WO2022082426A1 - Inrush current limiting and surge protection circuit and system - Google Patents

Inrush current limiting and surge protection circuit and system Download PDF

Info

Publication number
WO2022082426A1
WO2022082426A1 PCT/CN2020/122155 CN2020122155W WO2022082426A1 WO 2022082426 A1 WO2022082426 A1 WO 2022082426A1 CN 2020122155 W CN2020122155 W CN 2020122155W WO 2022082426 A1 WO2022082426 A1 WO 2022082426A1
Authority
WO
WIPO (PCT)
Prior art keywords
current limiting
power
power conversion
conversion device
inrush current
Prior art date
Application number
PCT/CN2020/122155
Other languages
French (fr)
Inventor
Yongtao XIE
Pengfei Cai
Wenchao Que
Original Assignee
Astec International Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Astec International Limited filed Critical Astec International Limited
Priority to EP20958009.1A priority Critical patent/EP4233142A4/en
Priority to CN202080107339.5A priority patent/CN116615857A/en
Priority to PCT/CN2020/122155 priority patent/WO2022082426A1/en
Publication of WO2022082426A1 publication Critical patent/WO2022082426A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/001Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off
    • H02H9/002Emergency protective circuit arrangements for limiting excess current or voltage without disconnection limiting speed of change of electric quantities, e.g. soft switching on or off limiting inrush current on switching on of inductive loads subjected to remanence, e.g. transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4225Arrangements for improving power factor of AC input using a non-isolated boost converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/44Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/42Circuits or arrangements for compensating for or adjusting power factor in converters or inverters
    • H02M1/4208Arrangements for improving power factor of AC input
    • H02M1/4233Arrangements for improving power factor of AC input using a bridge converter comprising active switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • aspects of the disclosure are related to electronic components and in particular to surge protection and inrush current limiting for electronic components.
  • Power converters are commonly used in a variety of systems including telecom systems, fast chargers for electric vehicles, and other applications requiring high power density and high efficiency.
  • Common power converter designs include a variety of protection devices designed to limit voltage spikes and current surges occurring at their input ports. Often a metal oxide varistor is placed between the input ports to reduce voltage spikes occurring at the inputs. However, this alone is not sufficient to protect power switching transistors within the converter from lightning induced surges, particularly when input power to the converter is disabled.
  • a power conversion device in an embodiment, includes a bulk capacitor, a current limiting resistor in series with the bulk capacitor, and an inrush current control device configured to bypass the current limiting resistor when activated.
  • the power conversion device also includes a bypass device in parallel with the current limiting resistor, configured to provide a low-resistance path to the bulk capacitor during a power surge.
  • an inrush current limiting and surge protection circuit in another embodiment, includes a bulk capacitor, a current limiting resistor in series with the bulk capacitor, and an inrush current control device configured to bypass the current limiting resistor when activated.
  • the inrush current limiting and surge protection circuit also includes a bypass device in parallel with the current limiting resistor, configured to provide a low-resistance path to the bulk capacitor during a power surge.
  • Figure 1 illustrates an exemplary prior art power converter circuit.
  • Figure 2 illustrates an exemplary power converter circuit with a bridge rectifier including inrush current limiting and surge protection.
  • Figure 3 illustrates an exemplary power converter circuit with bridgeless power factor correction including inrush current limiting and surge protection.
  • FIGS 4A –4D illustrate exemplary bypass devices to limit inrush current and provide surge protection for power converter devices.
  • Figure 5 illustrates an exemplary power converter circuit with bridgeless power factor correction including inrush current limiting and surge protection.
  • Figure 6 illustrates an exemplary power converter circuit with bridge rectification and active power factor correction including inrush current limiting and surge protection.
  • Figure 7 illustrates an exemplary power converter circuit with bridge rectification and active power factor correction including inrush current limiting and surge protection.
