WO2022075822A1 - Electric double-layer capacitor in which self-discharge is suppressed and manufacturing method therefor - Google Patents

Electric double-layer capacitor in which self-discharge is suppressed and manufacturing method therefor Download PDF

Info

Publication number
WO2022075822A1
WO2022075822A1 PCT/KR2021/013951 KR2021013951W WO2022075822A1 WO 2022075822 A1 WO2022075822 A1 WO 2022075822A1 KR 2021013951 W KR2021013951 W KR 2021013951W WO 2022075822 A1 WO2022075822 A1 WO 2022075822A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
tetrafluoroborate
negative electrode
positive electrode
electric double
Prior art date
Application number
PCT/KR2021/013951
Other languages
French (fr)
Korean (ko)
Inventor
김기택
정유나
Original Assignee
상명대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 상명대학교산학협력단 filed Critical 상명대학교산학협력단
Publication of WO2022075822A1 publication Critical patent/WO2022075822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/34Carbon-based characterised by carbonisation or activation of carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electric double layer capacitor and a method for manufacturing the same, and more particularly, to an electrode asymmetric electric double layer capacitor in which unintended spontaneous discharge is suppressed and a method for manufacturing the same.
  • an electric double layer capacitor (Electric Double Layer Capacitor; EDLC) is also referred to as a super-capacitor or an ultra-capacitor, which has a symbol at the interface between the electrode and the conductor and the electrolyte solution impregnated therein, respectively. It is a device that does not require maintenance because deterioration due to repetition of charging/discharging operation is very small by using the one in which a pair of charge layers (electrical double layer) with different values are generated.
  • electric double layer capacitors are mainly used in the form of backing up IC (integrated circuit) of various electric and electronic devices, and their use has recently been expanded and widely applied to toys, solar energy storage, HEV (hybrid electric vehicle) power supply, etc. is becoming
  • Such an electric double layer capacitor generally includes two electrodes of an anode and a cathode impregnated with an electrolyte, and a separator made of a porous material to allow only ion conduction and to prevent insulation and short circuit by being interposed between the two electrodes. ), a gasket for preventing leakage of electrolyte and insulation and short circuit, and a unit cell composed of a metal cap as a conductor for packaging them. And it is completed by stacking one or more unit cells (usually, 2 to 6 in the case of a coin type) configured as above in series and combining the two terminals of the anode and the cathode.
  • unit cells usually, 2 to 6 in the case of a coin type
  • EDLC electric double layer capacitor
  • An electric double layer capacitor (EDLC) is an energy storage medium that can be excellently used in situations where rapid energy supply is required due to its high output characteristics and excellent durability.
  • the electric double layer capacitor is a medium that stores energy using the adsorption of ions, desorption of ions also occurs easily, which means loss of stored energy.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-1567771
  • An object of the present invention is to provide an electrode asymmetric electric double layer capacitor in which unintended spontaneous discharge is suppressed and a method for manufacturing the same.
  • an electric double layer capacitor of the following embodiments is provided.
  • a separator is disposed between the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode
  • the positive electrode and the negative electrode are electric double layer capacitors impregnated with an electrolyte
  • the volumes of the positive electrode and the negative electrode are asymmetric
  • the thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode
  • the specific surface area of the positive electrode and the negative electrode is asymmetric
  • porous activated carbon is used as an electrode active material
  • the electric double layer capacitor is provided, characterized in that the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
  • the electrode density of the positive electrode and the negative electrode may be the same, or the electrode density of the positive electrode may be greater than that of the negative electrode.
  • the electrolyte is a non-aqueous electrolyte
  • the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate ( tetramethylammonium tetrafluoroborate (TMA BF4), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro [4.4] nonan-5-ium tetrafluoroborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoro roborate (5-azaspiro[4.5]decan-5-ium tetrafluoroborate) (S55 BF4)
  • composition for an electric double-layer capacitor electrode by mixing an electrode active material, a conductive material, a binder, and a dispersion medium;
  • composition for an electric double-layer capacitor electrode is compressed to form an electrode, or the composition for an electric double-layer capacitor electrode is coated on a metal foil to form an electrode, or the composition for an electric double-layer capacitor electrode is pressed with a roller to form a sheet forming an electrode by attaching it to a metal foil or a current collector;
  • the electric double layer capacitor electrode as an anode and a cathode, disposing a separator between the anode and the cathode to prevent a short circuit between the anode and the cathode, and immersing the anode and the cathode in an electrolyte solution, ,
  • the volumes of the positive electrode and the negative electrode are asymmetric
  • the thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode
  • the specific surface area of the positive electrode and the negative electrode is asymmetric
  • porous activated carbon is used as an electrode active material
  • the electrode density of the positive electrode and the negative electrode may be the same, or the electrode density of the positive electrode may be greater than that of the negative electrode.
  • the electrolyte is a non-aqueous electrolyte
  • the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (TMA BF4).
  • DEDMA BF4 diethyldimethylammonium tetrafluoroborate
  • P11 BF4 1,1-dimethylpyrrolidinium tetrafluoroborate
  • the electric double layer capacitor uses activated carbon, which has a smaller specific surface area than that of the activated carbon used for the positive electrode, for the negative electrode, and at the same time forms the negative electrode to have a smaller thickness than the positive electrode, thereby causing unintended spontaneous discharge. can be significantly suppressed.
  • FIG. 1 is a schematic diagram of an electric double layer capacitor according to an embodiment of the present invention.
  • Example 2 is a graph showing the results of evaluating the self-discharge characteristics of the electric double layer capacitor (EDLC) prepared in Example 1, Comparative Example 1, and Comparative Example 2;
  • EDLC electric double layer capacitor
  • any one component in the detailed description or claims of the invention, it is not construed as being limited to only the component, unless otherwise stated, and other components are further added. It should be understood as being able to include
  • a separator is disposed between the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode
  • the positive electrode and the negative electrode are electric double layer capacitors impregnated with an electrolyte
  • the volumes of the positive electrode and the negative electrode are asymmetric
  • the thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode
  • the specific surface area of the positive electrode and the negative electrode is asymmetric
  • porous activated carbon is used as an electrode active material
  • the specific surface area of the activated carbon used for the positive electrode is 1.1 to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
  • composition for an electric double-layer capacitor electrode by mixing an electrode active material, a conductive material, a binder, and a dispersion medium;
  • composition for an electric double-layer capacitor electrode is compressed to form an electrode, or the composition for an electric double-layer capacitor electrode is coated on a metal foil to form an electrode, or the composition for an electric double-layer capacitor electrode is pressed with a roller to form a sheet forming an electrode by attaching it to a metal foil or a current collector;
  • the electric double layer capacitor electrode as an anode and a cathode, disposing a separator between the anode and the cathode to prevent a short circuit between the anode and the cathode, and immersing the anode and the cathode in an electrolyte solution, ,
  • the volumes of the positive electrode and the negative electrode are asymmetric
  • the thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode
  • the specific surface area of the positive electrode and the negative electrode is asymmetric
  • porous activated carbon is used as an electrode active material
  • the specific surface area of the activated carbon used for the positive electrode is 1.1 to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
  • An electric double layer capacitor is an energy storage medium that can be excellently used in situations where rapid energy supply is required due to its high output characteristics and excellent durability.
  • the electric double layer capacitor is a medium that stores energy using the adsorption of ions, desorption of ions also occurs easily, which means loss of stored energy.
  • an asymmetric combination of electrodes is used as a method of improving self-discharge.
  • An electric double layer capacitor is an electric double layer capacitor in which a separator is disposed between an anode and a cathode to prevent a short circuit between the anode and the cathode, and the anode and the cathode are impregnated with an electrolyte, wherein the The volumes of the positive electrode and the negative electrode are asymmetric, and the thickness of the negative electrode is relatively small compared to the thickness of the positive electrode.
  • the thickness of the positive electrode may be 1.05 to 2.05 times greater than the thickness of the negative electrode, preferably 1.05 to 1.50 times, or 1.05 to 1.30 times greater than the thickness of the negative electrode.
  • the electrode density of the positive electrode and the negative electrode may be the same, or the electrode density of the positive electrode may be greater than that of the negative electrode.
  • the thickness of the anode may be controlled to be 1.05 times to 2.05 times greater than the thickness of the cathode. Even when the same electrode material is used for the positive electrode (+ electrode) and the negative electrode (-pole), the thickness of the electrode (cathode) is changed to change the amount of electrode active material, and at the same time, the length of the path through which ions pass through the electrode. can be adjusted.
  • the distance through which the negative ions accumulated in the anode leak becomes longer, and thus the self-discharge rate becomes slower. That is, since the size of the anions is smaller than the size of the cations, when an anode and a cathode are configured with the same electrode, an empty space is created in the anode where the anions are accumulated. At this time, if the anode is made thicker, more empty space is generated in the anode where negative ions are accumulated. When the ions are charged, if they are filled with a sufficient voltage force, the ions move away from the pore inlet, and the distance away from them increases as the thickness of the anode increases. Self-discharge is a phenomenon in which ions filled in pores naturally leak. The longer the leaking distance, the more suppressed self-discharge.
  • the suppression of self-discharge makes the thickness of the negative electrode thinner than the thickness of the positive electrode, and at the same time, when the electrode density of the positive electrode is larger than the electrode density of the negative electrode, since the size of the anion is smaller than that of the positive electrode, the thicker the positive electrode and the density of the positive electrode The higher the value, the deeper the negative ions leak out by themselves, so the time for self-discharge becomes longer and the self-discharge suppression property is excellent.
  • the positive electrode and the negative electrode use porous activated carbon as an electrode active material, and the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
  • the specific surface area of the activated carbon used for the positive electrode may be 1.05 to 2.5 times, or 1.05 to 2.0 times larger than the specific surface area of the activated carbon used for the negative electrode.
  • activated carbon having a smaller specific surface area than that of the activated carbon used for the positive electrode is used for the negative electrode, and at the same time, the thickness of the negative electrode is formed smaller than that of the positive electrode, so that the space for effectively using the positive electrode is reduced compared to the negative electrode do. That is, the number of ions accumulated at the anode and the cathode is the same, and the size of the cation is larger than the size of the anion. As the number of cations that can be adsorbed to the electrode decreases, the remaining pores that are not used for adsorption at the anode (for anions) space will increase. In the case of using a thin anode while including activated carbon with a small specific surface area as an anode active material, the effect of self-discharge may be further increased than simply using a thin anode.
  • the thickness of the negative electrode is formed smaller than that of the positive electrode, or the specific surface area is smaller than that of the activated carbon used for the positive electrode compared to an electric double layer capacitor using only activated carbon having a smaller specific surface area than that of the activated carbon used for the positive electrode for the negative electrode
  • the effect of increasing the PN ratio is maximized, and markedly improved self-discharge suppression properties can be exhibited. there is.
  • the electrolyte may be a non-aqueous electrolyte, and the non-aqueous electrolyte may include an electrolyte salt and an organic solvent.
  • the organic solvent may include propylene carbonate, acetonitrile, sulfolane, butyrolactone, or two or more of these materials.
  • the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (TMA BF4).
  • DEDMA BF4 diethyldimethylammonium tetrafluoroborate
  • P11 BF4 1,1-dimethylpyrrolidinium tetrafluoroborate
  • the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), or trimethylethylammonium tetrafluoroborate (TMEA BF4) and tetramethylammonium tetra
  • TAA BF4 trimethylethylammonium tetrafluoroborate
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • a composition for an electric double layer capacitor electrode comprising an electrode active material, a conductive material, a binder, and a dispersion medium is prepared.
  • the composition for an electric double layer capacitor electrode comprises an electrode active material, 2 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 2 to 20 parts by weight of a binder based on 100 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material. 200 to 300 parts by weight of the dispersion medium may be included.
  • composition for an electric double layer capacitor electrode is in the form of a dough, it may be difficult to uniformly mix (completely disperse). ), it is possible to obtain a composition for an electric double layer capacitor electrode suitable for electrode manufacturing.
  • a mixer such as a planetary mixer makes it possible to prepare a uniformly mixed composition for an electric double layer capacitor electrode.
  • the binder is polytetrafluoroethylene (PTFE; polytetrafluoroethylene), polyvinylidene fluoride (PVdF; polyvinylidenefloride), carboxymethyl cellulose (CMC; carboxymethylcellulose), polyvinyl alcohol (PVA; poly vinyl) alcohol), polyvinylbutyral (PVB; polyvinylbutyral), polyvinylpyrrolidone (PVP; poly-N-vinylpyrrolidone), styrene butyl rubber (SBR), polyamide-imide , one or a mixture of two or more selected from polyimide, etc. may be used, but the present invention is not limited thereto.
  • PTFE polytetrafluoroethylene
  • PVdF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • PVA poly vinyl alcohol
  • PVB polyvinylbutyral
  • PVPVP polyvinylpyrrolidone
  • SBR styrene but
  • the conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical change, and for example, natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, copper, nickel, aluminum, silver, etc. metal powder or metal fibers and the like.
  • the dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, N-methylpyrrolidone (NMP), propylene glycol (PG), or water.
  • a composition for an electric double layer capacitor electrode which is a mixture of an electrode active material, a binder, a conductive material, and a dispersion medium, is pressed to form an electrode, or the composition for an electric double layer capacitor electrode is coated on a metal foil to form an electrode, or the electric double layer capacitor
  • the composition for an electrode is made into a sheet state by pushing it with a roller, and it is attached to a metal foil or a current collector to form an electrode, and the resultant formed in the form of an electrode is dried at a temperature of 100° C. to 350° C. to form a positive electrode and a negative electrode.
  • the volumes of the positive electrode and the negative electrode are asymmetrical, and the thickness of the negative electrode is made relatively small compared to the thickness of the positive electrode.
  • the thickness of the anode is 1.05 to 2.05 times greater than the thickness of the cathode.
  • porous activated carbon is used as an electrode active material for the positive electrode and the negative electrode, and a specific surface area of the activated carbon used for the positive electrode is larger than that of the activated carbon used for the negative electrode.
  • the specific surface area of the activated carbon used for the positive electrode is 1.1 to 3 times larger than the specific surface area of the activated carbon used for the negative electrode.
  • the electric double layer capacitor electrodes (anode and cathode) prepared as described above may be usefully applied to the electric double layer capacitor.
  • 1 is a schematic diagram of an electric double-layer capacitor according to an embodiment, showing a cross-section of a coin-type electric double-layer capacitor to which the electric double-layer capacitor electrode is applied.
  • reference numeral 190 denotes a metal cap as a conductor
  • reference numeral 160 denotes a separator made of a porous material for insulation and short circuit prevention between the anode 120 and the cathode 110
  • reference numeral 192 denotes electrolyte leakage. It is a gasket for preventing electrical shock and insulation and short circuit.
  • the positive electrode 120 and the negative electrode 110 are firmly fixed by the metal cap 190 and the adhesive.
  • the coin-type electric double layer capacitor is disposed between the anode 120 made of the electric double layer capacitor electrode described above, the cathode 110 comprising the electric double layer capacitor electrode described above, and the anode 120 and the cathode 110, and is disposed between the anode and the cathode.
  • a separator 160 for preventing a short circuit between the 120 and the negative electrode 120 is disposed in the metal cap 190 , and an electrolyte in which the electrolyte is dissolved is injected between the positive electrode 120 and the negative electrode 110 . After that, it can be manufactured by sealing it with a gasket 192 .
  • the separator includes polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polyacrylonitrile porous separator, poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, cellulose porous separator, kraft paper or rayon fiber, etc. batteries and capacitors If it is a separation membrane generally used in the field, it is not particularly limited.
  • the electrolyte may be a non-aqueous electrolyte, and the non-aqueous electrolyte may include an electrolyte salt and an organic solvent.
  • the organic solvent may include at least one material selected from the group consisting of propylene carbonate, acetonitrile, sulfolane, and g-butyrolactone.
  • the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (TMA BF4).
  • DEDMA BF4 diethyldimethylammonium tetrafluoroborate
  • P11 BF4 1,1-dimethylpyrrolidinium tetrafluoroborate
  • tetraethylammonium tetrafluoroborate TEA BF4
  • trimethylethylammonium tetrafluoroborate TMA BF4
  • tetramethylammonium tetrafluoroborate A mixture of tetramethylammonium tetrafluoroborate) (TMA BF4) can be used.
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • TMA BF4 trimethylethylammonium tetrafluoroborate
  • the electric double layer capacitor electrodes (anode and cathode) prepared as described above may be usefully applied to the electric double layer capacitor.
  • Activated carbon (MSP20, kansai coke) (specific surface area: 2233.1 m 2 /g) was used as a cathode active material. Carbon black (super p black, MMM, belgium) was used as a conductive material.
  • binders carboxymethylcellulose (CMC) (Sigma-Aldrich) and styrene butadiene rubber (SBR) (Zeon, BM-400B) were used.
  • Activated carbon, carbon black, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) were mixed in ethanol as a solvent in a weight ratio of 81:12.8:4.2:2 to make a slurry, and the slurry was applied to an aluminum current collector (thickness 20 ⁇ m). Coated and dried at 80° C. for 12 hours in vacuo, and stored in vacuo.
  • the dried resultant was cut round to a diameter of 14 mm, placed in a vacuum oven, dried at 150° C., and then rolled to prepare a positive electrode having a thickness of 130 ⁇ m.
  • Activated carbon CEP21KSN, Power Carbon Technology (specific surface area: 2015.4 m2/g) was used as a negative electrode active material. Carbon black (super p black, MMM, belgium) was used as a conductive material.
  • binders carboxymethylcellulose (CMC) (Sigma-Aldrich) and styrene butadiene rubber (SBR) (Zeon, BM-400B) were used.
  • Activated carbon, carbon black, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) were mixed in ethanol as a solvent in a weight ratio of 81:12.8:4.2:2 to make a slurry, and the slurry was applied to an aluminum current collector and vacuumed for 12 It was dried at 80°C for hours and stored in vacuo.
  • the dried resultant was cut into rounds with a diameter of 14 mm, placed in a vacuum oven, dried at 150° C., and then rolled to prepare a negative electrode having a thickness of 110 ⁇ m.
  • a separator is interposed between the anode and cathode prepared previously, and electrolyte is injected and assembled into a coin type (2032) (Hohsen Co.).
  • An electric double layer capacitor (EDLC) was prepared.
  • a positive electrode, a negative electrode, and an electric double layer capacitor were manufactured in the same manner as in Example 1, except that the thickness of both the positive electrode and the negative electrode was 130 ⁇ m.
  • Example 2 In the same manner as in Example 1, except that the thickness of both the positive electrode and the negative electrode was 130 ⁇ m, and activated carbon (MSP20, kansai coke) (specific surface area: 2233.1 m / g) was used as the negative electrode active material in the same manner as the positive electrode active material. , an anode, a cathode, and an electric double layer capacitor were manufactured.
  • MSP20 activated carbon
  • kansai coke specific surface area: 2233.1 m / g
  • a gas analyzer (BELSORP-max, MicrotracBEL Corp.) was used to check the characteristics of the activated carbon used in Example 1, Comparative Example 1, and Comparative Example 2, such as specific surface area, total pore volume, and pore size distribution.
  • Activated carbon was measured after heat treatment at 300° C. in vacuum for 4 hours. The principle of adsorption and desorption of N 2 gas to pores of activated carbon was used. Through the adsorption-desorption isotherm, it was possible to confirm the characteristics of the activated carbon by the BET method.
  • the specific surface area and total pore volume of activated carbon were calculated from 0 to 0.05 relative pressure in the BET graph.
  • the pore size distribution was calculated using the Grand canonical monte carlo (GCMC) method.
  • the electric double layer capacitor was stabilized by giving a rest period in the open circuit (OCV) state for 12 hours. After charging to 2.7 V with a constant current of 0.1 A g -1 , the process of discharging to 0.001 V at the same rate was repeated 5 times. Subsequently, the process was repeated 60 times by charging with a constant current of 0.5 A g -1 to 2.7 V, charging at a constant voltage of 2.7 V for 1 hour, and then discharging at a constant current of 0.5 A g -1 to 0.001 V. And self-discharge was observed in the OCV state for 72 hours. The results of these processes were calculated as the average value of 4 cells for each type. The results are shown in FIG. 2 .

