WO2022075321A1 - 通信制御方法 - Google Patents

通信制御方法 Download PDF

Info

Publication number
WO2022075321A1
WO2022075321A1 PCT/JP2021/036829 JP2021036829W WO2022075321A1 WO 2022075321 A1 WO2022075321 A1 WO 2022075321A1 JP 2021036829 W JP2021036829 W JP 2021036829W WO 2022075321 A1 WO2022075321 A1 WO 2022075321A1
Authority
WO
WIPO (PCT)
Prior art keywords
user device
side link
rrc
message
communication
Prior art date
Application number
PCT/JP2021/036829
Other languages
English (en)
French (fr)
Inventor
真人 藤代
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to CN202180081400.8A priority Critical patent/CN116584151A/zh
Priority to EP21877620.1A priority patent/EP4210432A4/en
Priority to JP2022555506A priority patent/JP7406003B2/ja
Publication of WO2022075321A1 publication Critical patent/WO2022075321A1/ja
Priority to US18/296,123 priority patent/US20230239957A1/en
Priority to JP2023211281A priority patent/JP2024023674A/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/14Direct-mode setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a communication control method used in a mobile communication system.
  • the 3GPP (Third Generation Partnership Project) standard, which is a standardization project for mobile communication systems, defines side-link communication for wireless communication between user devices (see, for example, Non-Patent Document 1).
  • side link communication for example, V2X (Vehicle to Everything) service including vehicle-to-vehicle communication (V2V: Vehicle to Vehicle) can be realized.
  • V2X Vehicle to Everything
  • V2V Vehicle to Vehicle
  • mode 1 In side link communication, there is a case (mode 1) in which wireless communication is performed between user devices using resources scheduled by NG-RAN (Next Generation-Radio Access Network). Further, in the side link communication, there is a case where the user device autonomously selects a resource from the resource pool and performs wireless communication (mode 2).
  • NG-RAN Next Generation-Radio Access Network
  • side link communication is supported regardless of the RRC (Radio Access Control) state of the user device.
  • RRC Radio Access Control
  • sidelink communication is supported even when the user appliance is outside the NG-RAN coverage range.
  • wireless communication with other user equipment is possible using the scheduled resource, and wireless communication is possible by autonomously selecting the resource. Is possible.
  • the user device is out of the coverage range of NG-RAN, it is possible to autonomously select a resource and wirelessly communicate with another user device.
  • side-link communication supports unicast transmission, group cast transmission, and broadcast transmission.
  • Unicast transmission sends and receives user traffic between paired peer user devices.
  • group cast transmission user traffic is transmitted and received between user devices belonging to the group in the side link.
  • broadcast transmission user traffic is transmitted and received between user devices in the side link.
  • the communication control method has a first user device and a second user device, and is capable of side-link communication between the first user device and the second user device.
  • This is a communication control method in a communication system.
  • intermittent reception is set with the second user device when the first user device transmits an RRC (Radio Resource Control) message including setting information related to the side link communication. If this is the case, the standby process for receiving the RRC response message for the RRC message is performed regardless of the intermittent reception setting.
  • the second user device receives the RRC message
  • the RRC response message is transmitted to the RRC message, and the first user device sends the RRC response message. To receive and have.
  • the communication control method has a first user device and a second user device, and is capable of side-link communication between the first user device and the second user device.
  • This is a communication control method in a communication system.
  • the communication control method has a first user device and a second user device, and is capable of side-link communication between the first user device and the second user device.
  • This is a communication control method in a communication system.
  • the first user device has the first setting information regarding the setting of intermittent reception in the side link communication of the first user device, and the side link communication of the second user device. It includes transmitting an RRC message including a second setting information regarding an intermittent reception setting, and receiving the RRC message by the second user device.
  • the communication control method includes a base station device, a first user device and a second user device capable of wireless communication with the base station device, and the first user device and the said.
  • This is a communication control method in a mobile communication system capable of side-link communication with a second user device.
  • the communication control method is that the first user device transmits an RRC message including setting information regarding intermittent reception in the side link communication, and the second user device receives the RRC message. , Have.
  • the second user device transmits an adjustment request message requesting adjustment of the intermittent reception setting in the side link communication to the first user device, or the side. It includes transmitting a side link information message requesting a change in the setting of intermittent reception in the link communication to the base station apparatus.
  • the communication control method includes a base station device, a first user device and a second user device capable of wireless communication with the base station device, and the first user device and the said.
  • This is a communication control method in a mobile communication system capable of side-link communication with a second user device.
  • the communication control method includes that the base station apparatus transmits an RRC message including setting information regarding an intermittent reception setting in the side link communication, or that the system information including the setting information is notified.
  • the user device 1 and the second user device receive the RRC message and apply the intermittent reception setting in the side link communication.
  • FIG. 1 is a diagram showing a configuration example of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a user device according to an embodiment.
  • FIG. 3 is a diagram showing a configuration example of a base station according to an embodiment.
  • FIG. 4 is a diagram showing a configuration example of a protocol stack of a user plane of a Uu interface.
  • FIG. 5 is a diagram showing a configuration example of a protocol stack of the control plane of the Uu interface.
  • FIG. 6 is a diagram showing a configuration example of a protocol stack of a user plane of a PC5 interface.
  • FIG. 7 is a diagram showing a configuration example of a protocol stack of the control plane of the PC5 interface.
  • FIG. 1 is a diagram showing a configuration example of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram showing a configuration example of a user device according to an embodiment.
  • FIG. 3 is a diagram showing a configuration example
  • FIG. 8A is a diagram showing an example in which wireless communication is performed between UEs
  • FIG. 8B is a diagram showing an operation example of the first embodiment
  • FIG. 9A is a diagram showing an example of On-duration and Off-duration
  • FIG. 9B is a diagram showing an example of message transmission / reception timing.
  • FIG. 10A is a diagram showing an example of sending and receiving a message
  • FIG. 10B is a diagram showing an operation example of the first embodiment.
  • 11 (A) and 11 (B) are diagrams showing an operation example of the second embodiment.
  • FIG. 12 is a diagram showing an operation example of the second embodiment.
  • 13 (A) and 13 (B) are diagrams showing an operation example of the second embodiment.
  • FIG. 14 is a diagram showing an operation example of the second embodiment.
  • FIG. 15 (A) and 15 (B) are diagrams showing an operation example of the third embodiment.
  • FIG. 16 is a diagram showing an operation example of the third embodiment.
  • FIG. 17 is a diagram showing an operation example of the fourth embodiment.
  • FIG. 18 is a diagram showing an operation example of the fifth embodiment.
  • FIG. 19 is a diagram showing an operation example of the sixth embodiment.
  • the mobile communication system according to one embodiment is a 5G system of 3GPP, but LTE (Long Term Evolution) may be applied to the mobile communication system at least partially.
  • LTE Long Term Evolution
  • FIG. 1 is a diagram showing a configuration example of the mobile communication system 10 according to the embodiment.
  • the mobile communication system 10 has a user device (UE: User Equipment) 100 and a 5G radio access network (NG-RAN) 300.
  • UE User Equipment
  • NG-RAN 5G radio access network
  • the UE 100 is a movable device.
  • the UE 100 may be any device as long as it is a device used by the user.
  • the UE 100 may be a mobile phone terminal (including a smartphone), a tablet terminal, a notebook PC, or a communication module (communication card or communication card).
  • a device capable of wireless communication such as a sensor (including a chipset), a sensor or a device provided on the sensor, a vehicle or a device provided on the vehicle (Vehicle UE), or a vehicle or a device provided on the vehicle (Arial UE).
  • the UE 100 in the present embodiment can directly perform wireless communication with another UE by using the side link communication.
  • the NG-RAN300 includes a base station apparatus 200-1 called “gNB” ("next generation Node B") in a 5G system. Further, the NG-RAN 300 includes a base station apparatus 200-2 which is an LTE base station that can cooperate with NR (New Radio). The base station apparatus 200-2 is called "ng-eNB”.
  • the gNB200-1 and ng-eNB200-2 are sometimes called NG-RAN nodes.
  • the gNB200-1 and the ng-eNB200-2 are connected to each other via the Xn interface, which is an interface between base stations.
  • gNB200-1 and ng-eNB200-2 manage one or more cells.
  • the gNB200-1 and the ng-eNB200-2 perform wireless communication with the UE 100 that has established a connection with the own cell.
  • the gNB200-1 and ng-eNB200-2 have a radio resource management (RRM: Radio Resource Management) function, a routing function for user data (hereinafter, simply referred to as "data"), a measurement control function for mobility control / scheduling, etc.
  • RRM Radio Resource Management
  • Cell is used as a term to indicate the smallest unit of a wireless communication area.
  • the term "cell” is also used to indicate a function or resource for wireless communication with the UE 100.
  • One cell belongs to one carrier frequency.
  • gNB200-1 and ng-eNB200-2 are connected by an Xn interface. Further, the gNB200-1 and the UE100-1 and the ng-eNB200-2 and the UE100-2 are connected by a Uu interface, which is an interface between base station user devices. Further, the UEs 100-1 to 100-3 are connected by a PC5 interface, which is an interface between user devices.
  • NR side-link communication is, for example, communication capable of at least V2X communication between UEs 100-1 to 100-3 by using NR (New Radio) technology without going through a network node.
  • V2X side link communication is, for example, communication capable of V2X communication by using E-UTRA (Evolved-Universal Terrestrial Radio Access) technology without going through a network node.
  • E-UTRA Evolved-Universal Terrestrial Radio Access
  • NR side link communication and V2X side link communication may be referred to as "side link communication" without particular distinction. Therefore, the "side link communication" may include NR side link communication or V2X side link communication.
  • gNB200-1 may be connected to 5GC (5G Core network) which is a 5G core network
  • ng-eNB200-2 may be connected to EPC (Evolved Packet Core) which is an LTE core network. May be done.
  • EPC Evolved Packet Core
  • gNB200-1 may be connected to the EPC
  • ng-eNB200-2 may be connected to the 5GC.
  • gNB200-1 will be described as an example of a base station device as a representative of gNB200-1 and ng-eNB200-2. Further, gNB200-1 may be referred to as gNB200, and UE100-1 to 100-3 may be referred to as UE100.
  • FIG. 2 is a diagram showing a configuration of a UE 100 (user device) according to an embodiment.
  • the UE 100 includes a receiving unit 110, a transmitting unit 120, and a control unit 130.
  • the receiving unit 110 performs various receptions under the control of the control unit 130.
  • the receiver 110 includes an antenna and a receiver.
  • the receiver converts (down-converts) the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 130.
  • the UE 100 in the present embodiment can perform wireless communication by side link communication not only with the gNB 200 but also with other UEs. Therefore, the receiving unit 110 can also receive a message or data transmitted from another UE.
  • the transmission unit 120 performs various transmissions under the control of the control unit 130.
  • the transmitter 120 includes an antenna and a transmitter.
  • the transmitter converts (up-converts) a baseband signal (transmission signal) output by the control unit 130 into a radio signal and transmits it from the antenna.
  • the transmission unit 120 can not only transmit data or the like to the gNB 200, but also transmit a message or data or the like to another UE by side link communication.
  • the control unit 130 performs various controls on the UE 100.
  • the control unit 130 includes at least one processor and at least one memory electrically connected to the processor.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU (Central Processing Unit).
  • the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
  • the CPU executes a program stored in the memory to perform various processes.
  • the control unit 130 in the present embodiment can perform various controls or processes described in the following examples.
  • FIG. 3 is a diagram showing the configuration of gNB200 (base station) according to one embodiment.
  • the gNB 200 includes a transmission unit 210, a reception unit 220, a control unit 230, and a backhaul communication unit 240.
  • the transmission unit 210 performs various transmissions under the control of the control unit 230.
  • the transmitter 210 includes an antenna and a transmitter.
  • the transmitter converts (up-converts) a baseband signal (transmission signal) output by the control unit 230 into a radio signal and transmits it from the antenna.
  • the receiving unit 220 performs various receptions under the control of the control unit 230.
  • the receiver 220 includes an antenna and a receiver.
  • the receiver converts (down-converts) the radio signal received by the antenna into a baseband signal (received signal) and outputs it to the control unit 230.
  • the control unit 230 performs various controls on the gNB 200.
  • the control unit 230 includes at least one processor and at least one memory electrically connected to the processor.
  • the memory stores a program executed by the processor and information used for processing by the processor.
  • the processor may include a baseband processor and a CPU.
  • the baseband processor modulates / demodulates and encodes / decodes the baseband signal.
  • the CPU executes a program stored in the memory to perform various processes.
  • a processor or controller such as a DSP (Digital Signal Processor) or FPGA (Field Programmable Gate Array) may be used.
  • the backhaul communication unit 240 is connected to an adjacent base station via an interface between base stations.
  • the backhaul communication unit 240 is connected to each node of 5GC via the base station-core network interface.
  • the gNB 200 is composed of a CU (Central Unit) and a DU (Distributed Unit) (that is, the functions are divided), and both units may be connected by an F1 interface.
  • FIG. 4 is a diagram showing a configuration of a protocol stack of a user plane wireless interface that handles data in a Uu interface.
  • the user plane wireless interface protocol in the Uu interface includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, and a PDCP (Packet Data Convergence Protocol). It has a layer and a SDAP (Service Data Adjustment Protocol) layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • SDAP Service Data Adjustment Protocol
  • the PHY layer performs coding / decoding, modulation / demodulation, antenna mapping / demapping, and resource mapping / demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the gNB 200 via a physical channel.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat), random access procedure, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the gNB 200 via the transport channel.
  • the MAC layer of gNB200 includes a scheduler. The scheduler determines the transport format of the upper and lower links (transport block size, modulation / coding method (MCS)) and the resource block allocated to the UE 100.
  • MCS modulation / coding method
  • the RLC layer transmits data to the receiving RLC layer by using the functions of the MAC layer and the PHY layer. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the gNB 200 via a logical channel.
  • the PDCP layer performs header compression / decompression and encryption / decryption.
  • the SDAP layer maps an IP flow, which is a unit for which a core network performs QoS (Quality of Service) control, with a wireless bearer, which is a unit for which AS (Access Stratum) controls QoS.
  • QoS Quality of Service
  • AS Access Stratum
  • FIG. 5 is a diagram showing a configuration of a protocol stack of a radio interface of a control plane that handles signaling (control signal) in a Uu interface.
  • AMF Access and Mobility Management Function
  • 5GC Access and Mobility Management Function
  • the protocol stack of the radio interface of the control plane in the Uu interface has an RRC (Radio Resource Control) layer and a NAS (Non-Access Stratum) layer in place of the SDAP layer shown in FIG.
  • RRC signaling for various settings is transmitted between the RRC layer of UE100 and the RRC layer of gNB200.
  • the RRC layer controls logical channels, transport channels, and physical channels in response to the establishment, re-establishment, and release of radio bearers.
  • RRC connection connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC connected state.
  • RRC connection no connection between the RRC of the UE 100 and the RRC of the gNB 200
  • the UE 100 is in the RRC idle state. Further, when the RRC connection is suspended, the UE 100 is in the RRC inactive state.
  • the NAS layer located above the RRC layer performs session management, mobility management, etc.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the AMF300.
