WO2022073242A1 - 结合生理信号的超声成像方法和电子设备 - Google Patents

结合生理信号的超声成像方法和电子设备 Download PDF

Info

Publication number
WO2022073242A1
WO2022073242A1 PCT/CN2020/120231 CN2020120231W WO2022073242A1 WO 2022073242 A1 WO2022073242 A1 WO 2022073242A1 CN 2020120231 W CN2020120231 W CN 2020120231W WO 2022073242 A1 WO2022073242 A1 WO 2022073242A1
Authority
WO
WIPO (PCT)
Prior art keywords
ultrasound
image
physiological signal
time
ultrasonic
Prior art date
Application number
PCT/CN2020/120231
Other languages
English (en)
French (fr)
Inventor
刘硕
陈玉鑫
朱建光
曾德俊
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/120231 priority Critical patent/WO2022073242A1/zh
Priority to CN202080104126.7A priority patent/CN116096299A/zh
Priority to CN202080103696.4A priority patent/CN116194048A/zh
Priority to PCT/CN2020/141223 priority patent/WO2022073306A1/zh
Publication of WO2022073242A1 publication Critical patent/WO2022073242A1/zh
Priority to US18/132,123 priority patent/US20230355216A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5284Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving retrospective matching to a physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/0205Simultaneously evaluating both cardiovascular conditions and different types of body conditions, e.g. heart and respiratory condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/46Ultrasonic, sonic or infrasonic diagnostic devices with special arrangements for interfacing with the operator or the patient
    • A61B8/461Displaying means of special interest
    • A61B8/463Displaying means of special interest characterised by displaying multiple images or images and diagnostic data on one display
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/488Diagnostic techniques involving Doppler signals

