WO2022073173A1 - Techniques for ping-pong detection and avoidance for cell reselection - Google Patents

Techniques for ping-pong detection and avoidance for cell reselection Download PDF

Info

Publication number
WO2022073173A1
WO2022073173A1 PCT/CN2020/119896 CN2020119896W WO2022073173A1 WO 2022073173 A1 WO2022073173 A1 WO 2022073173A1 CN 2020119896 W CN2020119896 W CN 2020119896W WO 2022073173 A1 WO2022073173 A1 WO 2022073173A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
offset
reselection
attempted
lte
Prior art date
Application number
PCT/CN2020/119896
Other languages
French (fr)
Inventor
Shanshan Wang
Arvind Vardarajan Santhanam
Reza Shahidi
Liangchi Hsu
Brian Clarke Banister
Supratik Bhattacharjee
Jianqiang Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/119896 priority Critical patent/WO2022073173A1/en
Publication of WO2022073173A1 publication Critical patent/WO2022073173A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure for example, relates to wireless communications, more particularly to techniques for ping-pong detection and avoidance for cell reselection.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • a user equipment may reselect from a first cell to a second cell. Reselecting may involve the UE ceasing communications with the first cell and attempting to initiate communications with the second cell. However, each time the UE performs reselection, the amount of power consumed by the UE may increase compared to when the UE is not performing reselection. Increased power consumption may reduce a battery life of the UE and may, thus, be undesirable in at least some circumstances.
  • the described techniques relate to improved methods, systems, devices, and apparatuses that supports techniques for ping-pong detection and avoidance for cell reselection.
  • the described techniques provide for a user equipment (UE) to perform ping-pong detection and avoidance.
  • a UE may obtain (e.g., via a data structure, such as a table) , information regarding one or more target cells to which the UE attempted cell reselection during a time period.
  • the UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the UE may adjust, based on the determination, one or more cell reselection parameters.
  • a method for wireless communication at a UE may include obtaining information regarding one or more target cells to which the UE attempted cell reselection during a time period, determining, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and adjusting, based on the determination, one or more cell reselection parameters.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period, determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and adjust, based on the determination, one or more cell reselection parameters.
  • the apparatus may include means for obtaining information regarding one or more target cells to which the UE attempted cell reselection during a time period, means for determining, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and means for adjusting, based on the determination, one or more cell reselection parameters.
  • a non-transitory computer-readable medium storing code for wireless communication at a UE is described.
  • the code may include instructions executable by a processor to obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period, determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and adjust, based on the determination, one or more cell reselection parameters.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, where determining that the UE may have the number of attempted cell reselections with the first cell of the one or more target cells that may be greater than the threshold number of attempts may be based on generating the data structure.
  • generating the data structure may include operations, features, means, or instructions for adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell may be greater than a target signal strength of the first cell.
  • an entry of the data structure corresponding to the first cell may include a flag
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for toggling a value of the flag based on determining that the UE may have the number of attempted cell reselections with the first cell of the one or more target cells that may be greater than the threshold number of attempts during the time period.
  • an entry of the data structure corresponding to the first cell includes a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the UE may be operating outside of a first scheduling mode associated with moving out of service, where generation of the data structure may be based on the UE operating outside of the first scheduling mode.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that reselection from the first cell to a second cell may have been triggered, where the one or more adjusted cell reselection parameters may be applied to the reselection.
  • adjusting the one or more cell reselection parameters may include operations, features, means, or instructions for adjusting the one or more cell reselection parameters to favor the second cell based on the second cell being associated with a higher measured signal strength than the first cell.
  • the measured signal strength for each of the first cell and the second cell corresponds to a reference signal received power (RSRP) measurement for each of the first cell and the second cell, a received signal strength indicator (RSSI) measurement for each of the first cell and the second cell, or both.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • adjusting the one or more cell reselection parameters may include operations, features, means, or instructions for setting a reselection priority of the first cell to be equal to a reselection priority of the second cell.
  • adjusting the one or more cell reselection parameters may include operations, features, means, or instructions for applying an offset toward a measured signal strength associated with the first cell.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during a second time period after applying the offset, and applying a second offset to the first cell based on determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during the second time period after applying the offset.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the second offset by incrementing the offset by a step size.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during a third time period after applying the second offset, determining a third offset by incrementing the second offset by the step size based on determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during the third time period after applying the second offset, and applying the third offset to the first cell.
  • the offset may be associated with a first offset value of a set of offset values and the second offset may be associated with a second offset value of the set of offset values subsequent to the first offset value, where the set of offset values may be ordered from a lowest offset value to a highest offset value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during a third time period after applying the offset, and applying a third offset to the first cell based on determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during the third time period after applying the second offset, where the third offset may be associated with a third offset value of the set of offset values subsequent to the second offset value.
  • the first cell may be associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, from the information, that the UE may have a second number of attempted cell reselections with a third cell that may be greater than a second threshold number of attempts during a second time period, and applying a second offset to the third cell based on determining that the UE may have the second number of attempted cell reselections with the third cell that may be greater than the second threshold number of attempts, where the second offset may be smaller than the offset based on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifie
  • the measured signal strength to which the offset may be applied corresponds to a reference signal received power (RSRP) measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for setting a timer based on determining that the UE may have the number of attempted cell reselections with the first cell of the one or more target cells that may be greater than the threshold number of attempts during the time period, and applying the one or more adjusted cell reselection parameters while the timer may be running.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for suspending the applying of the one or more adjusted cell reselection parameters based on the timer finishing running.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for resetting or disabling the timer based on two or more consecutive entries in a data structure from which the information may be obtained being associated with different cell global identifiers, where at least one of the two or more consecutive entries may be logged after setting the timer.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE may be operating in a mode associated with a high-speed train, or any combination thereof, and resetting or disabling the timer based on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
  • the first cell may be associated with a first radio access technology and the second cell may be associated with a second radio access technology
  • the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for setting a reselection priority of the first cell to be lower than a reselection priority of the second cell based on the first cell being associated with the first radio access technology and the second cell being associated with the second radio access technology.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a priority order for radio access technologies including the first radio access technology and the second radio access technology, where setting the reselection priority of the first cell to be lower than the reselection priority of the second cell may be based on the priority order.
  • the priority order indicates that new radio (NR) may have a higher priority than one or both of LTE and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-A may have a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA may have a higher priority than Global System for Mobile Communications (GSM) , or any combination thereof.
  • NR new radio
  • LTE-A LTE-Advanced
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • GSM Global System for Mobile Communications
  • the priority order indicates that Global System for Mobile Communications (GSM) may have a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA may have a higher priority than one or both of LTE and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-A may have a higher priority than new radio (NR) , or any combination thereof.
  • GSM Global System for Mobile Communications
  • WCDMA wideband code division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • LTE-A LTE-Advanced
  • NR new radio
  • the priority order may be determined based on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  • the first cell and the second cell may be associated with a same radio access technology.
  • FIG. 1 illustrates an example of a wireless communications system that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIG. 3 illustrates an example of a ping-pong decision flow that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIG. 4 illustrates an example of a ping-pong avoidance procedure that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIG. 5 illustrates an example of a process flow that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIGs. 6 and 7 show block diagrams of devices that support techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIG. 8 shows a block diagram of a communication manager that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIG. 9 shows a diagram of a system including a device that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • FIGs. 10 through 12 show flowcharts illustrating methods that support techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • a user equipment may communicate with a base station which may provide communication coverage with the UE via a first cell.
  • the UE may reselect from the first cell to a second cell. Reselection may involve the UE ceasing communications with the first cell and/or attempting to initiate communications with the second cell.
  • the UE perform the reselection due to the second cell having a higher reselection priority than the first cell or due to a threshold parameter for reselection (e.g., measured signal strength with the first cell or second cell) exceeding a threshold.
  • a threshold parameter for reselection e.g., measured signal strength with the first cell or second cell
  • the UE may perform reselection among a limited set of cells multiple times in a short time duration (e.g., a time duration below a threshold amount) . For instance, the UE may reselect from the first cell to the second cell and then back from the second cell to the first cell multiple times within the short time duration. Such behavior may be referred to as ping-ponging.
  • Ping-ponging may occur due to inconsistent or improper configuration of reselection parameters (e.g., setting thresholds for performing reselection too low) or due to inconsistent configuration of reselection priorities (e.g., having the first cell indicate that the second cell has a higher reselection priority while the second cell indicates that the first cell has the higher reselection priority) .
  • the UE may consume an increased amount of power which may limit a battery life of the UE.
  • the UE may generate a data structure (e.g., a database in the form of a table) that associates information regarding one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection.
  • the UE may obtain the information for a time period and may determine, based on the information, that the UE has a number of attempted cell reselections with a cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the UE may adjust, based on the determination, one or more cell reselection parameters.
  • the UE may adjust a reselection priority among the one or more target cells, may apply an offset toward a measured signal strength of at least one of the one or more target cells, or both.
  • the UE may avoid and/or mitigate ping-ponging behavior.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are described in the context of a ping-pong decision flow, a ping-pong avoidance procedure, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for ping-pong detection and avoidance for cell reselection.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a geographic coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the geographic coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a geographic coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next- generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next- generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof.
  • the term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) .
  • a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates.
  • Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105.
  • a cell may be or include a building, a subset of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
  • a macro cell for example, covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell.
  • a small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells.
  • Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) .
  • a base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be connected to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at different orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a different orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • a wireless network for example a wireless local area network (WLAN) , such as a Wi-Fi (i.e., Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an access point (AP) that may communicate with one or more wireless or mobile devices.
  • the AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) .
  • a wireless device may communicate with a network device bi-directionally.
  • a device may communicate with an associated AP via downlink (e.g., the communication link from the AP to the device) and uplink (e.g., the communication link from the device to the AP) .
  • a wireless personal area network which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices.
  • wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
  • a UE 115 may obtain (e.g., via a data structure, such as a table) , information regarding one or more target cells to which the UE 115 attempted cell reselection during a time period.
  • the UE 115 may determine, based on the information, that the UE 115 has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the UE 115 may adjust, based on the determination, one or more cell reselection parameters.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • wireless communications system 200 may implement aspects of wireless communications system 100.
  • base stations 205-a and 205-b may be examples of base stations 105 as described with reference to FIG. 1
  • coverage areas 210-a and 210-b may be examples of geographic coverage areas 110 as described with reference to FIG.
  • UE 215 may be an example of a UE 115 as described with reference to FIG. 1.
  • UE 215 may be within a coverage area 210-a of base station 205-a and may also be within a coverage area 210-b of base station 205-b. Coverage area 210-a of base station 205-a may be associated with a first cell and coverage area 210-b of base station 205-b may be associated with a second cell. UE 215 may communicate with the first cell associated with base station 205-a when in cell configuration 202-a and may communicate with the second cell associated with base station 205-b when in cell configuration 202-b. UE 215 may transition from cell configuration 202-a to cell configuration 202-b by reselecting from the first cell to the second cell. Similarly, UE 215 may transition from cell configuration 202-b to cell configuration 202-a by reselecting from the second cell to the first cell.
  • UE 215 may reselect among a limited set of cells and move between cells often (e.g., above a threshold number of times in a predefined duration) . For instance, initially UE 215 may communicate with the first cell in cell configuration 202-a. However, within a relatively small time duration (e.g., a time duration below a threshold amount) , UE 215 may transition from cell configuration 202-a to cell configuration 202-b (e.g., by reselecting to the second cell) , then back to cell configuration 202-a (e.g., by reselecting the first cell) , and may repeat this process throughout the time duration.
  • a relatively small time duration e.g., a time duration below a threshold amount
  • Such behavior may be referred to as ping-ponging or ping-pong reselection.
  • Causes of ping-ponging may include inconsistent or improper configuration of reselection parameters (e.g., improper values for ThreshX, Low/ThreshX, High , Qrxlevminoffset) , inconsistent configuration of reselection priority (e.g., the first cell indicating that the second cell has a higher reselection priority and the second cell indicating that the first cell has a higher reselection priority) .
  • ping-pong reselection may increase the power consumption of UE 215. Such increase in power consumption may occur due to reselection evaluation, camping processing, performing a tracking area update (TAU) procedure, performing a radio access network (RAN) -based notification area update (RNAU) procedure (e.g., when UE 215 is in an inactive state) , updating registration, or any combination thereof.
  • TAU tracking area update
  • RAN radio access network
  • RNAU notification area update
  • This increase in the power consumption of UE 215 may decrease a battery life of UE 215.
  • methods which limit ping-ponging may enable decreased power consumption at UE 215 and may increase a battery life of UE 215.
  • conditions for detecting a ping-pong may differ depending on whether ping-pong occurs between intra-RAT cells (e.g., cells that operate within the same radio access technology (RAT) ) or inter-rat cells (e.g., cells that operate within different RATs, such as NR and LTE) .
  • intra-RAT cells e.g., cells that operate within the same radio access technology (RAT)
  • inter-rat cells e.g., cells that operate within different RATs, such as NR and LTE
  • ping-ponging between intra-RAT cells may be detected when a signal strength of a source cell is greater than a signal strength of a target cell when reselection is triggered (e.g., going from a stronger cell to a weaker cell) and when the same target cell has appeared in the ping-pong data structure at least X-1 times in a predefined time duration (e.g., Y seconds from the current time) .
  • ping-pong may still be detected even if rese
  • ping-ponging between inter-RAT cells may be detected if the same target cell has appeared in a ping-pong data structure at least P-1 times in a predefined time duration (e.g., Q seconds from the current time) .
  • inter-RAT cells may be detected if the signal strength of a source cell is greater than the signal strength of a target cell when reselection is triggered.
  • different RATs may have different metrics for measured signal strength
  • UE 215 may apply one or more operations to the different metrics in order to compare them.
  • a metric (e.g., ranking) may be defined between different RATs that is similar to a metric defined for intra-RAT equal-priority reselection.
  • ping-ponging avoidance may be applied to the inter-RAT case similar to how UE 215 applies ping-ponging avoidance to the intra-RAT case.
  • normalized metrics e.g., normalized RSSI, normalized RSRP
  • RSSI, RSSP measured signal strength
  • RSSP reference signal level
  • UE 215 may generate a data structure (e.g., a database which may be in the form of a table) according to the conditions described herein.
  • a data structure e.g., a database which may be in the form of a table
  • Table 1 presents an example of the data structure in the form of a database:
  • Each entry of Table 1 includes an associated index, a set of identifier fields which UE 215 may use to identify a target cell, a ping-pong set flag which UE 215 may use to determine whether or not ping-ponging has been detected for the target cell, and a timestamp which may indicate when cell reselection to the target cell was triggered.