  • the UE 100 has an application layer and the like in addition to the wireless interface protocol.
  • FIG. 6 is a diagram showing a configuration example of a protocol stack of a user plane in a PC5 interface.
  • the user plane protocol in the PC5 interface includes each layer of the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the SDAP layer, similarly to the protocol of the user plane in the Uu interface.
  • FIG. 7 is a diagram showing a configuration example of the protocol stack of the control plane in the PC5 interface.
  • the protocol of the control plane in the PC5 interface also includes the PHY layer, the MAC layer, the RLC layer, the PDCP layer, and the RRC layer in the same manner as the protocol of the control plane in the Uu interface.
  • data is transmitted via a transport layer (SCCH (Siderink Control Channel), STCH (Siderink Transport Channel), and SBCCH (Siderink Broadcast Control Channel)) in side-link communication.
  • SCCH Segment Control Channel
  • STCH Segrink Transport Channel
  • SBCCH Seg Broadcast Control Channel
  • control information is transmitted via the transport layer in the side link communication.
  • priority handling between uplink communication and side link communication, CSI (Channel State Information) report of side link, and the like are performed.
  • the PC5-RRC connection is a logical connection between two UEs 100 for a source / destination ID pair in layer 2.
  • the PC5-RRRC connection is established after the corresponding PC5 unicast link is established.
  • the UE 100 can have a plurality of PC5-RRC connections between one or more other UEs having different source and destination ID pairs in layer 2.
  • the UE 100 opens the PC5-RRC connection when it is not interested in side link communication or when the layer 2 link opening procedure is completed.
  • the UEs 100-1 and 100-2 connected to the PC5-RRC are in the PC5-RRC connected (connected) state.
  • a physical channel in the side link communication there are a physical side link control channel (PSCCH: Physical Sidelink Control Channel) and a physical sidelink shared channel (PSSCH: Physical Sidelink Shared Channel). Further, as the physical channel in the side link communication, there are a physical side link feedback channel (PSFCH: Physical Sidelink Feedback Channel) and a physical side link broadcast (PSBCH: Physical Sidelink Broadcast Channel).
  • PSCCH Physical Sidelink Control Channel
  • PSSCH Physical Sidelink Shared Channel
  • PSFCH Physical Sidelink Feedback Channel
  • PSBCH Physical Sidelink Broadcast Channel
  • PSCCH control information and the like regarding resources used by UE 100 in PSCH are transmitted.
  • different control information SCI: Sidelink Control Information
  • PSCH a part of control information such as data TB (Transport Block) transmission and HARQ procedure is transmitted.
  • HARQ feedback information is transmitted from the UE 100-2, which is the reception target of the PSSCH transmission, to the UE 100-1 that has executed the transmission.
  • PSFCH may be applied to unicast and groupcast transmissions.
  • the PSBCH directly transmits a frame number (DFN: Direct Frame Number), information on synchronization, and the like.
  • DFN Direct Frame Number
  • the UE 100 transmits the RRC reset side link message including both its own side link DRX setting and the other party's side link DRX setting.
  • Example 3-1 In Example 3, a plurality of side link DRX settings are notified.
  • the UE 100 notifies the RRC reset side link message and the RRC reset completion side link message including only the side link DRX setting of the other party.
  • the UE 100 notifies the RRC reset side link message and the RRC reset completion side link message including only its own side link DRX setting.
  • the UE 100 transmits a side link DRX adjustment request message to the other UE.
  • the UE 100 requests the gNB 200 to change the side link DRX setting.
  • the gNB 200 sets the side link DRX when setting the side link resource.
  • Example 1 In 3GPP, the study of intermittent reception (DRX: Discontinous Reception) in side-link communication is about to begin. Intermittent reception in side-link communication may be referred to as “side-link DRX”.
  • the mechanism for aligning the side link DRX wakeup time between the UEs 100 is specified, or the side in the coverage range.
  • the subject of consideration is to specify the mechanism for aligning the link DRX wakeup time and the UuDRX wakeup time.
  • the power consumption of the UE 100 is expected to be reduced as in the DRX between the UE 100 and the gNB 200.
  • FIG. 8A is a diagram showing an example in which side link communication is about to be performed between UEs 100-1 and 100-2.
  • UE100-1 is the transmitting side
  • UE100-2 is the receiving side.
  • FIG. 8B is a diagram showing a sequence example of side link RRC reconfiguration (Sidelink RRC Reconfiguration). By executing such a sequence of sidelink RRC resetting between UEs 100-1 and 100-2, sidelink communication becomes possible.
  • the UE 100-1 transmits an RRC Reconfiguration Sidelink message to the UE 100-2.
  • the RRC reset side link message is, for example, establishing, changing, or opening the side link DRB (Data Radio Bearer), or setting the NR (New Radio) side link measurement and report, etc., UE100-1,100-2. This is a message for transmitting (or including setting information related to side link communication) the setting information of the PC5 connection between the two.
  • the RRC reset side link message is also a command for AS (Access Stratum) of PC5-RRC connection, for example.
  • step S102 the UE 100-2 transmits an RRC reconfiguration complete side link (RRC ReconnectionCompleteSidelink) message.
  • RRC ReconnectionCompleteSidelink RRC reconfiguration complete side link
  • This process is performed, for example, when the UE 100-2 accepts the setting information included in the RRC reset side link message received in step S101.
  • the RRC reset completion side link message is, for example, a message used to confirm that the PC5-RRC AS reset has been completed normally (or regarding the completion of the side link communication setting).
  • the UEs 100-1 and 100-2 are connected to the PC5-RRC, and data can be transmitted and received between the UEs 100-1 and 100-2.
  • the RRC resetting failure side link message is, for example, a message used to indicate a failure of PC5-RRC AS resetting (or setting).
  • FIG. 9A is a diagram showing an example of On-duration (hereinafter, may be referred to as “Ondration”) and Off-duration (hereinafter, may be referred to as “Offdration”) in the side link DRX.
  • Ondration On-duration
  • Offdration Off-duration
  • the UE 100 sends / receives messages, sends / receives data, and the like.
  • the UE 100 stops (or suspends) transmission / reception of, for example, a message or data. Therefore, in the UE 100, it is possible to reduce the power consumption as compared with the case where the side link DRX is not performed.
  • the period composed of On-duration and Off-duration (that is, the period between the start point of one On-duration and the start point of the next On-duration) may be referred to as a DRX cycle.
  • FIG. 9B is a diagram showing an example of the relationship between each period of the side link DRX and the message.
  • the UE 100-1 transmits an RRC reset side link message in the Option.
  • the RRC reset completion side link message may be transmitted from the UE 100-2.
  • the UE 100-1 cannot receive the RRC reset completion side link message. Therefore, PC5-RRC connection may not be possible between UE100-1 and UE100-2.
  • the side link DRX is not applied during the side link RRC resetting sequence. That is, in the first embodiment, the reception standby of the RRC reset completion side link message is prioritized over the side link DRX.
  • the UE 100-1 transmits an RRC message including setting information related to side link communication
  • the UE 100-1 receives the RRC message regardless of the intermittent reception setting. Performs standby processing for receiving a response message.
  • the UE 100-1 receives the response message transmitted from the UE 100-2.
  • the UE 100-1 sets the side link communication by receiving the response message even when the intermittent reception in the side link communication is set, and the UE 100-1 sets the side link communication with the UE 100-2.
  • the RRC connection enables side-link communication.
  • FIG. 10A is a diagram showing an example in the case where reception standby is prioritized.
  • the UE 100-1 after transmitting the RRC reset side link message, the UE 100-1 gives priority to reception standby over the side link DRX.
  • UE100-1 performs standby processing until it receives the RRC reset side link completion message. Then, when the UE 100-1 receives the RRC reset side link completion message, the UE 100-1 restarts the side link DRX.
  • FIG. 10B is a diagram showing an operation example in UE 100-1.
  • step S100 UE100-1 starts processing.
  • step S105 when the RRC reset side link message is transmitted, if the side link DRX is set, the UE 100-1 performs the reception standby process regardless of the setting of the side link DRX.
  • the UE 100-1 may extend the Onduration period of the side link DRX instead of the standby process. Alternatively, the UE 100-1 may suspend the Offduration period. Alternatively, the UE 100-1 may stop the Onduration timer until it receives the RRC reset completion side link message. Alternatively, the UE 100-1 may exclude or remove the application of the side link DRX setting. Alternatively, the UE 100-1 may discard the setting of the side link DRX.
  • step S106 when the UE 100-1 receives the RRC reset side link completion message, it operates according to the side link DRX setting.
  • the UE 100-1 may return to the operation of the original side link DRX. That is, the UE 100-1 performs a standby operation according to the side link DRX.
  • the UE 100-1 may stop the process of extending the duration period. Further, the UE 100-1 may resume the suspended Offduration period.
  • the UE 100-1 may restart (or reset) the stopping timer that has been stopped.
  • the UE 100-1 may apply (or reapply) the setting of the side link DRX.
  • step S107 the UE 100-1 ends a series of processes.
  • the reception standby process is prioritized over the side link DRX. .. Therefore, even in the UE 100 to which the side link DRX is applied, a series of sequences of the side link RRC resetting can be executed, and the PC5-RRC connection between the UEs 100-1 and 100-2 becomes possible.
  • Example 2 In the side link DRX, the Onduration and the Offdration are performed between the UEs 100-1 and 100-2 at the same timing. Therefore, the issue is how to match the timing between UEs 100-1 and 100-2. Specifically, how the wake-up timing (that is, the transmission timing of the UE 100-1 and the intermittent reception timing according to the side link DRX in the UE 100-2) is determined between the UEs 100-1 and 100-2. The issue is whether to perform the operation of the side link DRX by the combination and the Hundredth and the Offdration.
  • the periodic boundary of the side link DRX is reset at the time of transmission or reception of the RRC reset side link message, or at the time of transmission or reception of the RRC reset completion side link message.
  • the frame number of the predetermined frame is reset at the timing when the UE 100-1 transmits an RRC message including the setting information related to the side link communication, or when the UE 100-2 receives the RRC message transmitted from the UE 100-1. Will be.
  • the frame number of the predetermined frame is the timing at which the UE 100-2 transmits the RRC message regarding the completion of the side link communication setting, or the timing at which the UE 100-1 receives the RRC message regarding the completion of the setting transmitted from the UE 100-2. It will be reset with.
  • the predetermined frame numbers can be set to "0" between the UEs 100-1 and 100-2 at the same timing, and the timing can be adjusted based on this timing.
  • the predetermined frame may be a side link DRX frame (hereinafter, may be referred to as a "DRX frame").
  • FIG. 11A is a diagram showing an example in which the DRX frame is reset at the first transmission timing of the transmission time of the RRC reset side link message.
  • first delivery means, for example, when the RRC reset side link message is retransmitted as shown in FIG. 11 (A) (step S101-1, step S101-2, ). Is the first transmission (step S101-1) of.
  • the transmission time point of the first transmitted message is set as the reset point.
  • UE 100-1 can grasp the transmission timing in UE 100-2 on the receiving side by notifying the UE 100-2 on the receiving side of the transmission timing of the RRC reset side link message of the first transmission.
  • the transmission timing may be included in, for example, the RRC reset side link message in step S101-1 and transmitted. Alternatively, the transmission timing may be transmitted by another message or the like.
  • both UE 100-1 on the transmitting side and UE 100-2 on the receiving side can grasp the transmission timing of the first transmission of the RRC reset side link message. Then, the UEs 100-1 and 100-2 set this transmission timing as the zero point of the DRX frame. Between UEs 100-1 and 100-2, the zero point of the DRX frame becomes the same timing, and it is possible to perform timing adjustment such as wakeup based on this.
  • FIG. 11B is an example in which the first reception timing of the RRC reset side link message is set as the zero point of the DRX frame among the reception time points of the RRC reset side link message.
  • step S101-1 when the RRC reset side link message is retransmitted (step S101-1, step S101-2, ...), the first RRC reset side link message (step S101-1) is shown. ) Is the timing of the zero point of the DRX frame.
  • the reception timing of the initial RRC reset side link message may be included in the negative response (NACK: Negative Acknowledgment) message to the initial RRC reset side link message.
  • the negative response message is, for example, a message to be transmitted to UE 100-1 on the transmitting side when UE 100-2 cannot normally receive the initial transmission RRC reset side link message.
  • the reception timing can be notified to the UE 100-1 on the transmitting side.
  • the reception timing may be notified by including it in a message other than the negative response message.
  • the initial reception timing of the RRC reset side link message can be shared between the UE 100-1 on the transmitting side and the UE 100-2 on the receiving side. Then, in the UEs 100-1 and 100-2, it is possible to set this timing to the zero point of the DRX frame and perform timing adjustment.
  • FIG. 12 is an example in which, among the reception time points of the RRC reset side link message, the timing when the RRC reset side link message is successfully received (or retransmitted is successful) is set as the zero point of the DRX frame.
  • an acknowledgment (ACK: Acknowledgment) message is transmitted from the UE 100-2 (step S103). Therefore, the reception timing of the second RRC reset side link message (step S101-2) is the timing at which the RRC reset side link message is successfully received.
  • the reception timing may be included in, for example, an acknowledgment message (step S103) or another message and transmitted.
  • the timing at which the RRC reset side link message is successfully received can be shared between the UEs 100-1 and 100-2. Then, by setting this timing as the zero point of the DRX frame in the UEs 100-1 and 100-2, the DRX frame becomes "0" at the same timing, and the timing can be adjusted.
  • FIG. 13A is an example in which the reception time point of the RRC reset completion side link message is set as the zero point of the DRX frame.
  • the UE 100-2 transmits the RRC resetting completion side message to the RRC resetting side link message (step S101), but the message is normally sent in the UE 100-1. Indicates a case where the message cannot be received and the message is retransmitted (step S102-1, step S102-2, ).
  • FIG. 13A shows the timing at the time of transmission of the first RRC resetting completed sidelink message (step S102-1) among the RRC resetting completed sidelink messages resent in this way. This is an example of setting the zero point of the DRX frame.
  • this transmission timing may be transmitted to the UE 100-1 by, for example, an RRC reset completion side link message or another message.
  • UE100-1 and UE100-2 set the transmission timing of the first RRC reset completion side link message to the zero point of the DRX frame, so that the DRX frame becomes "0" at the same timing, and UE100-1 and 100 It is possible to adjust the timing between -2.
  • FIG. 13B is an example in which the reception time point of the RRC reset completion side link message is set as the zero point of the DRX frame. That is, in the example of FIG. 13B, the RRC reset side link message (step S101) is transmitted, and then the reception timing of the first RRC reset completion side link message (step S102-1) is set to the DRX frame. This is an example of setting the zero point of.
  • the UE 100-1 includes the reception timing of the first RRC reset completion side link message in the negative response message or other message of the first RRC reset completion side link message to the UE 100-2. You may send it.
  • FIG. 14 is an example in which the timing at which the RRC reset completion side link message is successfully received, that is, the timing at which the RRC reset completion side link message is successfully retransmitted is set as the zero point of the DRX frame.
  • the various zero point points described above, including FIG. 14, may be the transmission timing or the reception timing of the acknowledgment message (ACK).
  • the UE 100-1 transmits an RRC reset side link message (step S101) and succeeds in receiving the second RRC reset completion side link message (step S102-2), and this message is obtained.
  • This is an example in which the reception timing of is set to the zero point of the DRX frame.
  • This reception timing may be included in, for example, an acknowledgment message (step S104) or another message and transmitted to the UE 100-2.
  • UE100-1 and 100-2 can set the DRX frame to the zero point at the same timing with respect to the reception timing. Therefore, it is possible to adjust the timing between the UEs 100-1 and 100-2.
  • the DRX frame number and the DRX subframe number may be calculated by the following equations, respectively.
  • [DRX frame number] ([Current SFN (System Frame Number)]-[SFN at zero point]) modding 1024 ... (1)
  • These expressions may be stored in the memory in the control unit 130, for example.
  • the SFN at the acquired zero point is stored in a memory or the like, so that the DRX can be used by using the equation (1) or the equation (2). Frames or DRX subframes can be calculated.
  • a DFN Direct Frame Number
