WO2022073317A1 - 串联电池保护电路 - Google Patents

串联电池保护电路 Download PDF

Info

Publication number
WO2022073317A1
WO2022073317A1 PCT/CN2021/073572 CN2021073572W WO2022073317A1 WO 2022073317 A1 WO2022073317 A1 WO 2022073317A1 CN 2021073572 W CN2021073572 W CN 2021073572W WO 2022073317 A1 WO2022073317 A1 WO 2022073317A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
series
module
protection
voltage
Prior art date
Application number
PCT/CN2021/073572
Other languages
English (en)
French (fr)
Inventor
肖川
谢锋民
Original Assignee
旋智科技(深圳)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202022245921.8U external-priority patent/CN213547135U/zh
Priority claimed from CN202011078214.2A external-priority patent/CN112186857A/zh
Application filed by 旋智科技(深圳)有限公司 filed Critical 旋智科技(深圳)有限公司
Publication of WO2022073317A1 publication Critical patent/WO2022073317A1/zh
Priority to US18/132,959 priority Critical patent/US20230261485A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0024Parallel/serial switching of connection of batteries to charge or load circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00306Overdischarge protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00308Overvoltage protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00309Overheat or overtemperature protection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/0031Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits

Definitions

  • the invention relates to the field of integrated circuit design, in particular to a series battery protection circuit.
  • a series battery protection scheme 1 is proposed. As shown in Figure 1, it includes n-level series connected batteries, each battery is connected in series with a protection switching device (S1, S2...Sn), and each battery has its own Own single-cell battery protection module with protective switching device. If a single battery in a series battery is turned off, the voltage on both sides of the shut-off protection switch will withstand all the fluctuating voltages from the total input and output of the series battery. To ensure safety, each protection switch device must be selected that can withstand the total input and output of the series battery. High withstand voltage switching device for output voltage.
  • the node at the negative terminal of the battery will become negative (defining the negative terminal of the battery PK- as the ground level), while the node connected to the positive terminal of the low-voltage battery will become positive, and the voltage difference across the protection switching device will become the output voltage of the entire series-connected battery, namely At this time, the voltage difference across the protection switching device is 48V.
  • the self-protection switching device of each series battery will use a switching device with a withstand voltage of more than 48V, such as a 80V or even 100V withstand voltage switching device. Even the internal resistance of the 100V withstand voltage switching device must be small (even less than 10 milliohms) to ensure that the internal resistance will not be too large after dozens of connected in series.
  • each battery connected in series no longer has its own switching device, and each battery no longer has its own separate protection module.
  • a thermistor such as Tesla
  • each series battery for rough protection, or simply each battery itself no longer has any protection, but unified combined protection.
  • the second series battery protection scheme proposed in the prior art adds a charging switch tube S1 and a discharge switch tube S2 to the negative terminal P- of the series battery, and turns off the discharge switch tube S2 and the charging switch tube when abnormal. S1 performs protection.
  • the protection signal is transmitted to the chip directly connected to the charging switch S1 and the discharging switch S2 through the adjacent chips. to perform a shutdown.
  • the above scheme abandons the self-protection of each battery in series, and avoids the use of a large number of high-voltage switch tubes, which can greatly reduce the cost.
  • there is a short-circuit and large current discharge between several batteries connected in series in this solution for example, accidental impact causes the metal conductor to short-circuit the positive and negative ends of one battery or multiple batteries in series, as shown in Figure 2
  • there is no protection capability when there is a short-circuit and large current discharge between several batteries connected in series in this solution (for example, accidental impact causes the metal conductor to short-circuit the positive and negative ends of one battery or multiple batteries in series, as shown in Figure 2), there is no protection capability.
  • scheme 2 has inherent defects that cannot be easily compensated, but the cost is low; while scheme 1 has complete protection functions, but uses several low-impedance high-voltage charge-discharge switching devices, and the cost is too high. Therefore, how to reduce the cost while ensuring the complete protection function of the series battery has become one of the problems to be solved urgently by those skilled in the art.
  • the purpose of the present invention is to provide a series battery protection circuit, which is used to solve the problem that the protection function and the cost of the series battery cannot be balanced in the prior art.
  • the present invention provides a series battery protection circuit, the series battery protection circuit at least includes:
  • the battery modules at all levels include a single-cell battery, a protection switch and a single-cell battery protection module; the single-cell battery is connected in series with the protection switch, and the single-cell battery protection module is based on the detection signal of the current battery module or the
  • the output signal of the shutdown signal level shift module generates a shutdown signal, and controls the protection switch based on the shutdown signal to protect the current battery module;
  • the shutdown signal level shift module is connected to the battery modules at all levels, and is used for transmitting the shutdown signal of any battery module at any level to other battery modules at all levels, so that the battery modules at all levels take protection operations;
  • the voltage transient suppression module is connected between the positive electrode of the battery pack and the negative electrode of the battery pack, and is used for absorbing the glitch voltage and slowing down the change speed of the total voltage between the positive electrode of the battery pack and the negative electrode of the battery pack.
  • the single-cell battery protection module includes a detection unit and a logic processing unit; the detection unit receives a detection signal and generates a corresponding protection signal; the logic processing unit is connected to the detection unit and the shutdown signal circuit.
  • the output end of the horizontal displacement module generates a shutdown signal of the battery module of the current stage based on the protection signal or the shutdown signal of the battery module of other levels.
  • the detection unit includes one or more combinations of an undervoltage detection subunit, an overvoltage detection subunit, an overtemperature detection subunit, a discharge overcurrent detection subunit, and a charge overcurrent detection subunit.
  • each battery module further includes a bypass diode connected in parallel at both ends of the series structure of the single-cell battery and the protection switch; the anode of the bypass diode is connected to the protection switch, and the cathode is connected to the single-cell Battery.
  • each battery module further includes a voltage divider resistor connected in parallel to both ends of the protection switch.
  • each battery module further includes a bypass capacitor, and the bypass capacitor is connected in parallel to both ends of the protection switch, or the bypass capacitor is connected in parallel to the series structure of the single-cell battery and the protection switch. both ends.
  • the shutdown signal level shift module includes a first resistor, a second resistor, a Darlington current amplifier and a transistor corresponding to each battery module one-to-one; the first end of each transistor is connected to the corresponding battery module.
  • the battery pack is connected to the positive pole of the battery pack through the second resistor, the second terminal is connected to the negative pole of the battery pack, and the control terminal is connected to the second terminal of each transistor; wherein each transistor is a PNP transistor or a PMOS transistor.
  • the shutdown signal level shift module further includes a voltage limiting unit corresponding to each battery module one-to-one, and each voltage limiting unit includes a current limiting resistor and a Zener diode; One end is connected to the first end of the Darlington current amplifier, and the second end is connected to the corresponding battery module; the cathode of the Zener diode is connected to the second end of the current limiting resistor, and the anode is connected to the corresponding battery module. the negative terminal of the battery.
  • each transistor is respectively connected to corresponding ports through a resistor.
  • the Darlington current amplifier is replaced with an NPN transistor or an NMOS transistor
  • the voltage transient suppression module includes a capacitor, or a series-parallel structure of a capacitor and a resistor, or a series-parallel structure of a capacitor and an inductor.
  • the protection switch is replaced with a discharge switch and a charge switch in series;
  • the shutdown signal level shift module is replaced with a parallel discharge shutdown signal level shift module and a charge shutdown signal level shift module,
  • the discharge shutdown signal level shift module receives the shutdown signal of the discharge switch in any stage of the battery module and transmits it to other battery modules at all levels, and the charge shutdown signal level shift module receives any stage The turn-off signal of the charging switch in the battery module is transmitted to other battery modules at all levels.
  • each of the protection switch, the discharge switch and the charge switch includes a plurality of switches in parallel.
  • the series battery protection circuit of the present invention has the following beneficial effects:
  • the series battery protection circuit of the present invention uses a lower withstand voltage charge-discharge switch device to protect the higher voltage series batteries, which can not only protect the entire series battery, but also protect each series battery, and at the same time, solve the problem of short circuit between the series batteries.
  • the problem of protection is high, and the safety performance is high; in addition, the series battery protection circuit of the present invention adopts switching devices with low withstand voltage, and the cost is greatly reduced.
  • FIG. 1 is a schematic diagram of a circuit structure of a series battery protection solution 1 in the prior art.
  • FIG. 2 is a schematic diagram of the circuit structure of the second series battery protection solution in the prior art.
  • FIG. 3 is a schematic structural diagram of a series battery protection circuit of the present invention.
  • FIG. 4 is another schematic structural diagram of the series battery protection circuit of the present invention.
  • FIG. 5 is another schematic structural diagram of the series battery protection circuit of the present invention.
  • FIG. 6 is another schematic structural diagram of the series battery protection circuit of the present invention.
  • this embodiment provides a series battery protection circuit, and the series battery protection circuit includes:
  • the battery modules at all levels are connected in series between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack.
  • n-level battery modules are included (n is a natural number greater than or equal to 2, in actual use, the number of battery modules is not less than 2), which are respectively recorded as the first-level battery modules.
  • the group 11, the second-level battery module 12...the n-th-level battery module 1n, and the battery modules of all levels are connected in series in sequence.
  • the first-level battery module 11 includes a first single-cell battery Bat1 , a first protection switch K1 and a first single-cell battery protection module 111 .
  • the first single-cell battery Bat1 is connected in series with the first protection switch K1; as an example, the positive electrode B1+ of the first single-cell battery Bat1 is used as the positive electrode PK1+ of the first-level battery module 11,
  • the first end of the first protection switch K1 is connected to the negative electrode B1- of the first single-cell battery Bat1, and the second end of the first protection switch K1 serves as the negative electrode PK1 of the first-level battery module 11 - and connect the negative pole PK- of the battery pack.
  • the first single-cell battery protection module 111 generates a first turn-off signal based on the detection signal of the first-stage battery module 11 or the output signal of the turn-off signal level shift module 2, and based on the The first turn-off signal controls the first protection switch K1 to be turned off or turned on, so as to protect the first battery module 11 .