Abstract

The present invention relates to an electric double-layer capacitor in which self-discharge is suppressed by electrode asymmetry and a manufacturing method therefor, the electric double-layer capacitor having a separator arranged between a positive electrode and a negative electrode so as to prevent a short-circuit between the positive electrode and the negative electrode, the positive electrode and the negative electrode being impregnated with liquid electrolyte. According to the present invention, unintended, spontaneous self-discharge may be suppressed.

Description

자가방전이 억제되는 전기이중층 커패시터 및 그 제조방법Electric double layer capacitor with suppressed self-discharge and manufacturing method therefor
본 발명은 전기이중층 커패시터 및 그 제조방법에 관한 것으로, 더욱 상세하게는 의도하지 않은 자발적으로 일어나는 방전이 억제되는 전극 비대칭전기이중층 커패시터 및 그 제조방법에 관한 것이다.The present invention relates to an electric double layer capacitor and a method for manufacturing the same, and more particularly, to an electrode asymmetric electric double layer capacitor in which unintended spontaneous discharge is suppressed and a method for manufacturing the same.
본 출원은 2020년 10월 8일에 출원된 한국출원 제10-2020-0130468호에 기초한 우선권을 주장하며, 해당 출원의 명세서에 개시된 모든 내용은 본 출원에 원용된다.This application claims priority based on Korean Application No. 10-2020-0130468 filed on October 8, 2020, and all contents disclosed in the specification of the application are incorporated herein by reference.
일반적으로 전기이중층 커패시터(Electric Double Layer Capacitor;EDLC)는 슈퍼커패시터(Super-capacitor) 또는 울트라커패시터(Ultra-capacitor)라고도 일컬어지며, 이는 전극 및 도전체와, 그것에 함침된 전해질 용액의 계면에 각각 부호가 다른 한 쌍의 전하층(전기이중층)이 생성된 것을 이용하는 것으로, 충전/방전 동작의 반복으로 인한 열화가 매우 작아 보수가 필요없는 소자이다. In general, an electric double layer capacitor (Electric Double Layer Capacitor; EDLC) is also referred to as a super-capacitor or an ultra-capacitor, which has a symbol at the interface between the electrode and the conductor and the electrolyte solution impregnated therein, respectively. It is a device that does not require maintenance because deterioration due to repetition of charging/discharging operation is very small by using the one in which a pair of charge layers (electrical double layer) with different values are generated.
이에 따라 전기이중층 커패시터는 각종 전기ㆍ전자기기의 IC(integrated circuit) 백업을하는 형태로 주로 사용되고 있으며, 최근에는 그 용도가 확대되어 장난감, 태양열에너지 저장, HEV(hybrid electric vehicle) 전원 등에까지 폭넓게 응용되고 있다.Accordingly, electric double layer capacitors are mainly used in the form of backing up IC (integrated circuit) of various electric and electronic devices, and their use has recently been expanded and widely applied to toys, solar energy storage, HEV (hybrid electric vehicle) power supply, etc. is becoming
이와 같은 전기이중층 커패시터(EDLC)는 일반적으로 전해액이 함침된 양극 및 음극의 두 전극과, 이러한 두 전극 사이에 개재되어 이온(ion) 전도만가능케 하고 절연 및 단락 방지를 위한 다공성 재질의 분리막(separator)과, 전해액의 누액을 방지하고 절연 및 단락방지를 위한 가스켓(gasket), 그리고 이들을 포장하는 도전체로서의 금속 캡으로 구성된 단위셀을 갖는다. 그리고 위와 같이 구성된 단위셀 1개 이상(통상, 코인형의 경우 2∼6개)을 직렬로 적층하고 양극과 음극의 두 단자(terminal)를 조합하여 완성된다.Such an electric double layer capacitor (EDLC) generally includes two electrodes of an anode and a cathode impregnated with an electrolyte, and a separator made of a porous material to allow only ion conduction and to prevent insulation and short circuit by being interposed between the two electrodes. ), a gasket for preventing leakage of electrolyte and insulation and short circuit, and a unit cell composed of a metal cap as a conductor for packaging them. And it is completed by stacking one or more unit cells (usually, 2 to 6 in the case of a coin type) configured as above in series and combining the two terminals of the anode and the cathode.
전기이중층 커패시터(EDLC)의 성능은 전극활물질 및 전해액에 의하여 결정된다. 전극활물질로는 활성탄이 주로 사용되고 있으며, 상용제품의 전극 기준으로 비축전용량은 최고 19.3 F/cc 정도로 알려져 있다.The performance of an electric double layer capacitor (EDLC) is determined by an electrode active material and an electrolyte. Activated carbon is mainly used as an electrode active material, and it is known that the specific storage capacity is up to 19.3 F/cc based on the electrode of commercial products.
전기이중층 커패시터(EDLC)는 고출력 특성 및 우수한 내구성으로 신속한 에너지 공급이 필요한 상황에 훌륭하게 사용될 수 있는 에너지 저장매체이다.An electric double layer capacitor (EDLC) is an energy storage medium that can be excellently used in situations where rapid energy supply is required due to its high output characteristics and excellent durability.
하지만, 전기이중층 커패시터는 이온의 흡착을 이용한 에너지 저장을 하는 매체이므로 이온의 탈착도 쉽게 일어나며, 이는 저장에너지의 소실을 의미한다.However, since the electric double layer capacitor is a medium that stores energy using the adsorption of ions, desorption of ions also occurs easily, which means loss of stored energy.
이와 같이 의도하지 않은 자발적으로 일어나는 방전을 자가방전이라고 하는데, 전기이중층 커패시터(EDLC)는 자가방전 문제가 다른 저장매체보다 심하므로 개선의 여지가 크다.This unintentional and spontaneous discharge is called self-discharge, and the electric double layer capacitor (EDLC) has a greater room for improvement because the self-discharge problem is more severe than that of other storage media.
[선행기술문헌][Prior art literature]
[특허문헌][Patent Literature]
(특허문헌 1) 대한민국 등록특허공보 제10-1567771호(Patent Document 1) Republic of Korea Patent Publication No. 10-1567771
본 발명이 해결하고자 하는 과제는 의도하지 않은 자발적으로 일어나는 방전이 억제되는 전극 비대칭 전기이중층 커패시터 및 그 제조방법을 제공함에 있다.An object of the present invention is to provide an electrode asymmetric electric double layer capacitor in which unintended spontaneous discharge is suppressed and a method for manufacturing the same.
상기 과제를 해결하기 위하여, 본 발명의 일 측면에 따르면, 하기 구현예의 전기이중층 커패시터가 제공된다.In order to solve the above problems, according to an aspect of the present invention, an electric double layer capacitor of the following embodiments is provided.
제1 구현예에 따르면,According to a first embodiment,
양극과 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막이 배치되고,A separator is disposed between the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode,
상기 양극 및 상기 음극은 전해액에 함침되어 있는 전기이중층 커패시터로서,The positive electrode and the negative electrode are electric double layer capacitors impregnated with an electrolyte,
상기 양극과 상기 음극의 부피는 비대칭을 이루고,The volumes of the positive electrode and the negative electrode are asymmetric,
상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배이고,The thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode,
상기 양극과 상기 음극의 비표면적은 비대칭을 이루고,The specific surface area of the positive electrode and the negative electrode is asymmetric,
상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며,For the positive electrode and the negative electrode, porous activated carbon is used as an electrode active material,
상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 큰 것을 특징으로 하는 전기이중층 커패시터가 제공된다.The electric double layer capacitor is provided, characterized in that the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
제2 구현예에 따르면, 제1 구현예에 있어서, According to a second embodiment, according to the first embodiment,
상기 양극과 상기 음극의 전극밀도는 동일하거나, 상기 양극의 전극밀도가 음극의 전극밀도 보다 더 클 수 있다.The electrode density of the positive electrode and the negative electrode may be the same, or the electrode density of the positive electrode may be greater than that of the negative electrode.
제3 구현예에 따르면, 제1 구현예 또는 제2 구현예에 있어서, According to a third embodiment, according to the first or second embodiment,
상기 전해액은 비수계 전해액이고,The electrolyte is a non-aqueous electrolyte,
상기 비수계 전해액은, 상기 전해질 염은 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4), 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4), 디에틸디메틸암모늄 테트라플루오로보레이트(diethyldimethylammonium tetrafluoroborate)(DEDMA BF4), 1,1-디메틸피롤리디늄 테트라플루오로보레이트(1, 1-dimethylpyrolidinium tetrafluoroborate)(P11 BF4), 5-아자스피로[4.4]노난-5-이움 테트라플루로오보레이트(5-azaspiro[4.4]nonan-5-ium tetrafluoroborate)(S55 BF4), 5-아자스피로[4.5]데칸-5-이움 테트라플루오로보레이트(5-azaspiro[4.5]decan-5-ium tetrafluoroborate)(S56 BF4), 또는 이들 중 2 이상을 포함할 수 있다. In the non-aqueous electrolyte, the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate ( tetramethylammonium tetrafluoroborate (TMA BF4), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro [4.4] nonan-5-ium tetrafluoroborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoro roborate (5-azaspiro[4.5]decan-5-ium tetrafluoroborate) (S56 BF4), or two or more of these.
제4 구현예에 따르면, According to a fourth embodiment,
전극활물질, 도전재, 바인더 및 분산매를 혼합하여 전기이중층 커패시터 전극용 조성물을 제조하는 단계;preparing a composition for an electric double-layer capacitor electrode by mixing an electrode active material, a conductive material, a binder, and a dispersion medium;
상기 전기이중층 커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터 전극용 조성물을 금속 호일에 코팅하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일 또는 집전체에 붙여서 전극 형태로 형성하는 단계;The composition for an electric double-layer capacitor electrode is compressed to form an electrode, or the composition for an electric double-layer capacitor electrode is coated on a metal foil to form an electrode, or the composition for an electric double-layer capacitor electrode is pressed with a roller to form a sheet forming an electrode by attaching it to a metal foil or a current collector;
전극 형태로 형성된 결과물을 건조하여 전기이중층 커패시터 전극을 형성하는 단계; 및forming an electric double layer capacitor electrode by drying the resultant formed in the form of an electrode; and
상기 전기이중층 커패시터 전극을 양극과 음극으로 사용하며, 상기 양극과 상기 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막을 배치하고, 상기 양극 및 상기 음극을 전해액에 함침시키는 단계를 포함하며,using the electric double layer capacitor electrode as an anode and a cathode, disposing a separator between the anode and the cathode to prevent a short circuit between the anode and the cathode, and immersing the anode and the cathode in an electrolyte solution, ,
