WO2022080643A1 - Catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and production method therefor - Google Patents

Catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and production method therefor Download PDF

Info

Publication number
WO2022080643A1
WO2022080643A1 PCT/KR2021/010876 KR2021010876W WO2022080643A1 WO 2022080643 A1 WO2022080643 A1 WO 2022080643A1 KR 2021010876 W KR2021010876 W KR 2021010876W WO 2022080643 A1 WO2022080643 A1 WO 2022080643A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
methane
acetylene
selective hydrogenation
oxidative
Prior art date
Application number
PCT/KR2021/010876
Other languages
French (fr)
Korean (ko)
Inventor
김용태
이성우
김석기
김현우
신정호
한승주
심은해
차수환
Original Assignee
한국화학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원 filed Critical 한국화학연구원
Publication of WO2022080643A1 publication Critical patent/WO2022080643A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0272Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255
    • B01J31/0275Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing elements other than those covered by B01J31/0201 - B01J31/0255 also containing elements or functional groups covered by B01J31/0201 - B01J31/0269
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0234Impregnation and coating simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/04Ethylene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/24Catalytic processes with metals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/08Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds
    • C07C5/09Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of carbon-to-carbon triple bonds to carbon-to-carbon double bonds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, and more specifically, a non-oxidative methane conversion reaction using methane as a raw material, a series of reactions, and a selective hydrogenation reaction for acetylene produced in the reaction It relates to a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, which minimizes coke production and increases ethylene production efficiency by proceeding with the process.
  • Ethylene is a material used as a monomer in the manufacture of various types of polymers, and is produced by catalytic cracking of petroleum gas such as naphtha pyrolysis or ethane, propane, and butane.
  • ethylene produced by the above method contains about 0.5 wt% to 2.0 wt% of acetylene.
  • Reduction of the concentration of acetylene contained in ethylene is generally made by the selective hydrogenation of acetylene by a hydrogenation catalyst, and such acetylene hydrogenation catalysts are disclosed in US Patent Nos. 4,387,258 and 4,839,329.
  • the catalyst carrier exhibits a high specific surface area and weak acidic properties
  • acetylene or ethylene is polymerized in the pores to have 4 or more carbon atoms. Green oil and coke are formed, and the green oil and coke formed in this way block a part of the catalyst pores to block the access of reactants or promote deactivation of the catalyst, resulting in shortening the regeneration cycle and lifespan of the catalyst. .
  • Methane (CH 4 ) is a material capable of producing light olefins including ethylene, and can be obtained from natural gas, sail gas, etc., so that it is possible to achieve smooth raw material supply and cost efficiency during ethylene production.
  • methane is a MTO (Methanol to Olefins) technology that produces light olefins through methanol from synthesis gas (H 2 + CO) obtained through methane reforming, and FTO (Fischer-Tropsch) that produces light olefins directly from syngas. to Olefins) is known as the most feasible technology.
  • H 2 or CO is additionally required to remove O atoms from CO and low energy efficiency of the methane reforming reactor for producing synthesis gas. , it is converted into carbon dioxide (CO 2 ) and water (H 2 O), which are greenhouse gases as products, and this results in lowering the utilization efficiency of H or C atoms in the entire process.
  • Non-Patent Documents 0001 and 0002 a technology for producing ethylene and aromatic compounds by direct conversion of methane under anaerobic or anoxic conditions has recently been developed.
  • an effective material capable of generating ethylene (acetylene) other than ethylene is prepared as a side reactant and separated, so there is a limit to the yield of ethylene by the above method.
  • Non-Patent Document 0001 X, Guo et al., Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen, Science, 344, 2014, 616 ⁇ 619
  • Non-Patent Document 0002 Mann Sakbodin et al., Hydrogen-Permeable Tubular Membrane Reactor: Promoting Conversion and Product Selectivity for Non-Oxidative Activation of Methane over an FeVSiO2 Catalyst, Angew. Chem. 2016, 128, 16383 ⁇ 16386
  • the present inventors produce ethylene by non-oxidative methane conversion of methane and selective hydrogenation of acetylene, but by minimizing coke deposition on the catalyst to produce ethylene with high catalytic efficiency, non-oxidizing methane conversion of methane and selective hydrogenation of acetylene It is a first task to provide a catalyst for hydrogenation.
  • the present invention has a third object to provide a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, prepared by the above method, in order to solve the above problems.
  • the present invention is to provide a method for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using the catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene as a fourth task .
  • the catalyst in order to solve the first problem, in the catalyst for non-oxidative methane conversion of methane and the selective hydrogenation of acetylene, includes: an ⁇ -alumina catalyst carrier; a coating layer comprising -Si-N- bonds crosslinked on the catalyst carrier; and palladium dispersed and supported on the coating layer; provides a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, comprising: a.
  • the specific surface area of the coating layer including -Si-N- bonds crosslinked on the catalyst carrier is 0.08 to 0.2 m 2 /g, and the average particle size of the supported palladium may be 2 to 20 nm. .
  • the particle size mode of the supported palladium may be 7 nm to 9 nm.
  • the compound having the -Si-N- bond may be made of perhydropolysilazane (PHPS).
  • PHPS perhydropolysilazane
  • the preheating in the second step may be made at 150 to 450 °C.
  • the heat treatment in the third step may be made at 700 °C to 1000 °C.
  • the Pd precursor in the fourth step, is impregnated into the carrier obtained in the third step, dried at 80 to 120° C., and heat treated at 300 to 1000° C. to support Pd on the coating layer.
  • a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene prepared by the above method.
  • the catalyst of the present invention uses ⁇ -alumina coated with a compound having -Si-N-bonding as a carrier, and as Pd is supported on the coating layer, coke generated in the catalyst is minimized, thereby improving ethylene production efficiency.
  • the non-oxidative conversion reaction of methane and the selective hydrogenation of acetylene can be continuously performed as a series of reactions, thereby improving process efficiency.
  • Example 1 is a diagram showing the manufacturing process of Example 1 and Comparative Examples 1 and 2 according to an embodiment of the present invention.
  • FIG. 2 is an SEM photograph of PHPS/ ⁇ -Al 2 O 3 according to a preheating temperature according to an embodiment of the present invention.
  • FIG. 3 is a TEM photograph of a catalyst in Examples and Comparative Examples according to an embodiment of the present invention.
  • Example 4 is a graph showing the Pd particle size of Example 1 and Comparative Example 1 according to an embodiment of the present invention.
  • the present invention provides a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, the catalyst comprising: an ⁇ -alumina catalyst carrier; a coating layer comprising -Si-N- bonds crosslinked on the catalyst carrier; and palladium dispersed and supported on the coating layer; provides a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, comprising: a.
  • the ⁇ -alumina catalyst support includes a coating layer including -Si-N- bonds crosslinked on the catalyst support.
  • ⁇ -alumina refers to aluminum oxide of an alpha phase among alumina having various crystal phases, and generally has a low specific surface area of 1 m 2 /g or less, low acidity, low surface crystal concentration, and high density. As such, it can be used as a catalyst carrier.
  • Pd when Pd is directly supported on the ⁇ -alumina carrier, the dispersibility and particle size uniformity of Pd cannot be controlled, and coke formation in the non-oxidative methane conversion reaction and the selective hydrogenation of acetylene cannot be suppressed. , a problem of lowering catalytic activity occurs.
  • a coating layer including a cross-linked -Si-N- bond is included on the ⁇ -alumina carrier, and the coating layer including the cross-linked -Si-N- bond is perhydropolysilazane [ Perhydropolysilazane (PHPS)].
  • PHPS Perhydropolysilazane
  • PHPS is a kind of silicone compound, and in polysilazane, a polymer having a Si-N bond backbone, does not contain carbon and is composed only of Si-H, NH and Si-N "-(SiH 2 -NH) )-" as a repeating unit, and when formed as a coating layer containing -Si-N- bonds crosslinked on the ⁇ -alumina carrier, it induces chemical bonds between the supporting metal (M) and MN to correlate with the surface area
  • M supporting metal
  • catalyst activity and catalyst life can be increased, and ethane, ethylene, acetylene, C3-C4 produced by non-oxidative methane conversion of methane It is possible to selectively hydrogenate acetylene among such materials.
  • the hydrogenation reaction rate of ethylene is known to be 10 to 100 times faster than the hydrogenation reaction rate of acetylene (Bond et al., Catalysis by metals, Academic Press, New York, 281-309, 1962.), but acetylene on a catalyst
  • the hydrogenation reaction is mainly determined by the adsorption and desorption rates rather than the surface reaction rates.
  • the coating layer including the -Si-N- bond crosslinked on the ⁇ -alumina carrier is formed by bonding Si on the catalyst carrier, and contains 2 to 3 wt% of Si in the coating layer, and N/Si The molar ratio is 0.9 to 4.
  • the content of N present on the surface is lowered as the content of Si combined with the ⁇ -alumina carrier is decreased, so that the immobilization ability of palladium may be reduced, and it exceeds 3% by weight
  • the coating layer formed on the carrier becomes thick, and the bond between the carrier and the coating layer may be weakened. The bond between and the coating layer may be weakened.
  • the palladium supported on the coating layer has an average particle size of 2 to 20 nm, and a mode of 7 to 9 nm.
  • the Pd particles are supported on the coating layer, as they are combined with the N of the coating layer, they are dispersed and supported relatively uniformly, and the average particle size is preferably controlled to be 3 to 8 nm.
  • Pd with this controlled particle size is used as a catalyst for non-oxidative methane conversion and selective hydrogenation of acetylene, it suppresses coke formation by lowering the additional C-C coupling reactivity of aromatics, and is selective for acetylene due to reduction of adsorption and desorption portions Let the hydrogenation proceed.
  • palladium supported on the coating layer is included in an amount of 0.1 wt% to 1 wt% based on the total weight of the catalyst.
  • palladium is supported in an amount of less than 0.1 wt%, adsorption and desorption of reactants and products is difficult, so catalytic activity drops sharply. Therefore, there is a problem that causes deactivation.
  • the present invention provides a method for preparing a catalyst for non-oxidative methane conversion and selective hydrogenation of methane, comprising: a first step of coating an ⁇ -alumina carrier with a compound having a -Si-N- bond; a second step of preheating the carrier obtained in the first step to cross-link the compound having -Si-N- bonds on the ⁇ -alumina carrier; a third step of heat-treating the carrier obtained in the second step to form a coating layer having -Si-N- bonds on the ⁇ -alumina carrier; And it provides a method for preparing a catalyst for non-oxidative methane conversion and selective hydrogenation of methane, comprising a fourth step of impregnating the Pd precursor into the carrier obtained in the third step.
  • Figure 1 (a) is a schematic diagram of a method for preparing a catalyst according to an embodiment of the present invention, which will be described with reference to this.
  • the first step is a step of coating the ⁇ -alumina carrier with a compound having a -Si-N- bond.
  • a compound having a -Si-N- bond As described above, by dip coating, an ⁇ -alumina carrier is immersed in a compound having a -Si-N- bond, and the compound having a -Si-N- bond is coated on the ⁇ -alumina carrier.
  • the ⁇ -alumina carrier is a material having a low specific surface area, low acidity, low surface crystal concentration and high density of 1 m 2 /g or less
  • the compound having -Si-N- bonds is polysilazane, preferably is perhydropolysilazane.
  • the second step of the present invention is a step of preheating the carrier obtained in the first step to cross-link the compound having a -Si-N- bond on the ⁇ -alumina carrier, specifically, the -Si- The ⁇ -alumina carrier coated with a compound having an N- bond is preheated to a temperature of 150 to 450° C. to crosslink the compound having a -Si-N- bond on the ⁇ -alumina carrier.
  • the solvent or dispersion cannot be completely removed from the coating solution having -Si-N- crystals, and crosslinking between compounds having -Si-N- crystals is not properly performed. It is not made, and when it exceeds 450 °C, the coating liquid is thermally decomposed and the N component may be vaporized and lost.
  • the preheating temperature is 150 to 450 °C, preferably 150 to 200 °C.
  • the third step is a step of heat-treating the support obtained in the second step to form a coating layer having -Si-N- bonds on the ⁇ -alumina support.
  • some components of the compound are SiO 2 , Si 3 N 4 and Si 2 N 2 O, and by reacting the converted SiO 2 and the structure having -Si-N- bonds with the ⁇ -alumina carrier, the coating layer having -Si-N- bonds on the ⁇ -alumina carrier to form
  • the heating temperature is less than 700 °C
  • the compound having a cross-linked -Si-N- bond is not sufficiently thermally decomposed to reduce the stability of Pd to be supported on the coating layer, and when it exceeds 1000 °C , a compound having -Si-N- bonds can be converted to silicon dioxide in large amounts by thermal curing at high temperature, and as the N component is vaporized and lost due to thermal decomposition, the N content on the coating layer is lowered and Pd to be supported on the coating layer cannot be uniformly supported, and the particle size cannot be adjusted.
  • the heating temperature is 700 to 1000 °C, preferably 900 to 1000 °C.
  • the Si content is 2 to 3 wt%. This means that, when the Si content is less than 2 wt%, the surface and bonding stability of the coating layer may be lowered due to a decrease in the Si content, and thus the immobilization ability of Pd may be reduced. Because it can weaken.
  • N of the coating layer is included in the Si/N molar ratio, 0.9 to 4.
  • the surface concentration of N capable of stabilizing Pd is small, so the immobilization ability of Pd may be reduced, and if it exceeds 4, the initial Pd due to the abundant surface concentration of N
  • N is included in a Si/N molar ratio of 1.3 to 3.3.
  • the specific surface area of the coating layer is 0.08 to 0.2 m 2 /g, which is smaller than the specific surface area (1 m 2 /g) of the ⁇ -alumina carrier.
  • acetylene can be selectively hydrogenated from substances such as ethane, ethylene, acetylene, and C3-C4 generated by non-oxidative methane conversion of methane by controlling adsorption/desorption.
  • the fourth step is a step of impregnating the Pd precursor in the carrier obtained in the third step, followed by drying and heat treatment to support Pd on the coating layer, and the impregnation is applicable without limitation if it is a conventional method. And, preferably, it may be an initial impregnation method (incipient impregnation), and may be carried out at room temperature ⁇ 80 °C temperature for 0.1 ⁇ 10 hours.
  • the Pd precursor is palladium nitride such as Pd(NO 3 ) 2 , palladium sulfide such as PdSO 4 ; palladium chlorides such as PdCl 2 ; palladium oxides such as Pd(OAc) 2 , Pd(C 5 H 7 O 2 ) 2 , and Pd(C 2 H 5 CO 2 ) 2 ; and the like, but is not limited thereto.
  • the drying is to remove impurities such as a solvent contained in the impregnated material, and to smoothly proceed with the heat treatment to be described later, and it is possible without limitation as long as the temperature and time at which the solvent can be removed, preferably 80 °C ⁇ 120 °C It can be carried out for 0.5 to 36 hours.
  • the dried product in this way can be heat-treated by heating at a temperature increase rate of 1 °C/min or more, preferably 2 °C/min to 1,000 °C/min from 300 °C to 1,000 °C in air, oxygen, or an inert atmosphere.
  • a temperature increase rate of 1 °C/min or more, preferably 2 °C/min to 1,000 °C/min from 300 °C to 1,000 °C in air, oxygen, or an inert atmosphere.
  • the heat treatment temperature is less than 300 ° C, it is not easy to remove impurities remaining in the dried material, and a problem may occur in preparing a uniform catalyst. There may be a problem in that the component is vaporized and a loss occurs.
  • the heat treatment time may be a sufficient time to be sufficiently fired, and preferably may be about 0.1 to 10 hours.
  • Pd supported in the above step is included in an amount of 0.1 to 1 wt% based on the total weight of the catalyst.
  • adsorption and desorption of reactants and products is difficult, so catalytic activity drops sharply. Therefore, there is a problem in that the reactivity is rather lowered compared to the palladium content by causing inactivation.
  • the Pd supported in the above step is dispersed and supported relatively uniformly as the Pd particles are combined with N of the coating layer during the impregnation reaction, so that the average particle size is 2 to 20 nm, and the mode is 7 to 9 nm.
  • the catalyst prepared by the above method suppresses coke formation by lowering the additional C-C coupling reactivity of aromatics in non-oxidized methane conversion and selective hydrogenation of acetylene, and selective hydrogenation to acetylene due to reduction of adsorption and desorption portions can do.
  • the present invention provides a method for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using such a catalyst.
  • the non-oxidative conversion reaction of methane was performed at a weight hourly space velocity (WHSV) for the catalyst surface of 500 to 1500 mlg cat -1 h -1 with a gas space velocity for a free space of 240 to 2000 h -1 , 900
  • WHSV weight hourly space velocity
  • the selective hydrogenation of acetylene may be carried out in a temperature range of 200 to 850 °C.
  • the ratio of gas space velocity to the free space / WHSV to the catalyst surface is 0.4 to 2.0 g cat mL -1 , and when it exceeds the above range, the reactivity of the free space increases, and the catalyst surface It is difficult to see the CH activation effect of methane in the case of less than 0.4, the catalyst surface reactivity is increased, a problem occurs in increasing the yield of the product.
  • the reaction temperature is 200 to 850 °C. If it is less than 200 °C, the selectivity to ethylene is lowered and the selectivity to ethane is relatively increased, and when it exceeds 850 °C, the hydrogenation reaction of ethylene Alternatively, the C-C bond and dehydrogenation reaction of acetylene are promoted, and as a result, the selectivity of ethylene is lowered and coke is generated by carbon, which affects the life of the catalyst.
  • it is 200-300 degreeC
  • Perhydropolysilazane was dissolved in dibutyl ether to prepare a polysilazane solution having a mass ratio of 10 wt%.
  • the BET specific surface area which does not have a pore structure, is 1 m 2 g -1 or less.
  • the ⁇ -alumina carrier was soaked at room temperature for 30 minutes.
  • FIG. 1 (b) illustrates the preparation process of Comparative Example 1, the PHPS/Pd/ ⁇ -Al 2 O 3 catalyst.
  • Comparative Example 1 10 g of an ⁇ -alumina support of 1 m 2 g -1 or less having no pore structure was mixed with 100 g of H 2 O and 0.01 g of Pd(NO 3 ) 2 .2H 2 O in a well-mixed solution. Then, the mixture was stirred at 120 rpm for 6 hours, and then Pd metal was supported by an impregnation method under vacuum conditions at 60°C. The obtained particles were dried overnight in an oven at 110° C., then heated to 550° C. in an air atmosphere at a rate of 4° C./min, and calcined at 550° C. for 4 hours.
  • the calcined particles were immersed in a 10 wt% polysilazane solution at room temperature for 30 minutes. After that, only particles were obtained from the polysilazane solution, and the temperature was raised at a rate of 10 °C min -1 in a nitrogen atmosphere, followed by preheating at 200 ° C. for 1 hour. The particles that are primarily crosslinked on the surface are removed at a rate of 1 °Cmin -1 without a separate holding time. After heat treatment at 900°C by raising the temperature After cooling, a PHPS/Pd/ ⁇ -Al 2 O 3 catalyst was prepared.
  • Figure 1 (c) is a diagram illustrating the manufacturing process of Comparative Example 2, Pd/ ⁇ -Al 2 O 3 catalyst.
  • the obtained particles were dried in an oven at 110° C. overnight, and then calcined at 550° C. (4° C./min) for 4 hours in an air atmosphere. Accordingly, a Pd/ ⁇ -Al 2 O 3 catalyst was prepared.
  • the preheating temperature was changed to 200 to 500° C.
  • PHPS After preparing / ⁇ -Al 2 O 3 balls (1 mm), the surface shape and components were analyzed by SEM-EDS and ICP, and are shown in FIG. 2 and Table 1.
  • the Si content is shown by analyzing PHPS/ ⁇ -Al 2 O 3 by ICP (Inductively Coupled Plasma Spectrometer). Even when the preheating temperature is increased to 500 ° C., the ⁇ -Al 2 O 3 coated on the carrier It can be seen that the Si loading amount of PHPS is maintained at 2.3 to 2.7 wt%.
  • the SEM photograph of FIG. 2 shows the surface shape for each preheating temperature.
  • the preheating temperature is increased to 500°C, although the roughness of some surfaces is changed, cracks do not occur significantly, and the PHPS has almost no specific surface area. It can be seen that the coating is stably coated on ⁇ -Al 2 O 3 . This means that even if the polymer structure of PHPS is preheated at a high temperature and deformation due to crosslinking is generated, peeling is not performed due to the interaction with ⁇ -Al 2 O 3 .
  • Figure 3 (a) is a case where PHPS is coated on an ⁇ -Al 2 O 3 carrier (Example 1), PHPS/ ⁇ -Al 2 O having a specific surface area of 1 m 2 /g or less even though it was prepared by high-temperature heat treatment at 900 ° C. 3 It can be seen that the Pd particles are stably maintained on the surface of the carrier and are relatively uniformly dispersed. This is because the N group of PHPS improves the dispersibility and thermal stability of Pd.
  • FIG. 3(b) shows a case where Pd was supported on an ⁇ -Al 2 O 3 carrier and then PHPS was coated (Comparative Example 1). Even though it was prepared by high-temperature heat treatment at 900° C., Pd particles were relatively uniform on the carrier. Although it is supported, it can be seen that the dispersion of Pd particles is reduced compared to Example 1, and thus the uniformity of Pd particles on the carrier is reduced.
  • FIG. 3(c) shows that Pd was supported on the ⁇ -Al 2 O 3 carrier and only calcined at 550° C. in an air atmosphere (Comparative Example 2), it could be confirmed that the Pd particle size was 10 nm or more, and some Pd particles It can be confirmed that represents 100 nm or more.
  • Example 1 the Pd particle size for Example 1 and Comparative Example 1 was analyzed, and it is shown in the graph of FIG. 4 .
  • Example 4 is a graph showing the uniformity of Pd particles according to the composition of the catalyst.
  • Pd/PHPS/ ⁇ -Al 2 O 3 (Example 1) mostly exhibits Pd particles in the range of 5 to 10 nm, so relatively uniform particles While having a size, it can be seen that PHPS/Pd/ ⁇ -Al 2 O 3 (Comparative Example 1) has a Pd particle size in a wide range of 5 to 45 nm.
  • Example 1 0.6 g of the catalyst molded body having a size of 425 to 850 ⁇ m prepared in Example 1 and Comparative Example 2 was filled in a quartz tube reactor (inner diameter: 7 mm, height 150 mm). After pretreatment in a helium atmosphere at 1020 °C for 30 minutes, methane and arcon were supplied in a volume ratio of 90:10 to carry out a non-oxidative conversion reaction of methane.
  • the weight hourly space velocity (WHSV) for the surface of the catalyst is 500 to 1500 mlg cat -1 h -1
  • the gas space velocity for the free space (Space velocity for free space (h -1 )) is 249 to 2000h -1
  • the reaction pressure (P total ) was 1 bar
  • the methane pressure (P CH4 ) was 0.9 bar.
  • Hydrocarbons in the gaseous phase obtained after the reaction were analyzed using a GC of YL Instrument's Series 6500.
  • the gaseous product was analyzed with a thermal conductivity detector (TCD) connected to a ShinCarbon ST column and two flame ionization detectors (FID) detectors connected to Rt-alumina BOND and Rtx-VMS columns, respectively.
  • TCD thermal conductivity detector
  • FID flame ionization detectors
  • Example 1 Comparative Example 2 Space velocity for free space(h -1 ) 2000 746 498 249 2000 746 498 249 WHSV for catalytic surface(mlg cat -1 h -1 ) 995 1500 1000 500 995 1500 1000 500 conversion rate 1.6 4.2 6.5 12.5 2.7 4.1 5.9 11.9 selectivity ethane 13.4 6.7 3.5 1.9 12.2 7.3 4.9 1.8 ethylene 40.8 34.6 28.2 23.2 41.7 35.8 31.8 24.0 acetylene 9.8 15.0 16.0 15.2 9.1 10.5 13.2 13.8 C3-C4 23.7 21.8 16.0 8.0 18.4 17.8 16.3 8.3 benzene 4.1 7.1 11.2 19.2 2.0 3.7 7.3 15.6 naphthalene 0.6 1.5 3.2 6.5 0.2 0.5 1.4 4.4 Alkyl Aromatics 2.7 5.7 9.6 12.6 1.6 2.2 4.0 5.0 Coke 4.9 7.6 12.3 13.4 14.8 22.2 21.1 27.1
  • Example 1 has relatively lower coke selectivity than the catalyst of Comparative Example 2 under the same reaction conditions. This means that Pd particles whose size is adjusted by PHPS are effective in lowering the additional C-C coupling reactivity of aromatics.
  • the weight hourly space velocity (WHSV) for the surface of the catalyst is 995 mlg cat -1 h -1
  • the gas space velocity for the free space is 2000h
  • the weight hourly space velocity (WHSV) for the surface of the catalyst is 500 mlg cat -1 h -1
  • the gas space velocity for the free space is 249h
  • acetylene hydrogenation reaction was carried out using the prepared catalysts of Examples 1 and Comparative Examples 1 and 2 to confirm catalyst performance.
  • the reactor used in the experiment was a fixed-bed reactor, and a quartz tubular reactor with an inner diameter of 7 mm was installed in a furnace having a heating zone with a total height of 150 mm.
  • the prepared catalyst was pulverized to a size of 425 ⁇ 850 ⁇ m and filled in a 0.3g quartz tube reactor.
  • the gaseous hydrocarbons of the obtained product were analyzed using a GC of Series 6500 of YL Instrument, and the gaseous product was analyzed using a thermal conductivity detector (TCD) connected to a ShinCarbon ST column, Rt-alumina BOND, and RTx-VMS columns, respectively. Analysis was performed with two connected flame ionization detectors (FID) detectors.
  • TCD thermal conductivity detector
  • FID flame ionization detector
  • C 2 H 2 , CH 4 and Ar were separated on a ShinCarbon ST column and detected by TCD, and the conversion rate was calculated using the area of acetylene compared to the area of Ar, which is an internal standard.
  • Table 3 shows the results of conversion and product selectivity according to the selective hydrogenation of acetylene by each catalyst carried out as described above.
  • Example 1 100 99.9 0 12.6 70.7 16.2 0 0.5 5.6 Comparative Example 1 3.5 0 8.3 59.7 5.8 0 26.2 7.2 Comparative Example 2 57.4 0 9.4 80.4 10.1 0 0.1 8.6 Example 1 200 99.9 0 7.0 90.3 2.7 0 0 12.9 Comparative Example 1 31.4 0 5.4 88.6 6.0 0 0 16.4 Comparative Example 2 98.4 0 12.1 85.6 2.3 0 0 7.1
  • Example 1 290 81.9 0 5.0 91.9 2.9 0 0.2 18.4 Comparative Example 1 10.4 0 4.1 93.8 2.1 0 0 22.9 Comparative Example 2 19.5 0 4.7 92.3 3.0 0 0 19.6
  • Example 1 850 10.9 31.1 15.5 48.1 5.0 0.3 0 3.1 Comparative Example 1 6.7
  • Example 1 exhibits excellent acetylene conversion reactivity in the range of 100 to 850 ° C. than the catalysts of Comparative Examples 1 and 2, and in particular, it can be confirmed that the ratio of ethylene / ethane is the maximum at 290 ° C. can