  • the first single-cell battery protection module 111 includes a detection unit 111a and a logic processing unit 111b. The detection unit 111a receives the detection signal and generates a corresponding protection signal.
  • the detection unit 111a includes but is not limited to an under-voltage detection sub-unit CMP1, an over-voltage detection sub-unit CMP2, an over-temperature detection sub-unit OT, and an over-discharge current detection sub-unit.
  • the four reference voltages Vref4 are compared to determine whether the charging current of the first single-cell battery Bat1 is too large, and a corresponding overcurrent charging protection signal is output.
  • the logic processing unit 111b is connected to the detection unit 111a and the output end of the shutdown signal level shift module 2, and generates the first-level battery module based on each protection signal or the shutdown signal of other battery modules The turn-off signal of 11 (first turn-off signal).
  • the negative pole PK2- of the second-level battery module 12 is connected to the positive pole PK1+ of the first-level battery module 11, and includes a second single-cell battery Bat2, a second protection switch K2 and a second single-cell battery protection module 121.
  • the negative pole PKn- of the nth level battery module 1n is connected to the positive pole of the previous stage, and the positive pole PKn+ of the nth level battery module 1n is connected to the positive pole PK+ of the battery pack, including the nth single battery Batn, The nth protection switch Kn and the nth single-cell battery protection module 1n1.
  • This embodiment only takes the first-stage battery module 11 as an example for specific description, and the structures and principles of the battery modules at all levels are the same, and will not be repeated here.
  • over-discharge current detection sub-unit CMP3 and the over-charge current detection sub-unit CMP4 in this embodiment are realized by using the Chinese patent "A charge-discharge over-current protection circuit" (application number 201921942910.6) that has been authorized by the applicant, without the need for Adding high-precision and high-power current sampling resistors can realize the high-precision charge-discharge overcurrent protection of each single-cell battery itself, which greatly saves costs, thereby further enabling the present invention to achieve series battery protection under the condition of close to the cost of the existing solution.
  • the optimization and protection performance has been greatly improved, which not only protects the whole series of batteries, but also protects each battery.
  • the shutdown signal level shift module 2 is connected to the battery modules at all levels, and is used to transmit the shutdown signal of any battery module at any level to other battery modules at all levels, so that the battery modules at all levels can be The module takes protective action.
  • the shutdown signal level shift module 2 includes a first resistor R_1, a second resistor R_2, a Darlington current amplifier 21 and transistors (the first one corresponding to each battery module one-to-one).
  • each transistor adopts a PNP triode.
  • the transistors that are turned on when the control terminal receives a low level are all applicable to the present invention, including but not limited to triodes and MOS tubes, which will not be repeated here.
  • the collector of the transistor Q1 is connected to the negative electrode PK- of the battery pack via the first resistor R_1, the base is connected to the first turn-off signal, and the emitter is connected to the positive electrode B1+ of the first single-cell battery Bat1; similarly,
  • the collectors of the second transistors Q1...the nth transistors Qn are connected to the negative electrode PK- of the battery pack via the first resistor R_1, the bases are respectively connected to the turn-off signal of the corresponding battery module, and the emitters are respectively connected Corresponds to the positive pole of a single battery.
  • the first end of the Darlington current amplifier 21 is connected to the corresponding battery module, and is connected to the positive electrode PK+ of the battery pack through the second resistor R_2, the second end is connected to the negative electrode PK- of the battery pack, and the control end is connected to each battery pack.
  • the Darlington current amplifier 21 includes a first NPN transistor Q11 and a second NPN transistor Q12, the collector of the first NPN transistor Q11 and the collector of the second NPN transistor Q12
  • the electrodes are connected and serve as the first end of the Darlington current amplifier 21, the base of the first NPN transistor Q11 serves as the control end of the Darlington current amplifier 21, and the emitter of the first NPN transistor Q11
  • the base electrode of the second NPN transistor Q12 is connected, and the emitter electrode of the second NPN transistor Q12 is connected to the negative electrode PK- of the battery pack.
  • the first terminal and the control terminal of each transistor are respectively connected to corresponding ports through a resistor.
  • the base of the first transistor Q1 is connected to the turn-off signal of the first-stage battery module 11 via the resistor R11, and the emitter is connected to the positive electrode B1+ of the first single-cell battery Bat1 via the resistor R12 ;
  • the base of the second transistor Q2 is connected to the turn-off signal of the second-stage battery module 12 via the resistor R21, and the emitter is connected to the positive electrode B2+ of the second single-cell battery Bat2 via the resistor R22;
  • the nth The base of the transistor Qn is connected to the turn-off signal of the n-th battery module 1n via the resistor Rn1, and the emitter is connected to the positive electrode Bn+ of the n-th single-cell battery Batn via the resistor Rn2.
  • the shutdown signal level shift module 2 further includes voltage limiting units corresponding to each battery module one-to-one, which are respectively denoted as the first voltage limiting unit 221 and the second voltage limiting unit 222...the nth voltage limiting unit 22n.
  • the first voltage limiting unit 221 includes a first current limiting resistor RL1 and a first Zener diode ZD1. The first end of the first current limiting resistor RL1 is connected to the first end of the Darlington current amplifier 21.
  • the two terminals are connected to the logic processing unit 111b of the first-stage battery module 11; the cathode of the first Zener diode ZD1 is connected to the second terminal of the first current limiting resistor RL1, and the anode is connected to the first single cell Negative electrode B1- of battery Bat1.
  • the second voltage limiting unit 222 includes a second current limiting resistor RL2 and a second Zener diode ZD2, and is connected between the second stage battery module 12 and the first end of the Darlington current amplifier 21;
  • the nth voltage limiting unit 22n includes an nth current limiting resistor RLn and an nth Zener diode ZDn, and is connected between the nth stage battery module 1n and the first end of the Darlington current amplifier 21 ;
  • This embodiment only takes the first voltage limiting unit 221 as an example for specific description. The structures and principles of the voltage limiting units at all levels are the same, and will not be repeated here.
  • the corresponding single-cell battery protection module outputs a shutdown signal (usually from a high level to a low level) to turn off its protection switch.
  • a shutdown signal usually from a high level to a low level
  • the base level of the corresponding transistor in the level displacement module 2 is pulled low, the transistor is turned on, the current flows in from the emitter of the transistor, and flows out to the first resistor R_1 through the collector.
  • the Darlington current amplifier 21 When the voltage on the first resistor R_1 is higher than When Vbe_Q11+Vbe_Q12 (about 1.4V as an example), the Darlington current amplifier 21 is turned from off to on, and the first end of the Darlington current amplifier 21 (the first NPN transistor Q11 and the second NPN transistor Q12 Collector) voltage is pulled down (as low as 0.5V or lower), and the forced shutdown input pin of other single-cell battery protection modules (the connection port between the Darlington current amplifier 21 and the corresponding logic processing unit) is normally high The level changes to a low level, and correspondingly generates the turn-off signals of other protection switches, thereby protecting the battery modules at all levels in series.
  • Vbe_Q11+Vbe_Q12 about 1.4V as an example
  • a current limiting resistor and a Zener diode are used.
  • the maximum input voltage limit is VBn+5V (corresponding to the negative terminal voltage VBn of a single cell plus +5V)
  • the minimum input voltage limit is VBn-0.7V (corresponding to a single cell battery)
  • the resistance value of the nth current limiting resistor RLn should be large enough, and 10 megaohms is selected in this embodiment.
  • the shutdown signal level shift module 2 is formed of low-cost devices such as triodes, resistors, and Zener diodes, which can greatly reduce costs.
  • the voltage transient suppression module 3 is connected between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack, for absorbing the glitch voltage and slowing down the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack The rate of change of the total voltage between the negative poles of the battery pack PK-.
  • the turn-off signal level shift module 2 also has a delay of hundreds of nanoseconds or even microseconds.
  • the voltage transient suppression module 3 can provide a stable total voltage between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack, so as to avoid a large current (eg 200A) between the two switches in the series that has been turned off during the delay.
  • the voltage transient suppression module 3 provides more time for all the protection switches connected in series between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack to achieve full turn-off, so as to provide more time for all protection switches connected in series with the positive electrode PK+ of the battery pack. All devices between the battery negative PK- and the battery negative PK- share the total voltage of the series cells (the voltage between the battery positive PK+ and the battery negative PK-) to provide a gentle voltage environment.
  • the voltage transient suppression module 3 includes a capacitor C, one end of the capacitor C is connected to the positive electrode PK+ of the battery pack, and the other end is connected to the negative electrode PK- of the battery pack.
  • the voltage transient suppression module 3 includes, but is not limited to, a series-parallel structure of capacitors and resistors, a series-parallel structure of capacitors and inductors, and is not limited to the circuit structure listed in this embodiment.
  • the circuit structure of the change rate of the total voltage between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack is applicable to the present invention.
  • the single battery protection module corresponding to this battery When charging, if a certain battery detects an abnormality, the single battery protection module corresponding to this battery will turn off the protection switch of the battery, and transmit the shutdown signal to other cells through the shutdown signal level shift module 2. All batteries in series, and turn off the protection switches of other batteries in series. At this time, all the protection switches of the series-connected batteries are in the off state. Under the action of the voltage transient suppression module 3, the total input charging voltage of the series-connected batteries will not be transient, and the total input charging voltage will be distributed to each series-connected battery. and the protection switch in the off state; after the voltage is distributed, the withstand voltage requirement of the protection switch is greatly reduced at this time, and switching devices with lower withstand voltage can be used. If the properties such as voltage and internal resistance of each series-connected battery are identical, and the properties of the series-connected protection switches are also identical, the total input charging voltage will be equally divided between each series-connected battery and its off-state protection switch.
  • the single battery protection module corresponding to the battery When discharging, if a certain battery detects an abnormality, the single battery protection module corresponding to the battery will turn off the protection switch of the battery, and transmit the shutdown signal to other cells through the shutdown signal level shift module 2. All batteries in series, and turn off the protection switches of other batteries in series. At this time, all the protection switches of the series-connected batteries are in the off state. Under the action of the voltage transient suppression module 3, the total output voltage of the series-connected batteries will not be transient, and the total output charging voltage will be distributed between each series-connected battery and It is on the protection switch in the off state until the total output voltage of the series battery decays to zero; after the voltage distribution, the withstand voltage requirement of the protection switch is greatly reduced, and switching devices with lower withstand voltage can be used. If the properties such as voltage and internal resistance of each series-connected battery are identical, and the properties of the series-connected charging switches are also identical, the total output charging voltage will be equally divided between each series-connected battery and its protection switch in the off state.
