam indication information for indicating the downlink transmit beam of the downlink control information, and the downlink transmit beam of the downlink control information is the same as that indicated by the first beam indication information.
  • the downlink transmit beam is the same.
  • the MAC CE included in the downlink data information may be used to carry the beam indication information for indicating the downlink transmit beam of the downlink control information.
  • the beam indication information used to indicate the downlink transmit beam of the downlink control information may also be the TCI state.
  • the electronic device 300 when the processing unit 340 determines the downlink frequency domain resources for sending downlink data information and for sending downlink control information, the electronic device 300 can use the first frequency domain indication information in the DCI to Indicates such downlink frequency domain resources. Further, in the case that the processing unit 340 determines a downlink transmit beam for transmitting downlink data information, the electronic device 300 may use the first beam indication information in the DCI to indicate such a downlink transmit beam. Further, the processing unit 340 may determine that the downlink transmit beam used for sending downlink control information is the same as the downlink transmit beam used for sending downlink data information. On the other hand, the electronic device 300 may use the beam indication information included in the downlink data information generated by the generating unit 350 to indicate the downlink transmit beam of the downlink control information.
  • the electronic device 300 may transmit the downlink data information and downlink control information generated by the downlink information generation unit 350 on the downlink frequency domain resource determined by the processing unit 340 according to the downlink transmit beam determined by the processing unit 340 .
  • the reference signal identifier is used to represent the beam
  • the downlink reference signal identifier is used to represent the beam indicated by the first beam indication information and the beam used to indicate the downlink control information
  • the first beam The reference signal included in the indication information may be the same as the reference signal included in the beam indication information used to indicate the beam of the downlink control information.
  • the electronic device 300 can use the downlink transmit beam represented by TCI1 on BWP1 to send downlink control information and downlink data information, where the downlink data information includes MAC CE, and the MAC CE includes TCI1.
  • the TCI1 in the DCI and the reference signal identifier represented by the TCI1 in the MAC CE in the downlink data information are the same.
  • the user equipment may determine the corresponding downlink receive beam according to the downlink transmit beam indicated by TCI1, and use the downlink receive beam on the BWP1 to receive downlink data information.
  • the user equipment determines that the MAC CE included in the downlink data information also includes TCI1, and the downlink transmit beam represented by the TCI1 is the same as the downlink transmit beam represented by the TCI1 in the DCI, thereby determining the corresponding downlink reception according to the downlink transmit beam represented by TCI1.
  • beam and use the downlink receive beam on BWP1 to receive downlink control information.
  • the reference signal included in the first beam indication information and the reference signal included in the beam indication information for indicating the beam of downlink control information may have a Quasi-Colocation (QCL) relationship.
  • QCL Quasi-Colocation
  • the electronic device 300 may use the downlink transmit beam represented by TCI1 on BWP1 to send downlink control information and downlink data information, where the downlink data information includes MAC CE, and the MAC CE includes TCI2.
  • the reference signals represented by TCI1 in the DCI and TCI2 in the MAC CE in the downlink data information have a quasi-co-located relationship.
  • the user equipment may determine the corresponding downlink receive beam according to the downlink transmit beam indicated by TCI1, and use the downlink receive beam on the BWP1 to receive downlink data information.
  • the user equipment determines that the MAC CE included in the downlink data information includes TCI2, and the downlink transmit beam represented by this TCI2 is the same as the downlink transmit beam represented by TCI1 in the DCI, thereby determining the corresponding downlink receive beam according to the downlink transmit beam represented by TCI2 , and use the downlink receiving beam on BWP1 to receive downlink control information.
  • TCI1 and TCI2 may be as follows.
  • the reference signal represented by TCI1 is CSI-RS resource 3
  • the reference signal represented by TCI2 is SSB3.
  • the CSI-RS resource 3 is different from the SSB3, the CSI-RS resource 3 is the same as the downlink transmit beam represented by the SSB3.
  • FIG. 5 is a signaling flow chart illustrating the indication of beam and frequency domain resources according to an embodiment of the present disclosure.
  • the base station may be implemented by the electronic device 300 .
  • the base station sends the RRC configuration to the UE to configure the binding relationship between the downlink transmit beam and the downlink frequency domain resources.
  • the base station sends DCI to the UE, which includes the first frequency domain indication information and the first beam indication information.
  • the UE determines the downlink transmit beam and downlink frequency domain resources of the PDSCH and the downlink frequency domain resources of the PDCCH according to the indication of the DCI.
  • the base station transmits the PDSCH to the UE.
  • step S505 the UE receives the PDSCH according to the downlink transmission beam of the PDSCH and the downlink frequency domain resources, and determines the downlink transmission beam of the PDCCH according to the MAC CE in the PDSCH, and the downlink transmission beam of the PDCCH is the same as the downlink transmission beam of the PDSCH.
  • the base station sends the PDCCH to the UE.
  • step S507 the UE performs blind detection on the PDCCH according to the downlink transmit beam and downlink frequency domain resources of the PDCCH.
  • FIG. 5 shows a signaling flow chart for indicating beams and frequency domain resources when the DCI is DCI for downlink scheduling and the base station explicitly indicates the downlink transmit beam of the PDCCH.
  • the downlink transmit beam of downlink control information and the downlink transmit beam of downlink data information are indicated separately. Therefore, when only one downlink BWP is activated, the downlink transmit beam of downlink control information and the downlink data information cannot be guaranteed.
  • the downlink transmit beams are the same.
  • the electronic device 300 can make the downlink transmit beam of the downlink control information the same as the downlink transmit beam of the downlink data information, and can express the downlink control information in an implicit or explicit manner.
  • the downlink transmission beam is used to ensure that the downlink transmission beam of the downlink control information and the downlink transmission beam of the downlink data information are the same.
  • the first generating unit 310 when there is downlink information that needs to be scheduled, can generate the DCI as described above, and determine the states or values of other fields in the DCI according to the downlink information that needs to be scheduled, so that the user The device can receive downlink data information and downlink control information according to the DCI.
  • the first generating unit 310 may generate the DCI as described above, and set at least some fields except the first frequency domain indication information and the first beam indication information to specific values.
  • the first generating unit 310 may set a field indicating the time domain and frequency domain resources where the downlink data information is located, a field of a HARQ process number, and the like to a specific value. Specific values include, but are not limited to, all zeros or all ones. In this way, the user equipment can determine that the DCI is only used to indicate downlink frequency domain resources and downlink transmit beams without demodulating downlink data information or downlink control information.
  • the first frequency domain indication information can be used to indicate the uplink used for uplink data information (borne by PUSCH) and uplink control information (borne by PUCCH). frequency domain resources, and the first beam indication information may be used to indicate an uplink transmit beam used for uplink data information.
  • the electronic device 300 may indicate an uplink transmit beam for uplink control information in an implicit manner. For example, the electronic device 300 and the user equipment agree that the uplink transmit beam used for uplink control information is the same as the uplink transmit beam used for uplink data information.
  • the electronic device 300 can use the first frequency domain indication information in the DCI to Indicates such uplink frequency domain resources. Further, when the processing unit 340 determines an uplink transmit beam for transmitting uplink data information, the electronic device 300 may use the first beam indication information in the DCI to indicate such an uplink transmit beam. Further, the processing unit 340 may determine that the uplink transmit beam used for transmitting the uplink control information is the same as the uplink transmit beam used for transmitting the uplink data information.
  • the electronic device 300 can determine a corresponding uplink receive beam according to the uplink transmit beam determined by the processing unit 340, and can receive uplink data information and uplink data according to the uplink receive beam on the uplink frequency domain resource determined by the processing unit 340 control information.
  • the user equipment can use the uplink transmit beam indicated by SpatialRelationInfo1/SRI1 on BWP1 to send the uplink control information and uplink data information, and the electronic device 300 can determine the corresponding correspondence according to the uplink transmit beam indicated by SpatialRelationInfo1/SRI1
  • the uplink receiving beam is used to receive uplink control information and uplink data information on the BWP1 by using the uplink receiving beam.
  • FIG. 6 is a signaling flow chart illustrating the indication of beam and frequency domain resources according to an embodiment of the present disclosure.
  • the base station may be implemented by the electronic device 300 .
  • the base station sends the RRC configuration to the UE to configure the binding relationship between the uplink transmit beam and the uplink frequency domain resources.
  • the base station sends DCI to the UE, which includes the first frequency domain indication information and the first beam indication information.
  • step S603 the UE determines the uplink transmit beam and uplink frequency domain resources of the PUSCH and the uplink frequency domain resources of the PUCCH according to the indication of the DCI, and determines the uplink transmit beam of the PUCCH to be the same as the uplink transmit beam of the PUSCH.
  • step S604 the UE sends the PUCCH to the base station according to the uplink transmit beam and uplink frequency domain resources of the PUCCH.
  • step S605 the UE sends the PUSCH to the base station according to the uplink transmit beam of the PUSCH and the uplink frequency domain resources.
  • FIG. 6 shows a signaling flow chart for indicating beams and frequency domain resources when the DCI is the DCI used for uplink scheduling, and the base station indicates the uplink transmit beam of the PUCCH in an implicit manner.
  • the uplink transmit beam of the uplink control information and the uplink transmit beam of the uplink data information are indicated separately. Therefore, the uplink transmit beam of the uplink control information and the uplink data information cannot be guaranteed when only one uplink BWP is activated.
  • the uplink transmit beams are the same.
  • the electronic device 300 can make the uplink transmit beam of the uplink control information the same as the uplink transmit beam of the uplink data information, and can represent the uplink transmit beam of the uplink control information in a recessive manner, Thus, it is ensured that the uplink transmit beam of the uplink control information and the uplink transmit beam of the uplink data information are the same.
  • the first generating unit 310 when there is uplink information that needs to be scheduled, can generate the DCI as described above, and determine the status or value of other fields in the DCI according to the uplink information that needs to be scheduled, so that the user The device can send uplink data information and uplink control information according to the DCI.
  • the first generating unit 310 may generate the DCI as described above, and set at least part of the fields except the first frequency domain indication information and the first beam indication information to specific values.
  • the first generating unit 310 may set a field indicating the time domain and frequency domain resources where the uplink data information is located, a field of a HARQ process number, and the like to a specific value. Specific values include, but are not limited to, all zeros or all ones. In this way, the user equipment can determine that the DCI is only used to indicate uplink frequency domain resources and uplink transmit beams, without sending uplink data information or uplink control information.
  • the first downlink control signaling according to the embodiment of the present disclosure is described in detail above.
  • the electronic device 300 may further include a second generating unit 360 for generating second downlink control signaling.
  • the second downlink control signaling may include second beam indication information, where the second beam indication information is used to indicate a beam of downlink control information or a beam of uplink control information.
  • the electronic device 300 may send the second downlink control signaling generated by the second generating unit 360 to the user equipment through the communication unit 320 .
  • the second downlink control signaling may be downlink control signaling for downlink activation (that is, signaling for controlling downlink transmission), or downlink control signaling for uplink activation (that is, signaling for controlling downlink transmission) Signaling used to control uplink transmission).
  • the second downlink control signaling is downlink control signaling for downlink activation
  • the second beam indication information included in the second downlink control signaling is used to indicate a downlink transmit beam of the downlink control information.
  • the second beam indication information included in the second downlink control signaling is used to indicate an uplink transmit beam of the uplink control information.
  • the second beam indication information may be a TCI state, or may be SpatialRelationInfo or SRI.
  • the second downlink control signaling may be a MAC CE.
  • the MAC CE In the case where the MAC CE is a MAC CE for downlink activation, the MAC CE includes a TCI state, and the TCI state is used to indicate a downlink transmit beam of downlink control information. Similarly, where the MAC CE is a MAC CE for uplink activation, the MAC CE includes SpatialRelationInfo, and SpatialRelationInfo indicates the uplink transmit beam of uplink control information.
  • Embodiments of the present disclosure will be respectively described below with respect to the MAC CE being a MAC CE for downlink activation and a MAC CE for uplink activation.
  • the configuration unit 330 may determine a downlink frequency domain for downlink control information The resource is the frequency domain resource corresponding to the downlink transmit beam of the downlink control information. Further, the configuration unit 330 may determine that the downlink frequency domain resources used for downlink data information are the same as the downlink frequency domain resources used for downlink control information, and the downlink transmission beam used for downlink data information is the same as the downlink transmission beam used for downlink control information. same.
  • the electronic device 300 can implicitly indicate the downlink frequency domain resources and downlink transmit beams used for the downlink data information, that is, the electronic device 300 and the user equipment agree on the downlink frequency domain resources used for the downlink data information and the downlink frequency domain resources used for downlink control.
  • the downlink frequency domain resources of the information are the same, and the downlink transmit beam used for the downlink data information is the same as the downlink transmit beam used for the downlink control information.
  • the downlink information generating unit 350 may generate downlink control information and downlink data information.
  • the electronic device 300 may use the downlink transmit beam determined by the configuration unit 330 to send the downlink data information and the downlink control information on the downlink frequency domain resource determined by the configuration unit 330 through the communication unit 320 .
  • the user equipment may determine a downlink transmit beam for sending downlink control information and downlink data information according to the MAC CE, and determine a corresponding downlink receive beam, thereby using the downlink receive beam and downlink frequency domain resources to receive downlink control information and downlink data. information.
  • the MAC CE includes TCI state 1, the reference signal corresponding to the TCI state 1 is CSI-RS resource 3, and the downlink frequency domain resource corresponding to the downlink transmit beam represented by CSI-RS resource 3 is BWP1, then the electronic device 300 can be in BWP1
  • the downlink control information and the downlink data information are sent by using the downlink transmit beam indicated by the CSI-RS resource 3.
  • the base station may be implemented by the electronic device 300 .
  • the base station sends the RRC configuration to the UE to configure the binding relationship between the downlink transmit beam and the downlink frequency domain resources.
  • the base station sends a MAC CE to the UE, which includes the second beam indication information.
  • step S703 the UE determines the downlink transmit beam of the PDCCH and the downlink frequency domain resource corresponding to the downlink transmit beam according to the indication of the MAC CE, and determines the downlink transmit beam and the downlink frequency domain resource of the PDSCH as the downlink transmit beam of the PDCCH The same and the downlink frequency domain resources are the same.
  • step S704 the base station sends the PDCCH to the UE.
  • step S705 the UE performs blind detection on the PDCCH according to the downlink transmit beam and downlink frequency domain resources of the PDCCH.
  • step S706 the base station transmits the PDSCH to the UE.
  • step S707 the UE receives the PDSCH according to the downlink transmit beam and downlink frequency domain resources of the PDSCH.
  • FIG. 7 shows a signaling flow chart for indicating beam and frequency domain resources when the MAC CE is a MAC CE for downlink activation.
  • the configuration unit 330 may determine the uplink frequency domain for the uplink control information The resource is the frequency domain resource corresponding to the uplink transmit beam of the uplink control information. Further, the configuration unit 330 may determine that the uplink frequency domain resources used for the uplink data information are the same as the uplink frequency domain resources used for the uplink control information, and the uplink transmit beams used for the uplink data information and the downlink transmit beams used for the uplink control information are the same. same.
  • the electronic device 300 can implicitly indicate the uplink frequency domain resources and uplink transmit beams for uplink data information, that is, the electronic device 300 and the user equipment agree on the uplink frequency domain resources for uplink data information and the uplink frequency domain resources for uplink control.
  • the uplink frequency domain resources of the information are the same, and the uplink transmit beam used for the uplink data information is the same as the uplink transmit beam used for the uplink control information.
  • the user equipment can determine the uplink transmit beam and uplink frequency domain resource for uplink control information and uplink data information according to the indication of the MAC CE, and use the uplink transmit beam on the uplink frequency domain resource to send the uplink control information and uplink data information.
  • the electronic device 300 may determine a corresponding uplink receive beam according to the uplink transmit beam, and use the uplink receive beam on the uplink frequency domain resource to receive uplink data information and uplink control information.
  • the MAC CE includes SpatialRelationInfo1, the reference signal corresponding to SpatialRelationInfo1 is SRS resource 3, and the uplink frequency domain resource corresponding to the uplink transmit beam represented by SRS resource 3 is BWP1, then the user equipment can use the uplink transmission represented by SRS resource 3 on BWP1
  • the beam transmits uplink control information and uplink data information.
  • the base station may be implemented by the electronic device 300 .
  • the base station sends the RRC configuration to the UE to configure the binding relationship between the uplink transmit beam and the uplink frequency domain resources.
  • the base station sends a MAC CE to the UE, which includes the second beam indication information.
  • step S803 the UE determines the uplink transmit beam of the PUCCH and the uplink frequency domain resource corresponding to the uplink transmit beam according to the indication of the MAC CE, and determines the uplink transmit beam and the uplink frequency domain resource of the PUSCH as the uplink transmit beam of the PUCCH Same and uplink frequency domain resources are the same.
  • step S804 the UE sends the PUCCH according to the uplink transmit beam and uplink frequency domain resources of the PUCCH.
  • step S805 the UE transmits the PUSCH according to the uplink transmit beam of the PUSCH and the uplink frequency domain resources.
  • FIG. 8 shows a signaling flow diagram for indicating beam and frequency domain resources when the MAC CE is a MAC CE for uplink activation.
  • the TCI status in the MAC CE for downlink activation is generally used to indicate downlink transmit beams of downlink control information. Therefore, when the downlink BWP is bound to the downlink transmit beam, it cannot be guaranteed that the downlink BWP and the downlink BWP corresponding to the downlink transmit beam indicated by the TCI state are the same. In addition, when only one downlink BWP is activated, it cannot be guaranteed that the downlink transmit beam of the downlink control information is the same as the downlink transmit beam of the downlink data information.
  • the electronic device 300 and the user equipment may agree that the downlink frequency domain resource of the downlink control information is the downlink corresponding to the downlink transmit beam of the downlink control information frequency domain resources, and the downlink transmission beam of downlink data information and the downlink frequency domain resources of downlink data information are the same as the downlink control information, thus ensuring that the downlink transmit beam and Correct indication of frequency domain resources.
  • the downlink frequency domain resource of the downlink control information is the downlink corresponding to the downlink transmit beam of the downlink control information frequency domain resources, and the downlink transmission beam of downlink data information and the downlink frequency domain resources of downlink data information are the same as the downlink control information, thus ensuring that the downlink transmit beam and Correct indication of frequency domain resources.
  • the electronic device 300 may further include a third generating unit 370 for generating third downlink control signaling.
  • the third downlink control signaling may include third frequency domain indication information and third beam information, where the third frequency domain indication information is used to indicate frequency domain resources of downlink control information and downlink data information, or used to indicate uplink control information and uplink The frequency domain resource of the data information, and the third beam indication information is used to indicate the beam of the downlink control information and the downlink data information, or used to indicate the beam of the uplink control information and the uplink data information.
  • the electronic device 300 may send the third downlink control signaling generated by the third generating unit 370 to the user equipment through the communication unit 320 .
  • the third downlink control signaling may include downlink control signaling for downlink configuration (that is, signaling for controlling downlink transmission) and downlink control signaling for uplink configuration (that is, for controlling downlink transmission) signaling for uplink transmission).
  • the third downlink control signaling is the downlink control signaling used for downlink configuration
  • the third frequency domain indication information included in the third downlink control signaling is used to indicate downlink frequency domain resources of downlink data information and downlink control information
  • the third beam indication information included in the third downlink control signaling is used to indicate the downlink transmit beam of the downlink control information and the downlink data information.
  • the third frequency domain indication information included in the third downlink control signaling is used to indicate the uplink of the uplink control information and the uplink data information.
  • the frequency domain resource, the third beam indication information included in the third downlink control signaling is used to indicate the uplink transmit beam of the uplink control information and the uplink data information.
  • frequency domain resources include, but are not limited to, BWP.
  • the frequency domain indication information may include identification information of frequency domain resources.
  • the third frequency domain indication information may be the BWP ID.
  • the third beam indication information may be a TCI state, or may be SpatialRelationInfo or SRI.
  • the third downlink control signaling may be RRC signaling.
  • RRC signaling being RRC signaling for downlink configuration and RRC signaling for uplink configuration.
  • the electronic device 300 can set default downlink frequency domain resources and downlink transmit beams for each serving cell through the RRC signaling.
  • the electronic device 300 may carry the downlink frequency domain resources for the serving cell through the firstActiveDownlinkBWP-Id field in the RRC signaling.
  • a TCI associated with firstActiveDownlinkBWP-Id field may be added to the RRC signaling to carry the downlink transmit beam for the serving cell.
  • the electronic device 300 may determine the current serving cell of the user equipment, and determine the default downlink transmit beam set for the serving cell as the downlink transmit beam of downlink data information and downlink control information,
  • the default downlink frequency domain resource set by the cell is determined as the downlink frequency domain resource of downlink data information and downlink control information.
  • the electronic device 300 may transmit the downlink control information and the downlink data information according to the downlink transmit beam of the downlink control information and the downlink data information on the downlink frequency domain resources of the downlink control information and the downlink data information through the communication unit 320 .
  • the user equipment after the user equipment receives the RRC reconfiguration information or the serving cell is activated, it can determine the corresponding downlink receive beam according to the default downlink transmit beam set for the serving cell, and use the default downlink beam set for the serving cell to determine the corresponding downlink receive beam.
  • the downlink receiving beam is used to receive downlink data information and downlink control information on frequency domain resources.
  • the electronic device 300 can set default uplink frequency domain resources and uplink transmit beams for each serving cell through RRC signaling. For example, the electronic device 300 may carry the uplink frequency domain resources for the serving cell through the firstActiveUplinkBWP-Id field in the RRC signaling. In addition, a spatialRelationInfo associated with firstActiveUplinkBWP-Id field may be added to the RRC signaling to carry the uplink transmit beam for the serving cell.
  • the electronic device 300 may determine the current serving cell of the user equipment, and determine the default uplink transmit beam set for the serving cell as the uplink transmit beam of uplink data information and uplink control information,
  • the default uplink frequency domain resource set by the cell is determined as the uplink frequency domain resource of uplink data information and uplink control information.
  • the user equipment after the user equipment receives the RRC reconfiguration information or the serving cell is activated, it can use the default uplink transmit beam set for the serving cell to send uplink data information on the default uplink frequency domain resources set for the serving cell and uplink control information.