  • the set of identifier fields may include a field indicating which RAT is associated with the target cell, a field indicating a frequency associated with the target cell (e.g., absolute radio-frequency channel number (ARFCN) or Evolved Universal Terrestrial Access (E-UTRA) ARFCN (EARFCN) ) , a field corresponding to a physical cell identifier (PCI) and/or a cell global identity (CGI) associated with the target cell, a field corresponding to a tracking area identifier (TAI) associated with the target cell, or any combination thereof.
  • a field indicating which RAT is associated with the target cell e.g., absolute radio-frequency channel number (ARFCN) or Evolved Universal Terrestrial Access (E-UTRA) ARFCN (EARFCN)
  • ARFCN absolute radio-frequency channel number
  • E-UTRA Evolved Universal Terrestrial Access
  • ARFCN Evolved Universal Terrestrial Access
  • PCI physical cell identifier
  • the set of identifier fields may include a field associated with a routing area identifier (RAI) , a field associated with a RAN notification area identifier, a field associated with a location area identifier (LAI) , or any combination thereof.
  • the PCI may be determined based on a search (e.g., via primary synchronization signal and/or secondary synchronization signal) .
  • the CGI may be available at the serving cell and may be available on neighbor cells when UE 215 is in an idle or inactive mode (e.g., via a background public land mobile network (BPLMN) search or past camping history) .
  • Each TAI may be associated with a tracking area code (TAC) and a public land mobile network (PLMN) .
  • TAC tracking area code
  • PLMN public land mobile network
  • a UE 115 may initially reselect from cell A to cell C, where both cell A and cell C correspond to a same RAT (e.g., NR) and where cell C has a higher associated signal strength. Since cell C (e.g., the target cell) has a higher signal strength than cell A (e.g., the source cell) , no entry may be added to Table 1 for cell C. At a later time (e.g., 08: 30: 00) , the UE 115 may trigger reselection from cell C to cell A.
  • a later time e.g., 08: 30: 00
  • cell A e.g., the target cell
  • cell C e.g., the source cell
  • an entry corresponding to index 1 for cell A may be added to the Table 1.
  • the UE 115 may trigger (e.g., at 08: 31: 00) reselection to cell B.
  • Cell A and cell B may correspond to different RATs (e.g., cell A may correspond to NR and cell B may correspond to LTE) .
  • an entry corresponding to index 2 for cell B may be added to the table.
  • the UE 115 may trigger (e.g., at 08: 32: 00) reselection from cell B to cell A.
  • cell A and cell B may correspond to different RATs, an entry corresponding to index 3 for cell A may be added to the table.
  • the UE 115 may reselect to cell C.
  • the UE 115 may trigger (e.g., at 8: 38: 00) reselection to cell A.
  • Cell A e.g., the target cell
  • cell C e.g., the source cell
  • an entry corresponding to index 10 for cell A may be added to the table.
  • ping-ponging may be detected when the entry with index 10 is added to the table.
  • the ping-pong set flag may be toggled (e.g., from 0 to 1) to indicate that ping-ponging has been detected.
  • UE 215 may add the target cell to a ping-pong set.
  • UE 215 may perform ping-ponging avoidance, which may involve UE 215 adjusting one or more cell reselection parameters.
  • UE 215 may set the neighbor frequency to have the same reselection priority as the serving frequency. Additionally or alternatively, UE 215 may apply an offset toward measured signal strength (e.g., reference signal received power (RSRP) , received signal strength indicator (RSSI) ) of the neighbor cell.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • the one or more cell reselection parameters may be adjusted if a signal strength of the serving cell is greater than a signal strength of the target cell but may not be performed if the signal strength of the serving cell is lesser than the signal strength of the target cell.
  • UE 215 may perform the adjustment selectively so that UE 215 stays in the cell with the higher signal strength when breaking up the ping-pong (e.g., when performing ping-ponging avoidance) .
  • the cell whose RAT is associated with an older generation may be set to have a lower reselection priority than the cell whose RAT is associated with a new generation.
  • the cell whose RAT is associated with an older generation may be set to have a lower reselection priority than the cell whose RAT is associated with a new generation.
  • UE 215 may set LTE neighbor frequencies reselection priority to be lower than an NR serving cell.
  • RATs associated with 5G may have a higher priority than RATs associated with 4G (e.g., LTE or LTE-A)
  • RATs associated with 4G may have a higher priority than RATs associated with third generation (3G) (e.g., wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) )
  • 3G wideband code division multiple access
  • TD-SCDMA time division synchronous code division multiple access
  • RATs associated with 3G may have a higher priority than RATs associated with second generation (2G) (e.g., Global System for Mobile Communications (GSM) , or any combination thereof.
  • 2G Global System for Mobile Communications
  • RATs associated 2G may have a higher priority than RATs associated with 3G
  • RATs associated with 3G may have a higher priority than RATs associated 4G
  • RATs associated with 4G may have a higher priority than RATs associated with 5G, or any combination thereof.
  • UE 215 may determine a priority order for the RATs and may determine which cell to set to have the lower reselection priority according to the priority order.
  • an offset e.g., OFFSET_IRAT
  • a measured signal strength e.g., RSRP, RSSI
  • the one or more cell reselection parameters may be adjusted if a signal strength of the serving cell is greater than a signal strength of the target cell but may not be performed if the signal strength of the serving cell is lesser than the signal strength of the target cell.
  • UE 215 may perform the adjustment selectively so that UE 215 stays in the cell with the higher signal strength when breaking up the ping-pong (e.g., when performing ping-ponging avoidance) .
  • the one or more cell reselection parameters may be adjusted if UE 215 is camped on a RAT that has a higher priority in the priority order (e.g., a newer generation RAT) .
  • UE 215 may evaluate reselection to a RAT that has a lower priority in the priority order (e.g., an older generation RAT) so that UE 215 stays camped on the higher priority RAT when breaking up ping-pong.
  • the priority order and/or one or more cell reselection parameters may be adjusted based on location, service coverage, UE preference (e.g., via a user interface (UI) display) , or any combination thereof.
  • UI user interface
  • UE 215 may set a timer (e.g., T_z which may, for instance, equal 10 minutes) during which the one or more adjusted cell reselection parameters are applied. Once the timer finishes running, UE 215 may suspend the applying of the one or more adjusted cell reselection parameters (e.g., UE 215 may suspend ping-ponging avoidance behavior and may remove the corresponding target cell from the ping-pong set) . In some examples, the timer may be reset or disabled before the time on the timer has elapsed (e.g., ping-ponging behavior may be terminated early) .
  • T_z which may, for instance, equal 10 minutes
  • UE 215 may stop the timer on a neighbor cell whose PCI is part of the ping-pong set.
  • a threshold amount e.g., Count_CGI, where Count_CGI is configurable and may, for instance, equal 3
  • UE 215 may stop the timer on a neighbor cell whose PCI is part of the ping-pong set.
  • UE 215 may stop the timer and disable ping-pong avoidance temporarily (e.g., while in high mobility) .
  • UE 215 may reset or disable the timer in such circumstances as ping-ponging may be less likely when UE 215 is moving quickly. If UE 215 is detected to be moving in circles however, the timer may not be stopped.
  • high mobility may correspond to UE 215 determining that a displacement of UE 215 over a first time interval exceeds a respective first threshold, a distance of UE 215 over a second time interval exceeds a respective second threshold, a velocity of UE 215 exceeds a third threshold, or any combination thereof.
  • a lower offset may be initially applied for the first N times that ping-pong is detected. However, if ping-pong is detected again after N times, a higher offset may be applied. Additionally or alternatively, UE 215 may apply a multi-level offset where more than two level of offsets may be applied based on the number of times that ping-ponging is detected over time. In some examples, the lower and higher offsets applied for intra-RAT neighbors may be different than the lower and higher offsets for inter-RAT neighbors. In some examples, the lower and higher offsets may be configurable. In some examples, the values of the lower and higher offsets may be obtained via cloud sourcing based on location (e.g., based on PLMN) , user data, or machine learning.
  • timers e.g., Y, M, T_z, T_CGI
  • counters e.g., X, Count_CGI
  • other configurable parameters may also be obtained via cloud sourcing based on location, user data, or machine learning.
  • the offset may equal max (Q Offset +Q hyst , Delta_n) , where Delta_n may equal Delta_n_Low (e.g., 3 dB) for the first N times that ping-ponging is detected and may equal Delta_n_High (e.g., 5dB) if ping-pong after that (e.g., after ping-ponging has been detected N+1 times) .
  • Delta_n_Low e.g., 3 dB
  • Delta_n_High e.g., 5dB
  • the offset may equal OFFSET_IRAT_LOW for the first N times that ping-ponging is detected and may equal OFFSET_IRAT_HIGH after that. If should be noted that OFFSET_IRAT_LOW and OFFSET_IRAT_HIGH may be configurable.
  • the offsets described herein may also be used for other RATs (e.g., intra-LTE, L2W/G/T reselection) . For these other RATs, Q Offset , Q hyst , or both may be updated (e.g., depending on the parameters used for ranking calculation for equal priority reselection of that RAT) .
  • the UE 215 may apply more than two offsets.
  • the UE 215 may define a lower bound for an offset (e.g., 3 dB) and an upper bound for an offset (e.g., 10 dB) .
  • the UE 215 may apply the offset at the lower bound (e.g., 3 dB) .
  • the UE 215 may apply an offset that is higher by a fixed step size (e.g., 1 dB) .
  • the UE 215 may apply an offset of 3dB
  • the second time ping-ponging is detected the UE 215 may apply an offset of 4dB
  • the third time ping-ponging is detected the UE 215 may apply an offset of 5dB, and so on until the offset reaches the upper bound.
  • a set of more than two offsets may be configured at the UE 215 (e.g., by one of base stations 205-a or 205-b) .
  • the UE 215 may be configured with the set ⁇ 3dB, 5dB, 8dB, 10dB ⁇ and the first time ping-ponging is detected the UE 215 may apply the lowest offset in the set (e.g., 3dB) .
  • a lower bound and an upper bound may be set up. Otherwise, the offset may increase until ping-ponging is stopped.
  • the offset applied may be adjusted based on TAI. For instance, when ping-ponging is detected among cells belonging to different TAIs, the applied offset may be larger than when detecting ping-ponging among cells belonging to the same TAI. When TAU is involved in ping-ponging, the power consumption may be even larger than when it is not involved. As such, a bigger offset (e.g., one derived from Delta_n_High or OFFSET_IRAT_HIGH) or the biggest offset in a multi-level offset setting (e.g., when there are more than two level of offsets) may make ping-ponging even less likely than using a smaller offset.
  • TAI e.g., one derived from Delta_n_High or OFFSET_IRAT_HIGH
  • the biggest offset in a multi-level offset setting e.g., when there are more than two level of offsets
  • ping-pong detection and avoidance may be used when UE 215 is outside of a scheduling mode associated with UE 215 moving out of service.
  • power consumption may be less prioritized over techniques that enable UE 215 to retain service.
  • ping-pong detection and avoidance are performed even when UE 215 is in the scheduling mode associated with UE 215 moving out of service.
  • the first cell associated with base station 205-a and the second cell associated with base station 205-b may be associated with different RATs.
  • UE 215 may reselect from the first cell to the second cell if the second cell satisfies the reselection trigger (e.g., S>ThreshX, High or S>ThreshX, low) .
  • the reselection trigger e.g., S>ThreshX, High or S>ThreshX, low
  • a suitability check e.g., S>0
  • SIB system information block
  • UE 215 may fail the suitability check if a parameter associated with SIB1 (e.g., Q rxlevmin ) for the second cell is higher than that in a SIB4 associated with the first cell.
  • the second cell may satisfy the reselection trigger (e.g., using parameters in SIB4) but may fail the suitability check once the UE is trying to perform camping later on (e.g., using parameters in the SIB1 associated with the second cell) . If a reselection trigger to the second cell happens over the threshold number of times within the time duration, UE 215 may add the second cell to the ping-pong set.
  • UE 215 When UE 215 is camped on the first cell (e.g., when the second cell is a neighbor cell) , UE 215 may set the second cell to have the same priority as the first cell. Additionally, UE 215 may use a ranking-based comparison with an offset applied to the second cell. As such, UE 215 may be less likely to reselect to the second cell.
  • UE 215 may be camped on a third cell, where the first cell and the second cell are configured as higher priority. However, UE 215 may reselect from the third cell to the first cell, where the first cell indicates that the first cell, the second cell, and the third cell have equal priority. Accordingly, UE 215 may reselect back to the third cell. Due to this inconsistent priority configuration and assuming that the second cell also indicates the first cell, the second cell, and the third cell have equal priority, UE 215 may exhibit ping-ponging behavior among the first, second, and third cells. However, if UE 215 brings the first, second, and third cells to the same priority regardless of which cell UE 215 is camped on and uses ranking and/or an offset, UE 215 may break up the ping-ponging behavior.
  • FIG. 3 illustrates an example of a ping-pong decision flow 300 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • ping-pong decision flow 300 may implement aspects of wireless communications system 100.
  • ping-pong decision flow may represent methods performed by a UE 115 to perform ping-pong detection.
  • the UE 115 may begin performing detection.
  • the detection process may be triggered by the UE 115 adding a new entry associated with a target cell (i.e., cell A) to the data structure.
  • the UE 115 may determine if the UE 115 is in an applicable scheduling mode for determining if the UE is exhibiting ping-ponging behavior with cell A. For instance, if the UE 115 is outside of a scheduling mode associated with the UE moving out of service or experiencing radio link failure, the UE 115 may proceed to 315. However, if the UE 115 is in the scheduling mode associated with the UE 115 moving out of service or experiencing radio link failure, the UE 115 may proceed to 305. In some cases, 310 may be skipped and the UE 115 may proceed directly from 305 to 315.
  • the UE 115 may determine if cell A is in the ping-pong set. For instance, if cell A is in the ping-pong set, the UE 115 may proceed to 345. However, if the cell is not in the ping-pong set, the UE 115 may proceed to 320.
  • the UE 115 may determine if cell A is associated with neighbors (e.g., cell B) that operate in a different RAT than cell A or if cell A is associated with neighbors that operate in the same RAT as cell A. If the UE 115 determines that cell A is associated with neighbors that operate in the same RAT as cell A, the UE 115 may proceed to 325. However, if the UE 115 determines that cell A is associated with neighbors that operate in a different RAT from cell A, the UE 115 may proceed to 330. In some cases, 320 may be skipped and the UE may proceed directly from 315 to 325.
  • neighbors e.g., cell B
  • the UE 115 may determine if cell A has a lower signal strength than a corresponding serving cell (e.g., cell B) . If cell A has a lower signal strength, then the UE 115 may proceed to 330. However, if cell A has a higher signal strength, then the UE 115 may proceed to 305.
  • a corresponding serving cell e.g., cell B
  • the UE 115 may determine if cell A has been logged in the data structure over a threshold number of times within a time duration. If so, the UE 115 may proceed to 335. If not, however, the UE 115 may proceed to 305. At 335, the UE 115 may add cell A to the ping-pong set and may proceed to 340.
  • the UE 115 may perform ping-pong avoidance.
  • Ping-pong avoidance may involve the UE 115 setting a reselection priority of cell A to be equal to or lower than that of its neighbors (e.g., cell B) .
  • ping-pong avoidance may involve the UE 115 applying an offset to the measured signal strength of cell A or its neighbors.
  • the UE 115 may determine if the ping-pong timer (e.g., T_z) is running. If so, the UE 115 may proceed to 340. If not, however, the UE 115 may proceed to 305.
  • the ping-pong timer e.g., T_z
  • FIG. 4 illustrates an example of a ping-pong avoidance procedure 400 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • ping-pong avoidance procedure 400 may implement aspects of wireless communications system 100.
  • ping-pong avoidance procedure 400 may illustrate an example of how a UE 115 may adjust one or more cell reselection parameters to aid in ping-pong avoidance.
  • Ping-pong avoidance procedure 400 may involve the UE 115 reselecting between cells 405-a (i.e., cell A) and 405-b (i.e., cell B) .
  • the UE 115 may select cell 405-b over a threshold number of times X 410. Once the UE 115 has reselected cell 405-b over the threshold number of times, the UE 115 may add cell 405-b to a ping-pong set at 415. Once the UE 115 reselects back to cell 405-a, the UE 115 may perform ping-pong avoidance as described herein on cell 405-b. For instance, the UE 115 may apply an offset to the measured signal strength of cell 405-b.
  • cells 405-a and 405-b may be associated with the same RAT and may have parameter values as shown in the following Table:
  • the UE 115 may apply a Q offset_temp of 25dB onto cell 405-b when the UE 115 reselects to cell 405-a after 415.
  • Q offset_temp 25dB onto cell 405-b when the UE 115 reselects to cell 405-a after 415.
  • R s >R n the UE 115 may not switch from cell 405-a to cell 405-b and the ping-ponging behavior may cease.
  • cells 405-a and 405-b may be associated with different RATs.
  • cell 405-a may be an NR cell and cell 405-b may be an LTE cell.
  • the S qual of the NR cell e.g., cell 405-a
  • the S qual of the LTE cell may be greater than Thresh X, LowQ .
  • S nonintrasearchQ may be large enough such that S qual ⁇ S nonintrasearchQ is met and the UE 115 searches for LTE neighbors (cell 405-b) .
  • Thresh serving, LowQ may be configured such that S qual ⁇ Thresh serving, LowQ and the UE 115 reselects to LTE neighbors (cell 405-b) .
  • NR cells may have a higher priority than LTE cells, however, so the UE 115 may also be more likely to reselect back to NR cells from LTE cells. As such, ping-ponging behavior may occur. To prevent ping-ponging behavior from continuing, the UE 115 may apply OFFSET_IRAT to the LTE cell (e.g., cell 405-b) .
  • FIG. 5 illustrates an example of a process flow 500 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • process flow 500 may implement aspects of wireless communications system 100.
  • process flow 500 may be implemented by base stations 505-a and 505-b, which may be examples of base stations 105 as described with reference to FIG. 1, and UE 515, which may be an example of a UE 115 as described with reference to FIG. 1.
  • UE 515 may generate a data structure (e.g., a database in the form of a table) that associates information regarding one or more target cells with a corresponding one or more instances of time at which UE 515 attempted cell reselection.
  • generating the data structure may include UE 515 adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell.
  • an entry of the data structure corresponding to the first cell may include a flag.
  • an entry of the data structure corresponding to the first cell may include a RAT associated with the first cell, a frequency (e.g., ARFCN) associated with the first cell, a PCI associated with the first cell, a CGI associated with the first cell, a TAI associated with the first cell, a routing area identifier associated with the first cell, a RAN notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  • UE 515 may identify that UE 515 is operating outside of the first scheduling mode. In some such examples, generation of the data structure is based on UE 515 operating outside of the first scheduling mode.
  • UE 515 may obtain (e.g., from the data structure) information regarding one or more target cells to which UE 515 attempted cell reselection during a time period.
  • UE 515 may determine, based on the information, that UE 515 has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. In some examples, determining that UE 515 has the number of attempted cell reselections that is greater than the threshold number of attempts is based on generating the data structure (e.g., at 502) . In some examples, UE 515 may toggle a value of the flag in the data structure based on determining that UE 515 has the number of attempted cell reselections that is greater than the threshold number of attempts.
  • UE 515 may adjust, based on the determination, one or more cell reselection parameters.
  • UE 515 may identify that reselection from the first cell to a second cell has been triggered, where the one or more adjusted cell reselection parameters are applied to reselection.
  • the one or more cell reselection parameters may be adjusted to favor the second cell based on the second cell being associated with a higher measured signal strength than the first cell.
  • the measured signal strength for each of the first cell and the second cell may correspond to an RSRP measurement for each of the first cell and the second cell, an RSSI measurement for each of the first cell and the second cell, or both.
