WO2022077690A1 - 支撑结构、柔性显示面板及电子设备 - Google Patents

支撑结构、柔性显示面板及电子设备 Download PDF

Info

Publication number
WO2022077690A1
WO2022077690A1 PCT/CN2020/129345 CN2020129345W WO2022077690A1 WO 2022077690 A1 WO2022077690 A1 WO 2022077690A1 CN 2020129345 W CN2020129345 W CN 2020129345W WO 2022077690 A1 WO2022077690 A1 WO 2022077690A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
bending
hollow
support structure
strip
Prior art date
Application number
PCT/CN2020/129345
Other languages
English (en)
French (fr)
Inventor
汪文强
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Priority to US17/263,577 priority Critical patent/US20240205317A1/en
Publication of WO2022077690A1 publication Critical patent/WO2022077690A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0266Details of the structure or mounting of specific components for a display module assembly
    • H04M1/0268Details of the structure or mounting of specific components for a display module assembly including a flexible display panel
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • H04M1/0208Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings characterized by the relative motions of the body parts
    • H04M1/0214Foldable telephones, i.e. with body parts pivoting to an open position around an axis parallel to the plane they define in closed position

Definitions

  • the present application relates to the field of display technology, in particular to the field of flexible display technology, and in particular to a support structure, a flexible display panel and an electronic device.
  • OLED Organic Light Emitting Diodes
  • LED Light Based on the original technology of Emitted Diode, light-emitting diode
  • the thickness of the OLED module can be less than 1mm, which has been widely used in terminal display devices such as mobile phones and tablet computers.
  • the relatively expensive price leads to a relatively low popularity of the product.
  • One of the important reasons is that the production yield of flexible displays is low.
  • the bottom layer of the module stacking structure is usually a support layer of stainless steel (SUS: a stainless steel code) material.
  • SUS stainless steel code
  • the original soft module stack is bonded together by an adhesive layer, which improves the overall flatness of the screen module, making it easier to disassemble and assemble the screen and the whole machine.
  • the introduction of the support layer improves the yield problem of the module stack to a certain extent. When the thickness of the support layer is less than 30 ⁇ m, its stiffness cannot meet the actual requirements.
  • the thickness of the support layer is often designed to be more than 100 ⁇ m, which can Obtain a certain stiffness to ensure good support, while ensuring better bendability.
  • the bending shape of the modular stack structure is more complex and the bending radius is smaller, such as the water drop shape and the wedge shape bending, more stringent bending performance is required.
  • the modulus of the support layer itself is more than 1,000 times apart from the adhesive layer to which it is bonded, and the adhesive layer has a typical viscoplastic material, the two are often deformed due to inconsistency during the bending process.
  • the local fracture of the support layer and the debonding (peeling) phenomenon between the film layers are the most common in the OLED module stacking in the form of water droplets and wedge-shaped bending, and have always been an important factor affecting the overall yield.
  • the present application provides a support structure, a flexible display panel and an electronic device, which solve the problem of poor bending performance of the support layer when the bending radius is smaller.
  • the present application provides a support structure, the support structure is provided with a bending area, and the bending area is provided with a plurality of rows of first strip-shaped hollow structures along the bending direction; A circular hollow structure is arranged between the first strip hollow structures, and the circular hollow structure is located between the other two first strip hollow structures adjacent to each other.
  • the support structure further includes a second strip-shaped hollow structure; the second strip-shaped hollow structure penetrates the edge and/or side surface of the bending region .
  • the first strip-shaped hollow structure and the second strip-shaped hollow structure located in the same row are provided with the Round cutout structure.
  • the first strip-shaped hollow structure includes first semicircular hollow substructures, A first elongated hollow substructure and a second semicircular hollowed substructure; the first elongated hollowed substructure is tangentially connected to the first semicircular hollowed substructure and the second semicircular hollowed substructure.
  • the circular hollow structure in the longitudinal direction, is located adjacent to the first semicircular hollow substructure and the adjacent hollow substructures. /or between the second semicircular hollow sub-structures; in the bending direction, the circular hollow structure is located between two adjacent first elongated hollow sub-structures in alternate rows.
  • the radius of the circular hollow structure is the same as the radius of the first semicircular hollow substructure or the second semicircular hollow structure.
  • the radii of the hollow substructures are equal.
  • the width of the first elongated hollow sub-structure is equal to the diameter of the circular hollow structure.
  • the support structure includes at least one of the first sub-feature, the second sub-feature, the third sub-feature, and the fourth sub-feature One; wherein, the first sub-feature: in the length direction, between the circular hollow structure and the adjacent first semi-circular hollow sub-structure or the second semi-circular hollow sub-structure The distance is 0.1mm to 0.24mm; the second sub-feature: in the bending direction, the distance between two adjacent first elongated hollow sub-structures is between 0.06mm and 0.14mm; The third sub-feature: the length of the first elongated hollow sub-structure is greater than or equal to 3 mm; and the fourth sub-feature: the radius of the circular hollow structure is less than or equal to 0.1 mm.
  • a preparation material of the support structure includes at least one of manganese, aluminum, and magnesium.
  • the bending area includes a first bending sub-area, a second bending sub-area and a third bending sub-region; the width of the second bending sub-region along the bending direction is greater than the width of the first bending sub-region along the bending direction and the width of the third bending sub-region along the bending direction The sum of the widths of the directions.
  • an interval distance from the second bending sub-region to the first bending sub-region or the third bending sub-region is greater than The distance between two adjacent first strip-shaped hollow structures in the bending direction.
  • a distance from the second bending sub-region to the first bending sub-region is equal to the second bending sub-region The separation distance to the third bent sub-region.
  • the present application provides a flexible display panel including the support structure in any one of the foregoing embodiments.
  • the tensile breaking strength of the support structure is greater than or equal to 800 MPa; and the surface flatness of the support structure is less than or equal to 0.25 mm.
  • the present application provides an electronic device including the flexible display panel described in any one of the foregoing embodiments.
  • the support structure, flexible display panel and electronic device provided by the present application can disperse the local concentration of stress and improve the bending performance of the support structure by reasonably matching the corresponding strip hollow structure and circular hollow structure in the bending area. It can adapt to different bending radii; at the same time, its ductility is improved, which ensures the coordination of deformation between the support layer and the film layer in flexible display panels and electronic equipment, and can reduce the risk of fracture of the support structure and the separation between the film layers. sticking phenomenon.
  • FIG. 1 is a schematic structural diagram of a support structure provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the bending area in FIG. 1 .
  • FIG. 3 is a schematic diagram of relative positions of the strip-shaped hollow structure and the circular hollow structure in FIG. 2 .
  • FIG. 4 is a schematic structural diagram of the circular hollow structure in FIG. 2 .
