WO2022071390A1 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
WO2022071390A1
WO2022071390A1 PCT/JP2021/035853 JP2021035853W WO2022071390A1 WO 2022071390 A1 WO2022071390 A1 WO 2022071390A1 JP 2021035853 W JP2021035853 W JP 2021035853W WO 2022071390 A1 WO2022071390 A1 WO 2022071390A1
Authority
WO
WIPO (PCT)
Prior art keywords
command value
current
vector
electric motor
axis
Prior art date
Application number
PCT/JP2021/035853
Other languages
French (fr)
Japanese (ja)
Inventor
勇冶 堀江
Original Assignee
株式会社アドヴィックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アドヴィックス filed Critical 株式会社アドヴィックス
Publication of WO2022071390A1 publication Critical patent/WO2022071390A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/36Arrangements for braking or slowing; Four quadrant control

Definitions

  • the present invention relates to an electric motor control device that controls an electric motor.
  • Patent Document 1 describes an example of an electric motor control device that controls an electric motor included in an electric braking device of a vehicle.
  • the electric braking device the braking force for the wheels can be maintained by holding the motor rotation angle, which is the rotation angle of the electric motor.
  • the above electric motor is an electric motor having a three-phase coil.
  • the magnitude of the current flowing through one of the three coils is larger than the magnitude of the current flowing through the remaining coils, and the magnitude of the current flowing through the one coil is large. It may be a specific state that is equal to or higher than the peak judgment value. If such a specific state is continued, the temperature of one of the three coils becomes too high with the temperature of the remaining coils.
  • the electric motor when the specific state continues, the electric motor is driven to change the motor rotation angle within a predetermined fluctuation allowable range.
  • the magnitude of the current flowing through the three coils can be varied.
  • the temperature of one of the plurality of coils is the temperature of the remaining coils while suppressing the change in the motor rotation angle. It is desirable to be able to prevent it from becoming too high.
  • the electric motor control device for solving the above-mentioned problems is an electric motor having a multi-phase coil with a command value of a current energizing the coil based on a torque command value which is a command value of the torque of the electric motor. It is a device that vector-controls at least one of a certain current command value and a voltage command value which is a command value of a voltage applied to the coil.
  • Vector fluctuation control that changes the vector of at least one of the current command value and the voltage command value into a vector corresponding to a plurality of coordinates within a predetermined torque range including a plurality of coordinates corresponding to the torque command value.
  • the command value derivation unit for deriving at least one of the current command value and the voltage command value and the command value derivation unit are based on the vector obtained by the vector fluctuation control. It includes a control unit that controls the motor rotation angle based on the derived command value.
  • the current vector is fluctuated in the rotating coordinates of the vector control
  • the current command value is derived based on the vector
  • the electric motor is driven based on the current command value.
  • the magnitude of the current flowing through the plurality of coils changes according to the fluctuation of the current vector in the rotating coordinates.
  • the voltage vector is fluctuated in the rotating coordinates of the vector control
  • the voltage command value is derived based on the vector
  • the electric motor is driven based on the voltage command value.
  • the magnitude of the current flowing through the plurality of coils changes according to the fluctuation of the voltage vector in the rotating coordinates.
  • the stop holding state at least one of the current command value and the voltage command value is changed by the above rotation coordinates by the vector fluctuation control. Then, at least one of the current command value and the voltage command value is derived based on the vector obtained by the vector fluctuation control.
  • the vector fluctuation control at least one of the current command value and the voltage command value is changed to a vector corresponding to a plurality of coordinates within the predetermined torque range. Therefore, by controlling the electric motor with the command value based on the vector obtained by such vector fluctuation control, the output torque of the electric motor hardly changes. As a result, changes in the motor rotation angle can be suppressed.
  • FIG. 1 illustrates an electric motor control device 10 and an electric motor 100 controlled by the electric motor control device 10.
  • the electric motor 100 is, for example, a permanent magnet embedded type synchronous motor.
  • the rotor 105 of the electric motor 100 is provided with a permanent magnet.
  • the electric motor 100 has coils 101, 102, 103 having a plurality of phases (U phase, V phase, and W phase).
  • the electric motor 100 can be adopted as a power source for an in-vehicle brake device, for example, as disclosed in "Japanese Unexamined Patent Publication No. 2016-214037".
  • a braking force corresponding to the rotation angle of the motor which is the rotation angle of the rotor 105, can be applied to the wheels of the vehicle.
  • the electric motor control device 10 drives the electric motor 100 by vector control.
  • the d-axis is a control axis extending in the direction of the magnetic flux axis of the permanent magnet.
  • the q-axis is a control axis extending in the direction of torque and is orthogonal to the d-axis.
  • the electric motor control device 10 includes a torque command value derivation unit 11, a command value derivation unit 20, and a control unit 30 as functional units for driving the electric motor 100 by vector control.
  • the torque command value derivation unit 11 derives the torque command value TR *, which is the command value of the torque of the electric motor 100.
  • the torque command value derivation unit 11 has an estimated value TRLd of the load torque of the electric motor 100, a rotation speed command value ⁇ m * which is a command value of the rotor rotation speed of the electric motor 100, and an estimation value which is an estimated value of the rotor rotation speed.
  • the torque command value TR * is derived based on the rotation speed ⁇ m.
  • the command value derivation unit 20 is based on the torque command value TR * derived by the torque command value derivation unit 11, the current command value which is the command value of the current energizing each coil 101 to 103, and each coil 101 to. At least one of the voltage command values, which is the command value of the voltage applied to 103, is derived.
  • the command value derivation unit 20 has a current command value derivation unit 21 and a voltage command value derivation unit 22.
  • the current command value derivation unit 21 derives the d-axis command current Id * and the q-axis command current Iq * as the current command values.
  • the d-axis command current Id * is a command value of the current component in the direction of the d-axis.
  • the q-axis command current Iq * is a command value of the current component in the direction of the q-axis.
  • the voltage command value derivation unit 22 derives the d-axis command voltage Vd * and the q-axis command voltage Vq * as voltage command values.
  • the d-axis command voltage Vd * is a command value of a voltage component in the direction of the d-axis.
  • the q-axis command voltage Vq * is a command value of a voltage component in the direction of the q-axis.
  • the voltage command value derivation unit 22 calculates the d-axis command voltage Vd * by feedback control based on the d-axis command current Id * and the d-axis current Id.
  • the d-axis current Id is a value indicating a current component in the direction of the estimated d-axis in the current vector generated on the rotating coordinates by supplying power to the electric motor 100.
  • the voltage command value derivation unit 22 calculates the q-axis command voltage Vq * by feedback control based on the q-axis command current Iq * and the q-axis current Iq.
  • the q-axis current Iq is a value indicating a current component in the direction of the estimated q-axis in the current vector generated on the rotating coordinates by supplying power to the electric motor 100.
  • the control unit 30 controls the motor rotation angle ⁇ based on the command value derived by the command value derivation unit 20.
  • the control unit 30 has a two-phase / three-phase conversion unit 31 and an inverter 32.
  • the 2-phase / 3-phase conversion unit 31 sets the d-axis command voltage Vd * and the q-axis command voltage Vq *, the U-phase command voltage VU *, the V-phase command voltage VV *, and W based on the motor rotation angle ⁇ . Convert to phase command voltage VW *.
  • the U-phase command voltage VU * is a command value of the voltage applied to the U-phase coil 101.
  • the V-phase command voltage VV * is a command value of the voltage applied to the V-phase coil 102.
  • the W-phase command voltage VW * is a command value of the voltage applied to the W-phase coil 103.
  • the inverter 32 has a plurality of switching elements operated by the electric power supplied from the power source.
  • the inverter 32 generates a U-phase signal by turning on / off the switching element based on the U-phase command voltage VU * input from the 2-phase / 3-phase conversion unit 31.
  • the inverter 32 generates a V-phase signal by turning on / off the switching element based on the input V-phase command voltage VV *.
  • the inverter 32 generates a W phase signal by turning on / off the switching element based on the input W phase command voltage VW *.
  • the U-phase signal is input to the U-phase coil 101 of the electric motor 100
  • the V-phase signal is input to the V-phase coil 102
  • the W-phase signal is input to the W-phase coil 103.
  • the electric motor control device 10 further includes a three-phase / two-phase conversion unit 41, a rotation angle acquisition unit 42, and a mechanical angular velocity generation unit 43 as functional units.
  • the U-phase current IU which is the current flowing through the U-phase coil 101 of the electric motor 100, is input to the 3-phase / 2-phase conversion unit 41
  • the V-phase current IV which is the current flowing through the V-phase coil 102
  • the W-phase current IW which is the current that is input and flows through the W-phase coil 103, is input.
  • the three-phase / two-phase conversion unit 41 sets the U-phase current IU, the V-phase current IV, and the W-phase current IW into the d-axis current Id, which is the current of the d-axis component, and q, which is the current of the q-axis component. Convert to shaft current Iq.
  • the rotation angle acquisition unit 42 acquires the motor rotation angle ⁇ .
  • the rotation angle acquisition unit 42 can acquire the motor rotation angle ⁇ based on the detection signal of the rotation angle sensor 111.
  • the rotation angle sensor 111 include a Hall IC, an MR sensor, and a resolver.
  • the rotation angle acquisition unit 42 can also derive the motor rotation angle ⁇ without using the detection signal of the rotation angle sensor 111.
  • the rotation angle acquisition unit 42 can also acquire the motor rotation angle ⁇ by performing a known disturbance output process as disclosed in, for example, "Japanese Patent Laid-Open No. 2020-36498".
  • the electric motor control device 10 can be applied to the electric motor 100 that does not have the rotation angle sensor.
  • the mechanical angular velocity generation unit 43 derives an estimated value of the mechanical angular velocity of the rotor 105 as an estimated rotation speed ⁇ m.
  • the mechanical angular velocity generation unit 43 can derive the estimated rotation speed ⁇ m by differentiating the motor rotation angle ⁇ acquired by the rotation angle acquisition unit 42.
  • the current command value derivation unit 21 repeatedly executes the processing routine shown in FIG. 2 at predetermined control cycles.
  • step S11 the current command value derivation unit 21 increments the coefficient n by “1”. Subsequently, in step S12, the current command value derivation unit 21 acquires the torque command value TR * derived by the torque command value derivation unit 11. Then, in step S13, the current command value derivation unit 21 acquires the d-axis command current reference value Id1, which is the d-axis command current corresponding to the torque command value TR *. Further, the current command value derivation unit 21 acquires the q-axis command current reference value Iq1 which is the q-axis command current corresponding to the torque command value TR *.
  • FIG. 3 shows the rotating coordinates of the vector control.
  • the vertical axis is the q-axis current Iq and the horizontal axis is the d-axis current Id.
  • the current limiting circle CR1 is shown by a solid line
  • the maximum torque curve CV1 is shown by a alternate long and short dash line.
  • the equal torque line L1 of the torque command value TR * is shown by a broken line.
  • the equal torque line L1 of the torque command value TR * is a line connecting a plurality of coordinates on the rotating coordinates corresponding to the torque command value TR *.
  • the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 are derived so as to satisfy the following conditions (A1) and (A2).
  • the coordinates indicated by the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 are referred to as "reference coordinates".
  • the vector shown in FIG. 3 is a “current command value vector BCb” indicating the coordinates indicated by the d-axis command current Id * and the q-axis command current Iq *.
  • the reference coordinates are the coordinates within the region of the current limiting circle CR1.
  • the reference coordinates are the coordinates on the equal torque line L1.
  • the torque is the torque output from the electric motor 100.
  • the torque TR can be made substantially equal to the torque command value TR *.
  • the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 are derived so as to further satisfy the following condition (A3).
  • the condition (A3) may not be satisfied.
  • the reference coordinates are the intersections of the equal torque line L1 and the maximum torque curve CV1.
  • the motor torque TR can be made substantially equal to the torque command value TR * while suppressing an increase in power consumption of the electric motor 100.
  • step S14 the current command value derivation unit 21 determines whether or not the motor rotation angle ⁇ is maintained. For example, when the electric motor 100 is used as a power source for the brake device, if the control mode of the brake device is a mode for holding the braking force, it can be regarded as a state for holding the motor rotation angle ⁇ . Even when the motor rotation angle ⁇ is maintained in this way, a load is input to the electric motor 100 from the outside.
  • step S14 it can be said that it is determined whether or not the electric motor 100 is in the stop holding state, which is the state in which the motor rotation angle ⁇ is held while outputting the motor torque.
  • step S15 the current command value derivation unit 21 sets the q-axis command current reference value Iq1 as the latest value Iqa (n) of the q-axis current target value.
  • step S16 the current command value derivation unit 21 sets the d-axis command current reference value Id1 as the latest value Ida (n) of the d-axis current target value. Then, the current command value derivation unit 21 shifts to step S22, which will be described later, for processing.
  • step S14 if it is determined in step S14 that the motor rotation angle ⁇ is maintained (YES), the current command value derivation unit 21 shifts the process to step S17.
  • step S17 the current command value derivation unit 21 determines whether or not the electric motor 100 may be in an overheated state.
  • the state in which the magnitude of the current flowing through one of the coils 101 to 103 is larger than the magnitude of the current flowing through the remaining coils may continue. If such a state is continued, the temperature of one of the coils 101 to 103 may become too high as the temperature of the remaining coils.
  • the current command value derivation unit 21 determines whether or not the duration of the stop holding state, which is the duration of the state of holding the motor rotation angle ⁇ , is equal to or longer than the duration determination value. If the duration is equal to or longer than the duration judgment value, the temperature of one of the coils 101 to 103 may be overheated, which is a state in which the temperature of one coil is too high than the temperature of the remaining coils. Look at it. On the other hand, if the duration is less than the duration judgment value, it is not considered that there is a possibility of overheating. That is, it can be said that the command value derivation unit 20 executes an overheat determination process for determining whether or not the electric motor 100 may be in an overheated state.
  • step S17 If it is not determined that the electric motor 100 may be overheated (S17: NO), the current command value derivation unit 21 shifts the process to step S15. On the other hand, when it is determined that the electric motor 100 may be in an overheated state (S17: YES), the current command value derivation unit 21 shifts the process to step S18. In step S18, the current command value derivation unit 21 determines whether or not any one of the following conditions (B1) and (B2) is satisfied.
  • the previous value Iqa (n-1) of the q-axis current target value is the q-axis command current Iq * derived when this processing routine was executed last time.
  • the previous value Iqa (n-1) of the q-axis current target value is equal to or greater than the q-axis current upper limit value Iqmax.
  • the q-axis current upper limit value Iqmax is a value obtained by adding the q-axis current fluctuation permissible value ⁇ Iqmax to the q-axis command current reference value Iq1.
