WO2022078343A1 - 调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质 - Google Patents

调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质 Download PDF

Info

Publication number
WO2022078343A1
WO2022078343A1 PCT/CN2021/123336 CN2021123336W WO2022078343A1 WO 2022078343 A1 WO2022078343 A1 WO 2022078343A1 CN 2021123336 W CN2021123336 W CN 2021123336W WO 2022078343 A1 WO2022078343 A1 WO 2022078343A1
Authority
WO
WIPO (PCT)
Prior art keywords
modulation
coding strategy
index
coding
channel quality
Prior art date
Application number
PCT/CN2021/123336
Other languages
English (en)
French (fr)
Inventor
边峦剑
戴博
胡有军
刘锟
杨维维
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2022078343A1 publication Critical patent/WO2022078343A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication

Definitions

  • the present application relates to the field of wireless communication technologies, for example, to a method for configuring a modulation and coding strategy, a method for configuring power, a method for reporting channel quality, a device and a medium.
  • NB-IoT Narrow Band Internet of Things
  • QPSK Quadrature Phase Shift Keying
  • MCS Modulation and Coding Schemes
  • the present application proposes a modulation and coding strategy configuration method, a power configuration method, a channel quality reporting method, device and medium, aiming at supporting high-order modulation methods, improving the communication performance of the narrowband Internet of Things, and enhancing the quality of the communication network .
  • An embodiment of the present application provides a method for configuring a modulation and coding strategy, and the method includes:
  • a first modulation and coding strategy set is determined; and a modulation and coding strategy is configured for the target data based on the first modulation and coding strategy set.
  • the embodiment of the present application also provides a power configuration method, the method includes:
  • the power offset parameter of the physical uplink shared channel is determined according to the modulation mode in the modulation and coding strategy configured corresponding to the physical uplink shared channel; and the transmission power is configured for the physical uplink shared channel according to the power offset parameter.
  • the embodiment of the present application also provides a method for reporting channel quality, the method comprising:
  • the channel quality indicator set includes the correlation between the channel quality indicator and the channel quality parameter, wherein the channel quality parameter includes at least one of the following: modulation mode, target code rate, spectral efficiency, modulation and coding strategy index, transport block size index and repetition times, the maximum modulation mode included in the channel quality indication set is 16 quadrature amplitude modulation; the channel quality is reported based on the channel quality indication set.
  • the embodiment of the present application also provides an electronic device, the electronic device includes:
  • processors comprising: memory for storing one or more programs; when the one or more programs are executed by the one or more processors, the one or more processors implement the The method of any one of the embodiments.
  • the embodiments of the present application further provide a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, implements the method described in any one of the embodiments of the present application.
  • the support for the high-order modulation mode is realized, the communication performance of the narrowband Internet of Things can be improved, and the communication can be enhanced. network quality.
  • FIG. 1 is a flowchart of a method for configuring a modulation and coding strategy provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a power configuration method provided by an embodiment of the present application
  • FIG. 3 is a flowchart of a method for reporting channel quality provided by an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of an apparatus for configuring a modulation and coding strategy provided by an embodiment of the present application
  • FIG. 5 is a schematic structural diagram of a power configuration device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for reporting channel quality provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 1 is a flowchart of a method for configuring a modulation and coding strategy provided by an embodiment of the present application. This embodiment is applicable to a situation in which a high-order modulation mode is supported in wireless communication.
  • the configuration device of the present application can be implemented by means of software and/or hardware, and can generally be integrated in a base station.
  • the method of the embodiment of the present application includes the following steps:
  • Step 110 Determine a first modulation and coding strategy set.
  • the first modulation and coding strategy set is a set composed of modulation and coding strategies MCS, and the first modulation and coding strategy set includes at least one modulation and coding strategy.
  • the first MCS set may include multiple MCSs. sheet.
  • the base station may determine the modulation and coding strategy according to network attribute information such as the network status, the number of terminals, the size of the transport block, and the modulation method, and form the determined modulation and coding strategy into a first modulation and coding strategy set.
  • network attribute information such as the network status, the number of terminals, the size of the transport block, and the modulation method
  • Different network attribute values in the modulation and coding strategy set may correspond to different modulation and coding strategies.
  • Step 120 Configure a modulation and coding strategy for the target data based on the first modulation and coding strategy set.
  • the target data may be service data or control signaling to be sent.
  • an appropriate modulation and coding strategy may be selected and configured to transmit the target data.
  • the support for the high-order modulation mode is realized, and the communication performance of the narrowband Internet of Things can be improved. , to enhance the quality of the communication network.
  • the determining the first modulation and coding strategy set includes: determining the first modulation and coding strategy set according to the number of resource units, where the first modulation and coding strategy set at least includes at least one of the following : the corresponding relationship between the modulation and coding strategy index and the modulation scheme, and the corresponding relationship between the modulation and coding strategy index and the transport block size index.
  • a resource unit may be a radio resource configured by a base station for a terminal (User Equipment, UE) to transmit data, and the first modulation and coding strategy set may be determined according to the number of resource units. When the number of resource units belongs to When there are different quantity sets, the corresponding first modulation and coding strategy MCS sets may be different.
  • the corresponding first modulation and coding strategy set can be searched in the preset modulation and coding strategy set according to the number of resource units, wherein the first modulation and coding strategy set includes the corresponding relationship between the modulation and coding strategy index and the modulation mode and the modulation and coding strategy index
  • the modulation and coding strategy index may identify different modulation and coding strategies, and each modulation and coding strategy may include a modulation mode and a transport block size.
  • the first modulation and coding strategy set when the number of configured resource units belongs to the first quantity set or the second quantity set, the first modulation and coding strategy set includes a modulation and coding strategy subset, and the modulation and coding strategy subset
  • the set includes a preset number of modulation and coding strategies, and the difference between the transport block size (Transport Block Size, TBS) indexes corresponding to every two adjacent modulation and coding strategies in the preset number of modulation and coding strategies is K, and K is greater than or equal to 2, wherein the first quantity set is different from the second quantity set, and the value of the preset quantity corresponds to the first quantity set or the second quantity set.
  • TBS Transport Block Size
  • the first quantity set and the second quantity set may be numerical sets of the number of resource units RUs, and the numerical values contained in the first quantity set may be different from the numerical values contained in the second quantity set, for example, the first quantity set includes 1, 2, 3, 4 and 5, while the second set of numbers may include 6.
  • the modulation and coding strategy subset may be composed of one or more modulation and coding strategies, and the modulation and coding strategy subset may be a part or all of the first modulation and coding strategy set.
  • the first MCS set corresponding to the first quantity set and the first MCS set corresponding to the second quantity set are different.
  • the MCS set when the number of resource units RUs configured for the UE belongs to a first number set, the MCS set includes one MCS subset, the MCS subset includes 7 MCSs, and the 7 MCSs
  • the difference between the TBS indexes corresponding to every two adjacent MCSs is 2.
  • the number of TBSs when the number of resource units RU configured for the UE belongs to the first number set, the number of TBSs is greater than the number of MCSs, so the TBSs cannot correspond to the MCSs one-to-one, and a certain number of TBSs and MCSs need to be selected to correspond.
  • 16QAM is mainly used to increase the data rate, it is suitable for scenarios with good channel conditions, with low or no repetitions.
  • High Signal-to-Noise Ratio (SNR) interval and larger TBS deployment should be the main goals of 16QAM MCS table design.
  • SNR Signal-to-Noise Ratio
  • set continuous large TBSs that is, the difference between the TBS indexes corresponding to each adjacent two MCSs is 1, such as TBS 13, 14, 15, ..., 21, which can ensure high SNR.
  • Data transmission efficiency; in the low MCS interval set the interval of small TBS, that is, the difference between the TBS indexes corresponding to every two adjacent MCSs is 2, for example, TBS 0, 2, 4, 6, ..., 12. Smaller TBS can guarantee the reliability of transmission when the channel deteriorates.
  • the modulation mode and the modulation order are in an equivalent relationship, the modulation order of 16QAM is 4, and the modulation order of QPSK is 2.
  • the first number set includes at least 1, 2, 3, 4, and 5.
  • the TBS the number of resource units RUs configured for the UE
  • the TBS The range of MCS is greater than or equal to 0 and less than or equal to 21, and the range of MCS is greater than or equal to 0 and less than or equal to 15, then the corresponding relationship between MCS and TBS is: MCS 0 to 6 correspond to TBS 0, 2, 4, 6, 8, 10, 12, in addition, MCS 7 to 15 correspond to TBS 13 to 21.
  • Table 1 A specific example is given in Table 1.
  • the MCS set when the number of resource units RUs configured for the UE belongs to the second number set, the MCS set includes one MCS subset, and the MCS subset includes 5 MCSs, and each of the 5 MCSs includes 5 MCSs.
  • the difference between the TBS indexes corresponding to two adjacent MCSs is 2.
  • the second set of numbers includes at least six.
  • MCS 0 to 4 correspond to TBS 0, 2, 4, 6, and TBS 8
  • MCS 5 to 15 correspond to TBS 9 to 19.
  • Table II A specific example is given in Table II.
  • the determining the first modulation and coding strategy set according to the number of resource units includes:
  • the modulation and coding strategy indices in the first modulation and coding strategy set respectively correspond from 0 to 15 respectively corresponding to the transport block size index from 0 to 15.
  • the first modulation and coding strategy set corresponding to the third quantity set includes 16 modulation and coding strategies, wherein the modulation and coding strategy index has a corresponding relationship with the transport block size index, and the modulation and coding strategy index is in the order from 0 to The order of 15 corresponds to the transport block size index from 0 to 15, the modulation and coding strategy index 0 corresponds to the transport block size index 0, the modulation and coding strategy index 1 corresponds to the transport block size index 1, and the third set corresponds to the first modulation and coding strategy set.
  • the modulation and coding strategy index and the transport block size index can be deduced by analogy.
  • the base station When the base station determines that the number of resource units configured for the terminal belongs to the third number set, it can select the modulation and coding strategy set with the modulation and coding strategy index from 0 to 15 in turn corresponding to the transport block size index from 0 to 15 as the corresponding A set of modulation and coding strategies.
  • the third set of numbers may include at least eight.
  • the number of resource units RU configured for the UE is 8
  • the range of TBS is greater than or equal to 0 and less than or equal to 15
  • the range of MCS is also greater than or equal to 0 and less than or equal to 15, then the corresponding relationship between MCS and TBS is : MCS 0 to 15 correspond to TBS 0 to 15 in turn, and Table 3 gives a specific example.
  • the maximum index value of the transport block size index in the first modulation and coding strategy set is 13, and there are at least A pair of modulation and coding strategies, wherein the transport blocks corresponding to the pair of modulation and coding strategies have the same size and different modulation modes.
  • the maximum index value may be the maximum value of the transport block size index.
  • the maximum value of the index of the transport block size in the first modulation and coding strategy set corresponding to the fourth quantity set is 13, and there are at least one pair of modulation and coding strategies with the same transport block size index, but corresponding to modulation is different.
  • the first modulation and coding strategy set under the fourth number set may be determined, and the maximum index value of the transport block size index included in the modulation and coding strategy set is 13, and There are at least one pair of modulation and coding strategies corresponding to the same transport block size and different modulation schemes.
  • the fourth number set may include at least 10.
  • the number of resource units RUs configured for the UE is 10
  • the range of TBS is greater than or equal to 0 and less than or equal to 13
  • the range of MCS is greater than or equal to 0 and less than or equal to 15
  • the advantage of this setting is that for this TBS N, you can An MCS with high-order modulation and low code rate is obtained, and an MCS with low-order modulation and high code rate is obtained.
  • the corresponding relationship between MCS and TBS includes: MCS 0 to 11 correspond to TBS 0 to 11, and MCS 12 to 14 correspond to TBS 11 to 13, as shown in Table 4.
  • the tables from Table 1 to Table 4 may be summarized in one table, and the corresponding first encoding strategy set may be determined in the table according to the number of resource units, and the table may be as shown in Table 5 :
  • I RU can be an index of the number of resource units, and the value of each index can correspond to a number of RUs, as shown in Table 6:
  • the repetition times of the physical shared channel corresponding to the target data is less than or equal to 2.
  • the required channel conditions are higher.
  • the physical shared channel may require repeated transmission to ensure correct reception of 16QAM modulation.
  • the data rate of 16QAM decreases until it is lower than that of QPSK.