Abstract

The present invention relates to a catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and, specifically, to a catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene, wherein a non-oxidative conversion reaction of methane and a selective hydrogenation reaction of acetylene generated therefrom are performed as a series of reactions by using methane as a raw material, thereby minimizing coke production and increasing efficiency of ethylene preparation.

Description

메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매 및 이의 제조방법Catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, and method for preparing the same
본 발명은 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매에 관한 것으로서, 상세하게는 메탄을 원료로 하여, 일련의 반응으로 비산화 메탄전환반응 및 상기 반응에서 생성된 아세틸렌에 대한 선택적 수소화 반응을 진행하여, 코크(coke) 생성을 최소화하고, 에틸렌 제조 효율을 높인, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매에 관한 것이다. The present invention relates to a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, and more specifically, a non-oxidative methane conversion reaction using methane as a raw material, a series of reactions, and a selective hydrogenation reaction for acetylene produced in the reaction It relates to a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, which minimizes coke production and increases ethylene production efficiency by proceeding with the process.
에틸렌은 여러 가지 종류의 고분자를 제조하는데 있어서 단량체로 사용되는 물질로서 나프타 열분해 또는 에탄, 프로판, 부탄 같은 석유가스의 촉매 접촉분해에 의하여 제조된다. 일반적으로 상기 방법에 의해 제조된 에틸렌은 약 0.5 중량% ~ 2.0 중량%의 아세틸렌을 포함하고 있다. 그러나, 고분자용 단량체로 사용되기 위해서는 중합 촉매의 활성 및 생성되는 고분자 물질의 물성을 저하시킬 수 있는 아세틸렌을 적절한 농도 이하로 저감시킬 필요가 있다. 에틸렌에 포함되어 있는 아세틸렌의 농도 저감은, 일반적으로 수소화 촉매에 의한 아세틸렌의 선택적 수소화반응에 의해 이루어지며, 미국등록특허 제4,387,258호 및 미국등록특허 제4,839,329호에 이러한 아세틸렌 수소화 촉매가 개시되어 있다. Ethylene is a material used as a monomer in the manufacture of various types of polymers, and is produced by catalytic cracking of petroleum gas such as naphtha pyrolysis or ethane, propane, and butane. In general, ethylene produced by the above method contains about 0.5 wt% to 2.0 wt% of acetylene. However, in order to be used as a monomer for a polymer, it is necessary to reduce the acetylene, which can reduce the activity of the polymerization catalyst and the physical properties of the produced polymer material, to an appropriate concentration or less. Reduction of the concentration of acetylene contained in ethylene is generally made by the selective hydrogenation of acetylene by a hydrogenation catalyst, and such acetylene hydrogenation catalysts are disclosed in US Patent Nos. 4,387,258 and 4,839,329.
그러나 선행기술문헌의 경우, 촉매의 담체가 높은 비표면적 및 약산 산성 성질을 나타냄에 따라, 500 ℃ 이상의 상대적으로 높은 고온에서 반응을 진행할 시, 세공 내에서 아세틸렌이나 에틸렌을 중합하여 탄소수가 4개 이상인 그린오일과 코크스(cokes)가 형성되며, 이와 같이 형성된 그린오일과 코크스는 촉매세공의 일부를 막아 반응물의 접근을 차단하거나 촉매의 비활성화를 촉진하여 촉매의 재생주기와 수명을 단축시키는 결과를 초래한다.However, in the case of prior art documents, as the catalyst carrier exhibits a high specific surface area and weak acidic properties, when the reaction is carried out at a relatively high temperature of 500 ° C. or higher, acetylene or ethylene is polymerized in the pores to have 4 or more carbon atoms. Green oil and coke are formed, and the green oil and coke formed in this way block a part of the catalyst pores to block the access of reactants or promote deactivation of the catalyst, resulting in shortening the regeneration cycle and lifespan of the catalyst. .
따라서, 에틸렌에 포함되어 있는 아세틸렌의 수소화 반응에 있어서, 상대적으로 고온에서 반응을 진행하여도 코크스 생성을 억제하여 촉매의 활성 주기를 연장할 수 있는 촉매개발과, 에틸렌에 대한 수요가 증가됨에 따라 에틸렌 제조 원료비용 또한 꾸준히 증가되고 있어, 에틸렌 생산비용 절감을 위한 대체원료가 요구되는 실정이다. Therefore, in the hydrogenation reaction of acetylene contained in ethylene, the development of a catalyst capable of extending the active cycle of the catalyst by suppressing coke generation even if the reaction proceeds at a relatively high temperature, and the increase in the demand for ethylene Since the cost of raw materials for manufacturing is also steadily increasing, alternative raw materials for reducing ethylene production cost are required.
메탄(CH4)은 에틸렌을 포함한 경질 올레핀을 제조할 수 있는 물질로, 천연가스, 세일가스 등으로부터 얻을 수 있어, 에틸렌 제조시 원료공급 원활과, 비용효율을 달성할 수 있다. 메탄은 일반적으로, 메탄 개질을 통해 얻어진 합성가스(H2 + CO)를 메탄올을 경유해 경질 올레핀을 제조하는 MTO(Methanol to Olefins) 기술과 합성가스로부터 경질 올레핀을 직접 생산하는 FTO(Fischer-Tropsch to Olefins) 기술이 가장실현 가능한 기술로 알려져 있다. 그러나 이와 같이 합성가스를 경유하여 고부가 산물을 생산하는 기술의 경우에는 합성가스를 생성하기 위한 메탄 개질 반응기의 낮은 에너지 효율 및 CO로부터 O 원자를 제거하기 위해 H2 또는 CO가 부가적으로 필요하게 되며, 이를 통해 생성물로 온실가스인 이산화탄소 (CO2)와 물 (H2O)로 전환되며 이는 전체 공정에서 H 또는 C 원자의 활용효율을 저하시키는 결과를 초래한다.Methane (CH 4 ) is a material capable of producing light olefins including ethylene, and can be obtained from natural gas, sail gas, etc., so that it is possible to achieve smooth raw material supply and cost efficiency during ethylene production. In general, methane is a MTO (Methanol to Olefins) technology that produces light olefins through methanol from synthesis gas (H 2 + CO) obtained through methane reforming, and FTO (Fischer-Tropsch) that produces light olefins directly from syngas. to Olefins) is known as the most feasible technology. However, in the case of this technology for producing high value-added products via synthesis gas, H 2 or CO is additionally required to remove O atoms from CO and low energy efficiency of the methane reforming reactor for producing synthesis gas. , it is converted into carbon dioxide (CO 2 ) and water (H 2 O), which are greenhouse gases as products, and this results in lowering the utilization efficiency of H or C atoms in the entire process.
이에 따라, 합성가스를 경유하지 않고 메탄을 직접 고부가 산물로 전환할 수 있는 새로운 기술로, 산소를 이용해서 메탄을 활성화시키는 메탄 이량화 반응(Oxidative Coupling of Methane; OCM) 기술에 대한 연구가 활발히 이루어져 왔다. 그러나, OCM 반응에서도 O2의 격렬한 반응성 때문에 열역학적으로 안정한 H2O 및 CO2가 다량 형성되어 H 또는 C 원자의 활용 효율이 저하되는 것이 여전히 문제점으로 지적되고 있다.Accordingly, research on Oxidative Coupling of Methane (OCM) technology that activates methane using oxygen as a new technology that can directly convert methane into high value-added products without going through syngas has been actively conducted. come. However, even in the OCM reaction, thermodynamically stable H 2 O and CO 2 are formed in large amounts due to the intense reactivity of O 2 , so that the utilization efficiency of H or C atoms is still pointed out as a problem.
이러한 문제점을 해결하기 위해 최근 혐기성 또는 무산소 조건에서 메탄의 직접 전환에 의한 에틸렌, 방향족 화합물 등을 제조하는 기술이 개발되고 있으나, 메탄의 낮은 반응성으로 인해 고온에서 진행되고 있으며, 촉매의 개발이 필수적이다. 그러나 지금까지의 연구결과 의하면 고온의 조건에서 촉매의 탄소(코크스) 침적에 의한 급격한 촉매 활성의 저하 문제가 핵심이슈로 부각되고 있다(비특허문헌 0001 및 0002 참조). In order to solve this problem, a technology for producing ethylene and aromatic compounds by direct conversion of methane under anaerobic or anoxic conditions has recently been developed. . However, according to the research results so far, the problem of a sudden decrease in catalytic activity due to carbon (coke) deposition in the catalyst under high temperature conditions has been highlighted as a key issue (refer to Non-Patent Documents 0001 and 0002).
또한, 메탄의 비산화 직접전환의 경우, 에틸렌 외에 에틸렌을 생성할 수 있는 유효물질(아세틸렌)은 부반응물로 제조되어 분리됨에 따라, 상기 방법에 의한 에틸렌 수율에 한계가 있다.In addition, in the case of non-oxidative direct conversion of methane, an effective material capable of generating ethylene (acetylene) other than ethylene is prepared as a side reactant and separated, so there is a limit to the yield of ethylene by the above method.
이러한 문제를 해결하기 위하여, 최근에는 메탄의 비산화 직접전환 반응을 실시한 후, 상기 반응에 의해 생성된 부반응물 중 유효물질, 아세틸렌만을 선택적 수소화반응하여 에틸렌을 제조하는, 촉매 및 공정이 개발되고 있다. 미국공개특허 제2014-0058145호는 이러한 메탄의 직접전환 및 아세틸렌의 선택적 수소화반응에 의한 에틸렌 제조에 관한 것으로서, 팔라듐으로 개질된 SAPO 촉매를 사용하고 있다. In order to solve this problem, recently, a catalyst and a process for producing ethylene by performing a non-oxidative direct conversion reaction of methane and then selectively hydrogenating only acetylene, an active material, among side reactants generated by the reaction have been developed. . US Patent Publication No. 2014-0058145 relates to the production of ethylene by direct conversion of methane and selective hydrogenation of acetylene, and uses a SAPO catalyst modified with palladium.
그러나, 선행기술문헌의 경우, 촉매로서 기공 및 넓은 표면적을 포함하는 SAPO 담체를 사용함에 따라, 활성을 갖는 촉매 표면 및 세공 일부에 코크 침착이 증가되어, 촉매 효율 및 촉매 활성 주기가 짧아져 에틸렌 수율이 감소된다.However, in the case of the prior art literature, as a catalyst is used as a SAPO carrier having pores and a large surface area, coke deposition is increased on the active catalyst surface and part of the pores, and the catalyst efficiency and catalyst activity cycle are shortened, resulting in ethylene yield. This is reduced.
따라서, 이러한 코크 생성 문제를 해결하여, 에틸렌 수율을 향상시킬 수 있는, 메탄의 직접전환 및 아세틸렌의 선택적 수소화반응용 촉매가 요구된다.Therefore, there is a need for a catalyst for the direct conversion of methane and selective hydrogenation of acetylene, which can solve the coke generation problem and improve the ethylene yield.
[비특허문헌][Non-patent literature]
(비특허문헌 0001) X, Guo et al., Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen, Science, 344, 2014, 616 ~ 619(Non-Patent Document 0001) X, Guo et al., Direct, Nonoxidative Conversion of Methane to Ethylene, Aromatics, and Hydrogen, Science, 344, 2014, 616 ~ 619
(비특허문헌 0002) Mann Sakbodin et al., Hydrogen-Permeable Tubular Membrane Reactor: Promoting Conversion and Product Selectivity for Non-Oxidative Activation of Methane over an FeVSiO2 Catalyst, Angew. Chem. 2016, 128, 16383 ~ 16386(Non-Patent Document 0002) Mann Sakbodin et al., Hydrogen-Permeable Tubular Membrane Reactor: Promoting Conversion and Product Selectivity for Non-Oxidative Activation of Methane over an FeVSiO2 Catalyst, Angew. Chem. 2016, 128, 16383 ~ 16386
이에, 본 발명자는 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 반응으로 에틸렌을 제조하되, 촉매에 대한 코크 침적을 최소화하여 높은 촉매 효율로 에틸렌을 제조하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 제공하는 것을 첫 번째 과제로 한다.Accordingly, the present inventors produce ethylene by non-oxidative methane conversion of methane and selective hydrogenation of acetylene, but by minimizing coke deposition on the catalyst to produce ethylene with high catalytic efficiency, non-oxidizing methane conversion of methane and selective hydrogenation of acetylene It is a first task to provide a catalyst for hydrogenation.
또한, 본 발명은 상기의 문제점을 해결하기 위하여, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매의 제조방법을 제공하는 것을 두 번째 과제로 한다.In addition, in order to solve the above problems, it is a second object of the present invention to provide a method for preparing a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene.
또한, 본 발명은 상기의 문제점을 해결하기 위하여, 상기 방법으로 제조된, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 제공하는 것을 세 번째 과제로 한다. In addition, the present invention has a third object to provide a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, prepared by the above method, in order to solve the above problems.
또한, 본 발명은 상기의 문제점을 해결하기 위하여, 상기 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 사용한, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 방법을 제공하는 것을 네번째 과제로 한다. In addition, in order to solve the above problems, the present invention is to provide a method for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using the catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene as a fourth task .
상기 첫 번째 과제를 해결하기 위하여, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매에 있어서, 상기 촉매는 α-알루미나 촉매 담체; 상기 촉매 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층; 및 상기 코팅층상에 분산되어 담지된 팔라듐;을 포함하는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 제공한다.In order to solve the first problem, in the catalyst for non-oxidative methane conversion of methane and the selective hydrogenation of acetylene, the catalyst includes: an α-alumina catalyst carrier; a coating layer comprising -Si-N- bonds crosslinked on the catalyst carrier; and palladium dispersed and supported on the coating layer; provides a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, comprising: a.