상기 양극와 상기 음극의 부피는 비대칭을 이루고,The volumes of the positive electrode and the negative electrode are asymmetric,
상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배이고,The thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode,
상기 양극와 상기 음극의 비표면적은 비대칭을 이루고,The specific surface area of the positive electrode and the negative electrode is asymmetric,
상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며,For the positive electrode and the negative electrode, porous activated carbon is used as an electrode active material,
상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 큰 것을 특징으로 하는 전기이중층 커패시터의 제조방법이 제공된다.There is provided a method for manufacturing an electric double layer capacitor, characterized in that the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
제5 구현예에 따르면, 제4 구현예에 있어서, According to a fifth embodiment, according to a fourth embodiment,
상기 양극과 상기 음극의 전극밀도는 동일하거나, 상기 양극의 전극밀도가 음극의 전극밀도 보다 더 클 수 있다.The electrode density of the positive electrode and the negative electrode may be the same, or the electrode density of the positive electrode may be greater than that of the negative electrode.
제6 구현예에 따르면, 제4 구현예 또는 제5 구현예에 있어서, According to a sixth embodiment, according to the fourth or fifth embodiment,
상기 전해액은 비수계 전해액이고,The electrolyte is a non-aqueous electrolyte,
상기 전해질 염은 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4), 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4), 디에틸디메틸암모늄 테트라플루오로보레이트(diethyldimethylammonium tetrafluoroborate)(DEDMA BF4), 1,1-디메틸피롤리디늄 테트라플루오로보레이트(1, 1-dimethylpyrolidinium tetrafluoroborate)(P11 BF4), 5-아자스피로[4.4]노난-5-이움 테트라플루로오보레이트(5-azaspiro[4.4]nonan-5-ium tetrafluoroborate)(S55 BF4), 5-아자스피로[4.5]데칸-5-이움 테트라플루오로보레이트(5-azaspiro[4.5]decan-5-ium tetrafluoroborate)(S56 BF4), 또는 이들 중 2 이상을 포함할 수 있다. The electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (TMA BF4). ), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro[4.4 ] Nonan-5-ium tetrafluorooborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoroborate (5-azaspiro [4.5]decan-5-ium tetrafluoroborate) (S56 BF4), or two or more of these.
본 발명의 일 구현예에 따르면, 전기이중층 커패시터는 양극에 사용되는 활성탄에 비하여 비표면적이 작은 활성탄을 음극에 사용하고, 동시에 음극의 두께를 양극에 비해서 작게 형성함으로써, 의도하지 않은 자발적으로 일어나는 방전을 현저하게 억제시킬 수 있다.According to one embodiment of the present invention, the electric double layer capacitor uses activated carbon, which has a smaller specific surface area than that of the activated carbon used for the positive electrode, for the negative electrode, and at the same time forms the negative electrode to have a smaller thickness than the positive electrode, thereby causing unintended spontaneous discharge. can be significantly suppressed.
도 1은 본 발명의 일 구현예에 따른 전기이중층 커패시터의 개략도이다.1 is a schematic diagram of an electric double layer capacitor according to an embodiment of the present invention.
도 2는 실시예 1, 비교예 1, 및 비교예 2에서 제조된 전기이중층 커패시터(EDLC)의 자가방전 특성을 평가한 결과를 나타낸 그래프이다.2 is a graph showing the results of evaluating the self-discharge characteristics of the electric double layer capacitor (EDLC) prepared in Example 1, Comparative Example 1, and Comparative Example 2;
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다.Hereinafter, preferred embodiments according to the present invention will be described in detail with reference to the accompanying drawings. However, the following examples are provided so that those of ordinary skill in the art can fully understand the present invention, and can be modified in various other forms, and the scope of the present invention is limited to the examples described below it is not going to be
발명의 상세한 설명 또는 청구범위에서 어느 하나의 구성요소가 다른 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소를 더 포함할 수 있는 것으로 이해되어야 한다.When it is said that any one component "includes" another component in the detailed description or claims of the invention, it is not construed as being limited to only the component, unless otherwise stated, and other components are further added. It should be understood as being able to include
본 발명의 일 측면에 따른 전기이중층 커패시터는,An electric double layer capacitor according to an aspect of the present invention,
양극과 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막이 배치되고,A separator is disposed between the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode,
상기 양극 및 상기 음극은 전해액에 함침되어 있는 전기이중층 커패시터로서,The positive electrode and the negative electrode are electric double layer capacitors impregnated with an electrolyte,
상기 양극과 상기 음극의 부피는 비대칭을 이루고,The volumes of the positive electrode and the negative electrode are asymmetric,
상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배이고,The thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode,
상기 양극과 상기 음극의 비표면적은 비대칭을 이루고,The specific surface area of the positive electrode and the negative electrode is asymmetric,
상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며,For the positive electrode and the negative electrode, porous activated carbon is used as an electrode active material,
상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 크다.The specific surface area of the activated carbon used for the positive electrode is 1.1 to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
본 발명의 일 측면에 따른 전기이중층 커패시터의 제조방법은,A method of manufacturing an electric double layer capacitor according to an aspect of the present invention,
전극활물질, 도전재, 바인더 및 분산매를 혼합하여 전기이중층 커패시터 전극용 조성물을 제조하는 단계;preparing a composition for an electric double-layer capacitor electrode by mixing an electrode active material, a conductive material, a binder, and a dispersion medium;
상기 전기이중층 커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터 전극용 조성물을 금속 호일에 코팅하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일 또는 집전체에 붙여서 전극 형태로 형성하는 단계;The composition for an electric double-layer capacitor electrode is compressed to form an electrode, or the composition for an electric double-layer capacitor electrode is coated on a metal foil to form an electrode, or the composition for an electric double-layer capacitor electrode is pressed with a roller to form a sheet forming an electrode by attaching it to a metal foil or a current collector;
전극 형태로 형성된 결과물을 건조하여 전기이중층 커패시터 전극을 형성하는 단계; 및forming an electric double layer capacitor electrode by drying the resultant formed in the form of an electrode; and
상기 전기이중층 커패시터 전극을 양극과 음극으로 사용하며, 상기 양극과 상기 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막을 배치하고, 상기 양극 및 상기 음극을 전해액에 함침시키는 단계를 포함하며,using the electric double layer capacitor electrode as an anode and a cathode, disposing a separator between the anode and the cathode to prevent a short circuit between the anode and the cathode, and immersing the anode and the cathode in an electrolyte solution, ,
상기 양극와 상기 음극의 부피는 비대칭을 이루고,The volumes of the positive electrode and the negative electrode are asymmetric,
상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배이고,The thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode,
상기 양극와 상기 음극의 비표면적은 비대칭을 이루고,The specific surface area of the positive electrode and the negative electrode is asymmetric,
상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며,For the positive electrode and the negative electrode, porous activated carbon is used as an electrode active material,
상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 크다.The specific surface area of the activated carbon used for the positive electrode is 1.1 to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
이하에서, 본 발명의 일 구현예에 따른 전기이중층 커패시터를 더욱 구체적으로 설명한다.Hereinafter, an electric double layer capacitor according to an embodiment of the present invention will be described in more detail.
전기이중층 커패시터(EDLC)는 고출력 특성 및 우수한 내구성으로 신속한 에너지 공급이 필요한 상황에 훌륭하게 사용될 수 있는 에너지 저장매체이다. 하지만, 전기이중층 커패시터는 이온의 흡착을 이용한 에너지 저장을 하는 매체이므로 이온의 탈착도 쉽게 일어나며, 이는 저장에너지의 소실을 의미한다.An electric double layer capacitor (EDLC) is an energy storage medium that can be excellently used in situations where rapid energy supply is required due to its high output characteristics and excellent durability. However, since the electric double layer capacitor is a medium that stores energy using the adsorption of ions, desorption of ions also occurs easily, which means loss of stored energy.
이와 같이 의도하지 않은 자발적으로 일어나는 방전을 자가방전이라고 하는데, 전기이중층 커패시터(EDLC)는 자가방전 문제가 다른 저장매체보다 심하므로 개선의 여지가 크다.This unintentional and spontaneous discharge is called self-discharge, and the electric double layer capacitor (EDLC) has a greater room for improvement because the self-discharge problem is more severe than that of other storage media.
본 발명에서는 자가방전을 개선하는 방법으로 전극의 비대칭적 조합을 이용한다.In the present invention, an asymmetric combination of electrodes is used as a method of improving self-discharge.
본 발명의 일 구현예에 따른 전기이중층 커패시터는 양극과 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막이 배치되고, 상기 양극 및 상기 음극은 전해액에 함침되어 있는 전기이중층 커패시터로서, 상기 양극과 상기 음극의 부피는 비대칭을 이루고, 상기 음극의 두께가 상기 양극의 두께에 비하여 상대적으로 작다.An electric double layer capacitor according to an embodiment of the present invention is an electric double layer capacitor in which a separator is disposed between an anode and a cathode to prevent a short circuit between the anode and the cathode, and the anode and the cathode are impregnated with an electrolyte, wherein the The volumes of the positive electrode and the negative electrode are asymmetric, and the thickness of the negative electrode is relatively small compared to the thickness of the positive electrode.
상기 양극의 두께는 상기 음극의 두께보다 1.05 내지 2.05배 크고, 바람직하게는 1.05배 내지 1.50배, 또는 1.05배 내지 1.30배 클 수 있다.The thickness of the positive electrode may be 1.05 to 2.05 times greater than the thickness of the negative electrode, preferably 1.05 to 1.50 times, or 1.05 to 1.30 times greater than the thickness of the negative electrode.