  • FIG. 5 is a schematic diagram of the trend relationship between the distance L and the local peak stress provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the trend relationship between the distance X and the local peak stress provided by the embodiment of the present application.
  • FIG. 7 is a schematic diagram of the trend relationship between the distance Y and the local peak stress provided by the embodiment of the present application.
  • FIG. 8 is a schematic diagram of the trend relationship between the radius R and the local peak stress according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a flexible display panel provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a water drop-shaped folding mobile phone according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of stress distribution when a water drop-shaped folding mobile phone according to an embodiment of the present application is bent.
  • this embodiment provides a support structure 20 .
  • the support structure 20 is provided with a bending area 200 , and the bending area 200 is provided with a plurality of rows of first strip-shaped hollow structures 260 along the bending direction.
  • At least one first strip-shaped hollow structure 260 in the same row is arranged along its length direction, that is to say, the first strip-shaped hollow structures 260 in the same row are arranged in alignment, for example, the first strip-shaped hollow structures 260 in the same row
  • the centerlines of the hollow structures 260 along the length direction of the hollow structures 260 are coincident with each other or adjacent to each other; wherein, the length direction is different from the bending direction, specifically, the bending direction is substantially perpendicular to the length direction; then A circular hollow structure 250 is disposed between two adjacent first strip hollow structures 260 in the same row, and the circular hollow structure 250 is located between the other two first strip hollow structures 260 adjacent to each other.
  • the local concentration of stress can be dispersed, the bending performance of the support structure 20 can be improved, and it can adapt to different bending conditions.
  • the bending radius is improved, and the ductility is improved, which can effectively reduce or eliminate the local fracture phenomenon of the support structure 20 during the bending process.
  • the preparation material of the support structure 20 in this embodiment may include, but is not limited to, at least one of manganese, aluminum, and magnesium.
  • the first strip-shaped hollow structure 260 includes a first semi-circular hollow sub-structure 261 , a first long strip-shaped hollow sub-structure 262 and a second Two semi-circular hollow sub-structures 263 ; the first elongated hollow sub-structure 262 is tangentially connected to the first semi-circular hollow sub-structure 261 and the second semi-circular hollow sub-structure 263 .
  • the circular hollow structures 250 are located between the adjacent first semicircular hollow substructures 261 and/or the second semicircular hollow substructures 263; in the bending direction, the circular hollow structures 250 are located in the interlaced phase. between two adjacent first elongated hollow sub-structures 262 .
  • the radius of the circular hollow structure 250 is equal to the radius of the first semi-circular hollow sub-structure 261 or the radius of the second semi-circular hollow sub-structure 263 ;
  • the width is equal to the diameter of the circular hollow structure 250 .
  • the bending area 200 includes a first bending sub-area 210 , a second bending sub-area 220 and a third bending sub-area 230 which are arranged at intervals along the bending direction.
  • the corresponding bending sub-areas are spaced by non-bending areas 100, and the bending area 200 has symmetrically arranged non-bending areas 100 on both sides along the bending direction, or bending areas.
  • the non-bending regions 100 provided on both sides of the 200 along the bending direction are symmetrically distributed along the centerline of the support structure 20; and the width of the second bending sub-region 220 along the bending direction is larger than that of the first bending sub-region 210 The sum of the width along the bending direction and the width of the third bending sub-region 230 along the bending direction.
  • the separation distance from the second bending sub-region 220 to the first bending sub-region 210 may be, but not limited to, equal to the separation distance from the second bending sub-region 220 to the third bending sub-region 230 .
  • the distance from the second bending sub-region 220 to the first bending sub-region 210 or the third bending sub-region 230 is greater than the distance between two adjacent first strip-shaped hollow structures 260 in the bending direction.
  • setting a plurality of corresponding sub-bending regions 200 in the bending region 200 can further adapt to a smaller bending radius, and at the same time can meet the requirements for the bending shape.
  • the support structure 20 further includes a second strip-shaped hollow structure 270 ; the second strip-shaped hollow structure 270 penetrates the edge and/or side surface of the bending region 200 . It can be understood that the provision of the second strip-shaped hollow structure 270 can further increase the ductility of the edge region of the support structure, and can also disperse the stress concentration in the non-edge region.
  • a circular hollow structure 250 is disposed between the first strip-shaped hollow structure 260 and the second strip-shaped hollow structure 270 in the same row. It should be noted that the first strip-shaped hollow structures 260 are arranged row by row, while the second strip-shaped hollow structures 270 are arranged in interlaced rows. The interlaced second strip-shaped hollow structures 270 can improve the ductility and simultaneously It can be ensured that the supporting structure 20 has a corresponding rigidity.
  • the second strip-shaped hollow structure 270 includes a third semi-circular hollow sub-structure 271 and a second elongated hollow sub-structure 272 that are connected to and circumscribed;
  • the width of the hollow sub-structure 272 is the same as the width of the first long hollow sub-structure 262, the length of the second long hollow sub-structure 272 is less than or equal to the length of the first long hollow sub-structure 262;
  • the radius of 271 is equal to the radius of the circular hollow structure 250 .
  • the length L of the first elongated hollow sub-structure 262 can be selected in the range of 3 mm to 5.7 mm, wherein, when the length L of the first elongated hollow sub-structure 262 is 3 mm, the corresponding local peak stress is 1100 MPa When the length L of the first elongated hollow substructure 262 is 3.7mm, the corresponding local peak stress is about 810MPa; when the length L of the first elongated hollow substructure 262 is 4.2mm, the corresponding local peak stress When the length L of the first elongated hollow sub-structure 262 is 4.7 mm, the corresponding local peak stress is about 700 MPa; when the length L of the first elongated hollow sub-structure 262 is 5.2 mm, the corresponding local peak stress is about 700 MPa.
  • the peak stress is about 600MPa; when the length L of the first elongated hollow substructure 262 is 5.7 mm, the corresponding local peak stress is about 520MPa; therefore, considering the optimization of the local peak stress, the first elongated hollow substructure can be selected
  • the length L of the structure 262 is greater than or equal to 3 mm, and the corresponding length L of the first elongated hollow sub-structure 262 can also be selected according to the magnitude of the local peak stress that the support structure 20 can accommodate.
  • the above simulation data is based on the distance X between the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 263 being 0.16 mm.
  • the distance Y between the two adjacent first elongated hollow sub-structures 262 above is 0.08 mm, and the corresponding trend diagram when the radius R of the circular hollow structure 250 is 0.1 mm.
  • the distance X between the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 263 is from 100 ⁇ m to 240 ⁇ m
  • the local peak stress first decreased and then increased, indicating that the distance X between the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 263 has a better value.
  • the local peak stress when the distance X between the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 263 is sequentially increased from 100 ⁇ m, 120 ⁇ m, 140 ⁇ m to 160 ⁇ m, the local peak stress
  • the distance X between the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 263 decreases from about 900 MPa to about 600 MPa. In the process of increasing to 240 ⁇ m, the local peak stress increases from about 600 MPa to about 950 MPa.