  • the electronic device 300 can determine the corresponding uplink receive beam according to the uplink transmit beam, and use the uplink receive beam to receive uplink data information and uplink control information on the default uplink frequency domain resource set for the serving cell.
  • the third downlink control signaling according to the embodiment of the present disclosure is described in detail as described above.
  • the first downlink control signaling (DCI), the second downlink control signaling (MAC CE), and the third downlink control signaling (RRC) are respectively described.
  • DCI first downlink control signaling
  • MAC CE second downlink control signaling
  • RRC third downlink control signaling
  • the electronic device 300 may use one or more of the above three types of downlink control signaling to implement the indication of frequency domain resources and beams. Two non-limiting examples will be described below.
  • the electronic device 300 sets the downlink frequency domain resources of downlink control information and downlink data information, and the downlink transmission beam of downlink data information through DCI, and agrees with the user equipment on the downlink transmission beam of downlink control information and the downlink transmission of downlink data information Beams are the same.
  • the electronic device 300 can notify the user equipment through the MAC CE, and agree with the user equipment that the downlink frequency domain resources of the downlink control information are also switched to the downlink resources of the downlink control information.
  • the downlink frequency domain resource corresponding to the transmit beam, the downlink frequency domain resource of the downlink data information is the same as the downlink frequency domain resource of the downlink control information, and the downlink transmit beam of the downlink data information is the same as the downlink transmit beam of the downlink control information.
  • the electronic device 300 uses RRC to set default downlink frequency domain resources and downlink transmit beams for each serving cell.
  • the electronic device 300 can set the downlink frequency domain resources of downlink control information and downlink data information, and the downlink transmit beams of downlink data information through DCI, and communicate with the user The equipment agrees that the downlink transmit beam of the downlink control information is the same as the downlink transmit beam of the downlink data information.
  • the frequency domain resources and beams can be correctly indicated when the frequency domain resources are bound to the beams, and the consistency between the frequency domain resources and the beams of the data information and the control information can be maintained. sex.
  • the above-mentioned objects can be achieved without making changes to the existing signaling and only restricting the existing signaling or making small changes to the existing signaling.
  • FIG. 9 is a block diagram illustrating a structure of an electronic device 900 serving as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • the electronic device 900 may include a communication unit 910 , a decoding unit 920 and a processing unit 930 .
  • each unit of the electronic device 900 may be included in the processing circuit.
  • the electronic device 900 may include either one processing circuit or multiple processing circuits.
  • the processing circuit may include various discrete functional units to perform various different functions and/or operations. It should be noted that these functional units may be physical entities or logical entities, and units with different names may be implemented by the same physical entity.
  • the electronic device 900 may receive the first downlink control signaling through the communication unit 910 .
  • the electronic device 900 may receive the first downlink control signaling from a network-side device, such as a base station device.
  • the decoding unit 920 is configured to decode downlink data information or downlink control information from the network side device. For example, the decoding unit 920 may decode the first downlink control signaling to obtain the first frequency domain indication information and the first beam indication information included in the first downlink control signaling.
  • the processing unit 930 may determine frequency domain resources and beams for receiving information and frequency domain resources and beams for transmitting information, including a downlink receiving beam for receiving downlink control information and downlink frequency domain resources, receiving The downlink receiving beam and downlink frequency domain resources for downlink data information, the uplink transmit beam and uplink frequency domain resources for transmitting uplink control information, and the uplink transmit beam and uplink frequency domain resources for transmitting uplink data information.
  • the electronic device 900 may determine the frequency domain resource indicated by the first frequency domain indication information and the first beam indication Whether the frequency domain resources corresponding to the beams indicated by the information are the same. Further, in the case that the frequency domain resource indicated by the first frequency domain indication information is the same as the frequency domain resource corresponding to the beam indicated by the first beam indication information, the processing unit 930 may determine that the frequency domain resource is receiving downlink information Or send the frequency domain resource of the uplink information, so that the electronic device 900 can receive the downlink information or send the uplink information on the frequency domain resource through the communication unit 910 according to the beam indicated by the first beam indication information.
  • the electronic device 900 can obtain the binding relationship between the downlink transmit beam and the downlink frequency domain resources and the binding relationship between the uplink transmit beam and the uplink frequency domain resources from the network side device, for example, through RRC signaling.
  • the above binding relationship is obtained, so that the frequency domain resource corresponding to the beam indicated by the first beam indication information can be determined according to the binding relationship.
  • the processing unit 930 may The frequency domain resource corresponding to the beam indicated by the first beam indication information is determined to be the frequency domain resource for receiving downlink information or transmitting uplink information, so that the electronic device 900 can perform the frequency domain resource corresponding to the beam indicated by the first beam indication information.
  • the downlink information is received or the uplink information is sent according to the beam indicated by the first beam indication information. That is, the electronic device 900 may ignore the frequency domain resources indicated by the first frequency domain indication information, and take the frequency domain resources corresponding to the beams indicated by the first beam indication information as the criterion.
  • the electronic device 900 can determine whether the frequency domain resource indicated by the first frequency domain indication information is the same as the frequency domain resource corresponding to the beam indicated by the first beam indication information, thereby ensuring that the Correct indication of frequency domain resources and beams when frequency domain resources are bound to beams.
  • the first downlink control signaling may be DCI.
  • DCI being the DCI used for downlink scheduling and the DCI used for uplink scheduling, respectively.
  • processing The unit 930 may determine that the downlink frequency domain resource of the downlink control information and the downlink data information is the frequency domain resource, and determine that the downlink transmit beam of the downlink data information is the beam indicated by the first beam indication information. Further, the processing unit 930 may determine that the downlink transmit beam of the downlink control information is the same as the downlink transmit beam of the downlink data information, thereby determining that the downlink receive beam of the downlink control information is the same as the downlink receive beam of the downlink data information.
  • the electronic device 900 can receive downlink control information on the downlink frequency domain resources of the downlink control information by using the downlink receive beam of the downlink control information, and can receive the downlink control information by using the downlink receive beam of the downlink data information on the downlink frequency domain resources of the downlink data information.
  • Downlink data information That is, the electronic device 900 may determine the downlink transmission beam of the downlink control information according to the implicit indication of the network side device.
  • the processing unit 930 may also determine the downlink control The downlink frequency domain resource of the information and the downlink data information is the frequency domain resource, and the downlink transmission beam of the downlink data information is determined to be the beam indicated by the first beam indication information. Further, the processing unit 930 may determine a corresponding downlink receive beam according to the downlink transmit beam of the downlink data information, and receive the downlink data information on the downlink frequency domain resource of the downlink data information according to the downlink receive beam of the downlink data information.
  • the decoding unit 920 may decode the downlink data information to determine beam indication information for indicating the downlink transmit beam of the downlink control information.
  • the electronic device 900 may determine whether the downlink transmit beam of the downlink control information is the same as the beam indicated by the first beam indication information. Further, when the downlink transmit beam of the downlink control information is the same as the beam indicated by the first beam indication information, the processing unit 930 may determine that the downlink transmit beam of the downlink control information is the downlink transmit beam. Further, the electronic device 900 may determine a corresponding downlink receive beam according to the downlink transmit beam of the downlink control information, and use the downlink receive beam on the downlink frequency domain resource of the downlink control information to receive the downlink control information. That is, the electronic device 900 may determine the downlink transmit beam of the downlink control information according to the explicit instruction of the network side device.
  • the electronic device 900 can determine the downlink control information in the following manner. Whether the downlink transmit beam is the same as the beam indicated by the first beam indication information. Specifically, in the case where the reference signal included in the first beam indication information is the same as or has a quasi-co-located relationship with the reference signal included in the beam indication information used to indicate the downlink transmit beam of the downlink control information, the electronic device 900 may It is determined that the downlink transmit beam of the downlink control information is the same as the beam indicated by the first beam indication information.
  • the electronic device 900 may further include a delay time determining unit 940, configured to determine the delay time when the downlink frequency domain resource and the downlink transmit beam change.
  • a delay time determining unit 940 configured to determine the delay time when the downlink frequency domain resource and the downlink transmit beam change.
  • the delay time determining unit 940 may switch according to the frequency domain resource. At least one of the time delay and the time delay of the beam switching determines the delay time. Further, the delay time determining unit 940 may determine the larger value of the delay time of frequency domain resource switching and the delay time of beam switching as the delay time.
  • the electronic device 900 switches the downlink frequency domain resource and the downlink transmit beam within a delay time no later than the delay time after receiving the first downlink control signaling.
  • switching downlink frequency domain resources means that the processing unit 930 of the electronic device 900 switches the downlink frequency domain resources used for receiving downlink information from the original downlink frequency domain resources to new downlink frequency domain resources, and switching the downlink transmit beam refers to It is the processing unit 930 of the electronic device 900 that determines a new downlink transmit beam for sending downlink information, and determines a corresponding new downlink receive beam according to the new downlink transmit beam.
  • the delay of frequency domain resource switching can be, for example, parameters such as BWP gap (BWP interval), BWP switch delay (BWP switching delay), and the delay of beam switching can be, for example, TCI gap (TCI interval), timeDurationForQCL (QCL time segment) and other parameters.
  • the delay time determining unit 940 may The delay time is determined according to at least one of the time delay of frequency domain resource switching and the time delay of beam switching. Further, the delay time determining unit 940 may determine the larger value of the delay time of frequency domain resource switching and the delay time of beam switching as the delay time.
  • the electronic device 900 switches the downlink frequency domain resource and the downlink transmit beam within a delay time no later than the delay time after receiving the beam indication information for indicating the downlink transmit beam of the downlink control information.
  • the electronic device 900 may further include a feedback information generating unit 950 for generating feedback information, including ACK and NACK, for downlink data information.
  • a feedback information generating unit 950 for generating feedback information, including ACK and NACK, for downlink data information.
  • the delay time determining unit 940 may The delay time is determined by at least one of the delay of frequency domain resource switching, the delay of beam switching, the processing time of downlink data information, and the transmission delay of feedback information. Further, the delay time determining unit 940 may determine the larger value of the above parameters as the delay time.
  • the electronic device 900 can send feedback information to the network side device through the communication unit 910, and switch the downlink frequency domain resources and the downlink transmit beam within a delay time no later than sending the feedback information.
  • switching of downlink frequency domain resources and switching of downlink transmit beams are performed separately. That is, the downlink frequency domain resources are switched before the time delay of the frequency domain resource switching, and the downlink transmit beam is switched before the time delay of the beam switching. According to the embodiments of the present disclosure, the switching sequence of frequency domain resources and beams is improved when frequency domain resources and beams are bound.
  • processing The unit 930 may determine that the uplink frequency domain resource of the uplink control information and the uplink data information is the frequency domain resource, and determine that the uplink transmit beam of the uplink data information is the beam indicated by the first beam indication information. Further, the processing unit 930 may determine that the uplink transmit beam of the uplink control information is the same as the uplink transmit beam of the uplink data information.
  • the electronic device 900 can use the uplink transmit beam of the uplink control information to send the uplink control information on the uplink frequency domain resources of the uplink control information, and can transmit the uplink control information by using the uplink transmit beam of the uplink data information on the uplink frequency domain resources of the uplink data information.
  • Uplink data information That is, the electronic device 900 may determine the uplink transmit beam of the uplink control information according to the implicit indication of the network side device.
  • the delay time determining unit 940 may also determine the delay time in the case that the uplink frequency domain resource and the uplink transmit beam change. According to the embodiment of the present disclosure, when the uplink frequency domain resource indicated by the downlink control signaling from the network side device is different from the previous uplink frequency domain resource, it can be considered that the uplink frequency domain resource has changed. Similarly, when the uplink transmit beam indicated by the downlink control signaling from the network side device is different from the previous uplink transmit beam, it can be considered that the uplink transmit beam has changed.
  • the delay time determining unit 940 may determine the delay time according to at least one of the time delay of frequency domain resource switching and the time delay of beam switching. Further, the delay time determining unit 940 may determine the larger value of the delay time of frequency domain resource switching and the delay time of beam switching as the delay time.
  • the electronic device 900 switches the uplink frequency domain resource and the uplink transmit beam within a delay time no later than the delay time after receiving the first downlink control signaling.
  • switching the uplink frequency domain resource refers to that the processing unit 930 of the electronic device 900 switches the uplink frequency domain resource used for sending uplink information from the original uplink frequency domain resource to the new uplink frequency domain resource
  • switching the uplink transmit beam refers to It is the processing unit 930 of the electronic device 900 that switches the uplink transmit beam used for sending the uplink information from the original uplink transmit beam to the new uplink transmit beam.
  • switching of uplink frequency domain resources and switching of uplink transmit beams are performed separately. That is to say, the uplink frequency domain resources are switched before the time delay of the frequency domain resource switching, and the uplink transmit beam is switched before the time delay of the beam switching. According to the embodiments of the present disclosure, the switching sequence of frequency domain resources and beams is improved when frequency domain resources and beams are bound.
  • the first downlink control signaling according to the embodiment of the present disclosure is described in detail above.
  • the electronic device 900 may receive the second downlink control signaling through the communication unit 910 .
  • the second downlink control signaling may include second beam indication information, where the second beam indication information is used to indicate a beam of downlink control information or a beam of uplink control information.
  • the second downlink control signaling may be a MAC CE.
  • Embodiments according to the present disclosure are described below with respect to the MAC CE for uplink activation and the MAC CE for downlink activation, respectively.
  • the MAC CE may include second beam indication information, and the second beam indication information is used to indicate the downlink transmit beam of the downlink control information.
  • the processing unit 930 may determine the downlink transmission beam of the downlink control information according to the MAC CE, and determine the downlink frequency domain resource corresponding to the downlink transmission beam as the downlink frequency domain resource of the downlink control information. Further, the processing unit 930 may determine the downlink transmit beam of the downlink data information to be the same as the downlink transmit beam of the downlink control information, and determine the downlink frequency domain resource of the downlink data information to be the same as the downlink frequency domain resource of the downlink control information.
  • the processing unit 930 may determine a corresponding downlink receive beam according to the above-mentioned downlink transmit beam, and the electronic device 900 receives the downlink control information and the downlink according to the downlink receive beam on the downlink frequency domain resource corresponding to the downlink transmit beam of the downlink control information. Data information.
  • the MAC CE may include second beam indication information, and the second beam indication information is used to indicate the uplink transmit beam of the uplink control information.
  • the processing unit 930 may determine the uplink transmit beam of the uplink control information according to the MAC CE, and determine the uplink frequency domain resource corresponding to the uplink transmit beam as the uplink frequency domain resource of the uplink control information. Further, the processing unit 930 may determine the uplink transmit beam of the uplink data information to be the same as the uplink transmit beam of the uplink control information, and determine the uplink frequency domain resource of the uplink data information to be the same as the uplink frequency domain resource of the uplink control information. Further, the electronic device 900 may transmit the uplink control information and the uplink data information according to the uplink transmit beam on the uplink frequency domain resource corresponding to the uplink transmit beam of the uplink control information.
  • the electronic device 900 may receive the third downlink control signaling through the communication unit 910 .
  • the third downlink control signaling includes third frequency domain indication information and third beam indication information, and the third frequency domain indication information is used to indicate frequency domain resources of downlink control information and downlink data information, or used to indicate uplink control information and uplink The frequency domain resource of the data information, and the third beam indication information is used to indicate the beam of the downlink control information and the downlink data information, or used to indicate the beam of the uplink control information and the uplink data information.
  • the third downlink control signaling may be RRC signaling.
  • RRC signaling being RRC signaling for downlink configuration and RRC signaling for uplink configuration, respectively.
  • the RRC signaling may include third frequency domain indication information and third beam indication information for each serving cell, and the third frequency domain indication information is used to indicate that the The downlink frequency domain resources of the default downlink control information and downlink data information set by the serving cell, and the third beam indication information is used to indicate the default downlink control information and downlink data information set for the serving cell.
  • the electronic device 900 may determine the current serving cell, and determine the corresponding downlink receive beam according to the default downlink transmit beam set for the current serving cell, and then use the default downlink beam set for the current serving cell to determine the corresponding downlink receive beam.
  • the downlink control information and downlink data information are received on the frequency domain resources according to the downlink receiving beam.
  • the RRC signaling may include third frequency domain indication information and third beam indication information for each serving cell, and the third frequency domain indication information is used to indicate that the The uplink frequency domain resources of the default uplink control information and uplink data information set by the serving cell, and the third beam indication information is used to indicate the default uplink control information and uplink transmit beams of uplink data information set for the serving cell.
  • the electronic device 900 may determine the current serving cell, and transmit uplink control information on the default uplink frequency domain resource set for the current serving cell by using the default uplink transmit beam set for the current serving cell and uplink data information.
  • the third downlink control signaling according to the embodiment of the present disclosure is described in detail above.
  • the frequency domain resources and beams can be correctly indicated when the frequency domain resources are bound to the beams, and the consistency between the frequency domain resources and the beams of the data information and the control information can be maintained. sex.
  • the above-mentioned objects can be achieved without making changes to the existing signaling and only restricting the existing signaling or making small changes to the existing signaling.
  • FIG. 10 is a flowchart illustrating a wireless communication method performed by an electronic device 300 as a network-side device in a wireless communication system according to an embodiment of the present disclosure.
  • step S1010 first downlink control signaling is generated, wherein the first downlink control signaling includes first frequency domain indication information and first beam indication information, and the first frequency domain indication information
  • the indicated frequency domain resource is the same as the frequency domain resource corresponding to the beam indicated by the first beam indication information.
  • step S1020 the first downlink control signaling is sent to the user equipment.
  • the wireless communication method further comprises: sending downlink data information and downlink control information according to the beam on the frequency domain resource, or receiving uplink data information and uplink control information according to the beam on the frequency domain resource.
  • the wireless communication method further includes: generating downlink data information, where the downlink data information includes beam indication information for indicating a beam of the downlink control information, and the beam of the downlink control information is the same as the beam indicated by the first beam indication information.
  • the wireless communication method further includes: using a reference signal identifier to indicate the beam indicated by the first beam indication information and the beam used to indicate downlink control information, and the reference signal included in the first beam indication information is the same as the reference signal used to indicate downlink control information.
  • the reference signals included in the beam indication information of the beam of the control information are the same or have a quasi-co-located relationship.
  • the first downlink control signaling includes DCI.
  • the wireless communication method further comprises: setting at least some fields other than the first frequency domain indication information and the first beam indication information to specific values in the absence of uplink information and/or downlink information that needs to be scheduled.
  • the wireless communication method further includes: generating second downlink control signaling, wherein the second downlink control signaling includes second beam indication information, and the second beam indication information is used to indicate the beam of the downlink control information or to indicate the uplink a beam of control information; and sending the second downlink control signaling to the user equipment.
  • the second downlink control signaling includes second beam indication information, and the second beam indication information is used to indicate the beam of the downlink control information or to indicate the uplink a beam of control information; and sending the second downlink control signaling to the user equipment.
  • the wireless communication method further comprises: sending downlink control information and downlink data information on a frequency domain resource corresponding to a beam of downlink control information according to a beam of downlink control information, or sending downlink control information and downlink data information on a frequency domain resource corresponding to a beam of uplink control information, or on a frequency domain corresponding to a beam of uplink control information
  • the uplink control information and uplink data information are received on the domain resources according to the beam of the uplink control information.
  • the second downlink control signaling includes MAC CE.
  • the wireless communication method further includes: generating third downlink control signaling, wherein the third downlink control signaling includes third frequency domain indication information and third beam information, and the third frequency domain indication information is used to indicate downlink control information and the frequency domain resources of downlink data information, or the frequency domain resources used to indicate uplink control information and uplink data information, and the third beam indication information is used to indicate the beam of downlink control information and downlink data information, or used to indicate uplink control information and a beam of uplink data information; and sending third downlink control signaling to the user equipment.
  • the third downlink control signaling includes third frequency domain indication information and third beam information
  • the third frequency domain indication information is used to indicate downlink control information and the frequency domain resources of downlink data information, or the frequency domain resources used to indicate uplink control information and uplink data information
  • the third beam indication information is used to indicate the beam of downlink control information and downlink data information, or used to indicate uplink control information and a beam of uplink data information