상기 양극과 상기 음극의 전극밀도는 동일하거나, 상기 양극의 전극밀도가 음극의 전극밀도 보다 더 클 수 있다.The electrode density of the positive electrode and the negative electrode may be the same, or the electrode density of the positive electrode may be greater than that of the negative electrode.
본 발명의 일 구현예에서는, 상기 양극과 음극의 전극밀도를 동일하게 하면서, 상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배가 되도록 제어할 수 있다. 양극(+극)과 음극(-극)에 동일한 전극물질을 사용하는 경우에도 전극(음극)의 두께에 변화를 주어서 전극활물질의 양에 변화를 줌과 동시에 이온이 전극 속을 통과하는 경로의 길이를 조절할 수 있다.In one embodiment of the present invention, while the electrode densities of the anode and the cathode are the same, the thickness of the anode may be controlled to be 1.05 times to 2.05 times greater than the thickness of the cathode. Even when the same electrode material is used for the positive electrode (+ electrode) and the negative electrode (-pole), the thickness of the electrode (cathode) is changed to change the amount of electrode active material, and at the same time, the length of the path through which ions pass through the electrode. can be adjusted.
양극의 두께에 비하여 음극의 두께가 얇을수록 양극에 축적되는 음이온이 누출되는 거리가 길어지므로, 자가방전 속도가 느려진다. 즉, 음이온의 크기가 양이온의 크기보다 작으므로 동일한 전극으로 양극과 음극을 구성하였을 때, 음이온이 축적되는 양극에 빈 공간이 생긴다. 이때, 양극을 더 두껍게 하면 음이온이 축적되는 양극에 빈 공간이 더 발생한다. 이온이 충전될 때, 충분한 전압의 힘으로 채워진다면, 이온은 기공 입구에서부터 멀어지며, 멀어지는 정도는 양극의 두께가 두꺼울수록 더 멀어진다. 자가방전은 기공 속에 채워진 이온이 자연적으로 누출되는 현상인데, 누출되는 거리가 길수록 자가방전은 억제된다.As the thickness of the anode becomes thinner than the thickness of the anode, the distance through which the negative ions accumulated in the anode leak becomes longer, and thus the self-discharge rate becomes slower. That is, since the size of the anions is smaller than the size of the cations, when an anode and a cathode are configured with the same electrode, an empty space is created in the anode where the anions are accumulated. At this time, if the anode is made thicker, more empty space is generated in the anode where negative ions are accumulated. When the ions are charged, if they are filled with a sufficient voltage force, the ions move away from the pore inlet, and the distance away from them increases as the thickness of the anode increases. Self-discharge is a phenomenon in which ions filled in pores naturally leak. The longer the leaking distance, the more suppressed self-discharge.
그 결과, 양극의 두께에 비하여 음극의 두께가 얇을수록 자가방전이 억제될 수 있다.As a result, as the thickness of the negative electrode becomes thinner than that of the positive electrode, self-discharge may be suppressed.
후술하는 실험예들에서도 확인되는 바와 같이, 전극밀도를 동일하게 한 전극을 제조한 후 양극과 음극의 두께의 비율을 조절하여 자가방전이 억제될 수 있다는 것을 확인하였다. 특히 양극의 두께 비율이 상대적으로 높을수록 자가방전이 억제되었다.As confirmed in the experimental examples to be described later, it was confirmed that self-discharge can be suppressed by adjusting the ratio of the thicknesses of the positive electrode and the negative electrode after manufacturing the electrode having the same electrode density. In particular, as the thickness ratio of the anode was relatively high, self-discharge was suppressed.
나아가, 자가방전의 억제는 양극의 두께에 비하여 음극의 두께가 얇게 하면서, 동시에 양극의 전극밀도가 음극의 전극밀도 보다 큰 경우에 음이온의 크기가 양이온 보다 작기 때문에, 양극이 두꺼울수록 그리고 양극의 밀도가 높을수록 음이온 스스로 누출되어 나오는 깊이가 더 깊어지므로 자가방전의 시간이 길어지고, 자가방전 억제 특성이 우수하다.Furthermore, the suppression of self-discharge makes the thickness of the negative electrode thinner than the thickness of the positive electrode, and at the same time, when the electrode density of the positive electrode is larger than the electrode density of the negative electrode, since the size of the anion is smaller than that of the positive electrode, the thicker the positive electrode and the density of the positive electrode The higher the value, the deeper the negative ions leak out by themselves, so the time for self-discharge becomes longer and the self-discharge suppression property is excellent.
상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며, 상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 크다. 또한, 본 발명의 일 구현예에 따르면, 상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.05 내지 2.5배, 또는 1.05 내지 2.0배 클 수 있다.The positive electrode and the negative electrode use porous activated carbon as an electrode active material, and the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode. In addition, according to one embodiment of the present invention, the specific surface area of the activated carbon used for the positive electrode may be 1.05 to 2.5 times, or 1.05 to 2.0 times larger than the specific surface area of the activated carbon used for the negative electrode.
본 발명의 전기이중층 커패시터는 양극에 사용되는 활성탄에 비하여 비표면적이 작은 활성탄을 음극에 사용하고, 동시에 음극의 두께를 양극에 비해서 작게 형성하게 됨으로써, 양극을 유효하게 사용하는 공간이 음극에 비해 줄어들게 된다. 즉 양극과 음극에 축적되는 이온의 숫자는 동일하며 양이온의 크기가 음이온의 크기 보다 크므로, 전극에 흡착될 수 있는 양이온의 숫자가 줄어들수록 양극(음이온을 위한)에 흡착에 사용되지 않은 남는 기공 공간이 늘어나게 된다. 비표면적이 작은 활성탄을 음극활물질로 포함하면서 두께가 얇은 음극을 사용하는 경우가 단순히 두께가 얇은 음극을 사용하는 것보다 더 자가방전의 효과가 더욱 더 증가될 수 있다. In the electric double layer capacitor of the present invention, activated carbon having a smaller specific surface area than that of the activated carbon used for the positive electrode is used for the negative electrode, and at the same time, the thickness of the negative electrode is formed smaller than that of the positive electrode, so that the space for effectively using the positive electrode is reduced compared to the negative electrode do. That is, the number of ions accumulated at the anode and the cathode is the same, and the size of the cation is larger than the size of the anion. As the number of cations that can be adsorbed to the electrode decreases, the remaining pores that are not used for adsorption at the anode (for anions) space will increase. In the case of using a thin anode while including activated carbon with a small specific surface area as an anode active material, the effect of self-discharge may be further increased than simply using a thin anode.
따라서, 단지 음극의 두께를 양극에 비해서 작게 형성하거나, 또는 단지 양극에 사용되는 활성탄에 비하여 비표면적이 작은 활성탄을 음극에 사용하는 전기이중층 커패시터와 비교하여, 양극에 사용되는 활성탄 보다 비표면적이 작은 활성탄을 음극에 사용하면서 동시에 음극의 두께를 양극에 비해서 작게 형성하는 경우에, PN ratio (양극의 두께/음극의 두께)를 증가시키는 효과가 극대화 되어 현저하게 개선된 자가방전의 억제 특성을 나타낼 수 있다.Therefore, only the thickness of the negative electrode is formed smaller than that of the positive electrode, or the specific surface area is smaller than that of the activated carbon used for the positive electrode compared to an electric double layer capacitor using only activated carbon having a smaller specific surface area than that of the activated carbon used for the positive electrode for the negative electrode When activated carbon is used for the negative electrode and the thickness of the negative electrode is formed smaller than that of the positive electrode, the effect of increasing the PN ratio (thickness of positive electrode/thickness of negative electrode) is maximized, and markedly improved self-discharge suppression properties can be exhibited. there is.
상기 전해액은 비수계 전해액일 수 있고, 상기 비수계 전해액은 전해질 염과 유기 용기용매를 포함할 수 있다. 상기 유기용매는 프로필렌카보네이트(propylene carbonate), 아세토니트릴(acetonitrile), 술포란(sulfolane), 부티로락톤, 또는 이들 중 2 이상의 물질을 포함할 수 있다.The electrolyte may be a non-aqueous electrolyte, and the non-aqueous electrolyte may include an electrolyte salt and an organic solvent. The organic solvent may include propylene carbonate, acetonitrile, sulfolane, butyrolactone, or two or more of these materials.
상기 전해질 염은 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4), 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4), 디에틸디메틸암모늄 테트라플루오로보레이트(diethyldimethylammonium tetrafluoroborate)(DEDMA BF4), 1,1-디메틸피롤리디늄 테트라플루오로보레이트(1, 1-dimethylpyrolidinium tetrafluoroborate)(P11 BF4), 5-아자스피로[4.4]노난-5-이움 테트라플루로오보레이트(5-azaspiro[4.4]nonan-5-ium tetrafluoroborate)(S55 BF4), 5-아자스피로[4.5]데칸-5-이움 테트라플루오로보레이트(5-azaspiro[4.5]decan-5-ium tetrafluoroborate)(S56 BF4), 또는 이들 중 2 이상을 포함할 수 있다. The electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (TMA BF4). ), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro[4.4 ] Nonan-5-ium tetrafluorooborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoroborate (5-azaspiro [4.5]decan-5-ium tetrafluoroborate) (S56 BF4), or two or more of these.
본 발명의 일 구현예에 따르면, 상기 전해질 염은 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 또는 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4)와 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4)의 혼합물을 사용할 수 있다. 이때, 테트라메틸암모늄 테트라플루오로보레이트는 낮은 용해도를 가지고 있으므로 트리메틸에틸암모늄 테트라플루오로보레이트와 함께 혼합하여 사용하는 것이 더 유리할 수 있다.According to an embodiment of the present invention, the electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), or trimethylethylammonium tetrafluoroborate (TMEA BF4) and tetramethylammonium tetra A mixture of tetramethylammonium tetrafluoroborate (TMA BF4) may be used. At this time, since tetramethylammonium tetrafluoroborate has a low solubility, it may be more advantageous to use it by mixing it with trimethylethylammonium tetrafluoroborate.
이하에서, 본 발명의 일 구현예에 따른 전기이중층 커패시터의 제조방법을 더욱 구체적으로 설명한다.Hereinafter, a method of manufacturing an electric double layer capacitor according to an embodiment of the present invention will be described in more detail.