일 실시예로, 상기 촉매 담체 상에 가교된 -Si-N- 결합을 포함하는 코팅층의 비표면적은 0.08 ~ 0.2 m2/g 이고, 담지된 팔라듐의 평균 입자크기는 2 내지 20 nm 일 수 있다. In one embodiment, the specific surface area of the coating layer including -Si-N- bonds crosslinked on the catalyst carrier is 0.08 to 0.2 m 2 /g, and the average particle size of the supported palladium may be 2 to 20 nm. .
일 실시예로, 상기 담지된 팔라듐의 입자크기 최빈값은 7 nm 내지 9 nm 일 수 있다.In one embodiment, the particle size mode of the supported palladium may be 7 nm to 9 nm.
상기 두 번째 과제를 해결하기 위하여, α-알루미나 담체에 -Si-N- 결합을 갖는 화합물로 코팅하는 제1단계; 상기 제1단계에서 수득한 담체를 예열하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 화합물을 가교시키는 제2단계; 상기 제2단계에서 수득한 담체를 열처리하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 코팅층을 형성하는 제3단계; 및 상기 제3단계에서 수득한 담체에 Pd 전구체를 함침시키는 제4단계를 포함하는, 메탄의 비산화 메탄전환 및 아세틸렌 선택적 수소화용 촉매의 제조방법을 제공한다.In order to solve the second problem, a first step of coating the α-alumina carrier with a compound having a -Si-N- bond; a second step of preheating the carrier obtained in the first step to cross-link the compound having -Si-N- bonds on the α-alumina carrier; a third step of heat-treating the carrier obtained in the second step to form a coating layer having -Si-N- bonds on the α-alumina carrier; And it provides a method for preparing a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, comprising a fourth step of impregnating the Pd precursor into the carrier obtained in the third step.
일 실시예로, 상기 -Si-N- 결합을 갖는 화합물은, 퍼하이드로폴리실라잔[Perhydropolysilazane (PHPS)]으로 이루어질 수 있다.In one embodiment, the compound having the -Si-N- bond may be made of perhydropolysilazane (PHPS).
일 실시예로, 상기 제2단계에서의 예열은 150 내지 450℃에서 이루어질 수 있다.In one embodiment, the preheating in the second step may be made at 150 to 450 ℃.
일 실시예로, 상기 제3단계에서의 열처리는 700℃ 내지 1000℃에서 이루어질 수 있다.In one embodiment, the heat treatment in the third step may be made at 700 °C to 1000 °C.
일 실시예로, 상기 제4단계는 제3단계에서 수득한 담체에 Pd 전구체를 함침시킨 후, 80 내지 120 ℃에서 건조한 후, 300 내지 1000℃로 열처리하여, 코팅층에 Pd를 담지할 수 있다.In one embodiment, in the fourth step, the Pd precursor is impregnated into the carrier obtained in the third step, dried at 80 to 120° C., and heat treated at 300 to 1000° C. to support Pd on the coating layer.
상기 세 번째 과제를 해결하기 위하여, 상기 제조방법으로 제조된, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 제공한다.In order to solve the third problem, there is provided a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, prepared by the above method.
상기 네 번째 과제를 해결하기 위하여, 상기 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 사용한, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 방법을 제공한다.In order to solve the fourth problem, there is provided a method for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using the catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene.
본 발명의 촉매는 -Si-N-결합을 갖는 화합물로 코팅된 α-알루미나를 담체로 하여, 상기 코팅층에 Pd를 담지함에 따라, 촉매에 생성되는 코크를 최소화하여, 에틸렌 제조 효율을 향상시킨다. The catalyst of the present invention uses α-alumina coated with a compound having -Si-N-bonding as a carrier, and as Pd is supported on the coating layer, coke generated in the catalyst is minimized, thereby improving ethylene production efficiency.
또한, 본 발명의 촉매를 사용할 시, 메탄의 비산화 전환반응 및 아세틸렌의 선택적 수소화반응이 일련의 반응으로 연속하여 진행될 수 있어, 공정효율이 향상된다.In addition, when the catalyst of the present invention is used, the non-oxidative conversion reaction of methane and the selective hydrogenation of acetylene can be continuously performed as a series of reactions, thereby improving process efficiency.
도 1은 본 발명의 일 실시예에 따른, 실시예 1과 비교예 1 및 2의 제조공정을 나타낸 그림이다.1 is a diagram showing the manufacturing process of Example 1 and Comparative Examples 1 and 2 according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 있어서, 예열온도에 따른 PHPS/α-Al2O3의 SEM 사진이다.2 is an SEM photograph of PHPS/α-Al 2 O 3 according to a preheating temperature according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 실시예 및 비교예의 촉매 TEM 사진이다.3 is a TEM photograph of a catalyst in Examples and Comparative Examples according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 실시예 1 및 비교예 1의 Pd 입자 크기를 나타낸 그래프이다.4 is a graph showing the Pd particle size of Example 1 and Comparative Example 1 according to an embodiment of the present invention.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is those well known and commonly used in the art.
본 명세서 전체에서 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.When a part "includes" a component throughout this specification, this means that other components may be further included, rather than excluding other components, unless otherwise stated.
이하, 본 발명을 상세하게 설명하다.Hereinafter, the present invention will be described in detail.
본 발명은 일 측면으로, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매에 있어서, 상기 촉매는 α-알루미나 촉매 담체; 상기 촉매 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층; 및 상기 코팅층상에 분산되어 담지된 팔라듐;을 포함하는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매를 제공한다.In one aspect, the present invention provides a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, the catalyst comprising: an α-alumina catalyst carrier; a coating layer comprising -Si-N- bonds crosslinked on the catalyst carrier; and palladium dispersed and supported on the coating layer; provides a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, comprising: a.
본 발명에 있어서, 상기 α-알루미나 촉매 담체는, 촉매 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층을 포함하여 이루어진다.In the present invention, the α-alumina catalyst support includes a coating layer including -Si-N- bonds crosslinked on the catalyst support.
α-알루미나는 다양한 결정상을 갖는 알루미나 중 알파 상(alpha phase)의 산화알루미늄을 의미하는 것으로, 일반적으로 1m2/g 이하의 낮은 비표면적, 낮은 산도, 낮은 표면 결정의 농도 및 높은 밀도를 가는 물질로, 촉매 담체로 사용될 수 있다. 그러나, 상기 α-알루미나 담체 상에 Pd를 직접 담지할 경우, Pd의 분산성 및 입자크기 균일성을 조절할 수 없고, 비산화 메탄전환 반응 및 아세틸렌의 선택적 수소화 반응에서의 코크 생성을 억제할 수 없으며, 촉매활성도가 떨어지는 문제가 발생된다.α-alumina refers to aluminum oxide of an alpha phase among alumina having various crystal phases, and generally has a low specific surface area of 1 m 2 /g or less, low acidity, low surface crystal concentration, and high density. As such, it can be used as a catalyst carrier. However, when Pd is directly supported on the α-alumina carrier, the dispersibility and particle size uniformity of Pd cannot be controlled, and coke formation in the non-oxidative methane conversion reaction and the selective hydrogenation of acetylene cannot be suppressed. , a problem of lowering catalytic activity occurs.
이에, 본 발명에서는 상기 α-알루미나 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층을 포함하도록 하며, 상기 상기 가교된 -Si-N- 결합을 포함하는 코팅층은 퍼하이드로폴리실라잔[Perhydropolysilazane (PHPS)]으로부터 유래될 수 있다. Accordingly, in the present invention, a coating layer including a cross-linked -Si-N- bond is included on the α-alumina carrier, and the coating layer including the cross-linked -Si-N- bond is perhydropolysilazane [ Perhydropolysilazane (PHPS)].
PHPS는 실리콘 화합물의 일종으로 Si-N 결합 골격을 갖는 고분자인 폴리실라잔(polysilazane)에 있어서, 탄소를 포함하지 않고, Si-H, N-H 및 Si-N 만으로 구성되어 "-(SiH2-NH)-"을 반복 단위로 하는 고분자로, 상기 α-알루미나 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층으로 형성될 시, 담지 금속(M)과 M-N 화학적 결합을 유도하여 표면적에 상관없이, 금속의 분산성 및 입자크기 균일성을 높여 코크 생성을 억제함으로써, 촉매의 활성 및 촉매 수명을 증가시킬 수 있고, 메탄의 비산화 메탄전환에 의해 생성된 에탄, 에틸렌, 아세틸렌, C3-C4 등의 물질 중에서 아세틸렌을 선택적 수소화할 수 있다.PHPS is a kind of silicone compound, and in polysilazane, a polymer having a Si-N bond backbone, does not contain carbon and is composed only of Si-H, NH and Si-N "-(SiH 2 -NH) )-" as a repeating unit, and when formed as a coating layer containing -Si-N- bonds crosslinked on the α-alumina carrier, it induces chemical bonds between the supporting metal (M) and MN to correlate with the surface area By suppressing coke formation by increasing metal dispersibility and particle size uniformity, catalyst activity and catalyst life can be increased, and ethane, ethylene, acetylene, C3-C4 produced by non-oxidative methane conversion of methane It is possible to selectively hydrogenate acetylene among such materials.
일반적으로 에틸렌의 수소화 반응속도는 아세틸렌의 수소화 반응 속도보다 10 ~ 100 배 빠른 것으로 알려져 있으나(Bond et al., Catalysis by metals, Academic Press, New York, 281-309, 1962.), 촉매 상에서의 아세틸렌의 수소화 반응은 표면 반응 속도보다는 흡착 및 탈착 속도에 의해 주로 결정된다. 따라서, α-알루미나 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층을 갖는 촉매로 메탄전환 생성물에 대한 수소화 반응을 실시할 경우, 상기 코팅층의 비표면적을 0.08 ~ 0.2 m2/g 낮춰 아세틸렌의 담체 표면 및 세공에 대한 강한 흡착을 억제하고, 흡착된 아세틸렌의 불필요한 C-C 결합 및 추가적인 탈수소화를 억제시킴으로써, 선택적으로 아세틸렌을 수소화할 수 있다.In general, the hydrogenation reaction rate of ethylene is known to be 10 to 100 times faster than the hydrogenation reaction rate of acetylene (Bond et al., Catalysis by metals, Academic Press, New York, 281-309, 1962.), but acetylene on a catalyst The hydrogenation reaction is mainly determined by the adsorption and desorption rates rather than the surface reaction rates. Therefore, when hydrogenation reaction of the methane conversion product is performed with a catalyst having a coating layer including a -Si-N- bond cross-linked on an α-alumina carrier, the specific surface area of the coating layer is lowered by 0.08 to 0.2 m 2 /g By suppressing the strong adsorption of acetylene to the carrier surface and pores, and suppressing unnecessary CC bonding and further dehydrogenation of the adsorbed acetylene, it is possible to selectively hydrogenate acetylene.
이러한, 상기 α-알루미나 담체상에 가교된 -Si-N- 결합을 포함하는 코팅층은, 촉매 담체상에 Si가 결합되어 형성된 것으로, 코팅층에 Si를 2 내지 3중량%로 포함하고, N/Si 몰비를 0.9 내지 4로 한다.The coating layer including the -Si-N- bond crosslinked on the α-alumina carrier is formed by bonding Si on the catalyst carrier, and contains 2 to 3 wt% of Si in the coating layer, and N/Si The molar ratio is 0.9 to 4.
상기 PHPS에 Si가 2중량 % 미만으로 포함될 때에는 α-알루미나 담체와 결합되는 Si 함량이 감소됨에 따라 표면에 존재하는 N의 함량이 저하되어 팔라듐의 고정화 능력이 감소될 수 있고, 3중량 %를 초과할 시에는 담체에 형성된 코팅층이 두꺼워져 담체와 코팅층간의 결합이 약화될 수 있으며, N/Si 몰비가 0.9미만일 경우에는 N의 함량 저하로 팔라듐의 분산도가 저하되고, 4를 초과할 시에는 담체와 코팅층간의 결합이 약화될 수 있다.When Si is included in the PHPS in an amount of less than 2% by weight, the content of N present on the surface is lowered as the content of Si combined with the α-alumina carrier is decreased, so that the immobilization ability of palladium may be reduced, and it exceeds 3% by weight In the case of heating, the coating layer formed on the carrier becomes thick, and the bond between the carrier and the coating layer may be weakened. The bond between and the coating layer may be weakened.
본 발명에 있어서, 상기 코팅층에 담지되는 팔라듐은, 평균입자 크기가 2 내지 20nm 이고, 최빈값이 7 내지 9nm이다. 상기 Pd 입자는 코팅층에 담지될 때, 코팅층의 N과 결합됨에 따라, 비교적 균일하게 분산 담지되고, 바람직하게는 평균입자 크기는 3 내지 8 nm 으로 조절되게 된다. 이렇게 입자 크기가 조절된 Pd은 메탄 비산화 메탄전환 및 아세틸렌의 선택적 수소화 반응 촉매로 사용될 때, aromatics의 추가 C-C 커플링 반응성을 낮추어 코크 생성을 억제하고, 흡착 및 탈착 부분 감소로 인해 아세틸렌에 대한 선택적 수소화가 진행되도록 한다. In the present invention, the palladium supported on the coating layer has an average particle size of 2 to 20 nm, and a mode of 7 to 9 nm. When the Pd particles are supported on the coating layer, as they are combined with the N of the coating layer, they are dispersed and supported relatively uniformly, and the average particle size is preferably controlled to be 3 to 8 nm. When Pd with this controlled particle size is used as a catalyst for non-oxidative methane conversion and selective hydrogenation of acetylene, it suppresses coke formation by lowering the additional C-C coupling reactivity of aromatics, and is selective for acetylene due to reduction of adsorption and desorption portions Let the hydrogenation proceed.
또한, 상기 코팅층에 담지되는 팔라듐은 촉매 총 중량에 대하여 0.1 중량% ~ 1 중량%로 포함된다. 팔라듐이 0.1 중량% 미만으로 담지될 때에는 반응물 및 생성물의 흡탈착이 어려워 촉매 활성이 급격히 떨어지고, 1 중량%를 초과할 경우에는 촉매 담체의 활성물질 분산도가 낮아져 표면에 그린오일 및 코크침적을 유도하여 비활성화를 야기하는 문제점이 있다.In addition, palladium supported on the coating layer is included in an amount of 0.1 wt% to 1 wt% based on the total weight of the catalyst. When palladium is supported in an amount of less than 0.1 wt%, adsorption and desorption of reactants and products is difficult, so catalytic activity drops sharply. Therefore, there is a problem that causes deactivation.