  • the wireless communication method further comprises: sending the downlink control information and the downlink data information on the frequency domain resources of the downlink control information and the downlink data information according to the beam of the downlink control information and the downlink data information, or sending the downlink control information and the uplink data information on the frequency domain resources of the downlink control information and the downlink data information
  • the uplink control information and uplink data information are received according to the beams of uplink control information and uplink data information on the frequency domain resources of the device.
  • the third downlink control signaling includes RRC.
  • the subject performing the above method may be the electronic device 300 according to the embodiment of the present disclosure, so all the foregoing embodiments about the electronic device 300 are applicable to this.
  • FIG. 11 is a flowchart illustrating a wireless communication method performed by an electronic device 900 as a user equipment in a wireless communication system according to an embodiment of the present disclosure.
  • step S1110 first downlink control signaling is received, and the first downlink control signaling includes first frequency domain indication information and first beam indication information.
  • step S1120 in the case that the frequency domain resource indicated by the first frequency domain indication information and the frequency domain resource corresponding to the beam indicated by the first beam indication information are the same, the frequency domain resource is based on the The beam receives downlink information or transmits uplink information.
  • the wireless communication method further includes: in the case that the frequency domain resource indicated by the first frequency domain indication information and the frequency domain resource corresponding to the beam indicated by the first beam indication information are different, when the first beam indication information is different from the frequency domain resource indicated by the first beam indication information
  • the downlink information is received or the uplink information is sent according to the beam on the frequency domain resource corresponding to the beam indicated by the information.
  • the downlink information includes downlink control information and downlink data information
  • the uplink information includes uplink control information and uplink data information
  • the wireless communication method further comprises: when frequency domain resources and beams change, determining a delay time according to at least one of a time delay of frequency domain resource switching and a time delay of beam switching; The frequency domain resources and beams are switched within the delay time after the downlink control signaling.
  • the wireless communication method further comprises: receiving downlink data information according to the beam on the frequency domain resource, the downlink data information including beam indication information for indicating the beam of the downlink control information;
  • the downlink control information is received according to the beam on the frequency domain resource.
  • the reference signal identifier is used to indicate the beam indicated by the first beam indication information and the beam used to indicate the downlink control information
  • the wireless communication method further includes: the reference signal included in the first beam indication information and the beam used to indicate the downlink control information.
  • the reference signals included in the beam indication information of the beam of the downlink control information are the same or have a quasi-co-located relationship, it is determined that the beam of the downlink control information is the same as the beam indicated by the first beam indication information.
  • the wireless communication method further comprises: when frequency domain resources and beams change, determining a delay time according to at least one of a time delay of frequency domain resource switching and a time delay of beam switching; In the delay time after the beam indication information of the beam indicating the downlink control information, the frequency domain resource and the beam are switched.
  • the wireless communication method further includes: generating feedback information for downlink data information; when frequency domain resources and beams change, according to frequency domain resource switching delays, beam switching delays, and processing time for downlink data information and at least one of the transmission delays of the feedback information to determine a delay time; and switch the frequency domain resources and the beams no later than the delay time after the feedback information is sent.
  • the first downlink control signaling includes DCI.
  • the wireless communication method further includes: receiving second downlink control signaling, where the second downlink control signaling includes second beam indication information, and the second beam indication information is used to indicate a beam of downlink control information or used to indicate uplink control information and receive downlink control information and downlink data information according to the beam of downlink control information on the frequency domain resource corresponding to the beam of the downlink control information, or receive downlink control information and downlink data information on the frequency domain resource corresponding to the beam of uplink control information according to the uplink control information.
  • the beam of control information transmits uplink control information and uplink data information.
  • the second downlink control signaling includes MAC CE.
  • the wireless communication method further includes: receiving third downlink control signaling, wherein the third downlink control signaling includes third frequency domain indication information and third beam indication information, and the third frequency domain indication information is used to indicate downlink control The frequency domain resources of information and downlink data information, or the frequency domain resources used to indicate uplink control information and uplink data information, the third beam indication information is used to indicate the beam of downlink control information and downlink data information, or used to indicate uplink control information information and uplink data information beams; and receive downlink control information and downlink data information on the frequency domain resources of downlink control information and downlink data information according to the beams of downlink control information and downlink data information, or receive downlink control information and downlink data information, or receive uplink control information and uplink data information on the frequency domain resources of the downlink control information and downlink data information
  • the uplink control information and the uplink data information are sent according to the beams of the uplink control information and the uplink data information on the frequency domain resources.
  • the third downlink control signaling includes RRC.
  • the subject performing the above method may be the electronic device 900 according to the embodiment of the present disclosure, so all the foregoing embodiments about the electronic device 900 are applicable to this.
  • the network side device can be implemented as any type of base station device, such as macro eNB and small eNB, and can also be implemented as any type of gNB (base station in a 5G system).
  • Small eNBs may be eNBs covering cells smaller than macro cells, such as pico eNBs, micro eNBs, and home (femto) eNBs.
  • the base station may be implemented as any other type of base station, such as NodeB and base transceiver station (BTS).
  • a base station may include: a subject (also referred to as a base station device) configured to control wireless communications; and one or more remote radio heads (RRHs) disposed at a different location than the subject.
  • RRHs remote radio heads
  • User equipment may be implemented as mobile terminals such as smart phones, tablet personal computers (PCs), notebook PCs, portable game terminals, portable/dongle-type mobile routers, and digital cameras or vehicle-mounted terminals such as car navigation devices.
  • the user equipment may also be implemented as a terminal performing machine-to-machine (M2M) communication (also referred to as a machine type communication (MTC) terminal).
  • M2M machine-to-machine
  • MTC machine type communication
  • the user equipment may be a wireless communication module (such as an integrated circuit module comprising a single die) mounted on each of the above-mentioned user equipments.
  • eNB 1200 is a block diagram illustrating a first example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied.
  • eNB 1200 includes one or more antennas 1210 and base station equipment 1220.
  • the base station apparatus 1220 and each antenna 1210 may be connected to each other via an RF cable.
  • Each of the antennas 1210 includes a single or multiple antenna elements (such as multiple antenna elements included in a multiple-input multiple-output (MIMO) antenna), and is used by the base station apparatus 1220 to transmit and receive wireless signals.
  • eNB 1200 may include multiple antennas 1210.
  • multiple antennas 1210 may be compatible with multiple frequency bands used by eNB 1200.
  • FIG. 12 shows an example in which the eNB 1200 includes multiple antennas 1210, the eNB 1200 may also include a single antenna 1210.
  • the base station apparatus 1220 includes a controller 1221 , a memory 1222 , a network interface 1223 , and a wireless communication interface 1225 .
  • the controller 1221 may be, for example, a CPU or a DSP, and operates various functions of a higher layer of the base station apparatus 1220 .
  • the controller 1221 generates data packets from data in the signal processed by the wireless communication interface 1225, and communicates the generated packets via the network interface 1223.
  • the controller 1221 may bundle data from a plurality of baseband processors to generate a bundled packet, and deliver the generated bundled packet.
  • the controller 1221 may have logical functions to perform controls such as radio resource control, radio bearer control, mobility management, admission control, and scheduling. This control may be performed in conjunction with nearby eNB or core network nodes.
  • the memory 1222 includes RAM and ROM, and stores programs executed by the controller 1221 and various types of control data such as a terminal list, transmission power data, and scheduling data.
  • the network interface 1223 is a communication interface for connecting the base station apparatus 1220 to the core network 1224 .
  • Controller 1221 may communicate with core network nodes or further eNBs via network interface 1223 .
  • the eNB 1200 and core network nodes or other eNBs may be connected to each other through logical interfaces such as S1 interface and X2 interface.
  • the network interface 1223 may also be a wired communication interface or a wireless communication interface for wireless backhaul. If the network interface 1223 is a wireless communication interface, the network interface 1223 may use a higher frequency band for wireless communication than the frequency band used by the wireless communication interface 1225 .
  • Wireless communication interface 1225 supports any cellular communication scheme, such as Long Term Evolution (LTE) and LTE-Advanced, and provides wireless connectivity to terminals located in cells of eNB 1200 via antenna 1210.
  • Wireless communication interface 1225 may generally include, for example, a baseband (BB) processor 1226 and RF circuitry 1227 .
  • the BB processor 1226 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and performs layers such as L1, Medium Access Control (MAC), Radio Link Control (RLC), and Packet Data Convergence Protocol (PDCP)) various types of signal processing.
  • the BB processor 1226 may have some or all of the above-described logical functions.
  • the BB processor 1226 may be a memory storing a communication control program, or a module including a processor and associated circuitry configured to execute the program.
  • the update procedure may cause the functionality of the BB processor 1226 to change.
  • the module may be a card or blade that is inserted into a slot in the base station device 1220. Alternatively, the module can also be a chip mounted on a card or blade.
  • the RF circuit 1227 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1210 .
  • the wireless communication interface 1225 may include multiple BB processors 1226 .
  • multiple BB processors 1226 may be compatible with multiple frequency bands used by eNB 1200.
  • the wireless communication interface 1225 may include a plurality of RF circuits 1227 .
  • multiple RF circuits 1227 may be compatible with multiple antenna elements.
  • FIG. 12 shows an example in which the wireless communication interface 1225 includes multiple BB processors 1226 and multiple RF circuits 1227 , the wireless communication interface 1225 may also include a single BB processor 1226 or a single RF circuit 1227 .
  • eNB 13 is a block diagram illustrating a second example of a schematic configuration of an eNB to which techniques of the present disclosure may be applied.
  • eNB 1330 includes one or more antennas 1340, base station equipment 1350, and RRH 1360.
  • the RRH 1360 and each antenna 1340 may be connected to each other via an RF cable.
  • the base station apparatus 1350 and the RRH 1360 may be connected to each other via a high-speed line such as an optical fiber cable.
  • Each of the antennas 1340 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna) and is used by the RRH 1360 to transmit and receive wireless signals.
  • the eNB 1330 may include multiple antennas 1340.
  • multiple antennas 1340 may be compatible with multiple frequency bands used by eNB 1330.
  • 13 shows an example in which the eNB 1330 includes multiple antennas 1340, the eNB 1330 may also include a single antenna 1340.
  • the base station apparatus 1350 includes a controller 1351 , a memory 1352 , a network interface 1353 , a wireless communication interface 1355 , and a connection interface 1357 .
  • the controller 1351 , the memory 1352 and the network interface 1353 are the same as the controller 1221 , the memory 1222 and the network interface 1223 described with reference to FIG. 12 .
  • the network interface 1353 is a communication interface for connecting the base station apparatus 1350 to the core network 1354 .
  • Wireless communication interface 1355 supports any cellular communication scheme, such as LTE and LTE-Advanced, and provides wireless communication via RRH 1360 and antenna 1340 to terminals located in a sector corresponding to RRH 1360.
  • Wireless communication interface 1355 may generally include, for example, BB processor 1356 .
  • the BB processor 1356 is the same as the BB processor 1226 described with reference to FIG. 12, except that the BB processor 1356 is connected to the RF circuit 1364 of the RRH 1360 via the connection interface 1357.
  • the wireless communication interface 1355 may include multiple BB processors 1356 .
  • multiple BB processors 1356 may be compatible with multiple frequency bands used by eNB 1330.
  • FIG. 13 shows an example in which the wireless communication interface 1355 includes multiple BB processors 1356
  • the wireless communication interface 1355 may also include a single BB processor 1356 .
  • connection interface 1357 is an interface for connecting the base station apparatus 1350 (the wireless communication interface 1355) to the RRH 1360.
  • the connection interface 1357 may also be a communication module for communication in the above-mentioned high-speed line connecting the base station device 1350 (the wireless communication interface 1355) to the RRH 1360.
  • RRH 1360 includes connection interface 1361 and wireless communication interface 1363.
  • connection interface 1361 is an interface for connecting the RRH 1360 (the wireless communication interface 1363 ) to the base station apparatus 1350.
  • the connection interface 1361 may also be a communication module used for communication in the above-mentioned high-speed line.
  • the wireless communication interface 1363 transmits and receives wireless signals via the antenna 1340 .
  • Wireless communication interface 1363 may typically include RF circuitry 1364, for example.
  • RF circuitry 1364 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via antenna 1340 .
  • the wireless communication interface 1363 may include a plurality of RF circuits 1364 .
  • multiple RF circuits 1364 may support multiple antenna elements.
  • FIG. 13 shows an example in which the wireless communication interface 1363 includes multiple RF circuits 1364
  • the wireless communication interface 1363 may include a single RF circuit 1364 .
  • the first generation unit 310 by using the first generation unit 310, the configuration unit 330, the processing unit 340, the downlink information generation unit 350, the second generation unit 360 and the The third generation unit 370 may be implemented by the controller 1221 and/or the controller 1351 . At least a part of the functions may also be implemented by the controller 1221 and the controller 1351 .
  • the controller 1221 and/or the controller 1351 may execute the instructions stored in the corresponding memory to generate the first downlink control signaling, configure the binding relationship between the beam and the frequency domain resources, determine to send the downlink information and receive the uplink Information beam and frequency domain resources, functions of generating downlink information, generating second downlink control signaling, and generating third downlink control information.
  • Smartphone 1400 includes processor 1401, memory 1402, storage device 1403, external connection interface 1404, camera device 1406, sensor 1407, microphone 1408, input device 1409, display device 1410, speaker 1411, wireless communication interface 1412, one or more Antenna switch 1415 , one or more antennas 1416 , bus 1417 , battery 1418 , and auxiliary controller 1419 .
  • the processor 1401 may be, for example, a CPU or a system on a chip (SoC), and controls the functions of the application layer and further layers of the smartphone 1400 .
  • the memory 1402 includes RAM and ROM, and stores data and programs executed by the processor 1401 .
  • the storage device 1403 may include storage media such as semiconductor memories and hard disks.
  • the external connection interface 1404 is an interface for connecting external devices such as memory cards and Universal Serial Bus (USB) devices to the smartphone 1400 .
  • the camera 1406 includes an image sensor such as a charge coupled device (CCD) and a complementary metal oxide semiconductor (CMOS), and generates a captured image.
  • Sensors 1407 may include a set of sensors such as measurement sensors, gyroscope sensors, geomagnetic sensors, and acceleration sensors.
  • the microphone 1408 converts the sound input to the smartphone 1400 into an audio signal.
  • the input device 1409 includes, for example, a touch sensor, a keypad, a keyboard, buttons, or switches configured to detect a touch on the screen of the display device 1410, and receives operations or information input from a user.
  • the display device 1410 includes a screen such as a liquid crystal display (LCD) and an organic light emitting diode (OLED) display, and displays an output image of the smartphone 1400 .
  • the speaker 1411 converts the audio signal output from the smartphone 1400 into sound.
  • the wireless communication interface 1412 supports any cellular communication scheme, such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1412 may typically include, for example, BB processor 1413 and RF circuitry 1414 .
  • the BB processor 1413 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1414 may include, for example, mixers, filters, and amplifiers, and transmit and receive wireless signals via the antenna 1416 .
  • the wireless communication interface 1412 may be a chip module on which the BB processor 1413 and the RF circuit 1414 are integrated. As shown in FIG.
  • the wireless communication interface 1412 may include a plurality of BB processors 1413 and a plurality of RF circuits 1414 .
  • FIG. 14 shows an example in which the wireless communication interface 1412 includes multiple BB processors 1413 and multiple RF circuits 1414 , the wireless communication interface 1412 may include a single BB processor 1413 or a single RF circuit 1414 .
  • the wireless communication interface 1412 may support additional types of wireless communication schemes, such as short-range wireless communication schemes, near field communication schemes, and wireless local area network (LAN) schemes.
  • the wireless communication interface 1412 may include the BB processor 1413 and the RF circuit 1414 for each wireless communication scheme.
  • Each of the antenna switches 1415 switches the connection destination of the antenna 1416 among a plurality of circuits included in the wireless communication interface 1412 (eg, circuits for different wireless communication schemes).
  • Each of the antennas 1416 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1412 to transmit and receive wireless signals.
  • smartphone 1400 may include multiple antennas 1416 .
  • FIG. 14 shows an example in which the smartphone 1400 includes multiple antennas 1416
  • the smartphone 1400 may also include a single antenna 1416 .
  • the smartphone 1400 may include an antenna 1416 for each wireless communication scheme.
  • the antenna switch 1415 can be omitted from the configuration of the smartphone 1400 .
  • the bus 1417 connects the processor 1401, the memory 1402, the storage device 1403, the external connection interface 1404, the camera 1406, the sensor 1407, the microphone 1408, the input device 1409, the display device 1410, the speaker 1411, the wireless communication interface 1412, and the auxiliary controller 1419 to each other connect.
  • the battery 1418 provides power to the various blocks of the smartphone 1400 shown in FIG. 14 via feeders, which are partially shown in phantom in the figure.
  • the auxiliary controller 1419 operates the minimum necessary functions of the smartphone 1400, eg, in a sleep mode.
  • the decoding unit 920 , the processing unit 930 , the delay time determining unit 940 and the feedback information generating unit 950 described by using FIG. 9 may be implemented by the processor 1401 or the auxiliary controller 1419 . At least a portion of the functionality may also be implemented by processor 1401 or auxiliary controller 1419 .
  • the processor 1401 or the auxiliary controller 1419 may execute the instructions stored in the memory 1402 or the storage device 1403 to decode the downlink control signaling, downlink data information, and downlink control information, determine to transmit uplink information and receive downlink information. Beam and frequency domain resources, determine delay time, and generate feedback functions.
  • FIG. 15 is a block diagram showing an example of a schematic configuration of a car navigation apparatus 1520 to which the techniques of the present disclosure can be applied.
  • the car navigation device 1520 includes a processor 1521, a memory 1522, a global positioning system (GPS) module 1524, a sensor 1525, a data interface 1526, a content player 1527, a storage medium interface 1528, an input device 1529, a display device 1530, a speaker 1531, a wireless Communication interface 1533 , one or more antenna switches 1536 , one or more antennas 1537 , and battery 1538 .
  • GPS global positioning system
  • the processor 1521 may be, for example, a CPU or a SoC, and controls the navigation function and other functions of the car navigation device 1520 .
  • the memory 1522 includes RAM and ROM, and stores data and programs executed by the processor 1521 .
  • the GPS module 1524 measures the position (such as latitude, longitude, and altitude) of the car navigation device 1520 using GPS signals received from GPS satellites.
  • Sensors 1525 may include a set of sensors such as gyroscope sensors, geomagnetic sensors, and air pressure sensors.
  • the data interface 1526 is connected to, for example, the in-vehicle network 1541 via a terminal not shown, and acquires data generated by the vehicle, such as vehicle speed data.
  • the content player 1527 reproduces content stored in storage media such as CDs and DVDs, which are inserted into the storage media interface 1528 .
  • the input device 1529 includes, for example, a touch sensor, a button, or a switch configured to detect a touch on the screen of the display device 1530, and receives operations or information input from a user.
  • the display device 1530 includes a screen such as an LCD or OLED display, and displays images or reproduced content of a navigation function.
  • the speaker 1531 outputs the sound of the navigation function or the reproduced content.
  • the wireless communication interface 1533 supports any cellular communication scheme such as LTE and LTE-Advanced, and performs wireless communication.
  • Wireless communication interface 1533 may generally include, for example, BB processor 1534 and RF circuitry 1535.
  • the BB processor 1534 may perform, for example, encoding/decoding, modulation/demodulation, and multiplexing/demultiplexing, and perform various types of signal processing for wireless communication.
  • the RF circuit 1535 may include, for example, a mixer, a filter, and an amplifier, and transmit and receive wireless signals via the antenna 1537 .
  • the wireless communication interface 1533 can also be a chip module on which the BB processor 1534 and the RF circuit 1535 are integrated. As shown in FIG.
  • the wireless communication interface 1533 may include a plurality of BB processors 1534 and a plurality of RF circuits 1535 .
  • FIG. 15 shows an example in which the wireless communication interface 1533 includes multiple BB processors 1534 and multiple RF circuits 1535 , the wireless communication interface 1533 may also include a single BB processor 1534 or a single RF circuit 1535 .
  • the wireless communication interface 1533 may support another type of wireless communication scheme, such as a short-range wireless communication scheme, a near field communication scheme, and a wireless LAN scheme.
  • the wireless communication interface 1533 may include the BB processor 1534 and the RF circuit 1535 for each wireless communication scheme.
  • Each of the antenna switches 1536 switches the connection destination of the antenna 1537 among a plurality of circuits included in the wireless communication interface 1533, such as circuits for different wireless communication schemes.
  • Each of the antennas 1537 includes a single or multiple antenna elements (such as multiple antenna elements included in a MIMO antenna), and is used for the wireless communication interface 1533 to transmit and receive wireless signals.
  • the car navigation device 1520 may include a plurality of antennas 1537 .
  • FIG. 15 shows an example in which the car navigation device 1520 includes multiple antennas 1537 , the car navigation device 1520 may also include a single antenna 1537 .
  • the car navigation device 1520 may include an antenna 1537 for each wireless communication scheme.
  • the antenna switch 1536 may be omitted from the configuration of the car navigation apparatus 1520 .
  • the battery 1538 provides power to the various blocks of the car navigation device 1520 shown in FIG. 15 via feeders, which are partially shown as dashed lines in the figure.
  • the battery 1538 accumulates power supplied from the vehicle.
  • the decoding unit 920 the processing unit 930 , the delay time determining unit 940 , and the feedback information generating unit 950 described by using FIG. 9 may be implemented by the processor 1521 .
  • the processor 1521 can perform decoding of downlink control signaling, downlink data information, and downlink control information, determining beam and frequency domain resources for transmitting uplink information and receiving downlink information, and determining delay time by executing the instructions stored in the memory 1522. , The function of generating feedback information.
  • the techniques of this disclosure may also be implemented as an in-vehicle system (or vehicle) 1540 that includes one or more blocks of a car navigation device 1520 , an in-vehicle network 1541 , and a vehicle module 1542 .
  • the vehicle module 1542 generates vehicle data such as vehicle speed, engine speed, and fault information, and outputs the generated data to the in-vehicle network 1541 .
  • the units shown in dotted boxes in the functional block diagram shown in the accompanying drawings all indicate that the functional unit is optional in the corresponding device, and each optional functional unit can be combined in an appropriate manner to realize the required function .
  • a plurality of functions included in one unit in the above embodiments may be implemented by separate devices.
  • multiple functions implemented by multiple units in the above embodiments may be implemented by separate devices, respectively.
  • one of the above functions may be implemented by multiple units. Needless to say, such a configuration is included in the technical scope of the present disclosure.
  • the steps described in the flowcharts include not only processing performed in time series in the stated order, but also processing performed in parallel or individually rather than necessarily in time series. Furthermore, even in the steps processed in time series, needless to say, the order can be appropriately changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及电子设备、无线通信方法和计算机可读存储介质。本公开的电子设备包括处理电路,被配置为:生成第一下行控制信令,其中,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息,并且所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同;以及向用户设备发送所述第一下行控制信令。使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,可以在波束和频域资源绑定的情况下改进对波束和频域资源的指示过程。