  • the example embodiments described herein illustrate different methods for limiting inrush current and providing surge protection for power converter devices. These embodiments limit inrush current at power on and provide power surge protection to power conversion devices when they are connected to the AC grid but the AC power is off.
  • Figure 1 illustrates an exemplary prior art AC/DC power converter circuit 100 with bridge rectification and active power factor correction.
  • This circuit includes inputs line 102, neutral 104, and protective earth 106.
  • the active power factor correction circuit includes inductor L1 131, diode D6 126, and power switching transistor Q1 141.
  • Power switching transistor Q1 141 is susceptible to large voltage spikes and current surges and must be protected to prevent damage.
  • inrush current limiting components current limiting resistor R1 151 and relay K1 161 are placed in series with bulk capacitor C5 115.
  • relay K1 161 acts as an inrush current control device.
  • MOSFETs metal-oxide-semiconductor field-effect transistors
  • IGBTs insulated-gate bipolar transistors
  • inrush current passes through diode D1 121, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D3 123.
  • inrush current passes through diode D2 122, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 124.
  • metal oxide varistor MOV1 107 connected between the line 102 and neutral 104 inputs to clamp voltage spikes across the inputs.
  • metal oxide varistors MOV2 108 and MOV3 109, along with gas discharge tube GDT1 105 are connected across the inputs in a configuration designed to clamp common mode power surges at the input lines.
  • the metal oxide varistors (MOVs) or voltage dependent resistors (VDRs) used in power conversion devices are selected to comply with the Annex G8.2 requirements of IEC Standard IEC62368-1 or the Annex Q requirements of ITE Standard IEC61050-1, which states that the rated maximum continuous voltage of the MOV/VDR should be at least 125%of the upper rated voltage of the power conversion device.
  • the MOV/VDR rating should be at least 300V AC. If the power conversion device is rated for 100-250V AC, the MOV/VDR rating should be at least 312.5V AC. To meet the ITE Standard requirement, the clamping voltage of the appropriate MOV/VDR is greater than 700V as illustrated below in Table 1.
  • This exemplary circuit also includes an electromagnetic interference (EMI) filter comprising capacitors C1 111, C2 112, C3 113, and C4 114, along with inductor L2 132.
  • Capacitors C1 111 and C4 114 are X capacitors configured to reduce differential mode noise, while capacitors C2 112 and C3 112 are Y capacitors configured to reduce common mode noise.
  • FIG. 2 illustrates an exemplary power converter circuit 200 with bridge rectification and active power factor correction including inrush current limiting and surge protection.
  • This exemplary power converter circuit 200 is identical to power converter circuit 100 from Figure 1 with the addition of bypass device BD1 210 which is added in parallel to current limiting resistor R1 151.
  • power converter circuit 200 operates very similar to power converter circuit 100 from Figure 1.
  • inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
  • inrush current passes through diode D1 121, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D3 123.
  • inrush current passes through diode D2 122, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 124.
  • relay K1 161 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss. In this example relay K1 161 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination as inrush current control devices.
  • IGBTs insulated-gate bipolar transistors
  • bypass device BD1 210 If power conversion device 200 is connected to the AC grid, but the AC is off or disabled, then the internal circuit is not able to operate and relay K1 161 remains open. If a lightning surge couples to the AC lines when power conversion device 200 is in that state, the power surge (due to the lightning) is first clamped by the MOVs/VDRs and GDT at the input interface. The residual power surge then activates bypass device BD1 210, which then provides a low-resistance path to bulk capacitor C5 115. The residual power surge energy passes through bypass device BD1 210 and is absorbed by bulk capacitor C5 115 even though relay K1 161 is open. Thus, power switching transistor Q1 141 is protected from the power surge energy.
  • bypass device BD1 210 Examples of bypass device BD1 210 are illustrated in Figures 4A-4D and discussed in detail below.
  • Figure 3 illustrates an exemplary power converter circuit 300 with bridgeless power factor correction including inrush current limiting and surge protection.