  • the distance X between the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 263 can be selected in the range of 120 ⁇ m to 180 ⁇ m, Of course, as a better solution for weakening the local peak stress, it can also be selected at about 160 ⁇ m.
  • the above simulation data is based on the length L of the first elongated hollow sub-structure 262 being 4.2 mm, and the distance Y between the two adjacent first elongated hollow sub-structures 262 in the bending direction.
  • the corresponding trend diagram when the radius R of the circular hollow structure 250 is 0.08mm and 0.1mm.
  • the local peak stress It first descends and then rises, indicating that the distance Y between the two adjacent first elongated hollow sub-structures 262 in the bending direction has a better selection area, neither the bigger the better nor the smaller the better.
  • the local peak stress decreases from about 800 MPa to nearly 600 MPa; while in the bending direction
  • the distance Y between two adjacent first elongated hollow sub-structures 262 increases from 80 ⁇ m, 100 ⁇ m, 120 ⁇ m to 140 ⁇ m
  • the local peak stress increases from nearly 600 MPa to about 1300 MPa. Therefore, as a better choice, the distance Y between two adjacent first elongated hollow sub-structures 262 in the bending direction can be selected in the range of 60 ⁇ m to 100 ⁇ m.
  • the treatment plan of the local peak stress can also be selected to be around 80 ⁇ m.
  • the above simulation data is based on the length L of the first elongated hollow sub-structure 262 being 4.2 mm, the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 261.
  • the radius R of the circular hollow structure 250 when the radius R of the circular hollow structure 250 increases from 60 ⁇ m, 75 ⁇ m, 100 ⁇ m, 110 ⁇ m, and 125 ⁇ m to 150 ⁇ m, the local peak stress also increases from about 400 MPa to 1650 MPa. Left and right, the smaller the radius R of the circular hollow structure 250, the better. Therefore, as a better choice, the radius R of the circular hollow structure 250 can be selected in the range of less than or equal to 120 ⁇ m, of course, as a better solution to weaken the local peak stress, it can also be selected in the range of 100 ⁇ m about.
  • the above simulation data is based on the length L of the first elongated hollow sub-structure 262 being 4.2 mm, the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 261.
  • the corresponding trend diagram when the distance X between the sub-structures 263 is 0.16 mm, and the distance Y between the two adjacent first elongated hollow sub-structures 262 in the bending direction is 0.08 mm.
  • first strip-shaped hollow structure 260 , the circular hollow structure 250 and the second strip-shaped hollow structure 270 are all formed by etching, and are required to be free from foreign objects, oil stains, and defects after processing, and be bent after forming.
  • the folding area 200 is kept flat and has a good appearance, ensuring no side etching and no over-etching, thereby ensuring the uniformity of the respective dimensions of the first strip-shaped hollow structure 260 , the circular hollow structure 250 and the second strip-shaped hollow structure 270 .
  • first strip-shaped hollow structure 260 the circular hollow structure 250 and the second strip-shaped hollow structure 270 are uniform, and the respective edges are free of burrs, micro-cracks, and the like.
  • the optimal size of the optimal substructure for the design of the support structure 20 can be determined.
  • the value and the optimal range are: 4.2mm ⁇ the length L of the first elongated hollow sub-structure 262 ⁇ 5.2mm, the circular hollow structure 250 and the adjacent first semi-circular hollow sub-structure 261 or the second semi-circular hollow sub-structure 261
  • the present application provides a flexible display panel, which includes the support structure 20 in any of the above-mentioned embodiments.
  • the tensile breaking strength of the support structure 20 is greater than or equal to 1600MPa; and the surface flatness of the support structure 20 is less than or equal to 0.25mm.
  • the flexible display panel further includes a protective film layer 10 ; the protective film layer 10 is located on one side of the support structure 20 and away from the flexible substrate 40 ; the protective film layer 10 covers at least the bending region 200 .
  • the protective film layer 10 is a linear elastic material.
  • the flexible display panel further includes a buffer layer 30 ; the buffer layer 30 is located between the flexible substrate 40 and the support structure 20 , and the buffer layer 30 is a superelastic material with good energy absorption and buffering effect.
  • the flexible display panel further includes a display device layer 50 , a polarizer 60 , an optical adhesive layer 70 and a protective cover 80 which are disposed on the other side of the flexible substrate 40 and are stacked in sequence.
  • the flexible display panel is further provided with at least one circular hole 90; the circular hole 90 is arranged through the protective film layer 10, the support structure 20, the buffer layer 30, the flexible substrate 40, the display device layer 50, the polarizer 60, and the optical adhesive layer 70 and the protective cover plate 80 , and the circular hole 90 is disposed in the non-bending area 100 of the support structure 20 .
  • the circular hole 90 can be, but not limited to, a camera hole.
  • the modulus of the protective film layer 10 , the buffer layer 30 , the flexible substrate 40 , the polarizer 60 , the optical adhesive layer 70 and the protective cover plate 80 are relatively low and have good bendability, among which the optical
  • the adhesive layer 70 is a typical viscoelastic transparent material; the protective cover 80 , the polarizer 60 , and the flexible substrate 40 are all linear elastic materials.
  • the above-mentioned support structure 20 and the flexible display panel in the present application can be applied, but not limited to, in the field of foldable display, and can also be applied in the field of roll-up display, or in the field of large-screen display, or in the field of expandable display,
  • tablet phones, flexible folding phones, full-screen phones, tablet computers it can also be applied to rollable mobile phones, or rollable tablet computers, and can also be applied to various electronic display devices, which can improve the bending of the metal support structure 20.
  • the ductility of the area 200 can effectively reduce the local tensile modulus of the original full-face support plate structure; it can realize the characteristics of coordinated deformation of the optical adhesive layer glued to it during the bending process; in addition, the process of implementing the present application
  • the idea of shape optimization and size optimization design is adopted to reasonably design the periodic special combination hole substructure of the above design, and the optimal structure size of the hole substructure is determined in combination with the simulation design optimization and verification method, so as to reduce the stress.
  • the concentration phenomenon reduces the risk of fracture failure of the support structure 20 caused by excessive local stress during the bending process.
  • the present application provides an electronic device, which includes the support structure 20 in any of the above embodiments.
  • the electronic device can be various devices with a display function with a small bending radius, such as, but not limited to, a mobile phone in a wedge-shaped bending shape, or a flexible water drop-shaped folding mobile phone.
  • the flexible water drop-shaped folding mobile phone includes the support structure 20 or the flexible display panel in any of the above embodiments, a frame 201 located on one side of the support structure 20 , and a frame 201 located between the support structure 20 and the frame 201 .
  • each hollow structure designed in the present disclosure has a better stress dispersion effect when bending inward as shown in FIG.
  • the width of the second bending sub-region 220 along the bending direction is designed. It is greater than the sum of the width of the first bending sub-region 210 along the bending direction and the width of the third bending sub-region 230 along the bending direction, which is beneficial to realize that the bending region of the folding mobile phone presents a more rounded arc appearance, and It is beneficial to be able to withstand higher external force extrusion without breaking or damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种支撑结构(20)、柔性显示面板及电子设备,通过在弯折区(200)中合理搭配对应的条形镂空结构(260,270)与圆形镂空结构(250),可以分散应力的局部集中情况,提高支撑结构(20)的弯折性能,能够适应不同的弯折半径;同时提高了其延展性,保证了在柔性显示面板及电子设备中支撑层与膜层之间形变的协调性。