전극활물질, 도전재, 바인더 및 분산매를 포함하는 전기이중층 커패시터 전극용 조성물을 제조한다. 상기 전기이중층 커패시터 전극용 조성물은 전극활물질, 상기 전극활물질 100 중량부에 대하여 도전재 2 내지 20 중량부, 상기 전극활물질 100 중량부에 대하여 바인더 2 내지 20 중량부, 상기 전극활물질 100 중량부에 대하여 분산매 200 내지 300 중량부를 포함할 수 있다. A composition for an electric double layer capacitor electrode comprising an electrode active material, a conductive material, a binder, and a dispersion medium is prepared. The composition for an electric double layer capacitor electrode comprises an electrode active material, 2 to 20 parts by weight of a conductive material based on 100 parts by weight of the electrode active material, 2 to 20 parts by weight of a binder based on 100 parts by weight of the electrode active material, and 100 parts by weight of the electrode active material. 200 to 300 parts by weight of the dispersion medium may be included.
상기 전기이중층 커패시터 전극용 조성물은 반죽 상이므로 균일한 혼합(완전 분산)이 어려울 수 있는데, 플래니터리 믹서(Planetary mixer)와 같은 혼합기(mixer)를 사용하여 소정 시간(예컨대, 10분 내지 12시간) 동안 교반시키면 전극 제조에 적합한 전기이중층 커패시터 전극용조성물을 얻을 수 있다. 플래니터리 믹서(Planetary mixer)와 같은 혼합기는 균일하게 혼합된 전기이중층 커패시터 전극용 조성물의 제조를 가능케 한다. Since the composition for an electric double layer capacitor electrode is in the form of a dough, it may be difficult to uniformly mix (completely disperse). ), it is possible to obtain a composition for an electric double layer capacitor electrode suitable for electrode manufacturing. A mixer such as a planetary mixer makes it possible to prepare a uniformly mixed composition for an electric double layer capacitor electrode.
본 발명의 일 구현에에 따르면, 상기 바인더는 폴리테트라플루오르에틸렌(PTFE;polytetrafluoroethylene), 폴리비닐리덴플로라이드(PVdF;polyvinylidenefloride), 카르복시메틸셀룰로오스(CMC; carboxymethylcellulose), 폴리비닐알코올(PVA; poly vinyl alcohol), 폴리비닐부티랄(PVB; poly vinylbutyral), 폴리비닐피롤리돈(PVP; poly-N-vinylpyrrolidone), 스티렌부틸고무(SBR;styrene butyl rubber), 폴리아마이드-이미드(Polyamide-imide), 폴리이미드(polyimide) 등으로부터 선택된 1종 또는 2종 이상을 혼합하여 사용할 수 있으나, 여기에 제한되지 않는다.According to one embodiment of the invention, the binder is polytetrafluoroethylene (PTFE; polytetrafluoroethylene), polyvinylidene fluoride (PVdF; polyvinylidenefloride), carboxymethyl cellulose (CMC; carboxymethylcellulose), polyvinyl alcohol (PVA; poly vinyl) alcohol), polyvinylbutyral (PVB; polyvinylbutyral), polyvinylpyrrolidone (PVP; poly-N-vinylpyrrolidone), styrene butyl rubber (SBR), polyamide-imide , one or a mixture of two or more selected from polyimide, etc. may be used, but the present invention is not limited thereto.
상기 도전재는 화학 변화를 야기하지 않는 전자 전도성 재료이면 특별히 제한되지 않으며, 그 예로 천연 흑연, 인조 흑연, 카본 블랙, 아세틸렌 블랙, 케첸블랙, 탄소섬유, 구리, 니켈, 알루미늄, 은 등의 금속 분말 또는 금속 섬유 등이 가능하다.The conductive material is not particularly limited as long as it is an electronically conductive material that does not cause chemical change, and for example, natural graphite, artificial graphite, carbon black, acetylene black, Ketjen black, carbon fiber, copper, nickel, aluminum, silver, etc. metal powder or metal fibers and the like.
상기 분산매는 에탄올(EtOH), 아세톤, 이소프로필알콜, N-메틸피롤리돈(NMP), 프로필렌글리콜(PG) 등의 유기 용매 또는 물을 사용할 수 있다. 전극활물질, 바인더, 도전재 및 분산매를 혼합한 전기이중층 커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터전극용 조성물을 금속 호일에 코팅하여 전극 형태로 형성하거나, 상기 전기이중층커패시터 전극용 조성물을 롤러로 밀어 시트(sheet) 상태로 만들고 금속 호일 또는집전체에 붙여서 전극 형태로 형성하고, 전극 형태로 형성된 결과물을 100℃ 내지 350℃의 온도에서 건조하여 양극과 음극을 형성한다.The dispersion medium may be an organic solvent such as ethanol (EtOH), acetone, isopropyl alcohol, N-methylpyrrolidone (NMP), propylene glycol (PG), or water. A composition for an electric double layer capacitor electrode, which is a mixture of an electrode active material, a binder, a conductive material, and a dispersion medium, is pressed to form an electrode, or the composition for an electric double layer capacitor electrode is coated on a metal foil to form an electrode, or the electric double layer capacitor The composition for an electrode is made into a sheet state by pushing it with a roller, and it is attached to a metal foil or a current collector to form an electrode, and the resultant formed in the form of an electrode is dried at a temperature of 100° C. to 350° C. to form a positive electrode and a negative electrode.
상기 양극과 상기 음극의 부피는 비대칭을 이루고, 상기 음극의 두께가 상기 양극의 두께에 비하여 상대적으로 작게 한다. 상기 양극의 두께는 상기 음극의 두께보다 1.05 내지 2.05배 크다.The volumes of the positive electrode and the negative electrode are asymmetrical, and the thickness of the negative electrode is made relatively small compared to the thickness of the positive electrode. The thickness of the anode is 1.05 to 2.05 times greater than the thickness of the cathode.
이러한 경우의 일 예로서, 상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄을 사용하고, 상기 양극에 사용된 활성탄의 비표면적이 상기 음극에 사용된 활성탄의 비표면적보다 큰 것을 사용한다. 이 경우에, 상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1 내지 3배 크다. As an example of this case, porous activated carbon is used as an electrode active material for the positive electrode and the negative electrode, and a specific surface area of the activated carbon used for the positive electrode is larger than that of the activated carbon used for the negative electrode. In this case, the specific surface area of the activated carbon used for the positive electrode is 1.1 to 3 times larger than the specific surface area of the activated carbon used for the negative electrode.
상기와 같이 제조된 전기이중층 커패시터 전극(양극 및 음극)은 전기이중층 커패시터에 유용하게 적용될 수 있다. 도 1은 일 구현예에 따른 전기이중층 커패시터의 개략도로서, 상기 전기이중층 커패시터 전극이 적용된 코인형 전기이중층 커패시터의 단면을 나타낸 것이다. The electric double layer capacitor electrodes (anode and cathode) prepared as described above may be usefully applied to the electric double layer capacitor. 1 is a schematic diagram of an electric double-layer capacitor according to an embodiment, showing a cross-section of a coin-type electric double-layer capacitor to which the electric double-layer capacitor electrode is applied.
도 1에서 도면부호 190은 도전체로서의 금속캡이고, 도면부호 160은 양극(120)과 음극(110) 간의 절연 및 단락 방지를 위한 다공성 재질의 분리막(separator)이며, 도면부호 192는 전해액의 누액을 방지하고 절연 및 단락방지를 위한 가스켓이다. 이때, 상기 양극(120)과 음극(110)은 금속캡(190)과 접착제에 의해 견고하게 고정된다.In FIG. 1, reference numeral 190 denotes a metal cap as a conductor, reference numeral 160 denotes a separator made of a porous material for insulation and short circuit prevention between the anode 120 and the cathode 110, and reference numeral 192 denotes electrolyte leakage. It is a gasket for preventing electrical shock and insulation and short circuit. At this time, the positive electrode 120 and the negative electrode 110 are firmly fixed by the metal cap 190 and the adhesive.
상기 코인형 전기이중층 커패시터는, 상술한 전기이중층 커패시터 전극으로 이루어진 양극(120)과, 상술한 전기이중층 커패시터 전극으로 이루어진 음극(110)과, 양극(120)과 음극(110) 사이에 배치되고 양극(120)과 음극(120)의 단락을 방지하기 위한 분리막(seperator)(160)을 금속캡(190) 내에 배치하고, 양극(120)와 음극(110) 사이에 전해질이 용해되어 있는 전해액을 주입한 후, 가스켓(192)으로 밀봉하여 제조할 수 있다.The coin-type electric double layer capacitor is disposed between the anode 120 made of the electric double layer capacitor electrode described above, the cathode 110 comprising the electric double layer capacitor electrode described above, and the anode 120 and the cathode 110, and is disposed between the anode and the cathode. A separator 160 for preventing a short circuit between the 120 and the negative electrode 120 is disposed in the metal cap 190 , and an electrolyte in which the electrolyte is dissolved is injected between the positive electrode 120 and the negative electrode 110 . After that, it can be manufactured by sealing it with a gasket 192 .
상기 분리막은 폴리에틸렌 부직포, 폴리프로필렌 부직포, 폴리에스테르 부직포, 폴리아크릴로니트릴 다공성 격리막, 폴리(비닐리덴 플루오라이드) 헥사플루오로프로판 공중합체 다공성 격리막, 셀룰로스 다공성 격리막, 크라프트지또는 레이온 섬유 등 전지 및 커패시터 분야에서 일반적으로 사용되는 분리막이라면 특별히 제한되지 않는다.The separator includes polyethylene nonwoven fabric, polypropylene nonwoven fabric, polyester nonwoven fabric, polyacrylonitrile porous separator, poly(vinylidene fluoride) hexafluoropropane copolymer porous separator, cellulose porous separator, kraft paper or rayon fiber, etc. batteries and capacitors If it is a separation membrane generally used in the field, it is not particularly limited.
상기 전해액은 비수계 전해액일 수 있고, 상기 비수계 전해액은 전해질 염과 유기 용기용매를 포함할 수 있다. 상기 유기용매는 프로필렌카보네이트(propylene carbonate), 아세토니트릴(acetonitrile), 술포란(sulfolane) 및 감마-부티로락톤(g-butyrolactone)으로 이루어진 군으로부터 선택된 1종 이상의 물질을 포함할 수 있다.The electrolyte may be a non-aqueous electrolyte, and the non-aqueous electrolyte may include an electrolyte salt and an organic solvent. The organic solvent may include at least one material selected from the group consisting of propylene carbonate, acetonitrile, sulfolane, and g-butyrolactone.
상기 전해질 염은 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4), 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4), 디에틸디메틸암모늄 테트라플루오로보레이트(diethyldimethylammonium tetrafluoroborate)(DEDMA BF4), 1,1-디메틸피롤리디늄 테트라플루오로보레이트(1, 1-dimethylpyrolidinium tetrafluoroborate)(P11 BF4), 5-아자스피로[4.4]노난-5-이움 테트라플루로오보레이트(5-azaspiro[4.4]nonan-5-ium tetrafluoroborate)(S55 BF4), 5-아자스피로[4.5]데칸-5-이움 테트라플루오로보레이트(5-azaspiro[4.5]decan-5-ium tetrafluoroborate)(S56 BF4), 또는 이들 중 2 이상을 포함할 수 있다. 본 발명의 일 구현예에 따르면, 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 또는 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4)와 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4)의 혼합물을 사용할 수 있다. 이때, 테트라메틸암모늄 테트라플루오로보레이트 는 낮은 용해도를 가지고 있으므로 트리메틸에틸암모늄 테트라플루오로보레이트와 함께 혼합하여 사용하는 것이 더 유리할 수 있다.The electrolyte salt is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (TMA BF4). ), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro[4.4 ] Nonan-5-ium tetrafluorooborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoroborate (5-azaspiro [4.5]decan-5-ium tetrafluoroborate) (S56 BF4), or two or more of these. According to an embodiment of the present invention, tetraethylammonium tetrafluoroborate (TEA BF4), or trimethylethylammonium tetrafluoroborate (TMEA BF4) and tetramethylammonium tetrafluoroborate ( A mixture of tetramethylammonium tetrafluoroborate) (TMA BF4) can be used. At this time, since tetramethylammonium tetrafluoroborate has a low solubility, it may be more advantageous to use it by mixing it with trimethylethylammonium tetrafluoroborate.
