WO2022073468A1 - 一种外科治疗,康复机器人装置 - Google Patents

一种外科治疗,康复机器人装置 Download PDF

Info

Publication number
WO2022073468A1
WO2022073468A1 PCT/CN2021/122529 CN2021122529W WO2022073468A1 WO 2022073468 A1 WO2022073468 A1 WO 2022073468A1 CN 2021122529 W CN2021122529 W CN 2021122529W WO 2022073468 A1 WO2022073468 A1 WO 2022073468A1
Authority
WO
WIPO (PCT)
Prior art keywords
rehabilitation
robot
module
information
gravity
Prior art date
Application number
PCT/CN2021/122529
Other languages
English (en)
French (fr)
Inventor
谈斯聪
于皓
于梦非
Original Assignee
谈斯聪
于皓
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 谈斯聪, 于皓 filed Critical 谈斯聪
Priority to CN202180008737.6A priority Critical patent/CN117580619A/zh
Publication of WO2022073468A1 publication Critical patent/WO2022073468A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H1/00Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
    • A61H1/02Stretching or bending or torsioning apparatus for exercising
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63BAPPARATUS FOR PHYSICAL TRAINING, GYMNASTICS, SWIMMING, CLIMBING, OR FENCING; BALL GAMES; TRAINING EQUIPMENT
    • A63B24/00Electric or electronic controls for exercising apparatus of preceding groups; Controlling or monitoring of exercises, sportive games, training or athletic performances
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H20/00ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
    • G16H20/30ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/60ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the operation of medical equipment or devices