Definitions

  • the present application relates to the technical field of ultrasound imaging, and more particularly, to an ultrasound imaging method and electronic device combining physiological signals.
  • Critically ill patients have the characteristics of complex disease, changeable, interdisciplinary, high-tech equipment application, and humanistic ethical issues. It can be said that critical illness medicine is the product of the development and integration trend of medical sub-disciplines. Among the requirements and challenges of clinical thinking, the most prominent one is comprehensive thinking. That is to say, in severe cases, doctors need to face the pathophysiological indicators and parameters of different organs, different equipment, different methods, and different times, and conduct comprehensive analysis according to their own clinical experience and logical reasoning to judge the current pathophysiological state of the patient, and then analyze the pathophysiological indicators and parameters of different organs, different equipment, different methods, and different times. Make appropriate clinical decisions.
  • Volume management is one of the important contents of the treatment of critically ill patients, and the assessment of volume status and volume responsiveness is the core of volume management.
  • volume management users are required to combine ultrasound images and other physiological signals for comprehensive analysis.
  • the information of the ultrasound system and other monitoring equipment are displayed on their respective screens, and doctors need to manually export, align and analyze the respective information manually, which is time-consuming and labor-intensive, and is inconvenient for clinical research.
  • a first aspect of the embodiments of the present application provides an ultrasound imaging method combined with physiological signals, the method comprising:
  • the ultrasound image and the physiological signal after timing alignment are displayed on the same display interface.
  • a second aspect of the embodiments of the present application provides an ultrasound imaging method combined with physiological signals, the method comprising:
  • a third aspect of the embodiments of the present application provides an ultrasonic imaging method combined with physiological signals, the method is used in an electronic device, and the electronic device is a monitoring device or a third-party device other than the ultrasonic imaging system and the monitoring device;
  • the method includes:
  • the ultrasound data and the physiological signal are displayed on the same display interface of the electronic device.
  • a fourth aspect of an embodiment of the present application provides an electronic device, the electronic device includes a memory, a processor, and a display, the memory stores a computer program executed by the processor, and the computer program is executed by the The processor runs the following steps:
  • the display is used for displaying the ultrasound image and the physiological signal after timing alignment on the same display interface.
  • a fifth aspect of an embodiment of the present application provides an electronic device, the electronic device includes a memory, a processor, and a display, and the memory stores a computer program executed by the processor, and the computer program is executed by the The processor runs the following steps:
  • the display is used for displaying the comprehensive analysis result.
  • a sixth aspect of the embodiments of the present application provides an electronic device, where the electronic device is a monitoring device or a third-party device other than the ultrasound imaging system and the monitoring device, the electronic device includes a memory, a processor, and a display, and The memory stores a computer program executed by the processor, and the computer program executes the following steps when executed by the processor:
  • the display is used for displaying the ultrasound data and the physiological signal on the same display interface.
  • the ultrasonic imaging method and electronic device combining physiological signals align the ultrasonic images and other physiological signals in time sequence and display them on the same display interface, so as to facilitate comprehensive analysis of the two.
  • FIG. 1 shows a schematic block diagram of an ultrasound imaging system according to an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of an ultrasound imaging method combined with physiological signals according to an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a time stamp-based timing alignment method according to an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a timing alignment method based on data transmission time according to an embodiment of the present application
  • FIG. 5 shows a schematic diagram of a timing alignment method based on a preset physiological state according to an embodiment of the present application
  • 6A shows a schematic diagram of displaying an M-mode ultrasound image and a respiration signal after timing alignment on the same display interface according to an embodiment of the present application
  • 6B shows a schematic diagram of displaying a spectral Doppler PW ultrasound image and a respiratory signal after timing alignment on the same display interface according to an embodiment of the present application
  • FIG. 7 shows a schematic flowchart of an ultrasound imaging method combined with physiological signals according to another embodiment of the present application.
  • Fig. 8 shows a schematic flowchart of an ultrasound imaging method combined with physiological signals according to yet another embodiment of the present application
  • FIG. 9 shows a schematic block diagram of an electronic device according to an embodiment of the present application.
  • FIG. 1 shows a schematic structural block diagram of an ultrasound imaging system 100 according to an embodiment of the present application.
  • the ultrasound imaging system 100 includes an ultrasound probe 110 , a transmitting circuit 112 , a receiving circuit 114 , a processor 116 and a display 118 . Further, the ultrasound imaging system may further include a transmit/receive selection switch 120 and a beam forming module 122, and the transmit circuit 112 and the reception circuit 114 may be connected to the ultrasound probe 110 through the transmit/receive selection switch 120.
  • the ultrasonic probe 110 includes a plurality of transducer array elements, and the plurality of transducer array elements can be arranged in a row to form a linear array, or arranged in a two-dimensional matrix to form an area array, and a plurality of transducer array elements can also form a convex array. .
  • the transducer is used to transmit ultrasonic waves according to the excitation electrical signal, or convert the received ultrasonic waves into electrical signals, so each array element can be used to realize the mutual conversion of electrical pulse signals and ultrasonic waves, so as to realize the tissue emission to the target area of the measured object.
  • Ultrasound can also be used to receive ultrasound echoes reflected back by tissue.
  • transducers are used for transmitting ultrasonic waves and which transducers are used for receiving ultrasonic waves, or which transducers are used for transmitting ultrasonic waves or receiving ultrasonic waves in time slots through the transmitting sequence and receiving sequence.
  • the transducers participating in ultrasonic emission can be excited by electrical signals at the same time, so as to emit ultrasonic waves at the same time; or, the transducers participating in ultrasonic beam emission can also be excited by several electrical signals with a certain time interval, so as to continuously emit a certain time interval. Ultrasound.
  • the transmit circuit 112 transmits the delayed-focused transmit pulses to the ultrasound probe 110 through the transmit/receive selection switch 120 .
  • the ultrasonic probe 110 is stimulated by the transmission pulse to transmit an ultrasonic beam to the tissue in the target area of the object to be measured, and after a certain delay, receives the ultrasonic echo with tissue information reflected from the tissue in the target area, and sends the ultrasonic wave back to the target area.
  • the waves are reconverted into electrical signals.
  • the receiving circuit 114 receives the electrical signals converted and generated by the ultrasonic probe 110, obtains ultrasonic echo signals, and sends these ultrasonic echo signals to the beamforming module 122, and the beamforming module 122 performs focus delay, weighting and channeling on the ultrasonic echo data Summation, etc., are then sent to processor 116.
  • the processor 116 performs signal detection, signal enhancement, data conversion, logarithmic compression, etc. on the ultrasonic echo signal to form an ultrasonic image.
  • the ultrasound images obtained by the processor 116 may be displayed on the display 118 or stored in the memory 124 .
  • the processor 116 may be implemented as software, hardware, firmware, or any combination thereof, and may use single or multiple application specific integrated circuits (ASICs), single or multiple general-purpose integrated circuits, single or multiple microprocessors, single or multiple programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices. Also, the processor 116 may control other components in the ultrasound imaging system 100 to perform corresponding steps of the methods in the various embodiments in this specification.
  • ASICs application specific integrated circuits
  • the processor 116 may control other components in the ultrasound imaging system 100 to perform corresponding steps of the methods in the various embodiments in this specification.
  • the display 118 is connected to the processor 116, and the display 118 may be a touch display screen, a liquid crystal display screen, etc.; or, the display 118 may be an independent display such as a liquid crystal display, a TV set, etc. independent of the ultrasound imaging system 100; or, the display 118 may It is the display screen of electronic devices such as smartphones, tablets, etc.
  • the number of displays 118 may be one or more.
  • the display 118 may include a main screen and a touch screen, where the main screen is mainly used for displaying ultrasound images, and the touch screen is mainly used for human-computer interaction.
  • Display 118 may display ultrasound images obtained by processor 116 .
  • the display 118 can also provide the user with a graphical interface for human-computer interaction while displaying the ultrasound image, set one or more controlled objects on the graphical interface, and provide the user with the human-computer interaction device to input operating instructions to control these objects.
  • the controlled object so as to perform the corresponding control operation.
  • an icon is displayed on the graphical interface, and the icon can be operated by using a human-computer interaction device to perform a specific function, such as drawing a region of interest frame on the ultrasound image.
  • the ultrasound imaging system 100 may also include other human-computer interaction devices other than the display 118, which are connected to the processor 116.
  • the processor 116 may be connected to the human-computer interaction device through an external input/output port.
  • the output port can be a wireless communication module, a wired communication module, or a combination of the two.
  • External input/output ports may also be implemented based on USB, bus protocols such as CAN, and/or wired network protocols, and the like.
  • the human-computer interaction device may include an input device for detecting the user's input information, for example, the input information may be a control instruction for the ultrasonic transmission/reception sequence, or a point, line or frame drawn on the ultrasonic image. Manipulate input instructions, or may also include other instruction types.
  • Input devices may include one or a combination of keyboards, mice, scroll wheels, trackballs, mobile input devices (eg, mobile devices with touch display screens, cell phones, etc.), multifunction knobs, and the like.
  • the human-computer interaction apparatus may also include an output device such as a printer.
  • the ultrasound imaging system 100 may also include a memory 124 for storing instructions executed by the processor, storing received ultrasound echoes, storing ultrasound images, and the like.
  • the memory may be a flash memory card, solid state memory, hard disk, or the like. It may be volatile memory and/or non-volatile memory, removable memory and/or non-removable memory, and the like.
  • the components included in the ultrasound imaging system 100 shown in FIG. 1 are only illustrative, and may include more or less components. This application is not limited to this.
  • FIG. 2 is a schematic flowchart of an ultrasound imaging method 200 combined with physiological signals according to an embodiment of the present application.
  • the ultrasound imaging method 200 combined with physiological signals includes the following steps:
  • step S210 acquire the ultrasonic image of the measured object acquired by the ultrasonic imaging system at the first time
  • step S220 acquiring the physiological signal of the measured object collected by the first monitoring device at a second time, the first time and the second time at least partially overlapping;
  • step S230 time-series alignment is performed on the ultrasound image and the physiological signal
  • step S240 the ultrasound image and the physiological signal after time series alignment are displayed on the same display interface.
  • the ultrasound imaging method 200 combined with physiological signals may be applied to an ultrasound imaging system, for example, the ultrasound imaging system 100 described with reference to FIG. 1 .
  • step S210 may be implemented as acquiring an ultrasound image within a first time by the ultrasound imaging system;
  • step S220 may be implemented as acquiring, by the ultrasound imaging system, a first monitoring device at least partially coincident with the first time Physiological signals of the same measured object collected in two time periods.
  • the first monitoring device may be a ventilator, the physiological signal collected by the first monitoring device may be a breathing signal, and the breathing signal may include at least one of the following: a pressure signal, a flow signal, a flow rate signal, and a carbon dioxide partial pressure signal, respectively.
  • the physiological signal collected by the first monitoring device may also include any type of physiological signal of the measured object, such as blood pressure signal, blood oxygen signal, carbon dioxide signal, electrocardiogram signal, etc.
  • the first monitoring device may be used for Other monitoring equipment that collects the above physiological signals.
  • the ultrasound imaging method 200 combined with physiological signals in this embodiment of the present application can also be applied to a second monitoring device, where the second monitoring device is the same as or different from the first monitoring device that collects physiological signals.
  • the second monitoring device can either be the ventilator itself, that is, the second monitoring device is the same as the first monitoring device; or, the second monitoring device can also be a monitor, an anesthesia machine , central station or bedside information system, etc., that is, the second monitoring device is different from the first monitoring device, and the first monitoring device synchronizes the collected physiological signals to the second monitoring device.
  • step S210 can be implemented as the second monitoring device to obtain the ultrasonic image acquired by the ultrasonic imaging system within the first time; if the second monitoring device is the same as the first monitoring device, step S220 can be implemented as The second monitoring device collects the physiological signal at a second time that at least partially coincides with the first time; if the second monitoring device is different from the first monitoring device, step S220 may be implemented for the second monitoring device to acquire the first monitoring device Physiological signals acquired during the second time.
  • the ultrasound imaging method 200 combined with physiological signals in this embodiment of the present application can also be applied to third-party devices other than the ultrasound imaging system and the second monitoring device.
  • the third-party device is not limited to the monitoring device, for example, a third-party device Can be implemented as a computer or workstation, etc.
  • step S210 may be implemented by the third-party device to acquire the ultrasonic image acquired by the ultrasound imaging system within the first time;
  • step S220 may be implemented by the third-party device to acquire the first monitoring device at the same time as the first monitoring device.
  • Physiological signals of the same measured object collected during at least a partially overlapping second time When implemented in third-party devices, users can more conveniently view ultrasound images and physiological signals without being limited to viewing on ultrasound imaging systems or monitoring equipment.
  • the ultrasound image and the physiological signal are transmitted between the devices through a network connection, and the method further includes establishing a network connection between the devices to receive the ultrasound image data packet containing the ultrasound image through the network connection or connect through the network connection.
  • a physiological signal data packet containing a physiological signal is received.
  • the network connection may be a wired network connection or a wireless network connection.
  • devices that require a wireless network connection such as an ultrasound imaging system and a second monitoring device, or an ultrasound imaging system, a second monitoring device, and a third-party device
  • Wi-Fi Wireless connection between devices can also be achieved in other ways, such as near-field communication methods such as Bluetooth and infrared, or wireless network connection through 4G, 5G, or other mobile communication network connection methods.
  • establishing a network connection includes establishing a first network connection between the ultrasound imaging system and the second monitoring device, and the ultrasound imaging system receives information from the second monitoring device through the first network connection including The physiological signal data packet of the physiological signal.
  • establishing a network connection includes establishing a second network connection between the ultrasound imaging system and the second monitoring device, and the second monitoring device receives an ultrasound image from the ultrasound imaging system through the second network connection. ultrasound image data package.
  • the third-party device When the method is applied to a third-party device, the third-party device establishes a third network connection with the ultrasound imaging system, and establishes a fourth network connection with the second monitoring device; the third-party device connects from the ultrasound system via the third network connection
  • the imaging system receives ultrasound image data packets including ultrasound images, and receives physiological signal data packets including physiological signals from the second monitoring device via the fourth network connection.
  • the method before establishing the network connection, the method further includes performing security verification on the network connection, so as to ensure the information security of the measured object.
  • the second monitoring device receives the verification information sent by the ultrasound imaging system, or the ultrasound system receives the verification information sent by the second monitoring device, and responds to the verification information sent by the second monitoring device.
  • the verification information is verified, and if the verification is passed, the first network connection is established.
  • the second monitoring device When a second network connection is established between the ultrasound imaging system and the second monitoring device, the second monitoring device receives the verification information sent by the ultrasound imaging system, or the ultrasound system receives the verification information sent by the second monitoring device, and performs verification on all the verification information sent by the ultrasound imaging system. The verification information is verified, and if the verification is passed, the second network connection is established.
  • the ultrasound imaging system receives the verification information sent by the third-party device, or the third-party device receives the ultrasound imaging system.
  • the verification information sent, and the verification information is verified, if the verification is passed, the third network connection is established; the third-party device receives the verification information sent by the second monitoring device, or the second monitoring device receives the The verification information sent by the third-party device is verified, and if the verification is passed, the fourth network connection is established.
  • the acquired ultrasound image may be at least one of a one-dimensional ultrasound image, a two-dimensional ultrasound image or a three-dimensional ultrasound image.
  • the one-dimensional ultrasound image may be a one-dimensional ultrasound static image or a one-dimensional ultrasound video image;
  • the two-dimensional ultrasound image may be a two-dimensional ultrasound static image or a two-dimensional ultrasound video image;
  • the three-dimensional ultrasound image may be a three-dimensional ultrasound static image or a three-dimensional ultrasound image video image.
  • the physiological signals acquired in step S220 may include static physiological signals or dynamic physiological signals.
  • the one-dimensional ultrasound image may be an M-mode (Time-motion mode) ultrasound image, which is used to represent the longitudinal movement of the tissue sampled on the one-dimensional sampling line over time.
  • the horizontal axis of the M-mode ultrasound image represents time, and the vertical axis represents motion amplitude.
  • the M-mode ultrasound image may be obtained based on a B-mode ultrasound image acquired in B-mode. After the ultrasound imaging system acquires the B-mode ultrasound image of the measured object in the B-mode, it enters the M-mode and collects the M-mode sampling line drawn by the user on the B-mode ultrasound image, or according to the M-mode sampling line drawn automatically.
  • the M-mode ultrasound image recording the sampling information at the same position and different time points on the sampling line within a certain period of time, and outputting it as an image, that is, an M-mode ultrasound image.
  • the one-dimensional ultrasound image may also be a spectral Doppler PW image, etc., which is not specifically limited here.
  • the two-dimensional ultrasound image may be a B-mode ultrasound image, that is, a two-dimensional gray-scale ultrasound image.
  • the transmitting circuit 112 sends an appropriately delayed electrical signal to each transducer array element in the ultrasonic probe 110, and the transducer converts the electrical signal into ultrasonic waves and transmits it to the target area of the measured object;
  • the receiving circuit 114 controls the ultrasonic probe 110 to receive the ultrasonic echoes of the ultrasonic waves returned from the target area and convert them into electrical signals to obtain a first ultrasonic echo signal, which is then transmitted to the beamforming circuit 122 for beamforming processing after signal amplification, analog-to-digital conversion, etc.
  • the two-dimensional ultrasound image may also be a D-type ultrasound image, that is, a Doppler color ultrasound image, which calculates the blood flow signal according to the ultrasound echo signal, and superimposes the blood flow signal on the corresponding B-type ultrasound signal in real time after color coding. obtained from ultrasound images.
  • the two-dimensional ultrasound image may also be an elasticity image.
  • the two-dimensional ultrasound video image may be a dynamic ultrasound image composed of multiple frames of continuous two-dimensional ultrasound static images.
  • the three-dimensional ultrasound image may be a three-dimensional image obtained by three-dimensional reconstruction of the two-dimensional ultrasound image.
  • the 3D ultrasound image can be acquired by a volume probe, or reconstructed by a convex array or linear array probe with a magnetic navigation device based on 3D ultrasound reconstruction technology, or scanned by an area array probe.
  • Three-dimensional ultrasound video images can also be called four-dimensional ultrasound images, which add time dimension parameters on the basis of three-dimensional ultrasound images, that is, within a period of time, continuously scan multiple volumes of three-dimensional images, that is, a four-dimensional image, that is, a segment. 3D ultrasound video image.
  • the ultrasound image and the physiological signal are time-aligned.