  • each battery module further includes a bypass diode, a voltage divider resistor and a bypass capacitor.
  • each battery module further includes a bypass diode connected in parallel at both ends of the series structure of the single-cell battery and the protection switch, so as to improve the safety redundancy of instantaneous current sudden change. Specifically, as shown in FIG.
  • the first bypass diode D1 is connected in parallel to both ends of the series structure of the first single-cell battery Bat1 and the first protection switch K1, and the anode of the first bypass diode D1 is connected to
  • the cathode of the second end of the first protection switch K1 is connected to the anode B1+ of the first single-cell battery Bat1; similarly, the anode of the second bypass diode D2 is connected to the second end of the second protection switch K2,
  • the cathode is connected to the anode B2+ of the second single-cell battery Bat2; and so on, the anode of the nth bypass diode Dn is connected to the second end of the nth protection switch Kn, and the cathode is connected to the nth single-cell battery Batn.
  • each bypass diode is used to realize the freewheeling discharge after the corresponding protection switch is turned off, thereby reducing the withstand voltage requirement for the protection switch of each battery; at the same time, the battery that does not have an abnormality can choose to continue to supply power, or can choose Turn off the protection switch.
  • the single battery protection module of the battery When discharging, if a certain battery detects an abnormality, the single battery protection module of the battery will turn off the protection switch of the battery.
  • the series loop has diodes connected in parallel to the positive ends of two adjacent batteries. The discharge current no longer passes through the turned-off battery and protection switch, but passes through the diode connected in parallel with the positive terminals of two adjacent batteries.
  • the voltage change across the turned-off protection switch will be less than The sum of the voltage of the single-cell battery and the forward voltage of the bypass diode (choose a diode with a suitable current, it can be guaranteed to be less than 10V at low cost), so the withstand voltage requirement is greatly reduced; that is, each series battery adds a parallel connection
  • a switching device with a lower withstand voltage can be used for the discharge switch of each series-connected battery; the diodes connected in parallel to the positive ends of two adjacent batteries must be selected to suit the actual current size of the application circuit The required diodes will not be repeated here.
  • each battery module further includes a voltage divider resistor connected in parallel to both ends of the protection switch.
  • a first voltage dividing resistor R1 is connected in parallel with both ends of the first protection switch K1
  • a second voltage dividing resistor R2 is connected in parallel with both ends of the second protection switch K2.
  • the piezoresistor Rn is connected in parallel with both ends of the nth protection switch Kn.
  • the total input and output voltages of the series-connected batteries can be equally distributed to each battery and each protection switch, so as to avoid the generation of floating nodes.
  • the size of the voltage dividing resistor is determined by the requirement of the self-discharge current of the series battery, which will not be repeated here.
  • each battery module further includes a bypass capacitor, which is used to suppress the induced electromotive force caused by the parasitic inductance formed by the long metal connection between the two batteries or the two battery packs.
  • the protection switch of the battery saves a huge voltage drop when it is turned off.
  • each bypass capacitor is connected in parallel with both ends of the protection switch. As shown in FIG. 4 , a first bypass capacitor C1 is connected in parallel with both ends of the first protection switch K1, and a second bypass capacitor C2 is connected in parallel with Both ends of the second protection switch k2, the nth bypass capacitor Cn is connected in parallel with both ends of the nth protection switch Kn.
  • each bypass capacitor is connected in parallel to both ends of the series structure of the single cell and the protection switch, that is, each bypass capacitor is connected in parallel to both ends of the corresponding bypass diode, which will not be repeated here.
  • each bypass capacitor adopts a ceramic capacitor of 1 ⁇ F to 10 ⁇ F.
  • capacitors of different capacities and types can be selected based on actual design requirements, which is not limited to this embodiment.
  • this embodiment provides a series battery protection circuit.
  • the protection switch is replaced by a discharge switch and a charge switch connected in series.
  • the turn-off signal of the discharge switch is It has its own independent discharge shutdown signal level shifting module 2a, and the charging switch shutdown signal also has its own independent charging shutdown signal level shifting module 2b.
  • the first charging switch K1a and the first discharging switch K1b in the first-stage battery module 11 are connected in series to the negative electrode B1- of the first single-cell battery Bat1, and the first charging switch K1a is connected to the negative electrode B1- of the first single-cell battery Bat1.
  • the positions of the first discharge switch K1b can be interchanged, which is not limited to this embodiment.
  • the second charging switch K2a and the second discharging switch K2b in the second stage battery module 12 replace the second protection switch K2, and the nth charging switch Kna and the nth discharging switch in the nth stage battery module 1n Knb replaces the nth protection switch Kn. And each turn-off signal is transmitted to the control terminal of each switch through a driving stage.
  • the turn-off signal of each charge switch is transmitted to the charge-off signal level shift module 2b, and is transmitted to other battery modules based on the charge-off signal level shift module 2b;
  • the shutdown signal is transmitted to the discharge shutdown signal level shift module 2a, and is transmitted to other battery modules based on the discharge shutdown signal level shift module 2a; the discharge shutdown signal level shift module 2a and the
  • the circuit structure of the charging shutdown signal level shifting module 2b is the same as that of the shutdown signal level shifting module 2 (each of the discharging shutdown signal level shifting module 2a and the charging shutdown signal level shifting module 2b is the same as that of the charging shutdown signal level shifting module 2b).
  • the device labels are in one-to-one correspondence with the turn-off signal level shift module 2, and are distinguished by suffixes a and b), which will not be repeated here.
  • the Darlington current amplifier 21 is replaced with an NPN triode, as shown in FIG. 5 , the emitter of the NPN triode is connected to the negative electrode PK- of the battery pack, and the base is connected to each transistor The second end of , the collector is connected to the corresponding battery module and is connected to the positive electrode PK+ of the battery pack via the second resistor (R_2, R_2a or R_2b).
  • this embodiment provides a series battery protection circuit, which is different from the third embodiment in that the triode is replaced with a MOS transistor. Specifically, each PNP transistor is replaced with a PMOS transistor, and each NPN transistor is replaced with an NMOS transistor, and the specific connection relationships are not described in detail here.
  • each protection switch, discharge switch and charging switch described in the present invention includes a plurality of switches in parallel, and the number of parallel switches is set based on the flowing current, which will not be repeated here.
  • the present invention equips each series battery with the same single cell Battery protection module and protection switch, when a certain battery is abnormally protected, when the battery protection switch of this section is turned off, the shutdown signal is transmitted to other series batteries through the shutdown signal level shift module 2, and the other series batteries are connected.
  • the protection switch turns off immediately. At this time, all the switches in the series-connected batteries are in the off state.
  • the total voltage of the n series-connected batteries will be distributed among the n identical batteries formed by the series-connected single battery and its off-state protection switch.
  • the maximum voltage fluctuation of a single battery is from 0V to 4.5V, that is, the working voltage of the protection switch is 8.4V, and the withstand voltage safety redundancy of more than 50% is superimposed, and the withstand voltage value of the protection switch of a single battery is set. It is enough to be 13V, which is far less than the withstand voltage value of the switching device of the existing solution 1.
  • the analysis shows that the use of 13V withstand voltage charge-discharge switching devices in each series battery can realize the protection of lithium-ion series batteries up to 420V.
  • the turn-off signal level shift module 2 has a time delay difference of hundreds of nanoseconds or even several microseconds to turn off all switches, and a large current turn-off will bring a glitch voltage and affect the reliability of the protection.
  • the voltage between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack is set.
  • a high-voltage large capacitor (voltage transient suppression module 3) is connected indirectly to suppress instantaneous voltage changes caused by short-circuit currents as large as several hundred amperes.
  • a large capacitor of 220 ⁇ F is connected in parallel between the positive electrode PK+ of the battery pack and the negative electrode PK- of the battery pack. As long as the time difference is 2 ⁇ s, the switching devices on all the series connected batteries are turned off, and 100 13V withstand voltages After the switch protection device (including the protection switch or the discharge switch and the charging switch connected in series) is connected with the single battery to form the same unit in series, the protection of the 400V high-voltage series battery can be realized.
  • the present invention provides a series battery protection circuit, comprising: several stages of battery modules connected in series between the positive pole of the battery pack and the negative pole of the battery pack, a shutdown signal level shift module and a voltage transient suppression module;
  • Each battery module includes a single-cell battery, a protection switch and a single-cell battery protection module; the single-cell battery is connected in series with the protection switch, and the single-cell battery protection module is based on the detection signal of the current battery module or the switch.
  • the output signal of the shutdown signal level shift module generates a shutdown signal, and controls the protection switch based on the shutdown signal to protect the current battery module;
  • the shutdown signal level shift module is connected to the battery modules at all levels , which is used to transmit the shutdown signal of any level of battery module to other levels of battery modules, so that the battery modules at all levels can take protection operations;
  • the voltage transient suppression module is connected to the positive electrode of the battery pack and all battery modules. between the negative poles of the battery pack, to absorb the burr voltage and slow down the change speed of the total voltage between the positive pole of the battery pack and the negative pole of the battery pack.
  • the present invention reliably realizes the function of protecting a high-voltage series-connected battery based on a lower-voltage charge-discharge switching device, and under the condition that the cost is close to that of the existing solution, the present invention not only protects the entire series-connected battery (or series-connected battery pack), but also protects the battery in series.
  • Each series-connected battery (or each series-connected battery pack) is protected, a protection function is added compared with the existing solution, and the safety performance of the series-connected battery (or series-connected battery pack) is greatly improved.
  • the present invention effectively overcomes various shortcomings in the prior art and has high industrial application value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种串联电池保护电路,包括:串联于电池组正极(PK+)和负极(PK-)之间的若干级电池模组(11,12,……1n),均包括单节电池(Bat1,Bat2,……batn)、保护开关(K1,K2,……Kn)及单节电池保护模块(111,121,……1n1);单节电池与保护开关(K1,K2,……Kn)串联,单节电池保护模块(111,121,……1n1)产生关断信号,并基于关断信号对当前电池模组(11,12,……1n)进行保护;关断信号电平位移模块(2),将任一级电池模组的关断信号传递给其他各级电池模组;电压瞬变抑制模块(3),连接于电池组正极(PK+)和负极(PK+)之间,用于吸收毛刺电压,并减缓电池组正极(PK+)和负极(PK+)之间总电压的变化速度。可靠实现基于较低耐压充放电开关器件保护较高电压串联电池的功能,既保护了串联电池整体,又保护了每节串联电池,安全性能高,成本低。