  • This example power converter circuit 300 is similar to power converter circuit 200 from Figure 2, but in a H-bridge bridgeless power factor correction configuration.
  • the power factor correction circuit includes power switching transistors Q1 341 and Q2 342, along with inductor L1 331, and diodes D5 325 and D6 326.
  • power converter circuit 300 operates very similar to power converter circuit 200 from Figure 2.
  • inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
  • inrush current passes through diode D1 121 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D3 123.
  • inrush current passes through diode D2 122 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 124.
  • relay K1 161 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss. In this example relay K1 161 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination as inrush current control devices.
  • IGBTs insulated-gate bipolar transistors
  • bypass device BD1 310 Examples of bypass device BD1 310 are illustrated in Figures 4A-4D and discussed in detail below.
  • FIGS 4A –4D illustrate exemplary bypass devices to limit inrush current and provide surge protection for power converter devices.
  • a portion of a power converter device (such as power converter devices 200 and 300 from Figures 2 and 3 respectively) is illustrated.
  • These circuits all include current limiting resistor R1 402, relay K1 404, and bulk capacitor C5 406.
  • relay K1 404 acts as an inrush current control device.
  • other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination, as inrush current control devices.
  • IGBTs insulated-gate bipolar transistors
  • FIG 4A illustrates an example circuit where the bypass device is a gas discharge tube GDT1 400.
  • gas discharge tube GDT1 400 is selected such that its DC breakdown voltage is higher than the maximum rectified input voltage, but lower than the rated voltage of power switching transistor Q1 141 of Figure 2 or power switching transistors Q1 341 and Q2 342 of Figure 3.
  • Figure 4B illustrates an example circuit where the bypass device is a spark gap SG1 410.
  • Figure 4C illustrates an example circuit where the bypass device is a transient voltage suppressor TVS1 420.
  • Figure 4D illustrates an example circuit where the bypass device is a MOV/VDR MOV2 430. All of these various bypass devices are ideally selected to meet both inrush current limits and lightning surge requirements.
  • FIG. 5 illustrates an exemplary power converter circuit 500 with bridgeless power factor correction including inrush current limiting and surge protection.
  • This example power converter circuit 500 is similar to power converter circuit 300 from Figure 3, but in a totem-pole bridgeless power factor correction configuration.
  • the power factor correction circuit includes power switching transistors Q1 541 and Q2 542, along with inductor L1 531, and diodes D3 523 and D4 524.
  • power converter circuit 500 operates very similar to power converter circuit 300 from Figure 3.
  • inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
  • inrush current passes through diode D1 121 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 524.
  • inrush current passes through diode D3 523 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D2 522.
  • relay K1 161 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss. In this example relay K1 161 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination as inrush current control devices.
  • IGBTs insulated-gate bipolar transistors
  • bypass device BD1 510 Examples of bypass device BD1 510 are illustrated in Figures 4A-4D and discussed in detail above.
  • FIG 6 illustrates an exemplary power converter circuit 600 with bridge rectification and active power factor correction including inrush current limiting and surge protection.
  • This example power converter circuit 600 is similar to power converter circuit 200 from Figure 2, however this example circuit includes MOSFET Q2 642 as an inrush current control device in place of relay K1 161.
  • MOSFET Q2 642 is placed in parallel with bulk resistor R1 151 and bypass device BD1 610, and operates similarly to relay K1 161 of Figure 2.
  • FIG. 7 illustrates an exemplary power converter circuit 700 with bridge rectification and active power factor correction including inrush current limiting and surge protection.
  • This example power converter circuit 700 is similar to power converter circuit 200 from Figure 2, however this example circuit includes MOSFET Q2 742 as an inrush current control device in parallel with relay K1 761.
  • MOSFET Q2 742 is placed in parallel with bulk resistor R1 151, bypass device BD1 710, and relay K1 761. Here both MOSFET Q2 742 and relay K1 761 operate together in parallel as an inrush current control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Rectifiers (AREA)