상기와 같이 제조된 전기이중층 커패시터 전극(양극 및 음극)은 전기이중층 커패시터에 유용하게 적용될 수 있다.The electric double layer capacitor electrodes (anode and cathode) prepared as described above may be usefully applied to the electric double layer capacitor.
이하에서, 본 발명에 따른 실시예들을 구체적으로 제시하며, 다음에 제시하는 실시예들에 본 발명이 한정되는 것은 아니다.Hereinafter, embodiments according to the present invention are specifically presented, and the present invention is not limited to the following examples.
실시예 1Example 1
(1) 양극의 제조(1) Preparation of anode
양극활물질로 활성탄(MSP20, kansai coke) (비표면적: 2233.1 ㎡/g)을 사용하였다. 도전재로 카본블랙(super p black, MMM, belgium)을 사용하였다. 바인더로 카르복시메틸셀룰로오스(CMC;carboxymethylcellulose)(Sigma-Aldrich)와 스티렌 부타디엔 고무(SBR; styrene butadiene rubber)(Zeon, BM-400B)를 사용하였다. 용매인 에탄올에 활성탄, 카본블랙, 스티렌 부타디엔 고무(SBR), 카르복시메틸셀룰로오스(CMC)를 81:12.8:4.2:2의 무게비로 섞어서 슬러리를 만들고, 상기 슬러리를 알루미늄 집전체(두께 20 ㎛)에 도포하고 진공에서 12시간 동안 80℃에서 건조시키고, 진공상태에서 보관하였다. Activated carbon (MSP20, kansai coke) (specific surface area: 2233.1 m 2 /g) was used as a cathode active material. Carbon black (super p black, MMM, belgium) was used as a conductive material. As binders, carboxymethylcellulose (CMC) (Sigma-Aldrich) and styrene butadiene rubber (SBR) (Zeon, BM-400B) were used. Activated carbon, carbon black, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) were mixed in ethanol as a solvent in a weight ratio of 81:12.8:4.2:2 to make a slurry, and the slurry was applied to an aluminum current collector (thickness 20 μm). Coated and dried at 80° C. for 12 hours in vacuo, and stored in vacuo.
건조된 결과물을 14 mm 지름으로 둥글게 재단한 뒤, 진공오븐에 넣고 150℃에서 건조하고, 이후 압연 하여 130 ㎛ 두께를 갖는 양극을 제조하였다. The dried resultant was cut round to a diameter of 14 mm, placed in a vacuum oven, dried at 150° C., and then rolled to prepare a positive electrode having a thickness of 130 μm.
(2) 음극의 제조(2) Preparation of negative electrode
음극활물질로 활성탄(CEP21KSN, Power CarbonTechnology) (비표면적: 2015.4 ㎡/g)을 사용하였다. 도전재로 카본블랙(super p black, MMM, belgium)을 사용하였다. 바인더로 카르복시메틸셀룰로오스(CMC;carboxymethylcellulose)(Sigma-Aldrich)와 스티렌 부타디엔 고무(SBR; styrene butadiene rubber)(Zeon, BM-400B)를 사용하였다. 용매인 에탄올에 활성탄, 카본블랙, 스티렌 부타디엔 고무(SBR), 카르복시메틸셀룰로오스(CMC)를 81:12.8:4.2:2의 무게비로 섞어서 슬러리를 만들고, 상기 슬러리를 알루미늄 집전체에 도포하고 진공에서 12시간 동안 80℃에서 건조시키고, 진공상태에서 보관하였다. Activated carbon (CEP21KSN, Power Carbon Technology) (specific surface area: 2015.4 m2/g) was used as a negative electrode active material. Carbon black (super p black, MMM, belgium) was used as a conductive material. As binders, carboxymethylcellulose (CMC) (Sigma-Aldrich) and styrene butadiene rubber (SBR) (Zeon, BM-400B) were used. Activated carbon, carbon black, styrene butadiene rubber (SBR), and carboxymethyl cellulose (CMC) were mixed in ethanol as a solvent in a weight ratio of 81:12.8:4.2:2 to make a slurry, and the slurry was applied to an aluminum current collector and vacuumed for 12 It was dried at 80°C for hours and stored in vacuo.
건조된 결과물을 14 mm 지름으로 둥글게 재단한 뒤, 진공오븐에 넣고 150℃에서 건조하고, 이후 압연 하여 110 ㎛ 두께를 갖는 음극을 제조하였다. The dried resultant was cut into rounds with a diameter of 14 mm, placed in a vacuum oven, dried at 150° C., and then rolled to prepare a negative electrode having a thickness of 110 μm.
(3) 전기이중층 커패시터(EDLC)의 제조(3) Preparation of Electric Double Layer Capacitor (EDLC)
Ar gas가 채워진 환경의 glove box(Korea Kiyon Co. Ltd)에서 앞서 제조된 양극과 음극 사이에 분리막을 개재하고, 전해액을 주입하여서 코인 타입(Coin type)(2032)(Hohsen Co.)으로 조립하여 전기이중층 커패시터(EDLC)를 제조하였다. 이때, 분리막(cellulose, ㅨ 19 mm, 두께 40 μm), spacer(ㅨ 16 mm, 두께 1.0 mm), wave spring(ㅨ 15 mm, 두께 1.4 mm)를 사용하여 조립하였으며, 전해액은 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4)를 아세토니트릴(acetonitrile)(AN)에 용해시켜서 1.0M 농도로 준비하였다. 그리고 automatic coin cell crimper(Hohsen co.)로 밀봉하였다.In a glove box (Korea Kiyon Co. Ltd) in an environment filled with Ar gas, a separator is interposed between the anode and cathode prepared previously, and electrolyte is injected and assembled into a coin type (2032) (Hohsen Co.). An electric double layer capacitor (EDLC) was prepared. At this time, it was assembled using a separator (cellulose, Ⅸ 19 mm, thickness 40 μm), spacer (Ⅸ 16 mm, thickness 1.0 mm), and wave spring (ㅨ 15 mm, thickness 1.4 mm), and the electrolyte was tetraethylammonium tetrafluoro Loborate (tetraethylammonium tetrafluoroborate) (TEA BF4) was dissolved in acetonitrile (AN) to prepare a concentration of 1.0M. And sealed with automatic coin cell crimper (Hohsen co.).
비교예 1Comparative Example 1
양극과 음극의 두께를 모두 130 ㎛로 한 점을 제외하고는 실시예 1과 동일한 방법으로, 양극, 음극 및 전기이중층 커패시터를 제조하였다.A positive electrode, a negative electrode, and an electric double layer capacitor were manufactured in the same manner as in Example 1, except that the thickness of both the positive electrode and the negative electrode was 130 μm.
비교예 2Comparative Example 2
양극과 음극의 두께를 모두 130 ㎛로 하고, 음극활물질로 양극활물질과 동일하게 활성탄(MSP20, kansai coke) (비표면적: 2233.1 ㎡/g)을 사용한 점을 제외하고는 실시예 1과 동일한 방법으로, 양극, 음극 및 전기이중층 커패시터를 제조하였다.In the same manner as in Example 1, except that the thickness of both the positive electrode and the negative electrode was 130 μm, and activated carbon (MSP20, kansai coke) (specific surface area: 2233.1 m / g) was used as the negative electrode active material in the same manner as the positive electrode active material. , an anode, a cathode, and an electric double layer capacitor were manufactured.
<특성 평가><Characteristic evaluation>
활성탄의 물성 분석Analysis of properties of activated carbon
실시예 1, 비교예 1, 및 비교예 2에서 사용된 활성탄의 비표면적, 총 기공 부피, 기공 크기 분포 등의 특성을 확인하기 위해 gas analyzer(BELSORP-max, MicrotracBEL Corp.)를 이용하였다. 활성탄을 진공의 300 ℃에서 4 시간 열처리 후 측정하였다. N2기체가 활성탄의 기공에 흡착 및 탈착하는 원리를 이용하였다. 흡착 탈착 등온선을 통해 BET method로 활성탄의 특성을 확인 할 수 있었다. 활성탄의 비표면적과 총 기공 부피를 BET 그래프의 상대 압력 0 내지 0.05 구간에서 계산하였다. 기공 크기 분포는 Grand canonical monte carlo(GCMC) method로 계산하였다.A gas analyzer (BELSORP-max, MicrotracBEL Corp.) was used to check the characteristics of the activated carbon used in Example 1, Comparative Example 1, and Comparative Example 2, such as specific surface area, total pore volume, and pore size distribution. Activated carbon was measured after heat treatment at 300° C. in vacuum for 4 hours. The principle of adsorption and desorption of N 2 gas to pores of activated carbon was used. Through the adsorption-desorption isotherm, it was possible to confirm the characteristics of the activated carbon by the BET method. The specific surface area and total pore volume of activated carbon were calculated from 0 to 0.05 relative pressure in the BET graph. The pore size distribution was calculated using the Grand canonical monte carlo (GCMC) method.
자가방전 특성 평가Self-discharge characteristic evaluation
실시예 1, 비교예 1, 및 비교예 2에 따라 제조된 전기이중층 커패시터(EDLC)의 자가방전 특성을 평가하였다.The self-discharge characteristics of the electric double layer capacitors (EDLC) prepared according to Example 1, Comparative Example 1, and Comparative Example 2 were evaluated.
자가방전 특성 평가 실험을 위해서 셀 테스트 사이클러(Cell test cycler)(WBCS3000, WonATech Co., Ltd.)를 사용하였다. For the self-discharge characteristic evaluation experiment, a cell test cycler (WBCS3000, WonATech Co., Ltd.) was used.
12 시간동안 개방회로(OCV) 상태로 휴지기간을 줘서 전기이중층 커패시터를 안정화시켰다. 0.1 A g-1의 일정한 전류로 2.7 V까지 충전 후 같은 속도로 0.001 V까지 방전하는 과정을 5 회 반복하였다. 이어서 2.7 V까지 0.5 A g-1 정전류로 충전하고 1 시간동안 2.7 V 정전압으로 충전한 뒤 0.001 V까지 0.5 A g-1 정전류로 방전하는 과정으로 60 회 반복하였다. 그리고 72 시간 동안 OCV 상태에서 자가방전을 관찰하였다. 이러한 과정들의 결과는 종류별로 4개의 cell의 평균 값으로 계산하였다. 그 결과를 도 2에 나타내었다. The electric double layer capacitor was stabilized by giving a rest period in the open circuit (OCV) state for 12 hours. After charging to 2.7 V with a constant current of 0.1 A g -1 , the process of discharging to 0.001 V at the same rate was repeated 5 times. Subsequently, the process was repeated 60 times by charging with a constant current of 0.5 A g -1 to 2.7 V, charging at a constant voltage of 2.7 V for 1 hour, and then discharging at a constant current of 0.5 A g -1 to 0.001 V. And self-discharge was observed in the OCV state for 72 hours. The results of these processes were calculated as the average value of 4 cells for each type. The results are shown in FIG. 2 .
도 2를 참조하면, 실시에 1의 전기이중층 커패시터는 양극에 사용되는 활성탄에 비하여 비표면적이 작은 활성탄을 음극에 사용하고, 동시에 음극의 두께를 양극에 비해서 작게 형성한 결과, 양극과 음극의 두께를 동일하게 하면서 양극에 사용되는 활성탄에 비하여 비표면적이 작은 활성탄을 음극에 사용한 비교예 1과, 양극과 음극의 두께도 동일하게 하고 이들 양극과 음극에 사용되는 활성탄의 비표면적도 동일하게 사용한 비교예 2의 전기이중층 커패시터에 비해서, PN ratio (양극의 두께/음극의 두께)를 증가시키는 효과가 극대화 되어 현저하게 개선된 자가방전의 억제 특성을 나타내었다.2, in the electric double layer capacitor of Example 1, activated carbon having a smaller specific surface area than that of the activated carbon used for the positive electrode is used for the negative electrode, and at the same time, the thickness of the negative electrode is formed smaller than that of the positive electrode. As a result, the thickness of the positive electrode and the negative electrode Comparative Example 1 in which activated carbon having a smaller specific surface area than that of the activated carbon used in the positive electrode was used for the negative electrode while making the same Compared to the electric double layer capacitor of Example 2, the effect of increasing the PN ratio (thickness of the positive electrode/thickness of the negative electrode) was maximized, thereby exhibiting remarkably improved self-discharge suppression characteristics.
이상, 본 발명의 일 구현예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although one embodiment of the present invention has been described in detail, the present invention is not limited to the above embodiment, and various modifications are possible by those skilled in the art.