  • the previous value Iqa (n-1) of the q-axis current target value is not less than or equal to the q-axis current lower limit value Iqmin.
  • the q-axis current lower limit value Iqmin is a value obtained by subtracting the q-axis current fluctuation permissible value ⁇ Iqmax from the q-axis command current reference value Iq1.
  • step S19 the current command value deriving unit 21 reverses the positive / negative of the q-axis current correction value ⁇ Iq. That is, the current command value derivation unit 21 derives the product of the q-axis current correction value ⁇ Iq and “-1” as a new q-axis current correction value ⁇ Iq.
  • the q-axis current correction value ⁇ Iq is set so that the magnitude of the q-axis current correction value ⁇ Iq is smaller than the magnitude of the q-axis current fluctuation permissible value ⁇ Iqmax.
  • step S18 when neither of the conditions (B1) and (B2) is satisfied (NO), the current command value derivation unit 21 shifts the process to step S20.
  • step S20 the current command value derivation unit 21 sets the sum of the previous value Iqa (n-1) of the q-axis current target value and the q-axis current correction value ⁇ Iq to the latest value Iqa (n) of the q-axis current target value. Derived as.
  • the q-axis current correction value ⁇ Iq is a positive value
  • the latest value Iqa (n) of the q-axis current target value is larger than the previous value Iqa (n-1).
  • the q-axis current correction value ⁇ Iq is a negative value
  • the latest value Iqa (n) of the q-axis current target value is smaller than the previous value Iqa (n-1).
  • step S21 the current command value derivation unit 21 derives the d-axis current Id corresponding to the latest value Iqa (n) of the q-axis current target value as the latest value Ida (n) of the d-axis current target value.
  • the current command value derivation unit 21 derives using the following relational expression.
  • "Ld” is the d-axis inductance of the electric motor 100.
  • “Lq” is the q-axis inductance of the electric motor 100.
  • Pn is the pole logarithm of the electric motor 100.
  • is the interlinkage magnetic flux of the electric motor 100.
  • the torque command value TR * is substituted for "TRa”.
  • the coordinates indicated by the latest value Iqa (n) of the q-axis current target value derived in step S20 and the latest value Ida (n) of the d-axis current target value derived in step S21 are , The coordinates within the current limit circle CR1 and on the equal torque line L1 of the torque command value TR *. That is, in the present embodiment, vector fluctuation control is performed in which the current command value vector BCb, which is a vector of the current command value, is changed to a vector corresponding to a plurality of coordinates within a predetermined torque range in the stop holding state.
  • the current command value vector BCb which is a vector of the current command value
  • the predetermined torque range is a range including a plurality of coordinates on the equal torque line L1 of the torque command value TR *.
  • the current command value vector BCb is used under the condition that the current command value vector BCb points to the coordinates within the predetermined torque range including the equal torque line L1 of the torque command value TR * in the rotation coordinates of the vector control. It can be said to fluctuate.
  • each processing of steps S18 to S21 corresponds to vector fluctuation control.
  • the predetermined torque range is set so as not to substantially change the motor torque TR of the electric motor 100. That is, when the current command value vector BCb points to the coordinates within the predetermined torque range in the rotating coordinates, even if the current command value vector BCb does not point to the coordinates on the equal torque line L1 of the torque command value TR *, the electricity is supplied.
  • the motor torque TR of the motor 100 can be regarded as equal to the torque command value TR *. This is because the electric motor 100 has a mechanical loss, so that the output of the electric motor 100 hardly changes even if the torque command value TR * changes slightly.
  • the predetermined torque range is set so as to satisfy the following condition (C1).
  • C1 The rotating coordinates do not include coordinates that are not on the equal torque line L1.
  • step S21 When the latest value Ida (n) of the d-axis current target value is derived in step S21, the current command value deriving unit 21 shifts the processing to step S22.
  • step S22 the current command value derivation unit 21 sets the latest value Ida (n) of the d-axis current target value as the d-axis command current Id *, and sets the latest value Iqa (n) of the q-axis current target value as the q-axis. Set as the command current Iq *. Then, the current command value derivation unit 21 temporarily ends this processing routine.
  • the electric motor 100 When the electric motor 100 is in the stop holding state, the current command value vector BCb is changed by the vector fluctuation control. Then, the d-axis command current Id * and the q-axis command current Iq * are derived based on the current command value vector BCb obtained by the vector fluctuation control. Then, the d-axis command voltage Vd * is derived based on the d-axis command current Id *, and the q-axis command voltage Vq * is derived based on the q-axis command current Iq *. The electric motor 100 is controlled based on the d-axis command voltage Vd * and the q-axis command voltage Vq * derived in this way.
  • the magnitudes of the U-phase current IU, the V-phase current IV, and the W-phase current IW each fluctuate. Therefore, it is possible to prevent the continuation of a state in which the magnitude of the current flowing through one of the coils 101 to 103 is larger than the magnitude of the current flowing through the remaining coils. As a result, it is possible to prevent the temperature of one of the coils 101 to 103 from becoming too high than the temperature of the remaining coils.
  • the current command value vector BCb is fluctuated in the vector corresponding to a plurality of coordinates within a predetermined torque range in the rotating coordinates of the vector control. More specifically, the current command value vector BCb is changed so as to point to a coordinate different from the coordinates pointed to by the current command value vector BCb before the change among the plurality of coordinates within the predetermined torque range.
  • the d-axis current of the coordinates pointed to by the current command value vector BCb obtained by the vector fluctuation control is derived as the d-axis command current Id *
  • the q-axis current of the coordinates is derived as the q-axis command current Iq *.
  • FIG. 3 shows the transition of the d-axis command current Id * and the q-axis command current Iq * when the vector fluctuation control is performed in the present embodiment. That is, when the current command value vector BCb points to the intersection of the equal torque line L1 of the torque command value TR * and the maximum torque curve CV1 in the rotating coordinates, the coordinates pointed to by the current command value vector BCb are indicated by arrows Z1. It changes like. When the q-axis command current Iq * becomes the q-axis current upper limit value Iqmax or more, the coordinates pointed to by the current command value vector BCb change so that the q-axis command current Iq * becomes smaller as shown by the arrow Z2.
  • the current command value vector BCb in the rotating coordinates, the current command value vector BCb The orientation and size are varied. More specifically, in the rotating coordinates, the coordinates pointed to by the current command value vector BCb are swung around the reference coordinates.
  • the reference coordinates are the intersections of the equal torque line L1 of the torque command value TR * and the maximum torque curve CV1.
  • the vector fluctuation control is performed on the condition that the duration of the stop holding state is equal to or longer than the duration determination value, and the current command value vector BCb obtained by the vector fluctuation control is performed.
  • the d-axis command current Id * and the q-axis command current Iq * are derived. That is, based on the current command value vector BCb obtained by the vector fluctuation control when the temperature of one of the coils 101 to 103 may become too high than the temperature of the remaining coils.
  • the d-axis command current Id * and the q-axis command current Iq * are derived. Therefore, it is possible to prevent the temperature of one of the plurality of coils 101 to 103 from becoming too high than the temperature of the remaining coils.
  • each of the inverters 32 is held even though the motor rotation angle ⁇ is maintained.
  • the switching element will operate.
  • the vector fluctuation control is not performed when the duration is less than the duration determination value. Therefore, it is possible to suppress an increase in the opportunity to operate each switching element of the inverter 32 when the motor rotation angle ⁇ is maintained.
  • the above embodiment can be modified and implemented as follows.
  • the above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
  • -The larger the torque command value TR * the larger the maximum value of the current flowing through the coil of the electric motor 100. Therefore, as the above-mentioned duration determination value, a smaller value may be set as the torque command value TR * is larger.
  • the duration judgment value may be fixed at a predetermined value. In this case, when the torque command value TR * is equal to or greater than the determination value and the duration of the stop holding state is equal to or greater than the duration determination value, it is determined that the electric motor 100 may be in an overheated state. You may do so.
  • the vector fluctuation control may be performed when the electric motor 100 is in the specific state.
  • the specific state is a state of the electric motor 100 in which only the magnitude of the current flowing through one of the coils 101 to 103 is equal to or larger than the peak determination value. If the specific state continues, the temperature of one of the coils 101 to 103 becomes too high with the temperature of the remaining coils. Therefore, when the duration of the stop holding state is equal to or longer than the duration determination value, when the electric motor 100 is in the specific state, the vector fluctuation control is performed to control one of the coils 101 to 103. It is possible to prevent the temperature of the coil from becoming too high than the temperature of the remaining coils. In this case, even if the duration of the stop holding state is equal to or longer than the duration determination value, the vector fluctuation control may not be performed when the electric motor 100 is not in the specific state.
  • step S17 may be omitted in the process routine shown in FIG.
  • the vector obtained by the vector fluctuation control is used even if the duration of the stop-holding state is less than the duration determination value. Based on this, the d-axis command current Id * and the q-axis command current Iq * may be derived.
  • the predetermined torque range may be set so as to include the coordinates deviating from the equal torque line L1 of the torque command value TR *. ..
  • the q-axis current fluctuation permissible value ⁇ Iqmax may be fixed at a predetermined value or may be variable.
  • the q-axis current fluctuation permissible value ⁇ Iqmax may be variable depending on the magnitude of the load input from the outside to the electric motor 100. For example, when the load is small, a value larger than that when the load is large may be set as the q-axis current fluctuation allowable value ⁇ Iqmax. Further, for example, when the load can be estimated to be small, a value larger than the case where the load can be estimated to be large may be set as the q-axis current fluctuation allowable value ⁇ Iqmax.
  • the q-axis current fluctuation permissible value ⁇ Iqmax may be varied depending on the temperature of the operating environment of the electric motor 100.
  • the d-axis current Id and the q-axis current Iq indicated by points (coordinates) different from the intersection of the equal torque line L1 of the torque command value TR * and the maximum torque curve CV1 are set to the d-axis command current reference values. It may be set as Id1 and the q-axis command current reference value Iq1. That is, when setting the reference coordinates, the above condition (A3) may not be satisfied.
  • the intersection of the equal torque line L1 and the q-axis (control axis) may be set as the reference coordinates.
  • the command value derivation unit 22 may use the voltage command value derivation unit 22. It does not have to be included. In this case, the d-axis command current Id * and the q-axis command current Iq * are input to the control unit 30. Therefore, in the control unit 30, the d-axis command current Id * and the q-axis command current Iq * are converted into a U-phase command voltage VU *, a V-phase command voltage VV *, and a W-phase command voltage VW *.
  • the vector fluctuation control may be performed by the voltage command value derivation unit 22 instead of the vector fluctuation control by the current command value derivation unit 21.
  • the voltage command value derivation unit 22 performs vector fluctuation control that fluctuates the voltage command value vector BVb, which is a vector of the voltage command value, in the rotating coordinates of the vector control. Then, the d-axis command voltage Vd * and the q-axis command voltage Vq * are derived based on the vector obtained by the vector fluctuation control.
  • the d-axis command current reference value Id1 is derived as the d-axis command current Id *
  • the q-axis command current reference value Iq1 is derived as the q-axis command current Iq *. It is assumed that it is.
  • the d-axis command voltage reference value Vd1 which is the d-axis voltage derived based on the d-axis command current Id *
  • the q-axis command voltage which is the q-axis voltage derived based on the q-axis command current Iq *.
  • the reference coordinates which are the coordinates indicated by the reference value Vq1, may be the intersection of the equal torque line L2 of the torque command value TR * and the maximum torque curve CV2 in the rotation coordinates.
  • the voltage command value vector BVb points to the reference coordinates.
  • the equal torque line L2 of the torque command value TR * is a line connecting a plurality of coordinates on the rotating coordinates corresponding to the torque command value TR *.
  • the voltage command value vector is within the range of the current limit circle CR2 in the rotating coordinates of FIG. 4, and the voltage command value vector BVb points to the coordinates on the equal torque line L2.
  • BVb is varied in rotating coordinates. That is, the voltage command value vector BVb is changed so that the coordinates pointed to by the voltage command value vector BVb change in the manner indicated by the arrow.
  • the voltage command value vector BVb is changed to a vector corresponding to a plurality of coordinates within a predetermined torque range.
  • the predetermined torque range referred to here includes a plurality of coordinates corresponding to the torque command value TR * in the rotating coordinates.
  • the d-axis voltage is derived as the d-axis command voltage Vd * at the coordinates pointed to by the voltage command value vector BVb in the rotational coordinates
  • the q-axis voltage is the q-axis command voltage Vq. Derived as *.
  • Such d-axis command voltage Vd * and q-axis command voltage Vq * are input to the control unit 30. Even in this case, as in the above embodiment, the magnitude of the current flowing through each coil 101 to 103 can be changed while substantially maintaining the motor torque TR. Therefore, while suppressing the change in the motor rotation angle ⁇ , it is possible to prevent the temperature of one of the coils 101 to 103 from becoming too high than the temperature of the remaining coils.
  • the voltage command value vector BVb is changed on the condition that the coordinates on the equal torque line L2 of the torque command value TR * are pointed to.
  • the voltage command value vector BVb may be changed under the condition that the coordinates pointed to by the voltage command value vector BVb change within a predetermined torque range including a plurality of coordinates on the equal torque line L2.
  • the predetermined torque range is a range in which the motor torque TR is not substantially changed. That is, the predetermined torque range may include coordinates that are not on the equal torque line L2.
  • the vector fluctuation control may be performed by the current command value derivation unit 21, and then the vector fluctuation control may also be performed by the voltage command value derivation unit 22.
  • the electric motor control device 10 may have any of the following configurations (a) to (c).
  • the electric motor control device 10 includes one or more processors that execute various processes according to a computer program.
  • the processor includes a CPU and a memory such as RAM and ROM.
  • the memory stores a program code or a command configured to cause the CPU to execute the process.
  • Memory a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
  • the electric motor control device 10 includes one or more dedicated hardware circuits that execute various processes.
  • the electric motor control device 10 includes a processor that executes a part of various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
  • the motor that is the power source of the in-vehicle brake device is the electric motor 100.
  • the motor included in the in-vehicle device other than the brake device may be the electric motor 100. Examples of other in-vehicle devices include electric steering devices.
  • the motor included in the drive device that is not mounted on the vehicle may be the electric motor 100.
  • the electric motor controlled by the electric motor control device 10 may be a motor having any configuration as long as it can be driven by vector control. For example, the number of phases of the coil of the electric motor does not have to be three.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)