  • the time series alignment includes aligning multiple time points one by one. If the ultrasound image does not contain the time dimension and the physiological signal includes the time dimension, for example, if the ultrasound image is a static B-mode ultrasound image and the physiological signal is a respiratory signal, the time series alignment includes extracting the time point corresponding to the static B-mode ultrasound image in the physiological signal .
  • the ultrasound images and physiological signals may be time-series aligned based on time stamps.
  • the second monitoring device sends a physiological signal data packet containing the physiological signal to the ultrasound imaging system, the physiological signal data packet further includes a timestamp, and the ultrasound imaging system receives When the physiological signal data packet is reached, the timestamp in it is parsed, and the physiological signal is time-aligned with the ultrasound image according to the timestamp.
  • the first monitoring device may add a time stamp at each characteristic position of the physiological signal, the characteristic position including, for example, a peak, a trough or a zero point position of the physiological signal.
  • the ultrasound imaging system sends an ultrasound image data packet containing the ultrasound image to the second monitoring device
  • the ultrasound image data packet also includes a timestamp
  • the second monitoring device receives the data packet.
  • the ultrasound image data packet is obtained, the timestamp in it is parsed, and the ultrasound image and the physiological signal are time-aligned according to the timestamp.
  • the third-party device respectively receives the ultrasonic image data packets sent by the ultrasonic imaging system and the physiological signal data packets sent by the second monitoring device, parses the time stamps therein, and compares the ultrasonic images with the time stamps according to the time stamps.
  • Physiological signals are time-aligned.
  • the ultrasound image and the physiological signal may be time-series aligned according to the data transmission time, that is, the time sequence of the physiological signal may be aligned according to the transmission time of the ultrasound image data packet. Delay, or delay the timing of the ultrasound images according to the transmission time of the physiological signal data packets.
  • the ultrasound imaging system receives physiological signal data packets from a second monitoring device through a network connection.
  • the second monitoring device presets the transmission time of the physiological signal data packet as T0 according to the network state.
  • the ultrasonic imaging system parses the physiological signal data packet, it obtains the physiological signal and the transmission time T0, and delays the ultrasonic image by T0, so as to realize the physiological signal and the transmission time T0. Timing alignment of ultrasound images.
  • both the ultrasound image and the physiological signal are collected in real time, and the second monitoring device collects the physiological signal and sends the physiological signal to the ultrasound imaging system in real time.
  • the second monitoring device receives ultrasound image data packets from the ultrasound imaging system through a network connection.
  • the ultrasound imaging system presets the transmission time of the ultrasound image data packet according to the network state, and when the second monitoring device parses the ultrasound image data packet, the physiological signal is also delayed by a corresponding time, thereby realizing the timing alignment of the physiological signal and the ultrasound image.
  • the third-party device obtains the first transmission time of the ultrasound image data packet, obtains the second transmission time of the physiological signal data packet, delays the ultrasound image by the second transmission time, and converts the physiological signal to the second transmission time. The first transmission time is delayed, so as to realize the timing alignment of the physiological signal and the ultrasound image.
  • the ultrasound images and physiological signals may be time-aligned based on preset physiological states. Specifically, identifying a first feature representing a preset physiological state in the physiological signal, and identifying a second feature representing the same preset physiological state in the ultrasound image; comparing the first moment corresponding to the first feature in the physiological signal with the second feature representing the same preset physiological state. The two features are aligned at the corresponding second moment in the ultrasonic image, so as to realize the time-series alignment of the ultrasonic image and the physiological signal.
  • the preset physiological state may be a physiological state that can be simultaneously represented by a physiological signal and an ultrasound image. Referring to FIG.
  • the ultrasound imaging system uses an algorithm to identify the first feature in the physiological signal that characterizes the end of inspiration and the ultrasound image respectively.
  • the first moment corresponding to the first feature and the second moment corresponding to the second feature are aligned, so as to realize the time sequence alignment of the ultrasound image and the physiological signal.
  • the ultrasound images that are time-series aligned with the physiological signals in step S230 may include the above at least two types of ultrasound images, and the at least two types of ultrasound images are time-series aligned with the physiological signals respectively.
  • the at least two types of ultrasound images include, but are not limited to, B-mode ultrasound images and M-mode ultrasound images acquired based on the B-mode ultrasound images.
  • step S240 the ultrasound image and the physiological signal after time series alignment are displayed on the same display interface. Users can conduct comprehensive analysis based on the time-aligned ultrasound images and physiological signals to more accurately determine the pathophysiological state of the measured object.
  • displaying the time-aligned ultrasound image and the physiological signal on the same display interface includes: displaying the sequence-aligned one-dimensional ultrasound static image.
  • Waveforms and Waveforms of Static Physiological Signals may share the same coordinate axis representing time, so that the amplitude of the one-dimensional ultrasound data corresponds to the amplitude of the static physiological signal in time.
  • One-dimensional ultrasound still images and static physiological signals can also be displayed in different coordinate systems, but the time scales on the axes representing time of the two coordinate systems are displayed aligned.
  • FIG. 6A shows a schematic diagram of displaying time-aligned M-mode ultrasound images and respiratory signals on the same display interface.
  • the respiration signal is superimposed on the M-mode ultrasound image, which facilitates the comparative analysis of the two.
  • FIG. 6B shows a schematic diagram of displaying a spectral Doppler PW ultrasound image and a respiratory signal after time series alignment on the same display interface.
  • the Doppler PW ultrasound image and the respiratory signal share the same coordinate axis representing time, wherein the vertical axis of the PW ultrasound image is the velocity value, the horizontal axis is time, and the horizontal axis of the respiratory signal is time, The vertical axis is the amplitude of the respiration signal.
  • displaying the time-aligned ultrasonic image and the physiological signal on the same display interface includes: displaying the waveform of the time-aligned one-dimensional ultrasonic dynamic image. Curves and waveforms of dynamic physiological signals.
  • One-dimensional ultrasound dynamic images and dynamic physiological signals are displayed in a similar way to static images, except that the dynamic curve is continuously refreshed according to the preset frame rate. The new data presents a waveform that moves over time.
  • displaying the time-aligned ultrasonic image and the physiological signal on the same display interface may be implemented as: displaying a two-dimensional ultrasonic static image or a three-dimensional ultrasonic static image , Simultaneously display the waveform curve of the physiological signal, and mark the time point corresponding to the two-dimensional ultrasonic static image or the three-dimensional ultrasonic static image on the waveform curve of the physiological signal.
  • the time point corresponding to the two-dimensional ultrasound static image or the three-dimensional ultrasound static image can be marked on the waveform of the physiological signal with a graph or symbol.
  • displaying the time-aligned ultrasound image and the physiological signal on the same display interface may be implemented as: displaying a two-dimensional ultrasound video image or the three-dimensional ultrasound image
  • the video image and the waveform curve of the physiological signal are simultaneously displayed, and the time point corresponding to the two-dimensional ultrasound video image or the three-dimensional ultrasound video image displayed at the current moment is marked on the waveform curve of the physiological signal.
  • two-dimensional ultrasound video images or three-dimensional ultrasound video images are dynamic images that change with time, and each frame of image corresponds to a time point, the two-dimensional ultrasound video displayed at the current moment can be marked with graphics or symbols on the waveform of physiological signals.
  • the time point corresponding to the image or 3D ultrasound video image, the figure or symbol moves with time on the waveform curve.
  • the physiological signal may be represented by a numerical value, and then displaying the time-aligned ultrasound image and the physiological signal on the same display interface may be implemented as: simultaneously displaying the ultrasound image and the time corresponding to the ultrasound image displayed at the current moment Click on the value of the physiological signal. If the ultrasound image is a static ultrasound image, the static ultrasound image and the corresponding value of the physiological signal at a single time point are displayed simultaneously. If the ultrasonic image is a dynamic ultrasonic image, the dynamic ultrasonic image is displayed simultaneously, and the value of the physiological signal at the time point corresponding to the current frame of ultrasonic image is displayed while each frame of ultrasonic image is displayed.
  • the above-described ways of displaying time-aligned ultrasound images and physiological signals can also be combined with each other.
  • the waveform curve of the one-dimensional ultrasound image and the waveform curve of the physiological signal after time series alignment, as well as the two-dimensional ultrasound image or the three-dimensional ultrasound image can be simultaneously displayed on the display interface, and the current waveform curve of the physiological signal is marked with a graph or symbol.
  • the ultrasound imaging method 200 combined with physiological signals further includes: comprehensively analyzing the ultrasound image and the physiological signals to obtain a comprehensive analysis result; and displaying the comprehensive analysis result.
  • comprehensive analysis of the ultrasound image and the physiological signal please refer to the related description of the ultrasound imaging method 700 of the physiological signal below.
  • the ultrasound imaging method 200 combining physiological signals aligns the ultrasound images and other physiological signals in time sequence and displays them on the same display interface, so as to facilitate comprehensive analysis of the two.
  • FIG. 7 is a schematic flowchart of an ultrasound imaging method 700 combined with physiological signals according to an embodiment of the present application. As shown in FIG. 7 , the ultrasound imaging method 700 combined with physiological signals includes the following steps:
  • step S710 an ultrasound image of the measured object acquired by the ultrasound imaging system is acquired.
  • step S720 the physiological signal of the measured object collected by the first monitoring device is acquired.
  • step S730 comprehensively analyze the physiological signal and the time phase of the ultrasonic image, and/or perform comprehensive analysis on the physiological signal and the quantitative index of the ultrasonic image to obtain a comprehensive analysis result.
  • step S740 the comprehensive analysis result is displayed.
  • step S740 is further included, displaying the ultrasound image, the physiological signal and the comprehensive analysis result on the same display interface.
  • the ultrasound imaging method 700 combined with physiological signals can be used in an ultrasound imaging system, a second monitoring device or in addition to the ultrasound imaging system and the second monitoring device
  • the second monitoring device is the same as or different from the first monitoring device used to collect the physiological signals of the measured object.
  • the first monitoring device may be a ventilator
  • the physiological signal collected by the first monitoring device may be a breathing signal.
  • the breathing signal includes at least one of the following: a pressure signal, a flow signal, a flow rate signal, and a carbon dioxide partial pressure signal.
  • the physiological signal may also include any other type of physiological signal of the measured object, such as at least one of carbon dioxide signal, blood oxygen signal, blood pressure signal and electrocardiogram signal.
  • Steps S710 and S720 are similar to steps S210 and S220 of the ultrasound imaging method 200 combined with physiological signals.
  • steps S710 and S720 are similar to steps S210 and S220 of the ultrasound imaging method 200 combined with physiological signals.
  • steps S710 and S720 are similar to steps S210 and S220 of the ultrasound imaging method 200 combined with physiological signals.
  • steps S710 and S720 are similar to steps S210 and S220 of the ultrasound imaging method 200 combined with physiological signals.
  • step S730 comprehensive analysis is performed on the ultrasound image and the physiological signal to obtain a comprehensive analysis result.
  • quantitative parameters can be obtained respectively according to the ultrasound image and the physiological signal, and comprehensive analysis of the two parameters can be performed to obtain a comprehensive analysis result.
  • comprehensively analyzing the ultrasound image and the physiological signal includes: comprehensively analyzing the time phase of the physiological signal and the ultrasound image.
  • the time phase of the physiological signal and the ultrasound image can be the time phase of each indication of the cardiopulmonary interaction.
  • comprehensively analyzing the time phase of the physiological signal and the ultrasound image includes: determining the first time corresponding to the peak ventilation pressure in the physiological signal ; determining the second time corresponding to the peak value of the inner diameter of the inferior vena cava in the ultrasound image; calculating the time difference between the first time and the second time, and the time difference can reflect the cardiopulmonary interaction of the measured object.
  • the comprehensive analysis of the ultrasonic image and the physiological signal includes: comprehensive analysis of the quantitative index of the physiological signal and the ultrasonic image.
  • the quantitative index may be a quantitative index of various indicators of cardiopulmonary interaction, and the quantitative index may be used to assist diagnosis.
  • the comprehensive analysis of the quantitative indicators of the physiological signal and the ultrasound image may include at least one of the following: determining the breathing frequency according to the breathing signal, determining the displacement of the diaphragm according to the ultrasound image, and calculating the ratio between the breathing frequency and the displacement of the diaphragm as the comprehensive Analyzing the results, the ratio between the breathing frequency and the displacement of the diaphragm can also help the doctor determine whether the ventilator can be removed.
  • the ventilator can be removed, such as The threshold may be 1.3 times/(minute*mm); and, determining the pleural displacement according to the ultrasound image, determining the ventilation pressure according to the breathing signal, and calculating the ratio between the pleural displacement and the ventilation pressure as the comprehensive analysis result.
  • the combined analysis may also be a combined analysis of other parameters determined from the ultrasound images and physiological signals.
  • step S740 the ultrasound image, the physiological signal and the comprehensive analysis result obtained in step S730 are displayed on the same display interface.
  • the ultrasound image may be displayed in time sequence alignment with the physiological signal, for details, please refer to the above related description.
  • the ultrasound imaging method 700 combined with physiological signals comprehensively analyzes the ultrasound images and other physiological signals, and displays the ultrasound images, the physiological signals and the comprehensive analysis results on the same display interface, which is convenient for users Determine the physiological state of the test subject.
  • FIG. 8 is a schematic flowchart of an ultrasound imaging method 800 combined with physiological signals according to an embodiment of the present application.
  • the ultrasound imaging method 800 combined with physiological signals includes the following steps:
  • step S810 acquire the ultrasound data of the measured object collected by the ultrasound imaging system
  • step S820 obtain the physiological signal of the measured object collected by the monitoring device
  • step S830 the ultrasound data and the physiological signal are displayed on the same display interface of the electronic device.
  • the ultrasound data collected by the ultrasound imaging system and the physiological signals collected by the monitoring device are acquired by the monitoring device or a third-party device other than the monitoring device or the ultrasound imaging system, and the Both are displayed on the same display interface, allowing users to view ultrasound data and physiological signals simultaneously on monitoring equipment or third-party equipment without going through the ultrasound imaging system.
  • step S810 when the method is applied to a monitoring device, step S810 may be implemented by the monitoring device to acquire ultrasound data collected by the ultrasonic imaging system; step S820 may be implemented by the monitoring device itself to acquire the physiological signal of the measured object.
  • step S810 When the method is applied to a third-party device, step S810 may be implemented by the third-party device to acquire ultrasound data collected by the ultrasound imaging system; step S820 may be implemented by the third-party device to acquire physiological signals collected by the monitoring device.
  • monitoring equipment includes but is not limited to ventilator, monitor, anesthesia machine, central station or bedside information system, third-party equipment such as computer or workstation, etc.; ultrasound data can be ultrasound images, or can be quantitative Ultrasound data.
  • the monitoring device or the third-party device acquires the ultrasound data and the physiological signals, and displays the two on the same display interface, so that the user can use the monitoring device or a third-party device to display the ultrasound data and physiological signals.
  • Third-party devices view ultrasound data and physiological signals simultaneously.
  • an embodiment of the present application further provides an electronic device 900 , and the electronic device 900 can be used to implement the above-mentioned ultrasonic imaging method 200 combined with physiological signals, ultrasonic imaging method 700 combined with physiological signals, or a combination of
  • the electronic device 900 includes a memory 910 , a processor 920 and a display 930 , and the memory 910 stores a computer program executed by the processor 920 .
  • the processor 920 can be implemented by software, hardware, firmware or any combination thereof, and can use circuits, single or multiple application-specific integrated circuits, single or multiple general-purpose integrated circuits, single or multiple microprocessors, single or more programmable logic devices, or any combination of the foregoing circuits and/or devices, or other suitable circuits or devices, and the processor 920 may control other components in the electronic device 900 to perform the desired functions.
  • the memory 910 may include one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • the volatile memory may include, for example, random access memory and/or cache memory or the like.
  • the non-volatile memory may include, for example, read-only memory, hard disk, flash memory, and the like.
  • One or more computer program instructions may be stored on the computer-readable storage medium, and the processor 920 may execute the program instructions to implement the model training method and/or various other desired functions in the embodiments of the present invention.
  • Various application programs and various data such as various data used and/or generated by the application program, etc. may also be stored in the computer-readable storage medium.
  • the electronic device 900 may be implemented as an ultrasound imaging system (eg, the ultrasound imaging system 100 described with reference to FIG. 1 ), a monitoring device, or a third-party device, when applicable to implementing the above-described ultrasound imaging method 200 incorporating physiological signals.
  • the monitoring equipment includes, but is not limited to, a ventilator, a monitor, an anesthesia machine, a central station or a bedside information system
  • the third-party equipment is, for example, a computer or a workstation.
  • the computer program stored on the memory 910 executes the following steps when executed by the processor 920: acquiring the ultrasound image of the measured object acquired by the ultrasound imaging system at the first time; acquiring the ultrasound image acquired by the first monitoring device at the second time The physiological signal of the measured object, the first time and the second time are at least partially coincident; the ultrasonic image and the physiological signal are time-aligned; the display is used for displaying on the same display interface The ultrasound image and the physiological signal after timing alignment.
  • the electronic device 900 can also be implemented as an ultrasound imaging system, a monitoring device, or a third-party device when it can be used to implement the above-described ultrasound imaging method 700 incorporating physiological signals.
  • the computer program stored on the memory 910 executes the following steps when executed by the processor 920: acquiring the ultrasound image of the measured object acquired by the ultrasound imaging system at the first time; acquiring the ultrasound image acquired by the first monitoring device at the second time the physiological signal of the measured object; comprehensively analyze the ultrasonic image and the physiological signal to obtain a comprehensive analysis result; the display is used to display the ultrasonic image, the physiological signal on the same display interface and the comprehensive analysis results.
  • the electronic device 900 can be implemented as a monitoring device or a third-party device other than the ultrasound imaging system and the monitoring device.
  • the computer program when executed by the processor 920, performs the following steps: acquiring the ultrasound data of the measured object collected by the ultrasonic imaging system; acquiring the physiological signals of the measured object collected by the monitoring device; the display is used to display the same The ultrasound data and the physiological signal are displayed on the interface.
  • the ultrasound imaging method and ultrasound imaging system combined with physiological signals display ultrasound images and other physiological signals on the same display interface, which facilitates comprehensive analysis of the two.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or May be integrated into another device, or some features may be omitted, or not implemented.
  • the various component embodiments of the present application may be implemented in hardware, or in software modules running on one or more processors, or in a combination thereof.
  • a microprocessor or a digital signal processor (DSP) may be used in practice to implement some or all functions of some modules according to the embodiments of the present application.
  • DSP digital signal processor
  • the present application may also be implemented as a program of apparatus (eg, computer programs and computer program products) for performing part or all of the methods described herein.
  • Such a program implementing the present application may be stored on a computer-readable medium, or may be in the form of one or more signals. Such signals may be downloaded from Internet sites, or provided on carrier signals, or in any other form.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Public Health (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Cardiology (AREA)
  • Pulmonology (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)