Description

串联电池保护电路 技术领域
本发明涉及集成电路设计领域,特别是涉及一种串联电池保护电路。
背景技术
随着节能减排,环保出行的大力推行,新能源汽车成为了大方向大趋势,全球都在致力于更加清洁环保的汽车研发,锂离子动力电池得到了前所未有的大发展。但,锂离子电池与生俱来的脆弱性给锂离子动力电池汽车带来了隐患,如何能实现更好地保护锂离子动力电池成为了若干工程师长期奋斗的目标。然而时至今日,串联锂离子电池或电池组保护进展不多,在成本和保护性能的提升上取折中,没有实质性的突破。
现有技术中提出一种串联电池保护方案一,如图1所示,包括n级串联的电池,各电池分别串联一保护开关器件(S1、S2……Sn),且每节电池自身都有自己的带有保护开关器件的单节电池保护模块。串联电池中若单节电池关断,关断的保护开关两侧的电压将承受来自于串联电池总输入输出的全部变动电压,要确保安全,每个保护开关器件必须选用能承受串联电池总输入输出电压的高耐压开关器件。假设13个三元锂电串联电池正常输出为48V,一旦发生短路时,串联在电池组里的某节电池保护开关器件先关断(由于芯片内置保护延迟时间的必然存在差异性,短路时串于电池中的每节电池的保护开关器件不会全部自动关断,较大几率是某个开关单独关断),基于电池两端电压不变的基本原理,断开的那个保护开关器件接高电压电池负端的节点会变负(定义电池负极端PK-为地电平),而接低电压电池正端的节点会变正,保护开关器件两端的压差将变为整个串联电池的输出电压,即此时保护开关器件两端的压差便是48V。出于耐压需求,每个串联电池的自身保护开关器件都将采用耐压超过48V的开关器件,如80V乃至100V耐压开关器件,且由于要串联十余个乃至数十个开关器件,80V乃至100V耐压开关器件的内阻还必须小(甚至小于10毫欧),以保证串联数十个后,内阻不至于太大。这样会导致电路中工作在48V的十余个乃至数十个保护开关器件累计成本非常高。另外,若要每节电池实现精准电流(+/-10%精度)保护,还需在每节串联电池中加入高精度大功率电流采样电阻(Rsns1、Rsns2……Rsnsn),如是400V/500A应用,则每节电池需要并联数十个高精度大功率电流采样电阻,合计100节电池,则需要数千个该高精度大功率电流采样电阻;而单颗高精度大功率电流采样电阻当下成本通常为近0.5元人民币,数千个高精度大功率电流采样电阻合计成本异常高,达到数千元。
为避免以上每节电池配一高压低阻抗开关器件导致成本过高,现在通常做法是串联电池 的每节电池自身不再有开关器件,每节电池也不再有自身单独的保护模块,退而求其次地在每节串联电池上使用热敏电阻(如:特斯拉)做粗略保护,或者干脆每节电池自身不再有任何保护,而是做统一合并保护。如图2所示,现有技术中提出的串联电池保护方案二在串联电池的负极端P-加一充电开关管S1和一放电开关管S2,异常时关断放电开关管S2和充电开关管S1进行保护,当某节电池充电过压或放电欠压时,该保护信号,经邻近的芯片一级一级传到与充电开关管S1、放电开关管S2直接相连的芯片,由这颗芯片去执行关断。以上方案放弃了每节串联电池的自身保护,避免使用数量众多的高压开关管,可大大降低成本。但是,本方案串联的若干电池之间发生短路大电流泄放(比如意外撞击导致金属导体短路在一节电池或多节串联电池的正负端,如图2所示)时,没有任何保护能力,即便关断了充电开关管S1和放电开关管S2也没有任何阻止大电流泄放的作用。另外,本方案限制了串联电池均衡电路的应用,每个串联电池放弃了其自身精准的电流保护,使得无法在电池之间进行如:2.0A或更大电流均衡电路的应用。因为一旦有稍大电流均衡电路的应用,就需要每个电池自身带有精准过流保护,以避免均衡电路失效引起的过流或短路给相关电池带来的损伤;同时,相关均衡电路连接线的异常短路都会需要每节串联电池有其自身精准的过流保护电路模块。而现有串联电池主流方案无法实时进行均衡,导致串联电池组返修频率过快,已是电池行业现在迫切需要解决的痛点。
综合以上两种方案分析,方案二有天生缺陷难以轻易弥补,但成本低;而方案一保护功能全,但使用若干低阻抗高压充放电开关器件,成本太高。因此,如何在确保串联电池的保护功能齐全的同时降低成本,已成为本领域技术人员亟待解决的问题之一。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种串联电池保护电路,用于解决现有技术中串联电池的保护功能与成本不能兼顾的问题。
为实现上述目的及其他相关目的,本发明提供一种串联电池保护电路,所述串联电池保护电路至少包括:
串联于电池组正极和电池组负极之间的若干级电池模组,关断信号电平位移模块及电压瞬变抑制模块;
各级电池模组均包括单节电池、保护开关及单节电池保护模块;所述单节电池与所述保护开关串联,所述单节电池保护模块基于当前电池模组的检测信号或所述关断信号电平位移模块的输出信号产生关断信号,并基于所述关断信号控制所述保护开关以对当前电池模组进 行保护;
所述关断信号电平位移模块连接各级电池模组,用于将任一级电池模组的关断信号传递给其他各级电池模组,以使各级电池模组采取保护操作;
所述电压瞬变抑制模块连接于所述电池组正极和所述电池组负极之间,用于吸收毛刺电压,并减缓所述电池组正极和所述电池组负极之间总电压的变化速度。
可选地,所述单节电池保护模块包括检测单元及逻辑处理单元;所述检测单元接收检测信号并产生相应的保护信号;所述逻辑处理单元连接所述检测单元及所述关断信号电平位移模块的输出端,基于所述保护信号或其他级电池模组的关断信号产生当前级电池模组的关断信号。
更可选地,所述检测单元包括欠压检测子单元、过压检测子单元、过温检测子单元、放电过流检测子单元、充电过流检测子单元中的一个或多个组合。
可选地,各电池模组还包括并联在所述单节电池与所述保护开关的串联结构两端的旁路二极管;所述旁路二极管的阳极连接所述保护开关,阴极连接所述单节电池。
可选地,各电池模组还包括并联在所述保护开关两端的分压电阻。
可选地,各电池模组还包括旁路电容,所述旁路电容并联在所述保护开关的两端,或所述旁路电容并联在所述单节电池与所述保护开关的串联结构两端。
可选地,所述关断信号电平位移模块包括第一电阻,第二电阻,达林顿电流放大器及与各电池模组一一对应的晶体管;各晶体管的第一端连接对应电池模组中单节电池的正极,第二端经由所述第一电阻连接所述电池组负极,控制端连接对应电池模组的关断信号;所述达林顿电流放大器的第一端连接对应电池模组并经由所述第二电阻连接所述电池组正极,第二端连接所述电池组负极,控制端连接各晶体管的第二端;其中,各晶体管为PNP三极管或PMOS管。
更可选地,所述关断信号电平位移模块还包括与各电池模组一一对应的限压单元,各限压单元均包括限流电阻及齐纳二极管;所述限流电阻的第一端连接所述达林顿电流放大器的第一端,第二端连接对应电池模组;所述齐纳二极管的阴极连接所述限流电阻的第二端,阳极连接对应电池模组中单节电池的负极。
更可选地,各晶体管的第一端及控制端分别经由一电阻连接对应端口。
更可选地,所述达林顿电流放大器替换为NPN三极管或NMOS管
可选地,所述电压瞬变抑制模块包括电容,或电容和电阻的串并联结构,或者电容和电感的串并联结构。
更可选地,所述保护开关替换为串联的放电开关及充电开关;所述关断信号电平位移模块替换为并联的放电关断信号电平位移模块及充电关断信号电平位移模块,所述放电关断信号电平位移模块接收任一级电池模组中所述放电开关的关断信号并传递给其他各级电池模组,所述充电关断信号电平位移模块接收任一级电池模组中所述充电开关的关断信号并传递给其他各级电池模组。
更可选地,各保护开关、放电开关及充电开关均包括多个并联的开关。
如上所述,本发明的串联电池保护电路,具有以下有益效果:
本发明的串联电池保护电路采用较低耐压充放电开关器件实现对较高电压串联电池的保护,既能保护串联电池整体,又能保护每节串联电池,同时,解决了串联电池间短路不能保护的问题,安全性能高;此外,本发明的串联电池保护电路采用低耐压的开关器件,成本大大降低。
附图说明
图1显示为现有技术中的串联电池保护方案一的电路结构示意图。
图2显示为现有技术中的串联电池保护方案二的电路结构示意图。
图3显示为本发明的串联电池保护电路的一种结构示意图。
图4显示为本发明的串联电池保护电路的另一种结构示意图。
图5显示为本发明的串联电池保护电路的又一种结构示意图。
图6显示为本发明的串联电池保护电路的再一种结构示意图。
元件标号说明
11~1n                 第一~第n级电池模组
111~1n1               第一~第n单节电池保护模块
111a                   检测单元
111b                   逻辑处理单元
2                      关断信号电平位移模块
2a                     放电关断信号电平位移模块
2b                     充电关断信号电平位移模块
21                     达林顿电流放大器
221~22n               第一~第n限压单元
3                      电压瞬变抑制模块
具体实施方式
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。
请参阅图3~图6。需要说明的是,本实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
如图3所示,本实施例提供一种串联电池保护电路,所述串联电池保护电路包括:
若干级电池模组,关断信号电平位移模块2及电压瞬变抑制模块3。
图3所示,各级电池模组串联于电池组正极PK+和电池组负极PK-之间。
具体地,在本实施例中,包括n级电池模组(n为大于等于2的自然数,在实际使用中,所述电池模组的数量不小于2级),分别记为第一级电池模组11、第二级电池模12…第n级电池模1n,各级电池模组依次串联。所述第一级电池模组11包括第一单节电池Bat1、第一保护开关K1及第一单节电池保护模块111。
更具体地,所述第一单节电池Bat1与所述第一保护开关K1串联;作为示例,所述第一单节电池Bat1的正极B1+作为所述第一级电池模组11的正极PK1+,所述第一保护开关K1的第一端连接于所述第一单节电池Bat1的负极B1-,所述第一保护开关K1的第二端作为所述第一级电池模组11的负极PK1-并连接所述电池组负极PK-。
更具体地,所述第一单节电池保护模块111基于所述第一级电池模组11的检测信号或所述关断信号电平位移模块2的输出信号产生第一关断信号,并基于所述第一关断信号控制所述第一保护开关K1关断或导通,以对所述第一电池模组11进行保护。作为示例,所述第一单节电池保护模块111包括检测单元111a及逻辑处理单元111b。所述检测单元111a接收检测信号并产生相应的保护信号,所述检测单元111a包括但不限于欠压检测子单元CMP1、过压检测子单元CMP2、过温检测子单元OT、过放电流检测子单元CMP3及过充电流检测子单元CMP4中的一个或多个组合;在本实施例中,所述欠压检测子单元CMP1连接所述第一单 节电池Bat1的正极B1+,将所述第一单节电池Bat1的正极电压与第一参考电压Vref1进行比较以判定所述第一单节电池Bat1是否欠压,并输出相应的欠压保护信号;所述过压检测子单元CMP2连接所述第一单节电池Bat1的正极B1+,将所述第一单节电池Bat1的正极电压与第二参考电压Vref2进行比较以判定所述第一单节电池Bat1是否过压,并输出相应的过压保护信号;所述过温检测子单元OT基于内部温度检测器件判定所述第一单节电池Bat1是否过温,并输出相应的过温保护信号;所述过放电流检测子单元CMP3连接所述第一单节电池Bat1的负极B1-,将所述第一单节电池Bat1的负极电流转变为感应电压与第三参考电压Vref3进行比较以判定所述第一单节电池Bat1是否放电电流过大,并输出相应的过流放电保护信号;所述过充电流检测子单元CMP4连接所述第一保护开关K1的第二端,将所述第一保护开关K1第二端电流转变为感应电压与第四参考电压Vref4进行比较以判定所述第一单节电池Bat1是否充电电流过大,并输出相应的过流充电保护信号。所述逻辑处理单元111b连接所述检测单元111a及所述关断信号电平位移模块2的输出端,基于各保护信号或其他级电池模组的关断信号产生所述第一级电池模组11的关断信号(第一关断信号)。
需要说明的是,所述检测单元111a中检测子单元的数量、类型及连接关系可基于实际需要进行设置,不以本实施例为限。所述第二级电池模组12的负极PK2-连接所述第一级电池模组11的正极PK1+,包括第二单节电池Bat2、第二保护开关K2及第二单节电池保护模块121。依次类推,所述第n级电池模组1n的负极PKn-连接前级的正极,所述第n级电池模组1n的正极PKn+连接所述电池组正极PK+,包括第n单节电池Batn、第n保护开关Kn及第n单节电池保护模块1n1。本实施例仅以所述第一级电池模组11为例做具体说明,各级电池模组的结构及原理相同,在此不一一赘述。
需要说明的是,本实施例的过放电流检测子单元CMP3及过充电流检测子单元CMP4采用申请人已授权的中国专利“一种充放电过流保护电路”(申请号201921942910.6)实现,无需添加高精度大功率电流采样电阻便可实现各单节电池自身的高精度充放电过流保护,大大节约了成本,从而进一步使本发明在接近现有方案成本的条件下,实现串联电池保护的优化和保护性能大幅提升,既保护了串联电池整体,又保护了每节电池。
如图3所示,所述关断信号电平位移模块2连接各级电池模组,用于将任一级电池模组的关断信号传递给其他各级电池模组,以使各级电池模组采取保护操作。
具体地,在本实施例中,所述关断信号电平位移模块2包括第一电阻R_1,第二电阻R_2,达林顿电流放大器21及与各电池模组一一对应的晶体管(第一晶体管Q1、第二晶体管Q2…第n晶体管Qn)。作为示例,各晶体管采用PNP三极管,在实际使用中,控制端接收 低电平时导通的晶体管均适用于本发明,包括但不限于三极管、MOS管,在此不一一赘述;所述第一晶体管Q1的集电极经由所述第一电阻R_1连接所述电池组负极PK-,基极连接所述第一关断信号,发射极连接所述第一单节电池Bat1的正极B1+;同理,所述第二晶体管Q1…所述第n晶体管Qn的集电极经由所述第一电阻R_1连接所述电池组负极PK-,基极分别连接对应级电池模组的关断信号,发射极分别连接对应单节电池的正极。所述达林顿电流放大器21的第一端连接对应电池模组,并经由所述第二电阻R_2连接所述电池组正极PK+,第二端连接所述电池组负极PK-,控制端连接各晶体管的第二端;作为示例,所述达林顿电流放大器21包括第一NPN三极管Q11及第二NPN三极管Q12,所述第一NPN三极管Q11的集电极与所述第二NPN三极管Q12的集电极相连并作为所述达林顿电流放大器21的第一端,所述第一NPN三极管Q11的基极作为所述达林顿电流放大器21的控制端,所述第一NPN三极管Q11的发射极连接所述第二NPN三极管Q12的基极,所述第二NPN三极管Q12的发射极连接所述电池组负极PK-。