Abstract

A power conversion device (200), includes a bulk capacitor (115), a current limiting resistor (151) in series with the bulk capacitor (115), and an inrush current control device configured to bypass the current limiting resistor (151) when activated. The power conversion device (200) also includes a bypass device (210) in parallel with the current limiting resistor (151), configured to provide a low-resistance path to the bulk capacitor (115) during a power surge.

Description

INRUSH CURRENT LIMITING AND SURGE PROTECTION CIRCUIT AND SYSTEM TECHNICAL FIELD
Aspects of the disclosure are related to electronic components and in particular to surge protection and inrush current limiting for electronic components.
TECHNICAL BACKGROUND
Power converters are commonly used in a variety of systems including telecom systems, fast chargers for electric vehicles, and other applications requiring high power density and high efficiency.
Common power converter designs include a variety of protection devices designed to limit voltage spikes and current surges occurring at their input ports. Often a metal oxide varistor is placed between the input ports to reduce voltage spikes occurring at the inputs. However, this alone is not sufficient to protect power switching transistors within the converter from lightning induced surges, particularly when input power to the converter is disabled.
OVERVIEW
In an embodiment, a power conversion device is provided. The power conversion device includes a bulk capacitor, a current limiting resistor in series with the bulk capacitor, and an inrush current control device configured to bypass the current limiting resistor when activated.
The power conversion device also includes a bypass device in parallel with the current limiting resistor, configured to provide a low-resistance path to the bulk capacitor during a power surge.
In another embodiment, an inrush current limiting and surge protection circuit is provided. The inrush current limiting and surge protection circuit includes a bulk capacitor, a current limiting resistor in series with the bulk capacitor, and an inrush current control device configured to bypass the current limiting resistor when activated.
The inrush current limiting and surge protection circuit also includes a bypass device in parallel with the current limiting resistor, configured to provide a low-resistance path to the bulk capacitor during a power surge.
BRIEF DESCRIPTION OF THE DRAWINGS
Many aspects of the disclosure can be better understood with reference to the following drawings. While several implementations are described in connection with these drawings, the disclosure is not limited to the implementations disclosed herein. On the contrary, the intent is to cover all alternatives, modifications, and equivalents.
Figure 1 illustrates an exemplary prior art power converter circuit.
Figure 2 illustrates an exemplary power converter circuit with a bridge rectifier including inrush current limiting and surge protection.
Figure 3 illustrates an exemplary power converter circuit with bridgeless power factor correction including inrush current limiting and surge protection.
Figures 4A –4D illustrate exemplary bypass devices to limit inrush current and provide surge protection for power converter devices.
Figure 5 illustrates an exemplary power converter circuit with bridgeless power factor correction including inrush current limiting and surge protection.
Figure 6 illustrates an exemplary power converter circuit with bridge rectification and active power factor correction including inrush current limiting and surge protection.
Figure 7 illustrates an exemplary power converter circuit with bridge rectification and active power factor correction including inrush current limiting and surge protection.
DETAILED DESCRIPTION
The example embodiments described herein illustrate different methods for limiting inrush current and providing surge protection for power converter devices. These embodiments limit inrush current at power on and provide power surge protection to power conversion devices when they are connected to the AC grid but the AC power is off.
Figure 1 illustrates an exemplary prior art AC/DC power converter circuit 100 with bridge rectification and active power factor correction. This circuit includes inputs line 102, neutral 104, and protective earth 106. Here the active power factor correction circuit includes inductor L1 131, diode D6 126, and power switching transistor Q1 141. Power switching transistor Q1 141 is susceptible to large voltage spikes and current surges and must be protected to prevent damage.
In this prior art example, inrush current limiting components current limiting resistor R1 151 and relay K1 161 are placed in series with bulk capacitor C5 115. In this example relay K1 161 acts as an inrush current control device. However, other examples may use metal-oxide-semiconductor field-effect transistors (MOSFETs) , insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination, as inrush current control devices. Initially the voltage across bulk capacitor C5 115 is zero. When input power is applied to the power conversion device, inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
During the positive half cycle, inrush current passes through diode D1 121, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D3 123. During the negative half cycle, inrush current passes through diode D2 122, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 124.
Current limiting resistor R1 151 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss.
Other components of this exemplary circuit include metal oxide varistor MOV1 107 connected between the line 102 and neutral 104 inputs to clamp voltage spikes across the inputs. Additionally, metal oxide varistors MOV2 108 and MOV3 109, along with gas discharge tube GDT1 105 are connected across the inputs in a configuration designed to clamp common mode power surges at the input lines. Typically, the metal oxide varistors (MOVs) or voltage dependent resistors (VDRs) used in power conversion devices are selected to comply with the Annex G8.2 requirements of IEC Standard IEC62368-1 or the Annex Q requirements of ITE Standard IEC61050-1, which states that the rated maximum continuous voltage of the MOV/VDR should be at least 125%of the upper rated voltage of the power conversion device.