Abstract

An electric motor control device 10 comprises: a command value derivation unit 20 which executes vector variable control for causing a vector of at least one command value of a current command value and a voltage command value to vary in rotation coordinates of vector control under a stop holding state and which derives the at least one command value of the current command value and the voltage command value on the basis of the vector obtained by the vector variable control; and a control unit 30 for controlling a motor rotation angle θ on the basis of the command value derived by the command value derivation unit 20. The vector variable control is control for causing the vector of the at least one command value of the current command value and the voltage command value to vary to a vector corresponding to a plurality of coordinates within a predetermined torque range.

Description

電気モータ制御装置Electric motor controller
 本発明は、電気モータを制御する電気モータ制御装置に関する。 The present invention relates to an electric motor control device that controls an electric motor.
 特許文献1には、車両の電動制動装置が備える電気モータを制御する電気モータ制御装置の一例が記載されている。当該電動制動装置では、電気モータの回転角であるモータ回転角を保持することにより、車輪に対する制動力を保持できるようになっている。 Patent Document 1 describes an example of an electric motor control device that controls an electric motor included in an electric braking device of a vehicle. In the electric braking device, the braking force for the wheels can be maintained by holding the motor rotation angle, which is the rotation angle of the electric motor.
 上記電気モータは、三相のコイルを有する電気モータである。モータ回転角を保持する際に、3つのコイルのうち、1つのコイルに流れる電流の大きさが、残りのコイルに流れる電流の大きさよりも大きく、且つ当該1つのコイルに流れる電流の大きさがピーク判定値以上である状態である特定状態になることがある。こうした特定状態が継続されると、3つのコイルのうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎてしまう。 The above electric motor is an electric motor having a three-phase coil. When maintaining the motor rotation angle, the magnitude of the current flowing through one of the three coils is larger than the magnitude of the current flowing through the remaining coils, and the magnitude of the current flowing through the one coil is large. It may be a specific state that is equal to or higher than the peak judgment value. If such a specific state is continued, the temperature of one of the three coils becomes too high with the temperature of the remaining coils.
 そこで、上記電気モータ制御装置では、特定状態が継続しているときには、所定の変動許容範囲でモータ回転角を変化させるべく電気モータが駆動される。これにより、3つのコイルに流れる電流の大きさを変動させることができる。その結果、3つのコイルのうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。 Therefore, in the electric motor control device, when the specific state continues, the electric motor is driven to change the motor rotation angle within a predetermined fluctuation allowable range. As a result, the magnitude of the current flowing through the three coils can be varied. As a result, it is possible to prevent the temperature of one of the three coils from becoming too high than the temperature of the remaining coils.
特開2016-214037号公報Japanese Unexamined Patent Publication No. 2016-214037
 電気モータに対して外部から負荷が入力されるような駆動装置にあっては、モータ回転角を保持するためには電気モータからトルクを出力させる必要がある。すなわち、各コイルに電流を流す必要がある。このように電気モータからトルクを出力させつつモータ回転角を保持する場合にあっては、モータ回転角の変化を抑制しつつ、複数のコイルのうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できるようにすることが望ましい。 In a drive device in which a load is input to the electric motor from the outside, it is necessary to output torque from the electric motor in order to maintain the motor rotation angle. That is, it is necessary to pass a current through each coil. In the case of maintaining the motor rotation angle while outputting torque from the electric motor in this way, the temperature of one of the plurality of coils is the temperature of the remaining coils while suppressing the change in the motor rotation angle. It is desirable to be able to prevent it from becoming too high.
 なお、こうした課題は、外部から負荷が入力される状態でモータ回転角を調整する電気モータを備える駆動装置であれば、電動制動装置以外の他の駆動装置が備える電気モータを制御する場合においても同様に生じうる。 It should be noted that such a problem is to be solved even in the case of controlling an electric motor provided in a drive device other than the electric braking device, as long as the drive device is equipped with an electric motor that adjusts the motor rotation angle when a load is input from the outside. It can happen as well.
 上記課題を解決するための電気モータ制御装置は、複数相のコイルを有する電気モータを、当該電気モータのトルクの指令値であるトルク指令値を基に、前記コイルに通電する電流の指令値である電流指令値及び前記コイルに印加する電圧の指令値である電圧指令値のうちの少なくとも一方をベクトル制御する装置である。この電気モータ制御装置は、前記電気モータにトルクを出力させつつ、当該電気モータの回転角であるモータ回転角を保持する状態である停止保持状態である場合に、前記ベクトル制御の回転座標における前記電流指令値及び前記電圧指令値のうちの少なくとも一方の指令値のベクトルを、前記トルク指令値に対応した複数の座標を含む所定トルク範囲内の複数の座標に対応するベクトルに変動させるベクトル変動制御を実施し、当該ベクトル変動制御によって得られた前記ベクトルを基に、前記電流指令値及び前記電圧指令値のうちの少なくとも一方の指令値を導出する指令値導出部と、前記指令値導出部が導出した前記指令値を基に、前記モータ回転角を制御する制御部と、を備えている。 The electric motor control device for solving the above-mentioned problems is an electric motor having a multi-phase coil with a command value of a current energizing the coil based on a torque command value which is a command value of the torque of the electric motor. It is a device that vector-controls at least one of a certain current command value and a voltage command value which is a command value of a voltage applied to the coil. When the electric motor control device is in a stop holding state in which the motor rotation angle, which is the rotation angle of the electric motor, is held while outputting torque to the electric motor, the electric motor control device is said to have the rotation coordinates of the vector control. Vector fluctuation control that changes the vector of at least one of the current command value and the voltage command value into a vector corresponding to a plurality of coordinates within a predetermined torque range including a plurality of coordinates corresponding to the torque command value. The command value derivation unit for deriving at least one of the current command value and the voltage command value and the command value derivation unit are based on the vector obtained by the vector fluctuation control. It includes a control unit that controls the motor rotation angle based on the derived command value.
 ベクトル制御の回転座標において電流のベクトルを変動させ、当該ベクトルを基に電流指令値を導出し、当該電流指令値を基に電気モータを駆動させたとする。この場合、回転座標での電流のベクトルの変動に応じ、複数のコイルに流れる電流の大きさがそれぞれ変わる。 It is assumed that the current vector is fluctuated in the rotating coordinates of the vector control, the current command value is derived based on the vector, and the electric motor is driven based on the current command value. In this case, the magnitude of the current flowing through the plurality of coils changes according to the fluctuation of the current vector in the rotating coordinates.
 ベクトル制御の回転座標において電圧のベクトルを変動させ、当該ベクトルを基に電圧指令値を導出し、当該電圧指令値を基に電気モータを駆動させたとする。この場合、回転座標での電圧のベクトルの変動に応じ、複数のコイルに流れる電流の大きさがそれぞれ変わる。 It is assumed that the voltage vector is fluctuated in the rotating coordinates of the vector control, the voltage command value is derived based on the vector, and the electric motor is driven based on the voltage command value. In this case, the magnitude of the current flowing through the plurality of coils changes according to the fluctuation of the voltage vector in the rotating coordinates.
 上記構成によれば、停止保持状態である場合には、ベクトル変動制御によって電流指令値及び電圧指令値のうちの少なくとも一方のベクトルを上記回転座標で変動させる。そして、ベクトル変動制御によって得られたベクトルを基に電流指令値及び電圧指令値のうちの少なくとも一方の指令値が導出される。ベクトル変動制御では、電流指令値及び電圧指令値のうちの少なくとも一方のベクトルが、上記の所定トルク範囲内の複数の座標に対応するベクトルに変動される。そのため、こうしたベクトル変動制御によって得られたベクトルに基づいた指令値で電気モータを制御することにより、電気モータの出力トルクはほとんど変化しない。その結果、モータ回転角の変化を抑制できる。 According to the above configuration, in the stop holding state, at least one of the current command value and the voltage command value is changed by the above rotation coordinates by the vector fluctuation control. Then, at least one of the current command value and the voltage command value is derived based on the vector obtained by the vector fluctuation control. In the vector fluctuation control, at least one of the current command value and the voltage command value is changed to a vector corresponding to a plurality of coordinates within the predetermined torque range. Therefore, by controlling the electric motor with the command value based on the vector obtained by such vector fluctuation control, the output torque of the electric motor hardly changes. As a result, changes in the motor rotation angle can be suppressed.
 したがって、上記構成によれば、モータ回転角の変化を抑制しつつ、複数のコイルのうちの1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。 Therefore, according to the above configuration, it is possible to suppress the temperature of one of the plurality of coils from becoming too high than the temperature of the remaining coils while suppressing the change in the rotation angle of the motor.
実施形態の電気モータ制御装置の機能構成と、同電気モータ制御装置によって制御される電気モータの概略構成とを示す図。The figure which shows the functional structure of the electric motor control device of embodiment, and the schematic structure of the electric motor controlled by the electric motor control device. 同電気モータ制御装置の電流指令値導出部が実行する処理ルーチンを説明するフローチャート。The flowchart explaining the processing routine executed by the current command value derivation part of the electric motor control device. ベクトル制御の回転座標で電流指令値のベクトルを変動させる様子を示す作用図。An action diagram showing how the vector of the current command value is changed by the rotating coordinates of the vector control. 変更例において、ベクトル制御の回転座標で電圧指令値のベクトルを変動させる様子を示す模式図。In the modification example, a schematic diagram showing how the vector of the voltage command value is changed by the rotating coordinates of the vector control.
 以下、電気モータ制御装置の一実施形態を図1~図3に従って説明する。
 図1には、電気モータ制御装置10と、電気モータ制御装置10によって制御される電気モータ100とが図示されている。電気モータ100は、例えば、永久磁石埋込型の同期モータである。この場合、電気モータ100のロータ105には、永久磁石が設けられている。電気モータ100は、複数相(U相、V相及びW相)のコイル101,102,103を有している。
Hereinafter, an embodiment of the electric motor control device will be described with reference to FIGS. 1 to 3.
FIG. 1 illustrates an electric motor control device 10 and an electric motor 100 controlled by the electric motor control device 10. The electric motor 100 is, for example, a permanent magnet embedded type synchronous motor. In this case, the rotor 105 of the electric motor 100 is provided with a permanent magnet. The electric motor 100 has coils 101, 102, 103 having a plurality of phases (U phase, V phase, and W phase).
 電気モータ100は、例えば「特開2016-214037号公報」に開示されているように、車載のブレーキ装置の動力源として採用することができる。当該ブレーキ装置では、ロータ105の回転角であるモータ回転角に応じた制動力を車両の車輪に付与することができる。 The electric motor 100 can be adopted as a power source for an in-vehicle brake device, for example, as disclosed in "Japanese Unexamined Patent Publication No. 2016-214037". In the braking device, a braking force corresponding to the rotation angle of the motor, which is the rotation angle of the rotor 105, can be applied to the wheels of the vehicle.
 電気モータ制御装置10は、ベクトル制御によって電気モータ100を駆動させる。ベクトル制御の回転座標において、d軸は永久磁石の磁束軸の方向に延びる制御軸である。q軸は、トルクの方向に延びる制御軸であって、d軸とは直交している。 The electric motor control device 10 drives the electric motor 100 by vector control. In the rotating coordinates of vector control, the d-axis is a control axis extending in the direction of the magnetic flux axis of the permanent magnet. The q-axis is a control axis extending in the direction of torque and is orthogonal to the d-axis.
 電気モータ制御装置10は、ベクトル制御によって電気モータ100を駆動させるための機能部として、トルク指令値導出部11、指令値導出部20及び制御部30を備えている。 The electric motor control device 10 includes a torque command value derivation unit 11, a command value derivation unit 20, and a control unit 30 as functional units for driving the electric motor 100 by vector control.