Abstract

一种结合生理信号的超声成像方法(200)和电子设备,方法包括:获取由超声成像***(100)在第一时间采集的被测对象的超声图像(S210);获取由第一监护设备在第二时间采集的被测对象的生理信号,第一时间与第二时间至少部分重合(S220);将超声图像与生理信号进行时序对齐(S230);在同一显示界面上显示时序对齐后的超声图像和生理信号(S240)。将超声图像和其他生理信号进行时序对齐后在同一显示界面上进行显示,便于对二者进行综合分析。

Description

结合生理信号的超声成像方法和电子设备
说明书
技术领域
本申请涉及超声成像技术领域,更具体地涉及一种结合生理信号的超声成像方法和电子设备。
背景技术
危重病患者具有病情复杂、变化多端、跨多学科、高科技设备应用、涉及人文伦理问题等特点,可以说危重病医学是医学分支学科发展整合趋势的产物,这种整合同时决定了对ICU医生临床思维的要求和挑战,其中最突出的就是综合性思维。即在重症场景下,医生需要面对不同器官、不同设备、不同手段、不同时间的病理生理指标、参数,根据自己的临床经验和逻辑推理来进行综合分析,判断病人当前的病理生理状态,并做出合适的临床决策。
容量管理是重症患者治疗的重要内容之一,其中容量状态和容量反应性评估则是容量管理的核心。在进行容量管理时,需要用户结合超声图像和其他生理信号来综合分析。然而,目前,超声***与其他监护设备的信息均显示在各自的屏幕上,医生需要手动将各自的信息导出、手动对齐并进行相关的分析,费时费力,不便于临床科研的进行。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本申请实施例第一方面提供了一种结合生理信号的超声成像方法,所述方法包括:
获取由超声成像***在第一时间采集的被测对象的超声图像;
获取由第一监护设备在第二时间采集的所述被测对象的生理信号,所述第一时间与所述第二时间至少部分重合;
将所述超声图像与所述生理信号进行时序对齐;
在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号。
本申请实施例第二方面提供了一种结合生理信号的超声成像方法,所述方法包括:
获取由超声成像***采集的被测对象的超声图像;
获取由第一监护设备采集的所述被测对象的生理信号;
对所述生理信号和所述超声图像的时间相位进行综合分析,和/或对所述生理信号和所述超声图像的量化指标进行综合分析以获得综合分析结果;
显示所述综合分析结果。
本申请实施例第三方面提供了一种结合生理信号的超声成像方法,所述方法用于电子设备,所述电子设备为监护设备或除超声成像***和所述监护设备以外的第三方设备;所述方法包括:
获取由超声成像***采集的被测对象的超声数据;
获取由监护设备采集的所述被测对象的生理信号;
在所述电子设备的同一显示界面上显示所述超声数据和所述生理信号。
本申请实施例第四方面提供了一种电子设备,所述电子设备包括存储器、处理器和显示器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
获取由超声成像***在第一时间采集的被测对象的超声图像;
获取由第一监护设备在第二时间采集的所述被测对象的生理信号,所述第一时间与所述第二时间至少部分重合;
将所述超声图像与所述生理信号进行时序对齐;
所述显示器用于在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号。
本申请实施例第五方面提供了一种电子设备,所述电子设备包括存储器、处理器和显示器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
获取由超声成像***在第一时间采集的被测对象的超声图像;
获取由第一监护设备在第二时间采集的所述被测对象的生理信号;
对所述生理信号和所述超声图像的时间相位进行综合分析,和/或对所述生理信号和所述超声图像的量化指标进行综合分析以获得综合分析结果;
所述显示器用于显示所述综合分析结果。
本申请实施例第六方面提供了一种电子设备,所述电子设备为监护设备或除超声成像***和所述监护设备以外的第三方设备,所述电子设备包括存储器、处理器和显示器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
获取由超声成像***采集的被测对象的超声数据;
获取由监护设备采集的所述被测对象的生理信号;
所述显示器用于在同一显示界面上显示所述超声数据和所述生理信号。
根据本申请实施例的结合生理信号的超声成像方法和电子设备将超声图像和其他生理信号进行时序对齐后在同一显示界面上进行显示,便于对二者进行综合分析。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
在附图中:
图1示出根据本申请一实施例的超声成像***的示意性框图;
图2示出根据本申请一实施例的结合生理信号的超声成像方法的示意性流程图;
图3示出根据本申请一实施例的基于时间戳的时序对齐方法的示意图;
图4示出根据本申请一实施例的基于数据传输时间的时序对齐方法的示意图;
图5示出根据本申请一实施例的基于预设生理状态的时序对齐方法的示意图;
图6A示出根据本申请一实施例的在同一显示界面上显示时序对齐后的M型超声图像和呼吸信号的示意图;
图6B示出根据本申请一实施例的在同一显示界面上显示时序对齐后的频谱多普勒PW超声图像和呼吸信号的示意图;
图7示出根据本申请另一实施例的结合生理信号的超声成像方法的示意性流程图;
图8示出根据本申请又一实施例的结合生理信号的超声成像方法的示意 性流程图;
图9示出根据本申请一实施例的电子设备的示意性框图。
具体实施方式
为了使得本申请的目的、技术方案和优点更为明显,下面将参照附图详细描述根据本申请的示例实施例。显然,所描述的实施例仅仅是本申请的一部分实施例,而不是本申请的全部实施例,应理解,本申请不受这里描述的示例实施例的限制。基于本申请中描述的本申请实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本申请的保护范围之内。
在下文的描述中,给出了大量具体的细节以便提供对本申请更为彻底的理解。然而,对于本领域技术人员而言显而易见的是,本申请可以无需一个或多个这些细节而得以实施。在其他的例子中,为了避免与本申请发生混淆,对于本领域公知的一些技术特征未进行描述。
应当理解的是,本申请能够以不同形式实施,而不应当解释为局限于这里提出的实施例。相反地,提供这些实施例将使公开彻底和完全,并且将本申请的范围完全地传递给本领域技术人员。
在此使用的术语的目的仅在于描述具体实施例并且不作为本申请的限制。在此使用时,单数形式的“一”、“一个”和“所述/该”也意图包括复数形式,除非上下文清楚指出另外的方式。还应明白术语“组成”和/或“包括”,当在该说明书中使用时,确定所述特征、整数、步骤、操作、元件和/或部件的存在,但不排除一个或更多其它的特征、整数、步骤、操作、元件、部件和/或组的存在或添加。在此使用时,术语“和/或”包括相关所列项目的任何及所有组合。
为了彻底理解本申请,将在下列的描述中提出详细的结构,以便阐释本申请提出的技术方案。本申请的可选实施例详细描述如下,然而除了这些详细描述外,本申请还可以具有其他实施方式。
下面,首先参考图1描述根据本申请一个实施例的超声成像***,图1示出了根据本申请实施例的超声成像***100的示意性结构框图。
如图1所示,超声成像***100包括超声探头110、发射电路112、接收电路114、处理器116和显示器118。进一步地,超声成像***还可以包括发 射/接收选择开关120和波束合成模块122,发射电路112和接收电路114可以通过发射/接收选择开关120与超声探头110连接。
超声探头110包括多个换能器阵元,多个换能器阵元可以排列成一排构成线阵,或排布成二维矩阵构成面阵,多个换能器阵元也可以构成凸阵列。换能器用于根据激励电信号发射超声波,或将接收的超声波转换为电信号,因此每个阵元可用于实现电脉冲信号和超声波的相互转换,从而实现向被测对象的目标区域的组织发射超声波、也可用于接收经组织反射回的超声波回波。在进行超声检测时,可通过发射序列和接收序列控制哪些换能器用于发射超声波,哪些换能器用于接收超声波,或者控制换能器分时隙用于发射超声波或接收超声波的回波。参与超声波发射的换能器可以同时被电信号激励,从而同时发射超声波;或者,参与超声波束发射的换能器也可以被具有一定时间间隔的若干电信号激励,从而持续发射具有一定时间间隔的超声波。
在超声成像过程中,发射电路112将经过延迟聚焦的发射脉冲通过发射/接收选择开关120发送到超声探头110。超声探头110受发射脉冲的激励而向被测对象的目标区域的组织发射超声波束,经一定延时后接收从目标区域的组织反射回来的带有组织信息的超声回波,并将此超声回波重新转换为电信号。接收电路114接收超声探头110转换生成的电信号,获得超声回波信号,并将这些超声回波信号送入波束合成模块122,波束合成模块122对超声回波数据进行聚焦延时、加权和通道求和等处理,然后送入处理器116。处理器116对超声回波信号进行信号检测、信号增强、数据转换、对数压缩等处理形成超声图像。处理器116得到的超声图像可以在显示器118上显示,也可以存储于存储器124中。
可选地,处理器116可以实现为软件、硬件、固件或其任意组合,并且可以使用单个或多个专用集成电路(Application Specific Integrated Circuit,ASIC)、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件。并且,处理器116可以控制所述超声成像***100中的其它组件以执行本说明书中的各个实施例中的方法的相应步骤。
显示器118与处理器116连接,显示器118可以为触摸显示屏、液晶显示屏等;或者,显示器118可以为独立于超声成像***100之外的液晶显示器、电视机等独立显示器;或者,显示器118可以是智能手机、平板电脑等 电子设备的显示屏,等等。其中,显示器118的数量可以为一个或多个。例如,显示器118可以包括主屏和触摸屏,主屏主要用于显示超声图像,触摸屏主要用于人机交互。
显示器118可以显示处理器116得到的超声图像。此外,显示器118在显示超声图像的同时还可以提供给用户进行人机交互的图形界面,在图形界面上设置一个或多个被控对象,提供给用户利用人机交互装置输入操作指令来控制这些被控对象,从而执行相应的控制操作。例如,在图形界面上显示图标,利用人机交互装置可以对该图标进行操作,用来执行特定的功能,例如在超声图像上绘制出感兴趣区域框等。
可选地,超声成像***100还可以包括显示器118之外的其他人机交互装置,其与处理器116连接,例如,处理器116可以通过外部输入/输出端口与人机交互装置连接,外部输入/输出端口可以是无线通信模块,也可以是有线通信模块,或者两者的组合。外部输入/输出端口也可基于USB、如CAN等总线协议、和/或有线网络协议等来实现。
其中,人机交互装置可以包括输入设备,用于检测用户的输入信息,该输入信息例如可以是对超声波发射/接收时序的控制指令,可以是在超声图像上绘制出点、线或框等的操作输入指令,或者还可以包括其他指令类型。输入设备可以包括键盘、鼠标、滚轮、轨迹球、移动式输入设备(例如带触摸显示屏的移动设备、手机等等)、多功能旋钮等等其中之一或者多个的结合。人机交互装置还可以包括诸如打印机之类的输出设备。
超声成像***100还可以包括存储器124,用于存储处理器执行的指令、存储接收到的超声回波、存储超声图像,等等。存储器可以为闪存卡、固态存储器、硬盘等。其可以为易失性存储器和/或非易失性存储器,为可移除存储器和/或不可移除存储器等。
应理解,图1所示的超声成像***100所包括的部件只是示意性的,其可以包括更多或更少的部件。本申请对此不限定。
下面,将参考图2描述根据本申请一个实施例的结合生理信号的超声成像方法。图2是本申请实施例的结合生理信号的超声成像方法200的一个示意性流程图。
如图2所示,本申请实施例的结合生理信号的超声成像方法200包括如 下步骤:
在步骤S210,获取由超声成像***在第一时间采集的被测对象的超声图像;
在步骤S220,获取由第一监护设备在第二时间采集的所述被测对象的生理信号,所述第一时间与所述第二时间至少部分重合;
在步骤S230,将所述超声图像与所述生理信号进行时序对齐;
在步骤S240,在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号。
本申请实施例的结合生理信号的超声成像方法200可以应用于超声成像***,例如参照图1描述的超声成像***100。当应用于超声成像***时,步骤S210可以实现为由超声成像***在第一时间内采集超声图像;步骤S220可以实现为由超声成像***获取第一监护设备在与第一时间至少部分重合的第二时间内采集的同一个被测对象的生理信号。示例性地,第一监护设备可以是呼吸机,第一监护设备采集的生理信号可以是呼吸信号,呼吸信号可以包括以下至少一种:压力信号、流量信号、流速信号和二氧化碳分压信号,分别表示压力、流量、流速和二氧化碳分压随时间的变化。除了呼吸信号以外,第一监护设备采集的生理信号还可以包括被测对象的任何类型的生理信号,例如血压信号、血氧信号、二氧化碳信号、心电信号等,第一监护设备可以是用于采集上述生理信号的其他监护设备。