For example, if the power conversion device is rated for 100-240V AC, the MOV/VDR rating should be at least 300V AC. If the power conversion device is rated for 100-250V AC, the MOV/VDR rating should be at least 312.5V AC. To meet the ITE Standard requirement, the clamping voltage of the appropriate MOV/VDR is greater than 700V as illustrated below in Table 1.
Figure PCTCN2020122155-appb-000001
Table 1
This exemplary circuit also includes an electromagnetic interference (EMI) filter comprising capacitors C1 111, C2 112, C3 113, and C4 114, along with inductor L2 132. Capacitors C1 111 and C4 114 are X capacitors configured to reduce differential mode noise, while capacitors C2 112 and C3 112 are Y capacitors configured to reduce common mode noise.
If power conversion device 100 is connected to the AC grid, but the AC is off or disabled, then the internal circuit is not able to operate and relay K1 161 remains open. If a lightning surge couples to the AC lines when power conversion device 100 is in that state, the power surge (due to the lightning) is only clamped by the MOVs/VDRs and GDT at the input interface, and power switching transistor Q1 141 is at risk of damage.
In this scenario the clamping voltage is high and the residual power surge energy is not absorbed by bulk capacitor C5 115 since relay K1 161 is open. Power switching transistor Q1 141 is exposed to that residual power surge voltage, resulting in electrical over stress failure of power switching transistor Q1 141.
Figure 2 illustrates an exemplary power converter circuit 200 with bridge rectification and active power factor correction including inrush current limiting and surge protection. This exemplary power converter circuit 200 is identical to power converter circuit 100 from Figure 1 with the addition of bypass device BD1 210 which is added in parallel to current limiting resistor R1 151.
During normal power up, power converter circuit 200 operates very similar to power converter circuit 100 from Figure 1. When input power is applied to the power  conversion device, inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
During the positive half cycle, inrush current passes through diode D1 121, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D3 123. During the negative half cycle, inrush current passes through diode D2 122, diode D5 125, and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 124.
Current limiting resistor R1 151 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss. In this example relay K1 161 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination as inrush current control devices.
If power conversion device 200 is connected to the AC grid, but the AC is off or disabled, then the internal circuit is not able to operate and relay K1 161 remains open. If a lightning surge couples to the AC lines when power conversion device 200 is in that state, the power surge (due to the lightning) is first clamped by the MOVs/VDRs and GDT at the input interface. The residual power surge then activates bypass device BD1 210, which then provides a low-resistance path to bulk capacitor C5 115. The residual power surge energy passes through bypass device BD1 210 and is absorbed by bulk capacitor C5 115 even though relay K1 161 is open. Thus, power switching transistor Q1 141 is protected from the power surge energy.
Examples of bypass device BD1 210 are illustrated in Figures 4A-4D and discussed in detail below.
Figure 3 illustrates an exemplary power converter circuit 300 with bridgeless power factor correction including inrush current limiting and surge protection. This example power converter circuit 300 is similar to power converter circuit 200 from Figure 2, but in a H-bridge bridgeless power factor correction configuration.
Here, the power factor correction circuit includes power switching transistors Q1 341 and Q2 342, along with inductor L1 331, and diodes D5 325 and D6 326.
During normal power up, power converter circuit 300 operates very similar to power converter circuit 200 from Figure 2. When input power is applied to the power  conversion device, inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
During the positive half cycle, inrush current passes through diode D1 121 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D3 123. During the negative half cycle, inrush current passes through diode D2 122 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 124.
Current limiting resistor R1 151 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss. In this example relay K1 161 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination as inrush current control devices.
If power conversion device 300 is connected to the AC grid, but the AC is off or disabled, then the internal circuit is not able to operate and relay K1 161 remains open. If a lightning surge couples to the AC lines when power conversion device 300 is in that state, the power surge (due to the lightning) is first clamped by the MOVs/VDRs and GDT at the input interface. The residual lightning surge then activates bypass device BD1 310, which then provides a low-resistance path to bulk capacitor C5 115. The residual lightning surge energy passes through bypass device BD1 310 and is absorbed by bulk capacitor C5 115 even though relay K1 161 is open. Thus, power switching transistors Q1 341 and Q2 134 are protected from the lightning surge energy.
Examples of bypass device BD1 310 are illustrated in Figures 4A-4D and discussed in detail below.
While the examples illustrated in Figures 2 and 3 show current limiting resistor R1 151, relay K1 161, and bypass devices BD1 210 and 310, adjacent to bulk capacitor C5 115, other embodiments may place these elements on the line input 102 at some location between MOV1 107 and C4 114. However, when placed in this location, relay K1 161 would need to be sized to handle more current than when adjacent to bulk capacitor C5 115, which increases the size and cost of relay K1 161.
Also, while the examples illustrated in Figures 2 and 3 show AC/DC power converters, various embodiments of the present invention may also be used in various other  circuits including, but not limited to, DC/DC converters, high voltage DC converters, and the like.