Description

电子设备、无线通信方法和计算机可读存储介质
本申请要求于2020年8月19日提交中国专利局、申请号为202010836807.4、发明名称为“电子设备、无线通信方法和计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开的实施例总体上涉及无线通信领域,具体地涉及电子设备、无线通信方法和计算机可读存储介质。更具体地,本公开涉及一种作为无线通信***中的网络侧设备的电子设备、一种作为无线通信***中的用户设备的电子设备、一种由无线通信***中的网络侧设备执行的无线通信方法、一种由无线通信***中的用户设备执行的无线通信方法以及一种计算机可读存储介质。
背景技术
在包括NTN(Non-terrestrial network,非地面网络)的无线通信***中,卫星设备可以产生多个波束。进一步,一个PCI(Physical Cell ID,物理小区ID)可以对应于多个波束。这样一来,在波束切换时无需进行小区切换,从而避免频繁的同步和RRC重连等操作。
此外,波束与频域资源可以具有绑定关系,这里的频域资源包括但不限于BWP(Bandwidth Part,带宽部分)。也就是说,特定的波束只能在具有绑定关系的BWP上进行传输。
因此,在包括NTN的无线通信***中,在频域资源与波束绑定的情况下,网络侧设备如何向用户设备指示用于上行传输或者下行传输的频域资源和波束是需要解决的技术问题。此外,如果只为用户设备激活了一个下行BWP,由于BWP与波束具有绑定关系,那么下行控制信息和下行数据信息需要采用相同的波束。类似地,如果只为用户设备激活了一个上行BWP,由于BWP与波束具有绑定关系,那么上行控制信息和上行数据信息需要采用相同的波束。因此,在这种情况下,如何保证上行控制信息和上行数据信息的波束一致、如何保证下行控制信息和下行数据信息的波束一致也是需要解决的技术问题。
因此,有必要提出一种技术方案,以解决以上技术问题中的至少一个。
发明内容
这个部分提供了本公开的一般概要,而不是其全部范围或其全部特征的全面披露。
本公开的目的在于提供一种电子设备、无线通信方法和计算机可读存储介质,以在波束和频域资源绑定的情况下改进对波束和频域资源的指示过程。
根据本公开的一方面,提供了一种电子设备,包括处理电路,被配置为:生成第一下行控制信令,其中,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息,并且所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同;以及向用户设备发送所述第一下行控制信令。
根据本公开的另一方面,提供了一种电子设备,包括处理电路,被配置为:接收第一下行控制信令,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息;以及在所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同的情况下,在所述频域资源上根据所述波束接收下行信息或者发送上行信息。
根据本公开的另一方面,提供了一种无线通信方法,包括:生成第一下行控制信令,其中,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息,并且所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同;以及向用户设备发送所述第一下行控制信令。
根据本公开的另一方面,提供了一种无线通信方法,包括:接收第一下行控制信令,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息;以及在所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同的情况下,在所述频域资源上根据所述波束接收下行信息或者发送上行信息。
根据本公开的另一方面,提供了一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算 机执行根据本公开所述的无线通信方法。
根据本公开的另一方面,提供了一种计算机程序,所述计算机程序当被计算机执行时使得所述计算机执行根据本公开所述的无线通信方法。
使用根据本公开的电子设备、无线通信方法和计算机可读存储介质,下行控制信令中包括频域指示信息和波束指示信息,频域指示信息指示的频域资源和与波束指示信息指示的波束相对应的频域资源相同。这样一来,可以在波束与频域资源绑定的情况下正确地对波束和频域资源进行指示,以防止频域指示信息指示的频域资源和与波束指示信息指示的波束相对应的频域资源不相同而导致用户设备无法正常接收或发送。
从在此提供的描述中,进一步的适用性区域将会变得明显。这个概要中的描述和特定例子只是为了示意的目的,而不旨在限制本公开的范围。
附图说明
在此描述的附图只是为了所选实施例的示意的目的而非全部可能的实施,并且不旨在限制本公开的范围。在附图中:
图1是示出根据本公开的实施例的每个小区被配置多个波束的场景的示意图;
图2是示出根据本公开的实施例的波束与频域资源绑定的场景的示意图;
图3示出根据本公开的实施例的作为网络侧设备的电子设备的配置的示例的框图;
图4是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图;
图5是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图;
图6是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图;
图7是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图;
图8是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图;
图9示出根据本公开的实施例的作为用户设备的电子设备的配置的示例的框图;
图10是示出根据本公开的实施例的由作为网络侧设备的电子设备执行的无线通信方法的流程图;
图11是示出根据本公开的实施例的由作为用户设备的电子设备执行的无线通信方法的流程图;
图12是示出eNB(Evolved Node B,演进型节点B)的示意性配置的第一示例的框图;
图13是示出eNB的示意性配置的第二示例的框图;
图14是示出智能电话的示意性配置的示例的框图;以及
图15是示出汽车导航设备的示意性配置的示例的框图。
虽然本公开容易经受各种修改和替换形式,但是其特定实施例已作为例子在附图中示出,并且在此详细描述。然而应当理解的是,在此对特定实施例的描述并不打算将本公开限制到公开的具体形式,而是相反地,本公开目的是要覆盖落在本公开的精神和范围之内的所有修改、等效和替换。要注意的是,贯穿几个附图,相应的标号指示相应的部件。
具体实施方式
现在参考附图来更加充分地描述本公开的例子。以下描述实质上只是示例性的,而不旨在限制本公开、应用或用途。
提供了示例实施例,以便本公开将会变得详尽,并且将会向本领域技术人员充分地传达其范围。阐述了众多的特定细节如特定部件、装置和方法的例子,以提供对本公开的实施例的详尽理解。对于本领域技术人员而言将会明显的是,不需要使用特定的细节,示例实施例可以用许多不同的形式来实施,它们都不应当被解释为限制本公开的范围。在某些示例实施例中,没有详细地描述众所周知的过程、众所周知的结构和众所周知的技术。
将按照以下顺序进行描述:
1.场景的描述;
2.网络侧设备的配置示例;
3.用户设备的配置示例;
4.方法实施例;
5.应用示例。
<1.场景的描述>
图1是示出根据本公开的实施例的每个小区被配置多个波束的场景的示意图。如图1所示,每个PCI可以对应多个波束。例如,PCI1可以对应波束1、波束2、波束3、波束4和波束5,PCI2可以对应波束6和波束7,PCI3可以对应波束8、波束9、波束10、波束12和波束14。
图2是示出根据本公开的实施例的波束与频域资源绑定的场景的示意图。图2中示出了一个NTN小区的覆盖范围。该NTN小区的覆盖范围在地理位置上被划分成多个区域。这里,虽然图2示出了每个区域的形状为六边形并且每个区域的大小相同的示例,但是本公开并不限于此。此外,该NTN小区采用了频率复用的技术,并且频率复用因子为3。也就是说,频域资源被划分为BWP1、BWP2和BWP3。相邻的区域采用不同的BWP从而避免干扰。
众所周知,网络侧设备的发射波束可以用下行参考信号标识来表示,下行参考信号包括但不限于SSB(Synchronization Signal Block,同步信号块)和CSI-RS(Channel State Information-Reference Signal,信道状态信息参考信号)。对于用于初始接入的BWP(也被称为BWP0),所有的SSB都可以在该BWP0上传输。也就是说,用户设备通过检测BWP0上的所有SSB从而进行同步。如图2所示,SSB1、SSB2和SSB3表示的波束都可以在BWP0上传输。对于除BWP0以外的其它BWP,其与CSI-RS表示的波束具有对应关系(也被称为绑定关系)。具体地,针对特定的区域,BWP与CSI-RS表示的下行发射波束具有一一对应的关系。
如图2所示,在竖条形区域示出的BWP1中,BWP1与CSI-RS1具有绑定关系。也就是说,针对该竖条形区域中的用户设备,网络侧设备将利用BWP1和由CSI-RS1表示的下行发射波束来向该用户设备发送下行信息。再如,在横条形区域示出的BWP3中,BWP3与CSI-RS3具有绑定关系。也就是说,针对该横条形区域中的用户设备,网络侧设备将利用BWP3和由CSI-RS3表示的下行发射波束来向该用户设备发送下行信息。 又如,在网格区域示出的BWP2中,BWP2与CSI-RS2具有绑定关系。也就是说,针对该网格区域中的用户设备,网络侧设备将利用BWP2和由CSI-RS2表示的下行发射波束来向该用户设备发送下行信息。
值的注意的是,BWP与CSI-RS的一一对应关系仅针对特定的区域。例如,在图2中空白的BWP1中,可以采用除CSI-RS1表示的波束以外的其它波束,该其它波束与CSI-RS1表示的波束不相邻。
如上所述,图2以频域资源为BWP为例说明了频域资源与下行发射波束进行绑定的情形。在上行中频域资源也可以与波束进行绑定。例如,用于上行的BWP可以与用户设备的上行发射波束进行绑定。即,用户设备的上行BWP与上行发射波束具有一一对应的关系。同样地,可以用上行参考信号标识来表示上行波束,上行参考信号包括但不限于SRS(Sounding Reference Signal,测量参考信号)。
此外,图2示出了频率复用因子为3的情形,但是本公开对频率复用因子的数值不进行限制。
本公开针对这样的场景提出了一种无线通信***中的电子设备、由无线通信***中的电子设备执行的无线通信方法以及计算机可读存储介质,以在波束和频域资源绑定的情况下改进对波束和频域资源的指示过程。
根据本公开的无线通信***可以是5G NR(New Radio,新无线)通信***。进一步,根据本公开的无线通信***可以包括NTN。可选地,根据本公开的无线通信***还可以包括TN(Terrestrial network,地面网络)。
根据本公开的网络侧设备可以是任何类型的基站设备,例如可以是eNB,也可以是gNB(第5代通信***中的基站)。此外,根据本公开的网络侧设备可以位于地面上,也可以位于卫星设备上。也就是说,可以利用卫星设备为用户设备提供服务。在为用户设备提供服务的卫星设备是透明卫星设备的情况下,网络侧设备可以位于地面上;在为用户设备提供服务的卫星设备是非透明卫星设备的情况下,网络侧设备可以位于该卫星设备上。
根据本公开的用户设备可以是移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还 可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述终端中的每个终端上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<2.网络侧设备的配置示例>
图3是示出根据本公开的实施例的电子设备300的配置的示例的框图。这里的电子设备300可以作为无线通信***中的网络侧设备,具体地可以作为无线通信***中的基站设备。
如图3所示,电子设备300可以包括第一生成单元310和通信单元320。
这里,电子设备300的各个单元都可以包括在处理电路中。需要说明的是,电子设备300既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,第一生成单元310可以生成第一下行控制信令。这里,第一生成单元310生成的第一下行控制信令可以包括第一频域指示信息和第一波束指示信息,并且第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同。
根据本公开的实施例,电子设备300可以通过通信单元320向用户设备发送第一生成单元310生成的第一下行控制信令。
由此可见,根据本公开的实施例的电子设备300,下行控制信令中包括频域指示信息和波束指示信息,频域指示信息指示的频域资源和与波束指示信息指示的波束相对应的频域资源相同。这样一来,可以在波束与频域资源绑定的情况下正确地对波束和频域资源进行指示,以防止频域指示信息指示的频域资源和与波束指示信息指示的波束相对应的频域资源不相同而导致用户设备无法正常接收或发送。
根据本公开的实施例,第一下行控制信令可以包括用于下行调度的下行控制信令(即用于控制下行传输的信令)和用于上行调度的下行控制信令(即用于控制上行传输的信令)。在第一下行控制信令是用于下行调度的下行控制信令的情况下,第一下行控制信令包括的第一频域指示信息用于指示下行频域资源,第一下行控制信令包括的第一波束指示信息用于指示下行发射波束。类似地,在第一下行控制信令是用于上行调度的下行 控制信令的情况下,第一下行控制信令包括的第一频域指示信息用于指示上行频域资源,第一下行控制信令包括的第一波束指示信息用于指示上行发射波束。
根据本公开的实施例,频域资源包括但不限于BWP。频域指示信息可以包括频域资源的标识信息。例如,在频域资源为BWP的情况下,第一频域指示信息可以为BWP ID。
根据本公开的实施例,可以用参考信号来表示波束。例如,可以用下行参考信号来表示下行发射波束,下行参考信号例如为CSI-RS。用于指示下行发射波束的第一波束指示信息可以为TCI(Transmission Configuration Indicator,传输配置指示)状态,这是因为TCI状态与下行参考信号存在对应关系,因此根据TCI状态可以确定唯一的准共位类型D(QCL type D)的下行参考信号,从而可以确定下行发射波束。类似地,可以用上行参考信号来表示上行发射波束,上行参考信号例如为SRS。用于指示上行发射波束的第一波束指示信息可以为SpatialRelationInfo(空间关系信息)或者SRI(SRS Resource Indicator,SRS资源指示),这是因为SpatialRelationInfo或者SRI与上行参考信号SRS存在对应关系,因此根据SpatialRelationInfo或者SRI可以确定唯一的上行参考信号,从而可以确定上行发射波束。此外,如果TCI与上行参考信号存在对应关系,则用于指示上行发射波束的第一波束指示信息也可以为TCI。
根据本公开的实施例,如图3所示,电子设备300还可以包括配置单元330,用于配置频域资源与波束之间的对应关系。根据本公开的实施例,下行频域资源与下行发射波束之间具有对应关系,而上行频域资源与上行发射波束之间具有对应关系。配置单元330可以配置这样的对应关系。进一步,电子设备300可以通过通信单元320向用户设备发送这样的对应关系。例如,电子设备300可以通过RRC信令承载这样的对应关系。
例如,在第一下行控制信令是用于下行调度的下行控制信令、频域资源为BWP、用CSI-RS来表示波束、并且用TCI状态来表示第一波束指示信息的情况下,配置单元330生成的对应关系中的一个可以如下所示。
TCI-State::=SEQUENCE{
tci-StateId TCI#1,
qcl-Type1 QCL-Info,
}
QCL-Info::=SEQUENCE{
bwp-Id BWP#1
referenceSignal CHOICE{
csi-rs NZP-CSI-RS-Resource#3,
},
qcl-Type ENUMERATED{typeD},
...
}
如上所述,在该对应关系中,TCI状态ID为TCI状态1,其指示的下行发射波束为CSI-RS资源3表示的下行发射波束,CSI-RS资源3所在的频域资源为BWP1。也就是说,通过这样的对应关系,用户设备可以确定CSI-RS资源3表示的下行发射波束与BWP1存在绑定关系。进一步,配置单元330生成的对应关系中可以包括多个这样对应关系,从而为用户设备配置下行发射波束与下行频域资源之间的对应关系。
以上说明了配置单元330配置下行发射波束与下行频域资源之间的对应关系的一个示例。配置单元330还可以以类似的方式为用户设备配置上行发射波束与上行频域资源之间的对应关系,本公开对此不再赘述。
根据本公开的实施例,第一下行控制信令可以是DCI(Downlink Control Information,下行控制信息)。
在DCI为用于下行调度的DCI的情况下,在配置单元330配置了下行发射波束与下行频域资源之间的对应关系之后,第一生成单元310可以生成DCI,该DCI包括BWP ID和TCI状态,并且BWP ID所指示的下行BWP与TCI状态指示的下行发射波束对应的下行BWP相同。类似地,在DCI为用于上行调度的DCI的情况下,在配置单元330配置了上行发射波束与上行频域资源之间的对应关系之后,第一生成单元310可以生成DCI,该DCI包括BWP ID和SpatialRelationInfo/SRI,并且BWP ID所指示的上行BWP与SpatialRelationInfo/SRI指示的上行发射波束对应的上行BWP相同。
在本领域中,用于下行调度的DCI中的下行BWP通常用于指示下行数据信息和下行控制信息的下行频域资源,DCI中的TCI状态通常用于指示下行数据信息的下行发射波束。由于下行BWP和TCI状态是分别指 示的,因此在下行BWP与下行发射波束进行绑定的情况下无法保证下行BWP和与TCI状态指示的下行发射波束对应的下行BWP是相同的。根据本公开的实施例,第一生成单元310在生成DCI时使得下行BWP和与TCI状态指示的下行发射波束对应的下行BWP相同,从而可以在下行BWP与下行发射波束进行绑定的情况下对下行BWP和下行发射波束进行正确的指示。这种优势对于用于上行调度的DCI同样适用。
下面将针对DCI是用于下行调度的DCI和DCI是用于上行调度的DCI两种情形来分别描述本公开的实施例。
根据本公开的实施例,在DCI为用于下行调度的DCI的情况下,可以用第一频域指示信息指示用于下行数据信息(利用PDSCH承载)和下行控制信息(利用PDCCH承载)的下行频域资源,并且可以用第一波束指示信息指示用于下行数据信息的下行发射波束。
根据本公开的实施例,电子设备300可以用隐性的方式指示用于下行控制信息的下行发射波束。例如,电子设备300和用户设备约定用于下行控制信息的下行发射波束与用于下行数据信息的下行发射波束相同。
根据本公开的实施例,如图3所示,电子设备300还可以包括处理单元340,用于确定用于发送下行数据信息和用于发送下行控制信息的下行发射波束和下行频域资源,还用于确定用户设备用于发送上行数据信息和用于发送上行控制信息的上行发射波束和上行频域资源,并根据用户设备用于发送上行数据信息和用于发送上行控制信息的上行发射波束和上行频域资源确定用于接收上行数据信息和用于接收上行控制信息的上行接收波束和上行频域资源。
根据本公开的实施例,在处理单元340确定了用于发送下行数据信息和用于发送下行控制信息的下行频域资源的情况下,电子设备300可以利用DCI中的第一频域指示信息来指示这样的下行频域资源。进一步,在处理单元340确定了用于发送下行数据信息的下行发射波束的情况下,电子设备300可以利用DCI中的第一波束指示信息来指示这样的下行发射波束。进一步,处理单元340可以确定用于发送下行控制信息的下行发射波束与用于发送下行数据信息的下行发射波束相同。
如图3所示,电子设备300还可以包括下行信息生成单元350,用于生成下行数据信息和下行控制信息。根据本公开的实施例,电子设备300可以在处理单元340确定的下行频域资源上根据处理单元340确定的下行 发射波束发送下行信息生成单元350生成的下行数据信息和下行控制信息。
例如,DCI包括TCI1和BWP1,则电子设备300可以在BWP1上利用TCI1表示的下行发射波束发送下行控制信息和下行数据信息,用户设备可以根据TCI1表示的下行发射波束确定对应的下行接收波束,并在BWP1上利用该下行接收波束接收下行控制信息和下行数据信息。
图4是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图,在图4中,基站可以由电子设备300来实现。如图4所示,在步骤S401中,基站向UE发送RRC配置,以配置下行发射波束与下行频域资源之间的绑定关系。在步骤S402中,基站向UE发送DCI,其中包括第一频域指示信息和第一波束指示信息。在步骤S403中,UE根据DCI的指示确定PDSCH的下行发射波束和下行频域资源以及PDCCH的下行频域资源,并将PDCCH的下行发射波束确定为与PDSCH的下行发射波束相同。在步骤S404中,基站向UE发送PDCCH。在步骤S405中,UE根据PDCCH的下行发射波束和下行频域资源对PDCCH进行盲检。在步骤S406中,基站向UE发送PDSCH。在步骤S407中,UE根据PDSCH的下行发射波束和下行频域资源对PDSCH进行接收。如上所示,图4示出了在DCI是用于下行调度的DCI、并且基站用隐性的方式指示PDCCH的下行发射波束的情况下对波束和频域资源进行指示的信令流程图。