  • Table 7 compares the peak rates of 16QAM and QPSK. From Table 7, it can be found that the peak data rate of 16QAM modulation is still greater than the peak rate of QPSK when the number of repetitions is 2, but the peak rate of 16QAM under 4 repeated transmissions The peak data rate is less than the peak rate of QPSK. Therefore, when the MCS configured for the UE is 16QAM modulation, in order to improve the transmission efficiency, the repetition times of the physical shared channel may be limited to be less than or equal to 2.
  • the highest-order bit of the subcarrier indication field in the downlink control information is used as a bit of the modulation and coding strategy indication information.
  • the modulation order is greater than or equal to 4.
  • the high-level configuration parameter can indicate whether data transmission supports high-order modulation, such as whether to support 16QAM modulation;
  • the subcarrier indication field can be an information field indicating the number and/or location of subcarriers in downlink control information (Downlink Control Channel, DCI), which can include one or more bits.
  • DCI Downlink Control Channel
  • the most significant bit of the subcarrier indication field in the downlink control information can be used as a bit of the modulation and coding strategy indication information.
  • the most significant bits of the subcarrier indication field are used together with the bits of the MCS indication information field to indicate MCS information, that is, to indicate the MCS index configured for data.
  • the modulation and coding strategy indication information is used to indicate one MCS in the MCS set, and the base station indicates to the UE which MCS to use through the MCS indication information in the downlink control information.
  • the MCS indication information field contains 4 bits, and when the high-level configuration parameter indicates that high-order modulation is configured, the configuration range of the MCS may increase, so the MCS indication information may need to be increased to 5 bits bits.
  • the subcarrier indication field in the downlink control information contains 6 bits, and in the case of 15kHz subcarrier spacing, the most significant bit in the subcarrier indication field is reserved. , that is, not used. Therefore, the most significant bit of the subcarrier indication field in the downlink control information can be used as a bit of the MCS indication information, so that the MCS indication information becomes 5 bits, and there is no additional overhead of the downlink control information.
  • the method further includes: when the high-level configuration parameter indicates that the data transmission supports high-order modulation, the sub-carrier indication field in the downlink control information indicates the sub-carrier information and the modulation and coding strategy set.
  • the subcarrier information includes the number and/or position sequence number of the subcarriers.
  • the modulation and coding strategy set indicated by the subcarrier indication field includes MCS indices from 0 to K, where K is greater than 1.
  • MCS0 to K the configuration of one of the MCSs is indicated by the MCS indication field in the downlink control information.
  • the modulation and coding strategy set indicated by the subcarrier indication field includes MCS indices 0 to K, where K is greater than 1.
  • the modulation and coding strategy set indicated by the subcarrier indication field includes MCS indices K+1 to L ⁇ 1.
  • MCS K+1 to L-1 the configuration of one of the MCSs is indicated by the MCS indication field in the downlink control information.
  • the value of the subcarrier indication field is j, and when 0 ⁇ j ⁇ 18, the modulation and coding strategy set includes MCS 0 to K. When 19 ⁇ j ⁇ 25, the modulation and coding strategy set includes MCS K+1 to L-1.
  • Information corresponding to the value of the subcarrier indication field is shown in Table 8, where I sc is the value of the subcarrier indication field, n sc is the subcarrier index, and I MCS is the MCS index.
  • the value of the subcarrier indication field is j, and when 12 ⁇ j ⁇ 18, the modulation and coding strategy set includes MCS 0 to K. When 19 ⁇ j ⁇ 25, the modulation and coding strategy set includes MCS K+1 to L-1.
  • the information corresponding to the value of the subcarrier indication field is shown in Table 9, where I sc is the value of the subcarrier indication field, n sc is the subcarrier index, and I MCS is the MCS index.
  • the maximum modulation mode included in the first modulation and coding strategy set is 16 quadrature amplitude modulation 16QAM
  • the first modulation and coding strategy set includes at least two of the following: the modulation and coding strategy index and the The corresponding relationship between the target code rate, the corresponding relationship between the modulation and coding strategy index and the modulation method, and the corresponding relationship between the modulation and coding strategy index and the spectral efficiency.
  • the modulation mode of the largest order included in the first modulation and coding strategy set may be 16 quadrature amplitude modulation.
  • the first modulation and coding strategy set may include the corresponding relationship between the modulation and coding strategy index and the target code rate, the corresponding relationship between the modulation and coding strategy index and the modulation method, and the corresponding relationship between the modulation and coding strategy index and the spectral efficiency.
  • the set may include parameters such as modulation and coding strategy index, modulation target code rate, and frequency utilization rate.
  • the target code rate corresponding to the largest modulation and coding strategy index in the first modulation and coding strategy set is 658.
  • the first MCS set is a 4-digit MCS table, including 16 MCSs. Because the number of MCS is limited, the maximum target code rate supported by the MCS associated with 16QAM is only 658, which is low and cannot support higher data rate requirements. However, the overhead of the 4-bit MCS indication information is less, which is beneficial to the correct decoding of the downlink control information.
  • the difference between the spectral efficiencies corresponding to two adjacent modulation and coding strategy indices in the first modulation and coding strategy set is greater than or equal to 0.05.
  • the first modulation and coding strategy set there are no two MCSs with a spectral efficiency difference less than 0.05, that is, there are no two MCSs with similar spectral efficiencies, wherein the spectral efficiency difference less than 0.05 is used to represent the spectrum of the two MCSs Efficiency is the same or very close. Because the amount of 4-bit information is limited and there is no redundant information to correspond to the same or similar spectral efficiency, the 4-bit MCS set should cover more MCSs with different spectral efficiencies, which is beneficial to MCS allocation in different channel states.
  • the first modulation and coding strategy set may be as shown in Table 10.
  • the maximum value of the target code rate corresponding to the modulation and coding strategy index corresponding to 16 quadrature amplitude modulation is 948.
  • the first MCS set can be a 5-bit MCS table, which contains more MCS than a 4-bit MCS table. Therefore, a 5-bit MCS table has enough MCS numbers, so the maximum target code rate corresponding to MCS supports up to 948. Thus, the 5-bit MCS table can support higher data rate requirements.
  • the first MCS set may include the MCS used for retransmission, that is, the MCS only corresponds to the modulation mode, but does not correspond to the modulation target code rate and spectral efficiency.
  • the first set of MCSs is shown in Table XI.
  • BPSK Binary Phase Shift Keying
  • MCS 29, 30, and 31 are MCSs used for retransmission, and the three MCSs used for retransmission in Table 11 can also be defined as any three MCS indexes in MCS 23 to 31.
  • the first MCS set is shown in Table 12.
  • MCS 30, 31 are MCS used for retransmission
  • the two MCS used for retransmission in Table 12 can also be defined as any two MCS indexes in MCS 23 to 31.
  • the target code rate is equal to the encoding code rate of the data bits multiplied by 1024.
  • FIG. 2 is a flowchart of a power configuration method provided by an embodiment of the present application. This embodiment is applicable to the case where a high-order modulation mode is supported in wireless communication, and the method can be configured by the power configuration device in the embodiment of the present application.
  • the apparatus may be implemented in software and/or hardware, and may generally be integrated in a base station.
  • the method of the embodiment of the present application includes the following steps:
  • Step 210 Determine the power offset parameter of the physical uplink shared channel according to the modulation mode in the modulation and coding strategy configured corresponding to the physical uplink shared channel.
  • the modulation and coding strategy configured for the physical uplink shared channel can be obtained, the power offset parameter configured for the corresponding physical uplink shared channel can be determined according to the modulation mode in the modulation and coding strategy, and the transmitting end can The parameter adjusts the uplink power to improve the performance of uplink data transmission.
  • Step 220 Configure transmit power for the physical uplink shared channel according to the power offset parameter.
  • Compensation may be performed for the power of the physical uplink shared channel according to the power offset parameter, and the compensated power may be used as the transmit power configured for the physical uplink shared channel.
  • the power offset parameter is determined by the modulation mode corresponding to the physical uplink shared channel, and the transmission power is determined for the physical uplink shared channel by the power offset parameter, so as to improve the performance of uplink data transmission.
  • the power offset parameter is 0, and the modulation order of the low-order modulation is less than or equal to 2.
  • the power offset parameter is the first power offset, where the modulation order of the high-order modulation is greater than or equal to 4.
  • the first power offset is indicated by a high layer parameter and/or downlink control information.
  • the base station indicates the value of the first power offset by using the high layer parameter and/or downlink control information; the terminal receives the high layer parameter and/or the downlink control information, and determines the value of the first power offset.
  • the transmit power of the physical uplink shared channel is equal to P+ ⁇ .
  • the first transmission power is the transmission power of the physical uplink shared channel in Release-16 version NB-IoT.
  • the power offset parameter is used to adjust the transmit power of the physical uplink shared channel. Make power adjustments.
  • the power offset parameter is used to adjust the transmission power of the physical uplink shared channel.
  • the power is adjusted for 16QAM modulation, and the transmission power of the narrowband physical uplink shared channel (Narrowband PUSCH, NPUSCH) is determined by the following formula:
  • ⁇ offset is the first power offset, and the value of ⁇ offset is indicated by a high layer parameter or by downlink control information. Except ⁇ , other parameters are the parameters defined in the Release-16 version protocol.
  • P CMAX,c (i) is the transmit power of the UE on time slot i in serving cell c, and the value of M NPUSCHc, (i) is related to the transmit bandwidth.
  • the value is 1/4.
  • the value is ⁇ 1,3,6,12 ⁇ ;
  • P O_NPUSCHc, (j) P O_NOMINAL_NPUSCH,c (j)+P O_UE_NPUSCH,c (j).
  • PL c is the downlink path loss estimated by the UE.
  • FIG. 3 is a flowchart of a method for reporting channel quality provided by an embodiment of the present application. This embodiment is applicable to the case where a high-order modulation mode is supported in wireless communication.
  • the device can be implemented by means of software and/or hardware, and can generally be integrated in a base station.
  • the method of this embodiment of the present application includes the following steps:
  • Step 310 Determine a channel quality indicator set, where the channel quality indicator set includes the correlation between the channel quality indicator and the channel quality parameter, wherein the channel quality parameter includes at least one of the following: modulation mode, target code rate, spectral efficiency, Modulation and coding strategy index, transport block size index and repetition times, the maximum modulation mode included in the channel quality indication set is 16 quadrature amplitude modulation.
  • a channel quality indicator (Channel quality indicator, CQI) set may be composed of one or more CQIs, each CQI is associated with a channel quality parameter, and the channel quality parameter includes at least one of the following: modulation mode, target code rate, spectral efficiency, modulation Information such as coding strategy index, transport block size index, and repetition times.
  • the CQI set may be a CQI table.
  • Step 320 Report the channel quality based on the channel quality indication set.
  • the terminal can upload the channel quality indication to the base station to realize the reporting of the channel quality.
  • the CQI set is a 4-bit CQI table, wherein M CQI indices are used for the target code rate or spectral efficiency corresponding to the MCS, and M is less than or equal to 16.
  • M is less than or equal to 16.
  • the number of MCSs is greater than or equal to M, so it is necessary to select M MCSs from them, and make a one-to-one correspondence between their target code rates or spectral efficiencies and the M CQI indices.
  • the channel quality indicator set includes N consecutive channel quality indicator indices, and the N consecutive channel quality indicator indices correspond in turn to the target codes associated with the N consecutive modulation and coding strategy indices.
  • efficiency or spectral efficiency, N is greater than or equal to 6.
  • CQI indexes 1 to 6 correspond to the target code rate or spectral efficiency of MCS indexes 0 to 5. Assuming that the spectral efficiencies of MCS 0 to 5 are 0.1, 0.2, 0.3, 0.4, 0.5, and 0.6, respectively, CQI 1 to 6 correspond to Spectral efficiency 0.1, 0.2, 0.3, 0.4, 0.5, 0.6.
  • the maximum target code rate corresponding to 16 quadrature amplitude modulations in the channel quality indication set is 948 or 658.
  • the maximum target code rate corresponding to 16QAM in the CQI set is the same as the maximum target code rate of 16QAM MCS, and when the maximum target code rate of 16QAM MCS is 948, the maximum target code rate corresponding to 16QAM in the CQI set is 948, When the maximum target code rate of 16QAM MCS is 658, the maximum target code rate corresponding to 16QAM in the CQI set is 658.
  • the maximum code rate corresponding to 16QAM CQI is 658.
  • the maximum code rate of 16QAM transmission is only supported up to 658, indicating that the data rate requirement is not high, then in high CQI index
  • the target code rate or spectral efficiency can be associated with the MCS index corresponding to the CQI interval, which roughly reflects the channel state to save limited CQI information.
  • CQI 13, 14, and 15 correspond to the target code rate associated with MCS 11, 13, and 15. or spectral efficiency.
  • the CQI corresponds to the target code rate or spectral efficiency associated with the continuous MCS, and the channel status is reflected in detail to ensure the reliability of data transmission.
  • CQI 2 to 12 corresponds to the target code rate associated with MCS 0 to 10. or spectral efficiency.
  • CQIs 2 to 12 correspond in turn to the target code rate or spectral efficiency associated with MCS 0 to 10
  • CQIs 13 to 15 correspond to the target code rate or spectral efficiency associated with MCS 11, 13, and 15 in turn.