Description

支撑结构、柔性显示面板及电子设备 技术领域
本申请涉及显示技术领域,尤其涉及柔性显示技术领域,具体涉及一种支撑结构、柔性显示面板及电子设备。
背景技术
有机发光二极管(OLED,Organic Light Emitted Diode)显示技术已日趋成熟,OLED模组叠构在LED(Light Emitted Diode,发光二极管)原有技术的基础之上,有效地降低了模组叠构的整体厚度,OLED模组厚度可以做到小于1mm,已经广泛应用于手机、平板电脑等终端显示设备上,但较为昂贵的价格导致产品的普及性相对较低,其重要原因之一是柔性显示屏的生产良率较低。
当前阶段,可折叠柔性显示模组在生产过程中,最为常见的现象是模组叠构的膜层材料之间出现脱粘、断裂失效等问题,是影响产品的使用寿命和生产良率主要原因之一。
在柔性OLED模组叠构的制程中,为保证模组叠构具备良好的整体平整性,模组叠构的底层通常采用不锈钢板(SUS:一种不锈钢代号)材料的支撑层,利用其本身良好的平整度和不易变形的特点,将原本较软的模组叠构通过胶层粘连为一体,提高了屏幕模组的整体平整性,使得屏幕与整机组装搭配时更易于拆装。支撑层的引入从一定程度上改善了模组叠构的良率问题,当支撑层的厚度低于30μm时,其刚度又无法满足实际要求,因此常常将支撑层的厚度设计在100μm以上,可以获取一定的刚度以保证良好的支撑性,同时保证较优的可弯折性能。然而当模组叠构的弯折形态更为复杂、弯折半径更小时,如水滴型、楔形形态弯折,则需要更为严苛的弯折性能。
往往由于支撑层本身的模量相对于与其粘接的胶层相隔1000倍以上,且胶层具有典型的粘塑性材料,在弯折过程中两者之间因受变形不协调,往往极易出现支撑层的局部断裂以及膜层之间的脱粘(Peeling)现象,这一现象,在水滴型、楔形弯折形态的OLED模组叠构中最为常见,一直是影响整体良率的重要原因。
技术问题
本申请提供一种支撑结构、柔性显示面板及电子设备,解决了弯折半径更小时支撑层的弯折性能不佳的问题。
技术解决方案
第一方面,本申请提供一种支撑结构,所述支撑结构设置有弯折区,所述弯折区沿弯折方向设置有多行的第一条形镂空结构;同行相邻的两个所述第一条形镂空结构之间设置有圆形镂空结构,且所述圆形镂空结构位于隔行相邻的另两个所述第一条形镂空结构之间。
基于第一方面,在第一方面的第一种实施方式中,所述支撑结构还包括第二条形镂空结构;所述第二条形镂空结构贯穿所述弯折区的边缘和/或侧面。
基于第一方面的第一种实施方式,在第一方面的第二种实施方式中,位于同一行的所述第一条形镂空结构与所述第二条形镂空结构之间设置有所述圆形镂空结构。
基于第一方面,在第一方面的第三种实施方式中,所述第一条形镂空结构包括在所述第一条形镂空结构的长度方向上依次排列的第一半圆状镂空子结构、第一长条镂空子结构以及第二半圆状镂空子结构;所述第一长条镂空子结构与所述第一半圆状镂空子结构和所述第二半圆状镂空子结构相切连接。
基于第一方面的第三种实施方式,在第一方面的第四种实施方式中,在所述长度方向上,所述圆形镂空结构位于相邻的所述第一半圆状镂空子结构和/或所述第二半圆状镂空子结构之间;在所述弯折方向上,所述圆形镂空结构位于隔行相邻的两个所述第一长条镂空子结构之间。
基于第一方面的第三种实施方式,在第一方面的第五种实施方式中,所述圆形镂空结构的半径与所述第一半圆状镂空子结构的半径或所述第二半圆状镂空子结构的半径相等。
基于第一方面的第五种实施方式,在第一方面的第六种实施方式中,所述第一长条镂空子结构的宽度与所述圆形镂空结构的直径相等。
基于第一方面的第三种实施方式,在第一方面的第七种实施方式中,所述支撑结构包括第一子特征、第二子特征、第三子特征以及第四子特征中的至少一个;其中,所述第一子特征:在所述长度方向上,所述圆形镂空结构与相邻的所述第一半圆状镂空子结构或者所述第二半圆状镂空子结构之间的距离为0.1mm至0.24mm;所述第二子特征:在所述弯折方向上,相邻的两个所述第一长条镂空子结构之间的距离为0.06mm至0.14mm之间;所述第三子特征:所述第一长条镂空子结构的长度大于或者等于3mm;以及所述第四子特征:所述圆形镂空结构的半径小于或者等于0.1mm。
基于第一方面的上述任一种实施方式,在第一方面的第八种实施方式中,所述支撑结构的制备材料包括锰、铝以及镁中的至少一种。
基于第一方面的上述任一种实施方式,在第一方面的第九种实施方式中,所述弯折区包括沿弯折方向依次间隔排列的第一弯折子区、第二弯折子区以及第三弯折子区;所述第二弯折子区沿所述弯折方向的宽度大于所述第一弯折子区沿所述弯折方向的宽度与所述第三弯折子区沿所述弯折方向的宽度之和。
基于第一方面的第九种实施方式,在第一方面的第十种实施方式中,所述第二弯折子区至所述第一弯折子区或者所述第三弯折子区的间隔距离大于所述弯折方向上相邻的两个所述第一条形镂空结构之间的距离。
基于第一方面的第九种实施方式,在第一方面的第十一种实施方式中,所述第二弯折子区至所述第一弯折子区的间隔距离等于所述第二弯折子区至所述第三弯折子区的间隔距离。
第二方面,本申请提供一种柔性显示面板,其包括上述任一种实施方式中的支撑结构。
基于第二方面,在第二方面的第一种实施方式中,所述支撑结构的拉伸断裂强度大于或者等于800MPa;且所述支撑结构的表面平整度小于或者等于0.25mm。
第三方面,本申请提供一种电子设备,其包括上述实施方式中任一项所述的柔性显示面板。
有益效果
本申请提供的支撑结构、柔性显示面板及电子设备,通过在弯折区中合理搭配对应的条形镂空结构与圆形镂空结构,可以分散应力的局部集中情况,提高支撑结构的弯折性能,能够适应不同的弯折半径;同时提高了其延展性,保证了在柔性显示面板及电子设备中支撑层与膜层之间形变的协调性,可以降低支撑架构断裂的风险以及膜层间的脱粘现象。
附图说明
图1为本申请实施例提供的支撑结构的结构示意图。
图2为图1中弯折区的结构示意图。
图3为图2中条形镂空结构与圆形镂空结构的相对位置示意图。
图4为图2中圆形镂空结构的结构示意图。
图5为本申请实施例提供的距离L与局部峰值应力的趋势关系示意图。
图6为本申请实施例提供的距离X与局部峰值应力的趋势关系示意图。
图7为本申请实施例提供的距离Y与局部峰值应力的趋势关系示意图。
图8为本申请实施例提供的半径R与局部峰值应力的趋势关系示意图。
图9为本申请实施例提供的柔性显示面板的结构示意图。
图10为本申请实施例提供的水滴型折叠手机的结构示意图。
图11为本申请实施例提供的水滴型折叠手机弯折时的应力分布示意图。
本发明的实施方式
为使本申请的目的、技术方案及效果更加清楚、明确,以下参照附图并举实施例对本申请进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。
请参阅图1至图4,本实施例提供了一种支撑结构20,支撑结构20设置有弯折区200,弯折区200沿弯折方向设置有多行的第一条形镂空结构260,同一行的至少一个第一条形镂空结构260是沿其长度方向排列的,也就是说,位于同一行的第一条形镂空结构260是对齐设置的,例如,同一行的这些第一条形镂空结构260各自沿其长度方向上的中心线是相互重合的或者是相邻的;其中,长度方向是不同于弯折方向的,具体来说,弯折方向是大致垂直于长度方向的;然后在同行相邻的两个第一条形镂空结构260之间设置有圆形镂空结构250,且圆形镂空结构250位于隔行相邻的另两个第一条形镂空结构260之间。