根据本公开的实施例,电子设备300也可以用显性的方式来指示用于发送下行控制信息的下行发射波束。例如,下行信息生成单元350可以生成下行数据信息以使得下行数据信息包括用于指示下行控制信息的下行发射波束的波束指示信息,该下行控制信息的下行发射波束与第一波束指示信息所指示的下行发射波束相同。可选地,可以用下行数据信息中包括的MAC CE来承载用于指示下行控制信息的下行发射波束的波束指示信息。这里,用于指示下行控制信息的下行发射波束的波束指示信息也可以是TCI状态。
根据本公开的实施例,在处理单元340确定了用于发送下行数据信息和用于发送下行控制信息的下行频域资源的情况下,电子设备300可以利用DCI中的第一频域指示信息来指示这样的下行频域资源。进一步,在处理单元340确定了用于发送下行数据信息的下行发射波束的情况下,电子设备300可以利用DCI中的第一波束指示信息来指示这样的下行发射波束。进一步,处理单元340可以确定用于发送下行控制信息的下行发射波 束与用于发送下行数据信息的下行发射波束相同。而电子设备300可以利用生成单元350生成的下行数据信息中包括的波束指示信息来指示下行控制信息的下行发射波束。
根据本公开的实施例,电子设备300可以在处理单元340确定的下行频域资源上根据处理单元340确定的下行发射波束发送下行信息生成单元350生成的下行数据信息和下行控制信息。
根据本公开的实施例,在利用参考信号标识来表示波束的情况下,即用下行参考信号标识来表示第一波束指示信息所指示的波束以及用于指示下行控制信息的波束,则第一波束指示信息中包括的参考信号与用于指示下行控制信息的波束的波束指示信息中包括的参考信号可以相同。
例如,DCI包括TCI1和BWP1,则电子设备300可以在BWP1上利用TCI1表示的下行发射波束发送下行控制信息和下行数据信息,下行数据信息包括MAC CE,该MAC CE包括TCI1。DCI中的TCI1和下行数据信息中的MAC CE中的TCI1表示的参考信号标识相同。用户设备可以根据TCI1表示的下行发射波束确定对应的下行接收波束,并在BWP1上利用该下行接收波束接收下行数据信息。进一步,用户设备确定下行数据信息中包括的MAC CE中也包括TCI1,该TCI1表示的下行发射波束与DCI中的TCI1表示的下行发射波束相同,从而根据TCI1表示的下行发射波束确定对应的下行接收波束,并在BWP1上利用该下行接收波束接收下行控制信息。
根据本公开的实施例,第一波束指示信息中包括的参考信号与用于指示下行控制信息的波束的波束指示信息中包括的参考信号可以具有准共位(Quasi-Colocation,QCL)的关系。这里,两个不同的参考信号具有准共位的关系指的是:这两个参考信号不同,但是这两个参考信号所表示的波束是相同的。
例如,DCI包括TCI1和BWP1,则电子设备300可以在BWP1上利用TCI1表示的下行发射波束发送下行控制信息和下行数据信息,下行数据信息包括MAC CE,该MAC CE包括TCI2。DCI中的TCI1和下行数据信息中的MAC CE中的TCI2表示的参考信号具有准共位的关系。用户设备可以根据TCI1表示的下行发射波束确定对应的下行接收波束,并在BWP1上利用该下行接收波束接收下行数据信息。进一步,用户设备确定下行数据信息中包括的MAC CE中包括TCI2,该TCI2表示的下行发射波束与DCI中的TCI1表示的下行发射波束相同,从而根据TCI2表示的 下行发射波束确定对应的下行接收波束,并在BWP1上利用该下行接收波束接收下行控制信息。
上述的TCI1和TCI2的配置可以如下所示。
TCI-State::=SEQUENCE{
tci-StateId TCI#1,
qcl-Type1 QCL-Info,
}
QCL-Info::=SEQUENCE{
bwp-Id BWP#1
referenceSignal CHOICE{
csi-rs NZP-CSI-RS-Resource#3,
},
qcl-Type ENUMERATED{typeD},
...
}
TCI-State::=SEQUENCE{
tci-StateId TCI#2,
qcl-Type1 QCL-Info,
}
QCL-Info::=SEQUENCE{
referenceSignal CHOICE{
ssb SSB-Index#3,
},
qcl-Type ENUMERATED{typeD},
...
}
如上所述,TCI1表示的参考信号为CSI-RS资源3,TCI2表示的参 考信号为SSB3。虽然CSI-RS资源3与SSB3不同,但是CSI-RS资源3与SSB3表示的下行发射波束相同。
图5是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图,在图5中,基站可以由电子设备300来实现。如图5所示,在步骤S501中,基站向UE发送RRC配置,以配置下行发射波束与下行频域资源之间的绑定关系。在步骤S502中,基站向UE发送DCI,其中包括第一频域指示信息和第一波束指示信息。在步骤S503中,UE根据DCI的指示确定PDSCH的下行发射波束和下行频域资源以及PDCCH的下行频域资源。在步骤S504中,基站向UE发送PDSCH。在步骤S505中,UE根据PDSCH的下行发射波束和下行频域资源对PDSCH进行接收,并根据PDSCH中的MAC CE确定PDCCH的下行发射波束,该PDCCH的下行发射波束与PDSCH的下行发射波束相同。在步骤S506中,基站向UE发送PDCCH。在步骤S507中,UE根据PDCCH的下行发射波束和下行频域资源对PDCCH进行盲检。如上所示,图5示出了在DCI是用于下行调度的DCI、并且基站用显性的方式指示PDCCH的下行发射波束的情况下对波束和频域资源进行指示的信令流程图。
在本领域中,下行控制信息的下行发射波束和下行数据信息的下行发射波束是分别进行指示的,因此在只激活了一个下行BWP的情况下无法保证下行控制信息的下行发射波束和下行数据信息的下行发射波束是相同的。如上所述,根据本公开的实施例,电子设备300可以使得下行控制信息的下行发射波束与下行数据信息的下行发射波束相同,并可以利用隐性的或者显性的方式来表示下行控制信息的下行发射波束,从而确保下行控制信息的下行发射波束和下行数据信息的下行发射波束相同。
根据本公开的实施例,在存在需要调度的下行信息的情况下,第一生成单元310可以如上所述生成DCI,并根据需要调度的下行信息确定DCI中的其它字段的状态或者数值,从而用户设备可以根据该DCI进行下行数据信息和下行控制信息的接收。此外,在没有需要调度的下行信息的情况下,第一生成单元310可以如上所述生成DCI,并将除第一频域指示信息和第一波束指示信息以外的至少部分字段设置为特定值。例如,第一生成单元310可以将指示下行数据信息所在的时域和频域资源的字段、HARQ进程编号的字段等设置为特定值。特定值包括但不限于全0或全1。这样一来,用户设备可以确定该DCI仅用于指示下行频域资源和下行发射波束,而无需解调下行数据信息或者下行控制信息。
根据本公开的实施例,在DCI为用于上行调度的DCI的情况下,可以用第一频域指示信息指示用于上行数据信息(利用PUSCH承载)和上行控制信息(利用PUCCH承载)的上行频域资源,并且可以用第一波束指示信息指示用于上行数据信息的上行发射波束。
根据本公开的实施例,电子设备300可以用隐性的方式指示用于上行控制信息的上行发射波束。例如,电子设备300和用户设备约定用于上行控制信息的上行发射波束与用于上行数据信息的上行发射波束相同。
根据本公开的实施例,在处理单元340确定了用于发送上行数据信息和用于发送上行控制信息的上行频域资源的情况下,电子设备300可以利用DCI中的第一频域指示信息来指示这样的上行频域资源。进一步,在处理单元340确定了用于发送上行数据信息的上行发射波束的情况下,电子设备300可以利用DCI中的第一波束指示信息来指示这样的上行发射波束。进一步,处理单元340可以确定用于发送上行控制信息的上行发射波束与用于发送上行数据信息的上行发射波束相同。
根据本公开的实施例,电子设备300可以根据处理单元340确定的上行发射波束确定相应的上行接收波束,并可以在处理单元340确定的上行频域资源上根据上行接收波束接收上行数据信息和上行控制信息。
例如,DCI包括SpatialRelationInfo1/SRI1和BWP1,则用户设备可以在BWP1上利用SpatialRelationInfo1/SRI1表示的上行发射波束发送上行控制信息和上行数据信息,电子设备300可以根据SpatialRelationInfo1/SRI1表示的上行发射波束确定对应的上行接收波束,并在BWP1上利用该上行接收波束接收上行控制信息和上行数据信息。
图6是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图,在图6中,基站可以由电子设备300来实现。如图6所示,在步骤S601中,基站向UE发送RRC配置,以配置上行发射波束与上行频域资源之间的绑定关系。在步骤S602中,基站向UE发送DCI,其中包括第一频域指示信息和第一波束指示信息。在步骤S603中,UE根据DCI的指示确定PUSCH的上行发射波束和上行频域资源以及PUCCH的上行频域资源,并将PUCCH的上行发射波束确定为与PUSCH的上行发射波束相同。在步骤S604中,UE根据PUCCH的上行发射波束和上行频域资源向基站发送PUCCH。在步骤S605中,UE根据PUSCH的上行发射波束和上行频域资源向基站发送PUSCH。如上所示,图6示出了在DCI是用于上行调度的DCI、并且基站用隐性的方式指示PUCCH的上行发射波 束的情况下对波束和频域资源进行指示的信令流程图。
在本领域中,上行控制信息的上行发射波束和上行数据信息的上行发射波束是分别进行指示的,因此在只激活了一个上行BWP的情况下无法保证上行控制信息的上行发射波束和上行数据信息的上行发射波束是相同的。如上所述,根据本公开的实施例,电子设备300可以使得上行控制信息的上行发射波束与上行数据信息的上行发射波束相同,并可以利用隐性的方式来表示上行控制信息的上行发射波束,从而确保上行控制信息的上行发射波束和上行数据信息的上行发射波束相同。
根据本公开的实施例,在存在需要调度的上行信息的情况下,第一生成单元310可以如上所述生成DCI,并根据需要调度的上行信息确定DCI中的其它字段的状态或者数值,从而用户设备可以根据该DCI进行上行数据信息和上行控制信息的发送。此外,在没有需要调度的上行信息的情况下,第一生成单元310可以如上所述生成DCI,并将除第一频域指示信息和第一波束指示信息以外的至少部分字段设置为特定值。例如,第一生成单元310可以将指示上行数据信息所在的时域和频域资源的字段、HARQ进程编号的字段等设置为特定值。特定值包括但不限于全0或全1。这样一来,用户设备可以确定该DCI仅用于指示上行频域资源和上行发射波束,而无需发送上行数据信息或者上行控制信息。
如上所述详细描述了根据本公开的实施例的第一下行控制信令。
根据本公开的实施例,如图3所示,电子设备300还可以包括第二生成单元360,用于生成第二下行控制信令。第二下行控制信令可以包括第二波束指示信息,第二波束指示信息用于指示下行控制信息的波束或者用于指示上行控制信息的波束。
根据本公开的实施例,电子设备300可以通过通信单元320向用户设备发送第二生成单元360生成的第二下行控制信令。
根据本公开的实施例,第二下行控制信令可以为用于下行激活的下行控制信令(即用于控制下行传输的信令),也可以为用于上行激活的下行控制信令(即用于控制上行传输的信令)。在第二下行控制信令为用于下行激活的下行控制信令的情况下,第二下行控制信令包括的第二波束指示信息用于指示下行控制信息的下行发射波束。在第二下行控制信令为用于上行激活的下行控制信令的情况下,第二下行控制信令包括的第二波束指示信息用于指示上行控制信息的上行发射波束。
与第一波束指示信息类似,第二波束指示信息可以为TCI状态,也可以为SpatialRelationInfo或者SRI。
根据本公开的实施例,第二下行控制信令可以为MAC CE。
在MAC CE为用于下行激活的MAC CE的情况下,该MAC CE包括TCI状态,该TCI状态用于指示下行控制信息的下行发射波束。类似地,在MAC CE为用于上行激活的MAC CE的情况下,该MAC CE包括SpatialRelationInfo,并且SpatialRelationInfo指示上行控制信息的上行发射波束。
下面将分别针对MAC CE为用于下行激活的MAC CE和用于上行激活的MAC CE来分别描述本公开的实施例。
在MAC CE为用于下行激活的MAC CE的情况下,根据本公开的实施例,配置单元330在确定了用于下行控制信息的下行发射波束之后,可以确定用于下行控制信息的下行频域资源为与下行控制信息的下行发射波束相对应的频域资源。进一步,配置单元330可以确定用于下行数据信息的下行频域资源与用于下行控制信息的下行频域资源相同,并且用于下行数据信息的下行发射波束与用于下行控制信息的下行发射波束相同。也就是说,电子设备300可以隐形的指示用于下行数据信息的下行频域资源和下行发射波束,即电子设备300和用户设备约定好用于下行数据信息的下行频域资源与用于下行控制信息的下行频域资源相同,用于下行数据信息的下行发射波束与用于下行控制信息的下行发射波束相同。
根据本公开的实施例,下行信息生成单元350可以生成下行控制信息和下行数据信息。电子设备300可以通过通信单元320在配置单元330确定的下行频域资源上利用配置单元330确定的下行发射波束发送下行数据信息和下行控制信息。进一步,用户设备可以根据MAC CE确定用于发送下行控制信息和下行数据信息的下行发射波束,并确定相应的下行接收波束,从而利用该下行接收波束以及下行频域资源接收下行控制信息和下行数据信息。
例如,MAC CE包括TCI状态1,该TCI状态1对应的参考信号为CSI-RS资源3,CSI-RS资源3表示的下行发射波束对应的下行频域资源为BWP1,则电子设备300可以在BWP1上利用CSI-RS资源3表示的下行发射波束发送下行控制信息和下行数据信息。
图7是示出根据本公开的实施例的对波束和频域资源进行指示的信 令流程图。在图7中,基站可以由电子设备300来实现。如图7所示,在步骤S701中,基站向UE发送RRC配置,以配置下行发射波束与下行频域资源之间的绑定关系。在步骤S702中,基站向UE发送MAC CE,其中包括第二波束指示信息。在步骤S703中,UE根据MAC CE的指示确定PDCCH的下行发射波束以及与该下行发射波束对应的下行频域资源,并将PDSCH的下行发射波束和下行频域资源确定为与PDCCH的下行发射波束相同和下行频域资源相同。在步骤S704中,基站向UE发送PDCCH。在步骤S705中,UE根据PDCCH的下行发射波束和下行频域资源对PDCCH进行盲检。在步骤S706中,基站向UE发送PDSCH。在步骤S707中,UE根据PDSCH的下行发射波束和下行频域资源对PDSCH进行接收。如上所示,图7示出了在MAC CE是用于下行激活的MAC CE的情况下对波束和频域资源进行指示的信令流程图。
在MAC CE为用于上行激活的MAC CE的情况下,根据本公开的实施例,配置单元330在确定了用于上行控制信息的上行发射波束之后,可以确定用于上行控制信息的上行频域资源为与上行控制信息的上行发射波束相对应的频域资源。进一步,配置单元330可以确定用于上行数据信息的上行频域资源与用于上行控制信息的上行频域资源相同,并且用于上行数据信息的上行发射波束与用于上行控制信息的下行发射波束相同。也就是说,电子设备300可以隐形的指示用于上行数据信息的上行频域资源和上行发射波束,即电子设备300和用户设备约定好用于上行数据信息的上行频域资源与用于上行控制信息的上行频域资源相同,用于上行数据信息的上行发射波束与用于上行控制信息的上行发射波束相同。
根据本公开的实施例,用户设备可以根据MAC CE的指示确定用于上行控制信息和上行数据信息的上行发射波束和上行频域资源,并在上行频域资源上利用上行发射波束发送上行控制信息和上行数据信息。电子设备300可以根据上行发射波束确定相应的上行接收波束,并在上行频域资源上利用上行接收波束接收上行数据信息和上行控制信息。
例如,MAC CE包括SpatialRelationInfo1,该SpatialRelationInfo1对应的参考信号为SRS资源3,SRS资源3表示的上行发射波束对应的上行频域资源为BWP1,则用户设备可以在BWP1上利用SRS资源3表示的上行发射波束发送上行控制信息和上行数据信息。
图8是示出根据本公开的实施例的对波束和频域资源进行指示的信令流程图。在图8中,基站可以由电子设备300来实现。如图8所示,在 步骤S801中,基站向UE发送RRC配置,以配置上行发射波束与上行频域资源之间的绑定关系。在步骤S802中,基站向UE发送MAC CE,其中包括第二波束指示信息。在步骤S803中,UE根据MAC CE的指示确定PUCCH的上行发射波束以及与该上行发射波束对应的上行频域资源,并将PUSCH的上行发射波束和上行频域资源确定为与PUCCH的上行发射波束相同和上行频域资源相同。在步骤S804中,UE根据PUCCH的上行发射波束和上行频域资源发送PUCCH。在步骤S805中,UE根据PUSCH的上行发射波束和上行频域资源发送PUSCH。如上所示,图8示出了在MAC CE是用于上行激活的MAC CE的情况下对波束和频域资源进行指示的信令流程图。
在本领域中,用于下行激活的MAC CE中的TCI状态通常用于指示下行控制信息的下行发射波束。因此在下行BWP与下行发射波束进行绑定的情况下无法保证下行BWP和与TCI状态指示的下行发射波束对应的下行BWP是相同的。此外,在只有一个下行BWP被激活的情况下无法保证下行控制信息的下行发射波束与下行数据信息的下行发射波束相同。根据本公开的实施例,在MAC CE指示下行控制信息的下行发射波束的情况下,电子设备300和用户设备可以约定下行控制信息的下行频域资源为与下行控制信息的下行发射波束对应的下行频域资源,并且下行数据信息的下行发射波束和下行数据信息的下行频域资源与下行控制信息相同,从而可以保证在下行发射波束与下行频域资源绑定的情况下对下行发射波束和下行频域资源的正确指示。这样的优势对于上行调度同样适用。
如上所述详细描述了根据本公开的实施例的第二下行控制信令。
根据本公开的实施例,如图3所示,电子设备300还可以包括第三生成单元370,用于生成第三下行控制信令。第三下行控制信令可以包括第三频域指示信息以及第三波束信息,第三频域指示信息用于指示下行控制信息和下行数据信息的频域资源、或者用于指示上行控制信息和上行数据信息的频域资源,第三波束指示信息用于指示下行控制信息和下行数据信息的波束、或者用于指示上行控制信息和上行数据信息的波束。
根据本公开的实施例,电子设备300可以通过通信单元320向用户设备发送第三生成单元370生成的第三下行控制信令。
根据本公开的实施例,第三下行控制信令可以包括用于下行配置的下行控制信令(即用于控制下行传输的信令)和用于上行配置的下行控制信令(即用于控制上行传输的信令)。在第三下行控制信令是用于下行配 置的下行控制信令的情况下,第三下行控制信令包括的第三频域指示信息用于指示下行数据信息和下行控制信息的下行频域资源,第三下行控制信令包括的第三波束指示信息用于指示下行控制信息和下行数据信息的下行发射波束。类似地,在第三下行控制信令是用于上行配置的下行控制信令的情况下,第三下行控制信令包括的第三频域指示信息用于指示上行控制信息和上行数据信息的上行频域资源,第三下行控制信令包括的第三波束指示信息用于指示上行控制信息和上行数据信息的上行发射波束。
根据本公开的实施例,频域资源包括但不限于BWP。频域指示信息可以包括频域资源的标识信息。例如,在频域资源为BWP的情况下,第三频域指示信息可以为BWP ID。
根据本公开的实施例,第三波束指示信息可以为TCI状态,也可以为SpatialRelationInfo或者SRI。
根据本公开的实施例,第三下行控制信令可以为RRC信令。下面将分别针对RRC信令为针对下行配置的RRC信令和针对上行配置的RRC信令来分别描述本公开的实施例。
在RRC信令为针对下行配置的RRC信令的情况下,根据本公开的实施例,电子设备300可以通过RRC信令针对每个服务小区设置默认的下行频域资源和下行发射波束。例如,电子设备300可以通过RRC信令中的firstActiveDownlinkBWP-Id字段来携带针对该服务小区的下行频域资源。此外,可以在RRC信令中新增一个TCIassociated with firstActiveDownlinkBWP-Id字段来携带针对该服务小区的下行发射波束。
根据本公开的实施例,电子设备300可以确定用户设备当前的服务小区,并将针对该服务小区设置的默认的下行发射波束确定为下行数据信息和下行控制信息的下行发射波束,将针对该服务小区设置的默认的下行频域资源确定为下行数据信息和下行控制信息的下行频域资源。进一步,电子设备300可以通过通信单元320在下行控制信息和下行数据信息的下行频域资源上根据下行控制信息和下行数据信息的下行发射波束发送下行控制信息和下行数据信息。
这样一来,在用户设备接收到RRC重配信息或者服务小区激活之后,可以根据针对该服务小区设置的默认的下行发射波束确定相应的下行接收波束,并在针对该服务小区设置的默认的下行频域资源上利用该下行接收波束接收下行数据信息和下行控制信息。