  • a CQI table can be as shown in Table XIII.
  • CQIs 10 to 15 correspond to target code rates and spectral efficiencies associated with MCSs 17 to 22.
  • the maximum code rate corresponding to 16QAM CQI is 948.
  • the maximum code rate of 16QAM transmission reaches 948, indicating that the data rate is required to be high, then in the high CQI index interval, you can set the CQI corresponds to the target code rate or spectral efficiency associated with consecutive MCSs, which is beneficial to reflect the channel state in detail and improve the data rate.
  • CQIs 10 to 15 correspond to the target code rate or spectral efficiency associated with MCS 17 to 22.
  • the CQI corresponds to the target code rate or spectral efficiency of the interval MCS to ensure the reliability of data transmission, and roughly reflects the channel state to save limited CQI information.
  • CQI 2 to 6 correspond to the target code rate or spectral efficiency associated with MCS 0, 2, 4, 6, and 8, and CQI 7, 8, and 9 correspond to the target code rate or spectral efficiency associated with MCS 11, 13, and 15.
  • CQIs 2 to 6 correspond to the target code rate or spectral efficiency associated with MCS 0, 2, 4, 6, and 8 in turn, and CQIs 7 to 9 correspond to MCS 11, 13, and 15
  • the associated target code rate or spectral efficiency, CQIs 10 to 15 correspond in turn to the target code rate or spectral efficiency associated with MCS 17 to 22.
  • a CQI table is shown in Table XIV.
  • the target code rate is equal to the encoding code rate of the data bits multiplied by 1024.
  • FIG. 4 is a schematic structural diagram of an apparatus for configuring a modulation and coding strategy provided by an embodiment of the present application, which can execute the configuration method for a modulation and coding strategy provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the apparatus may be implemented by software and/or hardware, and includes: a set determination module 401 and a policy configuration module 402 .
  • the set determination module 401 is configured to determine a first modulation and coding strategy set.
  • a policy configuration module 402 configured to configure a modulation and coding policy for the target data based on the first modulation and coding policy set.
  • the set determination module 401 determines the first modulation and coding strategy set
  • the strategy configuration module 402 configures the modulation and coding strategy for the target data according to the first modulation and coding strategy set, which realizes the support for high-order modulation methods and can improve the narrowband
  • the communication performance of the Internet of Things enhances the quality of the communication network.
  • the set determination module 401 includes:
  • a quantity selection unit configured to determine a first modulation and coding strategy set according to the number of resource units, wherein the first modulation and coding strategy set at least includes at least one of the following: the corresponding relationship between the modulation and coding strategy index and the modulation mode, the modulation and coding strategy The corresponding relationship between the index and the transport block size index.
  • the quantity selection unit is configured to: when the configured quantity of resource units belongs to the first quantity set or the second quantity set, the first modulation and coding strategy set includes one modulation and coding strategy sub-set set, the modulation and coding strategy subset includes a preset number of modulation and coding strategies, and the difference between the TBS indexes corresponding to every two adjacent modulation and coding strategies in the preset number of modulation and coding strategies is K, and K is greater than or equal to 2 , wherein the first quantity set is different from the second quantity set, and the value of the preset quantity corresponds to the first quantity set or the second quantity set.
  • the quantity selection unit is further configured to: when the configured quantity of the resource units belongs to a third quantity set, the modulation and coding strategy indices in the first modulation and coding strategy set are respectively set from 0 to 15 correspond to the transport block size index from 0 to 15 in turn.
  • the quantity selection unit is further configured to: when the configured quantity of the resource units belongs to the fourth quantity set, the maximum index of the transport block size index in the first modulation and coding strategy set The value is 13, and there are at least one pair of modulation and coding strategies, and the transport blocks corresponding to the pair of modulation and coding strategies have the same size and different modulation modes.
  • the repetition times of the physical shared channel corresponding to the target data is less than or equal to 2.
  • a high-level configuration module configured to use the highest-order bit of the subcarrier indication field in the downlink control information as the modulation and coding strategy indication information when the high-level configuration parameter indicates that the data transmission supports high-order modulation.
  • a high-level configuration module configured to use the highest-order bit of the subcarrier indication field in the downlink control information as the modulation and coding strategy indication information when the high-level configuration parameter indicates that the data transmission supports high-order modulation.
  • the modulation order of the high-order modulation is greater than or equal to 4.
  • the method further includes: the high-level configuration module is further configured to indicate the sub-carrier information and the modulation and coding strategy set in the sub-carrier indication field in the downlink control information when the high-level configuration parameter indicates that the data transmission supports high-order modulation.
  • the modulation and coding strategy set indicated by the subcarrier indication field includes MCS indices 0 to K , K is greater than 1.
  • the modulation and coding strategy set indicated by the subcarrier indication field includes the MCS index K+1 To L-1, K is greater than 1, and L is the number of MCSs included in the first modulation and coding strategy set.
  • the maximum modulation mode included in the first modulation and coding strategy set in the set determination module 401 is 16 quadrature amplitude modulation 16QAM
  • the first modulation and coding strategy set includes at least two of the following : the corresponding relationship between the modulation and coding strategy index and the target code rate, the corresponding relationship between the modulation and coding strategy index and the modulation method, and the corresponding relationship between the modulation and coding strategy index and the spectral efficiency.
  • the target code rate corresponding to the maximum modulation and coding strategy index in the first modulation and coding strategy set in the set determination module 401 is 658.
  • the difference between the spectral efficiencies corresponding to two adjacent modulation and coding strategy indices in the first modulation and coding strategy set in the set determination module 401 is greater than or equal to 0.05.
  • the maximum value of the target code rate corresponding to the modulation and coding strategy index corresponding to 16 quadrature amplitude modulation is 948.
  • FIG. 5 is a schematic structural diagram of a power configuration apparatus provided by an embodiment of the present application, which can execute the power configuration method provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the apparatus may be implemented by software and/or hardware, and includes: a set determination module 501 and a policy configuration module 502 .
  • the offset parameter module 501 is configured to determine the power offset parameter of the physical uplink shared channel according to the modulation mode in the modulation and coding strategy configured corresponding to the physical uplink shared channel.
  • the offset parameter module 501 determines the power offset parameter according to the modulation mode corresponding to the physical uplink shared channel, and the power configuration module 502 determines the transmission power for the physical uplink shared channel through the power offset parameter, which improves the determination of the transmission power. accuracy.
  • the power offset parameter is 0, and the modulation order of the low-order modulation is less than or equal to 2.
  • the power offset parameter is the first power offset, wherein the modulation order of the high-order modulation is greater than or equal to 4.
  • the first power offset in the offset parameter module 501 is indicated by a high layer parameter and/or downlink control information.
  • FIG. 6 is a schematic structural diagram of an apparatus for reporting channel quality provided by an embodiment of the present application, which can execute the method for reporting channel quality provided by any embodiment of the present application, and has functional modules and beneficial effects corresponding to the execution method.
  • the apparatus may be implemented by software and/or hardware, and includes: an indication aggregation module 601 and a quality reporting module 602 .
  • An indication set module 601 configured to determine a channel quality indication set, where the channel quality indication set includes an association relationship between a channel quality indication and a channel quality parameter, wherein the channel quality parameter includes at least one of the following: a modulation method, a target code rate , spectral efficiency, modulation and coding strategy index, transport block size index and repetition times, the maximum modulation mode included in the channel quality indication set is 16 quadrature amplitude modulation.
  • a quality reporting module 602 configured to report the channel quality based on the channel quality indication set.
  • the channel quality indicator set in the indicator set module 601 includes N consecutive channel quality indicator indices, and the N consecutive channel quality indicator indices correspond to N consecutive modulation and coding strategy indices in turn Respectively associated target code rate or spectral efficiency, N is greater than or equal to 6.
  • the maximum target code rate corresponding to 16 quadrature amplitude modulations in the channel quality indication set in the indication set module 601 is 948 or 658.
  • FIG. 7 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the device includes a processor 70, a memory 71, an input device 72, and an output device 73; the number of processors 70 in the electronic device can be is one or more.
  • a processor 70 is used as an example; the device processor 70, memory 71, input device 72, and output device 73 can be connected by a bus or in other ways.
  • the memory 71 can be used to store software programs, computer-executable programs, and modules, such as any corresponding to the configuration of the modulation and coding strategy, the device for configuring power, and the device for reporting channel quality in the embodiments of the present application.
  • the processor 70 executes various functional applications and data processing of the device by running the software programs, instructions and modules stored in the memory 71 , that is, implements the above-mentioned network timing determination method.
  • the memory 71 may mainly include a storage program area and a storage data area, wherein the storage program area may store an operating system, an application program required for at least one function; the storage data area may store data created according to the use of the terminal, and the like. Additionally, memory 71 may include high-speed random access memory, and may also include non-volatile memory, such as at least one magnetic disk storage device, flash memory device, or other non-volatile solid state storage device. In some instances, memory 71 may include memory located remotely from processor 70, which may be connected to the device through a network. Examples of such networks include, but are not limited to, the Internet, an intranet, a local area network, a mobile communication network, and combinations thereof.
  • the input device 72 may be used to receive input numerical or character information, and to generate key signal input related to user settings and function control of the device.
  • the output device 73 may include a display device such as a display screen.
  • Embodiments of the present application further provide a storage medium containing computer-executable instructions, where the computer-executable instructions are used to execute a method for configuring a modulation and coding strategy when executed by a computer processor, and the method includes:
  • a first modulation and coding strategy set is determined; and a modulation and coding strategy is configured for the target data based on the first modulation and coding strategy set.
  • the method includes:
  • the power offset parameter of the physical uplink shared channel is determined according to the modulation mode in the modulation and coding strategy configured corresponding to the physical uplink shared channel; and the transmission power is configured for the physical uplink shared channel according to the power offset parameter.
  • the channel quality indicator set includes the correlation between the channel quality indicator and the channel quality parameter, wherein the channel quality parameter includes at least one of the following: modulation mode, target code rate, spectral efficiency, modulation and coding strategy index, transport block size index and repetition times, the maximum modulation mode included in the channel quality indication set is 16 quadrature amplitude modulation; the channel quality is reported based on the channel quality indication set.
  • a storage medium containing computer-executable instructions provided by an embodiment of the present application the computer-executable instructions of which are not limited to the above method operations, and can also perform related operations in the methods provided by any embodiment of the present application.
  • the division between functional modules/units mentioned in the above description does not necessarily correspond to the division of physical components; for example, one physical component may have multiple functions, or one function or step may be composed of several physical components Components execute cooperatively.
  • Some or all physical components may be implemented as software executed by a processor, such as a central processing unit, digital signal processor or microprocessor, or as hardware, or as an integrated circuit, such as an application specific integrated circuit .
  • Such software may be distributed on computer-readable media, which may include computer storage media (or non-transitory media) and communication media (or transitory media).
  • Computer storage media includes both volatile and nonvolatile implemented in any method or technology for storage of information, such as computer readable instructions, data structures, program modules or other data flexible, removable and non-removable media.
  • Computer storage media include but are not limited to random access memory (Random Access Memory, RAM), read-only memory (Read-Only Memory, ROM), electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM) , Flash memory or other memory technology, Compact Disc Read-Only Memory (CD-ROM), Digital Versatile Disc (DVD) or other optical disk storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic A storage device, or any other medium that can be used to store desired information and that can be accessed by a computer.
  • communication media typically embodies computer readable instructions, data structures, program modules, or other data in a modulated data signal such as a carrier wave or other transport mechanism, and can include any information delivery media,