  • a time frame derived from the reference time for example, GPS (Global Positioning System) time or the like
  • GPS Global Positioning System
  • the time unit (frame number unit) of the time frame should be 10 ms unit.
  • UE100-1 uses SFN
  • UE100-2 uses DFN
  • DRX frames between UE100-1 and 100-2. It becomes possible to perform timing synchronization.
  • the timing synchronization can be performed between the UEs 100-1 and 100-2 by using the DRX frame. It will be possible.
  • the DRX frame will be managed for each PC5-RRC connection. That is, the other PC5-RRC connection will operate in another DRX frame.
  • the DRX frame between UE100-1 and UE100-2 and the DRX frame between UE100-2 and UE100-3 may have different DRX frame numbers at a certain timing.
  • the UE 100 can obtain the same effect as the timing adjustment by the conventional offset value setting. be.
  • the RRC reset side link message includes both the own side link DRX setting and the other party's side link DRX setting and is transmitted.
  • the UE 100-1 contains an RRC message including a first setting information regarding the setting of intermittent reception in the side link communication of the UE 100-1 and a second setting information regarding the setting of the intermittent reception in the side link communication of the UE 100-2.
  • the UE 100-2 receives this RRC message. This makes it possible to share the side link DRX setting between the UEs 100-1 and 100-2 and apply the setting.
  • the DRX setting in the Uu interface is performed using the RRC Reconfiguration message.
  • the side link DRX setting may be performed using the RRC reset side link message.
  • DRX setting how the side link DRX setting (hereinafter, may be referred to as “DRX setting”) is performed will be described.
  • 15 (A) and 15 (B) are diagrams showing an operation example of the third embodiment.
  • UE100-1 is the transmitting side and UE100-2 is the receiving side.
  • the UE 100-1 transmits an RRC reset side link message including the setting information of the DRX setting of its own (sending side) and the setting information of the DRX setting of the other party (receiving side).
  • my DRX setting is the DRX setting of UE100-1 itself.
  • the DRX setting of the other party is, for example, the DRX setting of the other party (reception side) UE100-2 desired by oneself (sending side).
  • the DRX setting may include, for example, a cycle related to Onduration and Offdration, a QoS (Quality of Service) latency, and the like.
  • the UE 100-1 transmits its own DRX setting and the other party's DRX setting desired by itself to the other party's UE 100-2. Such information is included in the RRC reset side link message as setting information and transmitted.
  • step S111 the other UE 100-2 determines whether or not the received DRX setting on the transmitting side and the DRX setting on the receiving side can be accepted, and if it is acceptable, the RRC reset completion side in step S112. Send the link message to UE100-1.
  • the UEs 100-1 and 100-2 apply the side link DRX settings accepted by the UE 1002, and can send and receive data and the like during the duration period.
  • step S115 it is determined whether or not the received DRX setting on the transmitting side and the DRX setting on the receiving side can be accepted, and the UE 100-2 is unacceptable ( Or if you do not want to accept it), in step 116, send an RRC reset failure side link message to UE 100-1.
  • the UE 100-2 may send an RRC reset completion side link message including a counter-proposal instead of the RRC reset failure side link message.
  • the alternative is, for example, the side link DRX setting desired by the UE 100-2 on the receiving side.
  • the UE 100-2 may send an RRC reset failure side link message, but in this case, the transmitting UE 100-1 reports a failure (Fairure) such as the side link DRX to be set to the gNB 200. Other processing may be performed. Therefore, when the UE 100-2 transmits an RRC reset completion side link message including a counter-proposal, such processing is not performed, and it is possible to improve the efficiency of the processing.
  • a failure such as the side link DRX
  • Other processing may be performed. Therefore, when the UE 100-2 transmits an RRC reset completion side link message including a counter-proposal, such processing is not performed, and it is possible to improve the efficiency of the processing.
  • the sending UE100-1 that received the RRC reset completion side link message including the alternative may terminate the procedure as it is if it can accept this alternative.
  • the transmitting UE 100-1 may transmit the RRC reset side link message including this alternative setting to the receiving UE 100-2 again.
  • the UE 100-2 again contains the RRC reset-set side-link message including the counter-proposal. May be sent to.
  • the RRC reset side link message is an example of transmitting the RRC reset side link message including a plurality of own DRX settings and a plurality of other party's DRX settings.
  • FIG. 16 is a diagram showing an operation example of the present embodiment 3-1.
  • step S120 the transmitting UE 100-1 sends an RRC reset side link message including a plurality of DRX settings for itself (transmitting side) and a plurality of DRX settings for the other party (receiving side) on the receiving side. Send to UE100-2.
  • the UE 100-1 may include a plurality of its own settings and a plurality of partner settings as candidate lists in the RRC reset side link message. Further, the UE 100-1 may notify the candidate including the priority of the candidate in the sense of notifying the desired of the UE 100-1. In this case, each entry in the candidate list (each DRX setting) may include an identifier indicating priority. Alternatively, UE 100-1 may notify including the entry of the candidate list sorted by priority.
  • the UE 100-2 specifies an acceptable DRX setting from the DRX settings on the plurality of transmitting sides and the DRX settings on the plurality of receiving sides.
  • the UE 100-2 may be selected to match the DRX setting set with another UE connected to the PC5-RRC.
  • step S122 the UE 100-2 transmits an RRC reset completion side link message including the specified DRX setting to the UE 100-1.
  • the UE 100-2 may transmit including the accepted DRX setting itself.
  • the UE 100-2 may transmit including the entry number or the setting number of the candidate list.
  • the RRC reset failure side link message is displayed. It may be transmitted to UE 100-1.
  • the UE 100-2 may include the cause information that the DRX setting is not accepted in the RRC reset failure side link message and transmit it.
  • Example 3-2 As a modification of Example 3-1 described above, the UE 100 may transmit the RRC reset side link message and the RRC reset completion side link message including the DRX setting of only the other party (reception side).
  • the transmitting UE 100-1 transmits an RRC reset side link message including the DRX setting of the other party (receiving side) and not including the DRX setting of itself (transmitting side). do.
  • step S121 the UE 100-2 on the receiving side specifies an acceptable DRX setting from the DRX settings of the other party (receiving side).
  • step S122 the UE 100-2 on the receiving side transmits an RRC reset completion side link message including the DRX setting of the specified other party (receiving side) to the UE 100-1.
  • the UE 100-1 may transmit only the DRX settings of a plurality of other parties (reception side) in step S120.
  • the UE 100 may transmit the RRC reset side link message and the RRC reset completion side link message including the DRX setting of only itself (sending side).
  • the transmitting UE 100-1 transmits an RRC reset side link message including the DRX setting of itself (transmitting side) and not including the DRX setting of the other party (receiving side). do.
  • step S121 the UE 100-2 on the receiving side specifies an acceptable DRX setting from its own (transmitting side) DRX settings.
  • step S122 the receiving UE 100-2 transmits an RRC reset completion side link message including the specified own (transmitting) DRX setting to the UE 100-1.
  • the UE 100-1 may transmit only a plurality of own (transmitting side) DRX settings in step S120.
  • the UE 100-1 on the transmitting side notifies the UE 100-2 on the receiving side of the DRX reception setting of the own (transmitting side) among the DRX settings of the own (transmitting side). ..
  • the fourth embodiment is an example in which the UE 100 transmits a side link DRX adjustment request message (hereinafter, may be referred to as a “adjustment request message”) to the other UE when adjustment of the side link DRX is required. ..
  • the UE 100-1 transmits an RRC message including setting information regarding intermittent reception in the side link communication, and the UE 100-2 receives this RRC message. Then, the UE 100-2 transmits an adjustment request message requesting adjustment of the intermittent reception setting in the side link communication to the UE 100-1.
  • the operation is based on the following concept. That is, the side link DRX setting by the RRC reset side link message has no veto right. Upon receiving the side link DRX setting, the UE 100 hurries and accepts this setting. Then, when there is dissatisfaction, the UE 100 adjusts the side link DRX setting by the adjustment request message.
  • the UE 100 that has received the side link DRX setting by the RRC reset side link message can reduce the latency of starting data communication by accepting this setting. On the other hand, if the UE 100 is dissatisfied with the setting, the UE 100 can raise an objection by using the adjustment request message.
  • the adjustment request message may be a message for the UE 100 to request adjustment of the side link DRX setting.
  • FIG. 17 is a diagram showing an operation example of the fourth embodiment.
  • step S130 the transmitting UE 100-1 transmits an RRC reset side link message including the setting information of the side link DRX setting to the receiving UE 100-2.
  • step S131 the receiving UE 100-2 accepts the DRX setting and transmits the RRC reset completion side link message to the transmitting UE 100-1.
  • step S132 and step S133 the DRX setting is applied to the UE 100-1 on the transmitting side and the UE 100-2 on the receiving side.
  • step S134 UE 100-1 on the transmitting side transmits data to UE 100-2 on the receiving side during the duration period.
  • the receiving UE 100-2 transmits an adjustment request message to the transmitting UE 100-1 when the DRX setting adjustment is required.
  • the adjustment request message may include a plurality of candidate settings (preferrations) regarding the DRX settings, as in the case of the third embodiment. Further, the adjustment request message may be an RRC reset side link message, or may be a new message, for example, a side link DRX reset request message.
  • step S136 the transmitting UE 100-1 reviews the DRX setting and resets the side link DRX in consideration of the adjustment request message.
  • step S137 the transmitting side UE 100-1 transmits an RRC resetting side link message including the setting information of the reset DRX setting to the receiving side UE 100-2.
  • the message transmitted by the transmitting UE 100-1 may be a new message for changing only the DRX setting, for example, a Sidelink DRX Reconfiguration message, instead of the RRC reset side link message. good.
  • the transmitting UE 100-1 may transmit the adjustment request message.
  • the receiving UE 100-2 that received the adjustment request message resets the side link, and sends the RRC reset side link message including the reset side link DRX setting setting information to the transmitting UE 100-1. Just send it to.
  • the fifth embodiment is an example in which the UE 100 notifies the gNB 200 of the assistant information or requests the side link DRX setting change.
  • the UE 100-1 transmits an RRC message including setting information regarding intermittent reception in the side link communication, and the UE 100-2 receives the RRC message. Then, the UE 100-2 transmits a side link information message requesting a change in the setting for intermittent reception of the side link communication to the gNB 200.
  • the UE 100 is an example in which the side link DRX is adjusted in the other UE by transmitting an adjustment request message to the other UE.
  • the UE 100 is an example in which the side link DRX adjustment is performed in the gNB 200 by transmitting the side link information message requesting the change of the side link DRX setting to the gNB 200.
  • the gNB 200 can change the DRX setting between the gNB 200 and the UE 100 (hereinafter, may be referred to as “UuDRX”) as well as the side link DRX setting, and can improve the processing efficiency. Is.
  • UuDRX DRX setting between the gNB 200 and the UE 100
  • the concept described in Example 4 may also be applied in Example 5.
  • FIG. 18 is a diagram showing an operation example of the fifth embodiment.
  • Steps S130 to S134 are the same as in Example 4.
  • step S140 the receiving UE 100-2 transmits a side link UE information (SiderinkUE Information) message including DRX setting information to the gNB 200.
  • Sidelink UE information SegUE Information
  • the DRX setting information may be a desired setting value of UuDRX.
  • the DRX setting information may include at least a DRX cycle and an offset as desired setting values, and may optionally include an Ondration timer value.
  • the DRX setting information may be the setting value of the side link DRX.
  • the set value of the side link DRX may be the set value currently being applied (step S132 and step S133).
  • the DRX setting information may include at least a DRX cycle and an offset as setting values, and may optionally include an Ondration timer value.
  • the set value may be a set value of a plurality of side link DRXs. The setting values of the plurality of side link DRXs may or may not be linked for each Destination. Further, the set value may be a value converted into SFN when the DFN or the DRX frame described in the second embodiment is used.
  • the DRX setting information may be the setting value of the side link DRX desired for the other party UE100 (UE100-1 in the example of FIG. 18). This set value itself may be the same as the set value of the side link DRX described above.
  • step S141 the gNB 200 resets in consideration of the DRX setting information included in the side link UE information message.
  • the gNB 200 may reset the UuDRX setting of the UE 100-2.
  • the gNB 200 may reset the side link DRX setting of the UE 100-2.
  • the gNB 200 may reset the side link DRX setting of the other party (UE100-1 in the example of FIG. 18).
  • the gNB 200 has, for example, the reset side link DRX setting of UE100-1 or UE100-2 (or UE100-1 and 100-2) using PDSCH (Physical Downlink Shared Channel) or by notification information. You may send to both). Further, the gNB 200 may transmit the reset UuDRX setting to the UE 100-2 by PDSCH or broadcast information.
  • PDSCH Physical Downlink Shared Channel
  • the transmitting UE 100-1 may transmit a side link UE information message including DRX setting information to the gNB 200.
  • the other UE to the UE 100-2 on the receiving side, it can be carried out in the same manner as in the above-mentioned example.
  • Example 6 In the above-described embodiment, an example in which the side link DRX setting is mainly performed between the UEs 100 has been described. In the sixth embodiment, when the gNB 200 sets the resource used for the side link communication, the side link DRX setting is also performed.
  • the gNB 200 sends an RRC message including setting information regarding the setting of intermittent reception in the side link communication, or notifies the system information including the setting information. Then, the UEs 100-1 and 100-2 receive this RRC message and apply the intermittent reception setting in the side link communication.
  • FIG. 19 is a diagram showing an operation example of the sixth embodiment.
  • step S150 the gNB 200 sets the side link DRX of the UE 100 (UE 100-1 and UE 100-2 in the example of FIG. 19).
  • the gNB 200 transmits an RRC reconfiguration message including the setting information of the set side link DRX setting to the UE 100-1 and the UE 100-2.
  • the setting information may be notified by using SIB (System Information Block) instead of the RRC reset message.
  • the setting information may include all or part of the DRX setting information described in the fifth embodiment.
  • some DRX setting information is included, for example, only the DRX cycle and the Ondration timer are included as some DRX setting information, and the other DRX setting information (for example, off-time) is determined by the UE 100. You may do it. It is a hybrid operation in which a part of the side link DRX setting is set by gNB200 and the other part is set by UE100.
  • the setting information may be performed (or may be linked) for each resource pool.
  • step S153 and step S154 the side link DRX setting notified from the gNB 200 is applied to the UE 100-1 on the transmitting side and the UE 100-2 on the receiving side.
  • the transmitting UE 100-1 may transmit the RRC reset side link message including the side link DRX setting to the receiving UE 100-2 in consideration of the side link DRX setting notified from the gNB 200. good.
  • the UE 100-1 uses the side link DRX settings set by the UE 100-1 for the offset and the gNB 200 for the other side link DRX settings, and sets the side link DRX settings including these. It may be included in the RRC reset side link message to notify.
  • the UE 100-1 sets the side link DRX setting determined by the UE 100-1 itself in anticipation that the other side link DRX settings are transmitted from the gNB 200 to the UE 100-2, and the RRC reset side link message. It may be included in and notified.
  • a program may be provided that causes the computer to execute each process performed by the UE 100 or the gNB 200.
  • the program may be recorded on a computer-readable medium.
  • Computer-readable media can be used to install programs on a computer.
  • the computer-readable medium on which the program is recorded may be a non-transient recording medium.
  • the non-transient recording medium is not particularly limited, but may be, for example, a recording medium such as a CD-ROM or a DVD-ROM.
  • a circuit that executes each process performed by the UE 100 or the gNB 200 may be integrated, and at least a part of the UE 100 or the gNB 200 may be configured as a semiconductor integrated circuit (chipset, SoC).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一実施形態に係る通信制御方法は、第1ユーザ装置及び第2のユーザ装置を有し、前記第1ユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法である。前記通信制御方法は、前記第1のユーザ装置が、前記サイドリンク通信に関する設定情報を含むRRC(Radio Resource Control)メッセージを送信する際に、前記第2のユーザ装置との間で間欠受信が設定されている場合、前記間欠受信の設定に関わらず前記RRCメッセージに対するRRC応答メッセージの受信の待ち受け処理を行うことを有する。また、前記通信制御方法は、前記第2のユーザ装置が、前記RRCメッセージを受信すると、前記RRCメッセージに対する前記RRC応答メッセージを送信することと、前記第1のユーザ装置が、前記RRC応答メッセージを受信することと、を有する。