Definitions

  • the invention relates to artificial intelligence technology, robot technology, medical data collection, analysis and identification technology, and belongs to the field of intelligent artificial intelligence of medical devices.
  • robotic arms supporting gravity devices, joint rehabilitation devices, pedal devices, grip devices, massage devices, remote autonomous rehabilitation therapy, using myoelectric acquisition devices, multi-sensing devices to collect muscle information, gravity pressure and other multi-sensing information.
  • the invention is intelligent, autonomous rehabilitation training, autonomous treatment, effective prevention of geriatric diseases, high-precision collection of muscles, and rehabilitation information to reduce human errors in rehabilitation treatment and achieve autonomous treatment.
  • the purpose of the present invention is to overcome the above-mentioned shortcomings and deficiencies of the prior art, and to provide a remote and autonomous surgery, rehabilitation department, a robotic device for collection and treatment, using machines to replace people, remote and autonomous collection of EMG, multi-sensor Information, using the robotic arm to carry support gravity device, joint rehabilitation device, pedal device, grip device, massage device, remote autonomous rehabilitation, and treatment.
  • the present invention also provides a voice device for human-computer interaction, remote voice commands, an autonomous moving device, a robotic arm carrying support gravity device, a joint rehabilitation device, a pedal device, a grip force device, and a massage device for remote end, self-rehabilitation, treatment.
  • Remote and autonomously controlled surgical treatment, rehabilitation robotic devices include:
  • the robot main system is connected with the robot arm module, the support/gravity device, the pedal device, the joint rehabilitation device rehabilitation module, the multi-sensing device, the grasping device, the massage device, and the myoelectric acquisition device, for realizing The main control of the robot by the main system;
  • a voice module which is connected to the main robot system for interaction and voice guidance between the main system and the user;
  • a camera visual acquisition module is connected with the robot main system and the robot arm, and is used for collecting face images, locating the face, locating the legs, arms, chest, back, waist, hands, feet, and joint positions;
  • an EMG acquisition module which is connected to the robot main system and the robotic arm, and is used to collect upper limb and lower limb muscle information, and independently adjust the training period, training intensity, and training times according to the returned muscle information;
  • the multi-sensing information acquisition module is connected with the robot main system, the robot arm, and the supporting gravity device, and is used to collect the pressure information, gravity information, and other various sensor information of the supporting gravity device. Sensor information, self-adjustment of training intensity, training times, and the upper limit of physical fitness training under the rehabilitation level;
  • the radar autonomous movement module is connected with the robot main system, and the mobile base is connected for autonomous positioning and navigation;
  • a joint rehabilitation device module is connected with the robot main system, the robot arm, supports the gravity device, and is connected with multiple sensors, and is used for the upper limb and lower limb muscle rehabilitation, joint rotation rehabilitation action, and the two arms cooperate to complete the rehabilitation action;
  • Gravity device module the gravity device module is connected with the robot main system, the robot arm, supports the gravity device, and is connected with multi-sensors and myoelectric acquisition modules, which are used to independently adjust gravity and torque according to the multi-sensor information, and the arms cooperate to complete the up and down , left and right, up, left, down, down, left, right, and incline direction stretching and flexing basic movements, aggravating movements and other rehabilitation movements;
  • Arm grip strength device the arm grip strength device module is connected with the robot main system, the robotic arm, the supporting gravity device, the multi-sensor, the myoelectric acquisition module is connected, and is used for collecting information based on multi-sensor information and myoelectricity, and adjusting the grip strength and torque independently , arm grip rehabilitation action, arm grip device for muscle rehabilitation, arm grip;
  • the pedal device module is connected with the robot main system, the robot arm, the supporting gravity device, the multi-sensor, the EMG acquisition module is connected, and is used for collecting information based on multi-sensor information, EMG information, and autonomous adjustment of the feet Stepping gravity gravity strength, torque, pedal force rehabilitation action, pedal force device is used for foot rehabilitation;
  • the massage device module is connected with the robot main system, the robot arm, the supporting gravity device, the multi-sensor, the myoelectric acquisition module is connected, and is used to independently adjust the frequency of the massage device according to the multi-sensor information, the myoelectric acquisition information, Massage intensity, rubbing method, picking method, pushing method, pressing method, point method, pinching method, pinching method, patting method, striking method, bouncing method, rolling method, palm rubbing method, finger rubbing method, vibration method, shaking method,
  • the massage methods of holding method, rubbing hair, shaking method, massaging gravity, delineating the massage range for the upper and lower limbs, and massage movements are used for massage rehabilitation.
  • the main system of the robot is connected with the voice module, and the voice module is used for interaction between the robot and the user, including voice recognition, voice and text conversion, voice guidance, voice commands, voice companionship, and voice medical question and answer.
  • the main robot system is connected to the camera visual acquisition module, and the camera visual acquisition module is used to collect face images, identify the face, chest, back, legs, arms, waist, hands, feet, joints, and return the position information of body parts , locate face, chest, back, legs, arms, waist, hands, feet, and joints.
  • the EMG acquisition module is connected to the robot main system and the robot arm, and is used to collect upper and lower limb muscle information and return muscle information.
  • the muscle information includes muscle contraction mode, static power state, muscle fatigue state, sensory nerve conduction velocity, and motor nerve. Conduction velocity, repetitive electrical stimulation, estimation of the number of motor units, sympathetic skin response, deep learning algorithm autonomously adjusts training intensity, training period, and training times.
  • the multi-sensing information acquisition module is connected to the robot main system and the robot arm, and is used to collect gravity information, pressure information, and direction information. According to the return information, the main system communicates with the multi-sensors, and adjusts the machine according to the multi-sensor information received by the main system.
  • the parameter values of the arm and gravity device are connected to the robot main system and the robot arm, and is used to collect gravity information, pressure information, and direction information.
  • the robot main system is connected with the robot arm and the gravity device module, and the joint rehabilitation device module.
  • the robot main system communicates with the robot arm and the gravity device module, and the joint rehabilitation device.
  • Based on multi-sensor information, EMG information, release and adjust gravity, torque, arms Position information, angle parameters, gravity device module receives and adjusts gravity, torque, arm position information, angle parameters, and uses the robot arm motion planning method to cooperate to complete up and down, left and right, up, left, right, down, down, left, and upper oblique directions to stretch and bend the foundation. Exercises, weighted exercises and other rehabilitation exercises.
  • the main system of the robot is connected with the radar and the mobile base, and the information collected by the radar is sent to the main system client through the communication method of messages and services to realize the scene self-built map;
  • the main system communicates with the mobile chassis: publishes the created map information and communicates with the mobile base.
  • the chassis node communicates, accepts map information, and realizes autonomous navigation; camera and communication: The image information collected by the camera is sent to the main system client through the service communication method to communicate with the robot arm to realize the collection action.
  • the robot main system is connected with the robot arm and the gravity device module, and the arm grip force device.
  • the robot main system communicates with the robot arm and the arm grip force device module. It is used to collect information based on multi-sensor information, myoelectricity, and autonomously adjust the grip strength, torque, and arm grip strength rehabilitation. Action, arm grip device for muscle rehabilitation, arm grip.
  • the robot main system is connected with the robot arm and the gravity device module, and the foot pedal device.
  • the robot main system communicates with the robot arm and the foot pedal device module, which is used to collect information based on multi-sensor information and myoelectricity, and adjust the gravity strength of the pedal independently. , torque, pedal force rehabilitation action, pedal force device for foot rehabilitation.
  • the robot main system and the massage device, the massage device module is connected with the robot main system, the robot arm, and the vision module.
  • the visual information released by the camera includes: each part of the body returns to the face, chest, back, legs, arms, waist, hands, Foot, joint position information, robot main system, massage device receives visual information, detects face, body parts, and accurately locates body positions; according to the body massage position selected by the client, rubbing method, picking method, pushing method, pressing method , point method, pinch method, pinching method, beat method, strike method, bounce method, rolling method, palm rubbing method, finger rubbing method, vibration method, shaking method, holding method, rubbing method, shaking method, frequency massage Intensity, massage gravity, positioning, moving to the body massage position, according to the action plan, massage, assist rehabilitation.
  • the invention can solve remote control robot isolation collection and treatment, autonomous collection and treatment, voice device for human-computer interaction, remote voice command through medical robot device, provides autonomous moving device, and provides robot arm carrying support gravity device , joint rehabilitation device, pedal device, grip device, massage device for distal, autonomous rehabilitation, therapy.
  • the problems of high pressure and complicated work for surgeons, rehabilitation doctors, nurses, and escorts have been improved.
  • the rehabilitation training intensity, frequency and cycle can be adjusted adaptively, which greatly improves the work efficiency.
  • the present invention can realize high-efficiency and high-precision rehabilitation training, auxiliary surgery, rehabilitation treatment, and remote autonomous rehabilitation treatment.
  • Fig. 1 is the schematic diagram of the medical robot device module in the specification of this application;
  • 100-remote control module 101-robot main system; 102-voice module;
  • 103- radar mapping positioning and navigation module 104- camera vision module; 105- support/gravity module;
  • 106-joint rehabilitation module 107-robot arm module; 108-pedal device; 109-multi-sensing acquisition module; 110-grip strength module; 111-massage module; 112- EMG acquisition module;