作为本发明的另一种实现方式,各晶体管的第一端及控制端分别经由一电阻连接对应端口。在本实施例中,所述第一晶体管Q1的基极经由电阻R11连接所述第一级电池模组11的关断信号,发射极经由电阻R12连接所述第一单节电池Bat1的正极B1+;所述第二晶体管Q2的基极经由电阻R21连接所述第二级电池模组12的关断信号,发射极经由电阻R22连接所述第二单节电池Bat2的正极B2+;所述第n晶体管Qn的基极经由电阻Rn1连接所述第n级电池模组1n的关断信号,发射极经由电阻Rn2连接所述第n单节电池Batn的正极Bn+。
作为本发明的又一种实现方式,所述关断信号电平位移模块2还包括与各电池模组一一对应的限压单元,分别记为第一限压单元221、第二限压单元222…第n限压单元22n。所述第一限压单元221包括第一限流电阻RL1及第一齐纳二极管ZD1,所述第一限流电阻RL1的第一端连接所述达林顿电流放大器21的第一端,第二端连接所述第一级电池模组11的逻辑处理单元111b;所述第一齐纳二极管ZD1的阴极连接所述第一限流电阻RL1的第二端,阳极连接所述第一单节电池Bat1的负极B1-。所述第二限压单元222包括第二限流电阻RL2及第二齐纳二极管ZD2,连接于所述第二级电池模12与所述达林顿电流放大器21的第一端之间;依次类推,所述第n限压单元22n包括第n限流电阻RLn及第n齐纳二极管ZDn,连接于所述第n级电池模1n与所述达林顿电流放大器21的第一端之间;本实施例仅以所述第一限压单元221为例做具体说明,各级限压单元的结构及原理相同,在此不一一赘述。
具体地,若串联电池中某节电池发生异常,则对应单节电池保护模块输出关断信号(通常由高电平变为低电平)以关断其保护开关,同时所述关断信号电平位移模块2中对应晶体 管的基极电平被拉低,该晶体管导通,电流由该晶体管的发射极流入,经集电极流出到第一电阻R_1,当第一电阻R_1上的电压高于Vbe_Q11+Vbe_Q12(作为示例约为1.4V)时,达林顿电流放大器21由关断变为导通,将达林顿电流放大器21第一端(第一NPN三极管Q11及第二NPN三极管Q12的集电极)电压拉低(低至0.5V或更低),其他单节电池保护模块的强制关断输入引脚(所述达林顿电流放大器21与对应逻辑处理单元的连接端口)由正常高电平变为低电平,并对应产生其他各保护开关的关断信号,进而保护串联的各级电池模组。
同时,为了嵌制所述关断信号电平位移模块2输出到各级电池模组的电压相较于所处电池的电压不要过高和过低,使用限流电阻和齐纳二极管(作为示例,采用5V齐纳二极管)来实现电压限制,最高输入电压限制为VBn+5V(对应单节电池的负端电压VBn加上+5V),最低输入电压限制为VBn-0.7V(对应单节电池的负端电压VBn减去0.7V,若为第一节电池则最低输入电压限制为0伏);限流电阻限制流经嵌位齐纳二极管的电流,以400V电池应用为例,若发生异常,达林顿电流放大器21第一端的电压拉低到0.5V或更低,串联电池中最高级(第n级)单节电池的负端电压为396V(单节电池电压4.0V),所述第n限压单元22n中第n限流电阻RLn两端压差为396V-0.7V(齐纳二极管正向导通电压0.7V)=395.3V。为避免异常关断时电池自身放电电流过大,要求第n限流电阻RLn的阻值应足够大,在本实施例中选用10兆欧姆。当第n限流电阻RLn为10兆欧姆时,395.3V除以10兆欧姆=39.5μA;即电池异常时,处于关断状态下,串联电池最高电压电池的此处自放电为39.5μA。
需要说明的是,本实施例中,所述关断信号电平位移模块2采用三极管、电阻、齐纳二极管等低成本器件构成,可大大减小成本。
如图3所示,所述电压瞬变抑制模块3连接于所述电池组正极PK+和所述电池组负极PK-之间,用于吸收毛刺电压,并减缓所述电池组正极PK+和所述电池组负极PK-之间总电压的变化速度。
具体地,实际应用中,所有保护开关要关断,这中间存在时延,同时,关断信号电平位移模块2也存在数百纳秒乃至微秒级的时延。所述电压瞬变抑制模块3可为所述电池组正极PK+和所述电池组负极PK-之间提供稳定的总电压,避免时延期间大电流(如200A)在已关断的串联开关两侧产生巨大压差,辅助实现每个已关断的保护开关两侧电压不突变,且在第一个保护开关关断到最后一个保护开关关断的时间段中,电压瞬变抑制模块3的电压上升幅度小于开关器件耐压值与单节电池电压值的电压差值。所述电压瞬变抑制模块3给串联于所述电池组正极PK+和所述电池组负极PK-之间的所有保护开关提供更多的时间实现全部关断,为串联于所述电池组正极PK+和所述电池组负极PK-之间的所有器件均分串联电池的总 电压(所述电池组正极PK+和所述电池组负极PK-之间的电压)提供平缓的电压环境。
具体地,在本实施例中,所述电压瞬变抑制模块3包括电容C,所述电容C的一端连接所述电池组正极PK+,另一端连接所述电池组负极PK-。在实际使用中,所述电压瞬变抑制模块3包括但不限于电容和电阻的串并联结构,电容和电感的串并联结构,不限于本实施例列举的电路结构,任意可吸收毛刺电压并减缓所述电池组正极PK+和所述电池组负极PK-之间总电压的变化速度的电路结构均适用本发明。
本实施例的串联电池保护电路的工作原理如下:
充电时,若某一节电池检测到异常,该节电池对应的单节电池保护模块在关断该节电池的保护开关的同时,经关断信号电平位移模块2将关断信号传送给其他所有串联电池,并将其他串联电池的保护开关关断。此时串联电池的所有保护开关处于关断状态,在电压瞬变抑制模块3的作用下,该串联电池的总的输入充电电压不会瞬变,总的输入充电电压将分配在每个串联电池和其处于关断状态的保护开关上;电压分配后,此时保护开关的耐压要求被大大降低,可以使用耐压较低的开关器件。若每节串联电池电压内阻等属性完全相同,且串联的保护开关属性也完全相同,总的输入充电电压将均分在每个串联电池和其处于关断状态的保护开关上。
放电时,若某一节电池检测到异常,该节电池对应的单节电池保护模块在关断该节电池的保护开关的同时,经关断信号电平位移模块2将关断信号传送给其他所有串联电池,并将其他串联电池的保护开关关断。此时串联电池的所有保护开关处于关断状态,在电压瞬变抑制模块3的作用下,该串联电池的总的输出电压不会瞬变,总的输出充电电压将分配在每个串联电池和其处于关断状态的保护开关上,直至该串联电池的总的输出电压衰减为零;电压分配后,此时保护开关的耐压要求被大大缩小,可以使用耐压较低的开关器件。若每节串联电池电压内阻等属性完全相同,且串联的充电开关属性也完全相同,总的输出充电电压将均分在每个串联电池和其处于关断状态的保护开关上。
实施例二
如图4所示,本实施例提供一种串联电池保护电路,与实施例一的不同之处在于,各电池模组还包括旁路二极管、分压电阻及旁路电容。
作为本发明的一种实现方式,各电池模组还包括并联在所述单节电池与所述保护开关的串联结构两端的旁路二极管,以提升瞬间电流突变的安全冗余性。具体地,如图4所示,第一旁路二极管D1并联在所述第一单节电池Bat1与所述第一保护开关K1的串联结构两端, 所述第一旁路二极管D1的阳极连接所述第一保护开关K1的第二端,阴极连接所述第一单节电池Bat1的正极B1+;同理,第二旁路二极管D2的阳极连接所述第二保护开关K2的第二端,阴极连接所述第二单节电池Bat2的正极B2+;以此类推,第n旁路二极管Dn的阳极连接所述第n保护开关Kn的第二端,阴极连接所述第n单节电池Batn的正极Bn+。
具体地,各旁路二极管用于实现对应保护开关关断后的续流放电,从而降低对每节电池的保护开关的耐压要求;同时,未发生异常的电池可选择继续供电,也可选择关断保护开关。放电时,若某一节电池检测到异常,该节电池的单节电池保护模块将关断该节电池的保护开关,此时串联环路由于有了并联在相邻两个电池正端的二极管,放电电流不再经过该节已关断的电池和保护开关,而是经过此并联在两个相邻电池正端的二极管,由于此二极管的旁路作用,关断的保护开关两端电压变动将小于该单节电池电压与旁路二极管正向导通电压的和(选择合适电流的二极管,在低成本条件下便能保证小于10V),因此耐压要求大大降低;即,每个串联电池增加一并联在相邻两个串联电池正端的二极管后,可以使用耐压较低的开关器件用于每节串联电池的放电开关;并联在相邻两个电池正端的二极管须选择适合于应用电路实际电流大小要求的二极管,在此不一一赘述。