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本文公开了一种调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质。调制编码策略的配置方法包括:确定第一调制编码策略集合;基于所述第一调制编码策略集合为目标数据配置调制编码策略。功率的配置方法包括:根据对应物理上行共享信道配置的调制编码策略中的调制方式确定所述物理上行共享信道的功率偏移参数;根据所述功率偏移参数为所述物理上行共享信道配置发送功率。

Description

调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质 技术领域
本申请涉及无线通信技术领域,例如涉及一种调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质。
背景技术
随着无线通信技术的发展,窄带物联网(Narrow Band Internet of Things,NB-IoT)得到了快速发展,在Release-16版本的NB-IoT中上行数据传输支持的最大阶数的调制方式为正交相移键控(Quadrature Phase Shift Keying,QPSK)调制,而在Release-17版本的NB-IoT中,上行传输支持的最大阶数的调制方式从QPSK调制提升至16正交幅度调制(Quadrature Amplitude Modulation,QAM),但是对于调制编码策略(Modulation and Coding Schemes,MCS)还未进行设计。
发明内容
本申请提出一种调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质,旨在实现对高阶调制方式的支持,提高窄带物联网的通信性能,增强通信网络质量。
本申请实施例提供了一种调制编码策略的配置方法,该方法包括:
确定第一调制编码策略集合;基于所述第一调制编码策略集合为目标数据配置调制编码策略。
本申请实施例还提供了一种功率的配置方法,该方法包括:
根据对应物理上行共享信道配置的调制编码策略中的调制方式确定所述物理上行共享信道的功率偏移参数;根据所述功率偏移参数为所述物理上行共享信道配置发送功率。
本申请实施例还提供了一种信道质量的上报方法,该方法包括:
确定信道质量指示集合,所述信道质量指示集合包括信道质量指示与信道质量参数的关联关系,其中,所述信道质量参数包括以下至少一种:调制方式、目标码率、频谱效率、调制编码策略索引、传输块尺寸索引以及重复次数,所述信道质量指示集合包括的最大的调制方式为16正交振幅调制;基于所述信道质量指示集合上报信道质量。
本申请实施例还提供了一种电子设备,该电子设备包括:
一个或多个处理器;存储器,用于存储一个或多个程序;当所述一个或多个程序被所述一个或多个处理器执行,使得所述一个或多个处理器实现如本申请实施例中任一所述的方法。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如本申请实施例中任一所述的方法。
本申请实施例,通过确定第一调制编码策略集合,通过第一调制编码策略集合对目标数据配置调制编码策略,实现了对高阶调制方式的支持,可提高窄带物联网的通信性能,增强通信网络质量。
附图说明
图1是本申请实施例提供的一种调制编码策略的配置方法的流程图;
图2是本申请实施例提供的一种功率的配置方法的流程图;
图3是本申请实施例提供的一种信道质量的上报方法的流程图;
图4是本申请实施例提供的一种调制编码策略的配置装置的结构示意图;
图5是本申请实施例提供的一种功率的配置装置的结构示意图;
图6是本申请实施例提供的一种信道质量的上报装置的结构示意图;
图7是本申请实施例提供的一种电子设备的结构示意图。
具体实施方式
此处所描述的具体实施例仅仅用以解释本申请。
在后续的描述中,使用用于表示元件的诸如“模块”、“部件”或“单元”的后缀仅为了有利于本申请的说明,其本身没有特有的意义。因此,“模块”、“部件”或“单元”可以混合地使用。
图1是本申请实施例提供的一种调制编码策略的配置方法的流程图,本实施例可适用于无线通信中支持高阶调制方式的情况,该方法可以由本申请实施例中的调制编码策略的配置装置来执行,该装置可以通过软件和/或硬件的方式实现,并一般可以集成在基站中,本申请实施例的方法包括如下步骤:
步骤110、确定第一调制编码策略集合。
第一调制编码策略集合是由调制编码策略MCS组成的集合,第一调制编码策略集合中包括至少一个调制编码策略,在一个可选的实施方式中,第一MCS 集合可以是包含多个MCS的表格。
在本申请实施例中,基站可以根据网络状况、终端数量、传输块尺寸、调制方式等网络属性信息确定出调制编码策略,并将确定出的调制编码策略组成第一调制编码策略集合,第一调制编码策略集合中不同的网络属性取值可以对应不同的调制编码策略。
步骤120、基于所述第一调制编码策略集合为目标数据配置调制编码策略。
目标数据可以是待发送的业务数据或者控制信令。
可以根据确定出的第一调制编码策略MCS集合,选择适合的调制编码策略配置于发送目标数据。
本申请实施例的技术方案,通过确定第一调制编码策略集合,通过第一调制编码策略集合对目标数据配置调制编码策略,实现了对高阶调制方式的支持,可提高窄带物联网的通信性能,增强通信网络质量。
在上述申请实施例的基础上,所述确定第一调制编码策略集合,包括:根据资源单元的数量确定第一调制编码策略集合,其中,所述第一调制编码策略集合至少包括以下至少之一:调制编码策略索引与调制方式的对应关系和调制编码策略索引与传输块尺寸索引的对应关系。
资源单元(Resource Unit,RU)可以是基站为终端(User Equipment,UE)配置的用于传输数据的无线资源,可以根据资源单元的数量多少确定第一调制编码策略集合,当资源单元的数量属于不同的数量集合时,其对应的第一调制编码策略MCS集合可以不同。可以按照资源单元的数量在预先设置的调制编码策略集合中查找对应的第一调制编码策略集合,其中,第一调制编码策略集合中包括调制编码策略索引与调制方式的对应关系以及调制编码策略索引与传输块尺寸索引的对应关系,调制编码策略索引可以标识不同的调制编码策略,每条调制编码策略中可以包括调制方式和传输块尺寸。
在上述申请实施例的基础上,当配置的资源单元的数量属于第一数量集合或第二数量集合时,所述第一调制编码策略集合包含一个调制编码策略子集,所述调制编码策略子集包含预设数量的调制编码策略,所述预设数量的调制编码策略中每相邻两个调制编码策略对应的传输块尺寸(Transport Block Size,TBS)索引之差为K,K大于或等于2,其中,所述第一数量集合与所述第二数量集合不同,所述预设数量的取值对应于所述第一数量集合或所述第二数量集合。
第一数量集合和第二数量集合可以是资源单元RU数量的数值集合,第一数量集合包含的数值可以与第二数量集合包含的数值不同,例如,第一数量集合包括1、2、3、4和5,而第二数量集合可以包括6。其中,调制编码策略子集 可以由一个或者多个调制编码策略组成,调制编码策略子集可以是第一调制编码策略集合的一部分或者全部。
在本申请实施例中,当资源单元的数量属于第一数量集合或者第二数量集合时,第一数量集合对应的第一MCS集合与第二数量集合对应的第一MCS集合是不同的。
在一个示例性的实施方式中,当为UE配置的资源单元RU数量属于第一数量集合时,所述MCS集合包含一个MCS子集,所述MCS子集包含7个MCS,所述7个MCS中每相邻两个MCS对应的TBS索引之差为2。本实施例中,在为UE配置的资源单元RU数量属于第一数量集合的情况下,TBS的数量大于MCS数量,所以TBS不能一一对应MCS,需要选择一定数量的TBS与MCS进行对应。考虑到16QAM主要用于提高数据速率,适合信道条件好的场景,低重复或无重复次数。所以,高信噪比(Signal-to-Noise Ratio,SNR)区间和较大的TBS部署应该是16QAM MCS表格设计的主要目标。那么,在较高的MCS区间,设置连续的大TBS,即每相邻两个MCS对应的TBS索引之差为1,例如TBS 13,14,15,…,21,这样可以保证高SNR下的数据传输效率;在低MCS区间,设置间隔的小TBS,即每相邻两个MCS对应的TBS索引之差为2,例如TBS 0,2,4,6,…,12。较小的TBS能够在信道恶化时保证传输的可靠性。
本实施例中,调制方式与调制阶数为等价关系,16QAM的调制阶数为4,QPSK的调制阶数为2。
本申请实施例中第一数量集合至少包括1,2,3,4和5,那么在本申请实施例中,当为UE配置的资源单元RU数量大于或等于1且小于或等于5时,TBS的范围为大于或等于0且小于或等于21,MCS的范围为大于或等于0且小于或等于15,那么MCS和TBS的对应关系为:MCS 0至6对应TBS 0、2、4、6、8、10、12,此外,MCS 7至15对应TBS 13~21。表一给出了一个具体示例。
表一
MCS索引I MCS 调制阶数Qm TBS序号I TBS
0 2 0
1 2 2
2 2 4
3 2 6
4 2 8
5 2 10
6 4 12
7 4 13
8 4 14
9 4 15
10 4 16
11 4 17
12 4 18
13 4 19
14 4 20
15 4 21
在一个示例性的实施方式中,当为UE配置的资源单元RU数量属于第二数量集合时,MCS集合包含一个MCS子集,所述MCS子集包含5个MCS,所述5个MCS中每相邻两个MCS对应的TBS索引之差为2。第二数量集合至少包括6。
相应的,本实施例中,当为UE配置的资源单元RU数量为6时,TBS的范围为大于或等于0且小于或等于21,MCS的范围为大于或等于0且小于或等于15,那么MCS和TBS的对应关系为:MCS 0至4对应TBS 0、2、4、6、TBS 8,此外,MCS 5至15对应TBS 9至19。表二给出了一个具体示例。
表二
MCS索引I MCS 调制阶数Qm TBS序号I TBS
0 2 0
1 2 2
2 2 4
3 2 6
4 2 8
5 2 9
6 2 10
7 4 11
8 4 12
9 4 13
10 4 14
11 4 15
12 4 16
13 4 17
14 4 18
15 4 19
在上述申请实施例的基础上,所述根据资源单元的数量确定第一调制编码 策略集合,包括:
当配置的所述资源单元的数量属于第三数量集合时,所述第一调制编码策略集合中的调制编码策略索引分别从0到15依次对应传输块尺寸索引从0到15。
在本申请实施例中,第三数量集合对应的第一调制编码策略集合中包括16条调制编码策略,其中,调制编码策略索引与传输块尺寸索引存在对应关系,调制编码策略索引按照从0-15的顺序与传输块尺寸索引从0到15对应,调制编码策略索引0对应传输块尺寸索引0,调制编码策略索引1对应传输块尺寸索引1,第三集合对应的第一调制编码策略集合中的调制编码策略索引与传输块尺寸索引可以此类推。当基站确定为终端配置的资源单元的数量属于第三数量集合时,可以选择具有调制编码策略索引分别从0到15依次对应传输块尺寸索引从0到15关系的调制编码策略集合作为对应的第一调制编码策略集合。
在一个示例性的实施方式中,第三数量集合可以至少包括8。当为UE配置的资源单元RU的数量为8时,TBS的范围为大于或等于0且小于或等于15,MCS的范围也是大于或等于0且小于或等于15,那么MCS和TBS的对应关系为:MCS 0至15依次对应TBS 0至15,表三给出了一个具体示例。
表三
MCS索引I MCS 调制阶数Qm TBS序号I TBS
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 4 11
12 4 12
13 4 13
14 4 14
15 4 15
在上述申请实施例的基础上,所述当配置的所述资源单元的数量属于第四数量集合时,所述第一调制编码策略集合中传输块尺寸索引的最大索引值为13, 并且存在至少一对调制编码策略,所述一对调制编码策略对应的传输块尺寸相同且调制方式不同。
最大索引值可以是传输块尺寸索引的最大数值。
在本申请实施例中,第四数量集合对应的第一调制编码策略集合中传输块尺寸的索引的最大值为13,并且存在至少一对调制编码策略,具有相同的传输块尺寸索引,但是对应的调制方式不同。当确定配置的资源单元的数量属于第四数量集合时,可以确定第四数量集合下的第一调制编码策略集合,该调制编码策略集合中包括的传输块尺寸索引的最大索引值为13,并且存在至少一对调制编码策略对应的传输块尺寸相同且调制方式不同。
示例性的,第四数量集合可以至少包括10,当为UE配置的资源单元RU数量为10时,TBS的范围为大于或等于0且小于或等于13,MCS的范围为大于或等于0且小于或等于15,MCS数量大于TBS数量,因此至少可以设置一对MCS对应相同的TBS N,例如N=11,且这对MCS具有不同的调制方式,这样设置的好处是,针对这个TBS N,可以得到一个高阶调制和低码率的MCS,以及一个低阶调制和高码率的MCS,这两个MCS适用于不同的信道状态和资源分配情况,有利于MCS部署,提高传输性能。
一个具体示例中,假定所述TBS N为TBS 11,则MCS和TBS的对应关系包括:MCS 0至11对应TBS 0至11,MCS 12至14对应TBS 11至13,如表四所示。
表四
MCS索引I MCS 调制阶数Qm TBS序号I TBS
0 2 0
1 2 1
2 2 2
3 2 3
4 2 4
5 2 5
6 2 6
7 2 7
8 2 8
9 2 9
10 2 10
11 2 11
12 4 11
13 4 12
14 4 13
15 保留 保留