  • 200-client remote control terminal 201-robot main system; 202-support device; 203-joint device; 204-lifting robot arm; 205-mobile base; 206-myoelectric acquisition device; 207-foot pedal;
  • 208-gravity sensor 209-pressure sensor; 210-grip device; 211-gravity device; 212-massage device; 213-outer layer fixing device; 214-inner layer flexible device; 215-vision device; 216-voice device; 217-radar device;
  • the purpose of the present invention is to design a remote control robot that can replace human work, realize remote control machine to collect images, autonomous acquisition, autonomous mobile device, use robot arm to carry support gravity device, joint rehabilitation device, pedal device, grip device, massage device Device for distal, autonomous rehabilitation, therapy.
  • the distal and autonomously controlled surgical treatment and rehabilitation robotic devices include:
  • the electrical collection device 112 is used to realize the main control of the robot.
  • the voice module 102 is connected with the main robot system 101, and is used for interaction and voice guidance between the main control system and the user.
  • the camera acquisition module 104, the camera vision module 104 is connected with the robot main system 101 and the robot arm 107, and is used for collecting face images, locating the face, and locating the positions of the legs, arms, waist and joints.
  • the EMG acquisition module 112 is connected to the robot main system 101 and the robotic arm 107, and is used to collect upper limb and lower limb muscle information. According to the returned muscle information, the training cycle, training intensity, and training times can be adjusted autonomously.
  • the multi-sensing information acquisition module 109 is connected with the robot main system 101, the robot arm 107, and the supporting gravity device 105, and is used to collect the pressure information of the supporting gravity device 105, gravity information, and other According to the returned sensor information, it can adjust the training intensity, the number of training times, and the upper limit of physical fitness under the rehabilitation level.
  • the radar autonomous movement module 103, the autonomous movement module 103 is connected with the robot main system 101, and the mobile base is connected for autonomous positioning and navigation.
  • the joint rehabilitation device module 106 is connected with the robot main system, the robot arm 107, the supporting gravity device 105, and the multi-sensor 109 connection, which is used for upper limb and lower limb muscle rehabilitation, joint rotation rehabilitation, and double-arm cooperation. Complete recovery.
  • the gravity device module 105 the gravity device module 105 is connected with the robot main system 101, the robot arm 107, supports the gravity device 105, the multi-sensor 109, and the myoelectric acquisition module 112 is connected, and is used to adjust the gravity independently according to the multi-sensor information, Moment, the two arms cooperate to complete the basic movements of up and down, left and right, up and down, up and down, down, left, right and up incline, stretching and flexing, adding force and other rehabilitation movements.
  • the arm gripping device 110, the arm gripping device module 110 is connected to the robot main system 101, the robot arm 107, supports the gravity device 105, the multi-sensor 109, and the EMG acquisition module 112 is connected to collect the EMG based on the multi-sensor information.
  • Information self-adjusting grip strength, torque, arm grip strength rehabilitation action. Arm grip device for muscle rehabilitation, arm grip.
  • the foot pedal device 108, the foot pedal device module 108 is connected with the robot main system 101, the robot arm 107, the supporting gravity device 105, the multi-sensor 109, and the myoelectric acquisition module 112. Electrically collect information, independently adjust the strength, torque, and pedal force of the pedals for rehabilitation. Pedal force devices are used for foot rehabilitation.
  • the massage device 111, the massage device module 111 is connected with the robot main system 101, the robot arm 107, the supporting gravity device 105, the multi-sensor 109, and the myoelectric acquisition module 112 is connected to collect the information according to the multi-sensor information and the myoelectricity, Independently adjust the frequency of the massage device, massage intensity, massage methods (rubbing method, picking method, pushing method, pressing method, point method, pinching method, pinching method, slapping method, striking method, bouncing method, rolling method, palm rubbing method, Finger rubbing method, shaking method, shaking method, holding method, rubbing hair, shaking method), massage gravity, delineate massage range for upper and lower limbs, massage action, used for massage rehabilitation.
  • massage intensity massage methods (rubbing method, picking method, pushing method, pressing method, point method, pinching method, pinching method, slapping method, striking method, bouncing method, rolling method, palm rubbing method, Finger rubbing method, shaking method, shaking method, holding method, rubbing hair, shaking method), massage gravity, deline
  • Management users such as doctors and administrators communicate with the main control system 201 using the remote control terminal 200 of the client, the remote sends out control commands, the main control system 201 communicates with the robotic arm 204, and uses the camera 215 to collect face images. Joint images of upper and lower limbs, return the position information of joints, upper limbs, and lower limbs, and locate human parts.
  • the remote control module 100 remotely controls the robotic arm A, and the robotic arm B moves to the position of the body part, collects body pictures, detects the body part, and assists surgical treatment, rehabilitation training, and treatment.
  • the voice module 216 the voice device 216 includes a sound collection device, a microphone device and a speaker 216, the sound pickup device 216 can obtain voice information, input user voice through the microphone device 216 and human-computer interaction through the speaker device, voice guidance, text and voice exchange, Speech synthesis, voice wake-up.
  • the radar autonomous positioning and navigation module 217, the main control system 201 communicates with the mobile chassis 205 and the radar 217, and the information collected by the radar 217 is sent to the main system through the communication method of message and service to realize the scene self-built map. Publish the created map information to the mobile chassis node, and the mobile chassis accepts the map information to realize autonomous navigation.
  • Robot arm A, robot arm B, the main control system 201 communicates with the camera 215, the camera 215 collects the position image information of the face, joints, upper limbs, and lower limbs, locates and returns the image position information of the body part, the robot arm A, the robot arm B 204 According to the voice guidance of the voice device 216, the voice command, locate the body position, fix the upper limbs, lower limbs, the robot arm A, the robot arm B, the robot arm C A.
  • Robot arm B 204 is equipped with support/gravity device 211, support/gravity device 211 fixes the upper and lower limbs of the body, moves the robotic arm A, and robotic arm B 204 pulls the upper and lower limbs of the body, according to the position height and distance issued by the main control system 201 Information, gravity information, according to the information collected and released by the EMG acquisition device 206, gravity sensor 208, and pressure sensor 209, the robotic arm receives and subscribes muscle information, gravity, pressure, multi-sensing information, and adaptive planning according to the improved deep neural network algorithm Action, according to the planned rehabilitation action, stretch, bend, rotate the upper limbs, lower limbs, muscles according to the rotation angle, and complete the rehabilitation.
  • Robot arm A, robot arm B, the main control system 201 communicates with the camera 215, the camera 215 collects the position image information of the face, joints, upper limbs, and lower limbs, locates and returns the image position information of the body part, the robot arm A, the robot arm B 204 According to the voice guidance of the voice device 216, the voice commands, locate the body position, fix the upper limbs, lower limbs, the robot arm A A.
  • Robot arm B 204 is equipped with joint device 203, support/gravity device 211 fixes the upper limbs and lower limbs of the body, moves robotic arm A, robotic arm B, robotic arm C, robotic arm D 204 pulls the upper limbs of the body, and the joints of the lower limbs bend, stretch, and rotate.
  • the robotic arm According to the bending rotation angle, rotation coordinates, and gravity information released by the main control system 201, according to the information collected and released by the EMG acquisition device 206, gravity sensor 208, and pressure sensor 209, the robotic arm receives and subscribes to muscle information, gravity, pressure, multi-sensing Information, according to the improved deep neural network algorithm adaptive planning action, according to the planned joint action, bending, according to the rotation angle, rotating the joint to complete the rehabilitation.
  • Robot arm C, robot arm D, the main control system 201 communicates with the camera 215, the camera 215 collects the face, joint, lower limb position image information, locates and returns the body part image position information, the robot arm C, the robot arm D 204 according to the voice device 216 voice guidance, voice commands, positioning body position, immobilizing lower limbs, robotic arm C, robotic arm D204, support/gravity device 211, joint device 203, foot pedal 207 Voice guidance according to voice device 216, voice commands, moving machines Arm C, Robot Arm D 204 is equipped with a joint device 203, a support/gravity device 211 fixes the lower body of the body, moves the Robot Arm C, and the Robot Arm D 204 pulls the lower body of the body, stretches, bends, and pedals the action to the foot pedal 207, the lower body Bend, stretch, rotate, release position information, gravity information, rotation, bending angle information according to the main control system 201, collect and release information according to the myoelectric acquisition device 206, gravity sensor 208, pressure sensor
  • Robot arm A, robot arm B, the main control system 201 communicates with the camera 215, the camera 215 collects the position image information of the face, joints, upper limbs, and lower limbs, locates and returns the image position information of the body and hand parts, robot arm A, robot arm B 204 is equipped with a supporting gravity device 211 to locate the body position and fix the upper limbs according to the voice guidance and voice instructions of the voice device 216 .
  • robotic arm receives and subscribes to muscle information, gravity, pressure, multi-sensing information, according to improved depth neural
  • the network algorithm adaptively plans the movements, and a series of rehabilitation movements are based on the planned hand opening, grasping, gripping, and stretching grip strength targets.
  • Robot arm A, robot arm B, the main control system 201 communicates with the camera 215, the camera 215 collects the position image information of the face, joints, upper limbs, and lower limbs, locates and returns the image position information of the body and hand parts, robot arm A, robot arm B 204 is equipped with a massage device 212; the supporting gravity device 211 follows the voice guidance of the voice device 216, the voice command, locates the body position, the robot arm A, the robot arm B 204 moves to the massage position, according to the massage method (rubbing method) issued by the main control system 201 , picking method, pushing method, pressing method, point method, pinching method, pinching method, patting method, striking method, bouncing method, rolling method, palm rubbing method, finger rubbing method, shaking method, shaking method, holding method, rubbing method , shaking method) information, frequency, strength, gravity, pressure information, distance information, according to the information collected and released by the EMG acquisition device 206, gravity sensor 208, pressure sensor 209, the robot arm receives and subscribe