  • UE 515 may set a timer based on determining that UE 515 has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period. In some such examples, UE 515 may apply the one or more adjusted cell reselection parameters while the timer (e.g., set at 506) is running. In some examples, UE 515 may suspend the applying of the one or more adjusted cell reselection parameters based on the timer finishing running.
  • UE 515 may reset or disable the timer based on two or more consecutive entries in a data structure (e.g., the data structure generated at 502) from which the information is obtained being associated with different CGIs, where at least one of the two or more consecutive entries is logged after setting the timer.
  • UE 515 may determine that a displacement of UE 515 over a first time interval exceeds a respective first threshold, a distance of UE 515 over a second time interval exceeds a respective second threshold, a velocity of UE 515 exceeds a respective third threshold, that UE 515 is operating in a mode associated with a high-speed train, or any combination thereof.
  • UE 515 may reset or disable the timer based on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, UE 515 operating in the mode associated with the high-speed train, or any combination thereof.
  • adjusting the one or more cell reselection parameters may include UE 515 setting a reselection priority of the first cell to be equal to a reselection priority of the second cell. Additionally or alternatively, adjusting the one or more cell reselection parameters may include applying an offset toward a measured signal strength associated with the first cell.
  • UE 515 may determine that UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset. In some such examples, UE 515 may apply a second offset to the first cell based on determining that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period after applying the offset. In some examples, the UE 515 may determine the second offset by incrementing the offset by a step size.
  • the UE 515 may determine that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset. In some such examples, the UE 515 may determine a third offset by incrementing the second offset by the step size based on determining that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset. In some such examples, the UE 515 may apply the third offset to the first cell.
  • the offset may be associated with a first offset value of a set of offset values and the second offset may be associated with a second offset value of the set of offset values subsequent to the first offset value, where the set of offset values is ordered from a lowest offset value to a highest offset value.
  • the UE 515 may determine that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the offset.
  • the UE 515 may apply a third offset to the first cell based on determining that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the third offset, where the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value.
  • the first cell and the second cell are associated with a same RAT.
  • the first cell may be associated with a different TAI, a different routing area identifier, a different RAN notification area identifier, or a different location area identifier than that of the second cell.
  • UE 515 may determine, from the information, that UE 515 has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period. Additionally, UE 515 may apply a second offset to the third cell based on determining that UE 515 has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts.
  • the second offset may be smaller than the offset based on third cell having a same TAI, a same routing area identifier, a same RAN notification area identifier, or a same location area identifier as a previously reselected cell.
  • the measured signal strength to which the offset and/or the second offset is applied may correspond to an RSRP measurement for the first cell and/or third cell, an RSSI measurement for the first cell and/or third cell, or both.
  • the first cell may be associated with a first RAT and the second cell may be associated with a second RAT.
  • UE 515 may set a reselection priority of the first cell to be lower than a reselection priority of the second cell based on the first cell being associated with the first RAT and the second cell being associated with the second RAT.
  • UE 515 may determine a priority order for RATs including the first RAT and the second RAT, where setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based on the priority order.
  • the priority order may indicate that NR has a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than GSM, or any combination thereof.
  • the priority order may indicate that GSM has a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than NR, or any combination thereof.
  • the priority order may be determined based on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  • UE 515 may refrain from performing reselection based on performing the methods described with reference to one or more of 502, 504, 506, and 508. As such, UE 515 may maintain communications with a cell associated with base station 505-b (e.g., the second cell as described herein) and/or may refrain from communicating with and/or reselecting to a cell associated with base station 505-a (e.g., the first cell as described herein) .
  • a cell associated with base station 505-b e.g., the second cell as described herein
  • UE 515 may refrain from communicating with and/or reselecting to a cell associated with base station 505-a (e.g., the first cell as described herein) .
  • FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the device 605 may be an example of aspects of a UE 115, a UE 215, or a UE 515 as described herein.
  • the device 605 may include a receiver 610, a communication manager 615, and a transmitter 620.
  • the device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for ping-pong detection and avoidance for cell reselection, etc. ) . Information may be passed on to other components of the device 605.
  • the receiver 610 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the receiver 610 may utilize a single antenna or a set of antennas.
  • the communication manager 615 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period; determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and adjust, based on the determination, one or more cell reselection parameters.
  • the communication manager 615 may be an example of aspects of the communication manager 910 described herein.
  • the communication manager 615 may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communication manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communication manager 615 may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components.
  • the communication manager 615, or its sub-components may be a separate and distinct component in accordance with various aspects of the present disclosure.
  • the communication manager 615, or its sub-components may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
  • I/O input/output
  • the transmitter 620 may transmit signals generated by other components of the device 605.
  • the transmitter 620 may be collocated with a receiver 610 in a transceiver component.
  • the transmitter 620 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the transmitter 620 may utilize a single antenna or a set of antennas.
  • FIG. 7 shows a block diagram 700 of a device 705 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the device 705 may be an example of aspects of a device 605, or a UE 115, a UE 215, or a UE 515 as described herein.
  • the device 705 may include a receiver 710, a communication manager 715, and a transmitter 735.
  • the device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for ping-pong detection and avoidance for cell reselection, etc. ) . Information may be passed on to other components of the device 705.
  • the receiver 710 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the receiver 710 may utilize a single antenna or a set of antennas.
  • the communication manager 715 may be an example of aspects of the communication manager 615 as described herein.
  • the communication manager 715 may include an information obtainer 720, a threshold determiner 725, and a cell reselection parameter adjustment component 730.
  • the communication manager 715 may be an example of aspects of the communication manager 910 described herein.
  • the information obtainer 720 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
  • the threshold determiner 725 may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the cell reselection parameter adjustment component 730 may adjust, based on the determination, one or more cell reselection parameters.
  • the transmitter 735 may transmit signals generated by other components of the device 705.
  • the transmitter 735 may be collocated with a receiver 710 in a transceiver component.
  • the transmitter 735 may be an example of aspects of the transceiver 915 described with reference to FIG. 9.
  • the transmitter 735 may utilize a single antenna or a set of antennas.
  • FIG. 8 shows a block diagram 800 of a communication manager 805 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the communication manager 805 may be an example of aspects of a communication manager 615, a communication manager 715, or a communication manager 910 described herein.
  • the communication manager 805 may include an information obtainer 810, a threshold determiner 815, a cell reselection parameter adjustment component 820, a data structure component 825, a scheduling mode identifier 830, a reselection trigger component 835, and a timer management component 840. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the information obtainer 810 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
  • the threshold determiner 815 may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. In some examples, the threshold determiner 815 may determine, from the information, that the UE has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period. In some examples, the threshold determiner 815 may determine that the UE has the number of cell attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second timer period after applying the offset.
  • the offset may be associated with a first offset value of a set of offset values and the second offset is associated with a second offset value of the set of offset values subsequent to the first offset value, where the set of offset values is ordered from a lowest offset value to a highest offset value.
  • the threshold determiner 815 may determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset.
  • the cell reselection parameter adjustment component 820 may adjust, based on the determination, one or more cell reselection parameters.
  • the cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters may include cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters to favor the second cell based on the second cell being associated with a higher measured signal strength than the first cell.
  • the measured signal strength for each of the first cell and the second cell may correspond to an RSRP measurement for each of the first cell and the second cell, an RSSI measurement for each of the first cell and the second cell, or both.
  • the cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters may include the cell reselection parameter adjustment component 820 setting a reselection priority of the first cell to be equal to a reselection priority of the second cell.
  • the cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters may include the cell reselection parameter adjustment component 820 applying an offset toward a measured signal strength associated with the first cell.
  • the measured signal strength to which the offset is applied may correspond to an RSRP measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
  • RSSI received signal strength indicator
  • the cell reselection parameter adjustment component 820 may determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset. In some examples, the cell reselection parameter adjustment component 820 may apply a second offset to the first cell based on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period after applying the offset.
  • the cell reselection parameter adjustment component 820 may determine the second offset by incrementing offset by a step size. In some examples, the cell reselection parameter adjustment component 820 may determine a third offset by incrementing the second offset by the step size based on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset. In some examples, the cell reselection parameter adjustment component 820 may apply the third offset to the first cell.
  • the cell reselection parameter adjustment component 820 may apply a third offset to the first cell based on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset, where the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value.
  • the first cell may be associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell.
  • the cell reselection parameter adjustment component 820 may apply a second offset to the third cell based at least in part on determining that the UE has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts, where the second offset is smaller than the offset based on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell.
  • the cell reselection parameter adjustment component 820 may apply the one or more adjusted cell reselection parameters while a timer is running.
  • the first cell may be associated with a first RAT and the second cell may be associated with a second RAT.
  • the cell reselection parameter adjustment component 820 may determine a priority order for radio access technologies including the first RAT and the second RAT, where setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based on the priority order.
  • the cell reselection parameter adjustment component 820 may determine a priority order for RATs including the first RAT and the second RAT, wherein setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based at least in part on the priority order.
  • the priority order may indicate that NR has a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than GSM, or any combination thereof. Additionally or alternatively, the priority order may indicate that GSM has a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than NR, or any combination thereof. In some examples, the priority order may be determined based on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  • the data structure component 825 may generate a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, where determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts is based on generating the data structure.
  • the data structure component 825 generating the data structure may include the data structure component 825 adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell.
  • an entry of the data structure corresponding to the first cell may include a flag.
  • the data structure component 825 may toggle a value of the flag based on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period.
  • an entry of the data structure corresponding to the first cell includes a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  • the scheduling mode identifier 830 may identify that the UE is operating outside of a first scheduling mode associated with moving out of service, where generation of the data structure is based on the UE operating outside of the first scheduling mode.
  • the reselection trigger component 835 may identify that reselection from the first cell to a second cell has been triggered, where the one or more adjusted cell reselection parameters are applied to the reselection.
  • the first cell and the second cell are associated with a same RAT.
  • the timer management component 840 may set a timer based on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period. In some examples, the timer management component 840 may suspend the applying of the one or more adjusted cell reselection parameters based on the timer finishing running. In some examples, the timer management component 840 may reset or disable the timer based on two or more consecutive entries in a data structure from which the information is obtained being associated with different cell global identifiers, where at least one of the two or more consecutive entries is logged after setting the timer.
  • the timer management component 840 may determine that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE is operating in a mode associated with a high-speed train, or any combination thereof. In some examples, the timer management component 840 may reset or disable the timer based on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
  • FIG. 9 shows a diagram of a system 900 including a device 905 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the device 905 may be an example of or include the components of device 605, device 705, or a UE 115, a UE 215, or a UE 515 as described herein.
  • the device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 910, a transceiver 915, an antenna 920, memory 925, and a processor 935. These components may be in electronic communication via one or more buses (e.g., bus 940) .
  • buses e.g., bus 940
  • the communication manager 910 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period; determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and adjust, based on the determination, one or more cell reselection parameters.
  • the transceiver 915 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above.
  • the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 915 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
  • the wireless device may include a single antenna 920. However, in some cases the device may have more than one antenna 920, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the memory 925 may include random-access memory (RAM) and read-only memory (ROM) .
  • the memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed, cause the processor to perform various functions described herein.
  • the memory 925 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic input/output system
  • the code 930 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications.
  • the code 930 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 930 may not be directly executable by the processor 935 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the processor 935 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 935 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 935.
  • the processor 935 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 925) to cause the device 905 to perform various functions (e.g., functions or tasks supporting ping-pong detection and avoidance for cell reselection) .
  • FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the operations of method 1000 may be implemented by a UE 115, a UE 215, a UE 515 or its components as described herein.
  • the operations of method 1000 may be performed by a communication manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
  • the operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by an information obtainer as described with reference to FIGs. 6 through 9.
  • the UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a threshold determiner as described with reference to FIGs. 6 through 9.
  • the UE may adjust, based on the determination, one or more cell reselection parameters.
  • the operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a cell reselection parameter adjustment component as described with reference to FIGs. 6 through 9.
  • FIG. 11 shows a flowchart illustrating a method 1100 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the operations of method 1100 may be implemented by a UE 115, a UE 215, a UE 515, or its components as described herein.
  • the operations of method 1100 may be performed by a communication manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
  • the operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by an information obtainer as described with reference to FIGs. 6 through 9.
  • the UE may generate a data structure that associates an information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection.
  • the operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a data structure component as described with reference to FIGs. 6 through 9.
  • the UE may determine, based on the data structure, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a threshold determiner as described with reference to FIGs. 6 through 9.
  • the UE may adjust, based on the determination, one or more cell reselection parameters.
  • the operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a cell reselection parameter adjustment component as described with reference to FIGs. 6 through 9.
  • FIG. 12 shows a flowchart illustrating a method 1200 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
  • the operations of method 1200 may be implemented by a UE 115, a UE 215, a UE 515, or its components as described herein.
  • the operations of method 1200 may be performed by a communication manager as described with reference to FIGs. 6 through 9.
  • a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
  • the UE may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
  • the operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by an information obtainer as described with reference to FIGs. 6 through 9.
  • the UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
  • the operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a threshold determiner as described with reference to FIGs. 6 through 9.
  • the UE may adjust, based on the determination, one or more cell reselection parameters.
  • the operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a cell reselection parameter adjustment component as described with reference to FIGs. 6 through 9.
  • the UE may identify that reselection from the first cell to a second cell has been triggered, where the one or more adjusted cell reselection parameters are applied to the reselection.
  • the operations of 1220 may be performed according to the methods described herein. In some examples, aspects of the operations of 1220 may be performed by a reselection trigger component as described with reference to FIGs. 6 through 9.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A user equipment (UE) may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period. The UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The UE may adjust, based on the determination, one or more cell reselection parameters. In some examples, the UE may generate a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection.