作为本发明的另一种实现方式,各电池模组还包括并联在所述保护开关两端的分压电阻。具体地,如图4所示,第一分压电阻R1并联在所述第一保护开关K1的两端,第二分压电阻R2并联在所述第二保护开关K2的两端,第n分压电阻Rn并联在所述第n保护开关Kn的两端。
具体地,各分压电阻使所有保护开关处于关断状态下时,能更好地实现均分串联电池的总输入输出电压到每节电池和每个保护开关上,避免浮空节点产生,所述分压电阻的大小由串联电池自放电电流大小要求来决定,在此不一一赘述。
作为本发明的又一种实现方式,各电池模组还包括旁路电容,用于抑制两个电池或两个电池组之间较长的金属连线形成的寄生电感带来的感应电动势导致该节电池的保护开关在关断时产生巨大压差。作为示例,各旁路电容并联在所述保护开关的两端,如图4所示,第一旁路电容C1并联在所述第一保护开关K1的两端,第二旁路电容C2并联在所述第二保护开关k2的两端,第n旁路电容Cn并联在所述第n保护开关Kn的两端。作为另一示例,所述旁路电容并联在所述单节电池与所述保护开关的串联结构两端,即各旁路电容并联在对应旁路二极管的两端,在此不一一赘述。在本实施例中,各旁路电容采用1μF~10μF的瓷片电容,在实际使用中可基于实际设计需要选择不同容量及类型的电容,不以本实施例为限。
实施例三
如图5所示,本实施例提供一种串联电池保护电路,与实施例二的不同之处在于,所述保护开关替换为串联的放电开关及充电开关,对应地,放电开关的关断信号有自己独立的放电关断信号电平位移模块2a,充电开关的关断信号也有自己独立的充电关断信号电平位移模块2b。
具体地,所述第一级电池模组11中第一充电开关K1a及第一放电开关K1b串联后连接于所述第一单节电池Bat1的负极B1-,所述第一充电开关K1a与所述第一放电开关K1b的位置可互换,不以本实施例为限。所述第二级电池模组12中第二充电开关K2a及第二放电开关K2b替换所述第二保护开关K2,所述第n级电池模组1n中第n充电开关Kna及第n放电开关Knb替换所述第n保护开关Kn。且各关断信号经由一驱动级传输至各开关的控制端。
具体地,对应地,各充电开关的关断信号传输至充电关断信号电平位移模块2b,并基于所述充电关断信号电平位移模块2b传输至其它级电池模组;各放电开关的关断信号传输至放电关断信号电平位移模块2a,并基于所述放电关断信号电平位移模块2a传输至其它级电池模组;所述放电关断信号电平位移模块2a及所述充电关断信号电平位移模块2b的电路结构与所述关断信号电平位移模块2相同(所述放电关断信号电平位移模块2a及所述充电关断信号电平位移模块2b中各器件标号与所述关断信号电平位移模块2一一对应,通过后缀a、b进行区分),在此不一一赘述。
作为本发明的另一种实现方式,所述达林顿电流放大器21替换为NPN三极管,如图5所示,所述NPN三极管的发射极连接所述电池组负极PK-,基极连接各晶体管的第二端,集电极连接对应电池模组并经由所述第二电阻(R_2、R_2a或R_2b)连接所述电池组正极PK+。
实施例四
如图6所示,本实施例提供一种串联电池保护电路,与实施例三的不同之处在于,三极管替换为MOS管。具体地,将各PNP三极管替换为PMOS管,将各NPN三极管替换为NMOS管,具体连接关系在此不一一赘述。
需要说明的是,作为示例,本发明所述的各保护开关、放电开关及充电开关均包括多个并联的开关,并联开关的数量基于流过的电流进行设置,在此不一一赘述。
基于串联电路中若有n个相同的串联器件,每个串联器件两端的电压将是整个串联电路电压的1/n的基本串联电路分压原理,本发明为每个串联电池配备相同的单节电池保护模块 及保护开关,当某节电池发生异常保护,在关断该节电池保护开关的同时,该关断信号经关断信号电平位移模块2传送给其他串联电池,并将其他串联电池的保护开关立即关断。此时,串联电池中所有开关处于关断状态,根据串联电路分压原理,n个串联电池的总电压将分配在由串联的单节电池和其处于关断状态的保护开关构成的n个相同单元上,每个该相同单元的两侧电压为串联电池总电压的1/n。举例说明,如100节三元锂离子串联电池合计370V到420V电压输出,全部开关关断后,此时合计有100个相同单元,单个单元分配到的电压为420V÷100=4.2V。考虑实际应用中,420V应用往往有420V感应电动势产生,即合计420+420=840V电压产生,此时均分在100个相同单元上的电压为:840÷100=8.4V。考虑单节电池的电压波动最大是从0V到4.5V,即保护开关的工作电压在8.4V,再叠加50%以上的耐压安全冗余量,单节电池的保护开关的耐压值设定为13V即可,远小于现有方案一的开关器件耐压值。以上基于所有保护开关能同时关断的情况,分析表明13V耐压充放电开关器件使用在每节串联电池中,便可实现对高达420V的锂离子串联电池的保护。实际应用中,关断信号电平位移模块2存在数百纳秒乃至数微秒的时间延迟差异,才能将所有开关关断,以及大电流关断会带来毛刺电压会影响保护的可靠性。
为避免关断信号电平位移模块2存在的时延差异在大电流应用时造成某节电池的保护开关两侧的巨大压差,在所述电池组正极PK+和所述电池组负极PK-之间接一高压大电容(电压瞬变抑制模块3),以抑制大至数百安培短路电流带来的瞬间电压变化。根据保护开关耐压值,高压大电容的电容值大小推算如下:假设应用电路电流极限充放电电流或者极限短路电流瞬间由1A增加到500A,关断信号电平位移模块2时延时间差异为2μs,每节电池保护模块的保护开关耐压值为13V,单节电池电压为4.2V,根据公式ΔI*t=C*ΔV则此高压大电容的容值C=ΔI*t/ΔV=(500A-1A)*2us/(13V-4.2V)=113.4μF。考虑电容值随环境温度引起的波动以及长时间使用会衰减等因素,预留100%冗余量计算,该高压大电容选值为220μF。当然,也可选用其他器件实现本发明抑制电压瞬变的功能,仍属于本专利权利范围。
在所述电池组正极PK+和所述电池组负极PK-之间并接220μF大电容,只要在2μs的时间差异内,使所有串联电池上的开关器件处于关断状态,由100个13V耐压开关保护器件(包括保护开关或串联的放电开关和充电开关)与单节电池构成相同单元串联后,便能实现400V高电压串联电池的保护。
综上所述,本发明提供一种串联电池保护电路,包括:串联于电池组正极和电池组负极 之间的若干级电池模组,关断信号电平位移模块及电压瞬变抑制模块;各级电池模组均包括单节电池、保护开关及单节电池保护模块;所述单节电池与所述保护开关串联,所述单节电池保护模块基于当前电池模组的检测信号或所述关断信号电平位移模块的输出信号产生关断信号,并基于所述关断信号控制所述保护开关以对当前电池模组进行保护;所述关断信号电平位移模块连接各级电池模组,用于将任一级电池模组的关断信号传递给其他各级电池模组,以使各级电池模组采取保护操作;所述电压瞬变抑制模块连接于所述电池组正极和所述电池组负极之间,用于吸收毛刺电压,并减缓所述电池组正极和所述电池组负极之间总电压的变化速度。本发明可靠实现基于较低耐压充放电开关器件保护较高电压串联电池的功能,且在与现有方案成本接近的条件下,本发明既保护了串联电池(或串联电池组)整体,又保护了每节串联电池(或每节串联电池组),相比现有方案增加了保护功能,大幅提升了串联电池(或串联电池组)的安全性能。同时,解决了现有主流保护方案中串联电池间短路不能保护的问题。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。