Landscapes

  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Primary Health Care (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Business, Economics & Management (AREA)
  • Business, Economics & Management (AREA)
  • Biophysics (AREA)
  • Pain & Pain Management (AREA)
  • Rehabilitation Therapy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Rehabilitation Tools (AREA)

Abstract

一种外科治疗,康复机器人装置,用于远端及自主控制外科治疗,其包括机器人主控制***(101),机器人主控制***(101)与机器臂模块(107),支撑/重力模块(105),踏板装置(108),关节康复模块(106),多传感信息采集模块(109),握力模块(110),按摩模块(111),肌电采集模块(112)连接,用于实现主控制***(101)对机器人的主控制;装置还包括语音模块(102),摄像头视觉模块(104),肌电采集模块(112),多传感信息采集模块(109),雷达自主移动模块(103),关节康复模块(106),支撑/重力模块(105),握力模块(110),踏板装置(108)以及按摩模块(111)。外科治疗,康复机器人装置能够实现远端自主康复治疗。利用客户端与机器人远端通信,实现远端控制,自主完成康复动作,装置可应用于医院外科,康复科,康复中心,老人院,看护机构,社区医疗中心。

Description

一种外科治疗,康复机器人装置 技术领域
本发明涉及人工智能技术,机器人技术,医疗数据采集,分析,识别技术,属于医疗装置智能化人工智能领域。
 
背景技术
在康复训练过程,由于各种人为因素导致重伤康复难,治疗精准度低。为解决康复时期训练时间长,陪练陪护需要耗费大量人力,采用机器代替人,远端及自主训练,治疗,修复成为康复科的重要课题。康复科医生远端控制,利用与其通信的机器人装置,人工智能算法,动作规划算法解决训练效率低下,人工训练费时费力,康复治疗不准确,康复时间长,康复程度反馈难问题,康复陪护人员失误多等问题。
利用机器臂,支撑重力装置,关节康复装置,踏板装置,握力装置,按摩装置,远端自主康复治疗,利用肌电采集装置,多传感装置采集肌肉信息,重力压力及其他多传感信息。
利用客户端与机器人远端通信,实现远端控制,自主采集肌肉信息,重力压力及其他多传感信息,用于医院外科,康复科,康复中心,老人院,看护机构,社区医疗中心,本发明对于智能化,自主康复训练,自主治疗,有效防止老年病,高精度采集肌肉,康复信息减少人为康复治疗失误,实现自主治疗。
 
技术问题
本发明的目的就在于克服上述现有技术的缺点和不足,提供一种远端及自主的外科,康复科,采集治疗用机器人装置,利用机器代替人,远端及自主采集肌电,多传感器信息,利用机器臂搭载支撑重力装置,关节康复装置,踏板装置,握力装置,按摩装置,远端自主康复,治疗。
通过医生远端,自主控制机器人,自主采集肌电,多传感器信息,利用机器臂搭载支撑重力装置,关节康复装置,踏板装置,握力装置,按摩装置,远端自主康复,治疗解决医护人员人为失误作业,康复陪护繁忙,责任大压力大问题,通过机器人自主作业,缓解康复作业压力。提高康复治疗,检查恢复的效率。自主调节不同人的体质类型,不同疾病程度,训练周期,训练强度,训练次数等参数。实现高效率,高精准治疗。本发明还提供了语音装置,用于人机交互,远端语音命令,提供了自主移动装置,提供了机器臂搭载支撑重力装置,关节康复装置,踏板装置,握力装置,按摩装置,用于远端,自主康复,治疗。
 
技术解决方案
远端及自主控制外科治疗,康复机器人装置包括:
机器人主***,所述的机器人主***与机器臂模块,支撑/重力装置,踏板装置,关节康复装置康复模块,多传感装置,抓力装置,按摩装置,肌电采集装置连接,用于实现主***对机器人的主控制;
语音模块,所述的语音模块与机器人主***连接,用于主***与用户间交互和语音引导;
摄像头视觉采集模块,所述的摄像头视觉采集模块与机器人主***,机器臂连接,用于采集人脸图像,定位人脸,定位腿,手臂,胸,背,腰,手,足,关节位置;
肌电采集模块,所述的肌电采集模块与机器人主***,机器臂连接,用于采集上肢,下肢肌肉信息,依据返回肌肉信息,自主调解训练周期,训练强度,训练次数;
多传感信息采集模块,所述的多传感信息采集与机器人主***,机器臂,支撑重力装置连接,用于采集支撑重力装置的压力信息,重力信息,其他多种传感器信息,依据返回的传感器信息,自主调解训练强度,训练次数,康复程度下体能的训练上限值;
雷达自主移动模块,所述的自主移动模块与机器人主***连接,移动底座连接,用于自主定位导航;
关节康复装置模块,所述的关节康复装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器连接,用于上肢,下肢肌肉康复,关节旋转康复动作,双臂协作完成康复动作;
重力装置模块,所述的重力装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,自主调解重力,力矩,双臂协作完成上下,左右,上左右下,下左右上斜角方向拉伸屈基础动作,加重力动作及其他康复动作;
手臂握力装置,所述的手臂握力装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,肌电采集信息,自主调解握力,力矩,手臂握力康复动作,手臂握力装置用于肌肉康复,手臂抓力;
脚踏板装置,所述的脚踏板装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,肌电采集信息,自主调解脚踏重力重力强度,力矩,脚踏板力康复动作,脚踏力装置用于脚部康复;
按摩装置,所述的按摩装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,肌电采集信息,自主调解按摩装置的频率,按摩强度,擦法,採法,推法,按法,点法,掐法,捏法,拍法,击法,弹法,滚法,掌揉法,指揉法,震法,抖法,拿法,搓发,摇法的按摩方式,按摩重力,上下肢划定按摩范围,按摩动作,用于按摩康复。
机器人主***与语音模块连接,所述的语音模块用于机器人与用户间交互,包括语音识别,语音文字互转,语音引导,语音指令,语音陪伴,语音医疗问答。
机器人主***与摄像头视觉采集模块连接,所述的摄像头视觉采集模块用于采集人脸图像,识别人脸,胸,背,腿,手臂,腰,手,足,关节,返回身体部位的位置信息,定位人脸,胸,背,腿,手臂,腰,手,足,关节位置。
肌电采集模块与机器人主***,机器臂连接,用于采集上肢,下肢肌肉信息,返回肌肉信息,肌肉信息包括肌肉的收缩方式,静力动力状态,肌肉疲劳状态,感觉神经传导速度,运动神经传导速度,重复电刺激,运动单位数目估计,交感皮肤反应,深度学习算法自主调解训练强度,训练周期,训练次数。
多传感信息采集模块与机器人主***,机器臂连接,用于采集重力信息,压力信息,方向信息,依据返回信息,主***与多传感器通信,依据主***接受的多传感信息,调整机器臂及重力装置的参数值。
机器人主***与机器臂与重力装置模块,关节康复装置模块连接,机器人主***与机器臂与重力装置模块,关节康复装置通信,依据多传感器信息,肌电信息,发布调解重力,力矩,双臂位置信息,角度参数,重力装置模块接收调解重力,力矩,双臂位置信息,角度参数,利用机器人手臂动作规划方法,协作完成上下,左右,上左右下,下左右上斜角方向拉伸屈基础动作,加重力动作及其他康复动作。依据多传感器信息,肌电信息,发布双臂位置及关节位置,旋转角度信息,关节装置接收信息,利用机器人手臂动作规划方法,用于上肢,下肢肌肉康复,关节旋转角度康复动作,双臂协作完成关节康复动作,远端及自主完成动作规划的重力康复任务,关节康复任务,从而实现远端及自主康复的功能。
机器人主***与雷达与移动底座相连,雷达采集的信息通过消息,服务的通信方式,发送至主***客户端实现场景自建地图;主***与移动底盘通信:将创建的地图信息发布,与移动底盘节点通信,接受地图信息,实现自主导航;摄像头与通信:摄像头采集的图像信息通过服务的通信方式,发送至主***客户端与机器臂通信实现采集动作。
机器人主***与机器臂与重力装置模块,手臂握力装置连接,机器人主***与机器臂与手臂握力装置模块通信,用于依据多传感器信息,肌电采集信息,自主调解握力,力矩,手臂握力康复动作,手臂握力装置用于肌肉康复,手臂抓力。
机器人主***与机器臂与重力装置模块,脚踏板装置连接,机器人主***与机器臂与脚踏板装置模块通信,用于依据多传感器信息,肌电采集信息,自主调解脚踏重力重力强度,力矩,脚踏板力康复动作,脚踏力装置用于脚部康复。
机器人主***与按摩装置,所述的按摩装置模块与机器人主***,机器臂,视觉模块连接,摄像头发布视觉信息包括:身体各部位返回人脸,胸,背,腿,手臂,腰,手,足,关节位置信息,机器人主***,按摩装置接收视觉信息,检测面部,身体各部位,精准定位身体各位置;依据客户端选定的身体按摩位置,擦法,採法,推法,按法,点法,掐法,捏法,拍法,击法,弹法,滚法,掌揉法,指揉法,震法,抖法,拿法,搓发,摇法的按摩方式,频率按摩强度,按摩重力,定位,移动到身体按摩位置,依照动作规划的动作,按摩,辅助康复。
 