Claims (6)

  1. 양극과 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막이 배치되고,A separator is disposed between the positive electrode and the negative electrode to prevent a short circuit between the positive electrode and the negative electrode,
    상기 양극 및 상기 음극은 전해액에 함침되어 있는 전기이중층 커패시터로서,The positive electrode and the negative electrode are electric double layer capacitors impregnated with an electrolyte,
    상기 양극과 상기 음극의 부피는 비대칭을 이루고,The volumes of the positive electrode and the negative electrode are asymmetric,
    상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배이고,The thickness of the positive electrode is 1.05 to 2.05 times that of the negative electrode,
    상기 양극과 상기 음극의 비표면적은 비대칭을 이루고,The specific surface area of the positive electrode and the negative electrode is asymmetric,
    상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며,For the positive electrode and the negative electrode, porous activated carbon is used as an electrode active material,
    상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 큰 것을 특징으로 하는 전기이중층 커패시터.The electric double layer capacitor, characterized in that the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
  2. 제1항에 있어서, The method of claim 1,
    상기 양극과 상기 음극의 전극밀도는 동일하거나, 상기 양극의 전극밀도가 음극의 전극밀도 보다 더 큰 것을 특징으로 하는 전기이중층 커패시터.The electrode density of the positive electrode and the negative electrode is the same, or the electrode density of the positive electrode is greater than the electrode density of the negative electrode.
  3. 제1항에 있어서, The method of claim 1,
    상기 전해액은 비수계 전해액이고,The electrolyte is a non-aqueous electrolyte,
    상기 비수계 전해액은, 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4), 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4), 디에틸디메틸암모늄 테트라플루오로보레이트(diethyldimethylammonium tetrafluoroborate)(DEDMA BF4), 1,1-디메틸피롤리디늄 테트라플루오로보레이트(1, 1-dimethylpyrolidinium tetrafluoroborate)(P11 BF4), 5-아자스피로[4.4]노난-5-이움 테트라플루로오보레이트(5-azaspiro[4.4]nonan-5-ium tetrafluoroborate)(S55 BF4), 5-아자스피로[4.5]데칸-5-이움 테트라플루오로보레이트(5-azaspiro[4.5]decan-5-ium tetrafluoroborate)(S56 BF4), 또는 이들 중 2 이상을 포함하는 전해질 염; 및 프로필렌카보네이트(propylene carbonate), 아세토니트릴(acetonitrile), 술포란(sulfolane), 감마-부티로락톤(g-butyrolactone), 또는 이들 중 2 이상의 유기용매를 포함하는 것을 특징으로 하는 전기이중층 커패시터.The non-aqueous electrolyte is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (tetramethylammonium tetrafluoroborate) ( TMA BF4), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro [4.4] nonan-5-ium tetrafluoroborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoroborate (5 -azaspiro[4.5]decan-5-ium tetrafluoroborate) (S56 BF4), or an electrolyte salt comprising two or more thereof; and propylene carbonate, acetonitrile, sulfolane, gamma-butyrolactone, or an organic solvent of two or more thereof.
  4. 전극활물질, 도전재, 바인더 및 분산매를 혼합하여 전기이중층 커패시터 전극용 조성물을 제조하는 단계;preparing a composition for an electric double-layer capacitor electrode by mixing an electrode active material, a conductive material, a binder, and a dispersion medium;
    상기 전기이중층 커패시터 전극용 조성물을 압착하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터 전극용 조성물을 금속 호일에 코팅하여 전극 형태로 형성하거나, 상기 전기이중층 커패시터 전극용 조성물을 롤러로 밀어 시트 상태로 만들고 금속 호일 또는 집전체에 붙여서 전극 형태로 형성하는 단계;The composition for an electric double-layer capacitor electrode is compressed to form an electrode, or the composition for an electric double-layer capacitor electrode is coated on a metal foil to form an electrode, or the composition for an electric double-layer capacitor electrode is pressed with a roller to form a sheet forming an electrode by attaching it to a metal foil or a current collector;
    전극 형태로 형성된 결과물을 건조하여 전기이중층 커패시터 전극을 형성하는 단계; 및forming an electric double layer capacitor electrode by drying the resultant formed in the form of an electrode; and
    상기 전기이중층 커패시터 전극을 양극과 음극으로 사용하며, 상기 양극과 상기 음극 사이에 상기 양극과 상기 음극의 단락을 방지하기 위한 분리막을 배치하고, 상기 양극 및 상기 음극을 전해액에 함침시키는 단계를 포함하며,using the electric double layer capacitor electrode as an anode and a cathode, disposing a separator between the anode and the cathode to prevent a short circuit between the anode and the cathode, and immersing the anode and the cathode in an electrolyte solution, ,
    상기 양극와 상기 음극의 부피는 비대칭을 이루고,The volumes of the positive electrode and the negative electrode are asymmetric,
    상기 양극의 두께는 상기 음극의 두께보다 1.05배 내지 2.05배이고,The thickness of the anode is 1.05 times to 2.05 times the thickness of the cathode,
    상기 양극와 상기 음극의 비표면적은 비대칭을 이루고,The specific surface area of the positive electrode and the negative electrode is asymmetric,
    상기 양극 및 상기 음극은 전극활물질로 다공성 활성탄이 사용되며,For the positive electrode and the negative electrode, porous activated carbon is used as an electrode active material,
    상기 양극에 사용된 활성탄의 비표면적은 상기 음극에 사용된 활성탄의 비표면적보다 1.1배 내지 3배 큰 것을 특징으로 하는 전기이중층 커패시터의 제조방법.The method of manufacturing an electric double layer capacitor, characterized in that the specific surface area of the activated carbon used for the positive electrode is 1.1 times to 3 times greater than the specific surface area of the activated carbon used for the negative electrode.
  5. 제4항에 있어서, 5. The method of claim 4,
    상기 양극과 상기 음극의 전극밀도는 동일하거나, 상기 양극의 전극밀도가 음극의 전극밀도 보다 더 큰 것을 특징으로 하는 전기이중층 커패시터의 제조방법.The electrode density of the positive electrode and the negative electrode is the same, or the electrode density of the positive electrode is greater than the electrode density of the negative electrode.
  6. 제4항에 있어서, 5. The method of claim 4,
    상기 전해액은 비수계 전해액이고,The electrolyte is a non-aqueous electrolyte,
    상기 비수계 전해액은, 테트라에틸암모늄 테트라플루오로보레이트 (tetraethylammonium tetrafluoroborate)(TEA BF4), 트리메틸에틸암모늄 테트라플루오로보레이트(trimethylethylammonium tetrafluoroborate)(TMEA BF4), 테트라메틸암모늄 테트라플루오로보레이트(tetramethylammonium tetrafluoroborate)(TMA BF4), 디에틸디메틸암모늄 테트라플루오로보레이트(diethyldimethylammonium tetrafluoroborate)(DEDMA BF4), 1,1-디메틸피롤리디늄 테트라플루오로보레이트(1, 1-dimethylpyrolidinium tetrafluoroborate)(P11 BF4), 5-아자스피로[4.4]노난-5-이움 테트라플루로오보레이트(5-azaspiro[4.4]nonan-5-ium tetrafluoroborate)(S55 BF4), 5-아자스피로[4.5]데칸-5-이움 테트라플루오로보레이트(5-azaspiro[4.5]decan-5-ium tetrafluoroborate)(S56 BF4), 또는 이들 중 2 이상을 포함하는 전해질 염; 및 프로필렌카보네이트(propylene carbonate), 아세토니트릴(acetonitrile), 술포란(sulfolane), 감마-부티로락톤(g-butyrolactone), 또는 이들 중 2 이상의 유기용매를 포함하는 것을 특징으로 하는 전기이중층 커패시터의 제조방법.The non-aqueous electrolyte is tetraethylammonium tetrafluoroborate (TEA BF4), trimethylethylammonium tetrafluoroborate (TMEA BF4), tetramethylammonium tetrafluoroborate (tetramethylammonium tetrafluoroborate) ( TMA BF4), diethyldimethylammonium tetrafluoroborate (DEDMA BF4), 1,1-dimethylpyrrolidinium tetrafluoroborate (P11 BF4), 5-azaspiro [4.4] nonan-5-ium tetrafluoroborate (5-azaspiro [4.4] nonan-5-ium tetrafluoroborate) (S55 BF4), 5-azaspiro [4.5] decane-5-ium tetrafluoroborate (5 -azaspiro[4.5]decan-5-ium tetrafluoroborate) (S56 BF4), or an electrolyte salt comprising two or more thereof; And propylene carbonate, acetonitrile, sulfolane, gamma-butyrolactone (g-butyrolactone), or an organic solvent of two or more of them. Way.
PCT/KR2021/013951 2020-10-08 2021-10-08 Electric double-layer capacitor in which self-discharge is suppressed and manufacturing method therefor WO2022075822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20200130468 2020-10-08
KR10-2020-0130468 2020-10-08