本申请实施例的结合生理信号的超声成像方法200也可以应用于第二监护设备,第二监护设备与采集生理信号的第一监护设备相同或不同。例如,当第一监护设备为呼吸机时,则第二监护设备既可以是呼吸机本身,即第二监护设备与第一监护设备相同;或者,第二监护设备也可以是监护仪、麻醉机、中央站或床旁信息***等,即第二监护设备与第一监护设备不同,第一监护设备将其采集的生理信号同步到第二监护设备。
当应用于第二监护设备时,步骤S210可以实现为第二监护设备获取超声成像***在第一时间内采集的超声图像;若第二监护设备与第一监护设备相同,则步骤S220可以实现为第二监护设备在与第一时间至少部分重合的第二时间内采集所述生理信号;若第二监护设备与第一监护设备不同,则步骤S220可以实现为第二监护设备获取第一监护设备在第二时间内采集的生理信号。
除此之外,本申请实施例的结合生理信号的超声成像方法200还可以应 用于除超声成像***和第二监护设备以外的第三方设备,第三方设备不限于监护设备,例如,第三方设备可以实现为计算机或工作站等。当应用于第三方设备时,步骤S210可以实现为由第三方设备获取由超声成像***在第一时间内采集的超声图像;步骤S220实现为由第三方设备获取第一监护设备在与第一时间至少部分重合的第二时间内采集的同一个被测对象的生理信号。当实现于第三方设备时,用户可以更加便捷地查看超声图像和生理信号,而无需局限于在超声成像***或监护设备上进行查看。
进一步地,超声图像和生理信号通过网络连接在设备之间传输,所述方法还包括在设备间建立网络连接,以通过所述网络连接接收包含超声图像的超声图像数据包或通过所述网络连接接收包含生理信号的生理信号数据包。其中,网络连接可以是有线网络连接或无线网络连接。例如,需要无线网络连接的设备(例如超声成像***和第二监护设备,或者超声成像***、第二监护设备和第三方设备)可以处于同一无线网络热点覆盖范围下,从而通过WiFi实现设备间的无线网络连接。设备间也可以通过其他方式实现无线连接,例如通过蓝牙、红外等近场通信方式或通过4G、5G或其他移动通信网络连接方式实现无线网络连接等。
具体地,当所述方法应用于超声成像***时,建立网络连接包括在超声成像***与第二监护设备之间建立第一网络连接,超声成像***通过第一网络连接从第二监护设备接收包含所述生理信号的生理信号数据包。当所述方法应用于第二监护设备时,建立网络连接包括在超声成像***与第二监护设备之间建立第二网络连接,第二监护设备通过第二网络连接从超声成像***接收包含超声影像的超声影像数据包。当所述方法应用于第三方设备时,所述第三方设备与超声成像***建立第三网络连接,并与第二监护设备建立第四网络连接;第三方设备经由所述第三网络连接从超声成像***接收包含超声影像的超声影像数据包,并经由所述第四网络连接从第二监护设备接收包含生理信号的生理信号数据包。
示例性地,在建立所述网络连接之前,还包括对所述网络连接进行安全验证,以保障被测对象的信息安全。
具体地,在超声成像***与第二监护设备之间建立第一网络连接时,第二监护设备接收超声成像***发送的验证信息,或者,超声***接第二监护设备发送的验证信息,并对所述验证信息进行验证,若验证通过,则建立所 述第一网络连接。
在超声成像***与第二监护设备之间建立第二网络连接时,第二监护设备接收所述超声成像***发送的验证信息,或者,超声***接第二监护设备发送的验证信息,并对所述验证信息进行验证,若验证通过,则建立所述第二网络连接。
在第三方设备与超声成像***和第二监护设备分别建立第三网络连接和第四网络连接时,超声成像***接收所述第三方设备发送的验证信息,或者第三方设备接收所述超声成像***发送的验证信息,并对所述验证信息进行验证,若验证通过,则建立所述第三网络连接;第三方设备接收所述第二监护设备发送的验证信息,或者第二监护设备接收所述第三方设备发送的验证信息,并对所述验证信息进行验证,若验证通过,则建立所述第四网络连接。
在步骤S210中,获取的超声图像可以是一维超声图像、二维超声图像或三维超声图像中的至少一种。其中,一维超声图像可以是一维超声静态图像或一维超声视频图像;二维超声图像可以是二维超声静态图像或二维超声视频图像;三维超声图像可以是三维超声静态图像或三维超声视频图像。步骤S220中获取的生理信号可以包括静态生理信号或动态生理信号。
其中,一维超声图像可以是M型(Time-motion mode)超声图像,用于表示一维的采样线上所采样的组织随时间变化而发生的纵向运动。M型超声图像的横轴代表时间,纵轴代表运动幅度。可选地,M型超声图像可以是基于B模式下采集的B型超声图得到的。超声成像***在B模式下获取到被测对象的B型超声图像后,根据用户在B型超声图像上绘制的M模式采样线,或者根据自动绘制的M模式采样线,进入M模式并采集M型超声图像,记录一定时长内采样线上同一位置不同时间点的采样信息,将其以图像方式输出,即得到M型超声图像。当然,该一维超声图像还可以是频谱多普勒PW图像等,此处不做具体限定。
二维超声图像可以是B型超声图像,即二维灰阶超声图像。结合图1,发射电路112向超声探头110中的每个换能器阵元发送经过适当延时的电信号,由换能器将电信号转化为超声波发射至被测对象的目标区域;接收电路114控制超声探头110接收目标区域返回的超声波的超声回波并转换为电信号,以获得第一超声回波信号,经过信号放大、模数变换等处理后传递给波束合成电路122进行波束合成处理,之后将波束合成后的超声回波信号送入 处理器116,处理器116可以对其进行对数压缩、动态范围调整、数字扫描变换等处理,以形成用于体现目标区域组织形态结构的B型超声图像。或者,二维超声图像也可以是D型超声图像,即多普勒彩色超声图像,其根据超声回波信号计算得出血流信号,将血流信号经彩色编码后实时叠加在对应的B型超声图像上而得到。可选地,二维超声图像还可以是弹性图像。二维超声视频图像可以是多帧连续的二维超声静态图像组成的动态超声图像。
三维超声图像可以是对二维超声图像进行三维重建所得的三维图像。三维超声图像可以是容积探头采集的,也可以是带有磁导航设备的凸阵、线阵探头基于三维超声重建技术重建的,或者也可以是通过面阵探头扫查的。三维超声视频图像也可以称为四维超声图像,其在三维超声图像的基础上增加了时间维度参数,即在一段时间内,不间断连续扫查多卷三维图像,即一路四维图像,也即一段三维超声视频图像。
在步骤S230中,将超声图像与生理信号进行时序对齐。示例性地,若超声图像和生理信号均包含时间维度,例如若超声图像为M型超声图像,生理信号为呼吸信号,则时序对齐包括将多个时间点一一对齐。若超声图像不包含时间维度,生理信号包含时间维度,例如若超声图像为静态B型超声图像,生理信号为呼吸信号,则时序对齐包括在生理信号中提取与静态B型超声图像对应的时间点。通过由用于实现所述方法的电子设备自动对超声图像与生理信号进行时序对齐,可以节省用户手动对齐的步骤,从而提高了用户体验。
在一个实施例中,可以基于时间戳对超声图像与生理信号进行时序对齐。例如,参见图3,当所述方法应用于超声成像***时,第二监护设备将包含生理信号的生理信号数据包发送至超声成像***,生理信号数据包中还包括时间戳,超声成像***接收到生理信号数据包时,解析其中的时间戳,根据时间戳将生理信号与超声图像进行时序对齐。示例性地,在采集生理信号时,第一监护设备可以在生理信号的每个特征位置处添加时间戳,特征位置例如包括生理信号的波峰、波谷或零点位置等。
类似地,当所述方法应用于第二监护设备时,超声成像***将包含超声图像的超声图像数据包发送至第二监护设备,超声图像数据包中还包括时间戳,第二监护设备接收到超声图像数据包时,解析其中的时间戳,根据时间戳将超声图像与生理信号进行时序对齐。当所述方法应用于第三方设备时,第三方设备分别接收超声成像***发送的超声图像数据包和第二监护设备发 送的生理信号数据包,解析其中的时间戳,根据时间戳将超声图像与生理信号进行时序对齐。
在另一个实施例中,当第二监护设备等同于第一监护设备时,可以根据数据传输时间对超声图像与生理信号进行时序对齐,即根据超声图像数据包的传输时间对生理信号的时序进行延时,或者,根据生理信号数据包的传输时间对超声图像的时序进行延时。
参见图4,当所述方法应用于超声成像***时,超声成像***通过网络连接从第二监护设备接收生理信号数据包。第二监护设备根据网络状态预设生理信号数据包的传输时间为T0,超声成像***解析生理信号数据包时,获得生理信号和传输时间T0,将超声图像同样延时T0,从而实现生理信号与超声图像的时序对齐。其中,超声图像和生理信号均为实时采集的,第二监护设备采集生理信号并实时将生理信号发送至超声成像***。
类似地,当所述方法应用于第二监护设备时,第二监护设备通过网络连接从超声成像***接收超声图像数据包。超声成像***根据网络状态预设超声图像数据包的传输时间,第二监护设备解析超声图像数据包时,将生理信号也延时相应时间,从而实现生理信号与超声图像的时序对齐。当所述方法应用于第三方设备时,第三方设备获取超声图像数据包的第一传输时间,并获取生理信号数据包的第二传输时间,将超声图像延时第二传输时间,将生理信号延时第一传输时间,从而实现生理信号与超声图像的时序对齐。
在另一实施例中,可以基于预设生理状态对超声图像和生理信号进行时序对齐。具体地,识别生理信号中表征预设生理状态的第一特征,并识别超声图像中表征同一预设生理状态的第二特征;将第一特征在所述生理信号中对应的第一时刻与第二特征在所述超声图像中对应的第二时刻进行对齐,从而实现超声图像与生理信号的时序对齐。其中,预设生理状态可以能够同时被生理信号和超声图像表征的生理状态。参见图5,当所述方法应用于超声成像***,生理信号为呼吸信号、超声图像为一维超声图像时,超声成像***通过算法分别识别生理信号中表征吸气末期的第一特征和超声图像中表征吸气末期的第二特征,将第一特征对应的第一时刻和第二特征对应的第二时刻齐,从而实现超声图像与生理信号的时序对齐。
可选地,步骤S230中与生理信号进行时序对齐的超声图像可以包括以上至少两种超声图像,则分别将至少两种超声图像与生理信号进行时序对齐。 例如,至少两种超声图像包括但不限于B型超声图像和基于B型超声图像获取的M型超声图像。
在步骤S240中,在同一显示界面上显示时序对齐后的超声图像和生理信号。用户可以基于时序对齐后的超声图像和生理信号进行综合分析,以更为准确地判断被测对象的病理生理状态。
示例性地,当超声图像为一维超声静态图像、生理信号为静态生理信号时,在同一显示界面上显示时序对齐后的超声图像和生理信号包括:显示时序对齐后的一维超声静态图像的波形曲线和静态生理信号的波形曲线。例如,一维超声静态图像和静态生理信号可以共用同一个表示时间的坐标轴,使得一维超声数据的幅值在时间上对应于静态生理信号的幅值。一维超声静态图像和静态生理信号也可以显示在不同的坐标系中,但两个坐标系的表示时间的坐标轴上的时间刻度对齐显示。
例如,参见图6A,其中示出了在同一显示界面上显示时序对齐后的M型超声图像和呼吸信号的示意图。在图6A的示例中,呼吸信号叠加在M型超声图像上,有利于对二者进行对比分析。
又例如,参见图6B,其中示出了在同一显示界面上显示时序对齐后的频谱多普勒PW超声图像和呼吸信号的示意图。在图6B的示例中,多普勒PW超声图像和呼吸信号共用同一个表示时间的坐标轴,其中,PW超声图像的纵轴是速度值,横轴是时间,呼吸信号的横轴是时间,纵轴是呼吸信号的幅值。
类似地,当超声图像为一维超声动态图像、生理信号为动态生理信号时,在同一显示界面上显示时序对齐后的超声图像和生理信号包括:显示时序对齐后的一维超声动态图像的波形曲线和动态生理信号的波形曲线。一维超声动态图像和动态生理信号的显示方式与静态图像类似,区别之处在于动态曲线是按照预设帧率不断刷新的,每刷新一次即将上一时刻的数据向预设方向移动,并添加新的数据,所呈现的是随时间运动的波形曲线。
当超声图像为二维超声静态图像或三维超声静态图像时,在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号可以实现为:显示二维超声静态图像或三维超声静态图像、同时显示生理信号的波形曲线,并在生理信号的波形曲线上标记二维超声静态图像或三维超声静态图像所对应的时间点。由于二维超声静态图像或三维超声静态图像仅对应单一时间点,因而 可以在生理信号的波形曲线上以图形或符号标记二维超声静态图像或三维超声静态图像所对应的时间点。
当超声图像为二维超声视频图像或三维超声视频图像时,在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号可以实现为:显示二维超声视频图像或所述三维超声视频图像、同时显示生理信号的波形曲线,并在生理信号的波形曲线上标记当前时刻显示的所述二维超声视频图像或所述三维超声视频图像所对应的时间点。由于二维超声视频图像或三维超声视频图像是随时间变化的动态图像,每一帧图像对应一个时间点,因而可以在生理信号的波形曲线上以图形或符号标记当前时刻显示的二维超声视频图像或三维超声视频图像所对应的时间点,该图形或符号在波形曲线上随时间变化而运动。