有益效果
本发明能够通过医疗用机器人装置,解决远端控制机器人隔离采集治疗,自主采集治疗,语音装置,用于人机交互,远端语音命令,提供了自主移动装置,提供了机器臂搭载支撑重力装置,关节康复装置,踏板装置,握力装置,按摩装置,用于远端,自主康复,治疗。改善了外科医生,康复科医生,护士,陪护工作作业压力大,作业繁杂等问题。同时,通过采集的肌电数据,多传感数据,依据反馈数据,自适应调整康复训练强度,次数,周期,大幅度提高工作效率。通过本发明,能够实现高效,高精准康复训练,辅助外科,康复科治疗,远端自主康复治疗。
 
附图说明
图1是本申请说明书中医疗用机器人装置模块示意图;
附图1标记:
100-远端控制模块; 101-机器人主***; 102-语音模块;  
103-雷达建图定位导航模块;104-摄像头视觉模块;  105-支撑/重力模块;
106-关节康复模块;107-机器臂模块;108-踏板装置; 109-多传感采集模块;  110-握力模块;    111-按摩模块;  112-肌电采集模块;
 
图2是本申请说明书中医疗用机器人装置组成结构示意图;
附图2标记:
200-客户端远端控制端;201-机器人主***;202-支撑装置;203-关节装置;   204-升降机器臂; 205-移动底座;      206-肌电采集装置;  207-脚踏板; 
208-重力传感器; 209-压力传感器;    210-握力装置;     211-重力装置;    212-按摩装置;   213-外层固定装置;  214-内层柔性装置; 215-视觉装置;  216-语音装置;   217-雷达装置;
 