Description

通信制御方法
 本発明は、移動通信システムに用いる通信制御方法に関する。
 移動通信システムの標準化プロジェクトである3GPP(Third Generation Partnership Project)の規格において、ユーザ装置間で無線通信を行うサイドリンク通信が規定されている(例えば、非特許文献1参照)。サイドリンク通信により、例えば、車両間通信(V2V:Vehicle to Vehicle)を含むV2X(Vehicle to Everything)サービスなどを実現することが可能となる。
 サイドリンク通信では、NG-RAN(Next Generation-Radio Access Network)によりスケジューリングされたリソースを用いてユーザ装置間で無線通信が行われる場合(モード1)がある。また、サイドリンク通信では、ユーザ装置が自律的にリソースプールの中からリソースを選択して無線通信を行う場合(モード2)がある。
 さらに、ユーザ装置がNG-RANのカバレッジ範囲内にあるときは、ユーザ装置のRRC(Radio Resource Control)状態に関係なくサイドリンク通信がサポートされる。さらに、ユーザ装置がNG-RANのカバレッジ範囲外にあるときでもサイドリンク通信はサポートされる。
 したがって、例えば、ユーザ装置がNG-RANのカバレッジ範囲内にあるときは、スケジューリングされたリソースを用いて他のユーザ装置と無線通信が可能であり、また、自律的にリソースを選択して無線通信が可能である。他方、ユーザ装置がNG-RANのカバレッジ範囲外にあるときは、自律的にリソースを選択して他のユーザ装置と無線通信が可能となる。
 さらに、サイドリンク通信では、ユニキャスト送信、グループキャスト送信、及びブロードキャスト送信をサポートしている。ユニキャスト送信では、ペアのピアユーザ装置間でユーザトラフィックが送受信される。また、グループキャスト送信では、サイドリンク内のグループに属するユーザ装置間でユーザトラフィックが送受信される。さらに、ブロードキャスト送信では、サイドリンク内のユーザ装置間でユーザトラフィックが送受信される。
3GPP TS 38.300 V16.2.0 (2020-07)
 第1の態様に係る通信制御方法は、第1のユーザ装置及び第2のユーザ装置を有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法である。前記通信制御方法は、前記第1のユーザ装置が、前記サイドリンク通信に関する設定情報を含むRRC(Radio Resource Control)メッセージを送信する際に、前記第2のユーザ装置との間で間欠受信が設定されている場合、前記間欠受信の設定に関わらず前記RRCメッセージに対するRRC応答メッセージの受信の待ち受け処理を行うことを有する。また、前記通信制御方法は、前記第2のユーザ装置が、前記RRCメッセージを受信すると、前記RRCメッセージに対する前記RRC応答メッセージを送信することと、前記第1のユーザ装置が、前記RRC応答メッセージを受信することと、を有する。
 第2の態様に係る通信制御方法は、第1のユーザ装置及び第2のユーザ装置を有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法である。前記通信制御方法は、前記第1のユーザ装置が、前記サイドリンク通信に関する設定情報を含む第1のRRCメッセージを送信したタイミング、又は前記第2のユーザ装置が、前記第1のユーザ装置から送信された前記第1のRRCメッセージを受信したタイミングで所定フレームのフレーム番号をリセットすることを有する。又は、前記通信制御方法は、前記第2のユーザ装置が、前記サイドリンク通信の設定完了に関する第2のRRCメッセージを送信したタイミング、又は前記第1のユーザ装置が、前記第2のユーザ装置から送信された前記第2のRRCメッセージを受信したタイミングで前記所定フレームのフレーム番号をリセットすることを有する。
 第3の態様に係る通信制御方法は、第1のユーザ装置及び第2のユーザ装置を有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法である。前記通信制御方法は、前記第1のユーザ装置が、前記第1のユーザ装置の前記サイドリンク通信における間欠受信の設定に関する第1の設定情報と、前記第2のユーザ装置の前記サイドリンク通信における間欠受信の設定に関する第2の設定情報とを含むRRCメッセージを送信することと、前記第2のユーザ装置が、前記RRCメッセージを受信することと、を有する。
 第4の態様に係る通信制御方法は、基地局装置と、前記基地局装置と無線通信が可能な第1のユーザ装置及び第2のユーザ装置とを有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法である。前記通信制御方法は、前記第1のユーザ装置が、前記サイドリンク通信における間欠受信に関する設定情報を含むRRCメッセージを送信することと、前記第2のユーザ装置が、前記RRCメッセージを受信することと、を有する。また、前記通信制御方法は、前記第2のユーザ装置が、前記サイドリンク通信における間欠受信の設定の調整を要求する調整要求メッセージを前記第1のユーザ装置へ送信することと、又は、前記サイドリンク通信における間欠受信の設定変更を要求するサイドリンク情報メッセージを前記基地局装置へ送信することと、を有する。
 第5の態様に係る通信制御方法は、基地局装置と、前記基地局装置と無線通信が可能な第1のユーザ装置及び第2のユーザ装置とを有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法である。前記通信制御方法は、前記基地局装置が、前記サイドリンク通信における間欠受信の設定に関する設定情報を含むRRCメッセージを送信することと、又は前記設定情報を含むシステム情報を報知することと、前記第1のユーザ装置及び前記第2のユーザ装置は、前記RRCメッセージを受信し、前記サイドリンク通信における間欠受信の設定を適用することと、を有する。
図1は、一実施形態に係る移動通信システムの構成例を示す図である。 図2は、一実施形態に係るユーザ装置の構成例を示す図である。 図3は、一実施形態に係る基地局の構成例を示す図である。 図4は、Uuインターフェイスのユーザプレーンのプロトコルスタックの構成例を示す図である。 図5は、Uuインターフェイスの制御プレーンのプロトコルスタックの構成例を示す図である。 図6は、PC5インターフェイスのユーザプレーンのプロトコルスタックの構成例を示す図である。 図7は、PC5インターフェイスの制御プレーンのプロトコルスタックの構成例を示す図である。 図8(A)はUE間で無線通信が行われている例、図8(B)は実施例1の動作例をそれぞれ表す図である。 図9(A)はOn-durationとOff-durationの例、図9(B)はメッセージの送受信タイミングの例をそれぞれ表す図である。 図10(A)はメッセージの送受信の例、図10(B)は実施例1の動作例を表す図である。 図11(A)と図11(B)は、実施例2の動作例を表す図である。 図12は、実施例2の動作例を表す図である。 図13(A)と図13(B)は、実施例2の動作例を表す図である。 図14は、実施例2の動作例を表す図である。 図15(A)と図15(B)は、実施例3の動作例を表す図である。 図16は、実施例3-1の動作例を表す図である。 図17は、実施例4の動作例を表す図である。 図18は、実施例5の動作例を表す図である。 図19は、実施例6の動作例を表す図である。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 (移動通信システムの構成)
 まず、一実施形態に係る移動通信システムの構成例について説明する。一実施形態に係る移動通信システムは3GPPの5Gシステムであるが、移動通信システムには、LTE(Long Term Evolution)が少なくとも部分的に適用されてもよい。
 図1は、一実施形態に係る移動通信システム10の構成例を示す図である。
 図1に示すように、移動通信システム10は、ユーザ装置(UE:User Equipment)100と、5Gの無線アクセスネットワーク(NG-RAN)300とを有する。
 UE100は、移動可能な装置である。UE100は、ユーザにより利用される装置であればどのような装置であっても構わないが、例えば、UE100は、携帯電話端末(スマートフォンを含む)やタブレット端末、ノートPC、通信モジュール(通信カード又はチップセットを含む)、センサ若しくはセンサに設けられる装置、車両若しくは車両に設けられる装置(Vehicle UE)、飛行体若しくは飛行体に設けられる装置(Aerial UE)など、無線通信が可能な装置である。なお、本実施形態におけるUE100は、サイドリンク通信を利用して、他のUEと直接無線通信を行うことができる。
 NG-RAN300は、5Gシステムにおいて「gNB」(「next generation Node B」)と呼ばれる基地局装置200-1を含む。また、NG-RAN300は、NR(New Radio)と協調可能なLTE基地局である基地局装置200-2を含む。基地局装置200-2は、「ng-eNB」と呼ばれる。
 gNB200-1とng-eNB200-2とは、NG-RANノードと呼ばれることもある。gNB200-1とng-eNB200-2とは、基地局間インターフェイスであるXnインターフェイスを介して相互に接続される。gNB200-1とng-eNB200-2とは、1又は複数のセルを管理する。gNB200-1とng-eNB200-2とは、自セルとの接続を確立したUE100との無線通信を行う。gNB200-1とng-eNB200-2とは、無線リソース管理(RRM:Radio Resource Management)機能、ユーザデータ(以下、単に「データ」という)のルーティング機能、モビリティ制御・スケジューリングのための測定制御機能等を有する。「セル」は、無線通信エリアの最小単位を示す用語として用いられる。「セル」は、UE100との無線通信を行う機能又はリソースを示す用語としても用いられる。1つのセルは1つのキャリア周波数に属する。
 図1に示すように、gNB200-1とng-eNB200-2との間はXnインターフェイスで接続される。また、gNB200-1とUE100-1との間と、ng-eNB200-2とUE100-2との間とは、基地局ユーザ装置間インターフェイスであるUuインターフェイスで接続される。さらに、UE100-1~100-3間は、ユーザ装置間インターフェイスであるPC5インターフェイスで接続される。
 なお、3GPPでは、NRサイドリンク通信とV2Xサイドリンク通信とが規定される。NRサイドリンク通信は、例えば、ネットワークノードを経由することなく、NR(New Radio)技術を利用して、UE100-1~100-3間において、少なくともV2X通信が可能な通信のことである。また、V2Xサイドリンク通信は、例えば、ネットワークノードを経由することなく、E-UTRA(Evolved - Universal Terrestrial Radio Access)技術を利用して、V2X通信が可能な通信のことである。以下では、NRサイドリンク通信とV2Xサイドリンク通信とをとくに区別することなく、「サイドリンク通信」と称する場合がある。したがって、「サイドリンク通信」には、NRサイドリンク通信が含まれてもよいし、V2Xサイドリンク通信が含まれてもよい。
 また、図1において、gNB200-1が5Gのコアネットワークである5GC(5G Core network)に接続されてもよいし、ng-eNB200-2がLTEのコアネットワークであるEPC(Evolved Packet Core)に接続されてもよい。或いは、gNB200-1がEPCに接続されてもよいし、ng-eNB200-2が5GCに接続されてもよい。
 なお、以下においては、gNB200-1とng-eNB200-2とのうち、代表して、gNB200-1を基地局装置の例として説明する。また、gNB200-1をgNB200、UE100-1~100-3をUE100と表記する場合がある。
 図2は、一実施形態に係るUE100(ユーザ装置)の構成を示す図である。
 図2に示すように、UE100は、受信部110、送信部120、及び制御部130を備える。
 受信部110は、制御部130の制御下で各種の受信を行う。受信部110は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換(ダウンコンバート)して制御部130に出力する。なお、本実施形態におけるUE100は、gNB200だけではなく、他のUEとの間でサイドリンク通信による無線通信を行うことが可能である。そのため、受信部110は、他のUEから送信されたメッセージ又はデータなどを受信することも可能である。
 送信部120は、制御部130の制御下で各種の送信を行う。送信部120は、アンテナ及び送信機を含む。送信機は、制御部130が出力するベースバンド信号(送信信号)を無線信号に変換(アップコンバート)してアンテナから送信する。本実施形態では、送信部120は、gNB200へデータなどを送信するだけはなく、サイドリンク通信により、他のUEへ、メッセージ又はデータなどを送信することが可能である。
 制御部130は、UE100における各種の制御を行う。制御部130は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリとを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPU(Central Processing Unit)と、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。本実施形態における制御部130は、以下に示す実施例で説明する各種の制御又は処理を行うことが可能である。
 図3は、一実施形態に係るgNB200(基地局)の構成を示す図である。
 図3に示すように、gNB200は、送信部210、受信部220、制御部230、及びバックホール通信部240を備える。
 送信部210は、制御部230の制御下で各種の送信を行う。送信部210は、アンテナ及び送信機を含む。送信機は、制御部230が出力するベースバンド信号(送信信号)を無線信号に変換(アップコンバート)してアンテナから送信する。
 受信部220は、制御部230の制御下で各種の受信を行う。受信部220は、アンテナ及び受信機を含む。受信機は、アンテナが受信する無線信号をベースバンド信号(受信信号)に変換(ダウンコンバート)して制御部230に出力する。
 制御部230は、gNB200における各種の制御を行う。制御部230は、少なくとも1つのプロセッサと、プロセッサと電気的に接続された少なくとも1つのメモリとを含む。メモリは、プロセッサにより実行されるプログラム、及びプロセッサによる処理に用いられる情報を記憶する。プロセッサは、ベースバンドプロセッサと、CPUと、を含んでもよい。ベースバンドプロセッサは、ベースバンド信号の変調・復調及び符号化・復号等を行う。CPUは、メモリに記憶されるプログラムを実行して各種の処理を行う。CPUに代えて、DSP(Digital Signal Processor)やFPGA(Field Programmable Gate Array)などのプロセッサやコントローラであってもよい。
 バックホール通信部240は、基地局間インターフェイスを介して隣接基地局と接続される。バックホール通信部240は、基地局-コアネットワーク間インターフェイスを介して5GCの各ノードと接続される。なお、gNB200は、CU(Central Unit)とDU(Distributed Unit)とで構成され(すなわち、機能分割され)、両ユニット間がF1インターフェイスで接続されてもよい。
(Uuインターフェイスにおけるプロトコルスタックについて)
 図4は、Uuインターフェイスにおいて、データを取り扱うユーザプレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。