需要进行说明的是,通过在弯折区200中合理搭配对应的条形镂空结构与圆形镂空结构250,可以分散应力的局部集中情况,提高支撑结构20的弯折性能,能够适应不同的弯折半径,同时提高了其延展性,可以有效降低或者消除支撑结构20在弯折过程中出现的局部断裂现象。
其中,本实施例中支撑结构20的制备材料可以但不限于包括锰、铝以及镁中的至少一种。
如图2所示,其中,第一条形镂空结构260包括在第一条形镂空结构260的长度方向上依次排列的第一半圆状镂空子结构261、第一长条镂空子结构262以及第二半圆状镂空子结构263;第一长条镂空子结构262与第一半圆状镂空子结构261和第二半圆状镂空子结构263相切连接。
在长度方向上,圆形镂空结构250位于相邻的第一半圆状镂空子结构261和/或第二半圆状镂空子结构263之间;在弯折方向上,圆形镂空结构250位于隔行相邻的两个第一长条镂空子结构262之间。
如图3和图4所示,圆形镂空结构250的半径与第一半圆状镂空子结构261的半径或第二半圆状镂空子结构263的半径相等;且第一长条镂空子结构262的宽度与圆形镂空结构250的直径相等。
如图1所示,在其中一个实施例中,弯折区200包括沿弯折方向依次间隔排列的第一弯折子区210、第二弯折子区220以及第三弯折子区230,在本实施例中,各对应的弯折子区之间是以非弯折区100进行间隔的,同时弯折区200在沿弯折方向上的两侧具有对称设置的非弯折区100,或者弯折区200在沿弯折方向上的两侧设置的非弯折区100是以支撑结构20的中线呈对称式分布的;且第二弯折子区220沿弯折方向的宽度大于第一弯折子区210沿弯折方向的宽度与第三弯折子区230沿弯折方向的宽度之和。
其中,第二弯折子区220至第一弯折子区210的间隔距离可以但不限于等于第二弯折子区220至第三弯折子区230的间隔距离。
其中,第二弯折子区220至第一弯折子区210或者第三弯折子区230的间隔距离大于弯折方向上相邻的两个第一条形镂空结构260之间的距离。
可以理解的是,在弯折区200设置多个对应的子弯折区200可以进一步适应更小的弯折半径,同时可以满足对弯折形态的需求。
如图2所示,在其中一个实施例中,支撑结构20还包括第二条形镂空结构270;第二条形镂空结构270贯穿弯折区200的边缘和/或侧面。可以理解的是,设置的第二条形镂空结构270可以进一步增加支撑就结构边缘区域的延展性,同时能够分散非边缘区的应力集中情况。
如图2所示,在其中一个实施例中,位于同一行的第一条形镂空结构260与第二条形镂空结构270之间设置有圆形镂空结构250。需要进行说明的是,第一条形镂空结构260是逐行排列的,而第二条形镂空结构270是隔行排列的,隔行排列的第二条形镂空结构270既可以提高其延展性,同时可以保证支撑结构20具有对应的刚度。
如图2所示,需要进行说明的是,第二条形镂空结构270包括相接且外切的第三半圆状镂空子结构271和第二长条镂空子结构272;其中,第二长条镂空子结构272的宽度与第一长条镂空子结构262的宽度相同,第二长条镂空子结构272的长度小于或者等于第一长条镂空子结构262的长度;第三半圆状镂空子结构271的半径等于圆形镂空结构250的半径。
如图5所示,在其中一个实施例中,随着第一长条镂空子结构262的长度L的增加,支撑结构20在弯折过程中所受到的局部峰值应力在逐步降低。其中,第一长条镂空子结构262的长度L可以选择的取值范围为3mm至5.7mm,其中,当第一长条镂空子结构262的长度L为3mm时,对应的局部峰值应力为1100MPa左右;当第一长条镂空子结构262的长度L为3.7mm时,对应的局部峰值应力为810MPa左右;当第一长条镂空子结构262的长度L为4.2mm时,对应的局部峰值应力为780MPa左右;当第一长条镂空子结构262的长度L为4.7mm时,对应的局部峰值应力为700MPa左右;当第一长条镂空子结构262的长度L为5.2mm时,对应的局部峰值应力为600MPa左右;当第一长条镂空子结构262的长度L为5.7mm时,对应的局部峰值应力为520MPa左右;因此,考虑到局部峰值应力的优化,可以选取第一长条镂空子结构262的长度L大于或者等于3mm,也可以根据支撑结构20能够适应的局部峰值应力的大小,自行选取对应的第一长条镂空子结构262的长度L。
需要进行说明的是,上述仿真数据是基于圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X为0.16mm,在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y为0.08mm,圆形镂空结构250的半径R为0.1mm时的对应趋势图。
如图6所示,在其中一个实施例中,随着圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X从100μm至240μm的变化过程中,局部峰值应力先下降再上升,说明圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X具有一个较佳的选择区域,不是越大越好,也不是越小越好。其中,圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X依次从100μm、120μm、140μm增加至160μm的过程中,局部峰值应力从900MPa左右下降至600MPa左右;而当圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X依次从160μm、180μm、200μm、220μm增加至240μm的过程中,局部峰值应力从600MPa左右上升至950MPa左右。因此,作为一个更优的选择,圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X可以选取在120μm至180μm的范围内,当然,作为一个更优的弱化局部峰值应力的处理方案,也可以将其选择在160μm左右。
需要进行说明的是,上述仿真数据是基于第一长条镂空子结构262的长度L为为4.2mm,在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y为0.08mm,圆形镂空结构250的半径R为0.1mm时的对应趋势图。