本发明的实施方式
本发明的目的是设计取代人类工作的可远端控制机器人,实现远端控制机器采集图像,自主采集,自主移动装置,利用机器臂搭载支撑重力装置,关节康复装置,踏板装置,握力装置,按摩装置,用于远端,自主康复,治疗。利用人工智能机器人技术,远端及自主控制机器移动,语音装置,用于人机交互,远端语音命令。
实现自主,远端采集图像,远端语音命令,医生-患者通过设备语音交互,实现远端控制机器人及自主采集自动化领域的远端,自主控制机器移动,动作,自主康复,治疗。解决了人为疗失误,实现机器人远端及自主采集,自主控制机器移动,动作,自主康复,治疗,提高了效率。为了更好的理解上述技术方案,下面结合实施例及附图,对本发明作进一步地的详细说明,但本发明的实施方式不限于此。
本申请实施中的技术方案为解决上述技术问题的总体思路如下:
实施例 1
如图1,如图2所示,远端及自主控制外科治疗、康复机器人装置包括:
机器人主***101,所述的机器人主***101与机器臂模块107,支撑/重力装置105,踏板装置108,关节康复装置康复模块106,多传感装置109,握力装置110,按摩装置111,肌电采集装置112,用于实现机器人的主控制。
语音模块102,所述的语音模块102与机器人主***101连接,用于主控制***与用户间交互和语音引导。
摄像头采集模块104,所述的摄像头视觉模块104与机器人主***101,机器臂107连接,用于采集人脸图像,定位人脸,定位腿,手臂,腰,关节位置。
肌电采集模块112,所述的肌电采集模块112与机器人主***101,机器臂107连接,用于采集上肢,下肢肌肉信息,依据返回肌肉信息,自主调解训练周期,训练强度,训练次数。
多传感信息采集模块109,所述的多传感信息采集109与机器人主***101,机器臂107,支撑重力装置105,连接,用于采集支撑重力装置105的压力信息,重力信息,其他多种传感器信息,依据返回的传感器信息,自主调解训练强度,训练次数,康复程度下体能的训练上限。
雷达自主移动模块103,所述的自主移动模块103与机器人主***101连接,移动底座连接,用于自主定位导航。
关节康复装置模块106,所述的关节康复装置模块106与机器人主***,机器臂107连接,支撑重力装置105,多传感器109连接,用于上肢,下肢肌肉康复,关节旋转康复动作,双臂协作完成康复动作。
重力装置模块105,所述的重力装置模块105与机器人主***101,机器臂107连接,支撑重力装置105,多传感器109,肌电采集模块112连接,用于依据多传感器信息,自主调解重力,力矩,双臂协作完成上下,左右,上左右下,下左右上斜角方向拉伸屈基础动作,加重力动作及其他康复动作。
手臂握力装置110,所述的手臂握力装置模块110与机器人主***101,机器臂107连接,支撑重力装置105,多传感器109,肌电采集模块112连接,用于依据多传感器信息,肌电采集信息,自主调解握力,力矩,手臂握力康复动作。手臂握力装置用于肌肉康复,手臂握力。
脚踏板装置108,所述的脚踏板装置模块108与机器人主***101,机器臂107连接,支撑重力装置105,多传感器109,肌电采集模块112连接,用于依据多传感器信息,肌电采集信息,自主调解脚踏重力重力强度,力矩,脚踏板力康复动作。脚踏力装置用于脚部康复。
按摩装置111,所述的按摩装置模块111与机器人主***101,机器臂107连接,支撑重力装置105,多传感器109,肌电采集模块112连接,用于依据多传感器信息,肌电采集信息,自主调解按摩装置的频率,按摩强度,按摩方式(擦法、採法、推法、按法、点法、掐法、捏法、拍法、击法、弹法、滚法、掌揉法、指揉法、震法、抖法、拿法、搓发、摇法),按摩重力,上下肢划定按摩范围,按摩动作,用于按摩康复。
医生,管理员等管理用户利用客户端远端控制端200与主控制***201通信,远端发出控制命令,主控制***201与机器臂204通信,应用摄像头215采集人脸图像,依据人脸,上下肢关节图像,返回关节,上肢,下肢位置信息,定位人部位。远端控制模块100远端控制机器臂A,机器臂B移动至身体部位位置,采集身体图片,检测身体部位,辅助外科治疗,康复训练,治疗。
语音模块216,语音装置216包括声音采集装置麦克装置及扬声器216,拾音装置216可以获得语音信息,通过麦克风装置216输入用户语音及通过扬声器装置人机间交互,语音引导,文字语音互换,语音合成,语音唤醒。
雷达自主定位导航模块217,主控制***201与移动底盘205,雷达217通信,雷达217采集的信息通过消息,服务的通信方式,发送至主***,实现场景自建地图。将创建的地图信息发布至移动底盘节点,移动底盘接受地图信息,实现自主导航。
机器臂A,机器臂B,主控制***201与摄像头215通信,摄像头215采集的人脸,关节,上肢,下肢位置图像信息,定位及返回身体部位图像位置信息,机器臂A,机器臂B 204按照语音装置216的语音引导,语音指令,定位身***置,固定上肢,下肢,机器臂A机器臂B 机器臂C机器臂D204,重力装置211按照语音装置216的语音引导,语音指令,移动机器臂A,机器臂B 204搭载支撑/重力装置211,支撑/重力装置211固定身体上肢,下肢,移动机器臂A,机器臂B 204拉动身体上肢,下肢,按照主控制***201发布的位置高度,距离信息,重力信息,按照肌电采集装置206,重力传感器208,压力传感器209采集发布的信息,机器臂接收订阅肌肉信息,重力,压力,多传感信息,按照改进的深度神经网络算法自适应规划动作,依照规划的康复动作,拉伸,弯曲,按照旋转角度,转动上肢,下肢,肌肉,完成康复。
机器臂A,机器臂B,主控制***201与摄像头215通信,摄像头215采集的人脸,关节,上肢,下肢位置图像信息,定位及返回身体部位图像位置信息,机器臂A,机器臂B 204按照语音装置216的语音引导,语音指令,定位身***置,固定上肢,下肢,机器臂A机器臂B 机器臂C机器臂D204,关节装置203按照语音装置216的语音引导,语音指令,移动机器臂A,机器臂B 204搭载关节装置203,支撑/重力装置211固定身体上肢,下肢,移动机器臂A,机器臂B 机器臂C机器臂D 204拉动身体上肢,下肢的关节弯曲,伸展,旋转。按照主控制***201发布的弯曲旋转角度,旋转坐标,重力信息,按照肌电采集装置206,重力传感器208,压力传感器209采集发布的信息,机器臂接收订阅肌肉信息,重力,压力,多传感信息,按照改进的深度神经网络算法自适应规划动作,依照规划的关节动作,弯曲,按照旋转角度,转动关节完成康复。
机器臂C,机器臂D,主控制***201与摄像头215通信,摄像头215采集的人脸,关节,下肢位置图像信息,定位及返回身体部位图像位置信息,机器臂C机器臂D 204按照语音装置216的语音引导,语音指令,定位身***置,固定下肢,机器臂C,机器臂D204,支撑/重力装置211,关节装置203,脚踏板207按照语音装置216的语音引导,语音指令,移动机器臂C,机器臂D 204搭载关节装置203,支撑/重力装置211固定身体下肢,移动机器臂C,机器臂D 204拉动身体下肢,拉伸,弯曲,脚蹬踏动作至脚踏板207,下肢弯曲,伸展,旋转,按照主控制***201发布位置信息,重力信息,旋转,弯曲的角度信息,按照肌电采集装置206,重力传感器208,压力传感器209采集发布的信息,机器臂接收订阅肌肉信息,重力,压力,多传感信息,按照改进的深度神经网络算法自适应规划动作,依照规划的蹬踏,拉伸,弯曲动作,身体下肢,拉伸,弯曲动作至脚踏板207动作完成脚部蹬踏康复,腿部肌肉康复动作。
机器臂A,机器臂B,主控制***201与摄像头215通信,摄像头215采集的人脸,关节,上肢,下肢位置图像信息,定位及返回身体手部位图像位置信息,机器臂A,机器臂B 204搭载支撑重力装置211按照语音装置216的语音引导,语音指令,定位身***置,固定上肢。 机器臂A,机器臂B 204,支撑/重力装置211,握力装置210,支撑/重力装置211固定身体上肢,移动机器臂A,机器臂B至手部,握力装置210按照主控制***201发布的重力信息,压力信息,距离信息,按照肌电采集装置206,重力传感器208,压力传感器209采集发布的信息,机器臂接收订阅肌肉的信息,重力,压力,多传感信息,按照改进的深度神经网络算法自适应规划动作,依照规划的手部张开,抓,握,拉伸握力目标一系列康复动作。手部伸展,弯曲,拉伸握力目标。按照拉伸,抓握力度,角度,距离,握力完成手部抓,握,伸展,弯曲手部康复。
机器臂A,机器臂B,主控制***201与摄像头215通信,摄像头215采集的人脸,关节,上肢,下肢位置图像信息,定位及返回身体手部位图像位置信息,机器臂A,机器臂B 204搭载按摩装置212;支撑重力装置211按照语音装置216的语音引导,语音指令,定位身***置,机器臂A,机器臂B 204移动至按摩位置,按照主控制***201发布的按摩方式(擦法、採法、推法、按法、点法、掐法、捏法、拍法、击法、弹法、滚法、掌揉法、指揉法、震法、抖法、拿法、搓发、摇法)信息,频率,强度,重力,压力信息,距离信息,按照肌电采集装置206,重力传感器208,压力传感器209采集发布的信息,机器臂接收订阅肌肉信息,重力,压力,多传感信息,按照改进的深度神经网络算法自适应规划动作,依照规划的手部捏,锤,抚摸,旋转转动一系列按摩动作。按照规划的按摩区,规划的动作完成按摩康复动作。
 

Claims (10)