Figures 4A –4D illustrate exemplary bypass devices to limit inrush current and provide surge protection for power converter devices. In these example embodiments, a portion of a power converter device (such as  power converter devices  200 and 300 from Figures 2 and 3 respectively) is illustrated. These circuits all include current limiting resistor R1 402, relay K1 404, and bulk capacitor C5 406. In these examples relay K1 404 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination, as inrush current control devices.
Figure 4A illustrates an example circuit where the bypass device is a gas discharge tube GDT1 400. In this example, gas discharge tube GDT1 400 is selected such that its DC breakdown voltage is higher than the maximum rectified input voltage, but lower than the rated voltage of power switching transistor Q1 141 of Figure 2 or power switching transistors Q1 341 and Q2 342 of Figure 3.
Figure 4B illustrates an example circuit where the bypass device is a spark gap SG1 410. Figure 4C illustrates an example circuit where the bypass device is a transient voltage suppressor TVS1 420. Figure 4D illustrates an example circuit where the bypass device is a MOV/VDR MOV2 430. All of these various bypass devices are ideally selected to meet both inrush current limits and lightning surge requirements.
Note that further embodiments of the present invention may use any of these bypass devices, alone or in combination, within specific applications to provide inrush current limiting and lightning surge protection.
Figure 5 illustrates an exemplary power converter circuit 500 with bridgeless power factor correction including inrush current limiting and surge protection. This example power converter circuit 500 is similar to power converter circuit 300 from Figure 3, but in a totem-pole bridgeless power factor correction configuration.
Here, the power factor correction circuit includes power switching transistors Q1 541 and Q2 542, along with inductor L1 531, and diodes D3 523 and D4 524.
During normal power up, power converter circuit 500 operates very similar to power converter circuit 300 from Figure 3. When input power is applied to the power  conversion device, inrush current charges bulk capacitor C5 115 until the voltage of bulk capacitor C5 115 reaches the peak of the rectified input voltage.
During the positive half cycle, inrush current passes through diode D1 121 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D4 524. During the negative half cycle, inrush current passes through diode D3 523 and current limiting resistor R1 151 to charge bulk capacitor C5 115 and returns through diode D2 522.
Current limiting resistor R1 151 limits the inrush current. Once bulk capacitor C5 115 is fully charged, and the internal circuit starts to operate, relay K1 161 is activated to short current limiting resistor R1 151 to reduce power loss. In this example relay K1 161 acts as an inrush current control device. However, other examples may use MOSFETs, insulated-gate bipolar transistors (IGBTs) , and the like, alone or in combination as inrush current control devices.
If power conversion device 500 is connected to the AC grid, but the AC is off or disabled, then the internal circuit is not able to operate and relay K1 161 remains open. If a lightning surge couples to the AC lines when power conversion device 500 is in that state, the power surge (due to the lightning) is first clamped by the MOVs/VDRs and GDT at the input interface. The residual power surge then activates bypass device BD1 510, which then provides a low-resistance path to bulk capacitor C5 115. The residual power surge energy passes through bypass device BD1 510 and is absorbed by bulk capacitor C5 115 even though relay K1 161 is open. Thus, power switching transistors Q1 541 and Q2 542 are protected from the power surge energy.
Examples of bypass device BD1 510 are illustrated in Figures 4A-4D and discussed in detail above.
While the examples illustrated in Figures 2, 3, and 5 show current limiting resistor R1 151, relay K1 161, and  bypass devices BD1  210, 310, and 510, adjacent to bulk capacitor C5 115, other embodiments may place these elements on the line input 102 at some location between MOV1 107 and C4 114. However, when placed in this location, relay K1 161 would need to be sized to handle more current than when adjacent to bulk capacitor C5 115, which increases the size and cost of relay K1 161.
Figure 6 illustrates an exemplary power converter circuit 600 with bridge rectification and active power factor correction including inrush current limiting and surge  protection. This example power converter circuit 600 is similar to power converter circuit 200 from Figure 2, however this example circuit includes MOSFET Q2 642 as an inrush current control device in place of relay K1 161.
MOSFET Q2 642 is placed in parallel with bulk resistor R1 151 and bypass device BD1 610, and operates similarly to relay K1 161 of Figure 2.
Figure 7 illustrates an exemplary power converter circuit 700 with bridge rectification and active power factor correction including inrush current limiting and surge protection. This example power converter circuit 700 is similar to power converter circuit 200 from Figure 2, however this example circuit includes MOSFET Q2 742 as an inrush current control device in parallel with relay K1 761.
MOSFET Q2 742 is placed in parallel with bulk resistor R1 151, bypass device BD1 710, and relay K1 761. Here both MOSFET Q2 742 and relay K1 761 operate together in parallel as an inrush current control device.
The included descriptions and figures depict specific embodiments to teach those skilled in the art how to make and use the best mode. For the purpose of teaching inventive principles, some conventional aspects have been simplified or omitted. Those skilled in the art will appreciate variations from these embodiments that fall within the scope of the invention. Those skilled in the art will also appreciate that the features described above may be combined in various ways to form multiple embodiments. As a result, the invention is not limited to the specific embodiments described above, but only by the claims and their equivalents.