 図4に示すように、Uuインターフェイスにおけるユーザプレーンの無線インターフェイスプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、SDAP(Service Data Adaptation Protocol)レイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤとgNB200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(HARQ:Hybrid Automatic Repeat Request)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤとgNB200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。gNB200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(MCS:Modulation and Coding Scheme))及びUE100への割当リソースブロックを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤとgNB200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 SDAPレイヤは、コアネットワークがQoS(Quality of Service)制御を行う単位であるIPフローとAS(Access Stratum)がQoS制御を行う単位である無線ベアラとのマッピングを行う。なお、RANがEPCに接続される場合は、SDAPが無くてもよい。
 図5は、Uuインターフェイスにおいて、シグナリング(制御信号)を取り扱う制御プレーンの無線インターフェイスのプロトコルスタックの構成を示す図である。なお、図5では、5GCに含まれるノードとしてAMF(Access and Mobility Management Function)が表記される。
 図5に示すように、Uuインターフェイスにおける制御プレーンの無線インターフェイスのプロトコルスタックは、図4に示したSDAPレイヤに代えて、RRC(Radio Resource Control)レイヤ及びNAS(Non-Access Stratum)レイヤを有する。
 UE100のRRCレイヤとgNB200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCとgNB200のRRCとの間に接続(RRC接続)がない場合、UE100はRRCアイドル状態にある。また、RRC接続が中断(サスペンド)されている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、セッション管理及びモビリティ管理等を行う。UE100のNASレイヤとAMF300のNASレイヤとの間では、NASシグナリングが伝送される。
 なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
(PC5インターフェイスにおけるプロトコルスタックについて)
 図6は、PC5インターフェイスにおけるユーザプレーンのプロトコルスタックの構成例を表す図である。
 図6に示すように、PC5インターフェイスにおけるユーザプレーンのプロトコルは、Uuインターフェイスにおけるユーザプレーンのプロトコルと同様に、PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、及びSDAPレイヤの各レイヤを含む。
 また、図7は、PC5インターフェイスにおける制御プレーンのプロトコルスタックの構成例を表す図である。
 図7に示すように、PC5インターフェイスにおける制御プレーンのプロトコルも、Uuインターフェイスにおける制御プレーンのプロトコルと同様に、PHYレイヤ、MACレイヤ、RLCレイヤ、PDCPレイヤ、及びRRCレイヤを含む。
 ユーザプレーンのMACレイヤでは、サイドリンク通信におけるトランスポートレイヤ(SCCH(Sidelink Control Channel)、STCH(Sidelink Transport Channel)、及びSBCCH(Sidelink Broadcast Control Channel))を介して、データが伝送される。また、制御プレーンのMACレイヤでは、サイドリンク通信におけるトランスポートレイヤを介して、制御情報が伝送される。さらに、少なくともいずれ一方のプレーンのMACレイヤにおいては、上りリンク通信とサイドリンク通信との間の優先ハンドリング、サイドリンクのCSI(Channel State Information)報告などが行われる。
 また、制御プレーンのRRCレイヤでは、ピアUE100-1,100-2間でのPC5-RRCメッセージの転送、PC5-RRC接続の維持と管理、PC5-RRC接続におけるサイドリンク無線リンクの失敗(Failure)の検出などが行われる。
 なお、PC5-RRC接続は、レイヤ2における送信元と宛先のIDのペアに対する2つのUE100間の論理接続のことである。PC5-RRRC接続は、対応するPC5ユニキャストリンクが確立された後に確立される。PC5-RRC接続とPC5ユニキャストリンクとは1対1の関係がある。UE100は、レイヤ2における送信元と宛先のIDのペアが異なる1つ以上の他のUEとの間で、複数のPC5-RRC接続を有することが可能である。UE100は、サイドリンク通信に興味がない場合、或いは、レイヤ2リンク開放プロシージャが完了した場合などに、PC5-RRC接続を開放する。PC5-RRC接続されたUE100-1,100-2は、PC5-RRC接続(コネクティッド)状態となる。
(サイドリンク通信の物理チャネルについて)
 サイドリンク通信における物理チャネルとして、物理サイドリンク制御チャネル(PSCCH:Physical Sidelink Control Channel)と、物理サイドリンク共有チャネル(PSSCH:Physical Sidelink Shared Channel)とがある。また、サイドリンク通信における物理チャネルとして、物理サイドリンクフィードバックチャネル(PSFCH:Physical Sidelink Feedback Channel)、及び物理サイドリンクブロードキャスト(PSBCH:Physical Sidelink Broadcast Channel)がある。
 PSCCHでは、UE100がPSSCHで使用するリソースに関する制御情報などが送信される。PSCCHでは、2段階に分けで異なる制御情報(SCI:Sidelink Control Information)が送信される場合がある。PSSCHでは、データのTB(Transport Block)の送信、HARQ手順などの制御情報の一部が送信される。PSFCHは、PSSCH送信の受信対象であるUE100-2から送信を実行したUE100-1へ、HARQフィードバック情報が送信される。PSFCHは、ユニキャスト送信とグループキャスト送信に適用されてよい。PSBCHは、直接フレーム番号(DFN:Direct Frame Number)、同期に関する情報などが伝送される。
(動作例)
 次に動作例について説明する。動作例は以下の順番で説明する。
 (実施例1)サイドリンクDRX(Discontinuous Reception)は、RRC再設定サイドリンクシーケンス中、適用されない
 (実施例2)サイドリンクDRXの周期バウンダリは、RRC再設定サイドリンクメッセージ又は、RRC再設定完了サイドリンクメッセージの送信又は受信の時点でリセットされる
 (実施例3)UE100は、RRC再設定サイドリンクメッセージにおいて、自身のサイドリンクDRX設定と相手方のサイドリンクDRX設定の両方を含めて送信する
 (実施例3-1)実施例3において、複数のサイドリンクDRX設定を通知する
 (実施例3-2)UE100は、RRC再設定サイドリンクメッセージとRRC再設定完了サイドリンクメッセージとに、相手方のサイドリンクDRX設定のみを含めて通知する
 (実施例3-3)UE100は、RRC再設定サイドリンクメッセージとRRC再設定完了サイドリンクメッセージとに、自身のサイドリンクDRX設定のみを含めて通知する
 (実施例4)UE100は、相手方UEへサイドリンクDRX調整要求メッセージを送信する
 (実施例5)UE100は、gNB200へ、サイドリンクDRX設定変更の要求を行う
 (実施例6)gNB200は、サイドリンクリソースを設定する際に、サイドリンクDRX設定を行う
(実施例1)
 3GPPでは、サイドリンク通信における間欠受信(DRX:Discontinuous Reception)の検討が開始されようとしている。サイドリンク通信における間欠受信を、「サイドリンクDRX」と称する場合がある。
 具体的には、例えば、サイドリンクDRXにおける、On-durationとOff-durationを定義したり、UE100間でサイドリンクDRXウェイクアップ時間を揃えるためのメカニズムを特定したり、或いは、カバレッジ範囲で、サイドリンクDRXウェイクアップ時間とUuDRXウェイクアップ時間とを揃えるためのメカニズムを特定したりすることなどが、検討対象となっている。
 サイドリンクDRXにおいても、UE100とgNB200との間のDRXと同様に、UE100の消費電力削減が期待される。
 他方、図8(A)は、UE100-1,100-2間でサイドリンク通信が行われようとしている場合の例を表す図である。図8(A)の例では、UE100-1が送信側、UE100-2が受信側となっている。
 また、図8(B)は、サイドリンクRRC再設定(SidelinkRRCReconfiguration)のシーケンス例を表す図である。UE100-1,100-2間では、このようなサイドリンクRRC再設定のシーケンスを実行することで、サイドリンク通信が可能となる。
 ステップS101において、UE100-1は、RRC再設定サイドリンク(RRCReconfigurationSidelink)メッセージをUE100-2へ送信する。RRC再設定サイドリンクメッセージは、例えば、サイドリンクDRB(Data Radio Bearer)の確立、変更、又は開放、或いは、NR(New Radio)サイドリンクメジャーメントとレポートの設定など、UE100-1,100-2間のPC5接続の設定情報などを送信するための(又はサイドリンク通信に関する設定情報を含む)メッセージである。或いは、RRC再設定サイドリンクメッセージは、例えば、PC5-RRC接続のAS(Access Stratum)に対するコマンドでもある。
 ステップS102において、UE100-2は、RRC再設定完了サイドリンク(RRC ReconfigurationCompleteSidelink)メッセージを送信する。この処理は、例えば、UE100-2が、ステップS101で受信したRRC再設定サイドリンクメッセージに含まれる設定情報を受け入れる場合に行われる。RRC再設定完了サイドリンクメッセージは、例えば、PC5-RRC AS再設定が正常に完了したことを確認するために使用される(又はサイドリンク通信の設定完了に関する)メッセージである。
 このようなサイドリンク再設定シーケンスにより、UE100-1,100-2間が、PC5-RRC接続され、UE100-1,100-2間において、データの送受信などを行うことが可能となる。
 なお、UE100-2は、ステップS101で受信したRRC再設定サイドリンクメッセージに含まれる設定情報を受け入れない場合、RRC再設定失敗サイドリンク(RRCReconfigurationFailureSidelink)メッセージを送信することも可能である。RRC再設定失敗サイドリンクメッセージは、例えば、PC5-RRC AS再設定(又は設定)の失敗を示すために使用されるメッセージである。
 図9(A)は、サイドリンクDRXにおけるOn-duration(以下、「Onduration」と称する場合がある。)とOff-duration(以下、「Offduration」と称する場合がある。)との例を表す図である。例えば、Ondurationの期間において、UE100は、メッセージの送受信又はデータの送受信などを行う。一方、Offdurationの期間において、UE100は、例えば、メッセージ又はデータなどの送受信を停止(又は中断)する。このため、UE100においては、サイドリンクDRXを行わない場合と比較して、消費電力の削減を図ることができる。On-durationとOff-durationで構成される期間(つまり、例えば、あるOn-durationの開始点と次のOn-durationの開始点との間の期間)を、DRXサイクルと称してもよい。
 図9(B)は、サイドリンクDRXの各期間とメッセージとの関係例を表す図である。図9(B)に示すように、UE100-1は、Ondurationにおいて、RRC再設定サイドリンクメッセージを送信する。しかし、Offdurationにおいて、RRC再設定完了サイドリンクメッセージがUE100-2から送信される場合もある。この場合、UE100-1では、RRC再設定完了サイドリンクメッセージを受信することができない。そのため、UE100-1とUE100-2との間では、PC5-RRC接続できない場合がある。
 そこで、本実施例1では、サイドリンクRRC再設定のシーケンス中は、サイドリンクDRXを適用しないようにする。すなわち、本実施例1では、RRC再設定完了サイドリンクメッセージの受信待ち受けをサイドリンクDRXよりも優先するようにする。
 すなわち、UE100-1は、サイドリンク通信に関する設定情報を含むRRCメッセージを送信する際に、UE100-2との間で間欠受信が設定されている場合、間欠受信の設定に関わらず、RRCメッセージに対する応答メッセージの受信の待ち受け処理を行う。そして、UE100-1は、UE100-2から送信された応答メッセージを受信する。これにより、UE100-1は、サイドリンク通信における間欠受信が設定されていた場合であっても、応答メッセージを受信することで、サイドリンク通信の設定を行い、UE100-2との間で、PC5-RRC接続されて、サイドリンク通信が可能となる。
 図10(A)は、受信待ち受けを優先した場合の例を表す図である。図10(A)に示すように、UE100-1は、RRC再設定サイドリンクメッセージを送信後、サイドリンクDRXよりも受信待ち受けを優先する。UE100-1は、RRC再設定サイドリンク完了メッセージを受信するまで待ち受け処理を行う。そして、UE100-1は、RRC再設定サイドリンク完了メッセージを受信すると、サイドリンクDRXを再開する。
 図10(B)は、UE100-1における動作例を表す図である。
 ステップS100において、UE100-1は、処理を開始する。
 ステップS105において、UE100-1は、RRC再設定サイドリンクメッセージを送信するときに、サイドリンクDRXが設定されていた場合、サイドリンクDRXの設定に依らず、受信待ち受け処理を行う。UE100-1は、待ち受け処理に代えて、サイドリンクDRXのOnduration期間を延長するようにしてもよい。または、UE100-1は、Offduration期間をサスペンド(中断)するようにしてもよい。または、UE100-1は、Ondurationタイマを、RRC再設定完了サイドリンクメッセージを受信するまで停止する、としてもよい。または、UE100-1は、サイドリンクDRXの設定の適用を除外する、もしくは適用を外す、としてもよい。または、UE100-1は、サイドリンクDRXの設定を破棄する、としてもよい。
 ステップS106において、UE100-1は、RRC再設定サイドリンク完了メッセージを受信すると、サイドリンクDRXの設定に従った動作を行う。または、UE100-1は、元のサイドリンクDRXの動作に戻るようにしてもよい。すなわち、UE100-1は、サイドリンクDRXに従った待ち受け動作を行う。または、UE100-1は、Onduration期間の延長処理を停止してもよい。また、UE100-1は、サスペンドしていたOffduration期間を再開(レジューム)してもよい。または、UE100-1は、停止していたOndurationタイマを再開(またはリセット)してもよい。または、UE100-1は、サイドリンクDRXの設定を適用(もしくは再適用)してもよい。