  1. 一种外科治疗,康复机器人装置,其特征在于,远端及自主控制外科治疗,康复机器人装置包括:
    机器人主***,所述的机器人主***与机器臂模块,支撑/重力装置,踏板装置,关节康复装置康复模块,多传感装置,抓力装置,按摩装置,肌电采集装置连接,用于实现主***对机器人的主控制;
    语音模块,所述的语音模块与机器人主***连接,用于主***与用户间交互和语音引导;
    摄像头视觉采集模块,所述的摄像头视觉采集模块与机器人主***,机器臂连接,用于采集人脸图像,定位人脸,定位腿,手臂,胸,背,腰,手,足,关节位置;
    肌电采集模块,所述的肌电采集模块与机器人主***,机器臂连接,用于采集上肢,下肢肌肉信息,依据返回肌肉信息,自主调解训练周期,训练强度,训练次数;
    多传感信息采集模块,所述的多传感信息采集模块与机器人主***,机器臂,支撑重力装置连接,用于采集支撑重力装置的压力信息,重力信息,其他多种传感器信息,依据返回的传感器信息,自主调解训练强度,训练次数,康复程度下体能的训练上限值;
    雷达自主移动模块,所述的雷达自主移动模块与机器人主***连接,移动底座连接,用于自主定位导航;
    关节康复装置模块,所述的关节康复装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器连接,用于上肢,下肢肌肉康复,关节旋转康复动作,双臂协作完成康复动作;
    重力装置模块,所述的重力装置模块与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,自主调解重力,力矩,双臂协作完成上下,左右,上左右下,下左右上斜角方向拉伸屈基础动作,加重力动作及其他康复动作;
    手臂握力装置,所述的手臂握力装置与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,肌电采集信息,自主调解握力,力矩,手臂握力康复动作,手臂握力装置用于肌肉康复,手臂抓力;
    脚踏板装置,所述的脚踏板装置与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,肌电采集信息,自主调解脚踏重力重力强度,力矩,脚踏板力康复动作,脚踏力装置用于脚部康复;
    按摩装置,所述的按摩装置与机器人主***,机器臂连接,支撑重力装置,多传感器,肌电采集模块连接,用于依据多传感器信息,肌电采集信息,自主调解按摩装置的频率,按摩强度,擦法,採法,推法,按法,点法,掐法,捏法,拍法,击法,弹法,滚法,掌揉法,指揉法,震法,抖法,拿法,搓发,摇法的按摩方式,按摩重力,上下肢划定按摩范围,按摩动作,用于按摩康复。
  2. 一种外科治疗,康复机器人装置,其特征在于,语音模块,所述的语音模块与机器人主***连接,所述的语音模块用于机器人与用户间交互,包括语音识别,语音文字互转,语音引导,语音指令,语音陪伴,语音医疗问答。
  3. 一种外科治疗,康复机器人装置,其特征在于,摄像头视觉模块,所述的摄像头视觉模块与机器人主***连接,所述的摄像头视觉模块用于采集人脸图像,识别人脸,胸,背,腿,手臂,腰,手,足,关节,返回身体部位的位置信息,定位人脸,胸,背,腿,手臂,腰,手,足,关节位置。
  4. 一种外科治疗,康复机器人装置,其特征在于,肌电采集模块,所述的肌电采集模块与机器人主***,机器臂连接,用于采集上肢,下肢肌肉信息,返回肌肉信息,肌肉信息包括肌肉的收缩方式,静力动力状态,肌肉疲劳状态,感觉神经传导速度,运动神经传导速度,重复电刺激,运动单位数目估计,交感皮肤反应,深度学习算法自主调解训练强度,训练周期,训练次数。
  5. 一种外科治疗,康复机器人装置,其特征在于,多传感信息采集模块,所述的多传感信息采集模块与机器人主***,机器臂连接,用于采集重力信息,压力信息,方向信息,依据返回信息,主***与多传感器通信,依据主***接受的多传感信息,调整机器臂及重力装置的参数值。
  6. 一种外科治疗,康复机器人装置,其特征在于,关节康复装置模块,所述的关节康复装置模块与机器人主***,机器臂,重力装置模块,关节康复装置模块连接,机器人主***与机器臂与重力装置模块,关节康复装置通信,依据多传感器信息,肌电信息,发布调解重力,力矩,双臂位置信息,角度参数,重力装置模块接收调解重力,力矩,双臂位置信息,角度参数,利用机器人手臂动作规划方法,协作完成上下,左右,上左右下,下左右上斜角方向拉伸屈基础动作,加重力动作及其他康复动作,依据多传感器信息,肌电信息,发布双臂位置及关节位置,旋转角度信息,关节装置接收信息,利用机器人手臂动作规划方法,用于上肢,下肢肌肉康复,关节旋转角度康复动作,双臂协作完成关节康复动作,远端及自主完成动作规划的重力康复任务,关节康复任务,从而实现远端及自主康复的功能。
  7. 一种外科治疗,康复机器人装置,其特征在于,雷达,移动底座模块,所述的雷达,移动底座与机器人主***相连,雷达采集的信息通过消息,服务的通信方式,发送至主***客户端实现场景自建地图;主***与移动底盘通信:将创建的地图信息发布,与移动底盘节点通信,接受地图信息,实现自主导航;摄像头与通信:摄像头采集的图像信息通过服务的通信方式,发送至主***客户端与机器臂通信实现采集动作。
  8. 一种外科治疗,康复机器人装置,其特征在于,手臂握力装置,所述的手臂握力装置与机器人主***与机器臂与重力装置模块连接,机器人主***与机器臂与手臂握力装置模块通信,用于依据多传感器信息,肌电采集信息,自主调解握力,力矩,手臂握力康复动作,手臂握力装置用于肌肉康复,手臂抓力。
  9. 一种外科治疗,康复机器人装置,其特征在于,脚踏板装置,所述的脚踏板装置与机器人主***,机器臂,与重力装置模块连接,机器人主***与机器臂与脚踏板装置模块通信,用于依据多传感器信息,肌电采集信息,自主调解脚踏重力重力强度,力矩,脚踏板力康复动作,脚踏力装置用于脚部康复。
  10. 一种外科治疗,康复机器人装置,其特征在于,按摩装置,所述的按摩装置与机器人主***,机器臂,与视觉模块连接,摄像头发布视觉信息包括:身体各部位返回人脸,胸,背,腿,手臂,腰,手,足,关节位置信息,机器人主***,按摩装置接收视觉信息,检测面部,身体各部位,精准定位身体各位置;依据客户端选定的身体按摩位置,擦法,採法,推法,按法,点法,掐法,捏法,拍法,击法,弹法,滚法,掌揉法,指揉法,震法,抖法,拿法,搓发,摇法的按摩方式,频率按摩强度,按摩重力,定位,移动到身体按摩位置,依照动作规划的动作,按摩,辅助康复。
     
PCT/CN2021/122529 2020-10-09 2021-10-07 一种外科治疗,康复机器人装置 WO2022073468A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180008737.6A CN117580619A (zh) 2020-10-09 2021-10-07 一种外科治疗,康复机器人装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202022230929 2020-10-09
CN202022230929.7 2020-10-09