在RRC信令为针对上行配置的RRC信令的情况下,根据本公开的实施例,电子设备300可以通过RRC信令针对每个服务小区设置默认的上行频域资源和上行发射波束。例如,电子设备300可以通过RRC信令中的firstActiveUplinkBWP-Id字段来携带针对该服务小区的上行频域资源。此外,可以在RRC信令中新增一个spatialRelationInfo associated with firstActiveUplinkBWP-Id字段来携带针对该服务小区的上行发射波束。
根据本公开的实施例,电子设备300可以确定用户设备当前的服务小区,并将针对该服务小区设置的默认的上行发射波束确定为上行数据信息和上行控制信息的上行发射波束,将针对该服务小区设置的默认的上行频域资源确定为上行数据信息和上行控制信息的上行频域资源。
这样一来,在用户设备接收到RRC重配信息或者服务小区激活之后,可以在针对该服务小区设置的默认的上行频域资源上利用针对该服务小区设置的默认的上行发射波束发送上行数据信息和上行控制信息。这样一来,电子设备300可以根据上行发射波束确定相应的上行接收波束,并且在针对该服务小区设置的默认的上行频域资源上利用该上行接收波束接收上行数据信息和上行控制信息。
如上所述详细描述了根据本公开的实施例的第三下行控制信令。
如上所述,分别描述了根据本公开的实施例的第一下行控制信令(DCI)、第二下行控制信令(MAC CE)和第三下行控制信令(RRC)。本领域技术人员可以根据需求对这三种下行控制信令进行任意组合。也就是说,电子设备300可以使用上述三种下行控制信令中的一种或更多种来实现频域资源和波束的指示。下面将描述两个非限制性的示例。
例如,电子设备300通过DCI来设置下行控制信息和下行数据信息的下行频域资源、以及下行数据信息的下行发射波束,并与用户设备约定下行控制信息的下行发射波束与下行数据信息的下行发射波束相同。在需要对下行控制信息的下行发射波束进行切换的情况下,电子设备300可以通过MAC CE来通知用户设备,并与用户设备约定下行控制信息的下行频域资源也切换为与下行控制信息的下行发射波束对应的下行频域资源,下行数据信息的下行频域资源与下行控制信息的下行频域资源相同,下行数据信息的下行发射波束与下行控制信息的下行发射波束相同。
再如,电子设备300通过RRC来为每个服务小区设置默认的下行频域资源和下行发射波束。在需要对下行频域资源或者下行发射波束进行切 换的情况下,电子设备300可以通过DCI来设置下行控制信息和下行数据信息的下行频域资源、以及下行数据信息的下行发射波束,并与用户设备约定下行控制信息的下行发射波束与下行数据信息的下行发射波束相同。
由此可见,根据本公开的实施例,可以在频域资源与波束绑定的情况下对频域资源和波束进行正确的指示,并可以保持数据信息与控制信息的频域资源和波束的一致性。此外,根据本公开的实施例,可以在对现有的信令不做改动只做约束的情况下或者对现有的信令做出很小的改动的情况下实现上述目的。
<3.用户设备的配置示例>
图9是示出根据本公开的实施例的无线通信***中的用作用户设备的电子设备900的结构的框图。
如图9所示,电子设备900可以包括通信单元910、解码单元920和处理单元930。
这里,电子设备900的各个单元都可以包括在处理电路中。需要说明的是,电子设备900既可以包括一个处理电路,也可以包括多个处理电路。进一步,处理电路可以包括各种分立的功能单元以执行各种不同的功能和/或操作。需要说明的是,这些功能单元可以是物理实体或逻辑实体,并且不同称谓的单元可能由同一个物理实体实现。
根据本公开的实施例,电子设备900可以通过通信单元910接收第一下行控制信令。这里,电子设备900可以从网络侧设备,例如基站设备接收第一下行控制信令。
根据本公开的实施例,解码单元920用于对来自网络侧设备的下行数据信息或者下行控制信息进行解码。例如,解码单元920可以对第一下行控制信令进行解码以获得第一下行控制信令包括的第一频域指示信息和第一波束指示信息。
根据本公开的实施例,处理单元930可以确定用于接收信息的频域资源和波束以及用于发送信息的频域资源和波束,包括接收下行控制信息的下行接收波束和下行频域资源、接收下行数据信息的下行接收波束和下行频域资源、发送上行控制信息的上行发射波束和上行频域资源、发送上行数据信息的上行发射波束和上行频域资源。
根据本公开的实施例,在解码单元920获取了第一波束指示信息和第一频域指示信息之后,电子设备900可以确定第一频域指示信息所指示 的频域资源和与第一波束指示信息所指示的波束相对应的频域资源是否相同。进一步,在第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同的情况下,处理单元930可以确定该频域资源为接收下行信息或者发送上行信息的频域资源,从而电子设备900可以通过通信单元910在该频域资源上根据第一波束指示信息指示的波束接收下行信息或者发送上行信息。
根据本公开的实施例,电子设备900可以从网络侧设备获取下行发射波束与下行频域资源之间的绑定关系以及上行发射波束与上行频域资源之间的绑定关系,例如通过RRC信令获取上述绑定关系,从而可以根据绑定关系来确定与第一波束指示信息所指示的波束相对应的频域资源。
根据本公开的实施例,在电子设备900确定第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源不同的情况下,处理单元930可以将与第一波束指示信息所指示的波束对应的频域资源确定为接收下行信息或者发送上行信息的频域资源,从而电子设备900可以在与第一波束指示信息所指示的波束相对应的频域资源上根据第一波束指示信息所指示的波束接收下行信息或者发送上行信息。也就是说,电子设备900可以忽略第一频域指示信息所指示的频域资源,而以第一波束指示信息所指示的波束对应的频域资源为准。
如上所述,根据本公开的实施例,电子设备900可以确定第一频域指示信息所指示的频域资源是否和与第一波束指示信息指示的波束对应的频域资源相同,从而保证了在频域资源与波束绑定的情况下对频域资源和波束的正确指示。
根据本公开的实施例,第一下行控制信令可以为DCI。下面将分别针对DCI为用于下行调度的DCI和用于上行调度的DCI对本公开的实施例进行说明。
在DCI为用于下行调度的DCI的情况下,并且在第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同的情况下,处理单元930可以确定下行控制信息和下行数据信息的下行频域资源为该频域资源,并且确定下行数据信息的下行发射波束为第一波束指示信息指示的波束。进一步,处理单元930可以确定下行控制信息的下行发射波束与下行数据信息的下行发射波束相同,从而可以确定下行控制信息的下行接收波束与下行数据信息的下行接收波束相同。进一步,电子设备900可以在下行控制信息的下行频域资源上利用下行控制信 息的下行接收波束接收下行控制信息,并可以在下行数据信息的下行频域资源上利用下行数据信息的下行接收波束接收下行数据信息。也就是说,电子设备900可以根据网络侧设备的隐性指示来确定下行控制信息的下行发射波束。
根据本公开的实施例,在第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同的情况下,处理单元930也可以确定下行控制信息和下行数据信息的下行频域资源为该频域资源,并且确定下行数据信息的下行发射波束为第一波束指示信息指示的波束。进一步,处理单元930可以根据下行数据信息的下行发射波束确定相应的下行接收波束,并在下行数据信息的下行频域资源上根据下行数据信息的下行接收波束接收下行数据信息。进一步,解码单元920可以对下行数据信息进行解码以确定用于指示下行控制信息的下行发射波束的波束指示信息。这里,电子设备900可以确定下行控制信息的下行发射波束与第一波束指示信息所指示的波束是否相同。进一步,在下行控制信息的下行发射波束与第一波束指示信息所指示的波束相同的情况下,处理单元930可以确定下行控制信息的下行发射波束为该下行发射波束。进一步,电子设备900可以根据下行控制信息的下行发射波束确定相应的下行接收波束,并在下行控制信息的下行频域资源上利用该下行接收波束接收下行控制信息。也就是说,电子设备900可以根据网络侧设备的显性指示来确定下行控制信息的下行发射波束。
根据本公开的实施例,在利用参考信号标识来表示第一波束指示信息所指示的波束以及用于指示下行控制信息的波束的情况下,电子设备900可以根据下述方式来确定下行控制信息的下行发射波束与第一波束指示信息所指示的波束是否相同。具体地,在第一波束指示信息中包括的参考信号与用于指示下行控制信息的下行发射波束的波束指示信息中包括的参考信号相同或者具有准共位的关系的情况下,电子设备900可以确定下行控制信息的下行发射波束与第一波束指示信息所指示的波束相同。
如图9所示,电子设备900还可以包括延迟时间确定单元940,用于在下行频域资源与下行发射波束发生变化的情况下确定延迟时间。根据本公开的实施例,当来自网络侧设备的下行控制信令所指示的下行频域资源与之前的下行频域资源不同时,可以认为下行频域资源发生了变化。类似地,当来自网络侧设备的下行控制信令所指示的下行发射波束与之前的下行发射波束不同时,可以认为下行发射波束发生了变化。
在电子设备900根据网络侧设备的隐性指示来确定下行控制信息的下行发射波束的情况下,当下行频域资源与下行发射波束发生变化时,延迟时间确定单元940可以根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间。进一步,延迟时间确定单元940可以将频域资源切换的时延和波束切换的时延中的较大值确定为延迟时间。
根据本公开的实施例,电子设备900在不晚于接收到第一下行控制信令之后的延迟时间内,切换下行频域资源和下行发射波束。这里,切换下行频域资源指的是电子设备900的处理单元930将用于接收下行信息的下行频域资源由原来的下行频域资源切换为新的下行频域资源,切换下行发射波束指的是电子设备900的处理单元930确定新的用于发送下行信息的下行发射波束,并根据新的下行发射波束确定相应的新的下行接收波束。
这里,频域资源切换的时延例如可以为BWP gap(BWP间隔)、BWP switch delay(BWP切换时延)等参数,波束切换的时延例如可以为TCI gap(TCI间隔)、timeDurationForQCL(QCL时间段)等参数。
根据本公开的实施例,在电子设备900根据网络侧设备的显性指示来确定下行控制信息的下行发射波束并且电子设备900不需要对下行数据信息进行反馈的情况下,延迟时间确定单元940可以根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间。进一步,延迟时间确定单元940可以将频域资源切换的时延和波束切换的时延中的较大值确定为延迟时间。
根据本公开的实施例,电子设备900在不晚于接收到用于指示下行控制信息的下行发射波束的波束指示信息之后的延迟时间内,切换下行频域资源和下行发射波束。
根据本公开的实施例,如图9所示,电子设备900还可以包括反馈信息生成单元950,用于针对下行数据信息生成反馈信息,包括ACK和NACK。
根据本公开的实施例,在电子设备900根据网络侧设备的显性指示来确定下行控制信息的下行发射波束并且电子设备900需要对下行数据信息进行反馈的情况下,延迟时间确定单元940可以根据频域资源切换的时延、波束切换的时延、对下行数据信息的处理时间、反馈信息的传输时延中的至少一者确定延迟时间。进一步,延迟时间确定单元940可以将上 述参数中的较大值确定为延迟时间。
根据本公开的实施例,电子设备900可以通过通信单元910向网络侧设备发送反馈信息,并在不晚于发送反馈信息之后的延迟时间内,切换下行频域资源和下行发射波束。
在本领域中,下行频域资源的切换和下行发射波束的切换是分开执行的。也就是说,在频域资源切换的时延之前切换下行频域资源,在波束切换的时延之前切换下行发射波束。根据本公开的实施例,完善了在频域资源与波束绑定的情况下频域资源和波束的切换时序。
在DCI为用于上行调度的DCI的情况下,并且在第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同的情况下,处理单元930可以确定上行控制信息和上行数据信息的上行频域资源为该频域资源,并且确定上行数据信息的上行发射波束为第一波束指示信息指示的波束。进一步,处理单元930可以确定上行控制信息的上行发射波束与上行数据信息的上行发射波束相同。进一步,电子设备900可以在上行控制信息的上行频域资源上利用上行控制信息的上行发射波束发送上行控制信息,并可以在上行数据信息的上行频域资源上利用上行数据信息的上行发射波束发送上行数据信息。也就是说,电子设备900可以根据网络侧设备的隐性指示来确定上行控制信息的上行发射波束。
根据本公开的实施例,延迟时间确定单元940还可以在上行频域资源与上行发射波束发生变化的情况下确定延迟时间。根据本公开的实施例,当来自网络侧设备的下行控制信令所指示的上行频域资源与之前的上行频域资源不同时,可以认为上行频域资源发生了变化。类似地,当来自网络侧设备的下行控制信令所指示的上行发射波束与之前的上行发射波束不同时,可以认为上行发射波束发生了变化。
当上行频域资源与上行发射波束发生变化时,延迟时间确定单元940可以根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间。进一步,延迟时间确定单元940可以将频域资源切换的时延和波束切换的时延中的较大值确定为延迟时间。
根据本公开的实施例,电子设备900在不晚于接收到第一下行控制信令之后的延迟时间内,切换上行频域资源和上行发射波束。这里,切换上行频域资源指的是电子设备900的处理单元930将用于发送上行信息的 上行频域资源由原来的上行频域资源切换为新的上行频域资源,切换上行发射波束指的是电子设备900的处理单元930将用于发送上行信息的上行发射波束由原来的上行发射波束切换为新的上行发射波束。
在本领域中,上行频域资源的切换和上行发射波束的切换是分开执行的。也就是说,在频域资源切换的时延之前切换上行频域资源,在波束切换的时延之前切换上行发射波束。根据本公开的实施例,完善了在频域资源与波束绑定的情况下频域资源和波束的切换时序。
如上详细描述了根据本公开的实施例的第一下行控制信令。
根据本公开的实施例,电子设备900可以通过通信单元910接收第二下行控制信令。第二下行控制信令可以包括第二波束指示信息,第二波束指示信息用于指示下行控制信息的波束或者用于指示上行控制信息的波束。
根据本公开的实施例,第二下行控制信令可以为MAC CE。下面针对用于上行激活的MAC CE和用于下行激活的MAC CE分别描述根据本公开的实施例。
在MAC CE为用于下行激活的MAC CE的情况下,MAC CE可以包括第二波束指示信息,第二波束指示信息用于指示下行控制信息的下行发射波束。
根据本公开的实施例,处理单元930可以根据MAC CE确定下行控制信息的下行发射波束,并将与该下行发射波束相对应的下行频域资源确定为下行控制信息的下行频域资源。进一步,处理单元930可以将下行数据信息的下行发射波束确定为与下行控制信息的下行发射波束相同,将下行数据信息的下行频域资源确定为与下行控制信息的下行频域资源相同。进一步,处理单元930可以根据上述下行发射波束确定相应的下行接收波束,并且电子设备900在与下行控制信息的下行发射波束相对应的下行频域资源上根据该下行接收波束接收下行控制信息和下行数据信息。
在MAC CE为用于上行激活的MAC CE的情况下,MAC CE可以包括第二波束指示信息,第二波束指示信息用于指示上行控制信息的上行发射波束。
根据本公开的实施例,处理单元930可以根据MAC CE确定上行控制信息的上行发射波束,并将与该上行发射波束相对应的上行频域资源确定为上行控制信息的上行频域资源。进一步,处理单元930可以将上行数 据信息的上行发射波束确定为与上行控制信息的上行发射波束相同,将上行数据信息的上行频域资源确定为与上行控制信息的上行频域资源相同。进一步,电子设备900可以在与上行控制信息的上行发射波束相对应的上行频域资源上根据该上行发射波束发射上行控制信息和上行数据信息。
如上详细描述了根据本公开的实施例的第二下行控制信令。
根据本公开的实施例,电子设备900可以通过通信单元910接收第三下行控制信令。第三下行控制信令包括第三频域指示信息和第三波束指示信息,第三频域指示信息用于指示下行控制信息和下行数据信息的频域资源、或者用于指示上行控制信息和上行数据信息的频域资源,第三波束指示信息用于指示下行控制信息和下行数据信息的波束、或者用于指示上行控制信息和上行数据信息的波束。
根据本公开的实施例,第三下行控制信令可以为RRC信令。下面将分别针对RRC信令为用于下行配置的RRC信令和用于上行配置的RRC信令来描述根据本公开的实施例。
在RRC信令是用于下行配置的RRC信令的情况下,RRC信令可以包括针对各个服务小区的第三频域指示信息和第三波束指示信息,第三频域指示信息用于指示针对该服务小区设置的默认的下行控制信息和下行数据信息的下行频域资源,第三波束指示信息用于指示针对该服务小区设置的默认的下行控制信息和下行数据信息的下行发射波束。
根据本公开的实施例,电子设备900可以确定当前的服务小区,并且根据针对当前的服务小区设置的默认的下行发射波束确定相应的下行接收波束,然后在针对当前的服务小区设置的默认的下行频域资源上根据下行接收波束接收下行控制信息和下行数据信息。
在RRC信令是用于上行配置的RRC信令的情况下,RRC信令可以包括针对各个服务小区的第三频域指示信息和第三波束指示信息,第三频域指示信息用于指示针对该服务小区设置的默认的上行控制信息和上行数据信息的上行频域资源,第三波束指示信息用于指示针对该服务小区设置的默认的上行控制信息和上行数据信息的上行发射波束。
根据本公开的实施例,电子设备900可以确定当前的服务小区,并且在针对当前的服务小区设置的默认的上行频域资源上利用针对当前的服务小区设置的默认的上行发射波束发送上行控制信息和上行数据信息。
如上详细描述了根据本公开的实施例的第三下行控制信令。
由此可见,根据本公开的实施例,可以在频域资源与波束绑定的情况下对频域资源和波束进行正确的指示,并可以保持数据信息与控制信息的频域资源和波束的一致性。此外,根据本公开的实施例,可以在对现有的信令不做改动只做约束的情况下或者对现有的信令做出很小的改动的情况下实现上述目的。
<4.方法实施例>
接下来将详细描述根据本公开实施例的由无线通信***中的作为网络侧设备的电子设备300执行的无线通信方法。
图10是示出根据本公开的实施例的由无线通信***中的作为网络侧设备的电子设备300执行的无线通信方法的流程图。
如图10所示,在步骤S1010中,生成第一下行控制信令,其中,第一下行控制信令包括第一频域指示信息和第一波束指示信息,并且第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同。
接下来,在步骤S1020中,向用户设备发送第一下行控制信令。
优选地,无线通信方法还包括:在该频域资源上根据该波束发送下行数据信息和下行控制信息、或者在该频域资源上根据该波束接收上行数据信息和上行控制信息。
优选地,无线通信方法还包括:生成下行数据信息,下行数据信息包括用于指示下行控制信息的波束的波束指示信息,下行控制信息的波束与第一波束指示信息所指示的波束相同。
优选地,无线通信方法还包括:利用参考信号标识来表示第一波束指示信息所指示的波束以及用于指示下行控制信息的波束,并且第一波束指示信息中包括的参考信号与用于指示下行控制信息的波束的波束指示信息中包括的参考信号相同或者具有准共位的关系。
优选地,第一下行控制信令包括DCI。
优选地,无线通信方法还包括:在没有需要调度的上行信息和/或下行信息的情况下,将除第一频域指示信息和第一波束指示信息以外的至少部分字段设置为特定值。
优选地,无线通信方法还包括:生成第二下行控制信令,其中,第二下行控制信令包括第二波束指示信息,第二波束指示信息用于指示下行 控制信息的波束或者用于指示上行控制信息的波束;以及向用户设备发送第二下行控制信令。
优选地,无线通信方法还包括:在与下行控制信息的波束相对应的频域资源上根据下行控制信息的波束发送下行控制信息和下行数据信息、或者在与上行控制信息的波束相对应的频域资源上根据上行控制信息的波束接收上行控制信息和上行数据信息。
优选地,第二下行控制信令包括MAC CE。
优选地,无线通信方法还包括:生成第三下行控制信令,其中,第三下行控制信令包括第三频域指示信息以及第三波束信息,第三频域指示信息用于指示下行控制信息和下行数据信息的频域资源、或者用于指示上行控制信息和上行数据信息的频域资源,第三波束指示信息用于指示下行控制信息和下行数据信息的波束、或者用于指示上行控制信息和上行数据信息的波束;以及向用户设备发送第三下行控制信令。
优选地,无线通信方法还包括:在下行控制信息和下行数据信息的频域资源上根据下行控制信息和下行数据信息的波束发送下行控制信息和下行数据信息、或者在上行控制信息和上行数据信息的频域资源上根据上行控制信息和上行数据信息的波束接收上行控制信息和上行数据信息。
优选地,第三下行控制信令包括RRC。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备300,因此前文中关于电子设备300的全部实施例均适用于此。
接下来将详细描述根据本公开实施例的由无线通信***中的作为用户设备的电子设备900执行的无线通信方法。
图11是示出根据本公开的实施例的由无线通信***中的作为用户设备的电子设备900执行的无线通信方法的流程图。