본 발명은 메탄의 비산화 메탄전환 및 선택적 수소화용 촉매의 제조방법으로, α-알루미나 담체에 -Si-N- 결합을 갖는 화합물로 코팅하는 제1단계; 상기 제1단계에서 수득한 담체를 예열하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 화합물을 가교시키는 제2단계; 상기 제2단계에서 수득한 담체를 열처리하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 코팅층을 형성하는 제3단계; 및 상기 제3단계에서 수득한 담체에 Pd 전구체를 함침시키는 제4단계를 포함하는, 메탄의 비산화 메탄전환 및 선택적 수소화 반응용 촉매의 제조방법을 제공한다.The present invention provides a method for preparing a catalyst for non-oxidative methane conversion and selective hydrogenation of methane, comprising: a first step of coating an α-alumina carrier with a compound having a -Si-N- bond; a second step of preheating the carrier obtained in the first step to cross-link the compound having -Si-N- bonds on the α-alumina carrier; a third step of heat-treating the carrier obtained in the second step to form a coating layer having -Si-N- bonds on the α-alumina carrier; And it provides a method for preparing a catalyst for non-oxidative methane conversion and selective hydrogenation of methane, comprising a fourth step of impregnating the Pd precursor into the carrier obtained in the third step.
도 1(a)은 본 발명의 일 실시예에 따른 촉매 제조방법을 도식화한 것으로, 이를 참고하여 설명한다.Figure 1 (a) is a schematic diagram of a method for preparing a catalyst according to an embodiment of the present invention, which will be described with reference to this.
본 발명에 있어서, 제 1 단계는 α-알루미나 담체에 -Si-N- 결합을 갖는 화합물로 코팅하는 단계로, 코팅은 제한 없이 통상의 방법으로 실시될 수 있고, 바람직하게는 도 1(a)와 같이, 딥 코팅(dip coating)법으로, α-알루미나 담체를 -Si-N- 결합을 갖는 화합물에 침지하여, α-알루미나 담체에 -Si-N- 결합을 갖는 화합물을 코팅한다.In the present invention, the first step is a step of coating the α-alumina carrier with a compound having a -Si-N- bond. As described above, by dip coating, an α-alumina carrier is immersed in a compound having a -Si-N- bond, and the compound having a -Si-N- bond is coated on the α-alumina carrier.
이때, 상기 α-알루미나 담체는 1m2/g 이하의 낮은 비표면적, 낮은 산도, 낮은 표면 결정의 농도 및 높은 밀도를 갖는 물질이고, -Si-N- 결합을 갖는 화합물은 폴리실라잔, 바람직하게는 퍼하이드로폴리실라잔이다.In this case, the α-alumina carrier is a material having a low specific surface area, low acidity, low surface crystal concentration and high density of 1 m 2 /g or less, and the compound having -Si-N- bonds is polysilazane, preferably is perhydropolysilazane.
다음으로 본 발명의 제 2 단계는, 상기 제1단계에서 수득한 담체를 예열하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 화합물을 가교시키는 단계로, 상세하게는 상기 -Si-N- 결합을 갖는 화합물이 코팅된, α-알루미나 담체를 150 내지 450 ℃의 온도로 예열하여, 상기 α-알루미나 담체상에 -Si-N- 결합을 갖는 화합물을 가교시킨다.Next, the second step of the present invention is a step of preheating the carrier obtained in the first step to cross-link the compound having a -Si-N- bond on the α-alumina carrier, specifically, the -Si- The α-alumina carrier coated with a compound having an N- bond is preheated to a temperature of 150 to 450° C. to crosslink the compound having a -Si-N- bond on the α-alumina carrier.
상기 제 2 단계에 있어서, 예열 온도가 150 ℃ 미만일 경우에는, -Si-N- 결정을 갖는 코팅액으로 부터 용매 또는 분산액을 완전히 제거할 수 없어, -Si-N- 결정을 갖는 화합물간의 가교가 제대로 이뤄지지 않으며, 450 ℃를 초과할 경우에는, 코팅액이 열분해되어 N 성분이 기화되어 손실될 수 있다.In the second step, when the preheating temperature is less than 150° C., the solvent or dispersion cannot be completely removed from the coating solution having -Si-N- crystals, and crosslinking between compounds having -Si-N- crystals is not properly performed. It is not made, and when it exceeds 450 °C, the coating liquid is thermally decomposed and the N component may be vaporized and lost.
따라서, 상기 예열 온도는 150 내지 450 ℃이고, 바람직하게는 150 내지 200 ℃이다.Accordingly, the preheating temperature is 150 to 450 °C, preferably 150 to 200 °C.
본 발명에 있어서, 제 3 단계는 상기 제 2 단계에서 수득한 담체를 열처리하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 코팅층을 형성하는 단계이다. 상세하게는, 상기 제2단계에서 제조한, α-알루미나 담체상에 가교된 -Si-N- 결합을 갖는 화합물을 700 내지 1000 ℃로 열분해하여, 상기 화합물의 일부 성분을 SiO2, Si3N4 및 Si2N2O로 변환하고, 상기 변환된 SiO2 및 -Si-N- 결합을 갖는 구조와 α-알루미나 담체를 반응시킴으로써, α-알루미나 담체상에 -Si-N- 결합을 갖는 코팅층을 형성한다.In the present invention, the third step is a step of heat-treating the support obtained in the second step to form a coating layer having -Si-N- bonds on the α-alumina support. Specifically, by thermally decomposing the compound having -Si-N- bonds cross-linked on the α-alumina carrier prepared in the second step at 700 to 1000° C., some components of the compound are SiO 2 , Si 3 N 4 and Si 2 N 2 O, and by reacting the converted SiO 2 and the structure having -Si-N- bonds with the α-alumina carrier, the coating layer having -Si-N- bonds on the α-alumina carrier to form
상기 제 3 단계에서 있어서, 가열 온도가 700 ℃ 미만인 경우, 가교된 -Si-N- 결합을 갖는 화합물이 충분히 열분해되지 않아 코팅층에 담지될 Pd의 안정성을 저하시킬 수 있고, 1000 ℃를 초과할 경우, 고온에서의 열경화로 -Si-N- 결합을 갖는 화합물이 이산화규소로 다량 변환될 수 있고, 열분해로 인해 N 성분이 기화되어 손실됨에 따라, 코팅층 상의 N 함량이 저하되어 코팅층에 담지될 Pd를 균일하게 담지할 수 없고, 입자크기 또한 조절할 수 없다. In the third step, when the heating temperature is less than 700 °C, the compound having a cross-linked -Si-N- bond is not sufficiently thermally decomposed to reduce the stability of Pd to be supported on the coating layer, and when it exceeds 1000 °C , a compound having -Si-N- bonds can be converted to silicon dioxide in large amounts by thermal curing at high temperature, and as the N component is vaporized and lost due to thermal decomposition, the N content on the coating layer is lowered and Pd to be supported on the coating layer cannot be uniformly supported, and the particle size cannot be adjusted.
따라서, 상기 가열온도는 700 내지 1000 ℃이고, 바람직하게는 900 내지 1000 ℃이다.Therefore, the heating temperature is 700 to 1000 ℃, preferably 900 to 1000 ℃.
이러한 열처리 단계에 의해 형성된, 상기 코팅층에 있어서, Si 함량은 2 내지 3 중량%이다. 이는, Si 함량이 2 중량% 미만이면, Si 함량 저하로 인해 코팅층의 표면 및 결합 안정성이 낮아져 Pd의 고정화 능력이 감소될 수 있고, 3 중량%을 초과하는 경우 코팅층이 두꺼워져 담체와 코팅층간의 결합이 약화될 수 있기 때문이다. In the coating layer formed by this heat treatment step, the Si content is 2 to 3 wt%. This means that, when the Si content is less than 2 wt%, the surface and bonding stability of the coating layer may be lowered due to a decrease in the Si content, and thus the immobilization ability of Pd may be reduced. Because it can weaken.
또한, 상기 코팅층의 N은 Si/N 몰비로, 0.9 내지 4로 포함된다. 상기 코팅층에 N이 Si/N 몰비로 0.9 미만일 경우에는 Pd를 안정화 할 수 있는 N의 표면 농도가 적어 Pd의 고정화 능력이 감소될 수 있고, 4를 초과하는 경우 풍부한 N의 표면 농도로 인해 초기 Pd의 분산도 조절에는 우수할 수 있으나, 환원조건에서 코팅층의 낮은 구조 안정성을 야기하여 소결현상을 유도할 수 있어 촉매 내구성을 떨어뜨리는 요인이 될 수 있다. 바람직하게는 N은 Si/N 몰비로, 1.3 내지 3.3으로 포함된다.In addition, N of the coating layer is included in the Si/N molar ratio, 0.9 to 4. When N in the coating layer is less than 0.9 in terms of Si/N molar ratio, the surface concentration of N capable of stabilizing Pd is small, so the immobilization ability of Pd may be reduced, and if it exceeds 4, the initial Pd due to the abundant surface concentration of N Although it can be excellent in controlling the dispersion of the coating layer under reducing conditions, it can induce a sintering phenomenon by causing low structural stability of the coating layer, which can be a factor of lowering the catalyst durability. Preferably, N is included in a Si/N molar ratio of 1.3 to 3.3.
또한, 상기 코팅층의 비표면적은 0.08 내지 0.2 m2/g 으로, α-알루미나 담체의 비표면적(1m2/g) 보다 작아, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 반응용 촉매에 담체로 사용될 경우, 비산화 메탄전환 반응에서의 코크(coke) 생성을 억제하여 촉매의 C-H 활성화 및 생성물로의 선택도를 증가시킬 수 있다. 또한, 선택적 수소화 반응에서는 흡착/탈착을 조절하여 메탄의 비산화 메탄전환에 의해 생성된 에탄, 에틸렌, 아세틸렌, C3-C4 등의 물질 중에서 아세틸렌을 선택적으로 수소화할 수 있다.In addition, the specific surface area of the coating layer is 0.08 to 0.2 m 2 /g, which is smaller than the specific surface area (1 m 2 /g) of the α-alumina carrier. When used, it is possible to suppress coke production in non-oxidative methanation reactions to increase CH activation of the catalyst and selectivity to products. In addition, in the selective hydrogenation reaction, acetylene can be selectively hydrogenated from substances such as ethane, ethylene, acetylene, and C3-C4 generated by non-oxidative methane conversion of methane by controlling adsorption/desorption.
본 발명에 있어서, 제 4 단계는, 상기 제 3 단계에서 수득한 담체에 Pd 전구체를 함침시킨 후 건조 및 열처리하여, 코팅층에 Pd를 담지하는 단계로, 상기 함침은 통상의 방법이면 제한 없이 적용 가능하고, 바람직하게는 초기 함침법(incipient impregnation)일 수 있으며, 상온 ~ 80 ℃ 온도에서 0.1 ~ 10 시간 동안 수행할 수 있다. In the present invention, the fourth step is a step of impregnating the Pd precursor in the carrier obtained in the third step, followed by drying and heat treatment to support Pd on the coating layer, and the impregnation is applicable without limitation if it is a conventional method. And, preferably, it may be an initial impregnation method (incipient impregnation), and may be carried out at room temperature ~ 80 ℃ temperature for 0.1 ~ 10 hours.
상기 제 4 단계에 있어서, 상기 Pd 전구체는 Pd(NO3)2 등의 팔라듐 질화물, PdSO4 등의 팔라듐 황화물; PdCl2 등의 팔라듐 염화물; Pd(OAc)2, Pd(C5H7O2)2, Pd(C2H5CO2)2 등의 팔라듐 산화물; 등일 수 있으며, 이에 제한되지 않는다. In the fourth step, the Pd precursor is palladium nitride such as Pd(NO 3 ) 2 , palladium sulfide such as PdSO 4 ; palladium chlorides such as PdCl 2 ; palladium oxides such as Pd(OAc) 2 , Pd(C 5 H 7 O 2 ) 2 , and Pd(C 2 H 5 CO 2 ) 2 ; and the like, but is not limited thereto.
상기 건조는 함침물에 함유된 용매 등의 불순물을 제거하고, 후술되는 열처리를 원활하게 진행하기 위한 것으로, 용매가 제거될 수 있는 온도 및 시간이면 제한 없이 가능하고, 바람직하게는 80 ℃ ~ 120 ℃로 0.5 시간 ~ 36 시간 동안 수행할 수 있다.The drying is to remove impurities such as a solvent contained in the impregnated material, and to smoothly proceed with the heat treatment to be described later, and it is possible without limitation as long as the temperature and time at which the solvent can be removed, preferably 80 ℃ ~ 120 ℃ It can be carried out for 0.5 to 36 hours.
한편, 이와 같이 건조된 건조물은 공기, 산소 또는 불활성 분위기에서 300 ℃ 내지 1,000 ℃까지 1 ℃/min 이상, 바람직하게는 2 ℃/min ~ 1,000 ℃ /min의 승온 속도로 가열하여 열처리할 수 있다. 상기 열처리 온도가 300 ℃ 미만일 경우에는, 건조물에 잔존하는 불순물 제거가 용이하지 않고, 균일한 촉매를 제조하는데 문제점이 발생될 수 있으며, 1,000 ℃를 초과할 경우에는 뭉쳐짐 현상이 발생되거나, 촉매 활성 성분이 기화하여 손실이 생기는 문제점이 발생될 수 있다.On the other hand, the dried product in this way can be heat-treated by heating at a temperature increase rate of 1 °C/min or more, preferably 2 °C/min to 1,000 °C/min from 300 °C to 1,000 °C in air, oxygen, or an inert atmosphere. When the heat treatment temperature is less than 300 ° C, it is not easy to remove impurities remaining in the dried material, and a problem may occur in preparing a uniform catalyst. There may be a problem in that the component is vaporized and a loss occurs.
이때, 열처리 시간은 충분히 소성될 수 있도록 충분한 시간으로 소성시킬 수 있고, 바람직하게는 0.1 시간 ~ 10 시간 정도일 수 있다.In this case, the heat treatment time may be a sufficient time to be sufficiently fired, and preferably may be about 0.1 to 10 hours.
상기 단계에서 담지된 Pd는 촉매 총 중량에 대하여 0.1 ~ 1 중량%로 포함된다. 팔라듐이 0.1 중량% 미만으로 담지될 때에는 반응물 및 생성물의 흡탈착이 어려워 촉매 활성이 급격히 떨어지고, 1 중량%를 초과할 경우에는 촉매 담체의 활성물질 분산도가 낮아져 표면에 그린오일 및 코크침적을 유도하여 비활성화를 야기하여 팔라듐 함량 대비 반응성이 오히려 낮아지는 문제점이 있다.Pd supported in the above step is included in an amount of 0.1 to 1 wt% based on the total weight of the catalyst. When palladium is supported in an amount of less than 0.1 wt%, adsorption and desorption of reactants and products is difficult, so catalytic activity drops sharply. Therefore, there is a problem in that the reactivity is rather lowered compared to the palladium content by causing inactivation.
또한, 상기 단계에서 담지된 Pd는, 함침 반응 시 Pd 입자가 코팅층의 N과 결합됨에 따라 비교적 균일하게 분산 담지되어, 평균 입자크기가 2 내지 20 nm이고, 최빈값이 7 내지 9 nm이다.In addition, the Pd supported in the above step is dispersed and supported relatively uniformly as the Pd particles are combined with N of the coating layer during the impregnation reaction, so that the average particle size is 2 to 20 nm, and the mode is 7 to 9 nm.