Description

TECHNIQUES FOR PING-PONG DETECTION AND AVOIDANCE FOR CELL RESELECTION
FIELD OF DISCLOSURE
The present disclosure, for example, relates to wireless communications, more particularly to techniques for ping-pong detection and avoidance for cell reselection.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
In some examples, a user equipment (UE) may reselect from a first cell to a second cell. Reselecting may involve the UE ceasing communications with the first cell and attempting to initiate communications with the second cell. However, each time the UE performs reselection, the amount of power consumed by the UE may increase compared to when the UE is not performing reselection. Increased power consumption may reduce a battery life of the UE and may, thus, be undesirable in at least some circumstances.
SUMMARY
The described techniques relate to improved methods, systems, devices, and apparatuses that supports techniques for ping-pong detection and avoidance for cell  reselection. For example, the described techniques provide for a user equipment (UE) to perform ping-pong detection and avoidance. For instance, a UE may obtain (e.g., via a data structure, such as a table) , information regarding one or more target cells to which the UE attempted cell reselection during a time period. The UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The UE may adjust, based on the determination, one or more cell reselection parameters.
A method for wireless communication at a UE is described. The method may include obtaining information regarding one or more target cells to which the UE attempted cell reselection during a time period, determining, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and adjusting, based on the determination, one or more cell reselection parameters.
An apparatus for wireless communication at a UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period, determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and adjust, based on the determination, one or more cell reselection parameters.
Another apparatus for wireless communication at a UE is described. The apparatus may include means for obtaining information regarding one or more target cells to which the UE attempted cell reselection during a time period, means for determining, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and means for adjusting, based on the determination, one or more cell reselection parameters.
A non-transitory computer-readable medium storing code for wireless communication at a UE is described. The code may include instructions executable by a  processor to obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period, determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period, and adjust, based on the determination, one or more cell reselection parameters.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for generating a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, where determining that the UE may have the number of attempted cell reselections with the first cell of the one or more target cells that may be greater than the threshold number of attempts may be based on generating the data structure.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, generating the data structure may include operations, features, means, or instructions for adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell may be greater than a target signal strength of the first cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, an entry of the data structure corresponding to the first cell may include a flag, and the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for toggling a value of the flag based on determining that the UE may have the number of attempted cell reselections with the first cell of the one or more target cells that may be greater than the threshold number of attempts during the time period.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, an entry of the data structure corresponding to the first cell includes a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification  identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that the UE may be operating outside of a first scheduling mode associated with moving out of service, where generation of the data structure may be based on the UE operating outside of the first scheduling mode.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for identifying that reselection from the first cell to a second cell may have been triggered, where the one or more adjusted cell reselection parameters may be applied to the reselection.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the one or more cell reselection parameters may include operations, features, means, or instructions for adjusting the one or more cell reselection parameters to favor the second cell based on the second cell being associated with a higher measured signal strength than the first cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the measured signal strength for each of the first cell and the second cell corresponds to a reference signal received power (RSRP) measurement for each of the first cell and the second cell, a received signal strength indicator (RSSI) measurement for each of the first cell and the second cell, or both.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the one or more cell reselection parameters may include operations, features, means, or instructions for setting a reselection priority of the first cell to be equal to a reselection priority of the second cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, adjusting the one or more cell reselection parameters may include operations, features, means, or instructions for applying an offset toward a measured signal strength associated with the first cell.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during a second time period after applying the offset, and applying a second offset to the first cell based on determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during the second time period after applying the offset.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining the second offset by incrementing the offset by a step size.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during a third time period after applying the second offset, determining a third offset by incrementing the second offset by the step size based on determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during the third time period after applying the second offset, and applying the third offset to the first cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the offset may be associated with a first offset value of a set of offset values and the second offset may be associated with a second offset value of the set of offset values subsequent to the first offset value, where the set of offset values may be ordered from a lowest offset value to a highest offset value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during a third time period after applying the offset, and applying a third offset to the first cell based on determining that the UE may have the number of attempted cell reselections with the first cell that may be greater than the threshold number of attempts during the third time period after applying the second  offset, where the third offset may be associated with a third offset value of the set of offset values subsequent to the second offset value.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first cell may be associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell, and the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining, from the information, that the UE may have a second number of attempted cell reselections with a third cell that may be greater than a second threshold number of attempts during a second time period, and applying a second offset to the third cell based on determining that the UE may have the second number of attempted cell reselections with the third cell that may be greater than the second threshold number of attempts, where the second offset may be smaller than the offset based on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the measured signal strength to which the offset may be applied corresponds to a reference signal received power (RSRP) measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for setting a timer based on determining that the UE may have the number of attempted cell reselections with the first cell of the one or more target cells that may be greater than the threshold number of attempts during the time period, and applying the one or more adjusted cell reselection parameters while the timer may be running.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for suspending the applying of the one or more adjusted cell reselection parameters based on the timer finishing running.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for resetting or disabling the timer based on two or more consecutive entries in a data structure from which the information may be obtained being associated with different cell global identifiers, where at least one of the two or more consecutive entries may be logged after setting the timer.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE may be operating in a mode associated with a high-speed train, or any combination thereof, and resetting or disabling the timer based on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first cell may be associated with a first radio access technology and the second cell may be associated with a second radio access technology, and the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for setting a reselection priority of the first cell to be lower than a reselection priority of the second cell based on the first cell being associated with the first radio access technology and the second cell being associated with the second radio access technology.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for determining a priority order for radio access technologies including the first radio access technology and the second radio access technology, where setting the reselection priority of the first cell to be lower than the reselection priority of the second cell may be based on the priority order.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the priority order indicates that new radio (NR) may have a higher priority than one or both of LTE and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-A may have a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA may have a higher priority than Global System for Mobile Communications (GSM) , or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the priority order indicates that Global System for Mobile Communications (GSM) may have a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA may have a higher priority than one or both of LTE and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-A may have a higher priority than new radio (NR) , or any combination thereof.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the priority order may be determined based on a location of the UE, a service coverage of the UE, or a preference set at the UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the first cell and the second cell may be associated with a same radio access technology.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 illustrates an example of a wireless communications system that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIG. 3 illustrates an example of a ping-pong decision flow that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIG. 4 illustrates an example of a ping-pong avoidance procedure that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIG. 5 illustrates an example of a process flow that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIGs. 6 and 7 show block diagrams of devices that support techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIG. 8 shows a block diagram of a communication manager that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIG. 9 shows a diagram of a system including a device that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
FIGs. 10 through 12 show flowcharts illustrating methods that support techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
A user equipment (UE) may communicate with a base station which may provide communication coverage with the UE via a first cell. In some examples, the UE may reselect from the first cell to a second cell. Reselection may involve the UE ceasing communications with the first cell and/or attempting to initiate communications with the second cell. The UE perform the reselection due to the second cell having a higher reselection priority than the first cell or due to a threshold parameter for reselection (e.g., measured signal strength with the first cell or second cell) exceeding a threshold.
However, in some examples, the UE may perform reselection among a limited set of cells multiple times in a short time duration (e.g., a time duration below a threshold amount) . For instance, the UE may reselect from the first cell to the second cell and then back  from the second cell to the first cell multiple times within the short time duration. Such behavior may be referred to as ping-ponging. Ping-ponging may occur due to inconsistent or improper configuration of reselection parameters (e.g., setting thresholds for performing reselection too low) or due to inconsistent configuration of reselection priorities (e.g., having the first cell indicate that the second cell has a higher reselection priority while the second cell indicates that the first cell has the higher reselection priority) . When the UE exhibits ping-ponging behavior, the UE may consume an increased amount of power which may limit a battery life of the UE.
The methods described herein enable a UE to detect and avoid ping-ponging behavior. For instance, the UE may generate a data structure (e.g., a database in the form of a table) that associates information regarding one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection. The UE may obtain the information for a time period and may determine, based on the information, that the UE has a number of attempted cell reselections with a cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The UE may adjust, based on the determination, one or more cell reselection parameters. For instance, the UE may adjust a reselection priority among the one or more target cells, may apply an offset toward a measured signal strength of at least one of the one or more target cells, or both. By adjusting the one or more cell reselection parameters in this way, the UE may avoid and/or mitigate ping-ponging behavior.
Aspects of the disclosure are initially described in the context of wireless communications systems. Additional aspects of the disclosure are described in the context of a ping-pong decision flow, a ping-pong avoidance procedure, and a process flow. Aspects of the disclosure are further illustrated by and described with reference to apparatus diagrams, system diagrams, and flowcharts that relate to techniques for ping-pong detection and avoidance for cell reselection.
FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution  (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a geographic coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125. The geographic coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a geographic coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next- generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s=1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
Each base station 105 may provide communication coverage via one or more cells, for example a macro cell, a small cell, a hot spot, or other types of cells, or any combination thereof. The term “cell” may refer to a logical communication entity used for communication with a base station 105 (e.g., over a carrier) and may be associated with an identifier for distinguishing neighboring cells (e.g., a physical cell identifier (PCID) , a virtual cell identifier (VCID) , or others) . In some examples, a cell may also refer to a geographic coverage area 110 or a portion of a geographic coverage area 110 (e.g., a sector) over which the logical communication entity operates. Such cells may range from smaller areas (e.g., a structure, a subset of structure) to larger areas depending on various factors such as the capabilities of the base station 105. For example, a cell may be or include a building, a subset  of a building, or exterior spaces between or overlapping with geographic coverage areas 110, among other examples.
A macro cell, for example, covers a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by the UEs 115 with service subscriptions with the network provider supporting the macro cell. A small cell may be associated with a lower-powered base station 105, as compared with a macro cell, and a small cell may operate in the same or different (e.g., licensed, unlicensed) frequency bands as macro cells. Small cells may provide unrestricted access to the UEs 115 with service subscriptions with the network provider or may provide restricted access to the UEs 115 having an association with the small cell (e.g., the UEs 115 in a closed subscriber group (CSG) , the UEs 115 associated with users in a home or office) . A base station 105 may support one or multiple cells and may also support communications over the one or more cells using one or multiple component carriers.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or  group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be connected to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . For example, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at different orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a different orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station  105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as  synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be multiple-access systems capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . A wireless network, for example a wireless local area network (WLAN) , such as a Wi-Fi (i.e., Institute of Electrical and Electronics Engineers (IEEE) 802.11) network may include an  access point (AP) that may communicate with one or more wireless or mobile devices. The AP may be coupled to a network, such as the Internet, and may enable a mobile device to communicate via the network (or communicate with other devices coupled to the access point) . A wireless device may communicate with a network device bi-directionally. For example, in a WLAN, a device may communicate with an associated AP via downlink (e.g., the communication link from the AP to the device) and uplink (e.g., the communication link from the device to the AP) . A wireless personal area network (PAN) , which may include a Bluetooth connection, may provide for short range wireless connections between two or more paired wireless devices. For example, wireless devices such as cellular phones may utilize wireless PAN communications to exchange information such as audio signals with wireless headsets.
In some examples, the described techniques provide for a UE 115 to perform ping-pong detection and avoidance. For instance, a UE 115 may obtain (e.g., via a data structure, such as a table) , information regarding one or more target cells to which the UE 115 attempted cell reselection during a time period. The UE 115 may determine, based on the information, that the UE 115 has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The UE 115 may adjust, based on the determination, one or more cell reselection parameters.
FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. In some examples, wireless communications system 200 may implement aspects of wireless communications system 100. For instance, base stations 205-a and 205-b may be examples of base stations 105 as described with reference to FIG. 1, coverage areas 210-a and 210-b may be examples of geographic coverage areas 110 as described with reference to FIG. 1, and UE 215 may be an example of a UE 115 as described with reference to FIG. 1.
UE 215 may be within a coverage area 210-a of base station 205-a and may also be within a coverage area 210-b of base station 205-b. Coverage area 210-a of base station 205-a may be associated with a first cell and coverage area 210-b of base station 205-b may be associated with a second cell. UE 215 may communicate with the first cell associated with  base station 205-a when in cell configuration 202-a and may communicate with the second cell associated with base station 205-b when in cell configuration 202-b. UE 215 may transition from cell configuration 202-a to cell configuration 202-b by reselecting from the first cell to the second cell. Similarly, UE 215 may transition from cell configuration 202-b to cell configuration 202-a by reselecting from the second cell to the first cell.
In some examples (e.g., due to improper or inconsistent network configurations) , UE 215 may reselect among a limited set of cells and move between cells often (e.g., above a threshold number of times in a predefined duration) . For instance, initially UE 215 may communicate with the first cell in cell configuration 202-a. However, within a relatively small time duration (e.g., a time duration below a threshold amount) , UE 215 may transition from cell configuration 202-a to cell configuration 202-b (e.g., by reselecting to the second cell) , then back to cell configuration 202-a (e.g., by reselecting the first cell) , and may repeat this process throughout the time duration. Such behavior may be referred to as ping-ponging or ping-pong reselection. Causes of ping-ponging may include inconsistent or improper configuration of reselection parameters (e.g., improper values for ThreshX, Low/ThreshX, High , Qrxlevminoffset) , inconsistent configuration of reselection priority (e.g., the first cell indicating that the second cell has a higher reselection priority and the second cell indicating that the first cell has a higher reselection priority) .
In some examples, ping-pong reselection may increase the power consumption of UE 215. Such increase in power consumption may occur due to reselection evaluation, camping processing, performing a tracking area update (TAU) procedure, performing a radio access network (RAN) -based notification area update (RNAU) procedure (e.g., when UE 215 is in an inactive state) , updating registration, or any combination thereof. This increase in the power consumption of UE 215 may decrease a battery life of UE 215. As such, methods which limit ping-ponging may enable decreased power consumption at UE 215 and may increase a battery life of UE 215.
In some cases, conditions for detecting a ping-pong may differ depending on whether ping-pong occurs between intra-RAT cells (e.g., cells that operate within the same radio access technology (RAT) ) or inter-rat cells (e.g., cells that operate within different RATs, such as NR and LTE) . For instance, ping-ponging between intra-RAT cells may be detected when a signal strength of a source cell is greater than a signal strength of a target cell  when reselection is triggered (e.g., going from a stronger cell to a weaker cell) and when the same target cell has appeared in the ping-pong data structure at least X-1 times in a predefined time duration (e.g., Y seconds from the current time) . In some examples, ping-pong may still be detected even if reselection fails after being triggered.
Meanwhile, ping-ponging between inter-RAT cells may be detected if the same target cell has appeared in a ping-pong data structure at least P-1 times in a predefined time duration (e.g., Q seconds from the current time) . Additionally or alternatively, inter-RAT cells may be detected if the signal strength of a source cell is greater than the signal strength of a target cell when reselection is triggered. Although different RATs may have different metrics for measured signal strength, UE 215 may apply one or more operations to the different metrics in order to compare them. In some examples, a metric (e.g., ranking) may be defined between different RATs that is similar to a metric defined for intra-RAT equal-priority reselection. In such examples, ping-ponging avoidance may be applied to the inter-RAT case similar to how UE 215 applies ping-ponging avoidance to the intra-RAT case. In some examples, normalized metrics (e.g., normalized RSSI, normalized RSRP) may be used to compare the signal strength between different RATs. In some examples, normalized metrics may be obtained using the measured signal strength (e.g., RSSI, RSSP) and a reference signal level (e.g., the division of the measured signal strength over the reference signal strength) .
As described herein, in order to detect ping-ponging, UE 215 may generate a data structure (e.g., a database which may be in the form of a table) according to the conditions described herein. Table 1 presents an example of the data structure in the form of a database:
Table 1: Ping-Pong Database
Figure PCTCN2020119896-appb-000001
Figure PCTCN2020119896-appb-000002