Claims (13)

  1. 一种串联电池保护电路,其特征在于,所述串联电池保护电路至少包括:
    串联于电池组正极和电池组负极之间的若干级电池模组,关断信号电平位移模块及电压瞬变抑制模块;
    各级电池模组均包括单节电池、保护开关及单节电池保护模块;所述单节电池与所述保护开关串联,所述单节电池保护模块基于当前电池模组的检测信号或所述关断信号电平位移模块的输出信号产生关断信号,并基于所述关断信号控制所述保护开关以对当前电池模组进行保护;
    所述关断信号电平位移模块连接各级电池模组,用于将任一级电池模组的关断信号传递给其他各级电池模组,以使各级电池模组采取保护操作;
    所述电压瞬变抑制模块连接于所述电池组正极和所述电池组负极之间,用于吸收毛刺电压,并减缓所述电池组正极和所述电池组负极之间总电压的变化速度。
  2. 根据权利要求1所述的串联电池保护电路,其特征在于:所述单节电池保护模块包括检测单元及逻辑处理单元;所述检测单元接收检测信号并产生相应的保护信号;所述逻辑处理单元连接所述检测单元及所述关断信号电平位移模块的输出端,基于所述保护信号或其他级电池模组的关断信号产生当前级电池模组的关断信号。
  3. 根据权利要求2所述的串联电池保护电路,其特征在于:所述检测单元包括欠压检测子单元、过压检测子单元、过温检测子单元、放电过流检测子单元、充电过流检测子单元中的一个或多个组合。
  4. 根据权利要求1所述的串联电池保护电路,其特征在于:各电池模组还包括并联在所述单节电池与所述保护开关的串联结构两端的旁路二极管;所述旁路二极管的阳极连接所述保护开关,阴极连接所述单节电池。
  5. 根据权利要求1所述的串联电池保护电路,其特征在于:各电池模组还包括并联在所述保护开关两端的分压电阻。
  6. 根据权利要求1所述的串联电池保护电路,其特征在于:各电池模组还包括旁路电容,所述旁路电容并联在所述保护开关的两端,或所述旁路电容并联在所述单节电池与所述保护开关的串联结构两端。
  7. 根据权利要求1所述的串联电池保护电路,其特征在于:所述关断信号电平位移模块包括第一电阻,第二电阻,达林顿电流放大器及与各电池模组一一对应的晶体管;各晶体管的第一端连接对应电池模组中单节电池的正极,第二端经由所述第一电阻连接所述电池组负极,控制端连接对应电池模组的关断信号;所述达林顿电流放大器的第一端连接对应电池模组并经由所述第二电阻连接所述电池组正极,第二端连接所述电池组负极,控制端连接各晶体管的第二端;其中,各晶体管为PNP三极管或PMOS管。
  8. 根据权利要求7所述的串联电池保护电路,其特征在于:所述关断信号电平位移模块还包括与各电池模组一一对应的限压单元,各限压单元均包括限流电阻及齐纳二极管;所述限流电阻的第一端连接所述达林顿电流放大器的第一端,第二端连接对应电池模组;所述齐纳二极管的阴极连接所述限流电阻的第二端,阳极连接对应电池模组中单节电池的负极。
  9. 根据权利要求7所述的串联电池保护电路,其特征在于:各晶体管的第一端及控制端分别经由一电阻连接对应端口。
  10. 根据权利要求7所述的串联电池保护电路,其特征在于:所述达林顿电流放大器替换为NPN三极管或NMOS管。
  11. 根据权利要求1所述的串联电池保护电路,其特征在于:所述电压瞬变抑制模块包括电容,或电容和电阻的串并联结构,或者电容和电感的串并联结构。
  12. 根据权利要求1~11任意一项所述的串联电池保护电路,其特征在于:所述保护开关替换为串联的放电开关及充电开关;所述关断信号电平位移模块替换为并联的放电关断信号电平位移模块及充电关断信号电平位移模块,所述放电关断信号电平位移模块接收任一级电池模组中所述放电开关的关断信号并传递给其他各级电池模组,所述充电关断信号电平位移模块接收任一级电池模组中所述充电开关的关断信号并传递给其他各级电池模组。
  13. 根据权利要求12所述的串联电池保护电路,其特征在于:各保护开关、放电开关及充 电开关均包括多个并联的开关。
PCT/CN2021/073572 2020-10-10 2021-01-25 串联电池保护电路 WO2022073317A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/132,959 US20230261485A1 (en) 2020-10-10 2023-04-10 Protection circuit for series-connected batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202022245921.8U CN213547135U (zh) 2020-10-10 2020-10-10 串联电池保护电路
CN202011078214.2A CN112186857A (zh) 2020-10-10 2020-10-10 串联电池保护电路
CN202011078214.2 2020-10-10
CN202022245921.8 2020-10-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/132,959 Continuation US20230261485A1 (en) 2020-10-10 2023-04-10 Protection circuit for series-connected batteries

Publications (1)

Publication Number Publication Date
WO2022073317A1 true WO2022073317A1 (zh) 2022-04-14

Family

ID=81126207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073572 WO2022073317A1 (zh) 2020-10-10 2021-01-25 串联电池保护电路

Country Status (2)

Country Link
US (1) US20230261485A1 (zh)
WO (1) WO2022073317A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116317036A (zh) * 2023-05-19 2023-06-23 惠州市乐亿通科技有限公司 电池***及电源装置
CN116400214A (zh) * 2023-06-07 2023-07-07 杭州华塑科技股份有限公司 一种开关故障检测***及检测方法
WO2023207867A1 (zh) * 2022-04-24 2023-11-02 刘鹏军 一种可独立充电的连接结构
EP4311054A1 (de) * 2022-07-21 2024-01-24 Siemens Energy Global GmbH & Co. KG Verfahren zum behandeln eines fehlers in einer hochspannungs-anordnung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115769455A (zh) * 2020-06-26 2023-03-07 松下知识产权经营株式会社 管理装置和电源***

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206250A (ja) * 2007-02-19 2008-09-04 Mitsubishi Electric Corp バッテリ装置の過電圧保護回路
CN101888097A (zh) * 2009-05-13 2010-11-17 山东大学威海分校 微功耗大容量锂离子动力电池组管理装置
CN103746346A (zh) * 2013-12-31 2014-04-23 江苏索尔新能源科技有限公司 一种多节锂电池的保护电路
CN108448679A (zh) * 2018-04-04 2018-08-24 中国科学院上海高等研究院 智能电池管理单元、电池放电过流自恢复***及自恢复方法
CN112186857A (zh) * 2020-10-10 2021-01-05 上海汇瑞半导体科技有限公司 串联电池保护电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206250A (ja) * 2007-02-19 2008-09-04 Mitsubishi Electric Corp バッテリ装置の過電圧保護回路
CN101888097A (zh) * 2009-05-13 2010-11-17 山东大学威海分校 微功耗大容量锂离子动力电池组管理装置
CN103746346A (zh) * 2013-12-31 2014-04-23 江苏索尔新能源科技有限公司 一种多节锂电池的保护电路
CN108448679A (zh) * 2018-04-04 2018-08-24 中国科学院上海高等研究院 智能电池管理单元、电池放电过流自恢复***及自恢复方法
CN112186857A (zh) * 2020-10-10 2021-01-05 上海汇瑞半导体科技有限公司 串联电池保护电路

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023207867A1 (zh) * 2022-04-24 2023-11-02 刘鹏军 一种可独立充电的连接结构
EP4311054A1 (de) * 2022-07-21 2024-01-24 Siemens Energy Global GmbH & Co. KG Verfahren zum behandeln eines fehlers in einer hochspannungs-anordnung
CN116317036A (zh) * 2023-05-19 2023-06-23 惠州市乐亿通科技有限公司 电池***及电源装置
CN116317036B (zh) * 2023-05-19 2023-08-29 惠州市乐亿通科技有限公司 电池***及电源装置
CN116400214A (zh) * 2023-06-07 2023-07-07 杭州华塑科技股份有限公司 一种开关故障检测***及检测方法
CN116400214B (zh) * 2023-06-07 2023-09-15 杭州华塑科技股份有限公司 一种开关故障检测***及检测方法

Also Published As

Publication number Publication date
US20230261485A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
WO2022073317A1 (zh) 串联电池保护电路
CN112186857A (zh) 串联电池保护电路
CN102684165B (zh) 一种多节锂电池充放电保护电路
CN108808780B (zh) 一种太阳能电池板用锂电池组电池管理***
CN201682417U (zh) 基于超级电容的电源保护电路
CN107204638A (zh) 一种电池保护电路
TW201103220A (en) Apparatus and method for managing plural secondary batteries
CN102195324A (zh) 电池保护芯片、电路及方法
CN203788025U (zh) 一种蓄电池充放电管理电路
CN106712200B (zh) 一种基于超级电容的汽车启动电源
CN100416973C (zh) 可调节的大功率锂离子车辆应急启动电源
CN102122812A (zh) 充电电池的过充电保护装置
CN103066648A (zh) 一种电池主动均衡电路
CN210273528U (zh) 一种空投用低温脉冲电池电路
CN201789042U (zh) 锂电池的均衡保护电路及锂电池
CN213547135U (zh) 串联电池保护电路
CN110611342A (zh) 一种空投用低温脉冲电池电路
CN211606124U (zh) 一种锂电池组均衡充放电保护电路
CN104184128A (zh) 电池放电保护方法和电路及灯具
CN106787089B (zh) 一种汽车启动电源的能量存储及释放方法
CN215580355U (zh) 电容保护电路、mcu控制的电容保护电路、电池放电电路及mcu控制的电池放电电路
CN202995527U (zh) 具有三重保护的防雷稳压源
CN101098074A (zh) 多节锂离子电池组保护电路
CN102780210A (zh) 电池组充放电保护器
CN112713635A (zh) 具有温度采集和保护功能的低串数锂电池电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21876840

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 05/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21876840

Country of ref document: EP

Kind code of ref document: A1