在另一实施例中,可以以数值来表示生理信号,则在同一显示界面上显示时序对齐后的超声图像和生理信号可以实现为:同时显示超声图像和当前时刻显示的超声图像所对应的时间点上生理信号的数值。若超声图像为静态超声图像,则同时显示静态超声图像及其对应的单一时间点上的生理信号的数值。若超声图像为动态超声图像,则同时显示动态超声图像、并在显示每一帧超声图像的同时显示当前帧超声图像对应的时间点上生理信号的数值。
以上描述的几种显示时序对齐后的超声图像和生理信号的方式也可以相互结合。例如,显示界面上可以同时显示时序对齐后的一维超声图像的波形曲线和生理信号的波形曲线、以及二维超声图像或三维超声图像,并在生理信号的波形曲线上以图形或符号标记当前时刻显示的二维超声图像或三维超声图像所对应的时间点。
在一些实施例中,本申请实施例的结合生理信号的超声成像方法200还包括:将所述超声图像与所述生理信号进行综合分析,以获得综合分析结果;以及显示所述综合分析结果。其中,对超声图像和生理信号进行综合分析的具体细节可以参见下文对生理信号的超声成像方法700进行的相关描述。
基于以上描述,本申请实施例的结合生理信号的超声成像方法200将超声图像和其他生理信号进行时序对齐后在同一显示界面上进行显示,便于对二者进行综合分析。
下面,将参考图7描述根据本申请另一个实施例的结合生理信号的超声成像方法。图7是本申请实施例的结合生理信号的超声成像方法700的一个 示意性流程图。如图7所示,结合生理信号的超声成像方法700包括如下步骤:
在步骤S710,获取由超声成像***采集的被测对象的超声图像。
在步骤S720,获取由第一监护设备采集的所述被测对象的生理信号。
在步骤S730,对所述生理信号和所述超声图像的时间相位进行综合分析,和/或对所述生理信号和所述超声图像的量化指标进行综合分析以获得综合分析结果。
在步骤S740,显示所述综合分析结果。
在一些可能的实现方式中,还包括步骤S740,在同一显示界面上显示所述超声图像、所述生理信号以及所述综合分析结果。
与上文所述的结合生理信号的超声成像方法200类似,本申请实施例的结合生理信号的超声成像方法700可以用于超声成像***、第二监护设备或除超声成像***和第二监护设备以外的第三方设备,第二监护设备与用于采集被测对象的生理信号的第一监护设备相同或不同。在一个实施例中,第一监护设备可以是呼吸机,则第一监护设备采集的生理信号可以是呼吸信号。示例性地,呼吸信号包括以下至少一种:压力信号、流量信号、流速信号和二氧化碳分压信号。生理信号也可以包括被测对象的其他任意类型的生理信号,例如二氧化碳信号、血氧信号、血压信号和心电信号中的至少一种。
步骤S710和步骤S720与结合生理信号的超声成像方法200的步骤S210和步骤S220类似,具体可以参阅上文中的相关描述,为了简洁,此处不再赘述相同的细节内容。
在步骤S730,对超声图像和生理信号进行综合分析,以获得综合分析结果。具体地,可以根据超声图像和生理信号分别获得定量的参数,并对二者的参数进行综合分析,以得到综合分析结果。
在一个实施例中,对超声图像和生理信号进行综合分析包括:对生理信号和超声图像的时间相位进行综合分析。其中,生理信号和超声图像的时间相位可以是关于心肺交互作用的各项指征的时间相位,通过对其进行综合分析,有利于分析被测对象的心肺交互作用,从而快速、便捷地判断被测对象的容量状态和容量反应性。时间相位也可以是容量管理所需的其他指征的时间相位。
以第一监护设备为呼吸机,第一监护设备采集的生理信号为呼吸信号为 例,对生理信号和超声图像的时间相位进行综合分析包括:确定生理信号中通气压力峰值所对应的第一时间;确定超声图像中下腔静脉内径峰值所对应的第二时间;计算所述第一时间与所述第二时间之间的时间差,该时间差可以体现被测对象的心肺交互作用。
在另一个实施例中,对超声图像和生理信号进行综合分析包括:对生理信号和超声图像的量化指标进行综合分析。其中,量化指标可以是关于心肺交互作用的各项指征的量化指标,该量化指标可以用于辅助诊断。例如,对生理信号和超声图像的量化指标进行综合分析可以包括以下至少一项:根据呼吸信号确定呼吸频率,根据超声图像确定膈肌位移,并计算呼吸频率与膈肌位移之间的比值作为所述综合分析结果,该呼吸频率和膈肌位移之间的比值还可以帮助医生判断是否可以撤掉呼吸机,比如,该呼吸频率和膈肌位移之间的比值不大于某个阈值,则可以撤呼吸机,例如该阈值可以是1.3次/(分钟*毫米);以及,根据超声图像确定胸膜位移,根据呼吸信号确定通气压力,并计算胸膜位移与通气压力之间的比值作为所述综合分析结果。综合分析也可以是对根据超声图像和生理信号确定的其他参数进行的综合分析。
在步骤S740,在同一显示界面上显示超声图像、生理信号以及步骤S730中获得的综合分析结果。在一些实施例中,超声图像可以与生理信号时序对齐显示,具体可以参见上文的相关描述。
基于以上描述,根据本申请实施例的结合生理信号的超声成像方法700对超声图像和其他生理信号进行综合分析,并将超声图像、生理信号和综合分析结果在同一显示界面上进行显示,便于用户确定被测对象的生理状态。
下面,将参考图8描述根据本申请又一个实施例的结合生理信号的超声成像方法,所述方法用于电子设备,所述电子设备为监护设备或除超声成像***和所述监护设备以外的第三方设备。图8是本申请实施例的结合生理信号的超声成像方法800的一个示意性流程图。
如图8所示,本申请实施例的结合生理信号的超声成像方法800包括如下步骤:
在步骤S810,获取由超声成像***采集的被测对象的超声数据;
在步骤S820,获取由监护设备采集的所述被测对象的生理信号;
在步骤S830,在所述电子设备的同一显示界面上显示所述超声数据和所述生理信号。
根据本申请实施例的结合生理信号的超声成像方法800,由监护设备或除监护设备或超声成像***以外的第三方设备获取由超声成像***采集超声数据和由监护设备采集的生理信号,并将二者在同一显示界面上进行显示,使用户无需通过超声成像***,在监护设备或第三方设备上即可同时查看超声数据和生理信号。
示例性地,当所述方法应用于监护设备时,步骤S810可以实现为由监护设备获取超声成像***采集的超声数据;步骤S820可以实现为由监护设备自身采集被测对象的生理信号。当所述方法应用于第三方设备时,步骤S810可以实现为由第三方设备获取超声成像***采集的超声数据;步骤S820可以实现为由第三方设备获取监护设备采集的生理信号。示例性地,监护设备包括但不限于呼吸机、监护仪、麻醉机、中央站或床旁信息***,第三方设备例如为计算机或工作站等;超声数据可以是超声图像,也可以是定量化的超声数据。
基于以上描述,根据本申请实施例的结合生理信号的超声成像方法800由监护设备或第三方设备获取超声数据和生理信号,并将二者在同一显示界面上进行显示,便于用户通过监护设备或第三方设备同时查看超声数据和生理信号。
参照图9,本申请实施例还提供了一种电子设备900,所述电子设备900可以用于实现上文所述的结合生理信号的超声成像方法200、结合生理信号的超声成像方法700或结合生理信号的超声成像方法800,以下仅对电子设备900的主要功能进行描述,其他具体细节可以参见上文。如图9所示,所述电子设备900包括存储器910、处理器920和显示器930,所述存储器910上存储有由所述处理器920运行的计算机程序。
其中,所述处理器920可以通过软件、硬件、固件或其任意组合来实现,可以使用电路、单个或多个专用集成电路、单个或多个通用集成电路、单个或多个微处理器、单个或多个可编程逻辑器件、或者前述电路和/或器件的任意组合、或者其他适合的电路或器件,并且处理器920可以控制所述电子设备900中的其它组件以执行期望的功能。
所述存储器910可以包括一个或多个计算机程序产品,所述计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。所述易失性存储器例如可以包括随机存取存储器和/或高速缓冲 存储器等。所述非易失性存储器例如可以包括只读存储器、硬盘、闪存等。在所述计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器920可以运行所述程序指令,以实现本发明实施例中的模型训练方法和/或其他各种期望的功能。在所述计算机可读存储介质中还可以存储各种应用程序和各种数据,例如所述应用程序使用和/或产生的各种数据等。
当可用于实现上文所述的结合生理信号的超声成像方法200时,电子设备900可以实现为超声成像***(例如参照图1描述的超声成像***100)、监护设备或第三方设备。其中,监护设备包括但不限于呼吸机、监护仪、麻醉机、中央站或床旁信息***,第三方设备例如为计算机或工作站等。此时,存储器910上存储的计算机程序在被处理器920运行时执行以下步骤:获取由超声成像***在第一时间采集的被测对象的超声图像;获取由第一监护设备在第二时间采集的所述被测对象的生理信号,所述第一时间与所述第二时间至少部分重合;将所述超声图像与所述生理信号进行时序对齐;所述显示器用于在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号。
当可用于实现上文所述的结合生理信号的超声成像方法700时,电子设备900同样可以实现为超声成像***、监护设备或第三方设备。此时,存储器910上存储的计算机程序在被处理器920运行时执行以下步骤:获取由超声成像***在第一时间采集的被测对象的超声图像;获取由第一监护设备在第二时间采集的所述被测对象的生理信号;将所述超声图像与所述生理信号进行综合分析,以获得综合分析结果;所述显示器用于在同一显示界面上显示所述超声图像、所述生理信号和所述综合分析结果。
当可用于实现上文所述的结合生理信号的超声成像方法800时,所述电子设备900可以实现为监护设备或除超声成像***和所述监护设备以外的第三方设备,存储器910上存储的计算机程序在被处理器920运行时执行以下步骤:获取由超声成像***采集的被测对象的超声数据;获取由监护设备采集的所述被测对象的生理信号;所述显示器用于在同一显示界面上显示所述超声数据和所述生理信号。
基于以上描述,根据本实施例的结合生理信号的超声成像方法和超声成像***将超声图像和其他生理信号在同一显示界面上进行显示,便于对二者进行综合分析。
尽管这里已经参考附图描述了示例实施例,应理解上述示例实施例仅仅 是示例性的,并且不意图将本申请的范围限制于此。本领域普通技术人员可以在其中进行各种改变和修改,而不偏离本申请的范围和精神。所有这些改变和修改意在被包括在所附权利要求所要求的本申请的范围之内。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的设备和方法,可以通过其它的方式实现。例如,以上所描述的设备实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个设备,或一些特征可以忽略,或不执行。
在此处所提供的说明书中,说明了大量具体细节。然而,能够理解,本申请的实施例可以在没有这些具体细节的情况下实践。在一些实例中,并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本申请并帮助理解各个发明方面中的一个或多个,在对本申请的示例性实施例的描述中,本申请的各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该本申请的方法解释成反映如下意图:即所要求保护的本申请要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如相应的权利要求书所反映的那样,其发明点在于可以用少于某个公开的单个实施例的所有特征的特征来解决相应的技术问题。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都作为本申请的单独实施例。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组 合意味着处于本申请的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本申请的各个部件实施例可以以硬件实现,或者以在一个或者多个处理器上运行的软件模块实现,或者以它们的组合实现。本领域的技术人员应当理解,可以在实践中使用微处理器或者数字信号处理器(DSP)来实现根据本申请实施例的一些模块的一些或者全部功能。本申请还可以实现为用于执行这里所描述的方法的一部分或者全部的装置程序(例如,计算机程序和计算机程序产品)。这样的实现本申请的程序可以存储在计算机可读介质上,或者可以具有一个或者多个信号的形式。这样的信号可以从因特网网站上下载得到,或者在载体信号上提供,或者以任何其他形式提供。
应该注意的是上述实施例对本申请进行说明而不是对本申请进行限制,并且本领域技术人员在不脱离所附权利要求的范围的情况下可设计出替换实施例。在权利要求中,不应将位于括号之间的任何参考符号构造成对权利要求的限制。本申请可以借助于包括有若干不同元件的硬件以及借助于适当编程的计算机来实现。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。单词第一、第二、以及第三等的使用不表示任何顺序。可将这些单词解释为名称。
以上所述,仅为本申请的具体实施方式或对具体实施方式的说明,本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。本申请的保护范围应以权利要求的保护范围为准。