 トルク指令値導出部11は、電気モータ100のトルクの指令値であるトルク指令値TR*を導出する。例えば、トルク指令値導出部11は、電気モータ100の負荷トルクの推定値TRLd、電気モータ100のロータ回転数の指令値である回転数指令値ωm*と、ロータ回転数の推定値である推定回転数ωmとを基に、トルク指令値TR*を導出する。 The torque command value derivation unit 11 derives the torque command value TR *, which is the command value of the torque of the electric motor 100. For example, the torque command value derivation unit 11 has an estimated value TRLd of the load torque of the electric motor 100, a rotation speed command value ωm * which is a command value of the rotor rotation speed of the electric motor 100, and an estimation value which is an estimated value of the rotor rotation speed. The torque command value TR * is derived based on the rotation speed ωm.
 指令値導出部20は、トルク指令値導出部11によって導出されたトルク指令値TR*を基に、各コイル101~103に通電する電流の指令値である電流指令値、及び、各コイル101~103に印加する電圧の指令値である電圧指令値のうちの少なくとも一方の指令値を導出する。 The command value derivation unit 20 is based on the torque command value TR * derived by the torque command value derivation unit 11, the current command value which is the command value of the current energizing each coil 101 to 103, and each coil 101 to. At least one of the voltage command values, which is the command value of the voltage applied to 103, is derived.
 本実施形態では、指令値導出部20は、電流指令値導出部21と、電圧指令値導出部22とを有している。
 電流指令値導出部21は、電流指令値としてd軸指令電流Id*及びq軸指令電流Iq*を導出する。d軸指令電流Id*とは、d軸の方向の電流成分の指令値である。q軸指令電流Iq*とは、q軸の方向の電流成分の指令値である。d軸指令電流Id*及びq軸指令電流Iq*の導出処理については後述する。
In the present embodiment, the command value derivation unit 20 has a current command value derivation unit 21 and a voltage command value derivation unit 22.
The current command value derivation unit 21 derives the d-axis command current Id * and the q-axis command current Iq * as the current command values. The d-axis command current Id * is a command value of the current component in the direction of the d-axis. The q-axis command current Iq * is a command value of the current component in the direction of the q-axis. The derivation process of the d-axis command current Id * and the q-axis command current Iq * will be described later.
 電圧指令値導出部22は、電圧指令値としてd軸指令電圧Vd*及びq軸指令電圧Vq*を導出する。d軸指令電圧Vd*とは、d軸の方向の電圧成分の指令値である。q軸指令電圧Vq*とは、q軸の方向の電圧成分の指令値である。例えば、電圧指令値導出部22は、d軸指令電流Id*と、d軸電流Idとに基づいたフィードバック制御によって、d軸指令電圧Vd*を算出する。d軸電流Idとは、電気モータ100への給電によって回転座標上で発生した電流ベクトルのうちの推定d軸の方向の電流成分を示す値である。また、電圧指令値導出部22は、q軸指令電流Iq*と、q軸電流Iqとに基づいたフィードバック制御によって、q軸指令電圧Vq*を算出する。q軸電流Iqとは、電気モータ100への給電によって回転座標上で発生した電流ベクトルのうちの推定q軸の方向の電流成分を示す値である。 The voltage command value derivation unit 22 derives the d-axis command voltage Vd * and the q-axis command voltage Vq * as voltage command values. The d-axis command voltage Vd * is a command value of a voltage component in the direction of the d-axis. The q-axis command voltage Vq * is a command value of a voltage component in the direction of the q-axis. For example, the voltage command value derivation unit 22 calculates the d-axis command voltage Vd * by feedback control based on the d-axis command current Id * and the d-axis current Id. The d-axis current Id is a value indicating a current component in the direction of the estimated d-axis in the current vector generated on the rotating coordinates by supplying power to the electric motor 100. Further, the voltage command value derivation unit 22 calculates the q-axis command voltage Vq * by feedback control based on the q-axis command current Iq * and the q-axis current Iq. The q-axis current Iq is a value indicating a current component in the direction of the estimated q-axis in the current vector generated on the rotating coordinates by supplying power to the electric motor 100.
 制御部30は、指令値導出部20によって導出された指令値を基に、モータ回転角θを制御する。
 本実施形態では、制御部30は、2相/3相変換部31と、インバータ32とを有している。
The control unit 30 controls the motor rotation angle θ based on the command value derived by the command value derivation unit 20.
In the present embodiment, the control unit 30 has a two-phase / three-phase conversion unit 31 and an inverter 32.
 2相/3相変換部31は、モータ回転角θを基に、d軸指令電圧Vd*及びq軸指令電圧Vq*を、U相指令電圧VU*と、V相指令電圧VV*と、W相指令電圧VW*とに変換する。U相指令電圧VU*は、U相のコイル101に印加する電圧の指令値である。V相指令電圧VV*は、V相のコイル102に印加する電圧の指令値である。W相指令電圧VW*は、W相のコイル103に印加する電圧の指令値である。 The 2-phase / 3-phase conversion unit 31 sets the d-axis command voltage Vd * and the q-axis command voltage Vq *, the U-phase command voltage VU *, the V-phase command voltage VV *, and W based on the motor rotation angle θ. Convert to phase command voltage VW *. The U-phase command voltage VU * is a command value of the voltage applied to the U-phase coil 101. The V-phase command voltage VV * is a command value of the voltage applied to the V-phase coil 102. The W-phase command voltage VW * is a command value of the voltage applied to the W-phase coil 103.
 インバータ32は、電源から供給される電力によって動作する複数のスイッチング素子を有している。インバータ32は、2相/3相変換部31から入力されたU相指令電圧VU*に基づいたスイッチング素子のオン/オフ動作によってU相信号を生成する。インバータ32は、入力されたV相指令電圧VV*に基づいたスイッチング素子のオン/オフ動作によってV相信号を生成する。インバータ32は、入力されたW相指令電圧VW*に基づいたスイッチング素子のオン/オフ動作によってW相信号を生成する。すると、U相信号が電気モータ100のU相のコイル101に入力され、V相信号がV相のコイル102に入力され、W相信号がW相のコイル103に入力される。このようにインバータ32が生成した各信号を電気モータ100に入力させることにより、モータ回転角θが制御される。 The inverter 32 has a plurality of switching elements operated by the electric power supplied from the power source. The inverter 32 generates a U-phase signal by turning on / off the switching element based on the U-phase command voltage VU * input from the 2-phase / 3-phase conversion unit 31. The inverter 32 generates a V-phase signal by turning on / off the switching element based on the input V-phase command voltage VV *. The inverter 32 generates a W phase signal by turning on / off the switching element based on the input W phase command voltage VW *. Then, the U-phase signal is input to the U-phase coil 101 of the electric motor 100, the V-phase signal is input to the V-phase coil 102, and the W-phase signal is input to the W-phase coil 103. By inputting each signal generated by the inverter 32 to the electric motor 100 in this way, the motor rotation angle θ is controlled.
 電気モータ制御装置10は、機能部として、3相/2相変換部41、回転角取得部42及び機械角速度生成部43をさらに備えている。
 3相/2相変換部41には、電気モータ100のU相のコイル101に流れた電流であるU相電流IUが入力され、V相のコイル102に流れた電流であるV相電流IVが入力され、W相のコイル103に流れた電流であるW相電流IWが入力される。そして、3相/2相変換部41は、U相電流IU、V相電流IV及びW相電流IWを、d軸の成分の電流であるd軸電流Id及びq軸の成分の電流であるq軸電流Iqに変換する。
The electric motor control device 10 further includes a three-phase / two-phase conversion unit 41, a rotation angle acquisition unit 42, and a mechanical angular velocity generation unit 43 as functional units.
The U-phase current IU, which is the current flowing through the U-phase coil 101 of the electric motor 100, is input to the 3-phase / 2-phase conversion unit 41, and the V-phase current IV, which is the current flowing through the V-phase coil 102, is input to the 3-phase / 2-phase conversion unit 41. The W-phase current IW, which is the current that is input and flows through the W-phase coil 103, is input. Then, the three-phase / two-phase conversion unit 41 sets the U-phase current IU, the V-phase current IV, and the W-phase current IW into the d-axis current Id, which is the current of the d-axis component, and q, which is the current of the q-axis component. Convert to shaft current Iq.
 回転角取得部42は、モータ回転角θを取得する。例えば回転角センサ111を電気モータ100が備えている場合、回転角取得部42は、回転角センサ111の検出信号を基にモータ回転角θを取得できる。回転角センサ111としては、例えば、ホールIC、MRセンサ及びレゾルバを挙げることができる。 The rotation angle acquisition unit 42 acquires the motor rotation angle θ. For example, when the electric motor 100 includes the rotation angle sensor 111, the rotation angle acquisition unit 42 can acquire the motor rotation angle θ based on the detection signal of the rotation angle sensor 111. Examples of the rotation angle sensor 111 include a Hall IC, an MR sensor, and a resolver.
 なお、回転角取得部42は、回転角センサ111の検出信号を用いずにモータ回転角θを導出することもできる。回転角取得部42は、例えば「特開2020-36498号公報」に開示されているような公知の外乱出力処理を行うことにより、モータ回転角θを取得することもできる。この場合、回転角センサを備えていない電気モータ100にも電気モータ制御装置10を適用できる。 The rotation angle acquisition unit 42 can also derive the motor rotation angle θ without using the detection signal of the rotation angle sensor 111. The rotation angle acquisition unit 42 can also acquire the motor rotation angle θ by performing a known disturbance output process as disclosed in, for example, "Japanese Patent Laid-Open No. 2020-36498". In this case, the electric motor control device 10 can be applied to the electric motor 100 that does not have the rotation angle sensor.
 機械角速度生成部43は、ロータ105の機械角速度の推定値を推定回転数ωmとして導出する。例えば、機械角速度生成部43は、回転角取得部42によって取得されたモータ回転角θを微分することにより、推定回転数ωmを導出できる。 The mechanical angular velocity generation unit 43 derives an estimated value of the mechanical angular velocity of the rotor 105 as an estimated rotation speed ωm. For example, the mechanical angular velocity generation unit 43 can derive the estimated rotation speed ωm by differentiating the motor rotation angle θ acquired by the rotation angle acquisition unit 42.
 次に、図2及び図3を参照し、d軸指令電流Id*及びq軸指令電流Iq*の導出処理について説明する。電流指令値導出部21は、図2に示す処理ルーチンを所定の制御サイクル毎に繰り返し実行する。 Next, with reference to FIGS. 2 and 3, the derivation process of the d-axis command current Id * and the q-axis command current Iq * will be described. The current command value derivation unit 21 repeatedly executes the processing routine shown in FIG. 2 at predetermined control cycles.
 図2に示す処理ルーチンにおいて、ステップS11では、電流指令値導出部21は、係数nを「1」インクリメントする。続いて、ステップS12において、電流指令値導出部21は、トルク指令値導出部11が導出したトルク指令値TR*を取得する。そして、ステップS13において、電流指令値導出部21は、トルク指令値TR*に応じたd軸指令電流であるd軸指令電流基準値Id1を取得する。また、電流指令値導出部21は、トルク指令値TR*に応じたq軸指令電流であるq軸指令電流基準値Iq1を取得する。 In the processing routine shown in FIG. 2, in step S11, the current command value derivation unit 21 increments the coefficient n by “1”. Subsequently, in step S12, the current command value derivation unit 21 acquires the torque command value TR * derived by the torque command value derivation unit 11. Then, in step S13, the current command value derivation unit 21 acquires the d-axis command current reference value Id1, which is the d-axis command current corresponding to the torque command value TR *. Further, the current command value derivation unit 21 acquires the q-axis command current reference value Iq1 which is the q-axis command current corresponding to the torque command value TR *.
 図3を参照し、d軸指令電流基準値Id1及びq軸指令電流基準値Iq1の取得処理の一例について説明する。図3は、ベクトル制御の回転座標を示している。当該回転座標において、縦軸はq軸電流Iqであり、横軸はd軸電流Idである。図3には、電流制限円CR1が実線で図示されるとともに、最大トルク曲線CV1が一点鎖線で図示されている。また、図3には、トルク指令値TR*の等トルク線L1が破線で図示されている。トルク指令値TR*の等トルク線L1とは、トルク指令値TR*に対応した回転座標上の複数の座標を繋いだ線である。 With reference to FIG. 3, an example of acquisition processing of the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 will be described. FIG. 3 shows the rotating coordinates of the vector control. In the rotating coordinates, the vertical axis is the q-axis current Iq and the horizontal axis is the d-axis current Id. In FIG. 3, the current limiting circle CR1 is shown by a solid line, and the maximum torque curve CV1 is shown by a alternate long and short dash line. Further, in FIG. 3, the equal torque line L1 of the torque command value TR * is shown by a broken line. The equal torque line L1 of the torque command value TR * is a line connecting a plurality of coordinates on the rotating coordinates corresponding to the torque command value TR *.
 d軸指令電流基準値Id1及びq軸指令電流基準値Iq1は、以下の条件(A1)及び(A2)を満たすように導出される。なお、図3に示す回転座標において、d軸指令電流基準値Id1及びq軸指令電流基準値Iq1で示される座標を、「基準座標」という。なお、図3に示すベクトルは、d軸指令電流Id*及びq軸指令電流Iq*で示される座標を指す「電流指令値ベクトルBCb」である。
(A1)回転座標において、基準座標が電流制限円CR1の領域内の座標であること。
(A2)回転座標において、基準座標が等トルク線L1上の座標であること。