如图7所示,在其中一个实施例中,随着在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y从60μm增加至140μm的过程中,局部峰值应力先下降再上升,说明在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y具有一个较佳的选择区域,不是越大越好,也不是越小越好。其中,在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y从60μm增加至80μm的过程中,局部峰值应力从800MPa左右降低至接近600MPa;而在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y从80μm、100μm、120μm增加至140μm的过程中,局部峰值应力从接近600MPa上升至1300MPa左右。因此,作为一个更优的选择,在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y可以选取在60μm至100μm的范围内,当然,作为一个更优的弱化局部峰值应力的处理方案,也可以将其选择在80μm左右。
需要进行说明的是,上述仿真数据是基于第一长条镂空子结构262的长度L为为4.2mm,圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X为0.16mm,圆形镂空结构250的半径R为0.1mm时的对应趋势图。
如图8所示,在其中一个实施例中,圆形镂空结构250的半径R从60μm、75μm、100μm、110μm、125μm增加至150μm的过程中,局部峰值应力也从400MPa左右随之上升至1650MPa左右,说明圆形镂空结构250的半径R越小越好。因此,作为一个更优的选择,圆形镂空结构250的半径R可以选取在小于或者等于120μm的范围内,当然,作为一个更优的弱化局部峰值应力的处理方案,也可以将其选择在100μm左右。
需要进行说明的是,上述仿真数据是基于第一长条镂空子结构262的长度L为为4.2mm,圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X为0.16mm,在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y为0.08mm时的对应趋势图。
需要进行说明的是,第一条形镂空结构260、圆形镂空结构250以及第二条形镂空结构270均采用蚀刻的加工方式成型,并加工后要求无异物、油污、缺陷,且成型后弯折区200保持平整,外观良好,保证无侧蚀、无过蚀现象,以此保证第一条形镂空结构260、圆形镂空结构250以及第二条形镂空结构270各自尺寸的均一性。以及要求第一条形镂空结构260、圆形镂空结构250以及第二条形镂空结构270对应的横纵间隔均匀一致,且各自的边缘无毛刺、微裂纹等。通过第一条形镂空结构260、圆形镂空结构250以及第二条形镂空结构270的相邻排布,且在弯折区200呈交替式周期性排布,可以降低弯折区200的局部模量,提高支撑层的局部延展性能。
综上所述,以支撑结构20选材的疲劳弯折断裂极限值800MPa为优化选型目标参考值为基准,并结合工艺制程的可行性,可以确定支撑结构20设计的最优子结构最优尺寸值与最优范围值为:4.2mm≤第一长条镂空子结构262的长度L≤5.2mm、圆形镂空结构250与相邻的第一半圆状镂空子结构261或者第二半圆状镂空子结构263之间的距离X=0.16mm、在弯折方向上相邻的两个第一长条镂空子结构262之间的距离Y=0.8mm、以及圆形镂空结构250的半径R≤0.1mm。
如图9所示,在其中一个实施例中,本申请提供一种柔性显示面板,其包括上述任一实施例中的支撑结构20。其中,支撑结构20的拉伸断裂强度大于或者等于1600MPa;且支撑结构20的表面平整度小于或者等于0.25mm。
在其中一个实施例中,柔性显示面板还包括保护膜层10;保护膜层10位于支撑结构20的一侧,且远离柔性基板40;保护膜层10至少覆盖弯折区200。保护膜层10为线弹性材料。
在其中一个实施例中,柔性显示面板还包括缓冲层30;缓冲层30位于柔性基板40与支撑结构20之间,且缓冲层30为超弹材料,具备良好的吸能缓冲作用。
在其中一个实施例中,柔性显示面板还包括位于柔性基板40另一侧且依次叠层设置的显示器件层50、偏光片60、光学胶层70以及保护盖板80。
其中,柔性显示面板还设置有至少一个圆孔90;该圆孔90贯穿设置于保护膜层10、支撑结构20、缓冲层30、柔性基板40、显示器件层50、偏光片60、光学胶层70以及保护盖板80中,且该圆孔90设置于支撑结构20的非弯折区100。可以理解的是,该圆孔90可以但不限于作为摄像孔。
需要进行说明的是,保护膜层10、缓冲层30、柔性基板40、偏光片60、光学胶层70以及保护盖板80的模量均相对较低,具有良好的可弯折性,其中光学胶层70为典型的粘弹性透明材料;保护盖板80、偏光片60、柔性基板40均为为线弹性材料。
综上所述,本申请中的上述支撑结构20及柔性显示面板可以但不限于应用在折叠式显示领域,还可以应用于卷曲式显示领域,或者大屏显示领域,或者可拓展式显示领域,以及平板手机、柔性折叠手机、全面屏手机、平板电脑,还可以应用于可卷曲手机、或者可卷曲平板电脑中,也可以应用于各种电子显示设备中,均可以提高金属支撑结构20弯折区200部位的延展性,使得原来整面型支撑板结构的局部拉伸模量有效降低;能够实现与其胶粘的光学胶层在弯折过程中协调变形的特点;此外,实施本申请的过程中,采用形状优化、尺寸优化设计的思路,对上述设计的周期性特殊组合孔洞子结构进行合理设计,并结合仿真设计优化验证的方式,确定孔洞子结构的最优结构尺寸,以此减少应力集中现象,降低支撑结构20因弯折过程中局部应力过大而引起的断裂失效的风险。通过本申请的实施,可以改善柔性折叠屏幕模组的良率问题,并提供合理有效的设计方法和解决措施以供参考。
在其中一个实施例中,本申请提供一种电子设备,其包括上述任一实施例中的支撑结构20。
该电子设备可以为各种弯折半径较小的带显示功能的设备,例如,可以但不限于为楔形弯折形态的手机,也可以是柔性水滴型折叠手机。
如图10所示,其中,柔性水滴型折叠手机包括上述任一实施例中的支撑结构20或者柔性显示面板、位于支撑结构20一侧的机架201、位于支撑结构20与机架201之间的支撑板202、位于支撑结构20另一侧的前框204以及位于支撑结构20与前框204之间的显示模组203。
如图11所示,柔性水滴型/楔形弯折形态的折叠手机在折叠过程中,如该图中虚线框所示的位置应力较为集中,容易发生局部断裂,现经过各对应弯折子区,以及各弯折子区中第一条形镂空结构260、圆形镂空结构250以及第二条形镂空结构270的应力合理分散,集中区的应力得以分散,极大程度上降低或者消除了膜层断裂以及膜层间脱粘的风险。另外,对于柔性水滴型/楔形弯折形态的折叠手机,本公开设计的各镂空结构相比于外弯折的话,在如图11所示的内弯折时,具有更好的应力分散效果,也更有利于防止发生局部断裂、膜层断裂以及膜层间脱粘的不良现象;而且,针对柔性水滴型/楔形弯折形态的折叠手机,设计第二弯折子区220沿弯折方向的宽度大于第一弯折子区210沿弯折方向的宽度与第三弯折子区230沿弯折方向的宽度之和,有益于实现该折叠手机的弯折区呈现出更为圆润的弧形外观,且有利于能够承受更高的外力挤压而不至于出现断裂或者损坏的现象。
可以理解的是,对本领域普通技术人员来说,可以根据本申请的技术方案及其发明构思加以等同替换或改变,而所有这些改变或替换都应属于本申请所附的权利要求的保护范围。