在一个示例性的实施方式中,表一到表四的表可以总结在一张表格中,根据资源单元的数量可以在该表格中确定对应的第一编码策略集合,表格可以如表五所示:
表五
Figure PCTCN2021123336-appb-000001
其中,I RU可以是资源单元数量的索引,每个索引的值可以对应一个RU数量,如表六所示:
表六
I RU RU数量
0 1
1 2
2 3
3 4
4 5
5 6
6 8
7 10
在上述申请实施例的基础上,所述配置的调制编码策略的调制方式为16正交幅度调制时,所述目标数据对应的物理共享信道的重复次数小于或等于2。
在本申请实施例中,由于16QAM比QPSK调制阶数高,所以需求的信道条件更高,在一个给定的信道条件下,物理共享信道可能需要重复传输才能保证16QAM调制正确接收,而当物理共享信道的重复次数增大时,16QAM的数据速率会降低,直到比QPSK的数据速率更低。针对NB-IoT网络,表七对比了16QAM和QPSK的峰值速率,从表七可以发现,16QAM调制在重复次数为2时的峰值数据速率仍然大于QPSK的峰值速率,但是16QAM在4次重复传输下的峰值数据速率小于QPSK的峰值速率。因此,当为UE配置的MCS为16QAM调制时,为了提高传输效率,可以限制物理共享信道的重复次数小于或等于2。
表七
Figure PCTCN2021123336-appb-000002
在上述申请实施例的基础上,当高层配置参数指示数据传输支持高阶调制时,下行控制信息中子载波指示域的最高位比特作为调制编码策略指示信息的一个比特,所述高阶调制的调制阶数大于或等于4。
高层配置参数可以指示数据传输是否支持高阶调制,例如是否支持16QAM调制;子载波指示域可以是下行控制信息(Downlink Control Channel,DCI)中指示子载波数量和/或位置的信息域,可以包括一个或者多个比特位。
当通过高层配置参数指示数据传输可以支持调制阶数大于或等于4的高阶调制时,可以将下行控制信息中子载波指示域的最高位比特作为调制编码策略指示信息的一个比特。在下行控制信息中,所述子载波指示域的最高位比特与MCS指示信息域的比特一起用于指示MCS信息,即指示为数据配置的MCS索引。
在本申请实施例中,调制编码策略指示信息用于指示MCS集合中的一个MCS,基站通过下行控制信息中的MCS指示信息向UE指示使用哪个MCS。 在Release-16NB-IoT技术中,MCS指示信息域包含4个比特,而当高层配置参数指示高阶调制被配置时,MCS的配置范围可能增大,由此MCS指示信息可能需要增加到5个比特。考虑到在Release-16NB-IoT技术中,下行控制信息中的子载波指示域包含6个比特,而在15kHz子载波间隔的情况下,所述子载波指示域中的最高位比特是保留状态的,即没有利用起来。所以可以将下行控制信息中子载波指示域的最高位比特作为MCS指示信息的一个比特,这样MCS指示信息就变为5个比特,并且没有额外增加下行控制信息的开销。
在上述申请实施例的基础上,还包括:当高层配置参数指示数据传输支持高阶调制时,下行控制信息中子载波指示域指示子载波信息和调制编码策略集合。
所述子载波信息包含子载波的数量和/或位置序号。
在本申请实施例中,当所述子载波指示域的值小于或等于18时,子载波指示域指示的所述调制编码策略集合包含MCS索引0至K,K大于1。针对MCS0至K,由下行控制信息中的MCS指示域指示配置其中一个MCS。
当所述子载波指示域的值大于或等于12且小于或等于18时,子载波指示域指示的所述调制编码策略集合包含MCS索引0至K,K大于1。
本实施例中,当所述子载波指示域的值大于或等于19时,子载波指示域指示的所述调制编码策略集合包含MCS索引K+1至L-1,K大于1,L为所述第一调制编码策略集合包含的MCS数量,即所述第一调制编码策略集合中关联了调制方式的MCS数量,例如,如果所述第一调制编码策略集合中有MCS索引0至21关联了调制方式,则L=22。
当所述子载波指示域的值大于或等于19且小于或等于25时,子载波指示域指示的所述调制编码策略集合包含MCS索引K+1至L-1。针对MCS K+1至L-1,由下行控制信息中的MCS指示域指示配置其中一个MCS。
在一个具体示例中,所述子载波指示域的值为j,当0≤j≤18时,所述调制编码策略集合包含MCS 0至K。当19≤j≤25时,所述调制编码策略集合包含MCS K+1至L-1。子载波指示域的值对应的信息如表八所示,其中I sc为子载波指示域的值,n sc为子载波索引,I MCS为MCS索引。
表八
Figure PCTCN2021123336-appb-000003
在又一个具体示例中,所述子载波指示域的值为j,当12≤j≤18时,所述调制编码策略集合包含MCS 0至K。当19≤j≤25时,所述调制编码策略集合包含MCS K+1至L-1。子载波指示域的值对应的信息如表九所示,其中I sc为子载波指示域的值,n sc为子载波索引,I MCS为MCS索引。
表九
Figure PCTCN2021123336-appb-000004
在上述申请实施例的基础上,所述第一调制编码策略集合包括的最大调制方式为16正交振幅调制16QAM,且所述第一调制编码策略集合包括以下至少两种:调制编码策略索引与目标码率的对应关系,调制编码策略索引与调制方 法的对应关系和调制编码策略索引与频谱效率的对应关系。
在本申请实施例中,第一调制编码策略集合中包含的最大阶数的调制方式可以为16正交振幅调制。并且第一调制编码策略集合中可以包括调制编码策略索引与目标码率的对应关系以及调制编码策略索引与调制方法的对应关系和调制编码策略索引与频谱效率的对应关系,第一调制边编码策略集合中可以包括调制编码策略索引、调制目标码率和频率利用利率等参数。
在上述申请实施例的基础上,所述述第一调制编码策略集合中最大调制编码策略索引对应的目标码率为658。
在本申请实施例中,所述第一MCS集合为4位MCS表格,包含16个MCS。因为MCS数量有限,所以16QAM关联的MCS支持的最大目标码率只达到658,这个目标码率较低,不能支持更高的数据速率需求。但是,4位MCS指示信息的开销较少,有利于下行控制信息的正确译码。
在上述申请实施例的基础上,所述第一调制编码策略集合中相邻的两个调制编码策略索引对应的频谱效率之差大于或等于0.05。
在第一调制编码策略集合中不存在频谱效率之差小于0.05的两个MCS,也就是说不存在频谱效率相近的两个MCS,其中,频谱效率差值小于0.05用于表示两个MCS的频谱效率相同或十分接近。因为4比特位的信息量有限,没有多余的信息来对应相同或相近的频谱效率,4比特MCS集合应该覆盖更多不同的频谱效率的MCS,这样有利于不同信道状态下的MCS分配。在一个示例性的实施方式中,第一调制编码策略集合可以如表十所示。
表十
MCS索引I MCS 调制阶数Qm 目标码率 频谱效率
0 2 120 0.2344
1 2 157 0.3066
2 2 193 0.3770
3 2 251 0.4902
4 2 308 0.6016
5 2 379 0.7402
6 2 449 0.8770
7 2 526 1.0273
8 2 602 1.1758
9 4 340 1.3281
10 4 378 1.4766
11 4 434 1.6953
12 4 490 1.9141
13 4 553 2.1602
14 4 616 2.4063
15 4 658 2.5703
在上述申请实施例的基础上,第一调制编码策略集合中,对应16正交振幅调制的调制编码策略索引对应的目标码率的最大值为948。
第一MCS集合可以为5比特位的MCS表格,比4比特位的MCS表格包含更多的MCS,因此,5比特位的MCS表格具有足够的MCS数量,所以MCS对应的最大目标码率支持到948。由此,5比特位MCS表格可以支持更高的数据速率需求。第一MCS集合可以包含用于重传的MCS,即MCS只对应调制方式,而不对应调制目标码率和频谱效率。
在一个示例性的实施方式中,第一MCS集合如表十一所示。其中,当pi/2二进制相移键控(Binary Phase Shift Keying,BPSK)调制被使能时,q=1;否则,q=2。MCS 29、30、31为用于重传的MCS,表十一中用于重传的三个MCS也可以定义为MCS 23至31中的任意三个MCS索引。
表十一
Figure PCTCN2021123336-appb-000005
Figure PCTCN2021123336-appb-000006
一个具体示例中,第一MCS集合如表十二所示。其中,MCS 30、31为用于重传的MCS,表十二中用于重传的两个MCS也可以定义为MCS 23至31中的任意两个MCS索引。
表十二
Figure PCTCN2021123336-appb-000007
Figure PCTCN2021123336-appb-000008
本实施例中,所述目标码率等于数据比特的编码码率乘以1024。
图2是本申请实施例提供的一种功率的配置方法的流程图,本实施例可适用于无线通信中支持高阶调制方式的情况,该方法可以由本申请实施例中的功率的配置装置来执行,该装置可以通过软件和/或硬件的方式实现,并一般可以集成在基站中,本申请实施例的方法包括如下步骤:
步骤210、根据对应物理上行共享信道配置的调制编码策略中的调制方式确定所述物理上行共享信道的功率偏移参数。
在本申请实施例中,可以获取为物理上行共享信道配置的调制编码策略,可以根据调制编码策略中的调制方式确定对应的物理上行共享信道配置的功率偏移参数,发送端可以根据功率偏移参数对上行功率进行调整,以提高上行数据传输的性能。
步骤220、根据所述功率偏移参数为所述物理上行共享信道配置发送功率。
可以根据功率偏移参数为物理上行共享信道的功率进行补偿,可以将补偿后的功率作为为物理上行共享信道配置的发送功率。
本申请实施例,通过物理上行共享信道对应的调制方式确定出功率偏移参数,通过功率偏移参数为物理上行共享信道确定发送功率,以提高上行数据传输的性能。
在上述申请实施例的基础上,所述调制方式为低阶调制时,所述功率偏移参数为0,其中,所述低阶调制的调制阶数小于或等于2。
在上述申请实施例的基础上,所述调制方式为高阶调制时,所述功率偏移参数为第一功率偏移,其中,所述高阶阶调制的调制阶数大于或等于4。
在上述申请实施例的基础上,所述第一功率偏移由高层参数指示和/或下行控制信息指示。
基站利用高层参数和/或下行控制信息指示所述第一功率偏移的值;终端接收所述高层参数和/或下行控制信息,确定所述第一功率偏移的值。
在上述申请实施例的基础上,假定所述物理上行共享信道的第一发送功率为P,所述功率偏移参数为δ,则所述物理上行共享信道的发送功率等于P+δ。其中,所述第一发送功率为Release-16版本NB-IoT中的物理上行共享信道的发送功率。
在本申请实施例中,当基站对高阶调制方法进行支持时,需要更高的信噪比来保证正确接收,因此,利用功率偏移参数调节物理上行共享信道的发送功 率,针对高阶调制进行功率调整。本实施例利用功率偏移参数调节物理上行共享信道的发送功率,示例性的,针对16QAM调制进行功率调整,窄带物理上行共享信道(Narrowband PUSCH,NPUSCH)的发送功率由如下公式确定:
Figure PCTCN2021123336-appb-000009
其中,δ为所述功率偏移参数,对于QPSK调制,δ=0;对于16QAM调制,δ= offset。δ offset为所述第一功率偏移,δ offset的值由高层参数指示或者由下行控制信息指示。除δ之外,其他参数都为Release-16版本协议中定义的参数。
P CMAX,c(i)为UE在服务小区c内时隙i上的发送功率,M NPUSCHc,(i)的值与发送带宽有关,对于3.75kHz子载波间隔,该值为1/4,对于15kHz子载波间隔,该值为{1,3,6,12};
P O_NPUSCHc,(j)表示为:
P O_NPUSCHc,(j)=P O_NOMINAL_NPUSCH,c(j)+P O_UE_NPUSCH,c(j)。
对于动态调度NPUSCH,j=1;对于随机接入NPUSCH,j=2。
j=1时,等式右侧两项参数由高层参数给出;j=2时,P O_UE_NPUSCH,c(2)=0,P O_NORMINAL_NPUSCH,c(2)=P O_PREPREAMBLE_Msg3。α c(j)取值为:j=2时,α c(j)=1,j=1时,NPUSCH格式2情况下α c(j)=1,NPUSCH格式1情况下α c(j)由高层参数通知。PL c为UE估计的下行路损。
图3是本申请实施例提供的一种信道质量的上报方法的流程图,本实施例可适用于无线通信中支持高阶调制方式的情况,该方法可以由本申请实施例中的信道质量的上报装置来执行,该装置可以通过软件和/或硬件的方式实现,并一般可以集成在基站中,本申请实施例的方法包括如下步骤:
步骤310、确定信道质量指示集合,所述信道质量指示集合包括信道质量指示与信道质量参数的关联关系,其中,所述信道质量参数包括以下至少一种:调制方式、目标码率、频谱效率、调制编码策略索引、传输块尺寸索引以及重复次数,所述信道质量指示集合包括的最大的调制方式为16正交振幅调制。
信道质量指示(Channel quality indicator,CQI)集合可以由一个或多个CQI组成,每个CQI关联信道质量参数,所述信道质量参数至少包括以下之一:调制方式、目标码率、频谱效率、调制编码策略索引、传输块尺寸索引以及重复次数等信息。所述CQI集合可以是一个CQI表格。
步骤320、基于所述信道质量指示集合上报信道质量。
终端可以向基站上传信道质量指示实现信道质量的上报。
本实施例中,所述CQI集合为一个4比特的CQI表格,其中M个CQI索引用于对应MCS的目标码率或频谱效率,M小于或等于16。但是,MCS的数量大于或等于M,所以,需要从中选择M个MCS,将它们的目标码率或频谱效率与所述M个CQI索引一一对应。