The d-axis command current reference value Id1 and the q-axis command current reference value Iq1 are derived so as to satisfy the following conditions (A1) and (A2). In the rotating coordinates shown in FIG. 3, the coordinates indicated by the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 are referred to as "reference coordinates". The vector shown in FIG. 3 is a “current command value vector BCb” indicating the coordinates indicated by the d-axis command current Id * and the q-axis command current Iq *.
(A1) In the rotating coordinates, the reference coordinates are the coordinates within the region of the current limiting circle CR1.
(A2) In the rotating coordinates, the reference coordinates are the coordinates on the equal torque line L1.
 こうしたd軸指令電流基準値Id1をd軸指令電流Id*として設定するとともに、q軸指令電流基準値Iq1をq軸指令電流Iq*として設定した場合、電気モータ100から出力されるトルクであるモータトルクTRを、トルク指令値TR*とほぼ等しくできる。 When the d-axis command current reference value Id1 is set as the d-axis command current Id * and the q-axis command current reference value Iq1 is set as the q-axis command current Iq *, the torque is the torque output from the electric motor 100. The torque TR can be made substantially equal to the torque command value TR *.
 本実施形態では、d軸指令電流基準値Id1及びq軸指令電流基準値Iq1は、以下の条件(A3)をさらに満たすように導出される。なお、別の実施形態では、条件(A3)を満たしていなくてもよい。
(A3)回転座標において、基準座標が、等トルク線L1と最大トルク曲線CV1との交点であること。
In the present embodiment, the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 are derived so as to further satisfy the following condition (A3). In another embodiment, the condition (A3) may not be satisfied.
(A3) In the rotating coordinates, the reference coordinates are the intersections of the equal torque line L1 and the maximum torque curve CV1.
 条件(A1)、(A2)及び(A3)の何れをも満たすd軸指令電流基準値Id1及びq軸指令電流基準値Iq1をd軸指令電流Id*及びq軸指令電流Iq*として設定した場合、電気モータ100の電力消費の増大を抑制しつつ、モータトルクTRをトルク指令値TR*とほぼ等しくできる。 When the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 that satisfy all of the conditions (A1), (A2), and (A3) are set as the d-axis command current Id * and the q-axis command current Iq *. The motor torque TR can be made substantially equal to the torque command value TR * while suppressing an increase in power consumption of the electric motor 100.
 図2に戻り、ステップS13においてd軸指令電流基準値Id1及びq軸指令電流基準値Iq1の取得が完了すると、電流指令値導出部21は、処理を次のステップS14に移行する。ステップS14において、電流指令値導出部21は、モータ回転角θを保持する状態であるか否かを判定する。例えば電気モータ100がブレーキ装置の動力源として用いられている場合、ブレーキ装置の制御モードが制動力を保持するモードである場合は、モータ回転角θを保持する状態であると見なせる。このようにモータ回転角θを保持する場合であっても、電気モータ100には外部から負荷が入力される。そのため、モータ回転角θを保持するためには、モータトルクを電気モータ100から出力させ続ける必要がある。そのため、ステップS14では、電気モータ100にモータトルクを出力させつつ、モータ回転角θを保持する状態である停止保持状態であるか否かを判定しているといえる。 Returning to FIG. 2, when the acquisition of the d-axis command current reference value Id1 and the q-axis command current reference value Iq1 is completed in step S13, the current command value derivation unit 21 shifts the processing to the next step S14. In step S14, the current command value derivation unit 21 determines whether or not the motor rotation angle θ is maintained. For example, when the electric motor 100 is used as a power source for the brake device, if the control mode of the brake device is a mode for holding the braking force, it can be regarded as a state for holding the motor rotation angle θ. Even when the motor rotation angle θ is maintained in this way, a load is input to the electric motor 100 from the outside. Therefore, in order to maintain the motor rotation angle θ, it is necessary to continue to output the motor torque from the electric motor 100. Therefore, in step S14, it can be said that it is determined whether or not the electric motor 100 is in the stop holding state, which is the state in which the motor rotation angle θ is held while outputting the motor torque.
 モータ回転角θを保持する状態であるとの判定がなされていない場合(S14:NO)、電流指令値導出部21は、処理をステップS15に移行する。ステップS15において、電流指令値導出部21は、q軸電流目標値の最新値Iqa(n)としてq軸指令電流基準値Iq1を設定する。続いて、ステップS16において、電流指令値導出部21は、d軸電流目標値の最新値Ida(n)としてd軸指令電流基準値Id1を設定する。そして、電流指令値導出部21は、処理を後述するステップS22に移行する。 When it is not determined that the motor rotation angle θ is maintained (S14: NO), the current command value derivation unit 21 shifts the process to step S15. In step S15, the current command value derivation unit 21 sets the q-axis command current reference value Iq1 as the latest value Iqa (n) of the q-axis current target value. Subsequently, in step S16, the current command value derivation unit 21 sets the d-axis command current reference value Id1 as the latest value Ida (n) of the d-axis current target value. Then, the current command value derivation unit 21 shifts to step S22, which will be described later, for processing.
 一方、ステップS14において、モータ回転角θを保持する状態であるとの判定がなされている場合(YES)、電流指令値導出部21は、処理をステップS17に移行する。ステップS17において、電流指令値導出部21は、電気モータ100が過熱状態になる可能性があるか否かを判定する。モータ回転角θを保持し続けている場合、各コイル101~103のうち、1つのコイルに流れる電流の大きさが残りのコイルに流れる電流の大きさよりも大きい状態が継続されることがある。こうした状態が継続されると、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎるおそれがある。そこで、本実施形態では、電流指令値導出部21は、モータ回転角θを保持する状態の継続時間である停止保持状態の継続時間が継続時間判定値以上であるか否かを判定する。継続時間が継続時間判定値以上である場合は、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎている状態である過熱状態になる可能性あると見なす。一方、継続時間が継続時間判定値未満である場合は、過熱状態になる可能性があると見なさない。すなわち、指令値導出部20は、電気モータ100が過熱状態である可能性があるか否かを判定する過熱判定処理を実行するといえる。 On the other hand, if it is determined in step S14 that the motor rotation angle θ is maintained (YES), the current command value derivation unit 21 shifts the process to step S17. In step S17, the current command value derivation unit 21 determines whether or not the electric motor 100 may be in an overheated state. When the motor rotation angle θ is continuously maintained, the state in which the magnitude of the current flowing through one of the coils 101 to 103 is larger than the magnitude of the current flowing through the remaining coils may continue. If such a state is continued, the temperature of one of the coils 101 to 103 may become too high as the temperature of the remaining coils. Therefore, in the present embodiment, the current command value derivation unit 21 determines whether or not the duration of the stop holding state, which is the duration of the state of holding the motor rotation angle θ, is equal to or longer than the duration determination value. If the duration is equal to or longer than the duration judgment value, the temperature of one of the coils 101 to 103 may be overheated, which is a state in which the temperature of one coil is too high than the temperature of the remaining coils. Look at it. On the other hand, if the duration is less than the duration judgment value, it is not considered that there is a possibility of overheating. That is, it can be said that the command value derivation unit 20 executes an overheat determination process for determining whether or not the electric motor 100 may be in an overheated state.
 電気モータ100が過熱状態になる可能性があるとの判定がなされていない場合(S17:NO)、電流指令値導出部21は、処理をステップS15に移行する。一方、電気モータ100が過熱状態になる可能性があるとの判定がなされている場合(S17:YES)、電流指令値導出部21は、処理をステップS18に移行する。ステップS18において、電流指令値導出部21は、以下の条件(B1)及び(B2)の何れか一方が成立しているか否かを判定する。q軸電流目標値の前回値Iqa(n-1)とは、本処理ルーチンを前回実行した際に導出したq軸指令電流Iq*である。
(B1)q軸電流目標値の前回値Iqa(n-1)がq軸電流上限値Iqmax以上であること。q軸電流上限値Iqmaxは、q軸指令電流基準値Iq1にq軸電流変動許容値ΔIqmaxを足した値である。
(B2)q軸電流目標値の前回値Iqa(n-1)がq軸電流下限値Iqmin以下であること。q軸電流下限値Iqminは、q軸指令電流基準値Iq1からq軸電流変動許容値ΔIqmaxを引いた値である。
If it is not determined that the electric motor 100 may be overheated (S17: NO), the current command value derivation unit 21 shifts the process to step S15. On the other hand, when it is determined that the electric motor 100 may be in an overheated state (S17: YES), the current command value derivation unit 21 shifts the process to step S18. In step S18, the current command value derivation unit 21 determines whether or not any one of the following conditions (B1) and (B2) is satisfied. The previous value Iqa (n-1) of the q-axis current target value is the q-axis command current Iq * derived when this processing routine was executed last time.
(B1) The previous value Iqa (n-1) of the q-axis current target value is equal to or greater than the q-axis current upper limit value Iqmax. The q-axis current upper limit value Iqmax is a value obtained by adding the q-axis current fluctuation permissible value ΔIqmax to the q-axis command current reference value Iq1.
(B2) The previous value Iqa (n-1) of the q-axis current target value is not less than or equal to the q-axis current lower limit value Iqmin. The q-axis current lower limit value Iqmin is a value obtained by subtracting the q-axis current fluctuation permissible value ΔIqmax from the q-axis command current reference value Iq1.
 条件(B1)及び(B2)の何れか一方が成立している場合(S18:YES)、電流指令値導出部21は、処理をステップS19に移行する。ステップS19において、電流指令値導出部21は、q軸電流補正値ΔIqの正負を逆転させる。すなわち、電流指令値導出部21は、q軸電流補正値ΔIqと「-1」との積を、新たなq軸電流補正値ΔIqとして導出する。ちなみに、q軸電流補正値ΔIqの大きさがq軸電流変動許容値ΔIqmaxの大きさよりも小さくなるように、q軸電流補正値ΔIqは設定されている。q軸電流補正値ΔIqの正負を逆転させると、電流指令値導出部21は、処理をステップS20に移行する。 When either of the conditions (B1) and (B2) is satisfied (S18: YES), the current command value derivation unit 21 shifts the process to step S19. In step S19, the current command value deriving unit 21 reverses the positive / negative of the q-axis current correction value ΔIq. That is, the current command value derivation unit 21 derives the product of the q-axis current correction value ΔIq and “-1” as a new q-axis current correction value ΔIq. Incidentally, the q-axis current correction value ΔIq is set so that the magnitude of the q-axis current correction value ΔIq is smaller than the magnitude of the q-axis current fluctuation permissible value ΔIqmax. When the positive / negative of the q-axis current correction value ΔIq is reversed, the current command value deriving unit 21 shifts the processing to step S20.
 一方、ステップS18において、条件(B1)及び(B2)の何れもが成立していない場合(NO)、電流指令値導出部21は、処理をステップS20に移行する。
 ステップS20において、電流指令値導出部21は、q軸電流目標値の前回値Iqa(n-1)とq軸電流補正値ΔIqとの和を、q軸電流目標値の最新値Iqa(n)として導出する。q軸電流補正値ΔIqが正の値である場合、q軸電流目標値の最新値Iqa(n)は前回値Iqa(n-1)よりも大きい。一方、q軸電流補正値ΔIqが負の値である場合、q軸電流目標値の最新値Iqa(n)は前回値Iqa(n-1)よりも小さい。
On the other hand, in step S18, when neither of the conditions (B1) and (B2) is satisfied (NO), the current command value derivation unit 21 shifts the process to step S20.
In step S20, the current command value derivation unit 21 sets the sum of the previous value Iqa (n-1) of the q-axis current target value and the q-axis current correction value ΔIq to the latest value Iqa (n) of the q-axis current target value. Derived as. When the q-axis current correction value ΔIq is a positive value, the latest value Iqa (n) of the q-axis current target value is larger than the previous value Iqa (n-1). On the other hand, when the q-axis current correction value ΔIq is a negative value, the latest value Iqa (n) of the q-axis current target value is smaller than the previous value Iqa (n-1).
 続いて、ステップS21において、電流指令値導出部21は、q軸電流目標値の最新値Iqa(n)に応じたd軸電流Idを、d軸電流目標値の最新値Ida(n)として導出する。例えば、電流指令値導出部21は、以下の関係式を用いて導出する。関係式において、「Ld」は電気モータ100のd軸インダクタンスである。「Lq」は電気モータ100のq軸インダクタンスである。「Pn」は電気モータ100の極対数である。「Ψ」は電気モータ100の鎖交磁束である。また「TRa」には、トルク指令値TR*が代入される。 Subsequently, in step S21, the current command value derivation unit 21 derives the d-axis current Id corresponding to the latest value Iqa (n) of the q-axis current target value as the latest value Ida (n) of the d-axis current target value. do. For example, the current command value derivation unit 21 derives using the following relational expression. In the relational expression, "Ld" is the d-axis inductance of the electric motor 100. "Lq" is the q-axis inductance of the electric motor 100. "Pn" is the pole logarithm of the electric motor 100. “Ψ” is the interlinkage magnetic flux of the electric motor 100. Further, the torque command value TR * is substituted for "TRa".
 