Claims (20)

  1. 一种支撑结构,其中,所述支撑结构设置有弯折区,所述弯折区沿弯折方向设置有多行的第一条形镂空结构;同行相邻的两个所述第一条形镂空结构之间设置有圆形镂空结构,且所述圆形镂空结构位于隔行相邻的另两个所述第一条形镂空结构之间。
  2. 根据权利要求1所述的支撑结构,其中,所述支撑结构还包括第二条形镂空结构;所述第二条形镂空结构贯穿所述弯折区的边缘和/或侧面。
  3. 根据权利要求2所述的支撑结构,其中,位于同一行的所述第一条形镂空结构与所述第二条形镂空结构之间设置有所述圆形镂空结构。
  4. 根据权利要求1所述的支撑结构,其中,所述第一条形镂空结构包括在所述第一条形镂空结构的长度方向上依次排列的第一半圆状镂空子结构、第一长条镂空子结构以及第二半圆状镂空子结构;
    所述第一长条镂空子结构与所述第一半圆状镂空子结构和所述第二半圆状镂空子结构相切连接。
  5. 根据权利要求4所述的支撑结构,其中,在所述长度方向上,所述圆形镂空结构位于相邻的所述第一半圆状镂空子结构和/或所述第二半圆状镂空子结构之间;在所述弯折方向上,所述圆形镂空结构位于隔行相邻的两个所述第一长条镂空子结构之间。
  6. 根据权利要求4所述的支撑结构,其中,所述圆形镂空结构的半径与所述第一半圆状镂空子结构的半径或所述第二半圆状镂空子结构的半径相等。
  7. 根据权利要求6所述的支撑结构,其中,所述第一长条镂空子结构的宽度与所述圆形镂空结构的直径相等。
  8. 根据权利要求4所述的支撑结构,其中,所述支撑结构包括第一子特征、第二子特征、第三子特征以及第四子特征中的至少一个;
    其中,所述第一子特征:在所述长度方向上,所述圆形镂空结构与相邻的所述第一半圆状镂空子结构或者所述第二半圆状镂空子结构之间的距离为0.1mm至0.24mm;
    所述第二子特征:在所述弯折方向上,相邻的两个所述第一长条镂空子结构之间的距离为0.06mm至0.14mm之间;
    所述第三子特征:所述第一长条镂空子结构的长度大于或者等于3mm;以及
    所述第四子特征:所述圆形镂空结构的半径小于或者等于0.1mm。
  9. 根据权利要求1所述的支撑结构,其中,所述支撑结构的制备材料包括锰、铝以及镁中的至少一种。
  10. 根据权利要求1所述的支撑结构,其中,所述弯折区包括沿弯折方向依次间隔排列的第一弯折子区、第二弯折子区以及第三弯折子区;
    所述第二弯折子区沿所述弯折方向的宽度大于所述第一弯折子区沿所述弯折方向的宽度与所述第三弯折子区沿所述弯折方向的宽度之和。
  11. 根据权利要求10所述的支撑结构,其中,所述第二弯折子区至所述第一弯折子区或者所述第三弯折子区的间隔距离大于所述弯折方向上相邻的两个所述第一条形镂空结构之间的距离。
  12. 根据权利要求10所述的支撑结构,其中,所述第二弯折子区至所述第一弯折子区的间隔距离等于所述第二弯折子区至所述第三弯折子区的间隔距离。
  13. 一种柔性显示面板,其中,包括如权利要求1所述的支撑结构。
  14. 根据权利要求13所述的柔性显示面板,其中,所述支撑结构的拉伸断裂强度大于或者等于800MPa;且所述支撑结构的表面平整度小于或者等于0.25mm。
  15. 根据权利要求14所述的柔性显示面板,其中,所述支撑结构还包括第二条形镂空结构;所述第二条形镂空结构贯穿所述弯折区的边缘和/或侧面。
  16. 根据权利要求15所述的柔性显示面板,其中,位于同一行的所述第一条形镂空结构与所述第二条形镂空结构之间设置有所述圆形镂空结构。
  17. 根据权利要求14所述的柔性显示面板,其中,所述第一条形镂空结构包括在所述第一条形镂空结构的长度方向上依次排列的第一半圆状镂空子结构、第一长条镂空子结构以及第二半圆状镂空子结构;
    所述第一长条镂空子结构与所述第一半圆状镂空子结构和所述第二半圆状镂空子结构相切连接。
  18. 根据权利要求17所述的柔性显示面板,其中,在所述长度方向上,所述圆形镂空结构位于相邻的所述第一半圆状镂空子结构和/或所述第二半圆状镂空子结构之间;在所述弯折方向上,所述圆形镂空结构位于隔行相邻的两个所述第一长条镂空子结构之间。
  19. 根据权利要求17所述的柔性显示面板,其中,所述支撑结构包括第一子特征、第二子特征、第三子特征以及第四子特征中的至少一个;
    其中,所述第一子特征:在所述长度方向上,所述圆形镂空结构与相邻的所述第一半圆状镂空子结构或者所述第二半圆状镂空子结构之间的距离为0.1mm至0.24mm;
    所述第二子特征:在所述弯折方向上,相邻的两个所述第一长条镂空子结构之间的距离为0.06mm至0.14mm之间;
    所述第三子特征:所述第一长条镂空子结构的长度大于或者等于3mm;以及
    所述第四子特征:所述圆形镂空结构的半径小于或者等于0.1mm。
  20. 一种电子设备,其中,包括如权利要求13所述的柔性显示面板。
PCT/CN2020/129345 2020-10-13 2020-11-17 支撑结构、柔性显示面板及电子设备 WO2022077690A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/263,577 US20240205317A1 (en) 2020-10-13 2020-11-17 Support structure, flexible display panel, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011089025.5A CN112164317A (zh) 2020-10-13 2020-10-13 支撑结构、柔性显示面板及电子设备
CN202011089025.5 2020-10-13