상기 방법으로 제조된 촉매는, 메탄 비산화 메탄전환 및 아세틸렌의 선택적 수소화 반응에서 aromatics의 추가 C-C 커플링 반응성을 낮추어 코크 생성을 억제하고, 흡착 및 탈착 부분 감소로 인해 아세틸렌에 대한 선택적 수소화가 진행되도록 할 수 있다.The catalyst prepared by the above method suppresses coke formation by lowering the additional C-C coupling reactivity of aromatics in non-oxidized methane conversion and selective hydrogenation of acetylene, and selective hydrogenation to acetylene due to reduction of adsorption and desorption portions can do.
본 발명에서는, 이러한 촉매를 이용한, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 방법을 제공한다.The present invention provides a method for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using such a catalyst.
상세하게는, 메탄의 비산화 전환반응을 500 내지 1500 mlgcat -1h-1의 촉매 표면에 대한 WHSV(Weight hourly space velocity)에서 240 내지 2000h-1의 free space에 대한 가스 공간속도로, 900 내지 1020 ℃의 반응 온도로 진행하고, 상기 메탄의 비산화 전환반응 후, 아세틸렌의 선택적 수소화반응을 200 내지 850℃의 온도범위에서 진행할 수 있다.Specifically, the non-oxidative conversion reaction of methane was performed at a weight hourly space velocity (WHSV) for the catalyst surface of 500 to 1500 mlg cat -1 h -1 with a gas space velocity for a free space of 240 to 2000 h -1 , 900 To proceed to a reaction temperature of 1020 ℃, after the non-oxidative conversion of methane, the selective hydrogenation of acetylene may be carried out in a temperature range of 200 to 850 ℃.
메탄의 비산화 전환반응 시, 상기 free space에 대한 가스 공간속도 / 촉매 표면에 대한 WHSV의 비가 0.4 내지 2.0 gcatmL-1 로, 상기 범위를 초과할 경우, free space의 반응성이 높아져, 촉매 표면에서 메탄의 C-H 활성화 효과를 보기가 어렵고, 0.4 미만의 경우, 촉매 표면 반응성이 높아져, 생성물의 수율을 높이는데 문제가 발생된다. In the non-oxidative conversion of methane, the ratio of gas space velocity to the free space / WHSV to the catalyst surface is 0.4 to 2.0 g cat mL -1 , and when it exceeds the above range, the reactivity of the free space increases, and the catalyst surface It is difficult to see the CH activation effect of methane in the case of less than 0.4, the catalyst surface reactivity is increased, a problem occurs in increasing the yield of the product.
아세틸렌의 수소화 반응에서 있어서, 반응온도는 200 내지 850℃로, 200℃ 미만이면, 에틸렌에 대한 선택도가 낮아져 에탄에 대한 선택도가 상대적으로 증가되며, 850℃를 초과할 경우에는 에틸렌의 수소화 반응 또는 아세틸렌의 C-C 결합 및 탈수소화반응을 촉진하여, 결과적으로 에틸렌의 선택도가 낮아짐과 동시에 탄소에 의한 코크스가 발생하여 촉매의 수명에 영향을 주게된다. 바람직하게는 200 내지 300℃로 한다In the hydrogenation reaction of acetylene, the reaction temperature is 200 to 850 °C. If it is less than 200 °C, the selectivity to ethylene is lowered and the selectivity to ethane is relatively increased, and when it exceeds 850 °C, the hydrogenation reaction of ethylene Alternatively, the C-C bond and dehydrogenation reaction of acetylene are promoted, and as a result, the selectivity of ethylene is lowered and coke is generated by carbon, which affects the life of the catalyst. Preferably it is 200-300 degreeC
이하, 본 발명의 보다 구체적인 설명을 위하여 실시예를 들어 설명한다. 그러나 하기 실시예는 본 발명의 바람직한 실시예일 뿐 본 발명이 하기 실시예에 한정되는 것은 아니다.Hereinafter, examples will be given for a more detailed description of the present invention. However, the following examples are only preferred examples of the present invention, and the present invention is not limited thereto.
<실시예><Example>
실시예 1. Pd/PHPS/α-알루미나 촉매Example 1. Pd/PHPS/α-alumina catalyst
퍼하이드로폴리실라잔(Perhydropolysilazane, PHPS)을 디부틸에테르(Dibutylether)에 용해시켜 질량비 10wt%의 폴리실라잔 용액을 제조하였다. 상기 제조된 폴리실라잔 용액에 기공구조를 갖지 않는, BET 비표면적이 1 m2g-1 이하인 α-알루미나 담체를 상온에서 30분간 담가 두었다. Perhydropolysilazane (PHPS) was dissolved in dibutyl ether to prepare a polysilazane solution having a mass ratio of 10 wt%. In the polysilazane solution prepared above, the BET specific surface area, which does not have a pore structure, is 1 m 2 g -1 or less. The α-alumina carrier was soaked at room temperature for 30 minutes.
이후 상기 폴리실라잔 용액으로부터 알루미나 담체를 분리한 후(꺼낸 후), 10 ℃min-1의 속도로 승온시켜 200 ℃에서 1시간 동안 질소 분위기에서 예열처리하였다. 상기 예열처리로 담체 표면에 잔존하는 폴리실라잔은 서로 가교되었다. 상기 담체 표면에 1차적으로 가교된 입자들을 별도의 유지시간 없이(휴지시간 없이) 질소 분위기에서 1 ℃min-1 의 속도로 승온시켜 900℃에서 열처리한 후 냉각하여, PHPS가 α-Al2O3 표면에 코팅된, PHPS/α-Al2O3 입자를 수득하였다. After separating (after taking out) the alumina carrier from the polysilazane solution, the temperature was raised at a rate of 10 °C min -1 and preheated at 200 °C for 1 hour in a nitrogen atmosphere. The polysilazane remaining on the surface of the carrier by the preheat treatment was cross-linked with each other. After heat-treating the particles primarily crosslinked on the surface of the carrier at 900 °C by raising the temperature at a rate of 1 °C min -1 in a nitrogen atmosphere without a separate holding time (without a rest time) Upon cooling, PHPS/α-Al 2 O 3 particles were obtained in which PHPS was coated on the α-Al 2 O 3 surface.
다음으로, 상기 수득된 PHPS/α-Al2O3 입자 10 g을 H2O 100 g에 0.01g의 Pd(NO3)2H2O가 잘 혼합된 용액에 넣고 120rpm 에서 6시간 교반시킨 다음, 60 oC의 진공조건에서 함침법으로 Pd금속을 담지하였다. 수득된 입자들은 110 ℃의 오븐에서 밤새 건조시킨 후, 공기분위기에서 4℃/min의 속도로 550 ℃로 승온하여 550 ℃에서 4시간 동안 소성시켜 0.1Pd/PHPS/알파-알루미나 촉매를 제조하였다.Next, 10 g of the obtained PHPS/α-Al 2 O 3 particles were placed in a solution in which 0.01 g of Pd(NO 3 ) 2H 2 O was well mixed in 100 g of H 2 O and stirred at 120 rpm for 6 hours. Next, Pd metal was supported by an impregnation method in a vacuum condition of 60 o C. The obtained particles were dried in an oven at 110° C. overnight, then heated to 550° C. at a rate of 4° C./min in an air atmosphere and calcined at 550° C. for 4 hours to prepare a 0.1Pd/PHPS/alpha-alumina catalyst.
비교예 1. PHPS/Pd/α-알루미나Comparative Example 1. PHPS/Pd/α-alumina
도 1 (b)는 비교예 1, PHPS/Pd/α-Al2O3 촉매의 제조과정을 도시화 한 것이다. 비교예 1은 먼저, 기공구조를 갖지 않는 1 m2g-1 이하의 α-알루미나 지지체 10g을 H2O 100 g에 0.01g의 Pd(NO3)2·2H2O가 잘 혼합된 용액에 넣고 120rpm 에서 6시간 교반시킨 다음, 60℃의 진공 조건에서 함침방법으로 Pd금속을 담지하였다. 수득된 입자들은 110 ℃의 오븐에서 밤새 건조시킨 후, 공기분위기, 4℃/min의 속도로 550 ℃로 승온하여, 550 ℃에서 4시간 동안 소성시켰다. FIG. 1 (b) illustrates the preparation process of Comparative Example 1, the PHPS/Pd/α-Al 2 O 3 catalyst. In Comparative Example 1, 10 g of an α-alumina support of 1 m 2 g -1 or less having no pore structure was mixed with 100 g of H 2 O and 0.01 g of Pd(NO 3 ) 2 .2H 2 O in a well-mixed solution. Then, the mixture was stirred at 120 rpm for 6 hours, and then Pd metal was supported by an impregnation method under vacuum conditions at 60°C. The obtained particles were dried overnight in an oven at 110° C., then heated to 550° C. in an air atmosphere at a rate of 4° C./min, and calcined at 550° C. for 4 hours.
소성된 입자들은 상온에서 30분간 10wt%의 폴리실라잔 용액에 담가 두었다. 이후 입자만을 폴리실라잔 용액에서 수득하고 질소 분위기에서 10 ℃min-1의 속도로 승온시켜 200 ℃에서 1시간 동안 예열처리하였다. 표면에 1차적으로 가교된 입자들을 별도의 유지시간 없이 1 ℃min-1 의 속도로 승온시켜 900℃에서 열처리한 후 냉각하여, PHPS/Pd/α-Al2O3 촉매를 제조하였다.The calcined particles were immersed in a 10 wt% polysilazane solution at room temperature for 30 minutes. After that, only particles were obtained from the polysilazane solution, and the temperature was raised at a rate of 10 ℃ min -1 in a nitrogen atmosphere, followed by preheating at 200 ° C. for 1 hour. The particles that are primarily crosslinked on the surface are removed at a rate of 1 ℃min -1 without a separate holding time. After heat treatment at 900℃ by raising the temperature After cooling, a PHPS/Pd/α-Al 2 O 3 catalyst was prepared.
비교예 2. Pd/α-알루미나 촉매Comparative Example 2. Pd/α-alumina catalyst
도 1 (c)는 비교예 2, Pd/α-Al2O3 촉매의 제조과정을 도시화 한 것이다. Figure 1 (c) is a diagram illustrating the manufacturing process of Comparative Example 2, Pd/α-Al 2 O 3 catalyst.
이를 참고하여 설명하면, 기공 구조를 갖지 않는 1 m2g-1 이하의 α-알루미나 지지체 10g을 H20 100g에 0.01g의 Pd(NO3)2·2H2O가 잘 혼합된 용액에 넣고 120rpm에서 6시간 교반시킨 다음, 60℃의 진공 조건에서 함침법으로 Pd 금속을 담지하였다.Referring to this, 10 g of an α-alumina support of 1 m 2 g -1 or less having no pore structure is added to a solution in which 0.01 g of Pd(NO 3 ) 2 .2H 2 O is well mixed in 100 g of H 2 0. After stirring at 120 rpm for 6 hours, Pd metal was supported by an impregnation method under vacuum conditions at 60°C.
수득된 입자들은 110℃의 오븐에서 밤새 건조시킨 후, 공기 분위기에서 550℃(4℃/min)에서 4시간 동안 소성시켰다. 이에 따라, Pd/α-Al2O3 촉매를 제조하였다.The obtained particles were dried in an oven at 110° C. overnight, and then calcined at 550° C. (4° C./min) for 4 hours in an air atmosphere. Accordingly, a Pd/α-Al 2 O 3 catalyst was prepared.
실험예 1. 촉매 분석Experimental Example 1. Catalyst Analysis
(1) PHPS/α-Al2O3의 예열 온도에 따른, SEM-EDS 및 ICP 분석(1) SEM-EDS and ICP analysis according to the preheating temperature of PHPS/α-Al 2 O 3
상기 실시예 1의 촉매제조에 있어서, α-Al2O3 담체 표면에 잔존하는 폴리실라잔의 적정 가교 온도, 즉 예열 온도 범위를 알아보기 위하여, 예열 온도를 200 내지 500℃로 달리하여, PHPS/α-Al2O3볼(1㎜)를 제조한 후, 표면 형상과 성분을 SEM-EDS 및 ICP로 분석하여 도 2 및 표 1에 나타내었다.In the preparation of the catalyst of Example 1, in order to determine the appropriate crosslinking temperature of polysilazane remaining on the surface of the α-Al 2 O 3 support, that is, the preheating temperature range, the preheating temperature was changed to 200 to 500° C., and PHPS After preparing /α-Al 2 O 3 balls (1 mm), the surface shape and components were analyzed by SEM-EDS and ICP, and are shown in FIG. 2 and Table 1.
예열온도(℃)Preheating temperature (℃) 세기 성질 (bulk property)bulk property
Si 함량(Wt%)Si content (Wt%) N : Si 비율N:Si ratio
200200 2.32.3 3.343.34
250250 2.72.7 1.301.30
300300 2.52.5 1.061.06
500500 2.42.4 0.760.76
표 1에 있어서, Si 함량은 PHPS/α-Al2O3 를 ICP(Inductively Coupled Plasma Spectrometer)로 분석하여 나타낸 것으로서, 예열온도가 500 ℃까지 증가되어도, α-Al2O3 담체상에 코팅된 PHPS의 Si 담지량은 2.3 내지 2.7wt%로 유지됨을 알 수 있다.In Table 1, the Si content is shown by analyzing PHPS/α-Al 2 O 3 by ICP (Inductively Coupled Plasma Spectrometer). Even when the preheating temperature is increased to 500 ° C., the α-Al 2 O 3 coated on the carrier It can be seen that the Si loading amount of PHPS is maintained at 2.3 to 2.7 wt%.
또한, 도 2의 SEM 사진은 예열온도별 표면 형상을 나타낸 것으로, 예열온도가 500℃까지 증가될 경우, 일부 표면의 거칠기가 변화되긴 하나, 균열이 크게 발생되지 않으며, PHPS가 비표면적이 거의 없는 α-Al2O3에 안정적으로 코팅됨을 확인할 수 있다. 이는, PHPS의 고분자 구조가 고온에서 예열되어, 가교로 인한 변형이 생성되더라도 α-Al2O3 와의 상호작용으로 인해 박리가 이루어지지 않음을 의미한다.In addition, the SEM photograph of FIG. 2 shows the surface shape for each preheating temperature. When the preheating temperature is increased to 500°C, although the roughness of some surfaces is changed, cracks do not occur significantly, and the PHPS has almost no specific surface area. It can be seen that the coating is stably coated on α-Al 2 O 3 . This means that even if the polymer structure of PHPS is preheated at a high temperature and deformation due to crosslinking is generated, peeling is not performed due to the interaction with α-Al 2 O 3 .
또한, 표 1에 있어서, SEM-EDS로 분석된 N : Si 의 비는 예열 온도가 증가됨에 따라, 3.34에서 0.76으로 감소됨을 확인할 수 있다. 이는, 표면에 코팅된 PHPS가 부분적으로 열분해되면서 N이 기화되어 손실됨에 기인하며, Pd의 표면분산도가 N에 영향을 받을 수 있으므로, 금속 분산도 측면에서, PHPS는 200℃에서 예열 및 가교되는 것이 바람직하다.In addition, in Table 1, it can be seen that the ratio of N:Si analyzed by SEM-EDS decreases from 3.34 to 0.76 as the preheating temperature increases. This is due to the loss of N by vaporization as the PHPS coated on the surface is partially thermally decomposed, and since the surface dispersion of Pd may be affected by N, in terms of metal dispersion, PHPS is preheated and crosslinked at 200 it is preferable
(2) TEM 분석(2) TEM analysis
상기 제조한 실시예1, 비교예 1 및 비교예 2 각각에 대하여, TEM 분석을 실시하여, 도 3에 나타내었다.TEM analysis was performed on each of the prepared Examples 1, Comparative Example 1, and Comparative Example 2, and is shown in FIG. 3 .
도 3(a)는 PHPS를 α-Al2O3 담체에 코팅한 경우(실시예 1)로, 900℃의 고온 열처리에 의해 제조되었음에도 비표면적이 1m2/g이하인 PHPS/α-Al2O3 담체 표면에서 Pd 입자가 안정하게 유지되며, 비교적 균일하게 분산되어 있음을 확인할 수 있다. 이는, PHPS의 N 기가 Pd의 분산도 및 열적 안정성을 향상시키기 때문이다.Figure 3 (a) is a case where PHPS is coated on an α-Al 2 O 3 carrier (Example 1), PHPS/α-Al 2 O having a specific surface area of 1 m 2 /g or less even though it was prepared by high-temperature heat treatment at 900 ° C. 3 It can be seen that the Pd particles are stably maintained on the surface of the carrier and are relatively uniformly dispersed. This is because the N group of PHPS improves the dispersibility and thermal stability of Pd.