 そして、ステップS107において、UE100-1は、一連の処理を終了する。
 このように、本実施例1では、UE100は、RRC再設定サイドリンクメッセージを送信するときに、サイドリンクDRXが設定されていた場合、受信待ち受け処理をサイドリンクDRXよりも優先するようにしている。そのため、サイドリンクDRXが適用されているUE100であっても、サイドリンクRRC再設定の一連のシーケンスを実行することができ、UE100-1,100-2間でPC5-RRC接続が可能となる。
(実施例2)
 サイドリンクDRXでは、UE100-1,100-2間において、互いに同じタイミングで、OndurationとOffdurationとが行われる。そのため、UE100-1,100-2間でどのようにタイミングを合わせるかが課題である。具体的には、UE100-1,100-2間で、どのようにして、ウェイクアップのタイミング(すなわち、UE100-1の送信タイミングとUE100-2におけるサイドリンクDRXに従った間欠受信タイミングと)を合わせ、そして、OndurationとOffdurationとによるサイドリンクDRXの動作を行うかが課題である。
 そこで、本実施例2においては、サイドリンクDRXの周期バウンダリが、RRC再設定サイドリンクメッセージの送信時点もしくは受信時点、又は、RRC再設定完了サイドリンクメッセージの送信時点もしくは受信時点でリセットされるようにする。
 すなわち、所定フレームのフレーム番号は、UE100-1が、サイドリンク通信に関する設定情報を含むRRCメッセージを送信したタイミング、又はUE100-2が、UE100-1から送信されたRRCメッセージを受信したタイミングでリセットされる。または、所定フレームのフレーム番号は、UE100-2が、サイドリンク通信の設定完了に関するRRCメッセージを送信したタイミング、又はUE100-1が、UE100-2から送信された設定完了に関するRRCメッセージを受信したタイミングでリセットされる。
 これにより、UE100-1,100-2間において、所定のフレームの番号を、ともに同じタイミングで「0」にすることができ、このタイミングを基準にして、タイミング合わせを行うことが可能となる。
 なお、所定フレームは、サイドリンクDRXフレーム(以下、「DRXフレーム」と称する場合がある。)であってもよい。
 図11(A)は、RRC再設定サイドリンクメッセージの送信時点のうち、初送タイミングでDRXフレームがリセットされる例を表す図である。ここで、「初送」とは、例えば、図11(A)に示すように、RRC再設定サイドリンクメッセージの再送が行われた場合(ステップS101-1,ステップS101-2,...)の最初の送信(ステップS101-1)のことである。このように、RRC再設定サイドリンクメッセージが何度も送信される場合があり得るため、図11(A)の例では、このうち、初送の当該メッセージの送信時点をリセット点としている。
 この場合、UE100-1は、初送のRRC再設定サイドリンクメッセージの送信タイミングを、受信側のUE100-2へ通知することで、受信側のUE100-2において送信タイミングを把握することができる。送信タイミングは、例えば、ステップS101-1のRRC再設定サイドリンクメッセージに含まれて、送信されてもよい。または、送信タイミングは、別のメッセージなどで送信されてもよい。
 これにより、送信側のUE100-1と受信側のUE100-2とは、RRC再設定サイドリンクメッセージの初送の送信タイミングをともに把握することができる。そして、UE100-1,100-2は、この送信タイミングを、DRXフレームのゼロ点とする。UE100-1,100-2間では、DRXフレームのゼロ点が同じタイミングになり、これを基準にして、ウェイクアップなどのタイミング合わせを行うことが可能となる。
 図11(B)は、RRC再設定サイドリンクメッセージの受信時点のうち、RRC再設定サイドリンクメッセージの初回の受信タイミングを、DRXフレームのゼロ点とする例である。
 図11(B)の例は、RRC再設定サイドリンクメッセージが再送される場合(ステップS101-1,ステップS101-2,...)、初送のRRC再設定サイドリンクメッセージ(ステップS101-1)の受信タイミングを、DRXフレームのゼロ点のタイミングとしている。
 初送RRC再設定サイドリンクメッセージの受信タイミングは、初送RRC再設定サイドリンクメッセージに対する否定応答(NACK:Negative Acknowledgment)メッセージに含めてもよい。否定応答メッセージは、例えば、UE100-2が初送RRC再設定サイドリンクメッセージを正常に受信できなかったときに、送信側のUE100-1へ送信するメッセージである。これにより、送信側のUE100-1へ受信タイミングを通知することができる。受信タイミングは、否定応答メッセージ以外の他のメッセージなどに含ませて通知されてもよい。
 そして、RRC再設定サイドリンクメッセージの初回の受信タイミングが送信側のUE100-1と受信側のUE100-2とで共有することができる。そして、UE100-1,100-2では、このタイミングをDRXフレームのゼロ点にして、タイミング合わせを行うことが可能となる。
 図12は、RRC再設定サイドリンクメッセージの受信時点のうち、RRC再設定サイドリンクメッセージの受信が成功した(又は再送が成功した)タイミングを、DRXフレームのゼロ点とする例である。図12の例では、2回目のRRC再設定サイドリンクメッセージの送信(ステップS101-2)で、確認応答(ACK:Acknowledgment)メッセージがUE100-2から送信されている(ステップS103)。そのため、2回目のRRC再設定サイドリンクメッセージ(ステップS101-2)の受信タイミングが、RRC再設定サイドリンクメッセージの受信が成功したタイミングとなる。
 受信タイミングは、例えば、確認応答メッセージ(ステップS103)又は他のメッセージに含めて送信されてもよい。これにより、UE100-1,100-2間で、RRC再設定サイドリンクメッセージの受信が成功したタイミングを共有することができる。そして、UE100-1,100-2は、このタイミングをDRXフレームのゼロ点とすることで、同じタイミングでDRXフレームが「0」となり、タイミング合わせを行うことが可能となる。
 図13(A)は、RRC再設定完了サイドリンクメッセージの受信時点をDRXフレームのゼロ点とする例である。
 すなわち、図13(A)の例は、UE100-2が、RRC再設定サイドリンクメッセージ(ステップS101)に対して、RRC再設定完了サイドメッセージを送信するものの、UE100-1において、当該メッセージを正常に受信することができず、当該メッセージが再送される場合(ステップS102-1,ステップS102-2,...)を表している。
 そして、図13(A)は、そのように再送が行われたRRC再設定完了サイドリンクメッセージのうち、初送のRRC再設定完了サイドリンクメッセージ(ステップS102-1)の送信時点のタイミングを、DRXフレームのゼロ点とする例である。
 この場合も、この送信タイミングは、例えば、RRC再設定完了サイドリンクメッセージ又は他のメッセージなどにより、UE100-1へ送信されてもよい。
 UE100-1とUE100-2とは、初送のRRC再設定完了サイドリンクメッセージの送信タイミングをDRXフレームのゼロ点とすることで、同じタイミングでDRXフレームが「0」となり、UE100-1,100-2間でタイミング合わせを行うことが可能となる。
 図13(B)は、RRC再設定完了サイドリンクメッセージの受信時点をDRXフレームのゼロ点とする例である。すなわち、図13(B)の例は、RRC再設定サイドリンクメッセージ(ステップS101)が送信され、その後、初送のRRC再設定完了サイドリンクメッセージ(ステップS102-1)の受信タイミングを、DRXフレームのゼロ点とする例である。
 この場合、UE100-1は、初送のRRC再設定完了サイドリンクメッセージの受信タイミングを、初送のRRC再設定完了サイドリンクメッセージの否定応答メッセージ又は他のメッセージなどに含めて、UE100-2へ送信してもよい。
 図14は、RRC再設定完了サイドリンクメッセージの受信が成功したタイミング、すなわち、RRC再設定完了サイドリンクメッセージの再送が成功したタイミングを、DRXフレームのゼロ点とする例である。なお、図14を含めて、上記の様々なゼロ点ポイントについては、確認応答メッセージ(ACK)の送信タイミング又は受信タイミングでもよい。
 図14の例は、UE100-1は、RRC再設定サイドリンクメッセージ(ステップS101)を送信し、2回目のRRC再設定完了サイドリンクメッセージ(ステップS102-2)での受信に成功し、このメッセージの受信タイミングを、DRXフレームのゼロ点とする例である。
 この受信タイミングは、例えば、確認応答メッセージ(ステップS104)又は他のメッセージなどに含めて、UE100-2へ送信してもよい。
 図13(B)も図14も、UE100-1,100-2は、受信タイミングを基準にして、同じタイミングで、DRXフレームをゼロ点にすることができる。そのため、UE100-1,100-2間でタイミング合わせを行うことが可能となる。
 上述した図11(A)から図14の例では、DRXフレームを「0」にする場合について述べてきた。UE100-1,100-2では、同じタイミングで「0」にしたDRXフレームを用いて、サイドリンクDRXを行うことが可能となる。
 ここで、DRXフレームのフレーム番号について説明する。DRXフレーム番号とDRXサブフレーム番号とは、以下の式でそれぞれ算出されてもよい。
 [DRXフレーム番号]=([現在のSFN(System Frame Number)]-[ゼロ点時のSFN]) mod 1024 ・・・(1)
 [DRXサブフレーム番号]=([現在のSFN]-[ゼロ点時のSFN]) mod10 ・・・(2)
 これらの式は、例えば、制御部130内のメモリに保存されてもよい。UE100-1,100-2では、DRXフレーム番号を計算する際に、取得したゼロ点におけるSFNをメモリなどに記憶しておくことで、式(1)又は式(2)を利用して、DRXフレーム又はDRXサブフレームを計算することができる。
 なお、式(1)又は式(2)を含む上記の例において、SFNに代えて、DFN(Direct Frame Number)を用いてもよい。もしくは、式(1)又は式(2)を含む上記の例において、SFNに代えて、基準時間(例えば、GPS(Global Positioning System)時刻等)に由来する時間フレームを用いてもよい。ここで、当該時間フレームの時間単位(フレーム番号単位)は、10ms単位とすべきである。
 例えば、UE100-1はSFN、UE100-2はDFNを用い、フレーム番号が各UE100-1,100-2でずれている場合でも、DRXフレームを用いることで、UE100-1,100-2間でタイミング同期を行うことが可能になる。また、UE100-1とUE100-2とで在圏するセルが異なり、そのセル間で非同期である場合も、DRXフレームを用いることで、UE100-1,100-2間でタイミング同期を行うことが可能となる。
 ただし、DRXフレームは、PC5-RRC接続ごとに管理されることになる。すなわち、他のPC5-RRC接続は、他のDRXフレームで動作することになる。例えば、UE100-1とUE100-2との間のDRXフレームと、UE100-2とUE100-3との間のDRXフレームは、あるタイミングでは、異なるDRXフレーム番号となる場合がある。
 UE100は、RRC再設定サイドリンクメッセージ又はRRC再設定完了サイドリンクメッセージなどのPC5-RRCメッセージの送信タイミングを調整することによって、従来のオフセット値設定によるタイミング調整と同等の効果を得ることが可能である。
(実施例3)
 本実施例3では、RRC再設定サイドリンクメッセージに、自身のサイドリンクDRX設定と相手方のサイドリンクDRX設定の双方を含めて送信する例である。
 すなわち、UE100-1は、UE100-1のサイドリンク通信における間欠受信の設定に関する第1の設定情報と、UE100-2のサイドリンク通信における間欠受信の設定に関する第2の設定情報とを含むRRCメッセージを送信する。UE100-2は、このRRCメッセージを受信する。これにより、UE100-1,100-2間で、サイドリンクDRX設定を共有し、その設定を適用することが可能となる。
 UuインターフェイスにおけるDRX設定は、RRC再設定(RRCReconfiguration)メッセージを用いて行われる。一方、サイドリンクDRXの設定は、RRC再設定サイドリンクメッセージを用いて行われる可能性がある。以下では、どのようにサイドリンクDRX設定(以下、「DRX設定」と称する場合がある。)が行われるかについて、説明する。
 図15(A)と図15(B)は、実施例3の動作例を表す図である。UE100-1が送信側、UE100-2が受信側である。
 ステップS110において、UE100-1は、自分(送信側)のDRX設定の設定情報と相手方(受信側)のDRX設定の設定情報とを含むRRC再設定サイドリンクメッセージを送信する。ここで、自分のDRX設定は、UE100-1自身のDRX設定である。また、相手方のDRX設定は、例えば、自分(送信側)が希望する相手方(受信側)UE100-2のDRX設定である。また、DRX設定として、例えば、OndurationとOffdurationに関する周期、QoS(Quality of Service)レイテンシなどが含まれてもよい。UE100-1は、自身のDRX設定と、自身が希望する相手方のDRX設定とを、相手方のUE100-2へ送信することになる。このような情報が、設定情報として、RRC再設定サイドリンクメッセージに含められて、送信される。
 ステップS111において、相手方のUE100-2は、受信した送信側のDRX設定と受信側のDRX設定とを受け入れ可能か否かを判定し、受け入れ可能であれば、ステップS112において、RRC再設定完了サイドリンクメッセージを、UE100-1へ送信する。
 その後、UE100-1,100-2は、UE1002が受け入れたサイドリンクDRXの設定を適用し、Ondurationの期間において、データなどを送受信することが可能となる。
 一方、図15(B)に示すように、ステップS115において、受信した送信側のDRX設定と受信側のDRX設定とを受け入れ可能か否かを判定し、UE100-2は、受け入れ不能の場合(又は受け入れたくない場合)、ステップ116において、RRC再設定失敗サイドリンクメッセージを、UE100-1へ送信する。
 ステップ116においては、UE100-2は、RRC再設定失敗サイドリンクメッセージではなく、対案を含むRRC再設定完了サイドリンクメッセージを送信してもよい。対案とは、例えば、受信側のUE100-2が希望するサイドリンクDRX設定である。対案の例として、UE100-2が希望する受信タイミングなどがある。
 例えば、UE100-2は、RRC再設定失敗サイドリンクメッセージを送信してもよいが、この場合、送信側のUE100-1は、設定しようとしたサイドリンクDRXなどの失敗(Failure)をgNB200へ報告するなど、他の処理を行う場合がある。そこで、UE100-2が対案を含むRRC再設定完了サイドリンクメッセージを送信することで、このような処理を行うことがなくなり、処理の効率化を図ることも可能である。
 対案を含むRRC再設定完了サイドリンクメッセージを受信した送信側のUE100-1は、この対案を受け入れ可能であれば、そのままプロシージャを終了させてもよい。または、送信側のUE100-1は、この対案設定を含むRRC再設定サイドリンクメッセージを再度、受信側のUE100-2へ送信してもよい。
 一方、対案を含むRRC再設定完了サイドリンクメッセージを受信した送信側のUE100-1は、対案を受け入れ不可とする場合は、再度の対案を含む、RRC再設定サイドリンクメッセージを再度、UE100-2へ送信してもよい。
(実施例3-1)