Figure JPOXMLDOC01-appb-M000001
 図3に示す回転座標において、ステップS20で導出されたq軸電流目標値の最新値Iqa(n)とステップS21で導出されたd軸電流目標値の最新値Ida(n)とで示す座標は、電流制限円CR1内であって且つトルク指令値TR*の等トルク線L1上の座標である。すなわち、本実施形態では、停止保持状態である場合に、電流指令値のベクトルである電流指令値ベクトルBCbを、所定トルク範囲内の複数の座標に対応するベクトルに変動させるベクトル変動制御が実施される。所定トルク範囲とは、トルク指令値TR*の等トルク線L1上の複数の座標を含む範囲である。なお、ベクトル変動制御では、ベクトル制御の回転座標において、トルク指令値TR*の等トルク線L1を含む所定トルク範囲内の座標を電流指令値ベクトルBCbが指すという条件下で電流指令値ベクトルBCbを変動させるともいえる。本処理ルーチンでは、ステップS18~S21の各処理が、ベクトル変動制御に対応する。

Figure JPOXMLDOC01-appb-M000001
In the rotating coordinates shown in FIG. 3, the coordinates indicated by the latest value Iqa (n) of the q-axis current target value derived in step S20 and the latest value Ida (n) of the d-axis current target value derived in step S21 are , The coordinates within the current limit circle CR1 and on the equal torque line L1 of the torque command value TR *. That is, in the present embodiment, vector fluctuation control is performed in which the current command value vector BCb, which is a vector of the current command value, is changed to a vector corresponding to a plurality of coordinates within a predetermined torque range in the stop holding state. To. The predetermined torque range is a range including a plurality of coordinates on the equal torque line L1 of the torque command value TR *. In the vector fluctuation control, the current command value vector BCb is used under the condition that the current command value vector BCb points to the coordinates within the predetermined torque range including the equal torque line L1 of the torque command value TR * in the rotation coordinates of the vector control. It can be said to fluctuate. In this processing routine, each processing of steps S18 to S21 corresponds to vector fluctuation control.
 なお、所定トルク範囲は、電気モータ100のモータトルクTRを実質的に変化させないように設定される。すなわち、回転座標において電流指令値ベクトルBCbが所定トルク範囲内の座標を指している場合、トルク指令値TR*の等トルク線L1上の座標を電流指令値ベクトルBCbが指していなくても、電気モータ100のモータトルクTRはトルク指令値TR*と等しいと見なせる。これは、電気モータ100には機械的損失が存在しているため、トルク指令値TR*が多少変わっても電気モータ100のアウトプットはほとんど変化しないためである。 The predetermined torque range is set so as not to substantially change the motor torque TR of the electric motor 100. That is, when the current command value vector BCb points to the coordinates within the predetermined torque range in the rotating coordinates, even if the current command value vector BCb does not point to the coordinates on the equal torque line L1 of the torque command value TR *, the electricity is supplied. The motor torque TR of the motor 100 can be regarded as equal to the torque command value TR *. This is because the electric motor 100 has a mechanical loss, so that the output of the electric motor 100 hardly changes even if the torque command value TR * changes slightly.
 ちなみに、本実施形態では、以下の条件(C1)を満たすように所定トルク範囲が設定されている。
(C1)回転座標において、等トルク線L1上ではない座標を含んでいないこと。
Incidentally, in the present embodiment, the predetermined torque range is set so as to satisfy the following condition (C1).
(C1) The rotating coordinates do not include coordinates that are not on the equal torque line L1.
 ステップS21においてd軸電流目標値の最新値Ida(n)が導出されると、電流指令値導出部21は、処理をステップS22に移行する。
 ステップS22において、電流指令値導出部21は、d軸電流目標値の最新値Ida(n)をd軸指令電流Id*として設定し、q軸電流目標値の最新値Iqa(n)をq軸指令電流Iq*として設定する。そして、電流指令値導出部21は、本処理ルーチンを一旦終了する。
When the latest value Ida (n) of the d-axis current target value is derived in step S21, the current command value deriving unit 21 shifts the processing to step S22.
In step S22, the current command value derivation unit 21 sets the latest value Ida (n) of the d-axis current target value as the d-axis command current Id *, and sets the latest value Iqa (n) of the q-axis current target value as the q-axis. Set as the command current Iq *. Then, the current command value derivation unit 21 temporarily ends this processing routine.
 本実施形態の作用及び効果について説明する。
 電気モータ100が停止保持状態である場合には、ベクトル変動制御によって電流指令値ベクトルBCbが変動される。そして、ベクトル変動制御によって得られた電流指令値ベクトルBCbを基に、d軸指令電流Id*及びq軸指令電流Iq*が導出される。そして、d軸指令電流Id*を基にd軸指令電圧Vd*が導出され、q軸指令電流Iq*を基にq軸指令電圧Vq*が導出される。このように導出されたd軸指令電圧Vd*及びq軸指令電圧Vq*に基づいて電気モータ100が制御される。
The operation and effect of this embodiment will be described.
When the electric motor 100 is in the stop holding state, the current command value vector BCb is changed by the vector fluctuation control. Then, the d-axis command current Id * and the q-axis command current Iq * are derived based on the current command value vector BCb obtained by the vector fluctuation control. Then, the d-axis command voltage Vd * is derived based on the d-axis command current Id *, and the q-axis command voltage Vq * is derived based on the q-axis command current Iq *. The electric motor 100 is controlled based on the d-axis command voltage Vd * and the q-axis command voltage Vq * derived in this way.
 このように電流指令値ベクトルBCbを変動させることにより、U相電流IU、V相電流IV及びW相電流IWの大きさがそれぞれ変動する。そのため、各コイル101~103のうち、1つのコイルに流れる電流の大きさが残りのコイルに流れる電流の大きさよりも大きい状態が継続することを抑制できる。その結果、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。 By fluctuating the current command value vector BCb in this way, the magnitudes of the U-phase current IU, the V-phase current IV, and the W-phase current IW each fluctuate. Therefore, it is possible to prevent the continuation of a state in which the magnitude of the current flowing through one of the coils 101 to 103 is larger than the magnitude of the current flowing through the remaining coils. As a result, it is possible to prevent the temperature of one of the coils 101 to 103 from becoming too high than the temperature of the remaining coils.
 ベクトル変動制御では、ベクトル制御の回転座標において、所定トルク範囲内の複数の座標に対応するベクトルに電流指令値ベクトルBCbが変動される。より詳しくは、所定トルク範囲内の複数の座標のうち、変動前の電流指令値ベクトルBCbが指している座標とは別の座標を指すように、電流指令値ベクトルBCbが変動される。 In the vector fluctuation control, the current command value vector BCb is fluctuated in the vector corresponding to a plurality of coordinates within a predetermined torque range in the rotating coordinates of the vector control. More specifically, the current command value vector BCb is changed so as to point to a coordinate different from the coordinates pointed to by the current command value vector BCb before the change among the plurality of coordinates within the predetermined torque range.
 そのため、ベクトル変動制御によって得られた電流指令値ベクトルBCbが指す座標のd軸電流をd軸指令電流Id*として導出し、当該座標のq軸電流をq軸指令電流Iq*として導出し、これら各指令電流Id*,Iq*を基に電気モータ100を駆動させてもモータ回転角θは変化しない。仮にモータ回転角θが変化したとしても、その変化量は非常に少ない。したがって、モータ回転角θの変化を抑制しつつ、複数のコイル101~103のうちの1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。 Therefore, the d-axis current of the coordinates pointed to by the current command value vector BCb obtained by the vector fluctuation control is derived as the d-axis command current Id *, and the q-axis current of the coordinates is derived as the q-axis command current Iq *. Even if the electric motor 100 is driven based on the command currents Id * and Iq *, the motor rotation angle θ does not change. Even if the motor rotation angle θ changes, the amount of change is very small. Therefore, it is possible to suppress the temperature of one of the plurality of coils 101 to 103 from becoming too high than the temperature of the remaining coils while suppressing the change in the motor rotation angle θ.
 図3には、本実施形態においてベクトル変動制御を実施した場合のd軸指令電流Id*及びq軸指令電流Iq*の推移が図示されている。すなわち、回転座標において、トルク指令値TR*の等トルク線L1と最大トルク曲線CV1との交点を電流指令値ベクトルBCbが指していた場合、電流指令値ベクトルBCbが指す座標は、矢印Z1で示すように変化する。そして、q軸指令電流Iq*がq軸電流上限値Iqmax以上になると、矢印Z2で示すように、q軸指令電流Iq*が小さくなるように電流指令値ベクトルBCbが指す座標が変化する。この状態でq軸指令電流Iq*がq軸電流下限値Iqmin以下になると、矢印Z3で示すように、q軸指令電流Iq*が大きくなるように電流指令値ベクトルBCbが指す座標が変化する。 FIG. 3 shows the transition of the d-axis command current Id * and the q-axis command current Iq * when the vector fluctuation control is performed in the present embodiment. That is, when the current command value vector BCb points to the intersection of the equal torque line L1 of the torque command value TR * and the maximum torque curve CV1 in the rotating coordinates, the coordinates pointed to by the current command value vector BCb are indicated by arrows Z1. It changes like. When the q-axis command current Iq * becomes the q-axis current upper limit value Iqmax or more, the coordinates pointed to by the current command value vector BCb change so that the q-axis command current Iq * becomes smaller as shown by the arrow Z2. When the q-axis command current Iq * becomes equal to or less than the q-axis current lower limit value Iqmin in this state, the coordinates pointed to by the current command value vector BCb change so that the q-axis command current Iq * increases, as shown by the arrow Z3.
 すなわち、本実施形態では、電気モータ100が停止保持状態であって且つ電気モータ100が過熱状態になる可能性がある場合、図3で示したように、回転座標において、電流指令値ベクトルBCbの向き及び大きさが変動される。より詳しくは、回転座標において、電流指令値ベクトルBCbが指す座標を、上記基準座標を中心に揺動する。本実施形態において、基準座標とは、トルク指令値TR*の等トルク線L1と最大トルク曲線CV1との交点である。 That is, in the present embodiment, when the electric motor 100 is in the stopped holding state and the electric motor 100 may be in the overheated state, as shown in FIG. 3, in the rotating coordinates, the current command value vector BCb The orientation and size are varied. More specifically, in the rotating coordinates, the coordinates pointed to by the current command value vector BCb are swung around the reference coordinates. In the present embodiment, the reference coordinates are the intersections of the equal torque line L1 of the torque command value TR * and the maximum torque curve CV1.
 本実施形態では、以下に示す効果をさらに得ることができる。
 電気モータ100が停止保持状態である場合には、停止保持状態の継続時間が継続時間判定値以上であることを条件にベクトル変動制御が実施され、ベクトル変動制御によって得られた電流指令値ベクトルBCbを基に、d軸指令電流Id*及びq軸指令電流Iq*が導出される。すなわち、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎる状態になる可能性があるときに、ベクトル変動制御によって得られた電流指令値ベクトルBCbに基づいてd軸指令電流Id*及びq軸指令電流Iq*が導出される。したがって、複数のコイル101~103のうちの1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。
In the present embodiment, the following effects can be further obtained.
When the electric motor 100 is in the stop holding state, the vector fluctuation control is performed on the condition that the duration of the stop holding state is equal to or longer than the duration determination value, and the current command value vector BCb obtained by the vector fluctuation control is performed. Based on the above, the d-axis command current Id * and the q-axis command current Iq * are derived. That is, based on the current command value vector BCb obtained by the vector fluctuation control when the temperature of one of the coils 101 to 103 may become too high than the temperature of the remaining coils. The d-axis command current Id * and the q-axis command current Iq * are derived. Therefore, it is possible to prevent the temperature of one of the plurality of coils 101 to 103 from becoming too high than the temperature of the remaining coils.
 ベクトル変動制御によって得られた電流指令値ベクトルBCbに基づいてd軸指令電流Id*及びq軸指令電流Iq*が導出される場合、モータ回転角θを保持するにも拘わらず、インバータ32の各スイッチング素子が動作することになる。この点、本実施形態では、電気モータ100が停止保持状態である場合であっても、継続時間が継続時間判定値未満であるときには、ベクトル変動制御が実施されない。そのため、モータ回転角θを保持する際にインバータ32の各スイッチング素子を動作させる機会の増大を抑制できる。 When the d-axis command current Id * and the q-axis command current Iq * are derived based on the current command value vector BCb obtained by the vector fluctuation control, each of the inverters 32 is held even though the motor rotation angle θ is maintained. The switching element will operate. In this respect, in this embodiment, even when the electric motor 100 is in the stopped and held state, the vector fluctuation control is not performed when the duration is less than the duration determination value. Therefore, it is possible to suppress an increase in the opportunity to operate each switching element of the inverter 32 when the motor rotation angle θ is maintained.
 上記実施形態は、以下のように変更して実施することができる。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
 ・トルク指令値TR*が大きい場合ほど、電気モータ100のコイルに流れる電流の最大値が大きくなりやすい。そこで、上記の継続時間判定値として、トルク指令値TR*が大きいほど小さい値を設定するようにしてもよい。
The above embodiment can be modified and implemented as follows. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.
-The larger the torque command value TR *, the larger the maximum value of the current flowing through the coil of the electric motor 100. Therefore, as the above-mentioned duration determination value, a smaller value may be set as the torque command value TR * is larger.
 ・継続時間判定値は、所定値で固定してもよい。この場合、トルク指令値TR*が判定値以上であり、且つ停止保持状態の継続時間が継続時間判定値以上であるときに、電気モータ100が過熱状態になる可能性があるとの判定をなすようにしてもよい。 ・ The duration judgment value may be fixed at a predetermined value. In this case, when the torque command value TR * is equal to or greater than the determination value and the duration of the stop holding state is equal to or greater than the duration determination value, it is determined that the electric motor 100 may be in an overheated state. You may do so.