Each entry of Table 1 includes an associated index, a set of identifier fields which UE 215 may use to identify a target cell, a ping-pong set flag which UE 215 may use to determine whether or not ping-ponging has been detected for the target cell, and a timestamp which may indicate when cell reselection to the target cell was triggered. The set of identifier fields may include a field indicating which RAT is associated with the target cell, a field indicating a frequency associated with the target cell (e.g., absolute radio-frequency channel number (ARFCN) or Evolved Universal Terrestrial Access (E-UTRA) ARFCN (EARFCN) ) , a field corresponding to a physical cell identifier (PCI) and/or a cell global identity (CGI) associated with the target cell, a field corresponding to a tracking area identifier (TAI) associated with the target cell, or any combination thereof. Additionally or alternatively, the set of identifier fields may include a field associated with a routing area identifier (RAI) , a field associated with a RAN notification area identifier, a field associated with a location area identifier (LAI) , or any combination thereof. The PCI may be determined based on a search (e.g., via primary synchronization signal and/or secondary synchronization signal) . The CGI may be available at the serving cell and may be available on neighbor cells when UE 215 is in an idle or inactive mode (e.g., via a background public land mobile network (BPLMN) search or past camping history) . Each TAI may be associated with a tracking area code (TAC) and a public land mobile network (PLMN) .
In one example of how the database corresponding to Table 1 may be generated, a UE 115 may initially reselect from cell A to cell C, where both cell A and cell C correspond to a same RAT (e.g., NR) and where cell C has a higher associated signal strength. Since cell C (e.g., the target cell) has a higher signal strength than cell A (e.g., the source cell) , no entry may be added to Table 1 for cell C. At a later time (e.g., 08: 30: 00) , the UE 115 may trigger reselection from cell C to cell A. Since cell A (e.g., the target cell) has a lower signal strength  than cell C (e.g., the source cell) , an entry corresponding to index 1 for cell A may be added to the Table 1. After reselecting to cell A, the UE 115 may trigger (e.g., at 08: 31: 00) reselection to cell B. Cell A and cell B may correspond to different RATs (e.g., cell A may correspond to NR and cell B may correspond to LTE) . As such, an entry corresponding to index 2 for cell B may be added to the table.
After reselecting to cell B, the UE 115 may trigger (e.g., at 08: 32: 00) reselection from cell B to cell A. As cell A and cell B may correspond to different RATs, an entry corresponding to index 3 for cell A may be added to the table. At a later time after reselecting to cell A, the UE 115 may reselect to cell C. After reselecting to cell C, the UE 115 may trigger (e.g., at 8: 38: 00) reselection to cell A. Cell A (e.g., the target cell) may have a lower signal strength than cell C (e.g., the source cell) . As such, an entry corresponding to index 10 for cell A may be added to the table. Assuming that, for instance, X=3 and Y=10 minutes (e.g., 600 seconds) , ping-ponging may be detected when the entry with index 10 is added to the table. When ping-ponging is detected, the ping-pong set flag may be toggled (e.g., from 0 to 1) to indicate that ping-ponging has been detected. Additionally or alternatively, UE 215 may add the target cell to a ping-pong set.
Once UE 215 has detected ping-ponging, UE 215 may perform ping-ponging avoidance, which may involve UE 215 adjusting one or more cell reselection parameters. For intra-RAT neighbors (e.g., when the first and second cells are associated with the same RAT) , UE 215 may set the neighbor frequency to have the same reselection priority as the serving frequency. Additionally or alternatively, UE 215 may apply an offset toward measured signal strength (e.g., reference signal received power (RSRP) , received signal strength indicator (RSSI) ) of the neighbor cell. In some examples, the one or more cell reselection parameters may be adjusted if a signal strength of the serving cell is greater than a signal strength of the target cell but may not be performed if the signal strength of the serving cell is lesser than the signal strength of the target cell. UE 215 may perform the adjustment selectively so that UE 215 stays in the cell with the higher signal strength when breaking up the ping-pong (e.g., when performing ping-ponging avoidance) .
For inter-RAT neighbors (e.g., when the first and second cells are associated with different RATs) , the cell whose RAT is associated with an older generation may be set to have a lower reselection priority than the cell whose RAT is associated with a new  generation. For instance, for NR to LTE inter-RAT reselection, UE 215 may set LTE neighbor frequencies reselection priority to be lower than an NR serving cell. In some such examples, RATs associated with 5G (NR) may have a higher priority than RATs associated with 4G (e.g., LTE or LTE-A) , RATs associated with 4G may have a higher priority than RATs associated with third generation (3G) (e.g., wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) ) , RATs associated with 3G may have a higher priority than RATs associated with second generation (2G) (e.g., Global System for Mobile Communications (GSM) , or any combination thereof. Additionally or alternatively, RATs associated 2G may have a higher priority than RATs associated with 3G, RATs associated with 3G may have a higher priority than RATs associated 4G, RATs associated with 4G may have a higher priority than RATs associated with 5G, or any combination thereof. In some examples, UE 215 may determine a priority order for the RATs and may determine which cell to set to have the lower reselection priority according to the priority order.
Additionally or alternatively, for inter-RAT neighbors, an offset (e.g., OFFSET_IRAT) may be applied towards a measured signal strength (e.g., RSRP, RSSI) of the inter-RAT neighbor cells in the ping-pong set. In some examples, the one or more cell reselection parameters may be adjusted if a signal strength of the serving cell is greater than a signal strength of the target cell but may not be performed if the signal strength of the serving cell is lesser than the signal strength of the target cell. UE 215 may perform the adjustment selectively so that UE 215 stays in the cell with the higher signal strength when breaking up the ping-pong (e.g., when performing ping-ponging avoidance) . Additionally or alternatively, the one or more cell reselection parameters may be adjusted if UE 215 is camped on a RAT that has a higher priority in the priority order (e.g., a newer generation RAT) . In such examples, UE 215 may evaluate reselection to a RAT that has a lower priority in the priority order (e.g., an older generation RAT) so that UE 215 stays camped on the higher priority RAT when breaking up ping-pong. Additionally or alternatively, the priority order and/or one or more cell reselection parameters may be adjusted based on location, service coverage, UE preference (e.g., via a user interface (UI) display) , or any combination thereof.
In some examples, UE 215 may set a timer (e.g., T_z which may, for instance, equal 10 minutes) during which the one or more adjusted cell reselection parameters are applied. Once the timer finishes running, UE 215 may suspend the applying of the one or  more adjusted cell reselection parameters (e.g., UE 215 may suspend ping-ponging avoidance behavior and may remove the corresponding target cell from the ping-pong set) . In some examples, the timer may be reset or disabled before the time on the timer has elapsed (e.g., ping-ponging behavior may be terminated early) . For instance, if a number of consecutive CGI changes in a predefined time (e.g., T_CGI seconds where T_CGI is configurable and may, for instance, equal 5 minutes) is above a threshold amount (e.g., Count_CGI, where Count_CGI is configurable and may, for instance, equal 3) and each CGI is distinctive, UE 215 may stop the timer on a neighbor cell whose PCI is part of the ping-pong set. Such a scenario may indicate that UE 215 is moving in an area with dense cell deployment in which there is a higher probability for PCI duplication. As such, such behavior may prevent errantly applying the adjusted one or more cell parameters on different cells that share the same PCI. Additionally or alternatively, if UE 215 detects high mobility (e.g., based on sensor inputs) or if high-speed train (HST) is enabled, UE 215 may stop the timer and disable ping-pong avoidance temporarily (e.g., while in high mobility) . UE 215 may reset or disable the timer in such circumstances as ping-ponging may be less likely when UE 215 is moving quickly. If UE 215 is detected to be moving in circles however, the timer may not be stopped. In some examples, high mobility may correspond to UE 215 determining that a displacement of UE 215 over a first time interval exceeds a respective first threshold, a distance of UE 215 over a second time interval exceeds a respective second threshold, a velocity of UE 215 exceeds a third threshold, or any combination thereof.
In some examples, a lower offset may be initially applied for the first N times that ping-pong is detected. However, if ping-pong is detected again after N times, a higher offset may be applied. Additionally or alternatively, UE 215 may apply a multi-level offset where more than two level of offsets may be applied based on the number of times that ping-ponging is detected over time. In some examples, the lower and higher offsets applied for intra-RAT neighbors may be different than the lower and higher offsets for inter-RAT neighbors. In some examples, the lower and higher offsets may be configurable. In some examples, the values of the lower and higher offsets may be obtained via cloud sourcing based on location (e.g., based on PLMN) , user data, or machine learning. It should be noted that values for timers (e.g., Y, M, T_z, T_CGI) , counters (e.g., X, Count_CGI) and other configurable parameters may also be obtained via cloud sourcing based on location, user data, or machine learning.
For the intra-NR case (e.g., where the neighbor cells and the serving cell are NR) , the offset may equal max (Q Offset+Q hyst, Delta_n) , where Delta_n may equal Delta_n_Low (e.g., 3 dB) for the first N times that ping-ponging is detected and may equal Delta_n_High (e.g., 5dB) if ping-pong after that (e.g., after ping-ponging has been detected N+1 times) . It should be noted that N, Delta_n_Low, and Delta_n_High may be configurable. For the inter-RAT case (e.g., for the NR to LTE (N2L) case) , the offset may equal OFFSET_IRAT_LOW for the first N times that ping-ponging is detected and may equal OFFSET_IRAT_HIGH after that. If should be noted that OFFSET_IRAT_LOW and OFFSET_IRAT_HIGH may be configurable. In some examples, the offsets described herein may also be used for other RATs (e.g., intra-LTE, L2W/G/T reselection) . For these other RATs, Q Offset, Q hyst, or both may be updated (e.g., depending on the parameters used for ranking calculation for equal priority reselection of that RAT) .
In some examples, the UE 215 may apply more than two offsets. In a first example, the UE 215 may define a lower bound for an offset (e.g., 3 dB) and an upper bound for an offset (e.g., 10 dB) . Initially, when ping-ponging is detected, the UE 215 may apply the offset at the lower bound (e.g., 3 dB) . However, each subsequent time the UE 215 detects ping-pong, the UE 215 may apply an offset that is higher by a fixed step size (e.g., 1 dB) . For instance, the first time ping-ponging is detected, the UE 215 may apply an offset of 3dB, the second time ping-ponging is detected the UE 215 may apply an offset of 4dB, the third time ping-ponging is detected the UE 215 may apply an offset of 5dB, and so on until the offset reaches the upper bound. In a second example, a set of more than two offsets may be configured at the UE 215 (e.g., by one of base stations 205-a or 205-b) . For instance, the UE 215 may be configured with the set {3dB, 5dB, 8dB, 10dB} and the first time ping-ponging is detected the UE 215 may apply the lowest offset in the set (e.g., 3dB) . The second time ping-ponging is detected, the UE 215 may apply the next lowest offset in the set (e.g., 5dB) , and so on until the UE 215 reaches the highest offset in the best. In some such examples, a lower bound and an upper bound may be set up. Otherwise, the offset may increase until ping-ponging is stopped.
In some examples, the offset applied may be adjusted based on TAI. For instance, when ping-ponging is detected among cells belonging to different TAIs, the applied offset may be larger than when detecting ping-ponging among cells belonging to the same TAI. When TAU is involved in ping-ponging, the power consumption may be even larger than  when it is not involved. As such, a bigger offset (e.g., one derived from Delta_n_High or OFFSET_IRAT_HIGH) or the biggest offset in a multi-level offset setting (e.g., when there are more than two level of offsets) may make ping-ponging even less likely than using a smaller offset.
In some examples, ping-pong detection and avoidance may be used when UE 215 is outside of a scheduling mode associated with UE 215 moving out of service. When UE 215 is moving out of service, power consumption may be less prioritized over techniques that enable UE 215 to retain service. However, it should be noted that there may be examples where ping-pong detection and avoidance are performed even when UE 215 is in the scheduling mode associated with UE 215 moving out of service.
In some examples, the first cell associated with base station 205-a and the second cell associated with base station 205-b may be associated with different RATs. In some such examples, UE 215 may reselect from the first cell to the second cell if the second cell satisfies the reselection trigger (e.g., S>ThreshX, High or S>ThreshX, low) . However, in some examples, a suitability check (e.g., S>0) may fail after UE 215 switches to the second cell and acquires a system information block (SIB) (e.g., SIB1) therein. UE 215 may fail the suitability check if a parameter associated with SIB1 (e.g., Q rxlevmin) for the second cell is higher than that in a SIB4 associated with the first cell. Thus, the second cell may satisfy the reselection trigger (e.g., using parameters in SIB4) but may fail the suitability check once the UE is trying to perform camping later on (e.g., using parameters in the SIB1 associated with the second cell) . If a reselection trigger to the second cell happens over the threshold number of times within the time duration, UE 215 may add the second cell to the ping-pong set. When UE 215 is camped on the first cell (e.g., when the second cell is a neighbor cell) , UE 215 may set the second cell to have the same priority as the first cell. Additionally, UE 215 may use a ranking-based comparison with an offset applied to the second cell. As such, UE 215 may be less likely to reselect to the second cell.
In some examples, UE 215 may be camped on a third cell, where the first cell and the second cell are configured as higher priority. However, UE 215 may reselect from the third cell to the first cell, where the first cell indicates that the first cell, the second cell, and the third cell have equal priority. Accordingly, UE 215 may reselect back to the third cell. Due to this inconsistent priority configuration and assuming that the second cell also  indicates the first cell, the second cell, and the third cell have equal priority, UE 215 may exhibit ping-ponging behavior among the first, second, and third cells. However, if UE 215 brings the first, second, and third cells to the same priority regardless of which cell UE 215 is camped on and uses ranking and/or an offset, UE 215 may break up the ping-ponging behavior.
FIG. 3 illustrates an example of a ping-pong decision flow 300 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. In some examples, ping-pong decision flow 300 may implement aspects of wireless communications system 100. For instance, ping-pong decision flow may represent methods performed by a UE 115 to perform ping-pong detection.
At 305, the UE 115 may begin performing detection. The detection process may be triggered by the UE 115 adding a new entry associated with a target cell (i.e., cell A) to the data structure.
At 310, the UE 115 may determine if the UE 115 is in an applicable scheduling mode for determining if the UE is exhibiting ping-ponging behavior with cell A. For instance, if the UE 115 is outside of a scheduling mode associated with the UE moving out of service or experiencing radio link failure, the UE 115 may proceed to 315. However, if the UE 115 is in the scheduling mode associated with the UE 115 moving out of service or experiencing radio link failure, the UE 115 may proceed to 305. In some cases, 310 may be skipped and the UE 115 may proceed directly from 305 to 315.
At 315, the UE 115 may determine if cell A is in the ping-pong set. For instance, if cell A is in the ping-pong set, the UE 115 may proceed to 345. However, if the cell is not in the ping-pong set, the UE 115 may proceed to 320.
At 320, the UE 115 may determine if cell A is associated with neighbors (e.g., cell B) that operate in a different RAT than cell A or if cell A is associated with neighbors that operate in the same RAT as cell A. If the UE 115 determines that cell A is associated with neighbors that operate in the same RAT as cell A, the UE 115 may proceed to 325. However, if the UE 115 determines that cell A is associated with neighbors that operate in a different RAT from cell A, the UE 115 may proceed to 330. In some cases, 320 may be skipped and the UE may proceed directly from 315 to 325.
At 325, the UE 115 may determine if cell A has a lower signal strength than a corresponding serving cell (e.g., cell B) . If cell A has a lower signal strength, then the UE 115 may proceed to 330. However, if cell A has a higher signal strength, then the UE 115 may proceed to 305.
At 330, the UE 115 may determine if cell A has been logged in the data structure over a threshold number of times within a time duration. If so, the UE 115 may proceed to 335. If not, however, the UE 115 may proceed to 305. At 335, the UE 115 may add cell A to the ping-pong set and may proceed to 340.
At 340, the UE 115 may perform ping-pong avoidance. Ping-pong avoidance, as described herein, may involve the UE 115 setting a reselection priority of cell A to be equal to or lower than that of its neighbors (e.g., cell B) . Additionally or alternatively, ping-pong avoidance may involve the UE 115 applying an offset to the measured signal strength of cell A or its neighbors.
At 345, the UE 115 may determine if the ping-pong timer (e.g., T_z) is running. If so, the UE 115 may proceed to 340. If not, however, the UE 115 may proceed to 305.
FIG. 4 illustrates an example of a ping-pong avoidance procedure 400 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. In some examples, ping-pong avoidance procedure 400 may implement aspects of wireless communications system 100. For instance, ping-pong avoidance procedure 400 may illustrate an example of how a UE 115 may adjust one or more cell reselection parameters to aid in ping-pong avoidance.
Ping-pong avoidance procedure 400 may involve the UE 115 reselecting between cells 405-a (i.e., cell A) and 405-b (i.e., cell B) . In the present ping-pong avoidance procedure 400, the UE 115 may select cell 405-b over a threshold number of times X 410. Once the UE 115 has reselected cell 405-b over the threshold number of times, the UE 115 may add cell 405-b to a ping-pong set at 415. Once the UE 115 reselects back to cell 405-a, the UE 115 may perform ping-pong avoidance as described herein on cell 405-b. For instance, the UE 115 may apply an offset to the measured signal strength of cell 405-b.
In one example, cells 405-a and 405-b may be associated with the same RAT and may have parameter values as shown in the following Table:
Table 2: Cell Reselection Parameters
Figure PCTCN2020119896-appb-000003
The UE may determine R s according to R s=Q meas, s+Q hyst+Q offset_temp, where Q meas, s may correspond to the value of RSRP_s and where Q offset_temp may correspond to an applied offset amount, if any. The UE may determine R n according to R n=Q meas, r+Q offset+Q offset_temp, where Q meas, r may correspond to RSRP_n. If Q offset_temp is determined according to max (Q offset+Q hyst, Delta_n) , the UE 115 may apply a Q offset_temp of 25dB onto cell 405-b when the UE 115 reselects to cell 405-a after 415. As such, when the cell reselects to cell 405-a, R s=-85 dBm and R n=80-25= -105 dBM. As R s>R n, the UE 115 may not switch from cell 405-a to cell 405-b and the ping-ponging behavior may cease.
In another example, cells 405-a and 405-b may be associated with different RATs. For instance, cell 405-a may be an NR cell and cell 405-b may be an LTE cell. In the present example, the UE 115 may determine that NR cells have a higher priority than LTE cells. Additionally, the UE 115 may determine that S nonintrasearchQ=60dB, Thresh serving, LowQ=50dB, and Thresh X, LowQ=20dB. In some such examples, the S qual of the NR cell (e.g., cell 405-a) may be less than Thresh serving, LowQ and the S qual of the LTE cell may be greater than Thresh X, LowQ. S nonintrasearchQ may be large enough such that S qual<S nonintrasearchQ is met and the UE 115 searches for LTE neighbors (cell 405-b) . Additionally, Thresh serving, LowQ may be configured such that S qual<Thresh serving, LowQ and the UE 115 reselects to LTE neighbors (cell 405-b) . NR cells may have a higher priority than LTE cells, however, so the UE 115 may also be more likely to reselect back to NR cells from LTE cells. As such, ping-ponging behavior may occur. To prevent ping-ponging behavior from continuing, the UE 115 may apply OFFSET_IRAT to the LTE cell (e.g., cell 405-b) .
FIG. 5 illustrates an example of a process flow 500 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. In some examples, process flow 500 may implement aspects of wireless communications system 100. For instance, process flow 500 may be implemented by base stations 505-a and 505-b, which may be examples of base stations 105 as described with reference to FIG. 1, and UE 515, which may be an example of a UE 115 as described with reference to FIG. 1.
At 502, UE 515 may generate a data structure (e.g., a database in the form of a table) that associates information regarding one or more target cells with a corresponding one or more instances of time at which UE 515 attempted cell reselection. In some examples, generating the data structure may include UE 515 adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell. In some examples, an entry of the data structure corresponding to the first cell may include a flag. In some examples, an entry of the data structure corresponding to the first cell may include a RAT associated with the first cell, a frequency (e.g., ARFCN) associated with the first cell, a PCI associated with the first cell, a CGI associated with the first cell, a TAI associated with the first cell, a routing area identifier associated with the first cell, a RAN notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof. In some examples, UE 515 may identify that UE 515 is operating outside of the first scheduling mode. In some such examples, generation of the data structure is based on UE 515 operating outside of the first scheduling mode.
At 504, UE 515 may obtain (e.g., from the data structure) information regarding one or more target cells to which UE 515 attempted cell reselection during a time period.
At 506, UE 515 may determine, based on the information, that UE 515 has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. In some examples, determining that UE 515 has the number of attempted cell reselections that is greater than the threshold number of attempts is based on generating the data structure (e.g., at 502) . In some examples, UE 515 may toggle a value of the flag in the data structure based on determining  that UE 515 has the number of attempted cell reselections that is greater than the threshold number of attempts.
At 508, UE 515 may adjust, based on the determination, one or more cell reselection parameters. In some examples, UE 515 may identify that reselection from the first cell to a second cell has been triggered, where the one or more adjusted cell reselection parameters are applied to reselection. In some such examples, the one or more cell reselection parameters may be adjusted to favor the second cell based on the second cell being associated with a higher measured signal strength than the first cell. The measured signal strength for each of the first cell and the second cell may correspond to an RSRP measurement for each of the first cell and the second cell, an RSSI measurement for each of the first cell and the second cell, or both.
In some examples, UE 515 may set a timer based on determining that UE 515 has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period. In some such examples, UE 515 may apply the one or more adjusted cell reselection parameters while the timer (e.g., set at 506) is running. In some examples, UE 515 may suspend the applying of the one or more adjusted cell reselection parameters based on the timer finishing running. In some examples, UE 515 may reset or disable the timer based on two or more consecutive entries in a data structure (e.g., the data structure generated at 502) from which the information is obtained being associated with different CGIs, where at least one of the two or more consecutive entries is logged after setting the timer. In some examples, UE 515 may determine that a displacement of UE 515 over a first time interval exceeds a respective first threshold, a distance of UE 515 over a second time interval exceeds a respective second threshold, a velocity of UE 515 exceeds a respective third threshold, that UE 515 is operating in a mode associated with a high-speed train, or any combination thereof. In some such examples, UE 515 may reset or disable the timer based on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, UE 515 operating in the mode associated with the high-speed train, or any combination thereof.