Publications (1)

Publication Number Publication Date
WO2022075822A1 true WO2022075822A1 (en) 2022-04-14

Family

ID=81126270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/013951 WO2022075822A1 (en) 2020-10-08 2021-10-08 Electric double-layer capacitor in which self-discharge is suppressed and manufacturing method therefor

Country Status (1)

Country Link
WO (1) WO2022075822A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043193A (en) * 2000-07-25 2002-02-08 Casio Comput Co Ltd Electric double-layer capacitor and manufacturing method thereof
KR101464524B1 (en) * 2014-03-03 2014-11-25 주식회사 비츠로셀 Electrical double layer capacitor with excellent withstanding voltage property
KR101614299B1 (en) * 2015-06-05 2016-04-21 한국세라믹기술원 Manufacturing method of ultracapacitor electrode with high density and supercapacitor cell using the ultracapacitor electrode manufactured by the method
KR102120317B1 (en) * 2018-12-20 2020-06-09 삼화전기 주식회사 Electric double layer capacitor with asymmetric volume elecctrode
KR20200098855A (en) * 2019-02-13 2020-08-21 상명대학교산학협력단 Electric double layer capacitor for supressing self-discharge and manufacturing method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002043193A (en) * 2000-07-25 2002-02-08 Casio Comput Co Ltd Electric double-layer capacitor and manufacturing method thereof
KR101464524B1 (en) * 2014-03-03 2014-11-25 주식회사 비츠로셀 Electrical double layer capacitor with excellent withstanding voltage property
KR101614299B1 (en) * 2015-06-05 2016-04-21 한국세라믹기술원 Manufacturing method of ultracapacitor electrode with high density and supercapacitor cell using the ultracapacitor electrode manufactured by the method
KR102120317B1 (en) * 2018-12-20 2020-06-09 삼화전기 주식회사 Electric double layer capacitor with asymmetric volume elecctrode
KR20200098855A (en) * 2019-02-13 2020-08-21 상명대학교산학협력단 Electric double layer capacitor for supressing self-discharge and manufacturing method of the same

Similar Documents

Publication Publication Date Title
WO2011019187A2 (en) Lithium secondary battery
WO2014189329A1 (en) Lithium secondary battery comprising multilayered active material layer
WO2012165758A1 (en) Lithium secondary battery
WO2014157955A1 (en) Anode active material slurry, anode using same slurry, and electrochemical device comprising same
WO2017003083A1 (en) High power energy storage device additive and high power energy storage device comprising same
US11901122B2 (en) Hybrid lithium-ion battery-capacitor (H-LIBC) energy storage devices
WO2015065090A1 (en) Method for manufacturing electrode-separation film complex, electrode-separation film complex manufactured by manufacturing method therefor and lithium secondary battery comprising same
WO2019066480A2 (en) Method for predicting processability of electrode slurry and selecting electrode binder
KR20160077137A (en) Ultracapacitor with improved aging performance
KR101567771B1 (en) Electrolyte of electric double layer capacitor for improving discharge capacitance and electric double layer capacitor using the electrolyte
WO2016122070A1 (en) Method for modifying carbon material electrode surface by current carrying, surface-modified carbon material electrode, and electrochemical capacitor comprising surface-modified carbon material electrode
WO2020122459A1 (en) Anode active material for lithium secondary battery and secondary battery comprising same
KR20160132651A (en) Organic/inorganic composite porous separator and electrochemical device including the same
WO2014200214A1 (en) Electrochemical device and battery module with improved anti-vibration characteristic
KR101166696B1 (en) Supercapacitor and manufacturing method of the same
WO2022075822A1 (en) Electric double-layer capacitor in which self-discharge is suppressed and manufacturing method therefor
WO2023113311A1 (en) Solid electrolyte and all solid battery comprising same
WO2019132403A1 (en) Method for regenerating eol cell
JP4705404B2 (en) Lithium ion capacitor
WO2021085767A1 (en) Composition for super-capacitor electrode capable of improving electrode density, method for manufacturing super-capacitor electrode using same, and super-capacitor manufactured using manufacturing method
KR102379507B1 (en) High-density hybrid supercapacitor with phosphorine-based negative electrode and method of manufacturing thereof
KR20200098855A (en) Electric double layer capacitor for supressing self-discharge and manufacturing method of the same
WO2014204214A1 (en) Binder solution for anode, active material slurry for anode comprising same, anode using said active material slurry, and electrochemical device comprising same
WO2020076139A1 (en) Negative electrode and rechargeable battery comprising same
KR20200119579A (en) Seperator for super capacitor, manufacturing method thereof and super capacitor comprising the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21878072

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21878072

Country of ref document: EP

Kind code of ref document: A1