如图11所示,在步骤S1110中,接收第一下行控制信令,第一下行控制信令包括第一频域指示信息和第一波束指示信息。
接下来,在步骤S1120中,在第一频域指示信息所指示的频域资源和与第一波束指示信息所指示的波束相对应的频域资源相同的情况下,在该频域资源上根据该波束接收下行信息或者发送上行信息。
优选地,无线通信方法还包括:在第一频域指示信息所指示的频域 资源和与第一波束指示信息所指示的波束相对应的频域资源不同的情况下,在与第一波束指示信息所指示的波束相对应的频域资源上根据波束接收下行信息或者发送上行信息。
优选地,下行信息包括下行控制信息和下行数据信息,上行信息包括上行控制信息和上行数据信息。
优选地,无线通信方法还包括:当频域资源与波束发生变化时,根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间;以及不晚于接收到第一下行控制信令之后的延迟时间内,切换频域资源和波束。
优选地,无线通信方法还包括:在该频域资源上根据该波束接收下行数据信息,下行数据信息包括用于指示下行控制信息的波束的波束指示信息;以及在下行控制信息的波束与第一波束指示信息所指示的波束相同的情况下,在该频域资源上根据该波束接收下行控制信息。
优选地,利用参考信号标识来表示第一波束指示信息所指示的波束以及用于指示下行控制信息的波束,并且无线通信方法还包括:在第一波束指示信息中包括的参考信号与用于指示下行控制信息的波束的波束指示信息中包括的参考信号相同或者具有准共位的关系的情况下,确定下行控制信息的波束与第一波束指示信息所指示的波束相同。
优选地,无线通信方法还包括:当频域资源与波束发生变化时,根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间;以及不晚于接收到用于指示下行控制信息的波束的波束指示信息之后的延迟时间内,切换频域资源和波束。
优选地,无线通信方法还包括:生成针对下行数据信息的反馈信息;当频域资源与波束发生变化时,根据频域资源切换的时延、波束切换的时延、对下行数据信息的处理时间、反馈信息的传输时延中的至少一者确定延迟时间;以及不晚于发送反馈信息之后的延迟时间内,切换频域资源和波束。
优选地,第一下行控制信令包括DCI。
优选地,无线通信方法还包括:接收第二下行控制信令,第二下行控制信令包括第二波束指示信息,第二波束指示信息用于指示下行控制信息的波束或者用于指示上行控制信息的波束;以及在与下行控制信息的波束相对应的频域资源上根据下行控制信息的波束接收下行控制信息和下 行数据信息、或者在与上行控制信息的波束相对应的频域资源上根据上行控制信息的波束发送上行控制信息和上行数据信息。
优选地,第二下行控制信令包括MAC CE。
优选地,无线通信方法还包括:接收第三下行控制信令,其中,第三下行控制信令包括第三频域指示信息和第三波束指示信息,第三频域指示信息用于指示下行控制信息和下行数据信息的频域资源、或者用于指示上行控制信息和上行数据信息的频域资源,第三波束指示信息用于指示下行控制信息和下行数据信息的波束、或者用于指示上行控制信息和上行数据信息的波束;以及在下行控制信息和下行数据信息的频域资源上根据下行控制信息和下行数据信息的波束接收下行控制信息和下行数据信息、或者在上行控制信息和上行数据信息的频域资源上根据上行控制信息和上行数据信息的波束发送上行控制信息和上行数据信息。
优选地,第三下行控制信令包括RRC。
根据本公开的实施例,执行上述方法的主体可以是根据本公开的实施例的电子设备900,因此前文中关于电子设备900的全部实施例均适用于此。
<5.应用示例>
本公开内容的技术能够应用于各种产品。
例如,网络侧设备可以被实现为任何类型的基站设备,诸如宏eNB和小eNB,还可以被实现为任何类型的gNB(5G***中的基站)。小eNB可以为覆盖比宏小区小的小区的eNB,诸如微微eNB、微eNB和家庭(毫微微)eNB。代替地,基站可以被实现为任何其他类型的基站,诸如NodeB和基站收发台(BTS)。基站可以包括:被配置为控制无线通信的主体(也称为基站设备);以及设置在与主体不同的地方的一个或多个远程无线头端(RRH)。
用户设备可以被实现为移动终端(诸如智能电话、平板个人计算机(PC)、笔记本式PC、便携式游戏终端、便携式/加密狗型移动路由器和数字摄像装置)或者车载终端(诸如汽车导航设备)。用户设备还可以被实现为执行机器对机器(M2M)通信的终端(也称为机器类型通信(MTC)终端)。此外,用户设备可以为安装在上述用户设备中的每个用户设备上的无线通信模块(诸如包括单个晶片的集成电路模块)。
<关于基站的应用示例>
(第一应用示例)
图12是示出可以应用本公开内容的技术的eNB的示意性配置的第一示例的框图。eNB 1200包括一个或多个天线1210以及基站设备1220。基站设备1220和每个天线1210可以经由RF线缆彼此连接。
天线1210中的每一个均包括单个或多个天线元件(诸如包括在多输入多输出(MIMO)天线中的多个天线元件),并且用于基站设备1220发送和接收无线信号。如图12所示,eNB 1200可以包括多个天线1210。例如,多个天线1210可以与eNB 1200使用的多个频带兼容。虽然图12示出其中eNB 1200包括多个天线1210的示例,但是eNB 1200也可以包括单个天线1210。
基站设备1220包括控制器1221、存储器1222、网络接口1223以及无线通信接口1225。
控制器1221可以为例如CPU或DSP,并且操作基站设备1220的较高层的各种功能。例如,控制器1221根据由无线通信接口1225处理的信号中的数据来生成数据分组,并经由网络接口1223来传递所生成的分组。控制器1221可以对来自多个基带处理器的数据进行捆绑以生成捆绑分组,并传递所生成的捆绑分组。控制器1221可以具有执行如下控制的逻辑功能:该控制诸如为无线资源控制、无线承载控制、移动性管理、接纳控制和调度。该控制可以结合附近的eNB或核心网节点来执行。存储器1222包括RAM和ROM,并且存储由控制器1221执行的程序和各种类型的控制数据(诸如终端列表、传输功率数据以及调度数据)。
网络接口1223为用于将基站设备1220连接至核心网1224的通信接口。控制器1221可以经由网络接口1223而与核心网节点或另外的eNB进行通信。在此情况下,eNB 1200与核心网节点或其他eNB可以通过逻辑接口(诸如S1接口和X2接口)而彼此连接。网络接口1223还可以为有线通信接口或用于无线回程线路的无线通信接口。如果网络接口1223为无线通信接口,则与由无线通信接口1225使用的频带相比,网络接口1223可以使用较高频带用于无线通信。
无线通信接口1225支持任何蜂窝通信方案(诸如长期演进(LTE)和LTE-先进),并且经由天线1210来提供到位于eNB 1200的小区中的终端的无线连接。无线通信接口1225通常可以包括例如基带(BB)处理器1226和RF电路1227。BB处理器1226可以执行例如编码/解码、调制/解 调以及复用/解复用,并且执行层(例如L1、介质访问控制(MAC)、无线链路控制(RLC)和分组数据汇聚协议(PDCP))的各种类型的信号处理。代替控制器1221,BB处理器1226可以具有上述逻辑功能的一部分或全部。BB处理器1226可以为存储通信控制程序的存储器,或者为包括被配置为执行程序的处理器和相关电路的模块。更新程序可以使BB处理器1226的功能改变。该模块可以为***到基站设备1220的槽中的卡或刀片。可替代地,该模块也可以为安装在卡或刀片上的芯片。同时,RF电路1227可以包括例如混频器、滤波器和放大器,并且经由天线1210来传送和接收无线信号。
如图12所示,无线通信接口1225可以包括多个BB处理器1226。例如,多个BB处理器1226可以与eNB 1200使用的多个频带兼容。如图12所示,无线通信接口1225可以包括多个RF电路1227。例如,多个RF电路1227可以与多个天线元件兼容。虽然图12示出其中无线通信接口1225包括多个BB处理器1226和多个RF电路1227的示例,但是无线通信接口1225也可以包括单个BB处理器1226或单个RF电路1227。
(第二应用示例)
图13是示出可以应用本公开内容的技术的eNB的示意性配置的第二示例的框图。eNB 1330包括一个或多个天线1340、基站设备1350和RRH 1360。RRH 1360和每个天线1340可以经由RF线缆而彼此连接。基站设备1350和RRH 1360可以经由诸如光纤线缆的高速线路而彼此连接。
天线1340中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件)并且用于RRH 1360发送和接收无线信号。如图13所示,eNB 1330可以包括多个天线1340。例如,多个天线1340可以与eNB 1330使用的多个频带兼容。虽然图13示出其中eNB 1330包括多个天线1340的示例,但是eNB 1330也可以包括单个天线1340。
基站设备1350包括控制器1351、存储器1352、网络接口1353、无线通信接口1355以及连接接口1357。控制器1351、存储器1352和网络接口1353与参照图12描述的控制器1221、存储器1222和网络接口1223相同。网络接口1353为用于将基站设备1350连接至核心网1354的通信接口。
无线通信接口1355支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且经由RRH 1360和天线1340来提供到位于与RRH 1360对应的扇区中 的终端的无线通信。无线通信接口1355通常可以包括例如BB处理器1356。除了BB处理器1356经由连接接口1357连接到RRH 1360的RF电路1364之外,BB处理器1356与参照图12描述的BB处理器1226相同。如图13所示,无线通信接口1355可以包括多个BB处理器1356。例如,多个BB处理器1356可以与eNB 1330使用的多个频带兼容。虽然图13示出其中无线通信接口1355包括多个BB处理器1356的示例,但是无线通信接口1355也可以包括单个BB处理器1356。
连接接口1357为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的接口。连接接口1357还可以为用于将基站设备1350(无线通信接口1355)连接至RRH 1360的上述高速线路中的通信的通信模块。
RRH 1360包括连接接口1361和无线通信接口1363。
连接接口1361为用于将RRH 1360(无线通信接口1363)连接至基站设备1350的接口。连接接口1361还可以为用于上述高速线路中的通信的通信模块。
无线通信接口1363经由天线1340来传送和接收无线信号。无线通信接口1363通常可以包括例如RF电路1364。RF电路1364可以包括例如混频器、滤波器和放大器,并且经由天线1340来传送和接收无线信号。如图13所示,无线通信接口1363可以包括多个RF电路1364。例如,多个RF电路1364可以支持多个天线元件。虽然图13示出其中无线通信接口1363包括多个RF电路1364的示例,但是无线通信接口1363也可以包括单个RF电路1364。
在图12和图13所示的eNB 1200和eNB 1330中,通过使用图3所描述的第一生成单元310、配置单元330、处理单元340、下行信息生成单元350、第二生成单元360和第三生成单元370可以由控制器1221和/或控制器1351实现。功能的至少一部分也可以由控制器1221和控制器1351实现。例如,控制器1221和/或控制器1351可以通过执行相应的存储器中存储的指令而执行生成第一下行控制信令、配置波束和频域资源的绑定关系、确定发送下行信息和接收上行信息的波束和频域资源、生成下行信息、生成第二下行控制信令、生成第三下行控制信息的功能。
<关于终端设备的应用示例>
(第一应用示例)
图14是示出可以应用本公开内容的技术的智能电话1400的示意性 配置的示例的框图。智能电话1400包括处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412、一个或多个天线开关1415、一个或多个天线1416、总线1417、电池1418以及辅助控制器1419。
处理器1401可以为例如CPU或片上***(SoC),并且控制智能电话1400的应用层和另外层的功能。存储器1402包括RAM和ROM,并且存储数据和由处理器1401执行的程序。存储装置1403可以包括存储介质,诸如半导体存储器和硬盘。外部连接接口1404为用于将外部装置(诸如存储卡和通用串行总线(USB)装置)连接至智能电话1400的接口。
摄像装置1406包括图像传感器(诸如电荷耦合器件(CCD)和互补金属氧化物半导体(CMOS)),并且生成捕获图像。传感器1407可以包括一组传感器,诸如测量传感器、陀螺仪传感器、地磁传感器和加速度传感器。麦克风1408将输入到智能电话1400的声音转换为音频信号。输入装置1409包括例如被配置为检测显示装置1410的屏幕上的触摸的触摸传感器、小键盘、键盘、按钮或开关,并且接收从用户输入的操作或信息。显示装置1410包括屏幕(诸如液晶显示器(LCD)和有机发光二极管(OLED)显示器),并且显示智能电话1400的输出图像。扬声器1411将从智能电话1400输出的音频信号转换为声音。
无线通信接口1412支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1412通常可以包括例如BB处理器1413和RF电路1414。BB处理器1413可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1414可以包括例如混频器、滤波器和放大器,并且经由天线1416来传送和接收无线信号。无线通信接口1412可以为其上集成有BB处理器1413和RF电路1414的一个芯片模块。如图14所示,无线通信接口1412可以包括多个BB处理器1413和多个RF电路1414。虽然图14示出其中无线通信接口1412包括多个BB处理器1413和多个RF电路1414的示例,但是无线通信接口1412也可以包括单个BB处理器1413或单个RF电路1414。
此外,除了蜂窝通信方案之外,无线通信接口1412可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线局域网(LAN)方案。在此情况下,无线通信接口1412可以包括针对每种无 线通信方案的BB处理器1413和RF电路1414。
天线开关1415中的每一个在包括在无线通信接口1412中的多个电路(例如用于不同的无线通信方案的电路)之间切换天线1416的连接目的地。
天线1416中的每一个均包括单个或多个天线元件(诸如包括在MIMO天线中的多个天线元件),并且用于无线通信接口1412传送和接收无线信号。如图14所示,智能电话1400可以包括多个天线1416。虽然图14示出其中智能电话1400包括多个天线1416的示例,但是智能电话1400也可以包括单个天线1416。
此外,智能电话1400可以包括针对每种无线通信方案的天线1416。在此情况下,天线开关1415可以从智能电话1400的配置中省略。
总线1417将处理器1401、存储器1402、存储装置1403、外部连接接口1404、摄像装置1406、传感器1407、麦克风1408、输入装置1409、显示装置1410、扬声器1411、无线通信接口1412以及辅助控制器1419彼此连接。电池1418经由馈线向图14所示的智能电话1400的各个块提供电力,馈线在图中被部分地示为虚线。辅助控制器1419例如在睡眠模式下操作智能电话1400的最小必需功能。
在图14所示的智能电话1400中,通过使用图9所描述的解码单元920、处理单元930、延迟时间确定单元940和反馈信息生成单元950可以由处理器1401或辅助控制器1419实现。功能的至少一部分也可以由处理器1401或辅助控制器1419实现。例如,处理器1401或辅助控制器1419可以通过执行存储器1402或存储装置1403中存储的指令而执行对下行控制信令、下行数据信息、下行控制信息进行解码、确定发送上行信息和接收下行信息的波束和频域资源、确定延迟时间、生成反馈信息的功能。
(第二应用示例)
图15是示出可以应用本公开内容的技术的汽车导航设备1520的示意性配置的示例的框图。汽车导航设备1520包括处理器1521、存储器1522、全球定位***(GPS)模块1524、传感器1525、数据接口1526、内容播放器1527、存储介质接口1528、输入装置1529、显示装置1530、扬声器1531、无线通信接口1533、一个或多个天线开关1536、一个或多个天线1537以及电池1538。
处理器1521可以为例如CPU或SoC,并且控制汽车导航设备1520 的导航功能和另外的功能。存储器1522包括RAM和ROM,并且存储数据和由处理器1521执行的程序。
GPS模块1524使用从GPS卫星接收的GPS信号来测量汽车导航设备1520的位置(诸如纬度、经度和高度)。传感器1525可以包括一组传感器,诸如陀螺仪传感器、地磁传感器和空气压力传感器。数据接口1526经由未示出的终端而连接到例如车载网络1541,并且获取由车辆生成的数据(诸如车速数据)。
内容播放器1527再现存储在存储介质(诸如CD和DVD)中的内容,该存储介质被***到存储介质接口1528中。输入装置1529包括例如被配置为检测显示装置1530的屏幕上的触摸的触摸传感器、按钮或开关,并且接收从用户输入的操作或信息。显示装置1530包括诸如LCD或OLED显示器的屏幕,并且显示导航功能的图像或再现的内容。扬声器1531输出导航功能的声音或再现的内容。
无线通信接口1533支持任何蜂窝通信方案(诸如LTE和LTE-先进),并且执行无线通信。无线通信接口1533通常可以包括例如BB处理器1534和RF电路1535。BB处理器1534可以执行例如编码/解码、调制/解调以及复用/解复用,并且执行用于无线通信的各种类型的信号处理。同时,RF电路1535可以包括例如混频器、滤波器和放大器,并且经由天线1537来传送和接收无线信号。无线通信接口1533还可以为其上集成有BB处理器1534和RF电路1535的一个芯片模块。如图15所示,无线通信接口1533可以包括多个BB处理器1534和多个RF电路1535。虽然图15示出其中无线通信接口1533包括多个BB处理器1534和多个RF电路1535的示例,但是无线通信接口1533也可以包括单个BB处理器1534或单个RF电路1535。
此外,除了蜂窝通信方案之外,无线通信接口1533可以支持另外类型的无线通信方案,诸如短距离无线通信方案、近场通信方案和无线LAN方案。在此情况下,针对每种无线通信方案,无线通信接口1533可以包括BB处理器1534和RF电路1535。
天线开关1536中的每一个在包括在无线通信接口1533中的多个电路(诸如用于不同的无线通信方案的电路)之间切换天线1537的连接目的地。
天线1537中的每一个均包括单个或多个天线元件(诸如包括在 MIMO天线中的多个天线元件),并且用于无线通信接口1533传送和接收无线信号。如图15所示,汽车导航设备1520可以包括多个天线1537。虽然图15示出其中汽车导航设备1520包括多个天线1537的示例,但是汽车导航设备1520也可以包括单个天线1537。
此外,汽车导航设备1520可以包括针对每种无线通信方案的天线1537。在此情况下,天线开关1536可以从汽车导航设备1520的配置中省略。
电池1538经由馈线向图15所示的汽车导航设备1520的各个块提供电力,馈线在图中被部分地示为虚线。电池1538累积从车辆提供的电力。
在图15示出的汽车导航设备1520中,通过使用图9所描述的解码单元920、处理单元930、延迟时间确定单元940和反馈信息生成单元950可以由处理器1521实现。功能的至少一部分也可以由处理器1521实现。例如,处理器1521可以通过执行存储器1522中存储的指令而执行对下行控制信令、下行数据信息、下行控制信息进行解码、确定发送上行信息和接收下行信息的波束和频域资源、确定延迟时间、生成反馈信息的功能。
本公开内容的技术也可以被实现为包括汽车导航设备1520、车载网络1541以及车辆模块1542中的一个或多个块的车载***(或车辆)1540。车辆模块1542生成车辆数据(诸如车速、发动机速度和故障信息),并且将所生成的数据输出至车载网络1541。
以上参照附图描述了本公开的优选实施例,但是本公开当然不限于以上示例。本领域技术人员可在所附权利要求的范围内得到各种变更和修改,并且应理解这些变更和修改自然将落入本公开的技术范围内。
例如,附图所示的功能框图中以虚线框示出的单元均表示该功能单元在相应装置中是可选的,并且各个可选的功能单元可以以适当的方式进行组合以实现所需功能。
例如,在以上实施例中包括在一个单元中的多个功能可以由分开的装置来实现。替选地,在以上实施例中由多个单元实现的多个功能可分别由分开的装置来实现。另外,以上功能之一可由多个单元来实现。无需说,这样的配置包括在本公开的技术范围内。
在该说明书中,流程图中所描述的步骤不仅包括以所述顺序按时间序列执行的处理,而且包括并行地或单独地而不是必须按时间序列执行的处理。此外,甚至在按时间序列处理的步骤中,无需说,也可以适当地改 变该顺序。
以上虽然结合附图详细描述了本公开的实施例,但是应当明白,上面所描述的实施方式只是用于说明本公开,而并不构成对本公开的限制。对于本领域的技术人员来说,可以对上述实施方式作出各种修改和变更而没有背离本公开的实质和范围。因此,本公开的范围仅由所附的权利要求及其等效含义来限定。