In some examples, adjusting the one or more cell reselection parameters may include UE 515 setting a reselection priority of the first cell to be equal to a reselection  priority of the second cell. Additionally or alternatively, adjusting the one or more cell reselection parameters may include applying an offset toward a measured signal strength associated with the first cell.
In some examples, UE 515 may determine that UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset. In some such examples, UE 515 may apply a second offset to the first cell based on determining that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period after applying the offset. In some examples, the UE 515 may determine the second offset by incrementing the offset by a step size. In some examples, the UE 515 may determine that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset. In some such examples, the UE 515 may determine a third offset by incrementing the second offset by the step size based on determining that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset. In some such examples, the UE 515 may apply the third offset to the first cell. Additionally or alternatively, the offset may be associated with a first offset value of a set of offset values and the second offset may be associated with a second offset value of the set of offset values subsequent to the first offset value, where the set of offset values is ordered from a lowest offset value to a highest offset value. In some such examples, the UE 515 may determine that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the offset. In some such examples, the UE 515 may apply a third offset to the first cell based on determining that the UE 515 has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the third offset, where the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value. In some examples, the first cell and the second cell are associated with a same RAT.
In some examples, the first cell may be associated with a different TAI, a different routing area identifier, a different RAN notification area identifier, or a different location area identifier than that of the second cell. In some such examples, UE 515 may determine, from  the information, that UE 515 has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period. Additionally, UE 515 may apply a second offset to the third cell based on determining that UE 515 has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts. The second offset may be smaller than the offset based on third cell having a same TAI, a same routing area identifier, a same RAN notification area identifier, or a same location area identifier as a previously reselected cell. The measured signal strength to which the offset and/or the second offset is applied may correspond to an RSRP measurement for the first cell and/or third cell, an RSSI measurement for the first cell and/or third cell, or both.
In some examples, the first cell may be associated with a first RAT and the second cell may be associated with a second RAT. In such examples, UE 515 may set a reselection priority of the first cell to be lower than a reselection priority of the second cell based on the first cell being associated with the first RAT and the second cell being associated with the second RAT. In some examples, UE 515 may determine a priority order for RATs including the first RAT and the second RAT, where setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based on the priority order. In some examples, the priority order may indicate that NR has a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than GSM, or any combination thereof. Additionally or alternatively, Additionally or alternatively, the priority order may indicate that GSM has a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than NR, or any combination thereof. In some examples, the priority order may be determined based on a location of the UE, a service coverage of the UE, or a preference set at the UE.
At 510, UE 515 may refrain from performing reselection based on performing the methods described with reference to one or more of 502, 504, 506, and 508. As such, UE 515 may maintain communications with a cell associated with base station 505-b (e.g., the second cell as described herein) and/or may refrain from communicating with and/or reselecting to a cell associated with base station 505-a (e.g., the first cell as described herein) .
FIG. 6 shows a block diagram 600 of a device 605 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The device 605 may be an example of aspects of a UE 115, a UE 215, or a UE 515 as described herein. The device 605 may include a receiver 610, a communication manager 615, and a transmitter 620. The device 605 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 610 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for ping-pong detection and avoidance for cell reselection, etc. ) . Information may be passed on to other components of the device 605. The receiver 610 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The receiver 610 may utilize a single antenna or a set of antennas.
The communication manager 615 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period; determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and adjust, based on the determination, one or more cell reselection parameters. The communication manager 615 may be an example of aspects of the communication manager 910 described herein.
The communication manager 615, or its sub-components, may be implemented in hardware, code (e.g., software or firmware) executed by a processor, or any combination thereof. If implemented in code executed by a processor, the functions of the communication manager 615, or its sub-components may be executed by a general-purpose processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
The communication manager 615, or its sub-components, may be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations by one or more physical components. In some  examples, the communication manager 615, or its sub-components, may be a separate and distinct component in accordance with various aspects of the present disclosure. In some examples, the communication manager 615, or its sub-components, may be combined with one or more other hardware components, including but not limited to an input/output (I/O) component, a transceiver, a network server, another computing device, one or more other components described in the present disclosure, or a combination thereof in accordance with various aspects of the present disclosure.
The transmitter 620 may transmit signals generated by other components of the device 605. In some examples, the transmitter 620 may be collocated with a receiver 610 in a transceiver component. For example, the transmitter 620 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The transmitter 620 may utilize a single antenna or a set of antennas.
FIG. 7 shows a block diagram 700 of a device 705 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The device 705 may be an example of aspects of a device 605, or a UE 115, a UE 215, or a UE 515 as described herein. The device 705 may include a receiver 710, a communication manager 715, and a transmitter 735. The device 705 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 710 may receive information such as packets, user data, or control information associated with various information channels (e.g., control channels, data channels, and information related to techniques for ping-pong detection and avoidance for cell reselection, etc. ) . Information may be passed on to other components of the device 705. The receiver 710 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The receiver 710 may utilize a single antenna or a set of antennas.
The communication manager 715 may be an example of aspects of the communication manager 615 as described herein. The communication manager 715 may include an information obtainer 720, a threshold determiner 725, and a cell reselection parameter adjustment component 730. The communication manager 715 may be an example of aspects of the communication manager 910 described herein.
The information obtainer 720 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
The threshold determiner 725 may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period.
The cell reselection parameter adjustment component 730 may adjust, based on the determination, one or more cell reselection parameters.
The transmitter 735 may transmit signals generated by other components of the device 705. In some examples, the transmitter 735 may be collocated with a receiver 710 in a transceiver component. For example, the transmitter 735 may be an example of aspects of the transceiver 915 described with reference to FIG. 9. The transmitter 735 may utilize a single antenna or a set of antennas.
FIG. 8 shows a block diagram 800 of a communication manager 805 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The communication manager 805 may be an example of aspects of a communication manager 615, a communication manager 715, or a communication manager 910 described herein. The communication manager 805 may include an information obtainer 810, a threshold determiner 815, a cell reselection parameter adjustment component 820, a data structure component 825, a scheduling mode identifier 830, a reselection trigger component 835, and a timer management component 840. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The information obtainer 810 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period.
The threshold determiner 815 may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. In some examples, the threshold determiner 815 may determine, from the information, that the UE has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period. In some examples, the threshold determiner  815 may determine that the UE has the number of cell attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second timer period after applying the offset. In some examples, the offset may be associated with a first offset value of a set of offset values and the second offset is associated with a second offset value of the set of offset values subsequent to the first offset value, where the set of offset values is ordered from a lowest offset value to a highest offset value. In some examples, the threshold determiner 815 may determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset.
The cell reselection parameter adjustment component 820 may adjust, based on the determination, one or more cell reselection parameters. In some examples, the cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters may include cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters to favor the second cell based on the second cell being associated with a higher measured signal strength than the first cell. In some examples, the measured signal strength for each of the first cell and the second cell may correspond to an RSRP measurement for each of the first cell and the second cell, an RSSI measurement for each of the first cell and the second cell, or both.
In some examples, the cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters may include the cell reselection parameter adjustment component 820 setting a reselection priority of the first cell to be equal to a reselection priority of the second cell. In some examples, the cell reselection parameter adjustment component 820 adjusting the one or more cell reselection parameters may include the cell reselection parameter adjustment component 820 applying an offset toward a measured signal strength associated with the first cell. In some examples, the measured signal strength to which the offset is applied may correspond to an RSRP measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both. In some examples, the cell reselection parameter adjustment component 820 may determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset. In some examples, the cell reselection parameter adjustment component 820 may apply a second offset to the first cell based on determining that the UE has the number of attempted cell  reselections with the first cell that is greater than the threshold number of attempts during the second time period after applying the offset.
In some examples, the cell reselection parameter adjustment component 820 may determine the second offset by incrementing offset by a step size. In some examples, the cell reselection parameter adjustment component 820 may determine a third offset by incrementing the second offset by the step size based on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset. In some examples, the cell reselection parameter adjustment component 820 may apply the third offset to the first cell. In some examples, the cell reselection parameter adjustment component 820 may apply a third offset to the first cell based on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset, where the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value.
In some examples, the first cell may be associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell. In some such examples, the cell reselection parameter adjustment component 820 may apply a second offset to the third cell based at least in part on determining that the UE has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts, where the second offset is smaller than the offset based on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell. In some examples, the cell reselection parameter adjustment component 820 may apply the one or more adjusted cell reselection parameters while a timer is running.
In some examples, the first cell may be associated with a first RAT and the second cell may be associated with a second RAT. In some such examples, the cell reselection parameter adjustment component 820 may determine a priority order for radio access technologies including the first RAT and the second RAT, where setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based on  the priority order. In some examples, the cell reselection parameter adjustment component 820 may determine a priority order for RATs including the first RAT and the second RAT, wherein setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based at least in part on the priority order. For instance, the priority order may indicate that NR has a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than GSM, or any combination thereof. Additionally or alternatively, the priority order may indicate that GSM has a higher priority than one or both of WCDMA and TD-SCDMA, that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of LTE and LTE-A, that the one or both of LTE and LTE-A have a higher priority than NR, or any combination thereof. In some examples, the priority order may be determined based on a location of the UE, a service coverage of the UE, or a preference set at the UE.
The data structure component 825 may generate a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, where determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts is based on generating the data structure. In some examples, the data structure component 825 generating the data structure may include the data structure component 825 adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell. In some examples, an entry of the data structure corresponding to the first cell may include a flag. In some such examples, the data structure component 825 may toggle a value of the flag based on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period. In some cases, an entry of the data structure corresponding to the first cell includes a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
The scheduling mode identifier 830 may identify that the UE is operating outside of a first scheduling mode associated with moving out of service, where generation of the data structure is based on the UE operating outside of the first scheduling mode.
The reselection trigger component 835 may identify that reselection from the first cell to a second cell has been triggered, where the one or more adjusted cell reselection parameters are applied to the reselection. In some examples, the first cell and the second cell are associated with a same RAT.
The timer management component 840 may set a timer based on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period. In some examples, the timer management component 840 may suspend the applying of the one or more adjusted cell reselection parameters based on the timer finishing running. In some examples, the timer management component 840 may reset or disable the timer based on two or more consecutive entries in a data structure from which the information is obtained being associated with different cell global identifiers, where at least one of the two or more consecutive entries is logged after setting the timer. In some examples, the timer management component 840 may determine that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE is operating in a mode associated with a high-speed train, or any combination thereof. In some examples, the timer management component 840 may reset or disable the timer based on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
FIG. 9 shows a diagram of a system 900 including a device 905 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The device 905 may be an example of or include the components of device 605, device 705, or a UE 115, a UE 215, or a UE 515 as described herein. The device 905 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communication manager 910, a transceiver 915, an antenna 920, memory 925,  and a processor 935. These components may be in electronic communication via one or more buses (e.g., bus 940) .
The communication manager 910 may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period; determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and adjust, based on the determination, one or more cell reselection parameters.
The transceiver 915 may communicate bi-directionally, via one or more antennas, wired, or wireless links as described above. For example, the transceiver 915 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver. The transceiver 915 may also include a modem to modulate the packets and provide the modulated packets to the antennas for transmission, and to demodulate packets received from the antennas.
In some cases, the wireless device may include a single antenna 920. However, in some cases the device may have more than one antenna 920, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
The memory 925 may include random-access memory (RAM) and read-only memory (ROM) . The memory 925 may store computer-readable, computer-executable code 930 including instructions that, when executed, cause the processor to perform various functions described herein. In some cases, the memory 925 may contain, among other things, a basic input/output system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The code 930 may include instructions to implement aspects of the present disclosure, including instructions to support wireless communications. The code 930 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 930 may not be directly executable by the processor 935 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
The processor 935 may include an intelligent hardware device, (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable  logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 935 may be configured to operate a memory array using a memory controller. In other cases, a memory controller may be integrated into the processor 935. The processor 935 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 925) to cause the device 905 to perform various functions (e.g., functions or tasks supporting ping-pong detection and avoidance for cell reselection) .
FIG. 10 shows a flowchart illustrating a method 1000 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The operations of method 1000 may be implemented by a UE 115, a UE 215, a UE 515 or its components as described herein. For example, the operations of method 1000 may be performed by a communication manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1005, the UE may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period. The operations of 1005 may be performed according to the methods described herein. In some examples, aspects of the operations of 1005 may be performed by an information obtainer as described with reference to FIGs. 6 through 9.
At 1010, the UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The operations of 1010 may be performed according to the methods described herein. In some examples, aspects of the operations of 1010 may be performed by a threshold determiner as described with reference to FIGs. 6 through 9.
At 1015, the UE may adjust, based on the determination, one or more cell reselection parameters. The operations of 1015 may be performed according to the methods described herein. In some examples, aspects of the operations of 1015 may be performed by a  cell reselection parameter adjustment component as described with reference to FIGs. 6 through 9.
FIG. 11 shows a flowchart illustrating a method 1100 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The operations of method 1100 may be implemented by a UE 115, a UE 215, a UE 515, or its components as described herein. For example, the operations of method 1100 may be performed by a communication manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1105, the UE may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period. The operations of 1105 may be performed according to the methods described herein. In some examples, aspects of the operations of 1105 may be performed by an information obtainer as described with reference to FIGs. 6 through 9.
At 1110, the UE may generate a data structure that associates an information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection. The operations of 1110 may be performed according to the methods described herein. In some examples, aspects of the operations of 1110 may be performed by a data structure component as described with reference to FIGs. 6 through 9.
At 1115, the UE may determine, based on the data structure, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The operations of 1115 may be performed according to the methods described herein. In some examples, aspects of the operations of 1115 may be performed by a threshold determiner as described with reference to FIGs. 6 through 9.
At 1120, the UE may adjust, based on the determination, one or more cell reselection parameters. The operations of 1120 may be performed according to the methods described herein. In some examples, aspects of the operations of 1120 may be performed by a  cell reselection parameter adjustment component as described with reference to FIGs. 6 through 9.
FIG. 12 shows a flowchart illustrating a method 1200 that supports techniques for ping-pong detection and avoidance for cell reselection in accordance with various aspects of the present disclosure. The operations of method 1200 may be implemented by a UE 115, a UE 215, a UE 515, or its components as described herein. For example, the operations of method 1200 may be performed by a communication manager as described with reference to FIGs. 6 through 9. In some examples, a UE may execute a set of instructions to control the functional elements of the UE to perform the described functions. Additionally or alternatively, a UE may perform aspects of the described functions using special-purpose hardware.
At 1205, the UE may obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period. The operations of 1205 may be performed according to the methods described herein. In some examples, aspects of the operations of 1205 may be performed by an information obtainer as described with reference to FIGs. 6 through 9.
At 1210, the UE may determine, based on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period. The operations of 1210 may be performed according to the methods described herein. In some examples, aspects of the operations of 1210 may be performed by a threshold determiner as described with reference to FIGs. 6 through 9.
At 1215, the UE may adjust, based on the determination, one or more cell reselection parameters. The operations of 1215 may be performed according to the methods described herein. In some examples, aspects of the operations of 1215 may be performed by a cell reselection parameter adjustment component as described with reference to FIGs. 6 through 9.
At 1220, the UE may identify that reselection from the first cell to a second cell has been triggered, where the one or more adjusted cell reselection parameters are applied to the reselection. The operations of 1220 may be performed according to the methods described  herein. In some examples, aspects of the operations of 1220 may be performed by a reselection trigger component as described with reference to FIGs. 6 through 9.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software  executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example  step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (112)