반면, 도 3(b)는 α-Al2O3 담체에 Pd를 담지한 후, PHPS를 코팅한 경우(비교예 1)로, 900℃의 고온 열처리에 의해 제조되었음에도 Pd 입자가 담체에 비교적 균일하게 담지되어 있기는 하나, 실시예 1에 비해 Pd 입자 분산도가 감소되어, 담체 상의 Pd 입자 균일도가 감소됨을 확인할 수 있다.On the other hand, FIG. 3(b) shows a case where Pd was supported on an α-Al 2 O 3 carrier and then PHPS was coated (Comparative Example 1). Even though it was prepared by high-temperature heat treatment at 900° C., Pd particles were relatively uniform on the carrier. Although it is supported, it can be seen that the dispersion of Pd particles is reduced compared to Example 1, and thus the uniformity of Pd particles on the carrier is reduced.
또한, 도 3(c)는 α-Al2O3 담체에 Pd를 담지한 후 공기분위기에서 550℃ 소성만 진행하였음에도 (비교예 2), Pd 입자크기가 10 nm 이상임을 확인할 수 있고 일부 Pd 입자는 100 nm 이상을 나타냄을 확인할 수 있다.In addition, FIG. 3(c) shows that Pd was supported on the α-Al 2 O 3 carrier and only calcined at 550° C. in an air atmosphere (Comparative Example 2), it could be confirmed that the Pd particle size was 10 nm or more, and some Pd particles It can be confirmed that represents 100 nm or more.
(3) Pd 입자크기 분석(3) Pd particle size analysis
상기 TEM 분석 시, 실시예1 및 비교예 1에 대한 Pd 입자크기를 분석하여, 도 4 그래프로 나타내었다.During the TEM analysis, the Pd particle size for Example 1 and Comparative Example 1 was analyzed, and it is shown in the graph of FIG. 4 .
도 4는 상기 촉매의 구성에 따른 Pd 입자의 균일성을 나타낸 그래프로, Pd/PHPS/α-Al2O3 (실시예 1)는 대부분 5 내지 10 nm 범위에서 Pd 입자를 나타내어 비교적 균일한 입자크기를 가지는 반면, PHPS/Pd/α-Al2O3 (비교예 1)는 5 내지 45 nm로 넓은 범위의 Pd 입자 크기를 가짐을 확인할 수 있다.4 is a graph showing the uniformity of Pd particles according to the composition of the catalyst. Pd/PHPS/α-Al 2 O 3 (Example 1) mostly exhibits Pd particles in the range of 5 to 10 nm, so relatively uniform particles While having a size, it can be seen that PHPS/Pd/α-Al 2 O 3 (Comparative Example 1) has a Pd particle size in a wide range of 5 to 45 nm.
또한, 실시예 1의 Pd 입자는 8 nm에서 최빈값을 나타내는 반면, 비교예 1은 6 nm에서 최빈값을 가짐을 확인할 수 있다.In addition, it can be seen that the Pd particles of Example 1 exhibited a mode at 8 nm, while Comparative Example 1 had a mode at 6 nm.
2. 촉매활성 분석(메탄의 비산화 전환반응 및 수소화반응)2. Catalytic activity analysis (non-oxidative conversion and hydrogenation of methane)
(1) 메탄의 비산화 전환반응(1) Non-oxidative conversion of methane
상기 실시예 1 및 비교예 2에서 제조된 425 ~ 850 ㎛ 크기의 촉매성형체 0.6g을 석영관 반응기(내경: 7mm, 높이 150 mm) 안에 충진시켰다. 1020 ℃에서 헬륨 분위기로 30분 동안 전처리한 다음, 메탄 및 아르콘을 90 : 10의 부피비로 공급하여 메탄의 비산화 전환반응을 실시하였다. 이때, 촉매의 표면에 대한 WHSV(Weight hourly space velocity)는 500 내지 1500 mlgcat -1h-1이고, free space에 대한 가스 공간속도 (Space velocity for free space(h-1))는 249 내지 2000h-1이며, 반응 압력(Ptotal)은 1 bar이며, 메탄 압력(PCH4)은 0.9bar로 수행하였다. 0.6 g of the catalyst molded body having a size of 425 to 850 μm prepared in Example 1 and Comparative Example 2 was filled in a quartz tube reactor (inner diameter: 7 mm, height 150 mm). After pretreatment in a helium atmosphere at 1020 °C for 30 minutes, methane and arcon were supplied in a volume ratio of 90:10 to carry out a non-oxidative conversion reaction of methane. At this time, the weight hourly space velocity (WHSV) for the surface of the catalyst is 500 to 1500 mlg cat -1 h -1 , and the gas space velocity for the free space (Space velocity for free space (h -1 )) is 249 to 2000h -1 , the reaction pressure (P total ) was 1 bar, and the methane pressure (P CH4 ) was 0.9 bar.
반응수행 후 수득된 기상의 탄화수소는 YL Instrument 사의 Series 6500의 GC를 사용하여 분석하였다. 기체 상태의 생성물은 ShinCarbon ST 컬럼에 연결된 Thermal conductivity detector(TCD)와 Rt-alumina BOND, Rtx-VMS 컬럼이 각각 연결된 2개의 Flame ionization detector(FID) detector로 분석하였다.Hydrocarbons in the gaseous phase obtained after the reaction were analyzed using a GC of YL Instrument's Series 6500. The gaseous product was analyzed with a thermal conductivity detector (TCD) connected to a ShinCarbon ST column and two flame ionization detectors (FID) detectors connected to Rt-alumina BOND and Rtx-VMS columns, respectively.
H2, CH4, Ar, O2, CO, CO2는 ShinCarbon ST 컬럼에서 분리되어 TCD로 검출하였으며, internal standard인 Ar 넓이 대비 CH4의 넓이로 전환율을 계산하였다. C1 내지 C6 범위의 light hydrocarbon은 Rt-alumina BOND 칼럼으로 분리하여 FID로 검출하였고, 아로마틱 화합물은 RTx-VMS 칼럼으로 분리하여 FID로 검출하였다. 모든 가스는 표준시료를 사용하여 정량을 진행하였다. 코크스 선택도는 [Scoke = 100 - Σ생성물 선택도]를 통하여 계산하였다. 각 촉매의 정상상태에서의 메탄 전환율 및 생성물 선택도에 대한 결과를 표 2 에 나타내었다H 2 , CH 4 , Ar, O 2 , CO, CO 2 were separated on a ShinCarbon ST column and detected by TCD, and the conversion rate was calculated based on the area of CH 4 compared to the area of Ar, which is an internal standard. Light hydrocarbons in the range of C1 to C6 were separated by Rt-alumina BOND column and detected by FID, and aromatic compounds were separated by RTx-VMS column and detected by FID. All gases were quantified using standard samples. The coke selectivity was calculated through [S coke = 100 - Σ product selectivity]. Table 2 shows the results for the methane conversion rate and product selectivity of each catalyst at steady state.
실시예 1Example 1 비교예 2Comparative Example 2
Space velocity for free space(h-1)Space velocity for free space(h -1 ) 20002000 746746 498498 249249 20002000 746746 498498 249249
WHSV for catalytic surface(mlgcat -1h-1)WHSV for catalytic surface(mlg cat -1 h -1 ) 995995 15001500 10001000 500500 995995 15001500 10001000 500500
전환율conversion rate 1.61.6 4.24.2 6.56.5 12.512.5 2.72.7 4.14.1 5.95.9 11.911.9
선택도selectivity 에탄ethane 13.413.4 6.76.7 3.53.5 1.91.9 12.212.2 7.37.3 4.94.9 1.81.8
에틸렌ethylene 40.840.8 34.634.6 28.228.2 23.223.2 41.741.7 35.835.8 31.831.8 24.024.0
아세틸렌acetylene 9.89.8 15.015.0 16.016.0 15.215.2 9.19.1 10.510.5 13.213.2 13.813.8
C3-C4C3-C4 23.723.7 21.821.8 16.016.0 8.08.0 18.418.4 17.817.8 16.316.3 8.38.3
벤젠benzene 4.14.1 7.17.1 11.211.2 19.219.2 2.02.0 3.73.7 7.37.3 15.615.6
나프탈렌naphthalene 0.60.6 1.51.5 3.23.2 6.56.5 0.20.2 0.50.5 1.41.4 4.44.4
알킬아로마틱스Alkyl Aromatics 2.72.7 5.75.7 9.69.6 12.612.6 1.61.6 2.22.2 4.04.0 5.05.0
코크(Coke)Coke 4.94.9 7.67.6 12.312.3 13.413.4 14.814.8 22.222.2 21.121.1 27.127.1
표 2로 부터, 실시예 1의 촉매가 비교예 2의 촉매 보다 동일 반응조건에서 코크 선택도가 상대적으로 낮음을 확인할 수 있다. 이는, PHPS에 의해 사이즈가 조절된 Pd입자가 aromatics의 추가 C-C 커플링 반응성을 낮추는데 효과가 있음을 의미한다.From Table 2, it can be seen that the catalyst of Example 1 has relatively lower coke selectivity than the catalyst of Comparative Example 2 under the same reaction conditions. This means that Pd particles whose size is adjusted by PHPS are effective in lowering the additional C-C coupling reactivity of aromatics.
또한, 표 2로부터, 촉매의 표면에 대한 WHSV(Weight hourly space velocity)는 995 mlgcat -1h-1이고, free space에 대한 가스 공간속도 (Space velocity for free space(h-1))는 2000h-1인 경우, 가장 낮은 코크 선택도를 가짐을 확인할 수 있다. In addition, from Table 2, the weight hourly space velocity (WHSV) for the surface of the catalyst is 995 mlg cat -1 h -1 , and the gas space velocity for the free space (Space velocity for free space (h -1 )) is 2000h When it is -1 , it can be confirmed that it has the lowest coke selectivity.
또한, 표 2로부터, 촉매의 표면에 대한 WHSV(Weight hourly space velocity)는 500 mlgcat -1h-1이고, free space에 대한 가스 공간속도 (Space velocity for free space(h-1))는 249h-1인 경우, 가장 높은 탄화수소로의 수율(전환율)을 나타냄을 확인할 수 있다. In addition, from Table 2, the weight hourly space velocity (WHSV) for the surface of the catalyst is 500 mlg cat -1 h -1 , and the gas space velocity for the free space (Space velocity for free space (h -1 )) is 249h When it is -1 , it can be confirmed that it represents the highest yield (conversion rate) to hydrocarbons.
(2) 아세틸렌의 선택적 수소화반응(2) Selective hydrogenation of acetylene
상기 메탄전환반응에 의해 제조된 물질에 대하여, 상기 제조된 실시예1, 비교예 1 및 2 촉매를 이용하여 아세틸렌의 수소화 반응을 실시하여 촉매 성능을 확인하였다. 실험에 사용된 반응기는 충진층 반응기(fixed-bed reactor)로, 내부지름이 7 mm인 석영 재질의 관형 반응기를 총 150 mm 높이의 heating zone을 갖는 furnace에 설치하였다. 제조된 촉매는 425 ~ 850 ㎛ 크기로 분쇄하여 0.3g 석영관 반응기 안에 충진시켰다. 이후, 반응 조건에서 아세틸렌이 함유된 반응물을 mass flow controllers를 사용하여 100 내지 850 ℃에서 80 sccm으로 공급하였다(반응물 조성: H2/C2H2=1.He/(H2+C2H2)=3). With respect to the material prepared by the methane conversion reaction, acetylene hydrogenation reaction was carried out using the prepared catalysts of Examples 1 and Comparative Examples 1 and 2 to confirm catalyst performance. The reactor used in the experiment was a fixed-bed reactor, and a quartz tubular reactor with an inner diameter of 7 mm was installed in a furnace having a heating zone with a total height of 150 mm. The prepared catalyst was pulverized to a size of 425 ~ 850 μm and filled in a 0.3g quartz tube reactor. Then, under the reaction conditions, the reactant containing acetylene was supplied at 100 to 850 °C at 80 sccm using mass flow controllers (reactant composition: H 2 /C 2 H 2 =1.He/(H 2 +C 2 H) 2 )=3).
이후 수득된 생성물의 기상의 탄화수소는 YL Instrument 사의 Series 6500의 GC를 사용하여 분석하였고, 기체 상태의 생성물은 ShinCarbon ST 컬럼에 연결된 Thermal conductivity detector(TCD)와 Rt-alumina BOND, RTx-VMS 컬럼이 각각 연결된 2개의 Flame ionization detector(FID) detector로 분석하였다.The gaseous hydrocarbons of the obtained product were analyzed using a GC of Series 6500 of YL Instrument, and the gaseous product was analyzed using a thermal conductivity detector (TCD) connected to a ShinCarbon ST column, Rt-alumina BOND, and RTx-VMS columns, respectively. Analysis was performed with two connected flame ionization detectors (FID) detectors.
C2H2, CH4 및 Ar은 ShinCarbon ST 컬럼에서 분리되어 TCD로 검출하였으며, internal standard인 Ar 넓이 대비 아세틸렌의 넓이로 전환율을 계산하였다. C1 내지 C5 범위의 light hydrocarbon과 벤젠은 Rt-alumina BOND 컬럼으로 분리하여 FID로 검출하였고, 벤젠을 포함한 아로마틱 화합물은 RTx-VMS 컬럼으로 분리하여 FID로 검출하였다. 모든 가스는 표준시료를 사용하여 정량을 진행하였다. 그린오일과 코크스를 포함한 others 선택도는 [Sothers = 100 - Σ생성물 선택도]를 통하여 계산하였다. C 2 H 2 , CH 4 and Ar were separated on a ShinCarbon ST column and detected by TCD, and the conversion rate was calculated using the area of acetylene compared to the area of Ar, which is an internal standard. Light hydrocarbons and benzene in the range of C1 to C5 were separated by Rt-alumina BOND column and detected by FID, and aromatic compounds including benzene were separated by RTx-VMS column and detected by FID. All gases were quantified using standard samples. Selectivity for others including green oil and coke was calculated through [S others = 100 - Σ product selectivity].
상기와 같이 실시된 각 촉매에 의한 아세틸렌의 선택적 수소화반응에 따른, 전환율 및 생성물 선택도에 대한 결과를 표 3에 나타내었다.Table 3 shows the results of conversion and product selectivity according to the selective hydrogenation of acetylene by each catalyst carried out as described above.
촉매catalyst 반응
온도
(℃)
reaction
temperature
(℃)
전환율
(%)
conversion rate
(%)
선택도selectivity 에틸렌/에탄 비율Ethylene/ethane ratio
메탄methane 에탄ethane 에틸렌ethylene C3-C4C3-C4 벤젠benzene othersothers
실시예 1Example 1 100100 99.999.9 00 12.612.6 70.770.7 16.216.2 00 0.50.5 5.65.6
비교예 1Comparative Example 1 3.53.5 00 8.38.3 59.759.7 5.85.8 00 26.226.2 7.27.2
비교예 2Comparative Example 2 57.457.4 00 9.49.4 80.480.4 10.110.1 00 0.10.1 8.68.6
실시예 1Example 1 200200 99.999.9 00 7.07.0 90.390.3 2.72.7 00 00 12.912.9
비교예 1Comparative Example 1 31.431.4 00 5.45.4 88.688.6 6.06.0 00 00 16.416.4
비교예 2Comparative Example 2 98.498.4 00 12.112.1 85.685.6 2.32.3 00 00 7.17.1
실시예 1Example 1 290290 81.981.9 00 5.05.0 91.991.9 2.92.9 00 0.20.2 18.418.4
비교예 1Comparative Example 1 10.410.4 00 4.14.1 93.893.8 2.12.1 00 00 22.922.9
비교예 2Comparative Example 2 19.519.5 00 4.74.7 92.392.3 3.03.0 00 00 19.619.6
실시예 1Example 1 850850 10.910.9 31.131.1 15.515.5 48.148.1 5.05.0 0.30.3 00 3.13.1
비교예 1Comparative Example 1 6.76.7 33.533.5 16.716.7 44.344.3 5.55.5 00 00 2.72.7
비교예 2Comparative Example 2 10.510.5 43.843.8 0.70.7 47.947.9 7.07.0 0.60.6 00 68.468.4
표 3을 통해, 실시예 1의 촉매는 비교예 1 및 2의 촉매 보다 100 내지 850 ℃범위에서 우수한 아세틸렌 전환 반응성을 나타냄을 알 수 있고, 특히, 290 ℃에서 에틸렌/에탄의 비가 최대가 됨을 확인할 수 있다. From Table 3, it can be seen that the catalyst of Example 1 exhibits excellent acetylene conversion reactivity in the range of 100 to 850 ° C. than the catalysts of Comparative Examples 1 and 2, and in particular, it can be confirmed that the ratio of ethylene / ethane is the maximum at 290 ° C. can