Claims (31)

  1. 一种结合生理信号的超声成像方法,其特征在于,所述方法包括:
    获取由超声成像***在第一时间采集的被测对象的超声图像;
    获取由第一监护设备在第二时间采集的所述被测对象的生理信号,所述第一时间与所述第二时间至少部分重合;
    将所述超声图像与所述生理信号进行时序对齐;
    在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号。
  2. 根据权利要求1所述的超声成像方法,其特征在于,所述超声图像包括以下至少一种:一维超声静态图像、一维超声视频图像、二维超声静态图像、二维超声视频图像、三维超声静态图像、三维超声视频图像,所述生理信号包括静态生理信号或动态生理信号。
  3. 根据权利要求2所述的超声成像方法,其特征在于,当所述超声图像为一维超声静态图像或一维超声视频图像时,所述在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号包括:
    显示时序对齐后的所述一维超声静态图像的波形曲线和所述静态生理信号的波形曲线,或者,显示时序对齐后的所述一维超声视频图像的波形曲线和所述动态生理信号的波形曲线。
  4. 根据权利要求2所述的超声成像方法,其特征在于,当所述超声图像为二维超声静态图像或三维超声静态图像时,所述在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号包括:
    显示所述二维超声静态图像或所述三维超声静态图像、同时显示所述生理信号的波形曲线,并在所述生理信号的波形曲线上标记所述二维超声静态图像或所述三维超声静态图像所对应的时间点。
  5. 根据权利要求2所述的超声成像方法,其特征在于,当所述超声图像为二维超声视频图像或三维超声视频图像时,所述在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号包括:
    显示所述二维超声视频图像或所述三维超声视频图像、同时显示所述生理信号的波形曲线,并在所述生理信号的波形曲线上标记当前时刻显示的所述二维超声视频图像或所述三维超声视频图像所对应的时间点。
  6. 根据权利要求2所述的超声成像方法,其特征在于,所述在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号包括:
    同时显示所述超声图像和当前时刻显示的超声图像所对应的时间点上所述生理信号的数值。
  7. 根据权利要求1所述的超声成像方法,其特征在于,所述方法还包括:建立网络连接,以通过所述网络连接接收包含所述超声图像的超声图像数据包或通过所述网络连接接收包含所述生理信号的生理信号数据包。
  8. 根据权利要求7所述的超声成像方法,其特征在于,在建立所述网络连接之前,还包括对所述网络连接进行安全验证。
  9. 根据权利要求7所述的超声成像方法,其特征在于,所述超声图像数据包中还包括时间戳,所述将所述超声图像与所述生理信号进行时序对齐包括:
    解析所述超声图像数据包的时间戳,根据所述时间戳将所述超声图像与所述生理信号进行时序对齐。
  10. 根据权利要求7所述的超声成像方法,其特征在于,所述生理信号数据包中还包括时间戳;
    所述将所述超声图像与所述生理信号进行时序对齐包括:解析所述生理信号数据包的时间戳,根据所述时间戳将所述超声图像与所述生理信号进行时序对齐。
  11. 根据权利要求7所述的超声成像方法,其特征在于,所述将所述超声图像与所述生理信号进行时序对齐包括:
    根据所述超声图像数据包的传输时间对所述生理信号的时序进行延时,或者,根据所述生理信号数据包的传输时间对所述超声图像的时序进行延时。
  12. 根据权利要求1所述的超声成像方法,其特征在于,所述将所述超声图像与所述生理信号进行时序对齐包括:
    识别所述生理信号中表征预设生理状态的第一特征,并识别所述超声图像中表征同一预设生理状态的第二特征;
    将所述第一特征在所述生理信号中对应的第一时刻与所述第二特征在所述超声图像中对应的第二时刻进行对齐。
  13. 根据权利要求1所述的超声成像方法,其特征在于,所述第一监护设备包括呼吸机,所述生理信号包括呼吸信号。
  14. 根据权利要求13所述的超声成像方法,其特征在于,所述呼吸信号包括以下至少一种:
    压力信号、流量信号、流速信号、二氧化碳分压信号。
  15. 根据权利要求1所述的超声成像方法,其特征在于,所述生理信号包括以下至少一种:二氧化碳信号、血氧信号、血压信号、心电信号。
  16. 根据权利要求1-15中任一项所述的超声成像方法,其特征在于,所 述方法应用于超声成像***、第二监护设备或除所述超声成像***和所述第二监护设备以外的第三方设备,所述第二监护设备与所述第一监护设备相同或不同。
  17. 根据权利要求16所述的超声成像方法,其特征在于,所述第二监护设备包括呼吸机、监护仪、麻醉机、中央站或床旁信息***。
  18. 根据权利要求1所述的超声成像方法,其特征在于,所述方法还包括:
    将所述超声图像与所述生理信号进行综合分析,以获得综合分析结果;
    显示所述综合分析结果。
  19. 一种结合生理信号的超声成像方法,其特征在于,所述方法包括:
    获取由超声成像***采集的被测对象的超声图像;
    获取由第一监护设备采集的所述被测对象的生理信号;
    对所述生理信号和所述超声图像的时间相位进行综合分析,和/或对所述生理信号和所述超声图像的量化指标进行综合分析以获得综合分析结果;
    显示所述综合分析结果。
  20. 根据权利要求19所述的超声成像方法,其特征在于,所述方法还包括:
    在同一界面上显示所述超声图像,所述生理信号以及所述综合分析结果。
  21. 根据权利要求20所述的超声成像方法,其特征在于,所述第一监护设备包括呼吸机,所述生理信号包括呼吸信号。
  22. 根据权利要求21所述的超声成像方法,其特征在于,所述呼吸信号包括以下至少一种:
    压力信号、流量信号、流速信号、二氧化碳分压信号。
  23. 根据权利要求21所述的超声成像方法,其特征在于,所述对所述生理信号和所述超声图像的时间相位进行综合分析,包括:
    确定所述生理信号中通气压力峰值所对应的第一时间;
    确定所述超声图像中下腔静脉内径峰值所对应的第二时间;
    计算所述第一时间与所述第二时间之间的时间差。
  24. 根据权利要求21所述的超声成像方法,其特征在于,对所述生理信号和所述超声图像的量化指标进行综合分析包括以下至少一项:
    确定呼吸频率与膈肌位移之间的比值;确定胸膜位移与通气压力之间的比值。
  25. 根据权利要求19所述的超声成像方法,其特征在于,所述生理信号 包括以下至少一种:二氧化碳信号、血氧信号、血压信号、心电信号。
  26. 根据权利要求19所述的超声成像方法,其特征在于,所述方法用于超声成像***、第二监护设备或除所述超声成像***和所述第二监护设备以外的第三方设备,所述第二监护设备与所述第一监护设备相同或不同。
  27. 一种结合生理信号的超声成像方法,其特征在于,所述方法用于电子设备,所述电子设备为监护设备或除超声成像***和所述监护设备以外的第三方设备;所述方法包括:
    获取由超声成像***采集的被测对象的超声数据;
    获取由监护设备采集的所述被测对象的生理信号;
    在所述电子设备的同一显示界面上显示所述超声数据和所述生理信号。
  28. 一种电子设备,其特征在于,所述电子设备包括存储器、处理器和显示器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
    获取由超声成像***在第一时间采集的被测对象的超声图像;
    获取由第一监护设备在第二时间采集的所述被测对象的生理信号,所述第一时间与所述第二时间至少部分重合;
    将所述超声图像与所述生理信号进行时序对齐;
    所述显示器用于在同一显示界面上显示时序对齐后的所述超声图像和所述生理信号。
  29. 根据权利要求28所述的电子设备,其特征在于,所述电子设备包括超声成像***、监护设备或除所述超声成像***和所述监护设备以外的第三方设备。
  30. 一种电子设备,其特征在于,所述电子设备包括存储器、处理器和显示器,所述存储器上存储有由所述处理器运行的计算机程序,所述计算机程序在被所述处理器运行时执行以下步骤:
    获取由超声成像***在第一时间采集的被测对象的超声图像;
    获取由第一监护设备在第二时间采集的所述被测对象的生理信号;
    对所述生理信号和所述超声图像的时间相位进行综合分析,和/或对所述生理信号和所述超声图像的量化指标进行综合分析以获得综合分析结果;
    所述显示器用于显示所述综合分析结果。
  31. 一种电子设备,其特征在于,所述电子设备为监护设备或除超声成像***和所述监护设备以外的第三方设备,所述电子设备包括存储器、处理器和显示器,所述存储器上存储有由所述处理器运行的计算机程序,所述计 算机程序在被所述处理器运行时执行以下步骤:
    获取由超声成像***采集的被测对象的超声数据;
    获取由监护设备采集的所述被测对象的生理信号;
    所述显示器用于在同一显示界面上显示所述超声数据和所述生理信号。
PCT/CN2020/120231 2020-10-10 2020-10-10 结合生理信号的超声成像方法和电子设备 WO2022073242A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/CN2020/120231 WO2022073242A1 (zh) 2020-10-10 2020-10-10 结合生理信号的超声成像方法和电子设备
CN202080104126.7A CN116096299A (zh) 2020-10-10 2020-10-10 结合生理信号的超声成像方法和电子设备
CN202080103696.4A CN116194048A (zh) 2020-10-10 2020-12-30 膈肌的超声测量方法及***
PCT/CN2020/141223 WO2022073306A1 (zh) 2020-10-10 2020-12-30 膈肌的超声测量方法及***
US18/132,123 US20230355216A1 (en) 2020-10-10 2023-04-07 Ultrasound imaging method combining physiological signals and an electronic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/120231 WO2022073242A1 (zh) 2020-10-10 2020-10-10 结合生理信号的超声成像方法和电子设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/132,123 Continuation US20230355216A1 (en) 2020-10-10 2023-04-07 Ultrasound imaging method combining physiological signals and an electronic device