Claims (28)

  1. 一种电子设备,包括处理电路,被配置为:
    生成第一下行控制信令,其中,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息,并且所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同;以及
    向用户设备发送所述第一下行控制信令。
  2. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在所述频域资源上根据所述波束发送下行数据信息和下行控制信息、或者在所述频域资源上根据所述波束接收上行数据信息和上行控制信息。
  3. 根据权利要求2所述的电子设备,其中,所述处理电路还被配置为:
    生成下行数据信息,所述下行数据信息包括用于指示所述下行控制信息的波束的波束指示信息,所述下行控制信息的波束与所述第一波束指示信息所指示的波束相同。
  4. 根据权利要求3所述的电子设备,其中,所述处理电路还被配置为:利用参考信号标识来表示所述第一波束指示信息所指示的波束以及用于指示所述下行控制信息的波束,并且
    其中,所述第一波束指示信息中包括的参考信号与用于指示所述下行控制信息的波束的波束指示信息中包括的参考信号相同或者具有准共位的关系。
  5. 根据权利要求1所述的电子设备,其中,所述第一下行控制信令包括下行控制信息DCI。
  6. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    在没有需要调度的上行信息和/或下行信息的情况下,将除所述第一频域指示信息和所述第一波束指示信息以外的至少部分字段设置为特定值。
  7. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    生成第二下行控制信令,其中,所述第二下行控制信令包括第二波束指示信息,所述第二波束指示信息用于指示下行控制信息的波束或者用于指示上行控制信息的波束;以及
    向所述用户设备发送所述第二下行控制信令。
  8. 根据权利要求7所述的电子设备,其中,所述处理电路还被配置为:
    在与所述下行控制信息的波束相对应的频域资源上根据所述下行控制信息的波束发送下行控制信息和下行数据信息、或者在与所述上行控制信息的波束相对应的频域资源上根据所述上行控制信息的波束接收上行控制信息和上行数据信息。
  9. 根据权利要求8所述的电子设备,其中,所述第二下行控制信令包括MAC CE。
  10. 根据权利要求1所述的电子设备,其中,所述处理电路还被配置为:
    生成第三下行控制信令,其中,所述第三下行控制信令包括第三频域指示信息以及第三波束信息,所述第三频域指示信息用于指示下行控制信息和下行数据信息的频域资源、或者用于指示上行控制信息和上行数据信息的频域资源,所述第三波束指示信息用于指示下行控制信息和下行数据信息的波束、或者用于指示上行控制信息和上行数据信息的波束;以及
    向所述用户设备发送所述第三下行控制信令。
  11. 根据权利要求10所述的电子设备,其中,所述处理电路还被配置为:
    在所述下行控制信息和下行数据信息的频域资源上根据所述下行控制信息和下行数据信息的波束发送所述下行控制信息和所述下行数据信息、或者在所述上行控制信息和上行数据信息的频域资源上根据所述上行控制信息和上行数据信息的波束接收上行控制信息和上行数据信息。
  12. 根据权利要求10所述的电子设备,其中,所述第三下行控制信令包括RRC。
  13. 一种电子设备,包括处理电路,被配置为:
    接收第一下行控制信令,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息;以及
    在所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同的情况下,在所述频域资源上根据所述波束接收下行信息或者发送上行信息。
  14. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    在所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源不同的情况下,在与所述第一波束指示信息所指示的波束相对应的频域资源上根据所述波束接收下行信息或者发送上行信息。
  15. 根据权利要求13所述的电子设备,其中,所述下行信息包括下行控制信息和下行数据信息,所述上行信息包括上行控制信息和上行数据信息。
  16. 根据权利要求15所述的电子设备,其中,所述处理电路还被配置为:
    当所述频域资源与所述波束发生变化时,根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间;以及
    不晚于接收到所述第一下行控制信令之后的延迟时间内,切换所述频域资源和所述波束。
  17. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    在所述频域资源上根据所述波束接收下行数据信息,所述下行数据信息包括用于指示下行控制信息的波束的波束指示信息;以及
    在所述下行控制信息的波束与所述第一波束指示信息所指示的波束相同的情况下,在所述频域资源上根据所述波束接收下行控制信息。
  18. 根据权利要求17所述的电子设备,其中,利用参考信号标识来表示所述第一波束指示信息所指示的波束以及用于指示所述下行控制信息的波束,并且
    其中,所述处理电路还被配置为:在所述第一波束指示信息中包括的参考信号与用于指示所述下行控制信息的波束的波束指示信息中包括的 参考信号相同或者具有准共位的关系的情况下,确定所述下行控制信息的波束与所述第一波束指示信息所指示的波束相同。
  19. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    当所述频域资源与所述波束发生变化时,根据频域资源切换的时延和波束切换的时延中的至少一者确定延迟时间;以及
    不晚于接收到所述用于指示下行控制信息的波束的波束指示信息之后的延迟时间内,切换所述频域资源和所述波束。
  20. 根据权利要求17所述的电子设备,其中,所述处理电路还被配置为:
    生成针对所述下行数据信息的反馈信息;
    当所述频域资源与所述波束发生变化时,根据频域资源切换的时延、波束切换的时延、对所述下行数据信息的处理时间、所述反馈信息的传输时延中的至少一者确定延迟时间;以及
    不晚于发送所述反馈信息之后的延迟时间内,切换所述频域资源和所述波束。
  21. 根据权利要求13所述的电子设备,其中,所述第一下行控制信令包括下行控制信息DCI。
  22. 根据权利要求13所述的电子设备,其中,所述处理电路还被配置为:
    接收第二下行控制信令,所述第二下行控制信令包括第二波束指示信息,所述第二波束指示信息用于指示下行控制信息的波束或者用于指示上行控制信息的波束;以及
    在与所述下行控制信息的波束相对应的频域资源上根据所述下行控制信息的波束接收下行控制信息和下行数据信息、或者在与所述上行控制信息的波束相对应的频域资源上根据所述上行控制信息的波束发送上行控制信息和上行数据信息。
  23. 根据权利要求22所述的电子设备,其中,所述第二下行控制信令包括MAC CE。
  24. 根据权利要求13所述的电子设备,其中,所述处理电路还被配 置为:
    接收第三下行控制信令,其中,所述第三下行控制信令包括第三频域指示信息和第三波束指示信息,所述第三频域指示信息用于指示下行控制信息和下行数据信息的频域资源、或者用于指示上行控制信息和上行数据信息的频域资源,所述第三波束指示信息用于指示下行控制信息和下行数据信息的波束、或者用于指示上行控制信息和上行数据信息的波束;以及
    在所述下行控制信息和下行数据信息的频域资源上根据所述下行控制信息和下行数据信息的波束接收所述下行控制信息和所述下行数据信息、或者在所述上行控制信息和上行数据信息的频域资源上根据所述上行控制信息和上行数据信息的波束发送上行控制信息和上行数据信息。
  25. 根据权利要求24所述的电子设备,其中,所述第三下行控制信令包括RRC。
  26. 一种由电子设备执行的无线通信方法,包括:
    生成第一下行控制信令,其中,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息,并且所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同;以及
    向用户设备发送所述第一下行控制信令。
  27. 一种由电子设备执行的无线通信方法,包括:
    接收第一下行控制信令,所述第一下行控制信令包括第一频域指示信息和第一波束指示信息;以及
    在所述第一频域指示信息所指示的频域资源和与所述第一波束指示信息所指示的波束相对应的频域资源相同的情况下,在所述频域资源上根据所述波束接收下行信息或者发送上行信息。
  28. 一种计算机可读存储介质,包括可执行计算机指令,所述可执行计算机指令当被计算机执行时使得所述计算机执行根据权利要求26-27中任一项所述的无线通信方法。
PCT/CN2021/112195 2020-08-19 2021-08-12 电子设备、无线通信方法和计算机可读存储介质 WO2022037467A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/014,180 US20230276452A1 (en) 2020-08-19 2021-08-12 Electronic device, wireless communication method and computer-readable storage medium
CN202180048188.5A CN115836566A (zh) 2020-08-19 2021-08-12 电子设备、无线通信方法和计算机可读存储介质
EP21857562.9A EP4192168A4 (en) 2020-08-19 2021-08-12 ELECTRONIC DEVICE, WIRELESS COMMUNICATION METHOD AND COMPUTER READABLE STORAGE MEDIUM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010836807.4A CN114080035A (zh) 2020-08-19 2020-08-19 电子设备、无线通信方法和计算机可读存储介质
CN202010836807.4 2020-08-19

Publications (1)

Publication Number Publication Date
WO2022037467A1 true WO2022037467A1 (zh) 2022-02-24

Family

ID=80282683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112195 WO2022037467A1 (zh) 2020-08-19 2021-08-12 电子设备、无线通信方法和计算机可读存储介质

Country Status (4)

Country Link
US (1) US20230276452A1 (zh)
EP (1) EP4192168A4 (zh)
CN (2) CN114080035A (zh)
WO (1) WO2022037467A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117651255B (zh) * 2024-01-29 2024-06-14 上海卫星互联网研究院有限公司 一种信号发送方法、装置及基站

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
WO2019195528A1 (en) * 2018-04-04 2019-10-10 Idac Holdings, Inc. Beam indication for 5g new radio
WO2020033675A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Intra-satellite handover

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
WO2019195528A1 (en) * 2018-04-04 2019-10-10 Idac Holdings, Inc. Beam indication for 5g new radio
WO2020033675A1 (en) * 2018-08-09 2020-02-13 Qualcomm Incorporated Intra-satellite handover

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Other Aspects of NR-NTN", 3GPP DRAFT; R1-2005498, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. 20200824 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051914962 *
See also references of EP4192168A4
SONY: "Discussion on beam management and BWP operation for NTN", 3GPP DRAFT; R1-2005576, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917556 *
THALES: "Other RAN1 aspects for NR NTN", 3GPP DRAFT; R1-2006678, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 7 August 2020 (2020-08-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051915434 *

Also Published As

Publication number Publication date
US20230276452A1 (en) 2023-08-31
EP4192168A1 (en) 2023-06-07
CN114080035A (zh) 2022-02-22
EP4192168A4 (en) 2023-11-22
CN115836566A (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
US11757510B2 (en) Electronic devices and communication methods
WO2020108473A1 (zh) 电子设备、通信方法和存储介质
KR102555127B1 (ko) 무선 통신 시스템 내의 전자 디바이스, 및 무선 통신 방법
US20230102698A1 (en) Network device, user equipment, wireless communication method and storage medium
EP3606221B1 (en) Electronic device and radio communication method
WO2021169828A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2021139669A1 (zh) 用于无线通信***的电子设备、方法和存储介质
WO2019137308A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
US20220094501A1 (en) Terminal device, base station device, method, and recording medium
US20240188128A1 (en) Electronic device and method for wireless communication, and computer-readable storage medium
WO2021031882A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022037467A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2022033402A1 (zh) 电子设备、无线通信方法以及计算机可读存储介质
WO2022083525A1 (zh) 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022206575A1 (zh) 电子设备、无线通信方法和计算机可读存储介质
WO2023030242A1 (zh) 电子设备、通信方法和计算机程序产品
WO2023134717A1 (zh) 用于波束失败恢复的设备、方法和介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21857562

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021857562

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021857562

Country of ref document: EP

Effective date: 20230227

NENP Non-entry into the national phase

Ref country code: DE