Claims (20)

  1. A power conversion device comprising:
    a bulk capacitor;
    a current limiting resistor in series with the bulk capacitor;
    an inrush current control device in parallel with the current limiting resistor, configured to bypass the current limiting resistor when activated; and
    a bypass device in parallel with the current limiting resistor, configured to provide a low-resistance path to the bulk capacitor during a power surge.
  2. The power conversion device of claim 1, wherein the bypass device is a gas discharge tube.
  3. The power conversion device of claim 2, wherein the gas discharge tube has a direct current breakdown voltage greater than a maximum rectified input voltage of the power conversion device and less than a rated voltage of a power switching transistor within the power conversion device.
  4. The power conversion device of claim 1, wherein the bypass device is a spark gap.
  5. The power conversion device of claim 1, wherein the bypass device is a transient voltage suppressor.
  6. The power conversion device of claim 1, wherein the bypass device is a metal oxide varistor or voltage dependent resistor.
  7. The power conversion device of claim 1, wherein the bypass device comprises two or more devices selected from the group of: gas discharge tubes, spark gaps, transient voltage suppressors, and metal oxide varistors or voltage dependent resistors.
  8. The power conversion device of claim 1, wherein the inrush current control device comprises a device selected from the group of: relays, metal-oxide-semiconductor field-effect transistors, and insulated-gate bipolar transistors.
  9. The power conversion device of claim 1, further comprising:
    an input metal oxide varistor electrically coupled between two input ports;
    an electromagnetic interference filter electrically coupled with the input ports; and
    a power factor correction circuit electrically coupled with the electromagnetic interference filter.
  10. The power conversion device of claim 9, wherein the bypass device is configured to protect a power switching transistor within the power factor correction circuit.
  11. The power conversion device of claim 9, wherein the current limiting resistor, inrush current control device, and bypass device are electrically coupled with the input ports between the input metal oxide varistor and the electromagnetic interference filter.
  12. The power conversion device of claim 9, wherein the power factor correction circuit comprises a bridgeless power factor correction converter.
  13. The power conversion device of claim 9, wherein the power factor correction circuit includes a bridge rectifier.
  14. An inrush current limiting and surge protection circuit comprising:
    a bulk capacitor;
    a current limiting resistor in series with the bulk capacitor;
    an inrush current control device in parallel with the current limiting resistor, configured to bypass the current limiting resistor when activated; and
    a bypass device in parallel with the current limiting resistor, configured to provide a low-resistance path to the bulk capacitor during a power surge.
  15. The inrush current limiting and surge protection circuit of claim 14, wherein the bypass device is a gas discharge tube.
  16. The inrush current limiting and surge protection circuit of claim 15, wherein the gas discharge tube has a direct current breakdown voltage greater than a maximum rectified input voltage of the power conversion device and less than a rated voltage of a power switching transistor within the power conversion device.
  17. The inrush current limiting and surge protection circuit of claim 14, wherein the bypass device is a spark gap.
  18. The inrush current limiting and surge protection circuit of claim 14, wherein the bypass device is a transient voltage suppressor.
  19. The inrush current limiting and surge protection circuit of claim 14, wherein the bypass device is a metal oxide varistor or voltage dependent resistor.
  20. The inrush current limiting and surge protection circuit of claim 14, wherein the bypass device comprises two or more devices selected from the group of: gas discharge tubes, spark gaps, transient voltage suppressors, and metal oxide varistors or voltage dependent resistors.
PCT/CN2020/122155 2020-10-20 2020-10-20 Inrush current limiting and surge protection circuit and system WO2022082426A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20958009.1A EP4233142A4 (en) 2020-10-20 2020-10-20 Inrush current limiting and surge protection circuit and system
CN202080107339.5A CN116615857A (en) 2020-10-20 2020-10-20 Rush current limiting and surge protection circuit and system
PCT/CN2020/122155 WO2022082426A1 (en) 2020-10-20 2020-10-20 Inrush current limiting and surge protection circuit and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122155 WO2022082426A1 (en) 2020-10-20 2020-10-20 Inrush current limiting and surge protection circuit and system

Publications (1)