 本実施例3-1では、RRC再設定サイドリンクメッセージに、複数の自身のDRX設定と複数の相手方のDRX設定とを含めて送信する例である。
 例えば、複数の自身のDRX設定と複数の相手方のDRX設定とを通知する場合に、自身のDRX設定と相手方のDRX設定とを含むRRC再設定サイドリンクメッセージを複数回送信するとした場合、メッセージの送信回数がそれだけ多くなる。したがって、ネゴシエーションに時間がかかる場合がある。
 そこで、本実施例3-1では、自身と相手方、それぞれ複数のDRX設定を通知することで、複数回通知する場合よりも、時間をかけずにDRX設定を行うことが可能となる。
 図16は、本実施例3-1の動作例を表す図である。
 ステップS120において、送信側のUE100-1は、自身(送信側)についての複数のDRX設定と、相手方(受信側)についての複数のDRX設定とを含むRRC再設定サイドリンクメッセージを、受信側のUE100-2へ送信する。
 この場合、UE100-1は、複数の自身の設定と、複数の相手の設定とを、それぞれ候補リストとして、RRC再設定サイドリンクメッセージに含めてもよい。また、UE100-1は、自身の希望を通知するという意味で、候補の優先順位を含めて通知してもよい。この場合、候補リストの各エントリ(各DRX設定)に優先順位を示す識別子が含まれてもよい。または、UE100-1は、優先順位でソートされた候補リストのエントリを含めて通知してもよい。
 ステップS121において、UE100-2は、複数の送信側のDRX設定と複数の受信側のDRX設定との中から、受け入れ可能なDRX設定を特定する。この場合、UE100-2は、他にPC5-RRC接続された他のUEとの間で設定したDRX設定に合うものを選択してもよい。
 ステップS122において、UE100-2は、特定したDRX設定を含むRRC再設定完了サイドリンクメッセージを、UE100-1へ送信する。この場合、UE100-2は、受け入れたDRX設定そのものを含めて送信してもよい。または、UE100-2は、候補リストのエントリ番号又は設定番号を含めて送信してもよい。
 なお、UE100-2では、RRC再設定サイドリンクメッセージに含まれるDRX設定のすべて(の候補リスト)を受け入れることができない場合(又はそのすべてが気に入らない場合)、RRC再設定失敗サイドリンクメッセージを、UE100-1へ送信してもよい。この場合、UE100-2は、DRX設定が受け入れられない、という原因情報をRRC再設定失敗サイドリンクメッセージに含めて送信してもよい。
(実施例3-2)
 上述した実施例3-1の変形例として、UE100は、RRC再設定サイドリンクメッセージとRRC再設定完了サイドリンクメッセージとにおいて、相手方(受信側)のみのDRX設定を含めて送信してもよい。
 この場合、例えば、図16のステップS120において、送信側のUE100-1は、相手方(受信側)のDRX設定を含み、自身(送信側)のDRX設定は含まないRRC再設定サイドリンクメッセージを送信する。
 ステップS121において、受信側のUE100-2は、相手方(受信側)のDRX設定の中から、受け入れ可能なDRX設定を特定する。
 ステップS122において、受信側のUE100-2は、特定した相手方(受信側)のDRX設定を含むRRC再設定完了サイドリンクメッセージを、UE100-1へ送信する。
 実施例3-2においても、UE100-1は、ステップS120において、複数の相手方(受信側)のDRX設定のみを送信するようにしてもよい。
(実施例3-3)
 上述した実施例3-2の変形例として、UE100は、RRC再設定サイドリンクメッセージとRRC再設定完了サイドリンクメッセージにおいて、自身(送信側)のみのDRX設定を含めて送信してもよい。
 この場合、例えば、図16のステップS120において、送信側のUE100-1は、自身(送信側)のDRX設定を含み、相手方(受信側)のDRX設定は含まないRRC再設定サイドリンクメッセージを送信する。
 ステップS121において、受信側のUE100-2は、自身(送信側)のDRX設定の中から、受け入れ可能なDRX設定を特定する。
 ステップS122において、受信側のUE100-2は、特定した自身(送信側)のDRX設定を含むRRC再設定完了サイドリンクメッセージを、UE100-1へ送信する。
 実施例3-3においても、UE100-1は、ステップS120において、複数の自身(送信側)のDRX設定のみを送信するようにしてもよい。
 また、本実施例3-3においては、自身(送信側)のDRX設定のうち、自身のDRXの受信設定を、送信側のUE100-1が受信側のUE100-2へ通知することにもなる。
(実施例4)
 実施例4は、サイドリンクDRXの調整が必要な場合、UE100が、相手方のUEへ、サイドリンクDRX調整要求メッセージ(以下、「調整要求メッセージ」と称する場合がある。)を送信する例である。
 すなわち、UE100-1は、サイドリンク通信における間欠受信に関する設定情報を含むRRCメッセージを送信し、UE100-2はこのRRCメッセージを受信する。そして、UE100-2は、サイドリンク通信における間欠受信の設定の調整を要求する調整要求メッセージをUE100-1へ送信する。
 本実施例4では、例えば、以下のようなコンセプトで動作する。すなわち、RRC再設定サイドリンクメッセージによるサイドリンクDRX設定は、拒否権がない。サイドリンクDRX設定を受信したUE100は、取り急ぎ、この設定を受け入れる。そして、UE100は、不服がある場合は、調整要求メッセージにより、サイドリンクDRX設定の調整を行う。
 RRC再設定サイドリンクメッセージによるサイドリンクDRX設定を受信したUE100は、この設定を受け入れることで、データ通信開始のレイテンシを削減することが可能である。その一方、UE100は、その設定に不服がある場合は、調整要求メッセージを用いて、異議を申し立てることが可能である。調整要求メッセージは、UE100が、サイドリンクDRX設定の調整を要求するためのメッセージであってもよい。
 図17は、実施例4の動作例を表す図である。
 ステップS130において、送信側のUE100-1は、サイドリンクDRX設定の設定情報を含むRRC再設定サイドリンクメッセージを、受信側のUE100-2へ送信する。
 ステップS131において、受信側のUE100-2は、DRX設定を受け入れて、RRC再設定完了サイドリンクメッセージを、送信側のUE100-1へ送信する。
 ステップS132とステップS133において、送信側のUE100-1と受信側のUE100-2とは、DRX設定を適用する。
 ステップS134において、送信側のUE100-1は、Ondurationの期間において、受信側のUE100-2へデータを送信する。
 ステップS135において、受信側のUE100-2は、DRX設定調整が必要な場合、調整要求メッセージを、送信側のUE100-1へ送信する。調整要求メッセージには、実施例3-1と同様に、DRX設定に関する、複数の候補設定(プレファレンス)が含まれてもよい。また、調整要求メッセージは、RRC再設定サイドリンクメッセージであってもよいし、新たなメッセージ、例えば、サイドリンクDRX再設定要求(SidelinkDRXReconfigurationRequest)メッセージでもよい。
 ステップS136において、送信側のUE100-1は、調整要求メッセージを考慮して、DRX設定を見直し、サイドリンクDRXの再設定を行う。
 ステップS137において、送信側のUE100-1は、再設定されたDRX設定の設定情報を含むRRC再設定サイドリンクメッセージを、受信側のUE100-2へ送信する。この場合、送信側のUE100-1が送信するメッセージは、RRC再設定サイドリンクメッセージに代えて、DRX設定のみを変更する新たなメッセージ、例えば、サイドリンクDRX再設定(SidelinkDRXReconfiguration)メッセージであってもよい。
 なお、上述した例では、受信側のUE100-2が調整要求メッセージを送信する例について説明した。例えば、送信側のUE100-1が調整要求メッセージを送信するようにしてもよい。この場合、調整要求メッセージを受信した受信側のUE100-2がサイドリンク再設定を行い、再設定したサイドリンクDRX設定の設定情報を含むRRC再設定サイドリンクメッセージなどを、送信側のUE100-1へ送信すればよい。
(実施例5)
 実施例5は、UE100がgNB200へ、アシスタント情報を通知する、又はサイドリンクDRX設定変更の要求を行う例である。
 すなわち、UE100-1は、サイドリンク通信における間欠受信に関する設定情報を含むRRCメッセージを送信し、UE100-2はこれを受信する。そして、UE100-2は、サイドリンク通信の間欠受信の設定変更を要求するサイドリンク情報メッセージをgNB200へ送信する。
 実施例4では、UE100は、相手方のUEへ調整要求メッセージを送信することで、相手方UEにおいてサイドリンクDRXの調整が行われる例であった。本実施例5では、UE100は、gNB200へ、サイドリンクDRX設定の設定変更を要求するサイドリンク情報メッセージを送信することで、gNB200においてサイドリンクDRX調整が行われる例である。gNB200は、gNB200とUE100と間のDRX(以下、「UuDRX」と称する場合がある。)の設定変更とともに、サイドリンクDRX設定の変更も行うことが可能となり、処理の効率化を図ることが可能である。実施例4で説明したコンセプトは、実施例5でも適用されてよい。
 図18は、実施例5の動作例を表す図である。
 ステップS130からステップS134までは、実施例4と同一である。
 ステップS140において、受信側のUE100-2は、gNB200へ、DRX設定情報を含むサイドリンクUE情報(SidelinkUEInformation)メッセージを送信する。
 DRX設定情報は、UuDRXの希望設定値であってもよい。DRX設定情報は、希望設定値として、少なくとも、DRXサイクルとオフセットとを含み、オプションとして、Ondurationタイマ値を含んでもよい。
 また、DRX設定情報は、サイドリンクDRXの設定値でもよい。サイドリンクDRXの設定値は、現在適用中(ステップS132とステップS133)の設定値でもよい。DRX設定情報は、設定値として、少なくとも、DRXサイクルとオフセットを含み、オプションとして、Ondurationタイマ値を含んでもよい。また、設定値として、複数のサイドリンクDRXの設定値であってもよい。複数のサイドリンクDRXの設定値は、Destination毎に紐づけられていてもよいし、紐づけられていなくてもよい。さらに、設定値について、DFN、又は、実施例2で説明したDRXフレームが使用されている場合、SFNに換算された値であってもよい。
 さらに、DRX設定情報は、相手方UE100(図18の例ではUE100-1)に希望するサイドリンクDRXの設定値であってもよい。この設定値自体は、上述したサイドリンクDRXの設定値と同じであってもよい。
 ステップS141において、gNB200は、サイドリンクUE情報メッセージに含まれるDRX設定情報を考慮して、再設定を行う。再設定として、gNB200は、UE100-2のUuDRX設定を再設定してもよい。または、再設定として、gNB200は、UE100-2のサイドリンクDRX設定を再設定してもよい。または、再設定として、gNB200は、相手方(図18の例ではUE100-1)のサイドリンクDRX設定を再設定してもよい。
 なお、gNB200は、例えば、再設定したサイドリンクDRX設定を、PDSCH(Physical Downlink Shared CHannel)を利用して又は報知情報により、UE100-1又はUE100-2(或いは、UE100-1,100-2の双方)へ送信してもよい。また、gNB200は、再設定したUuDRX設定を、PDSCH又は報知情報により、UE100-2へ送信してもよい。
 また、上述した例は、受信側のUE100-2がgNB200へ、DRX設定情報を通知する例について説明した。送信側のUE100-1がgNB200へ、DRX設定情報を含むサイドリンクUE情報メッセージを送信してもよい。この場合、相手方のUEを、受信側のUE100-2とすることで、上述した例と同様に実施可能である。
(実施例6)
 上述した実施例では、主として、サイドリンクDRX設定がUE100間で行われる例を説明した。本実施例6では、gNB200が、サイドリンク通信で用いられるリソースを設定するときに、サイドリンクDRX設定も行う例である。
 すなわち、gNB200は、サイドリンク通信における間欠受信の設定に関する設定情報を含むRRCメッセージを送信又は設定情報を含むシステム情報を報知する。そして、UE100-1,100-2は、このRRCメッセージを受信し、サイドリンク通信における間欠受信の設定を適用する。
 図19は、実施例6の動作例を表す図である。
 ステップS150において、gNB200は、UE100(図19の例では、UE100-1とUE100-2)のサイドリンクDRX設定を行う。
 ステップS151とステップS152において、gNB200は、設定したサイドリンクDRX設定の設定情報を含むRRC再設定(RRCReconfiguration)メッセージを、UE100-1とUE100-2とへ送信する。設定情報は、RRC再設定メッセージに代えて、SIB(System Information Block)を用いて報知されてもよい。また、設定情報には、実施例5で説明したDRX設定情報の全部又は一部の情報が含まれてもよい。一部のDRX設定情報が含まれる場合、例えば、一部のDRX設定情報として、DRXサイクルとOndurationタイマだけ含まれ、それ以外のDRX設定情報(例えば、オフタイムなど)は、UE100において決定するようにしてもよい。サイドリンクDRX設定の一部をgNB200で設定し、その他の部分をUE100で設定する、ハイブリッド的な動作となる。或いは、設定情報は、リソースプール毎に行われてもよい(又は紐づけられてもよい)。
 ステップS153とステップS154において、送信側のUE100-1と受信側のUE100-2とは、gNB200から通知されたサイドリンクDRX設定を適用する。
 この場合、送信側のUE100-1は、gNB200から通知されたサイドリンクDRX設定を考慮して、サイドリンクDRX設定を含むRRC再設定サイドリンクメッセージを、受信側のUE100-2へ送信してもよい。例えば、UE100-1は、サイドリンクDRX設定のうち、オフセットについてはUE100-1が決定し、その他のサイドリンクDRX設定は、gNB200が設定したものを用いて、これらを含むサイドリンクDRX設定を、RRC再設定サイドリンクメッセージに含めて通知してもよい。この場合、UE100-1は、その他のサイドリンクDRX設定は、gNB200からUE100-2へ送信されていることを見越して、UE100-1自身が決定したサイドリンクDRX設定を、RRC再設定サイドリンクメッセージに含めて通知してもよい。
 (その他の実施形態)
 UE100又はgNB200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROMやDVD-ROM等の記録媒体であってもよい。
 また、UE100又はgNB200が行う各処理を実行する回路を集積化し、UE100又はgNB200の少なくとも一部を半導体集積回路(チップセット、SoC)として構成してもよい。
 以上、図面を参照して一実施形態について詳しく説明したが、具体的な構成は上述のものに限られることはなく、要旨を逸脱しない範囲内において様々な設計変更等をすることが可能である。また、矛盾しない範囲で、各実施例の全部又は一部を組み合わせることも可能である。
 本願は、日本国特許出願第2020-169444号(2020年10月6日出願)の優先権を主張し、その内容の全てが本願明細書に組み込まれている。
10   :移動通信システム
100(100-1~100-3):UE
110  :受信部
120  :送信部
130  :制御部
200(200-1):gNB
200-2:ng-eNB
210  :送信部
220  :受信部
230  :制御部
240  :バックホール通信部