Publications (1)

Publication Number Publication Date
WO2022077690A1 true WO2022077690A1 (zh) 2022-04-21

Family

ID=73866606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129345 WO2022077690A1 (zh) 2020-10-13 2020-11-17 支撑结构、柔性显示面板及电子设备

Country Status (3)

Country Link
US (1) US20240205317A1 (zh)
CN (1) CN112164317A (zh)
WO (1) WO2022077690A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991953B (zh) * 2021-03-09 2022-08-05 武汉华星光电半导体显示技术有限公司 支撑板及可折叠显示模组
CN113129752A (zh) * 2021-04-15 2021-07-16 武汉华星光电半导体显示技术有限公司 支撑板及折叠显示屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110062077A (zh) * 2019-02-01 2019-07-26 华为终端有限公司 可折叠式终端设备用支撑片及可折叠式终端设备
US20190259310A1 (en) * 2018-02-22 2019-08-22 Samsung Display Co., Ltd. Flexible display device and method of manufacturing the same
CN110992828A (zh) * 2019-11-28 2020-04-10 京东方科技集团股份有限公司 用于柔性显示装置的支撑基板和柔性显示装置
CN111430437A (zh) * 2020-04-21 2020-07-17 Oppo广东移动通信有限公司 一种柔性显示屏、电子设备、及制备柔性显示屏的方法
CN211481295U (zh) * 2020-02-29 2020-09-11 华为技术有限公司 显示模组及电子设备

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110428735A (zh) * 2019-07-26 2019-11-08 武汉天马微电子有限公司 柔性显示模组及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190259310A1 (en) * 2018-02-22 2019-08-22 Samsung Display Co., Ltd. Flexible display device and method of manufacturing the same
CN110062077A (zh) * 2019-02-01 2019-07-26 华为终端有限公司 可折叠式终端设备用支撑片及可折叠式终端设备
CN110992828A (zh) * 2019-11-28 2020-04-10 京东方科技集团股份有限公司 用于柔性显示装置的支撑基板和柔性显示装置
CN211481295U (zh) * 2020-02-29 2020-09-11 华为技术有限公司 显示模组及电子设备
CN111430437A (zh) * 2020-04-21 2020-07-17 Oppo广东移动通信有限公司 一种柔性显示屏、电子设备、及制备柔性显示屏的方法

Also Published As

Publication number Publication date
US20240205317A1 (en) 2024-06-20
CN112164317A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
KR102647358B1 (ko) 표시 장치
CN108831303B (zh) 一种用于曲面屏的背板及电子设备
US20240081003A1 (en) Supporting plate and foldable display module
WO2020199306A1 (zh) 显示面板和显示面板制作方法
US11175764B2 (en) Touch display device
US11244968B2 (en) Display panel and display device
JP6854268B2 (ja) フレキシブル表示装置及びその製造方法
US11770907B2 (en) Support film layer and flexible display panel
CN109192764B (zh) 一种柔性显示面板及其制备方法
WO2022077690A1 (zh) 支撑结构、柔性显示面板及电子设备
US11206733B2 (en) Display device and bezel substrate thereof
WO2015120655A1 (zh) 柔性显示基板及其制备方法
WO2021031512A1 (zh) 阵列基板和显示面板
CN112786621A (zh) 柔性基板、显示面板及显示装置
US20210151468A1 (en) Array substrate, display panel and display device
US10008691B2 (en) Array substrate and manufacturing method thereof, display panel and display device
US20210366936A1 (en) Display substrate and manufacturing method thereof, display panel
WO2013128857A1 (ja) 表示パネル及びそれを備えた表示装置
WO2020077751A1 (zh) 柔性基板、该柔性基板的制备方法及显示面板
WO2022151583A1 (zh) 可拉伸显示面板及显示装置
CN113380861A (zh) 显示面板及其制备方法
CN112909021A (zh) 显示装置、显示面板及其制造方法
CN115206189A (zh) 一种显示装置及显示终端
WO2023108697A1 (zh) 一种显示装置
US20200185464A1 (en) Display screen assembly

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957465

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20957465

Country of ref document: EP

Kind code of ref document: A1