Publication Number Publication Date
WO2022082426A1 true WO2022082426A1 (en) 2022-04-28

Family

ID=81289541

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122155 WO2022082426A1 (en) 2020-10-20 2020-10-20 Inrush current limiting and surge protection circuit and system

Country Status (3)

Country Link
EP (1) EP4233142A4 (en)
CN (1) CN116615857A (en)
WO (1) WO2022082426A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715154A (en) * 1995-06-08 1998-02-03 Sgs-Thomson Microelectronics S.A. Circuit and method for controlling an inrush current limiter in a power conversion system that includes power factor correction
US6493245B1 (en) * 2001-08-15 2002-12-10 Astec International Limited Inrush current control for AC to DC converters
CN1725592A (en) * 2004-06-21 2006-01-25 Abb研究有限公司 Control circuit
CN101268597A (en) * 2005-06-03 2008-09-17 雅达电子国际有限公司 Active inrush current control using a relay for AC to DC converters
CN109861518A (en) * 2019-03-27 2019-06-07 深圳市航嘉驰源电气股份有限公司 A kind of current-limited startup circuit and power-switching circuit

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8503199B1 (en) * 2010-01-29 2013-08-06 Power-One, Inc. AC/DC power converter with active rectification and input current shaping
US8823336B2 (en) * 2012-11-06 2014-09-02 Chicony Power Technology Co., Ltd Bridgeless power factor corrector with single choke and method of operating the same
US10075065B2 (en) * 2016-04-15 2018-09-11 Emerson Climate Technologies, Inc. Choke and EMI filter circuits for power factor correction circuits

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5715154A (en) * 1995-06-08 1998-02-03 Sgs-Thomson Microelectronics S.A. Circuit and method for controlling an inrush current limiter in a power conversion system that includes power factor correction
US6493245B1 (en) * 2001-08-15 2002-12-10 Astec International Limited Inrush current control for AC to DC converters
CN1725592A (en) * 2004-06-21 2006-01-25 Abb研究有限公司 Control circuit
CN101268597A (en) * 2005-06-03 2008-09-17 雅达电子国际有限公司 Active inrush current control using a relay for AC to DC converters
CN109861518A (en) * 2019-03-27 2019-06-07 深圳市航嘉驰源电气股份有限公司 A kind of current-limited startup circuit and power-switching circuit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4233142A4 *

Also Published As

Publication number Publication date
CN116615857A (en) 2023-08-18
EP4233142A1 (en) 2023-08-30
EP4233142A4 (en) 2024-07-24

Similar Documents

Publication Publication Date Title
US11784556B2 (en) Inrush current limiting and surge protection circuit and system
EP1835609B1 (en) Multi-phase current supplying circuit, driving apparatus, compressor, and air conditioner
US9735725B2 (en) Methods and systems for transient voltage protection
WO2016199497A1 (en) Power conversion device
US8670253B2 (en) Converter protecting components against overvoltages
TW490905B (en) A three stage power conditioning circuit
EP1050092B1 (en) Power conditioning circuit
US10523011B2 (en) Voltage compensation apparatus for photovoltaic system and photovoltaic system
WO2023212452A1 (en) Surge voltage protection for a power conversion system
CN208580145U (en) Controller operating voltage management system
WO2022082426A1 (en) Inrush current limiting and surge protection circuit and system
CN212305135U (en) Power protection circuit, power supply and electronic equipment
JPH0739136A (en) Power supply for electronic apparatus
CN110311366B (en) Lightning stroke protection device of power supply conversion circuit
KR20150052446A (en) Protection Circuit for Power Supply
CN114400906A (en) Radiation-resistant three-phase capacitor parallel piezoresistor rectifying circuit
CN114400907A (en) Radiation-resistant three-phase diode series dual-protection rectifying circuit
US10063151B2 (en) Surge tolerant power supply system for providing operating power to appliances
CN111106599A (en) Method for suppressing direct current surge of airborne electric equipment based on ideal diode
CN220042989U (en) Surge protection circuit and switching power supply
CN219576858U (en) Power module and electronic equipment
CN220273533U (en) Switching power supply and electronic equipment
EP4123893A1 (en) Active rectifier in switched-mode power supply
TWI680631B (en) Surge protective apparatus of power conversion circuit
CN109275231B (en) Protection control circuit for preventing surge impact or current abrupt change

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202080107339.5

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020958009

Country of ref document: EP

Effective date: 20230522