Claims (11)

  1. 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매에 있어서,In the catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene,
    상기 촉매는 α-알루미나 촉매 담체;The catalyst includes an α-alumina catalyst carrier;
    상기 촉매 담체 상에 가교된 -Si-N- 결합을 포함하는 코팅층; 및a coating layer comprising -Si-N- bonds cross-linked on the catalyst carrier; and
    상기 코팅층상에 분산되어 담지된 팔라듐;을 포함하는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매.Palladium dispersed and supported on the coating layer; Catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, characterized in that it comprises.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 촉매 담체 상에 가교된 -Si-N- 결합을 포함하는 코팅층의 비표면적은 0.08 ~ 0.2 m2/g 이고, 담지된 팔라듐의 평균 입자크기는 2 내지 20 nm 인 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매.The specific surface area of the coating layer including the -Si-N- bond crosslinked on the catalyst carrier is 0.08 to 0.2 m 2 /g, and the average particle size of the supported palladium is 2 to 20 nm. Catalyst for non-oxidative methane conversion and selective hydrogenation of acetylene.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 담지된 팔라듐의 입자크기 최빈값은 7 내지 9 nm 인 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매.A catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, characterized in that the particle size mode of the supported palladium is 7 to 9 nm.
  4. α-알루미나 담체에 -Si-N- 결합을 갖는 화합물로 코팅하는 제1단계;A first step of coating the α-alumina carrier with a compound having a -Si-N- bond;
    상기 제1단계에서 수득한 담체를 예열하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 화합물을 가교시키는 제2단계;a second step of preheating the carrier obtained in the first step to crosslink the compound having -Si-N- bonds on the α-alumina carrier;
    상기 제2단계에서 수득한 담체를 열처리하여, α-알루미나 담체상에 -Si-N- 결합을 갖는 코팅층을 형성하는 제3단계; 및a third step of heat-treating the carrier obtained in the second step to form a coating layer having -Si-N- bonds on the α-alumina carrier; and
    상기 제3단계에서 수득한 담체에 Pd 전구체를 함침하는 제4단계; 를 포함하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매의 제조방법.a fourth step of impregnating the Pd precursor into the carrier obtained in the third step; A method for preparing a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, comprising a.
  5. 제 4 항에 있어서,5. The method of claim 4,
    상기 -Si-N- 결합을 갖는 화합물은, 퍼하이드로폴리실라잔(Perhydropolysilazane. PHPS)으로 이루어지는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매의 제조방법.The compound having the -Si-N- bond is a method for producing a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, characterized in that it consists of perhydropolysilazane (PHPS).
  6. 제 4 항에 있어서,5. The method of claim 4,
    상기 제2단계에서의 예열은 150 내지 450 ℃에서 이루어지는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매의 제조방법.Preheating in the second step is a method for producing a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, characterized in that it is made at 150 to 450 ℃.
  7. 제 4 항에 있어서,5. The method of claim 4,
    상기 제3단계의 열처리는 700℃ 내지 1000℃에서 이루어지는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매의 제조방법.Method for preparing a catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, characterized in that the heat treatment of the third step is performed at 700° C. to 1000° C.
  8. 제 4 항에 있어서,5. The method of claim 4,
    상기 제4단계는 제3단계에서 수득한 담체에 Pd 전구체를 함침시킨 후, 80 내지 120℃에서 건조한 후, 300 내지 1000℃로 열처리하여, 코팅층에 Pd를 담지하는 것을 특징으로 하는, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매의 제조방법.In the fourth step, the carrier obtained in the third step is impregnated with a Pd precursor, dried at 80 to 120° C., and then heat treated at 300 to 1000° C., characterized in that the Pd is supported on the coating layer, the ratio of methane A method for preparing a catalyst for oxidative methane conversion and selective hydrogenation of acetylene.
  9. 제 4 항 내지 제 8 항 중 어느 한 항의 제조방법으로 제조된, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화용 촉매.A catalyst for non-oxidative methane conversion of methane and selective hydrogenation of acetylene, prepared by the method of any one of claims 4 to 8.
  10. 제 1 항 내지 제 3 항 중 어느 한 항의 촉매를 사용한, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 방법.A method for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using the catalyst of any one of claims 1 to 3.
  11. 제 9 항의 촉매를 사용한, 메탄의 비산화 메탄전환 및 아세틸렌의 선택적 수소화 방법.A process for non-oxidative methane conversion of methane and selective hydrogenation of acetylene using the catalyst of claim 9.
PCT/KR2021/010876 2020-10-15 2021-08-17 Catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and production method therefor WO2022080643A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0133566 2020-10-15
KR1020200133566A KR20220049888A (en) 2020-10-15 2020-10-15 Catalyst for non-oxidative methane conversion and selective hydrogenation of acethylene and method for preparing the same