Claims (21)

  1.  第1のユーザ装置及び第2のユーザ装置を有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法であって、
     前記第1のユーザ装置が、前記サイドリンク通信に関する設定情報を含むRRC(Radio Resource Control)メッセージを送信する際に、前記第2のユーザ装置との間で間欠受信が設定されている場合、前記間欠受信の設定に関わらず前記RRCメッセージに対するRRC応答メッセージの受信の待ち受け処理を行うことと、
     前記第2のユーザ装置が、前記RRCメッセージを受信すると、前記RRCメッセージに対する前記RRC応答メッセージを送信することと、
     前記第1のユーザ装置が、前記RRC応答メッセージを受信することと、を含む通信制御方法。
  2.  前記第1のユーザ装置が、前記間欠受信のOnduration期間を延長又は中断することで、前記待ち受け処理を行う、請求項1記載の通信制御方法。
  3.  前記第1のユーザ装置が、前記間欠受信のOndurationタイマを、前記RRC応答メッセージを受信するまで停止することで、前記待ち受け処理を行う、請求項1記載の通信制御方法。
  4.  前記第1のユーザ装置が、前記間欠受信の設定の適用を除外することで、又は前記間欠受信の設定を破棄することで、前記待ち受け処理を行う、請求項1記載の通信制御方法。
  5.  前記第1のユーザ装置が、前記RRC応答メッセージを受信すると、前記間欠受信の設定に従った動作を行うこと、をさらに含む、請求項1記載の通信制御方法。
  6.  第1のユーザ装置及び第2のユーザ装置を有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法であって、
     前記第1のユーザ装置が、前記サイドリンク通信に関する設定情報を含む第1のRRCメッセージを送信したタイミング、又は前記第2のユーザ装置が、前記第1のユーザ装置から送信された前記第1のRRCメッセージを受信したタイミングで所定フレームのフレーム番号をリセットすることと、
     又は、
     前記第2のユーザ装置が、前記サイドリンク通信の設定完了に関する第2のRRCメッセージを送信したタイミング、又は前記第1のユーザ装置が、前記第2のユーザ装置から送信された前記第2のRRCメッセージを受信したタイミングで前記所定フレームのフレーム番号をリセットすることと、を含む通信制御方法。
  7.  前記第1のユーザ装置又は前記第2のユーザ装置が、前記第1のRRCメッセージ又は前記第2のRRCメッセージをそれぞれ再送したときは、初送の前記第1のRRCメッセージ又は前記第2のRRCメッセージの送信タイミングで前記所定フレームのフレーム番号をリセットする、請求項6記載の通信制御方法。
  8.  前記第1のユーザ装置又は前記第2のユーザ装置が、前記第1のRRCメッセージ又は前記第2のRRCメッセージが再送したときは、前記第1のRRCメッセージ又は前記第2のRRCメッセージの受信が成功したタイミングで、前記所定フレームのフレーム番号をリセットする、請求項6記載の通信制御方法。
  9.  前記所定のフレームは、サイドリンクDRX(Discontinuous Reception)フレームであり、
     前記サイドリンクDRXフレームのフレーム番号は、{([現在のSFN(System Frame Number)]-[前記サイドリンクDRXフレームゼロ点時のSFN]) mod 1024}により算出され、前記サイドリンクDRXフレームのサブフレーム番号は、{([現在のSFN]-[前記サイドリンクDRXフレームゼロ点時のSFN]) mod 10}により算出される、請求項6記載の通信制御方法。
  10.  第1のユーザ装置及び第2のユーザ装置を有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法であって、
     前記第1のユーザ装置が、前記第1のユーザ装置の前記サイドリンク通信における間欠受信の設定に関する第1の設定情報と、前記第2のユーザ装置の前記サイドリンク通信における間欠受信の設定に関する第2の設定情報とを含むRRCメッセージを送信することと、
     前記第2のユーザ装置が、前記RRCメッセージを受信することと、を含む通信制御方法。
  11.  前記第2のユーザ装置が、前記第1の設定情報及び前記第2の設定情報による設定を受け入れ可能な場合は、第1のRRC再設定完了サイドリンクメッセージを送信し、前記設定を受け入れ可能ではない場合は、RRC再設定失敗サイドリンクメッセージ又は前記設定に対する対案を含む第2のRRC再設定完了サイドリンクメッセージを送信すること、をさらに含む請求項10記載の通信制御方法。
  12.  前記第1の設定情報及び前記第2の設定情報は、複数の前記間欠受信の設定を含む、請求項10記載の通信制御方法。
  13.  前記複数の間欠受信の設定には、優先順位が付けられている、請求項12記載の通信制御方法。
  14.  前記第2のユーザ装置が、前記複数の間欠受信の設定のうち、受け入れた設定に関する第3の設定情報を含む、RRC再設定完了サイドリンクメッセージを送信すること、又は、前記複数の間欠受信のすべての設定を受け入れない場合は、RRC再設定失敗サイドリンクメッセージを送信すること、をさらに含む請求項10記載の通信制御方法。
  15.  前記第1のユーザ装置は、前記第1の設定情報を含むことなく、前記第2の設定情報を含む前記RRCメッセージを送信する、請求項10記載の通信制御方法。
  16.  前記第1のユーザ装置は、前記第2の設定情報を含むことなく、前記第1の設定情報を含む前記RRCメッセージを送信する、請求項10記載の通信制御方法。
  17.  基地局装置と、前記基地局装置と無線通信が可能な第1のユーザ装置及び第2のユーザ装置とを有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法であって、
     前記第1のユーザ装置が、前記サイドリンク通信における間欠受信に関する設定情報を含むRRCメッセージを送信することと、
     前記第2のユーザ装置が、前記RRCメッセージを受信することと、
     前記第2のユーザ装置が、前記サイドリンク通信における間欠受信の設定の調整を要求する調整要求メッセージを前記第1のユーザ装置へ送信することと、又は、前記サイドリンク通信における間欠受信の設定変更を要求するサイドリンク情報メッセージを前記基地局装置へ送信することと、を含む通信制御方法。
  18.  前記第1のユーザ装置が、前記調整要求メッセージを受信すると、前記サイドリンク通信における間欠受信の再設定を行うこと、をさらに含む、請求項17記載の通信制御方法。
  19.  前記サイドリンク情報メッセージには、前記第2のユーザ装置が希望する、前記第2のユーザ装置と前記基地局装置との間の間欠受信に関する設定値、前記第1のユーザ装置と前記第2のユーザ装置との間で適用されている前記サイドリンク通信における間欠受信に関する設定値、又は、前記第1のユーザ装置に対して希望する前記サイドリンク通信における間欠受信に関する設定値が含まれる、請求項17記載の通信制御方法。
  20.  基地局装置と、前記基地局装置と無線通信が可能な第1のユーザ装置及び第2のユーザ装置とを有し、前記第1のユーザ装置及び前記第2のユーザ装置との間でサイドリンク通信が可能な移動通信システムにおける通信制御方法であって、
     前記基地局装置が、前記サイドリンク通信における間欠受信の設定に関する設定情報を含むRRCメッセージを送信することと、又は前記設定情報を含むシステム情報を報知することと、
     前記第1のユーザ装置及び前記第2のユーザ装置は、前記RRCメッセージを受信し、前記サイドリンク通信における間欠受信の設定を適用することと、を含む通信制御方法。
  21.  前記基地局装置は、前記設定のうち、一部の設定に関する前記設定情報を含む前記RRCメッセージを送信し、
     前記第1のユーザ装置が、前記設定のうち、残りの設定を決定し、前記残りの設定に関する設定情報を含むRRC再設定サイドリンクメッセージを前記第2のユーザ装置へ送信すること、をさらに含む請求項20記載の通信制御方法。
PCT/JP2021/036829 2020-10-06 2021-10-05 通信制御方法 WO2022075321A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN202180081400.8A CN116584151A (zh) 2020-10-06 2021-10-05 通信控制方法
EP21877620.1A EP4210432A4 (en) 2020-10-06 2021-10-05 COMMUNICATION CONTROL METHOD
JP2022555506A JP7406003B2 (ja) 2020-10-06 2021-10-05 通信制御方法、ユーザ装置及びプロセッサ
US18/296,123 US20230239957A1 (en) 2020-10-06 2023-04-05 Communication control method
JP2023211281A JP2024023674A (ja) 2020-10-06 2023-12-14 通信制御方法、ユーザ装置、プロセッサ、通信システム及びプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-169444 2020-10-06
JP2020169444 2020-10-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/296,123 Continuation US20230239957A1 (en) 2020-10-06 2023-04-05 Communication control method

Publications (1)

Publication Number Publication Date
WO2022075321A1 true WO2022075321A1 (ja) 2022-04-14

Family

ID=81126903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/036829 WO2022075321A1 (ja) 2020-10-06 2021-10-05 通信制御方法

Country Status (5)

Country Link
US (1) US20230239957A1 (ja)
EP (1) EP4210432A4 (ja)
JP (2) JP7406003B2 (ja)
CN (1) CN116584151A (ja)
WO (1) WO2022075321A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210008A1 (ja) * 2022-04-28 2023-11-02 株式会社Nttドコモ 端末、基地局、無線通信システム及び無線通信方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12035203B2 (en) * 2019-07-04 2024-07-09 Lg Electronics Inc. Method for terminal to transmit first message in wireless communication system supporting sidelink, and device for same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525486A (ja) * 2012-05-02 2015-09-03 聯發科技股▲ふん▼有限公司Mediatek Inc. 多様なデータの使用のためのユーザー機器の改善
JP2015526982A (ja) * 2012-07-20 2015-09-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるd2d関連メッセージを送信する方法及び装置
JP2016535505A (ja) * 2013-11-01 2016-11-10 電信科学技術研究院 D2d信号の伝送方法及び装置
JP2017099014A (ja) * 2013-11-26 2017-06-01 京セラ株式会社 ユーザ端末、装置、及び方法
WO2017135428A1 (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ装置及び受信方法
WO2017138378A1 (ja) * 2016-02-08 2017-08-17 京セラ株式会社 無線端末
JP2017163173A (ja) * 2014-07-24 2017-09-14 シャープ株式会社 無線通信システム、基地局装置、端末装置、無線通信方法および集積回路
JP2019525607A (ja) * 2016-08-11 2019-09-05 ソニー株式会社 ネットワーク制御端末及びネットワークノードに用いられる電子装置及び方法
JP2020169444A (ja) 2019-04-01 2020-10-15 株式会社横河Nsエンジニアリング 部材間の連結構造

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6623802B2 (ja) 2016-02-04 2019-12-25 ソニー株式会社 ユーザ端末、通信装置及び方法
CN108307489A (zh) * 2016-08-11 2018-07-20 中兴通讯股份有限公司 信息处理方法、装置、用户设备及基站
CN113260025B (zh) 2020-02-10 2023-04-14 大唐移动通信设备有限公司 一种非连续接收处理方法、终端、装置以及介质
EP4106430A4 (en) 2020-02-12 2024-01-24 Mitsubishi Electric Corporation COMMUNICATION SYSTEM AND COMMUNICATION TERMINAL

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015525486A (ja) * 2012-05-02 2015-09-03 聯發科技股▲ふん▼有限公司Mediatek Inc. 多様なデータの使用のためのユーザー機器の改善
JP2015526982A (ja) * 2012-07-20 2015-09-10 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおけるd2d関連メッセージを送信する方法及び装置
JP2016535505A (ja) * 2013-11-01 2016-11-10 電信科学技術研究院 D2d信号の伝送方法及び装置
JP2017099014A (ja) * 2013-11-26 2017-06-01 京セラ株式会社 ユーザ端末、装置、及び方法
JP2017163173A (ja) * 2014-07-24 2017-09-14 シャープ株式会社 無線通信システム、基地局装置、端末装置、無線通信方法および集積回路
WO2017135428A1 (ja) * 2016-02-04 2017-08-10 株式会社Nttドコモ ユーザ装置及び受信方法
WO2017138378A1 (ja) * 2016-02-08 2017-08-17 京セラ株式会社 無線端末
JP2019525607A (ja) * 2016-08-11 2019-09-05 ソニー株式会社 ネットワーク制御端末及びネットワークノードに用いられる電子装置及び方法
JP2020169444A (ja) 2019-04-01 2020-10-15 株式会社横河Nsエンジニアリング 部材間の連結構造

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4210432A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023210008A1 (ja) * 2022-04-28 2023-11-02 株式会社Nttドコモ 端末、基地局、無線通信システム及び無線通信方法

Also Published As

Publication number Publication date
JP7406003B2 (ja) 2023-12-26
CN116584151A (zh) 2023-08-11
JPWO2022075321A1 (ja) 2022-04-14
EP4210432A4 (en) 2024-03-06
US20230239957A1 (en) 2023-07-27
JP2024023674A (ja) 2024-02-21
EP4210432A1 (en) 2023-07-12

Similar Documents

Publication Publication Date Title
JP7374972B2 (ja) Mtcのためのアップリンクharq-ackフィードバック
JP6687452B2 (ja) 移動通信システム、ユーザ端末、プロセッサ、記憶媒体及びプログラム
US10904799B2 (en) Base station and method used in a base station
US10314068B2 (en) Communication control method and user terminal
WO2014163138A1 (ja) 基地局
WO2022075321A1 (ja) 通信制御方法
WO2016013590A1 (ja) ユーザ端末及び移動通信システム
WO2022030579A1 (ja) 通信制御方法
JP7229374B2 (ja) 通信制御方法
WO2020145241A1 (ja) 通信制御方法
US20160150470A1 (en) Base station and communication control method
US20230403626A1 (en) Method and apparatus for relay communication
JP7271581B2 (ja) 通信制御方法及びユーザ装置
WO2023140144A1 (ja) 通信方法及びユーザ装置
WO2023036996A1 (en) Communication technique between radio devices
JP6140014B2 (ja) ユーザ端末、基地局、及びプロセッサ
WO2016163431A1 (ja) ユーザ端末及び制御方法
WO2014157393A1 (ja) 移動通信システム、基地局及びユーザ端末
WO2022071577A1 (ja) 通信制御方法
WO2016021701A1 (ja) 基地局及びユーザ端末
US20230188950A1 (en) Communication control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21877620

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022555506

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021877620

Country of ref document: EP

Effective date: 20230405

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 202180081400.8

Country of ref document: CN