Publications (1)

Publication Number Publication Date
WO2022073242A1 true WO2022073242A1 (zh) 2022-04-14

Family

ID=81126192

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/120231 WO2022073242A1 (zh) 2020-10-10 2020-10-10 结合生理信号的超声成像方法和电子设备
PCT/CN2020/141223 WO2022073306A1 (zh) 2020-10-10 2020-12-30 膈肌的超声测量方法及***

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141223 WO2022073306A1 (zh) 2020-10-10 2020-12-30 膈肌的超声测量方法及***

Country Status (3)

Country Link
US (1) US20230355216A1 (zh)
CN (2) CN116096299A (zh)
WO (2) WO2022073242A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115797296A (zh) * 2022-12-05 2023-03-14 北京智影技术有限公司 一种膈肌厚度自动测量方法、装置和存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114983469B (zh) * 2022-06-21 2023-04-18 四川大学华西医院 利用超声进行呼吸驱动评估的方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066389A1 (en) * 2002-10-03 2004-04-08 Koninklijke Philips Electronics N.V System and method for automatically generating a series of ultrasound images each representing the same point in a physiologic periodic waveform
CN101002689A (zh) * 2005-10-28 2007-07-25 韦伯斯特生物官能公司 超声成像数据与电标测的同步
CN102804189A (zh) * 2009-06-19 2012-11-28 皇家飞利浦电子股份有限公司 动画化的时间线
CN103584919A (zh) * 2013-11-12 2014-02-19 中国科学院深圳先进技术研究院 多模态生物信号同步检测***及方法
CN103829941A (zh) * 2014-01-14 2014-06-04 武汉培威医学科技有限公司 一种多维心电信号成像***及方法
CN108309353A (zh) * 2016-12-01 2018-07-24 美国西门子医疗解决公司 用于在心回波描记术中进行相位确定的心率辅助
CN111246802A (zh) * 2017-10-05 2020-06-05 安科诺思公司 用附加信号融合超声的***和方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5800356A (en) * 1997-05-29 1998-09-01 Advanced Technology Laboratories, Inc. Ultrasonic diagnostic imaging system with doppler assisted tracking of tissue motion
GB2396012B (en) * 2002-12-03 2006-03-15 Neorad As Respiration monitor
US8195500B2 (en) * 2010-04-12 2012-06-05 First Data Corporation Point-of-sale-based market tracking and reporting
CN104545987A (zh) * 2013-10-10 2015-04-29 深圳迈瑞生物医疗电子股份有限公司 一种监测膈肌运动情况的监护仪
GB201519985D0 (en) * 2015-11-12 2015-12-30 Respinor As Ultrasonic method and apparatus for respiration monitoring
CN109758183A (zh) * 2018-12-13 2019-05-17 孔维炜 一种智能床边超声对机械通气患者膈肌功能评估***
CN110974298A (zh) * 2019-12-31 2020-04-10 苏州科技城医院 一种利用超声ai技术捕捉膈肌运动辅助判断呼吸机脱机的方法
CN111513765B (zh) * 2020-04-26 2022-08-09 深圳华声医疗技术股份有限公司 呼吸肌组织的超声测量方法、超声测量装置及存储介质

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040066389A1 (en) * 2002-10-03 2004-04-08 Koninklijke Philips Electronics N.V System and method for automatically generating a series of ultrasound images each representing the same point in a physiologic periodic waveform
CN101002689A (zh) * 2005-10-28 2007-07-25 韦伯斯特生物官能公司 超声成像数据与电标测的同步
CN102804189A (zh) * 2009-06-19 2012-11-28 皇家飞利浦电子股份有限公司 动画化的时间线
CN103584919A (zh) * 2013-11-12 2014-02-19 中国科学院深圳先进技术研究院 多模态生物信号同步检测***及方法
CN103829941A (zh) * 2014-01-14 2014-06-04 武汉培威医学科技有限公司 一种多维心电信号成像***及方法
CN108309353A (zh) * 2016-12-01 2018-07-24 美国西门子医疗解决公司 用于在心回波描记术中进行相位确定的心率辅助
CN111246802A (zh) * 2017-10-05 2020-06-05 安科诺思公司 用附加信号融合超声的***和方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115797296A (zh) * 2022-12-05 2023-03-14 北京智影技术有限公司 一种膈肌厚度自动测量方法、装置和存储介质
CN115797296B (zh) * 2022-12-05 2023-09-05 北京智影技术有限公司 一种膈肌厚度自动测量方法、装置和存储介质

Also Published As

Publication number Publication date
US20230355216A1 (en) 2023-11-09
WO2022073306A1 (zh) 2022-04-14
CN116096299A (zh) 2023-05-09
CN116194048A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
EP2821014B1 (en) Sharing information of medical imaging apparatus
US10499881B2 (en) Ultrasound diagnosis apparatus and method of displaying ultrasound image
US20230355216A1 (en) Ultrasound imaging method combining physiological signals and an electronic device
EP2989987B1 (en) Ultrasound diagnosis apparatus and method and computer readable storage medium
US10582912B2 (en) Ultrasound diagnosis apparatus and operating method thereof
KR102273831B1 (ko) 의료 영상을 디스플레이 하는 방법 및 그 의료 영상 장치
WO2012085788A2 (en) Automated doppler velocimetry using a low-cost transducer.
JP2014184145A (ja) 弾性情報提供装置及び方法
EP3150128B1 (en) Method and apparatus for displaying ultrasound images
KR20160036030A (ko) 초음파 영상 표시 방법 및 장치
KR102205507B1 (ko) 초음파 영상 표시 방법 및 장치
WO2022135604A1 (zh) 医疗信息显示***及医疗***
JP2008099931A (ja) 医用画像診断装置、医用画像表示装置及びプログラム
US20150065867A1 (en) Ultrasound diagnostic apparatus and method of operating the same
US10761198B2 (en) Method and apparatus for acquiring image using ultrasound
US20150206323A1 (en) Method and apparatus for displaying medical image
US10390800B2 (en) Ultrasound diagnosis method and ultrasound diagnosis apparatus
US10860053B2 (en) Ultrasound diagnosis apparatus and method of controlling the same
CN115299986A (zh) 一种超声成像设备及其超声检查方法
KR101868019B1 (ko) 초음파 영상 장치 및 그에 따른 초음파 영상 처리 방법
KR101563501B1 (ko) 혈관 부하 측정 방법 및 장치
WO2016105972A1 (en) Report generation in medical imaging
US11925503B2 (en) Shear wave elasticity imaging method and ultrasonic imaging device
US20160278741A1 (en) Apparatus and method of measuring elasticity using ultrasound
KR20150047333A (ko) 도플러 정보를 제공하는 초음파 진단 장치 및 초음파 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956557

Country of ref document: EP

Kind code of ref document: A1