 ・停止保持状態の継続時間が継続時間判定値以上である場合において、電気モータ100が特定状態であるときに、ベクトル変動制御を実施するようにしてもよい。特定状態とは、各コイル101~103のうち、1つのコイルに流れる電流の大きさのみがピーク判定値以上となる電気モータ100の状態である。特定状態が継続すると、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎてしまう。そのため、停止保持状態の継続時間が継続時間判定値以上である場合において、電気モータ100が特定状態であるときに、ベクトル変動制御を実施することにより、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。なお、この場合、停止保持状態の継続時間が継続時間判定値以上である場合であっても、電気モータ100が特定状態ではないときにはベクトル変動制御を実施しなくてもよい。 -When the duration of the stop holding state is equal to or longer than the duration determination value, the vector fluctuation control may be performed when the electric motor 100 is in the specific state. The specific state is a state of the electric motor 100 in which only the magnitude of the current flowing through one of the coils 101 to 103 is equal to or larger than the peak determination value. If the specific state continues, the temperature of one of the coils 101 to 103 becomes too high with the temperature of the remaining coils. Therefore, when the duration of the stop holding state is equal to or longer than the duration determination value, when the electric motor 100 is in the specific state, the vector fluctuation control is performed to control one of the coils 101 to 103. It is possible to prevent the temperature of the coil from becoming too high than the temperature of the remaining coils. In this case, even if the duration of the stop holding state is equal to or longer than the duration determination value, the vector fluctuation control may not be performed when the electric motor 100 is not in the specific state.
 ・図2に示した処理ルーチンにおいてステップS17の判定処理を省略してもよい。
 ・電気モータ100が停止保持状態になった場合、停止保持状態がある程度継続すると予測できるときには、停止保持状態の継続時間が継続時間判定値未満であっても、ベクトル変動制御によって得られたベクトルを基に、d軸指令電流Id*及びq軸指令電流Iq*を導出するようにしてもよい。
The determination process in step S17 may be omitted in the process routine shown in FIG.
When the stop-holding state can be predicted to continue to some extent when the electric motor 100 is in the stop-holding state, the vector obtained by the vector fluctuation control is used even if the duration of the stop-holding state is less than the duration determination value. Based on this, the d-axis command current Id * and the q-axis command current Iq * may be derived.
 ・電気モータ100のモータトルクを実質的に変化させないように設定されるのであれば、所定トルク範囲を、トルク指令値TR*の等トルク線L1から外れた座標も含むように設定してもよい。 If the motor torque of the electric motor 100 is set so as not to change substantially, the predetermined torque range may be set so as to include the coordinates deviating from the equal torque line L1 of the torque command value TR *. ..
 ・q軸電流変動許容値ΔIqmaxは、所定値で固定してもよいし、可変させてもよい。q軸電流変動許容値ΔIqmaxを可変させる場合、電気モータ100に対して外部から入力される負荷の大小によって、q軸電流変動許容値ΔIqmaxを可変させてもよい。例えば、当該負荷が小さい場合には、当該負荷が大きい場合よりも大きい値をq軸電流変動許容値ΔIqmaxとするとよい。また例えば、当該負荷が小さいと推測できる場合には、当該負荷が大きいと推測できる場合よりも大きい値をq軸電流変動許容値ΔIqmaxとするとよい。 The q-axis current fluctuation permissible value ΔIqmax may be fixed at a predetermined value or may be variable. When the q-axis current fluctuation permissible value ΔIqmax is variable, the q-axis current fluctuation permissible value ΔIqmax may be varied depending on the magnitude of the load input from the outside to the electric motor 100. For example, when the load is small, a value larger than that when the load is large may be set as the q-axis current fluctuation allowable value ΔIqmax. Further, for example, when the load can be estimated to be small, a value larger than the case where the load can be estimated to be large may be set as the q-axis current fluctuation allowable value ΔIqmax.
 また、電気モータ100の使用環境の温度によってq軸電流変動許容値ΔIqmaxを可変させてもよい。
 ・上記実施形態において、トルク指令値TR*の等トルク線L1と最大トルク曲線CV1との交点とは異なる点(座標)で示すd軸電流Id及びq軸電流Iqを、d軸指令電流基準値Id1及びq軸指令電流基準値Iq1として設定してもよい。すなわち、上記基準座標を設定するに際し、上記条件(A3)を満たしていなくてもよい。例えば、等トルク線L1とq軸(制御軸)との交点を基準座標として設定してもよい。
Further, the q-axis current fluctuation permissible value ΔIqmax may be varied depending on the temperature of the operating environment of the electric motor 100.
In the above embodiment, the d-axis current Id and the q-axis current Iq indicated by points (coordinates) different from the intersection of the equal torque line L1 of the torque command value TR * and the maximum torque curve CV1 are set to the d-axis command current reference values. It may be set as Id1 and the q-axis command current reference value Iq1. That is, when setting the reference coordinates, the above condition (A3) may not be satisfied. For example, the intersection of the equal torque line L1 and the q-axis (control axis) may be set as the reference coordinates.
 ・指令値導出部20は、電流指令値導出部21でベクトル変動制御を実施した上でd軸指令電流Id*及びq軸指令電流Iq*を導出するのであれば、電圧指令値導出部22を含まなくてもよい。この場合、制御部30には、d軸指令電流Id*及びq軸指令電流Iq*が入力される。そのため、制御部30では、d軸指令電流Id*及びq軸指令電流Iq*が、U相指令電圧VU*と、V相指令電圧VV*と、W相指令電圧VW*とに変換される。 If the command value derivation unit 20 derives the d-axis command current Id * and the q-axis command current Iq * after performing vector fluctuation control in the current command value derivation unit 21, the command value derivation unit 22 may use the voltage command value derivation unit 22. It does not have to be included. In this case, the d-axis command current Id * and the q-axis command current Iq * are input to the control unit 30. Therefore, in the control unit 30, the d-axis command current Id * and the q-axis command current Iq * are converted into a U-phase command voltage VU *, a V-phase command voltage VV *, and a W-phase command voltage VW *.
 ・電流指令値導出部21でベクトル変動制御を実施するのではなく、電圧指令値導出部22でベクトル変動制御を実施するようにしてもよい。この場合、電圧指令値導出部22では、ベクトル制御の回転座標において、電圧指令値のベクトルである電圧指令値ベクトルBVbを変動させるベクトル変動制御が実施される。そして、ベクトル変動制御によって得られたベクトルを基に、d軸指令電圧Vd*及びq軸指令電圧Vq*が導出される。 -The vector fluctuation control may be performed by the voltage command value derivation unit 22 instead of the vector fluctuation control by the current command value derivation unit 21. In this case, the voltage command value derivation unit 22 performs vector fluctuation control that fluctuates the voltage command value vector BVb, which is a vector of the voltage command value, in the rotating coordinates of the vector control. Then, the d-axis command voltage Vd * and the q-axis command voltage Vq * are derived based on the vector obtained by the vector fluctuation control.
 図4を参照し、電圧指令値導出部22でベクトル変動制御を実施する場合について説明する。図4に示す例において、電流指令値導出部21では、d軸指令電流基準値Id1がd軸指令電流Id*として導出され、q軸指令電流基準値Iq1がq軸指令電流Iq*として導出されているものとする。この場合、d軸指令電流Id*に基づいて導出されるd軸電圧であるd軸指令電圧基準値Vd1と、q軸指令電流Iq*に基づいて導出されるq軸電圧であるq軸指令電圧基準値Vq1とで示される座標である基準座標が、回転座標において、トルク指令値TR*の等トルク線L2と最大トルク曲線CV2との交点となることがある。図4では、電圧指令値ベクトルBVbが基準座標を指している。なお、トルク指令値TR*の等トルク線L2とは、トルク指令値TR*に対応した回転座標上の複数の座標を繋いだ線である。 A case where vector fluctuation control is performed by the voltage command value derivation unit 22 will be described with reference to FIG. In the example shown in FIG. 4, in the current command value derivation unit 21, the d-axis command current reference value Id1 is derived as the d-axis command current Id *, and the q-axis command current reference value Iq1 is derived as the q-axis command current Iq *. It is assumed that it is. In this case, the d-axis command voltage reference value Vd1 which is the d-axis voltage derived based on the d-axis command current Id * and the q-axis command voltage which is the q-axis voltage derived based on the q-axis command current Iq *. The reference coordinates, which are the coordinates indicated by the reference value Vq1, may be the intersection of the equal torque line L2 of the torque command value TR * and the maximum torque curve CV2 in the rotation coordinates. In FIG. 4, the voltage command value vector BVb points to the reference coordinates. The equal torque line L2 of the torque command value TR * is a line connecting a plurality of coordinates on the rotating coordinates corresponding to the torque command value TR *.
 そして、ベクトル変動制御では、図4の回転座標において電流制限円CR2の範囲であって、且つ電圧指令値ベクトルBVbが等トルク線L2上の座標を指すという条件を満たすように、電圧指令値ベクトルBVbが回転座標で変動される。すなわち、矢印で示す態様で電圧指令値ベクトルBVbが指す座標が変わるように、電圧指令値ベクトルBVbが変動される。言い換えると、所定トルク範囲内の複数の座標に対応するベクトルに電圧指令値ベクトルBVbが変動される。ここでいう所定トルク範囲とは、回転座標において、トルク指令値TR*に対応した複数の座標を含んでいる。このように電圧指令値ベクトルBVbを変動させた場合、回転座標で電圧指令値ベクトルBVbが指す座標における、d軸電圧がd軸指令電圧Vd*として導出され、q軸電圧がq軸指令電圧Vq*として導出される。 Then, in the vector fluctuation control, the voltage command value vector is within the range of the current limit circle CR2 in the rotating coordinates of FIG. 4, and the voltage command value vector BVb points to the coordinates on the equal torque line L2. BVb is varied in rotating coordinates. That is, the voltage command value vector BVb is changed so that the coordinates pointed to by the voltage command value vector BVb change in the manner indicated by the arrow. In other words, the voltage command value vector BVb is changed to a vector corresponding to a plurality of coordinates within a predetermined torque range. The predetermined torque range referred to here includes a plurality of coordinates corresponding to the torque command value TR * in the rotating coordinates. When the voltage command value vector BVb is changed in this way, the d-axis voltage is derived as the d-axis command voltage Vd * at the coordinates pointed to by the voltage command value vector BVb in the rotational coordinates, and the q-axis voltage is the q-axis command voltage Vq. Derived as *.
 こうしたd軸指令電圧Vd*及びq軸指令電圧Vq*が制御部30に入力される。この場合であっても、上記実施形態と同様に、モータトルクTRを実質的に保持しつつ、各コイル101~103に流れる電流の大きさを変動させることができる。したがって、モータ回転角θの変化を抑制しつつ、各コイル101~103のうち、1つのコイルの温度が残りのコイルの温度よりも高くなりすぎることを抑制できる。 Such d-axis command voltage Vd * and q-axis command voltage Vq * are input to the control unit 30. Even in this case, as in the above embodiment, the magnitude of the current flowing through each coil 101 to 103 can be changed while substantially maintaining the motor torque TR. Therefore, while suppressing the change in the motor rotation angle θ, it is possible to prevent the temperature of one of the coils 101 to 103 from becoming too high than the temperature of the remaining coils.
 なお、図4に示した例では、トルク指令値TR*の等トルク線L2上の座標を指すという条件で電圧指令値ベクトルBVbを変動させている。しかし、等トルク線L2上の複数の座標を含む所定トルク範囲内で電圧指令値ベクトルBVbが指す座標が変わるという条件で、電圧指令値ベクトルBVbを変動させてもよい。この場合、所定トルク範囲は、モータトルクTRを実質的に変化させない範囲のことである。つまり、所定トルク範囲は、等トルク線L2上ではない座標を含んでいてもよい。 In the example shown in FIG. 4, the voltage command value vector BVb is changed on the condition that the coordinates on the equal torque line L2 of the torque command value TR * are pointed to. However, the voltage command value vector BVb may be changed under the condition that the coordinates pointed to by the voltage command value vector BVb change within a predetermined torque range including a plurality of coordinates on the equal torque line L2. In this case, the predetermined torque range is a range in which the motor torque TR is not substantially changed. That is, the predetermined torque range may include coordinates that are not on the equal torque line L2.
 ・電流指令値導出部21でベクトル変動制御を実施した上で、電圧指令値導出部22でもベクトル変動制御を実施するようにしてもよい。
 ・電気モータ制御装置10は、以下(a)~(c)の何れかの構成であればよい。
(a)電気モータ制御装置10は、コンピュータプログラムに従って各種処理を実行する一つ以上のプロセッサを備えている。プロセッサは、CPU並びに、RAM及びROMなどのメモリを含んでいる。メモリは、処理をCPUに実行させるように構成されたプログラムコード又は指令を格納している。メモリ、すなわちコンピュータ可読媒体は、汎用又は専用のコンピュータでアクセスできるあらゆる利用可能な媒体を含んでいる。
(b)電気モータ制御装置10は、各種処理を実行する一つ以上の専用のハードウェア回路を備えている。専用のハードウェア回路としては、例えば、特定用途向け集積回路、すなわちASIC又はFPGAを挙げることができる。なお、ASICは、「Application Specific Integrated Circuit」の略記であり、FPGAは、「Field Programmable Gate Array」の略記である。
(c)電気モータ制御装置10は、各種処理の一部をコンピュータプログラムに従って実行するプロセッサと、各種処理のうちの残りの処理を実行する専用のハードウェア回路とを備えている。
The vector fluctuation control may be performed by the current command value derivation unit 21, and then the vector fluctuation control may also be performed by the voltage command value derivation unit 22.
The electric motor control device 10 may have any of the following configurations (a) to (c).
(A) The electric motor control device 10 includes one or more processors that execute various processes according to a computer program. The processor includes a CPU and a memory such as RAM and ROM. The memory stores a program code or a command configured to cause the CPU to execute the process. Memory, a computer-readable medium, includes any available medium accessible by a general purpose or dedicated computer.
(B) The electric motor control device 10 includes one or more dedicated hardware circuits that execute various processes. As the dedicated hardware circuit, for example, an integrated circuit for a specific application, that is, an ASIC or FPGA can be mentioned. ASIC is an abbreviation for "Application Specific Integrated Circuit", and FPGA is an abbreviation for "Field Programmable Gate Array".
(C) The electric motor control device 10 includes a processor that executes a part of various processes according to a computer program, and a dedicated hardware circuit that executes the remaining processes of the various processes.
 ・上記実施形態では、車載のブレーキ装置の動力源であるモータを電気モータ100としている。しかし、ブレーキ装置以外の他の車載装置が備えるモータを、電気モータ100としてもよい。他の車載装置としては、例えば、電動ステアリング装置を挙げることができる。 -In the above embodiment, the motor that is the power source of the in-vehicle brake device is the electric motor 100. However, the motor included in the in-vehicle device other than the brake device may be the electric motor 100. Examples of other in-vehicle devices include electric steering devices.
 ・車両に搭載されない駆動装置が備えるモータを、電気モータ100としてもよい。
 ・電気モータ制御装置10によって制御される電動モータは、ベクトル制御によって駆動させることができるのであれば、任意の構成のモータであってもよい。例えば、電動モータが有するコイルの相数は、3相でなくてもよい。
-The motor included in the drive device that is not mounted on the vehicle may be the electric motor 100.
-The electric motor controlled by the electric motor control device 10 may be a motor having any configuration as long as it can be driven by vector control. For example, the number of phases of the coil of the electric motor does not have to be three.