  1. A method for wireless communication at a user equipment (UE) , comprising:
    obtaining information regarding one or more target cells to which the UE attempted cell reselection during a time period;
    determining, based at least in part on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and
    adjusting, based at least in part on the determination, one or more cell reselection parameters.
  2. The method of claim 1, further comprising:
    generating a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, wherein determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts is based at least in part on generating the data structure.
  3. The method of claim 2, wherein generating the data structure comprises:
    adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell.
  4. The method of claim 2, wherein an entry of the data structure corresponding to the first cell comprises a flag, the method further comprising:
    toggling a value of the flag based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period.
  5. The method of claim 2, wherein an entry of the data structure corresponding to the first cell comprises a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the  first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  6. The method of claim 2, further comprising:
    identifying that the UE is operating outside of a first scheduling mode associated with moving out of service, wherein generation of the data structure is based at least in part on the UE operating outside of the first scheduling mode.
  7. The method of claim 1, further comprising:
    identifying that reselection from the first cell to a second cell has been triggered, wherein the one or more adjusted cell reselection parameters are applied to the reselection.
  8. The method of claim 7, wherein adjusting the one or more cell reselection parameters comprises:
    adjusting the one or more cell reselection parameters to favor the second cell based at least in part on the second cell being associated with a higher measured signal strength than the first cell.
  9. The method of claim 8, wherein the measured signal strength for each of the first cell and the second cell corresponds to a reference signal received power (RSRP) measurement for each of the first cell and the second cell, a received signal strength indicator (RSSI) measurement for each of the first cell and the second cell, or both.
  10. The method of claim 7, wherein adjusting the one or more cell reselection parameters comprises:
    setting a reselection priority of the first cell to be equal to a reselection priority of the second cell.
  11. The method of claim 7, wherein adjusting the one or more cell reselection parameters comprises:
    applying an offset toward a measured signal strength associated with the first cell.
  12. The method of claim 11, further comprising:
    determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset; and
    applying a second offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period after applying the offset.
  13. The method of claim 12, further comprising:
    determining the second offset by incrementing the offset by a step size.
  14. The method of claim 13, further comprising:
    determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset;
    determining a third offset by incrementing the second offset by the step size based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset; and
    applying the third offset to the first cell.
  15. The method of claim 12, wherein the offset is associated with a first offset value of a set of offset values and the second offset is associated with a second offset value of the set of offset values subsequent to the first offset value, wherein the set of offset values is ordered from a lowest offset value to a highest offset value.
  16. The method of claim 15, further comprising:
    determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the offset; and
    applying a third offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset,  wherein the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value.
  17. The method of claim 11, wherein the first cell is associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell, the method further comprising:
    determining, from the information, that the UE has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period; and
    applying a second offset to the third cell based at least in part on determining that the UE has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts, wherein the second offset is smaller than the offset based at least in part on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell.
  18. The method of claim 11, wherein the measured signal strength to which the offset is applied corresponds to a reference signal received power (RSRP) measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
  19. The method of claim 7, further comprising:
    setting a timer based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period; and
    applying the one or more adjusted cell reselection parameters while the timer is running.
  20. The method of claim 19, further comprising:
    suspending the applying of the one or more adjusted cell reselection parameters based at least in part on the timer finishing running.
  21. The method of claim 19, further comprising:
    resetting or disabling the timer based at least in part on two or more consecutive entries in a data structure from which the information is obtained being associated with different cell global identifiers, wherein at least one of the two or more consecutive entries is logged after setting the timer.
  22. The method of claim 19, further comprising:
    determining that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE is operating in a mode associated with a high-speed train, or any combination thereof; and
    resetting or disabling the timer based at least in part on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
  23. The method of claim 7, wherein the first cell is associated with a first radio access technology and the second cell is associated with a second radio access technology, the method further comprising:
    setting a reselection priority of the first cell to be lower than a reselection priority of the second cell based at least in part on the first cell being associated with the first radio access technology and the second cell being associated with the second radio access technology.
  24. The method of claim 23, further comprising:
    determining a priority order for radio access technologies comprising the first radio access technology and the second radio access technology, wherein setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based at least in part on the priority order.
  25. The method of claim 24, wherein the priority order indicates that new radio (NR) has a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD- SCDMA have a higher priority than Global System for Mobile Communications (GSM) , or any combination thereof.
  26. The method of claim 24, wherein the priority order indicates that Global System for Mobile Communications (GSM) has a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than new radio (NR) , or any combination thereof.
  27. The method of claim 24, wherein the priority order is determined based at least in part on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  28. The method of claim 7, wherein the first cell and the second cell are associated with a same radio access technology.
  29. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a processor,
    memory in electronic communication with the processor, and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period;
    determine, based at least in part on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and
    adjust, based at least in part on the determination, one or more cell reselection parameters.
  30. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    generate a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, wherein determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts is based at least in part on generating the data structure.
  31. The apparatus of claim 30, wherein the instructions to generate the data structure are executable by the processor to cause the apparatus to:
    add an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell.
  32. The apparatus of claim 30, wherein an entry of the data structure corresponding to the first cell comprises a flag, and the instructions are further executable by the processor to cause the apparatus to:
    toggle a value of the flag based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period.
  33. The apparatus of claim 30, wherein an entry of the data structure corresponding to the first cell comprises a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  34. The apparatus of claim 30, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that the UE is operating outside of a first scheduling mode associated with moving out of service, wherein generation of the data structure is based at least in part on the UE operating outside of the first scheduling mode.
  35. The apparatus of claim 29, wherein the instructions are further executable by the processor to cause the apparatus to:
    identify that reselection from the first cell to a second cell has been triggered, wherein the one or more adjusted cell reselection parameters are applied to the reselection.
  36. The apparatus of claim 35, wherein the instructions to adjust the one or more cell reselection parameters are executable by the processor to cause the apparatus to:
    adjust the one or more cell reselection parameters to favor the second cell based at least in part on the second cell being associated with a higher measured signal strength than the first cell.
  37. The apparatus of claim 36, wherein the measured signal strength for each of the first cell and the second cell corresponds to a reference signal received power (RSRP) measurement for each of the first cell and the second cell, a received signal strength indicator (RSSI) measurement for each of the first cell and the second cell, or both.
  38. The apparatus of claim 35, wherein the instructions to adjust the one or more cell reselection parameters are executable by the processor to cause the apparatus to:
    set a reselection priority of the first cell to be equal to a reselection priority of the second cell.
  39. The apparatus of claim 35, wherein the instructions to adjust the one or more cell reselection parameters are executable by the processor to cause the apparatus to:
    apply an offset toward a measured signal strength associated with the first cell.
  40. The apparatus of claim 39, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset; and
    apply a second offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period.
  41. The apparatus of claim 40, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine the second offset by incrementing the offset by a step size.
  42. The apparatus of claim 41, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset;
    determining a third offset by incrementing the second offset by the step size based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset; and
    applying the third offset to the first cell.
  43. The apparatus of claim 40, wherein the offset is associated with a first offset value of a set of offset values and the second offset is associated with a second offset value of the set of offset values subsequent to the first offset value, wherein the set of offset values is ordered from a lowest offset value to a highest offset value.
  44. The apparatus of claim 43, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the offset; and
    apply a third offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset, wherein the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value
  45. The apparatus of claim 39, wherein the first cell is associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell, and the instructions are further executable by the processor to cause the apparatus to:
    determine, from the information, that the UE has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period; and
    apply a second offset to the third cell based at least in part on determining that the UE has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts, wherein the second offset is smaller than the offset based at least in part on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell.
  46. The apparatus of claim 39, wherein the measured signal strength to which the offset is applied corresponds to a reference signal received power (RSRP) measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
  47. The apparatus of claim 35, wherein the instructions are further executable by the processor to cause the apparatus to:
    set a timer based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period; and
    apply the one or more adjusted cell reselection parameters while the timer is running.
  48. The apparatus of claim 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    suspend the applying of the one or more adjusted cell reselection parameters based at least in part on the timer finishing running.
  49. The apparatus of claim 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    reset or disable the timer based at least in part on two or more consecutive entries in a data structure from which the information is obtained being associated with different cell global identifiers, wherein at least one of the two or more consecutive entries is logged after setting the timer.
  50. The apparatus of claim 47, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE is operating in a mode associated with a high-speed train, or any combination thereof; and
    reset or disable the timer based at least in part on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
  51. The apparatus of claim 35, wherein the first cell is associated with a first radio access technology and the second cell is associated with a second radio access technology, wherein the instructions are further executable by the processor to cause the apparatus to:
    set a reselection priority of the first cell to be lower than a reselection priority of the second cell based at least in part on the first cell being associated with the first radio access technology and the second cell being associated with the second radio access technology.
  52. The apparatus of claim 51, wherein the instructions are further executable by the processor to cause the apparatus to:
    determine a priority order for radio access technologies comprising the first radio access technology and the second radio access technology, wherein setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based at least in part on the priority order.
  53. The apparatus of claim 52, wherein the priority order indicates that new radio (NR) has a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA  and TD-SCDMA have a higher priority than Global System for Mobile Communications (GSM) , or any combination thereof.
  54. The apparatus of claim 52, wherein the priority order indicates that Global System for Mobile Communications (GSM) has a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than new radio (NR) , or any combination thereof.
  55. The apparatus of claim 52, wherein the priority order is determined based at least in part on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  56. The apparatus of claim 35, wherein the first cell and the second cell are associated with a same radio access technology.
  57. An apparatus for wireless communication at a user equipment (UE) , comprising:
    means for obtaining information regarding one or more target cells to which the UE attempted cell reselection during a time period;
    means for determining, based at least in part on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and
    means for adjusting, based at least in part on the determination, one or more cell reselection parameters.
  58. The apparatus of claim 57, further comprising:
    means for generating a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, wherein determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts is based at least in part on generating the data structure.
  59. The apparatus of claim 58, wherein the means for generating the data structure comprises:
    means for adding an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell.
  60. The apparatus of claim 58, wherein an entry of the data structure corresponding to the first cell comprises a flag, the apparatus further comprising:
    means for toggling a value of the flag based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period.
  61. The apparatus of claim 58, wherein an entry of the data structure corresponding to the first cell comprises a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  62. The apparatus of claim 58, further comprising:
    means for identifying that the UE is operating outside of a first scheduling mode associated with moving out of service, wherein generation of the data structure is based at least in part on the UE operating outside of the first scheduling mode.
  63. The apparatus of claim 57, further comprising:
    means for identifying that reselection from the first cell to a second cell has been triggered, wherein the one or more adjusted cell reselection parameters are applied to the reselection.
  64. The apparatus of claim 63, wherein the means for adjusting the one or more cell reselection parameters comprises:
    means for adjusting the one or more cell reselection parameters to favor the second cell based at least in part on the second cell being associated with a higher measured signal strength than the first cell.
  65. The apparatus of claim 64, wherein the measured signal strength for each of the first cell and the second cell corresponds to a reference signal received power (RSRP) measurement for each of the first cell and the second cell, a received signal strength indicator (RSSI) measurement for each of the first cell and the second cell, or both.
  66. The apparatus of claim 63, wherein the means for adjusting the one or more cell reselection parameters comprises:
    means for setting a reselection priority of the first cell to be equal to a reselection priority of the second cell.
  67. The apparatus of claim 63, wherein the means for adjusting the one or more cell reselection parameters comprises:
    means for applying an offset toward a measured signal strength associated with the first cell.
  68. The apparatus of claim 67, further comprising:
    means for determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset; and
    means for applying a second offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period.
  69. The apparatus of claim 68, further comprising:
    means for determining the second offset by incrementing the offset by a step size.
  70. The apparatus of claim 69, further comprising:
    means for determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset;
    means for determining a third offset by incrementing the second offset by the step size based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset; and
    means for applying the third offset to the first cell.
  71. The apparatus of claim 68, wherein the offset is associated with a first offset value of a set of offset values and the second offset is associated with a second offset value of the set of offset values subsequent to the first offset value, wherein the set of offset values is ordered from a lowest offset value to a highest offset value.
  72. The apparatus of claim 71, further comprising:
    means for determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the offset; and
    means for applying a third offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset, wherein the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value
  73. The apparatus of claim 67, wherein the first cell is associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell, the apparatus further comprising:
    means for determining, from the information, that the UE has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period; and
    means for applying a second offset to the third cell based at least in part on determining that the UE has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts, wherein the second offset is smaller than the offset based at least in part on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell.
  74. The apparatus of claim 67, wherein the measured signal strength to which the offset is applied corresponds to a reference signal received power (RSRP) measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
  75. The apparatus of claim 63, further comprising:
    means for setting a timer based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period; and
    means for applying the one or more adjusted cell reselection parameters while the timer is running.
  76. The apparatus of claim 75, further comprising:
    means for suspending the applying of the one or more adjusted cell reselection parameters based at least in part on the timer finishing running.
  77. The apparatus of claim 75, further comprising:
    means for resetting or disabling the timer based at least in part on two or more consecutive entries in a data structure from which the information is obtained being associated with different cell global identifiers, wherein at least one of the two or more consecutive entries is logged after setting the timer.
  78. The apparatus of claim 75, further comprising:
    means for determining that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE is operating in a mode associated with a high-speed train, or any combination thereof; and
    means for resetting or disabling the timer based at least in part on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
  79. The apparatus of claim 63, wherein the first cell is associated with a first radio access technology and the second cell is associated with a second radio access technology, the apparatus further comprising:
    means for setting a reselection priority of the first cell to be lower than a reselection priority of the second cell based at least in part on the first cell being associated with the first radio access technology and the second cell being associated with the second radio access technology.
  80. The apparatus of claim 79, further comprising:
    means for determining a priority order for radio access technologies comprising the first radio access technology and the second radio access technology, wherein setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based at least in part on the priority order.
  81. The apparatus of claim 80, wherein the priority order indicates that new radio (NR) has a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA have a higher priority than Global System for Mobile Communications (GSM) , or any combination thereof.
  82. The apparatus of claim 80, wherein the priority order indicates that Global System for Mobile Communications (GSM) has a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than new radio (NR) , or any combination thereof.
  83. The apparatus of claim 80, wherein the priority order is determined based at least in part on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  84. The apparatus of claim 63, wherein the first cell and the second cell are associated with a same radio access technology.
  85. A non-transitory computer-readable medium storing code for wireless communication at a user equipment (UE) , the code comprising instructions executable by a processor to:
    obtain information regarding one or more target cells to which the UE attempted cell reselection during a time period;
    determine, based at least in part on the information, that the UE has a number of attempted cell reselections with a first cell of the one or more target cells that is greater than a threshold number of attempts during the time period; and
    adjust, based at least in part on the determination, one or more cell reselection parameters.
  86. The non-transitory computer-readable medium of claim 85, wherein the instructions are further executable by the processor to:
    generate a data structure that associates the information regarding the one or more target cells with a corresponding one or more instances of time at which the UE attempted cell reselection, wherein determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts is based at least in part on generating the data structure.
  87. The non-transitory computer-readable medium of claim 86, wherein the instructions to generate the data structure are executable by the processor to:
    add an entry to the data structure for a cell reselection attempt when a source signal strength of a source cell is greater than a target signal strength of the first cell.
  88. The non-transitory computer-readable medium of claim 86, wherein an entry of the data structure corresponding to the first cell comprises a flag, and the instructions are executable by the processor to:
    toggle a value of the flag based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period.
  89. The non-transitory computer-readable medium of claim 86, wherein an entry of the data structure corresponding to the first cell comprises a radio access technology associated with the first cell, a frequency associated with the first cell, a physical cell identifier associated with the first cell, a cell global identifier associated with the first cell, a tracking area identifier associated with the first cell, a routing area identifier associated with the first cell, a radio access network notification identifier associated with the first cell, a location area identifier associated with the first cell, or any combination thereof.
  90. The non-transitory computer-readable medium of claim 86, wherein the instructions are further executable by the processor to:
    identify that the UE is operating outside of a first scheduling mode associated with moving out of service, wherein generation of the data structure is based at least in part on the UE operating outside of the first scheduling mode.
  91. The non-transitory computer-readable medium of claim 85, wherein the instructions are further executable by the processor to:
    identify that reselection from the first cell to a second cell has been triggered, wherein the one or more adjusted cell reselection parameters are applied to the reselection.
  92. The non-transitory computer-readable medium of claim 91, wherein the instructions to adjust the one or more cell reselection parameters are executable by the processor to:
    adjust the one or more cell reselection parameters to favor the second cell based at least in part on the second cell being associated with a higher measured signal strength than the first cell.
  93. The non-transitory computer-readable medium of claim 92, wherein the measured signal strength for each of the first cell and the second cell corresponds to a reference signal received power (RSRP) measurement for each of the first cell and the second cell, a received signal strength indicator (RSSI) measurement for each of the first cell and the second cell, or both.
  94. The non-transitory computer-readable medium of claim 91, wherein the instructions to adjust the one or more cell reselection parameters are executable by the processor to:
    set a reselection priority of the first cell to be equal to a reselection priority of the second cell.
  95. The non-transitory computer-readable medium of claim 91, wherein the instructions to adjust the one or more cell reselection parameters are executable by the processor to:
    apply an offset toward a measured signal strength associated with the first cell.
  96. The non-transitory computer-readable medium of claim 95, wherein the instructions are further executable by the processor to:
    determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a second time period after applying the offset; and
    apply a second offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the second time period.
  97. The non-transitory computer-readable medium of claim 96, wherein the instructions are further executable by the processor to:
    determine the second offset by incrementing the offset by a step size.
  98. The non-transitory computer-readable medium of claim 97, wherein the instructions are further executable by the processor to:
    determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the second offset;
    determine a third offset by incrementing the second offset by the step size based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset; and
    apply the third offset to the first cell.
  99. The non-transitory computer-readable medium of claim 96, wherein the offset is associated with a first offset value of a set of offset values and the second offset is associated with a second offset value of the set of offset values subsequent to the first offset value, wherein the set of offset values is ordered from a lowest offset value to a highest offset value.
  100. The non-transitory computer-readable medium of claim 99, wherein the instructions are further executable by the processor to:
    determine that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during a third time period after applying the offset; and
    apply a third offset to the first cell based at least in part on determining that the UE has the number of attempted cell reselections with the first cell that is greater than the threshold number of attempts during the third time period after applying the second offset, wherein the third offset is associated with a third offset value of the set of offset values subsequent to the second offset value.
  101. The non-transitory computer-readable medium of claim 95, wherein the first cell is associated with a different tracking area identifier, a different routing area identifier, a different radio access network notification area identifier, or a different location area identifier than that of the second cell, and the instructions are executable by the processor to:
    determine, from the information, that the UE has a second number of attempted cell reselections with a third cell that is greater than a second threshold number of attempts during a second time period; and
    apply a second offset to the third cell based at least in part on determining that the UE has the second number of attempted cell reselections with the third cell that is greater than the second threshold number of attempts, wherein the second offset is smaller than the offset based at least in part on the third cell having a same tracking area identifier, a same routing area identifier, a same radio access network notification area identifier, or a same location area identifier as a previously reselected cell.
  102. The non-transitory computer-readable medium of claim 95, wherein the measured signal strength to which the offset is applied corresponds to a reference signal  received power (RSRP) measurement for the first cell, a received signal strength indicator (RSSI) measurement for the first cell, or both.
  103. The non-transitory computer-readable medium of claim 91, wherein the instructions are further executable by the processor to:
    set a timer based at least in part on determining that the UE has the number of attempted cell reselections with the first cell of the one or more target cells that is greater than the threshold number of attempts during the time period; and
    apply the one or more adjusted cell reselection parameters while the timer is running.
  104. The non-transitory computer-readable medium of claim 103, wherein the instructions are further executable by the processor to:
    suspend the applying of the one or more adjusted cell reselection parameters based at least in part on the timer finishing running.
  105. The non-transitory computer-readable medium of claim 103, wherein the instructions are further executable by the processor to:
    reset or disable the timer based at least in part on two or more consecutive entries in a data structure from which the information is obtained being associated with different cell global identifiers, wherein at least one of the two or more consecutive entries is logged after setting the timer.
  106. The non-transitory computer-readable medium of claim 103, wherein the instructions are further executable by the processor to:
    determine that a displacement of the UE over a first time interval exceeds a respective first threshold, a distance of the UE over a second time interval exceeds a respective second threshold, a velocity of the UE exceeds a respective third threshold, that the UE is operating in a mode associated with a high-speed train, or any combination thereof; and
    reset or disable the timer based at least in part on the displacement exceeding the respective first threshold, the distance exceeding the respective second threshold, the velocity exceeding the respective third threshold, the UE operating in the mode associated with the high-speed train, or any combination thereof.
  107. The non-transitory computer-readable medium of claim 91, wherein the first cell is associated with a first radio access technology and the second cell is associated with a second radio access technology, wherein the instructions are further executable by the processor to:
    set a reselection priority of the first cell to be lower than a reselection priority of the second cell based at least in part on the first cell being associated with the first radio access technology and the second cell being associated with the second radio access technology.
  108. The non-transitory computer-readable medium of claim 107, wherein the instructions are further executable by the processor to:
    determine a priority order for radio access technologies comprising the first radio access technology and the second radio access technology, wherein setting the reselection priority of the first cell to be lower than the reselection priority of the second cell is based at least in part on the priority order.
  109. The non-transitory computer-readable medium of claim 108, wherein the priority order indicates that new radio (NR) has a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA have a higher priority than Global System for Mobile Communications (GSM) , or any combination thereof.
  110. The non-transitory computer-readable medium of claim 108, wherein the priority order indicates that Global System for Mobile Communications (GSM) has a higher priority than one or both of wideband code division multiple access (WCDMA) and time division synchronous code division multiple access (TD-SCDMA) , that the one or both of WCDMA and TD-SCDMA have a higher priority than one or both of Long Term Evolution (LTE) and LTE-Advanced (LTE-A) , that the one or both of LTE and LTE-Ahave a higher priority than new radio (NR) , or any combination thereof.
  111. The non-transitory computer-readable medium of claim 108, wherein the priority order is determined based at least in part on a location of the UE, a service coverage of the UE, or a preference set at the UE.
  112. The non-transitory computer-readable medium of claim 91, wherein the first cell and the second cell are associated with a same radio access technology.
PCT/CN2020/119896 2020-10-09 2020-10-09 Techniques for ping-pong detection and avoidance for cell reselection WO2022073173A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119896 WO2022073173A1 (en) 2020-10-09 2020-10-09 Techniques for ping-pong detection and avoidance for cell reselection