在上述申请实施例的基础上,所述信道质量指示集合包括N个连续的信道质量指示索引,所述N个连续的信道质量指示索引依次对应N个连续的调制编码策略索引分别关联的目标码率或频谱效率,N大于或等于6。
例如,CQI索引1至6对应MCS索引0至5的目标码率或频谱效率,假设MCS 0至5的频谱效率分别为0.1、0.2、0.3、0.4、0.5、0.6,则CQI 1至6分别对应频谱效率0.1、0.2、0.3、0.4、0.5、0.6。
在上述申请实施例的基础上,所述信道质量指示集合中16正交振幅调制对应的最大目标码率为948或658。
所述CQI集合中16QAM对应的最大目标码率与16QAM MCS的最大目标码率相同,在16QAM MCS最大目标码率为948的情况下,所述CQI集合中16QAM对应的最大目标码率为948,在16QAM MCS最大目标码率为658的情况下,所述CQI集合中16QAM对应的最大目标码率为658。
在一个示例性的实施方式中,在所述CQI集合中,16QAM CQI对应的最大码率为658。16QAM传输的最大码率只支持到658,说明对数据速率要求不高,那么在高CQI索引区间,可以将CQI对应间隔的MCS索引关联的目标码率或频谱效率,较粗略的反应信道状态以节省有限的CQI信息,CQI 13、14、15对应MCS 11、13、15关联的目标码率或频谱效率。在较低的CQI区间,将CQI对应连续的MCS关联的目标码率或频谱效率,详细地反应信道状态,以保证数据传输的可靠性,CQI 2至12对应MCS 0至10关联的目标码率或频谱效率。
例如基于表十示出第一MCS表格,CQI 2至12依次对应其中MCS 0至10关联的目标码率或频谱效率,CQI 13至15依次对应其中MCS 11,13,15关联的目标码率或频谱效率。一个CQI表格可以如表十三所示。
表十三
Figure PCTCN2021123336-appb-000010
Figure PCTCN2021123336-appb-000011
在第一CQI集合中,CQI 10至15对应MCS 17至22所关联的目标码率和频谱效率。
在又一个具体示例中,所述第一CQI集合中,16QAM CQI对应的最大码率为948。16QAM传输的最大码率达到948,说明对数据速率要求高,那么在高CQI索引区间,可以将CQI对应连续的MCS关联的目标码率或频谱效率,有利于详细地反映信道状态,提高数据速率,CQI 10至15对应MCS 17至22关联的目标码率或频谱效率。在较低的CQI区间,将CQI对应间隔的MCS关联的目标码率或频谱效率,以保证数据传输的可靠性,较粗略地反应信道状态以节省有限的CQI信息。CQI 2至6对应MCS 0,2,4,6,8关联的目标码率或频谱效率,CQI 7,8,9对应MCS 11,13,15关联的目标码率或频谱效率。
例如基于表十二所述第一MCS表格,CQI 2至6依次对应其中MCS 0,2,4,6,8关联的目标码率或频谱效率,CQI 7至9依次对应其中MCS 11,13,15关联的目标码率或频谱效率,CQI 10至15依次对应其中MCS17至22关联的目标码率或频谱效率。一个CQI表格如表十四所示。
表十四
Figure PCTCN2021123336-appb-000012
本实施例中,所述目标码率等于数据比特的编码码率乘以1024。
图4是本申请实施例提供的一种调制编码策略的配置装置的结构示意图,可执行本申请任意实施例所提供的调制编码策略的配置方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,包括:集合确定模块401和策略配置模块402。
集合确定模块401,用于确定第一调制编码策略集合。
策略配置模块402,用于基于所述第一调制编码策略集合为目标数据配置调制编码策略。
本申请实施例,通过集合确定模块401确定第一调制编码策略集合,策略配置模块402按照第一调制编码策略集合对目标数据配置调制编码策略,实现了对高阶调制方式的支持,可提高窄带物联网的通信性能,增强通信网络质量。
在上述申请实施例的基础上,所述集合确定模块401包括:
数量选择单元,用于根据资源单元的数量确定第一调制编码策略集合,其中,所述第一调制编码策略集合至少包括以下至少之一:调制编码策略索引与调制方式的对应关系,调制编码策略索引与传输块尺寸索引的对应关系。
在上述申请实施例的基础上,所述数量选择单元用于:当配置的资源单元的数量属于第一数量集合或第二数量集合时,所述第一调制编码策略集合包含一个调制编码策略子集,所述调制编码策略子集包含预设数量的调制编码策略,所述预设数量的调制编码策略中每相邻两个调制编码策略对应的TBS索引之差为K,K大于或等于2,其中,所述第一数量集合与所述第二数量集合不同,所述预设数量的取值对应于所述第一数量集合或所述第二数量集合。
在上述申请实施例的基础上,所述数量选择单元还用于:当配置的所述资源单元的数量属于第三数量集合时,所述第一调制编码策略集合中的调制编码策略索引分别从0到15依次对应传输块尺寸索引从0到15。
在上述申请实施例的基础上,所述数量选择单元还用于:当配置的所述资源单元的数量属于第四数量集合时,所述第一调制编码策略集合中传输块尺寸索引的最大索引值为13,并且存在至少一对调制编码策略,所述一对调制编码策略对应的传输块尺寸相同且调制方式不同。
在上述申请实施例的基础上,所述策略配置模块402中配置的调制编码策略的调制方式为16正交幅度调制时,所述目标数据对应的物理共享信道的重复次数小于或等于2。
在上述申请实施例的基础上,还包括:高层配置模块,用于当高层配置参数指示数据传输支持高阶调制时,下行控制信息中子载波指示域的最高位比特作为调制编码策略指示信息的一个比特,所述高阶调制的调制阶数大于或等于4。
在上述申请实施例的基础上,还包括:高层配置模块还用于当高层配置参数指示数据传输支持高阶调制时,下行控制信息中子载波指示域指示子载波信息和调制编码策略集合。
在上述申请实施例的基础上,所述高层配置模块中在所述子载波指示域的值小于或等于18的情况下,子载波指示域指示的所述调制编码策略集合包含 MCS索引0至K,K大于1。
在上述申请实施例的基础上,所述高层配置模块中在所述子载波指示域的值大于或等于19的情况下,子载波指示域指示的所述调制编码策略集合包含MCS索引K+1至L-1,K大于1,L为所述第一调制编码策略集合包含的MCS数量。
在上述申请实施例的基础上,所述集合确定模块401中的第一调制编码策略集合包括的最大调制方式为16正交振幅调制16QAM,且所述第一调制编码策略集合包括以下至少两种:调制编码策略索引与目标码率的对应关系,调制编码策略索引与调制方法的对应关系和调制编码策略索引与频谱效率的对应关系。
在上述申请实施例的基础上,所述集合确定模块401中的第一调制编码策略集合中最大调制编码策略索引对应的目标码率为658。
在上述申请实施例的基础上,所述集合确定模块401中第一调制编码策略集合中相邻的两个调制编码策略索引对应的频谱效率之差大于或等于0.05。
在上述申请实施例的基础上,所述集合确定模块401中第一调制编码策略集合中,对应16正交振幅调制的调制编码策略索引对应的目标码率的最大值为948。
图5是本申请实施例提供的一种功率的配置装置的结构示意图,可执行本申请任意实施例所提供的功率的配置方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,包括:集合确定模块501和策略配置模块502。
偏移参数模块501,用于根据对应物理上行共享信道配置的调制编码策略中的调制方式确定所述物理上行共享信道的功率偏移参数。
功率配置模块502,用于根据所述功率偏移参数为所述物理上行共享信道配置发送功率。
本申请实施例,偏移参数模块501通过物理上行共享信道对应的调制方式确定出功率偏移参数,功率配置模块502通过功率偏移参数为物理上行共享信道进确定发送功率,提高了发送功率确定的准确性。
在上述申请实施例的基础上,所述偏移参数模块501中调制方式为低阶调制时,所述功率偏移参数为0,其中,所述低阶调制的调制阶数小于或等于2。
在上述申请实施例的基础上,所述偏移参数模块501中调制方式为高阶调制时,所述功率偏移参数为第一功率偏移,其中,所述高阶调制的调制阶数大 于或等于4。
在上述申请实施例的基础上,所述偏移参数模块501中第一功率偏移由高层参数指示和/或下行控制信息指示。
图6是本申请实施例提供的一种信道质量的上报装置的结构示意图,可执行本申请任意实施例所提供的信道质量的上报方法,具备执行方法相应的功能模块和有益效果。该装置可以由软件和/或硬件实现,包括:指示集合模块601和质量上报模块602。
指示集合模块601,用于确定信道质量指示集合,所述信道质量指示集合包括信道质量指示与信道质量参数的关联关系,其中,所述信道质量参数包括以下至少一种:调制方式、目标码率、频谱效率、调制编码策略索引、传输块尺寸索引以及重复次数,所述信道质量指示集合包括的最大的调制方式为16正交振幅调制。
质量上报模块602,用于基于所述信道质量指示集合上报信道质量。
在上述申请实施例的基础上,所述指示集合模块601中信道质量指示集合包括N个连续的信道质量指示索引,所述N个连续的信道质量指示索引依次对应N个连续的调制编码策略索引分别关联的目标码率或频谱效率,N大于或等于6。
在上述申请实施例的基础上,所述指示集合模块601中信道质量指示集合中16正交振幅调制对应的最大目标码率为948或658。
图7是本申请实施例提供的一种电子设备的结构示意图,如图7所示,该设备包括处理器70、存储器71、输入装置72和输出装置73;电子设备中处理器70的数量可以是一个或多个,图7中以一个处理器70为例;设备处理器70、存储器71、输入装置72和输出装置73可以通过总线或其他方式连接,图7中以通过总线连接为例。
存储器71作为一种计算机可读存储介质,可用于存储软件程序、计算机可执行程序以及模块,如本申请实施例中调制编码策略的配置、功率的配置装置、信道质量的上报装置中任一对应的模块(集合确定模块401和策略配置模块402、偏移参数模块501和功率配置模块502,或,指示集合模块601和质量上报模块602)。处理器70通过运行存储在存储器71中的软件程序、指令以及模块,从而执行设备的各种功能应用以及数据处理,即实现上述的网络的定时确定方法。
存储器71可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作***、至少一个功能所需的应用程序;存储数据区可存储根据终端的使用所创建的数据等。此外,存储器71可以包括高速随机存取存储器,还可以包括 非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实例中,存储器71可包括相对于处理器70远程设置的存储器,这些远程存储器可以通过网络连接至设备。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
输入装置72可用于接收输入的数字或字符信息,以及产生与设备的用户设置以及功能控制有关的键信号输入。输出装置73可包括显示屏等显示设备。
本申请实施例还提供一种包含计算机可执行指令的存储介质,所述计算机可执行指令在由计算机处理器执行时用于执行一种调制编码策略的配置方法,该方法包括:
确定第一调制编码策略集合;基于所述第一调制编码策略集合为目标数据配置调制编码策略。
和/或,还用于执行一种功率的配置方法,该方法包括:
根据对应物理上行共享信道配置的调制编码策略中的调制方式确定所述物理上行共享信道的功率偏移参数;根据所述功率偏移参数为所述物理上行共享信道配置发送功率。
和/或,还用于执行一种信道质量的上报方法,该方法包括:
确定信道质量指示集合,所述信道质量指示集合包括信道质量指示与信道质量参数的关联关系,其中,所述信道质量参数包括以下至少一种:调制方式、目标码率、频谱效率、调制编码策略索引、传输块尺寸索引以及重复次数,所述信道质量指示集合包括的最大的调制方式为16正交振幅调制;基于所述信道质量指示集合上报信道质量。
本申请实施例所提供的一种包含计算机可执行指令的存储介质,其计算机可执行指令不限于如上所述的方法操作,还可以执行本申请任意实施例所提供的方法中的相关操作。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、***、设备中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。
在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些物理组件或所有物理组件可以被实施为由处理器,如中央处理器、数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术 语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于随机存取存储器(Random Access Memory,RAM)、只读存储器(Read-Only Memory,ROM)、带电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、闪存或其他存储器技术、光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能盘(Digital Versatile Disc,DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (23)