Claims (3)

  1.  複数相のコイルを有する電気モータを、当該電気モータのトルクの指令値であるトルク指令値を基に、前記コイルに通電する電流の指令値である電流指令値及び前記コイルに印加する電圧の指令値である電圧指令値のうちの少なくとも一方をベクトル制御する電気モータ制御装置であって、
     前記電気モータにトルクを出力させつつ、当該電気モータの回転角であるモータ回転角を保持する状態である停止保持状態である場合に、前記ベクトル制御の回転座標における前記電流指令値及び前記電圧指令値のうちの少なくとも一方の指令値のベクトルを、前記トルク指令値に対応した複数の座標を含む所定トルク範囲内の複数の座標に対応するベクトルに変動させるベクトル変動制御を実施し、当該ベクトル変動制御によって得られた前記ベクトルを基に、前記電流指令値及び前記電圧指令値のうちの少なくとも一方の指令値を導出する指令値導出部と、
     前記指令値導出部が導出した前記指令値を基に、前記モータ回転角を制御する制御部と、を備える
     電気モータ制御装置。
    An electric motor having a multi-phase coil has a current command value which is a command value of a current energizing the coil and a voltage command applied to the coil based on a torque command value which is a command value of the torque of the electric motor. An electric motor control device that vector-controls at least one of the voltage command values, which is a value.
    The current command value and the voltage command in the rotation coordinates of the vector control when the stop holding state is a state in which the motor rotation angle, which is the rotation angle of the electric motor, is held while the torque is output to the electric motor. Vector fluctuation control is performed to change the vector of at least one of the values to the vector corresponding to a plurality of coordinates within a predetermined torque range including the plurality of coordinates corresponding to the torque command value, and the vector fluctuation is performed. A command value derivation unit that derives at least one of the current command value and the voltage command value based on the vector obtained by control.
    An electric motor control device including a control unit that controls the motor rotation angle based on the command value derived by the command value derivation unit.
  2.  前記指令値導出部は、前記停止保持状態の継続時間が継続時間判定値以上である場合に、前記ベクトル変動制御を実施する
     請求項1に記載の電気モータ制御装置。
    The electric motor control device according to claim 1, wherein the command value derivation unit performs the vector fluctuation control when the duration of the stop holding state is equal to or longer than the duration determination value.
  3.  前記指令値導出部は、前記ベクトル変動制御では、前記電流指令値及び前記電圧指令値のうちの少なくとも一方の指令値のベクトルを、前記トルク指令値に対応した複数の座標に対応するベクトルに変動させる
     請求項1又は請求項2に記載の電気モータ制御装置。
    In the vector fluctuation control, the command value derivation unit changes the vector of at least one of the current command value and the voltage command value into a vector corresponding to a plurality of coordinates corresponding to the torque command value. The electric motor control device according to claim 1 or claim 2.
PCT/JP2021/035853 2020-09-29 2021-09-29 Electric motor control device WO2022071390A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162973 2020-09-29
JP2020162973A JP2022055511A (en) 2020-09-29 2020-09-29 Electric motor controller

Publications (1)

Publication Number Publication Date
WO2022071390A1 true WO2022071390A1 (en) 2022-04-07

Family

ID=80949212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035853 WO2022071390A1 (en) 2020-09-29 2021-09-29 Electric motor control device

Country Status (2)

Country Link
JP (1) JP2022055511A (en)
WO (1) WO2022071390A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165499A (en) * 2000-11-22 2002-06-07 Nissan Motor Co Ltd Motor controller
JP2007267512A (en) * 2006-03-29 2007-10-11 Denso Corp Drive controller of ac motor
JP2013132137A (en) * 2011-12-21 2013-07-04 Suzuki Motor Corp Motor control device of electric vehicle
JP2018182960A (en) * 2017-04-18 2018-11-15 株式会社デンソー Rotary electric machine control device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002165499A (en) * 2000-11-22 2002-06-07 Nissan Motor Co Ltd Motor controller
JP2007267512A (en) * 2006-03-29 2007-10-11 Denso Corp Drive controller of ac motor
JP2013132137A (en) * 2011-12-21 2013-07-04 Suzuki Motor Corp Motor control device of electric vehicle
JP2018182960A (en) * 2017-04-18 2018-11-15 株式会社デンソー Rotary electric machine control device

Also Published As

Publication number Publication date
JP2022055511A (en) 2022-04-08

Similar Documents

Publication Publication Date Title
JP5803559B2 (en) Rotating electrical machine control device
CN105375845B (en) Electric rotating machine control device
JP2012100435A (en) Rotating electric machine control device
JP4008930B2 (en) Motor control device
Khanh et al. Advanced PMSM speed control using fuzzy PI method for hybrid power control technique
JP6400231B2 (en) Control device for rotating electrical machine
WO2022071390A1 (en) Electric motor control device
JP2013123288A (en) Controller of motor
JP2007267512A (en) Drive controller of ac motor
JP7400559B2 (en) motor control device
JP7073799B2 (en) Motor control method and motor control device
JP6950409B2 (en) Drive device
JP2017175759A (en) Automobile
JP7317250B2 (en) Rotating electric machine control device and electric power steering device
JP7099225B2 (en) Motor control device
WO2022113317A1 (en) Control device of rotating electric machine and electromotive power steering device
JP7099226B2 (en) Motor control device
US20230412099A1 (en) Motor control device and electric power steering device provided with same
JP6305603B1 (en) Control device for rotating electrical machine
WO2022044347A1 (en) Rotating electric machine control device and electric power steering device
JP7271954B2 (en) motor controller
JP6905186B2 (en) Power converter and its control method
JP2023183492A (en) Control device for ac rotary machine and power generating electric motor device for vehicle
RU2419954C1 (en) Electric motor control device
JP2008131757A (en) Motor controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875690

Country of ref document: EP

Kind code of ref document: A1