Publications (1)

Publication Number Publication Date
WO2022080643A1 true WO2022080643A1 (en) 2022-04-21

Family

ID=81208294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/010876 WO2022080643A1 (en) 2020-10-15 2021-08-17 Catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and production method therefor

Country Status (2)

Country Link
KR (1) KR20220049888A (en)
WO (1) WO2022080643A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007056A (en) * 2003-06-04 2006-01-23 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Selective hydrogenation process and catalyst therefor
KR20100041714A (en) * 2007-05-31 2010-04-22 쉬드-케미아크티엔게젤샤프트 Catalyst for the selective hydrogenation of acetylenic hydrocarbons and method for producing said catalyst
KR20110110350A (en) * 2009-01-29 2011-10-06 더블유.알. 그레이스 앤드 캄파니-콘. Catalyst on silica clad alumina support

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4387258A (en) 1981-01-28 1983-06-07 Exxon Research & Engineering Co. Selective hydrogenation using palladium/platinum on crystalline silica polymorph/silicalite/high silica zeolite
KR900001368B1 (en) 1987-03-11 1990-03-09 한국과학 기술원 Preparation method of the pd catalyst
KR20140058145A (en) 2012-11-06 2014-05-14 주식회사 포스코 Method for manufacturing mold powder and method for the continuous casting of ferritic stainless steel using the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060007056A (en) * 2003-06-04 2006-01-23 존슨 맛쎄이 퍼블릭 리미티드 컴파니 Selective hydrogenation process and catalyst therefor
KR20100041714A (en) * 2007-05-31 2010-04-22 쉬드-케미아크티엔게젤샤프트 Catalyst for the selective hydrogenation of acetylenic hydrocarbons and method for producing said catalyst
KR20110110350A (en) * 2009-01-29 2011-10-06 더블유.알. 그레이스 앤드 캄파니-콘. Catalyst on silica clad alumina support

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NIIZEKI TOMOTAKE, NAGAYAMA SACHIKO, HASEGAWA YOSHIO, MIYATA NOBORU, SAHARA MASAE, AKUTSU KAZUHIRO: "Structural Study of Silica Coating Thin Layers Prepared from Perhydropolysilazane: Substrate Dependence and Water Penetration Structure", COATINGS, vol. 6, no. 4, pages 64, XP055922156, DOI: 10.3390/coatings6040064 *
THOMAS KONEGGER; ROBERT POTZMANN; MICHAEL PUCHBERGER; ANTJE LIERSCH;: "Matrixfiller interactions in polysilazane-derived ceramics with AlOand ZrOfillers", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, ELSEVIER, AMSTERDAM, NL, vol. 31, no. 15, 10 July 2011 (2011-07-10), AMSTERDAM, NL, pages 3021 - 3031, XP028284138, ISSN: 0955-2219, DOI: 10.1016/j.jeurceramsoc.2011.07.015 *

Also Published As

Publication number Publication date
KR20220049888A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
KR100850271B1 (en) Process for producing aromatic hydrocarbon and hydrogen
WO2014092278A1 (en) Process for preparing fisher-tropsch catalyst
KR100199684B1 (en) Process for the production of mono-olefins
RU2351394C2 (en) Method for making noble-metal catalyst, and application thereof
WO2013133651A1 (en) Catalyst activation method for fischer-tropsch synthesis
WO2015183059A1 (en) Method for preparing fischer-tropsch catalyst having improved activity and lifespan properties
KR20110038178A (en) Highly porous foam ceramics as catalyst carriers for the dehydrogenation of alkanes
WO2022098009A1 (en) Dehydrogenation catalyst for preparing olefin from alkane gas and method for producing same
WO2022080643A1 (en) Catalyst for non-oxidative conversion of methane and selective hydrogenation of acetylene and production method therefor
WO2014129722A1 (en) Cobalt catalyst for fischer-tropsch synthesis, production method and method for producing liquid hydrocarbon using same
CN114471540A (en) Sub-nano Pt selective hydrogenation catalyst, preparation method and application thereof
WO2019146879A1 (en) Catalyst for nonoxidative direct conversion of methane, and methane conversion method using same
CZ277695A3 (en) Conversion process of liquid hydrocarbons
Aboul-Gheit et al. Effect of combining the metals of group VI supported on H-ZSM-5 zeolite as catalysts for non-oxidative conversion of natural gas to petrochemicals
WO2021206356A1 (en) Method for manufacturing metal catalyst having inorganic film deposited thereon by means of ald process into which maintenance step is introduced, and metal catalyst manufactured thereby
WO2019156275A1 (en) Lignin decomposition catalyst and lignin decomposition method using same
WO2020091227A1 (en) Catalyst for non-oxidative direct conversion of methane and preparation method for same
WO2022225200A1 (en) Heterometallic catalyst for non-oxidative direct conversion of methane and method for preparing same
JP4677194B2 (en) Method for converting lower hydrocarbons using catalysts
WO2018225951A1 (en) Olefin preparation method comprising reduction pretreatment
WO2022080638A1 (en) Method for non-oxidative direct conversion of methane
WO2021071100A1 (en) Catalyst for selective hydrogenation of acetylene and method for producing same
EA006849B1 (en) Method for obtaining synthesis gas by catalytic oxidation
CN116060037A (en) Supported NiPd/alumina catalyst and preparation method and application thereof
US9114387B2 (en) Method of preparing multicomponent metal-hybrid co-gasification, and multicomponent metal-hybrid nanocomposite prepared thereby

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21880292

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21880292

Country of ref document: EP

Kind code of ref document: A1