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119896 WO2022073173A1 (en) 2020-10-09 2020-10-09 Techniques for ping-pong detection and avoidance for cell reselection

Publications (1)

Publication Number Publication Date
WO2022073173A1 true WO2022073173A1 (en) 2022-04-14

Family

ID=81125707

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119896 WO2022073173A1 (en) 2020-10-09 2020-10-09 Techniques for ping-pong detection and avoidance for cell reselection

Country Status (1)

Country Link
WO (1) WO2022073173A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605585A1 (en) * 2011-12-15 2013-06-19 ST-Ericsson SA Method of controlling handover by user equipment
CN103313316A (en) * 2012-03-07 2013-09-18 电信科学技术研究院 Method and device for detection and processing of inter-system ping-pong handover
CN104301921A (en) * 2014-10-29 2015-01-21 京信通信***(中国)有限公司 Ping-pong switching detection method and device and switching parameter configuration method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2605585A1 (en) * 2011-12-15 2013-06-19 ST-Ericsson SA Method of controlling handover by user equipment
CN103313316A (en) * 2012-03-07 2013-09-18 电信科学技术研究院 Method and device for detection and processing of inter-system ping-pong handover
CN104301921A (en) * 2014-10-29 2015-01-21 京信通信***(中国)有限公司 Ping-pong switching detection method and device and switching parameter configuration method and device

Similar Documents

Publication Publication Date Title
US20220295318A1 (en) Method and terminal for performing rrm measurement in wireless communication system
US11395199B2 (en) Conditional handover for mobile networks
US11963054B2 (en) Method and apparatus for performing cell reselection in wireless communication system
US11800441B2 (en) Differentiation between standalone and non-standalone cells in a wireless communications system
US20230146103A1 (en) New radio synchronization signal block related idle measurement configuration
US20220046507A1 (en) Enhancements to mobility settings change procedures
US20210410013A1 (en) Indication of operating configuration priorities
WO2021163997A1 (en) Techniques for activating a secondary cell
US20220312249A1 (en) Measurement reporting techniques for beamformed communications
US20240187943A1 (en) Service continuity on preferred cell during connected mode mobility
US20240056918A1 (en) Vehicle-to-everything cell reselection
US20230247461A1 (en) Measurement reporting timing adjustments
US20230269632A1 (en) Prioritization at cell reselection by ue of mcg and scg cells over neighbor cells configured with higher priority by the network
WO2022151332A1 (en) Techniques for biasing cell camping in high-speed user equipment deployment
WO2021237572A1 (en) Methods to establish a protocol data unit session
WO2022073173A1 (en) Techniques for ping-pong detection and avoidance for cell reselection
WO2021046933A1 (en) Internode measurement configuration signaling
US20230180121A1 (en) Capability-based cell prioritization for cell selection and reselection
US20240187982A1 (en) Adaptive cell selection, reselection and mobility assistance techniques
US20240007910A1 (en) Candidate cell detection for standalone mode
WO2022011530A1 (en) Radio access technology measurement periodicity
US11917528B2 (en) Enhancing standalone acquisition timelines for millimeter wave devices
US20230231681A1 (en) Enhancing throughput performance in multi-sim modems
US20230199604A1 (en) Techniques for cell acquisition
US20240007168A1 (en) IDLE/INACTIVE Mode Operations in Highly Directional UE-Centric Systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20956488

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20956488

Country of ref document: EP

Kind code of ref document: A1