  1. 一种调制编码策略的配置方法,应用于第一节点,包括:
    确定第一调制编码策略集合;
    基于所述第一调制编码策略集合为目标数据配置调制编码策略。
  2. 根据权利要求1所述的方法,其中,所述确定第一调制编码策略集合,包括:
    根据资源单元的数量确定所述第一调制编码策略集合,其中,所述第一调制编码策略集合至少包括以下至少之一:调制编码策略索引与调制方式的对应关系,调制编码策略索引与传输块尺寸索引的对应关系。
  3. 根据权利要求2所述的方法,其中,所述根据资源单元的数量确定所述第一调制编码策略集合,包括:
    在配置的所述资源单元的数量属于第一数量集合或第二数量集合的情况下,所述第一调制编码策略集合包含一个调制编码策略子集,所述调制编码策略子集包含预设数量的调制编码策略,所述预设数量的调制编码策略中每相邻两个调制编码策略对应的传输块尺寸TBS索引之差为K,K大于或等于2,其中,所述第一数量集合与所述第二数量集合不同,所述预设数量的取值对应于所述第一数量集合或所述第二数量集合。
  4. 根据权利要求2所述的方法,其中,所述根据资源单元的数量确定所述第一调制编码策略集合,包括:
    在配置的所述资源单元的数量属于第三数量集合的情况下,所述第一调制编码策略集合中的调制编码策略索引0到调制编码策略索引15依次对应传输块尺寸索引0到传输块尺寸索引15。
  5. 根据权利要求2所述的方法,其中,所述根据资源单元的数量确定所述第一调制编码策略集合,包括:
    在配置的所述资源单元的数量属于第四数量集合的情况下,所述第一调制编码策略集合中传输块尺寸索引的最大索引值为13,并且存在至少一对调制编码策略,每对调制编码策略对应的传输块尺寸相同且调制方式不同。
  6. 根据权利要求2所述的方法,其中,在配置的调制编码策略的调制方式为16正交幅度调制的情况下,所述目标数据对应的物理共享信道的重复次数小于或等于2。
  7. 根据权利要求1所述的方法,还包括:在高层配置参数指示数据传输支持高阶调制的情况下,将下行控制信息中子载波指示域的最高位比特作为调制编码策略指示信息的一个比特,所述高阶调制的调制阶数大于或等于4。
  8. 根据权利要求1所述的方法,还包括:在高层配置参数指示数据传输支持高阶调制的情况下,下行控制信息中子载波指示域指示子载波信息和调制编码策略集合。
  9. 根据权利要求8所述的方法,还包括:在所述子载波指示域的值小于或等于18的情况下,所述子载波指示域指示的所述调制编码策略集合包含调制编码策略索引0至调制编码策略索引K,K大于1。
  10. 根据权利要求8所述的方法,还包括:在所述子载波指示域的值大于或等于19的情况下,所述子载波指示域指示的所述调制编码策略集合包含调制编码策略索引K+1至调制编码策略索引L-1,K大于1,L为所述第一调制编码策略集合包含的调制编码策略数量。
  11. 根据权利要求1所述的方法,其中,所述第一调制编码策略集合包括的最大阶数的调制方式为16正交振幅调制,且所述第一调制编码策略集合包括以下至少两种:调制编码策略索引与目标码率的对应关系,调制编码策略索引与调制方法的对应关系和调制编码策略索引与频谱效率的对应关系。
  12. 根据权利要求11所述的方法,其中,所述第一调制编码策略集合中最大调制编码策略索引对应的目标码率为658。
  13. 根据权利要求11所述的方法,其中,所述第一调制编码策略集合中相邻的两个调制编码策略索引对应的频谱效率之差大于或等于0.05。
  14. 根据权利要求11所述的方法,其中,所述第一调制编码策略集合中,对应16正交振幅调制的调制编码策略索引对应的目标码率的最大值为948。
  15. 一种功率的配置方法,应用于第一节点,包括:
    根据对应物理上行共享信道配置的调制编码策略中的调制方式确定所述物理上行共享信道的功率偏移参数;
    根据所述功率偏移参数为所述物理上行共享信道配置发送功率。
  16. 根据权利要求15所述的方法,其中,在所述调制方式为低阶调制的情况下,所述功率偏移参数为0,其中,所述低阶调制的调制阶数小于或等于2。
  17. 根据权利要求15所述的方法,其中,在所述调制方式为高阶调制的情况下,所述功率偏移参数为第一功率偏移,其中,所述高阶调制的调制阶数大于或等于4。
  18. 根据权利要求17所述的方法,其中,所述第一功率偏移由高层参数和下行控制信息中的至少之一指示。
  19. 一种信道质量的上报方法,应用于第二节点,包括:
    确定信道质量指示集合,所述信道质量指示集合包括信道质量指示与信道质量参数的关联关系,其中,所述信道质量参数包括以下至少一种:调制方式、目标码率、频谱效率、调制编码策略索引、传输块尺寸索引以及重复次数,所述信道质量指示集合包括的最大阶数的调制方式为16正交振幅调制;
    基于所述信道质量指示集合上报信道质量。
  20. 根据权利要求19所述的方法,其中,所述信道质量指示集合包括N个连续的信道质量指示索引,所述N个连续的信道质量指示索引依次对应N个连续的调制编码策略索引分别关联的目标码率或频谱效率,N大于或等于6。
  21. 根据权利要求19所述的方法,其中,所述信道质量指示集合中16正交振幅调制对应的最大目标码率为948或658。
  22. 一种电子设备,包括:
    至少一个处理器;
    存储器,设置为存储至少一个程序;
    当所述至少一个程序被所述至少一个处理器执行,使得所述至少一个处理器实现如权利要求1-14或15-18或19-21中任一项所述的方法。
  23. 一种计算机可读存储介质,存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1-14或15-18或19-21中任一项所述的方法。
PCT/CN2021/123336 2020-10-16 2021-10-12 调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质 WO2022078343A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011112416.4A CN112511268A (zh) 2020-10-16 2020-10-16 策略配置、功率配置和质量上报方法、设备和介质
CN202011112416.4 2020-10-16