Publications (1)

Publication Number Publication Date
WO2022073468A1 true WO2022073468A1 (zh) 2022-04-14

Family

ID=81125592

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122529 WO2022073468A1 (zh) 2020-10-09 2021-10-07 一种外科治疗,康复机器人装置

Country Status (2)

Country Link
CN (1) CN117580619A (zh)
WO (1) WO2022073468A1 (zh)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061984A (zh) * 2006-04-29 2007-10-31 香港理工大学 利用肌电信号提供机械帮助的康复机器人***及训练方法
CN103354054A (zh) * 2013-07-23 2013-10-16 上海维纽机器人有限公司 一种按摩专家的按摩手法学习***及其应用
CN107397649A (zh) * 2017-08-10 2017-11-28 燕山大学 一种基于径向基神经网络的上肢外骨骼康复机器人控制方法
CN108818618A (zh) * 2018-06-29 2018-11-16 华中科技大学 一种康复机器人手臂重力平衡装置
CN108814597A (zh) * 2018-04-16 2018-11-16 龚映清 一种基于运动信息与肌电交互的康复训练评测方法及***
CN109350446A (zh) * 2018-10-18 2019-02-19 航天科工智能机器人有限责任公司 基于肌电信号的主被动结合上肢康复训练机器人***
CN109806113A (zh) * 2019-03-14 2019-05-28 郑州大学 一种基于自组网导航的icu病房卧式下肢康复智能交互机器人群组***
CN109820695A (zh) * 2019-04-03 2019-05-31 郑州大学 一种具有通信和自主导航移动功能的icu病房卧式双侧脑瘫下肢康复机器人
WO2019214791A1 (en) * 2018-05-07 2019-11-14 Life Science Robotics Aps Robot for use in the rehabilitation of extremities
CN110960414A (zh) * 2020-01-10 2020-04-07 天寿健康科技(济南)有限公司 物联网健康机器人
CN110974633A (zh) * 2019-12-26 2020-04-10 上海金矢机器人科技有限公司 一种智能助行康复训练机器人
CN111631726A (zh) * 2020-06-01 2020-09-08 深圳华鹊景医疗科技有限公司 上肢功能评估装置与方法及上肢康复训练***与方法
CN211585086U (zh) * 2019-11-22 2020-09-29 航天科工智能机器人有限责任公司 一种穿戴式多自由度上肢康复训练机器臂

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101061984A (zh) * 2006-04-29 2007-10-31 香港理工大学 利用肌电信号提供机械帮助的康复机器人***及训练方法
CN103354054A (zh) * 2013-07-23 2013-10-16 上海维纽机器人有限公司 一种按摩专家的按摩手法学习***及其应用
CN107397649A (zh) * 2017-08-10 2017-11-28 燕山大学 一种基于径向基神经网络的上肢外骨骼康复机器人控制方法
CN108814597A (zh) * 2018-04-16 2018-11-16 龚映清 一种基于运动信息与肌电交互的康复训练评测方法及***
WO2019214791A1 (en) * 2018-05-07 2019-11-14 Life Science Robotics Aps Robot for use in the rehabilitation of extremities
CN108818618A (zh) * 2018-06-29 2018-11-16 华中科技大学 一种康复机器人手臂重力平衡装置
CN109350446A (zh) * 2018-10-18 2019-02-19 航天科工智能机器人有限责任公司 基于肌电信号的主被动结合上肢康复训练机器人***
CN109806113A (zh) * 2019-03-14 2019-05-28 郑州大学 一种基于自组网导航的icu病房卧式下肢康复智能交互机器人群组***
CN109820695A (zh) * 2019-04-03 2019-05-31 郑州大学 一种具有通信和自主导航移动功能的icu病房卧式双侧脑瘫下肢康复机器人
CN211585086U (zh) * 2019-11-22 2020-09-29 航天科工智能机器人有限责任公司 一种穿戴式多自由度上肢康复训练机器臂
CN110974633A (zh) * 2019-12-26 2020-04-10 上海金矢机器人科技有限公司 一种智能助行康复训练机器人
CN110960414A (zh) * 2020-01-10 2020-04-07 天寿健康科技(济南)有限公司 物联网健康机器人
CN111631726A (zh) * 2020-06-01 2020-09-08 深圳华鹊景医疗科技有限公司 上肢功能评估装置与方法及上肢康复训练***与方法

Also Published As

Publication number Publication date
CN117580619A (zh) 2024-02-20

Similar Documents

Publication Publication Date Title
CN101061984B (zh) 利用肌电信号提供机械帮助的康复机器人***
Mohammed et al. Lower-limb movement assistance through wearable robots: State of the art and challenges
US9238137B2 (en) Neuromuscular stimulation
Tsai et al. An articulated rehabilitation robot for upper limb physiotherapy and training
CN102727361A (zh) 坐卧式下肢康复机器人
JP3660330B2 (ja) インピーダンス測定装置及び運動学習支援装置
CN106389068A (zh) 用于上肢单侧偏瘫患者自主康复训练的设备和控制方法
Gupta et al. Kinematic, dynamic analysis and control of 3 DOF upper-limb robotic exoskeleton
De Lee et al. Arm exoskeleton rehabilitation robot with assistive system for patient after stroke
CN111408042A (zh) 功能性电刺激和下肢外骨骼智能分配方法、装置、存储介质及***
Reinkensmeyer et al. Some key problems for robot-assisted movement therapy research: a perspective from the University of California at Irvine
Lin et al. NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation
Dragusanu et al. Design, development, and control of a tendon-actuated exoskeleton for wrist rehabilitation and training
Xie et al. Wirerope-driven exoskeleton to assist lower-limb rehabilitation of hemiplegic patients by using motion capture
WO2022073467A1 (zh) 一种陪护按摩双臂多任务并行处理机器人装置
Rahman et al. Dynamic modeling and evaluation of a robotic exoskeleton for upper-limb rehabilitation
Hasan et al. Development of human lower extremity kinematic and dynamic models for exoskeleton robot based physical therapy
Westerveld et al. Passive reach and grasp with functional electrical stimulation and robotic arm support
WO2022073468A1 (zh) 一种外科治疗,康复机器人装置
Torres Quezada et al. Robotic training system for upper limb rehabilitation
Tucan et al. A kinematic model and dynamic simulation of a parallel robotic structure for lower limb rehabilitation
CN114432663A (zh) 一种六自由度上肢康复机器人及其重力补偿方法
Chen et al. A Dual-Arm Participated Human-Robot Collaboration Method for Upper Limb Rehabilitation of Hemiplegic Patients
Shi et al. Design on mechanism of lower limb rehabilitation robot based on new body weight support (BWS) system
He et al. Spherical parallel instrument for daily living emulation (SPINDLE) to restore motor function of stroke survivors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876986

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180008737.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 21876986

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/09/2023)