Publications (1)

Publication Number Publication Date
WO2022078343A1 true WO2022078343A1 (zh) 2022-04-21

Family

ID=74953792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/123336 WO2022078343A1 (zh) 2020-10-16 2021-10-12 调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质

Country Status (2)

Country Link
CN (1) CN112511268A (zh)
WO (1) WO2022078343A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599595A (zh) * 2023-07-05 2023-08-15 中国电信股份有限公司 波长标签产生方法和装置、波长标签加载***和存储介质
CN116827487A (zh) * 2023-08-29 2023-09-29 极芯通讯技术(南京)有限公司 码率控制方法、装置及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质
CN115173989B (zh) * 2021-04-02 2024-06-04 华为技术有限公司 数据传输方法及装置
CN113194481B (zh) * 2021-04-25 2023-08-11 国网电力科学研究院有限公司 上行链路资源分配与调度方法、装置及***
CN116470987A (zh) * 2022-01-17 2023-07-21 华为技术有限公司 编码方法、解码方法和通信装置
CN115225207B (zh) * 2022-08-05 2024-04-12 广东明创软件科技有限公司 数据传输方法及相关装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637946A (zh) * 2013-10-16 2016-06-01 株式会社Ntt都科摩 移动通信***
CN107046453A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及***
CN109150478A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信道质量反馈方法及装置
US20190208510A1 (en) * 2018-01-04 2019-07-04 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in wireless communication system
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105637946A (zh) * 2013-10-16 2016-06-01 株式会社Ntt都科摩 移动通信***
CN107046453A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 数据共享信道的传输参数的确定方法、装置及***
CN109150478A (zh) * 2017-06-16 2019-01-04 华为技术有限公司 信道质量反馈方法及装置
US20190208510A1 (en) * 2018-01-04 2019-07-04 Samsung Electronics Co., Ltd. Apparatus and method for allocating resources in wireless communication system
CN112511268A (zh) * 2020-10-16 2021-03-16 中兴通讯股份有限公司 策略配置、功率配置和质量上报方法、设备和介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116599595A (zh) * 2023-07-05 2023-08-15 中国电信股份有限公司 波长标签产生方法和装置、波长标签加载***和存储介质
CN116599595B (zh) * 2023-07-05 2023-09-22 中国电信股份有限公司 波长标签产生方法和装置、波长标签加载***和存储介质
CN116827487A (zh) * 2023-08-29 2023-09-29 极芯通讯技术(南京)有限公司 码率控制方法、装置及存储介质
CN116827487B (zh) * 2023-08-29 2023-11-10 极芯通讯技术(南京)有限公司 码率控制方法、装置及存储介质

Also Published As

Publication number Publication date
CN112511268A (zh) 2021-03-16

Similar Documents

Publication Publication Date Title
WO2022078343A1 (zh) 调制编码策略的配置方法、功率的配置方法、信道质量的上报方法、设备和介质
JP5848797B2 (ja) 上りリンクリソース割り当て方法、端末装置、プロセッサ、及び基地局
KR102596353B1 (ko) 저비용 단말을 위한 링크 적응용 시스템 및 방법
KR101086742B1 (ko) 공유 제어 채널 구조
AU2010226635B2 (en) Uplink transmission power control in multi-carrier communication systems
EP3142278B1 (en) Modulation processing method and apparatus for high-order coding, base station, and terminal
WO2017121417A1 (zh) 一种确定编码调制参数的方法、装置和***
JP7319360B2 (ja) データ伝送方法及び装置
EP3291476A1 (en) Method and device for signaling control information in carrier aggregation system
CN102223720B (zh) 一种在pusch传输上行控制信息的方法及装置
JP7197280B2 (ja) 端末装置、基地局装置、および、通信方法
US10673558B2 (en) Configuring transmission parameters in a cellular system
US11101960B2 (en) Method for transmitting uplink control information and apparatus
CN110474707B (zh) 一种传输方法、装置和***
US20230118018A1 (en) Wireless data transmissions using parity blocks
WO2020013030A1 (ja) 端末装置、基地局装置、および、通信方法
CN102263608B (zh) 一种自适应编码调制的方法及***
CN111385879B (zh) 一种动态调节pusch资源的方法、装置和设备
CN101023702B (zh) 通过接入信道高效发送信号
CN113612595B (zh) 上行控制信息传输方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21879387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 31/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21879387

Country of ref document: EP

Kind code of ref document: A1