WO2022071286A1 - 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子 - Google Patents

液晶組成物、液晶表示素子の製造方法、及び液晶表示素子 Download PDF

Info

Publication number
WO2022071286A1
WO2022071286A1 PCT/JP2021/035557 JP2021035557W WO2022071286A1 WO 2022071286 A1 WO2022071286 A1 WO 2022071286A1 JP 2021035557 W JP2021035557 W JP 2021035557W WO 2022071286 A1 WO2022071286 A1 WO 2022071286A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
group
carbon atoms
crystal display
substrate
Prior art date
Application number
PCT/JP2021/035557
Other languages
English (en)
French (fr)
Inventor
正人 森内
尚宏 野田
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to JP2022553991A priority Critical patent/JPWO2022071286A1/ja
Publication of WO2022071286A1 publication Critical patent/WO2022071286A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F30/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
    • C08F30/04Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal
    • C08F30/08Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing a metal containing silicon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention is a method for manufacturing a liquid crystal display element, which can manufacture a weak anchoring film by an inexpensive method and a method not including a complicated process, and which applies a technique for stabilizing a liquid crystal layer with a polymer.
  • the present invention relates to a liquid crystal display element for realizing a further low voltage drive, a liquid crystal composition that can be used for them, and a radically polymerizable compound.
  • liquid crystal display elements have been widely used in mobile phones, computers, television displays, and the like.
  • Liquid crystal display elements have characteristics such as thinness, light weight, and low power consumption, and are expected to be applied to further contents such as VR (Virtual Reality) and ultra-high-definition displays in the future.
  • Various display modes such as TN (Twisted Nematic), IPS (In-Plane Switching), and VA (Vertical Indicator) have been proposed as display methods for liquid crystal displays, but the liquid crystal is oriented in a desired orientation in all modes.
  • a film (liquid crystal alignment film) that induces IPS is used.
  • the IPS mode which does not distort the display even when touched, is preferred.
  • Liquid crystal display elements using Field Switching and technologies using non-contact technology using optical orientation have come to be used.
  • FFS has a higher substrate manufacturing cost than IPS, and has a problem that a display defect peculiar to FFS mode called Vcom shift occurs.
  • photo-alignment compared to the rubbing method, there are merits that the size of the element that can be manufactured can be increased and the display characteristics can be greatly improved.
  • seizure due to insufficient alignment force, etc. can be mentioned.
  • liquid crystal display element makers and liquid crystal alignment film makers are making various efforts to solve these problems.
  • a liquid crystal alignment film having strong anchoring energy is used for the substrate on one side, and the substrate side provided with the electrode for generating a transverse electric field on one side has no liquid crystal alignment regulating force.
  • Patent Document 3 As a method for solving this, a method of weakly anchoring only on the pixel electrode has been proposed (see Patent Document 3). It has been reported that this makes it possible to achieve both improvement in brightness and response speed.
  • Japanese Patent No. 40553530 Japanese Unexamined Patent Publication No. 2013-231757 Japanese Unexamined Patent Publication No. 2017-21166
  • the response speed delay during driving is suppressed, while in order to make the weak anchoring state only on the electrode, different materials are used in very small areas. It is necessary to prepare difficult techniques such as painting separately, which may be a big issue for actual industrialization.
  • the present invention has been made to solve the above-mentioned problems, and in narrowing the cell gap, a weak anchoring transverse electric field liquid crystal display element can be stably manufactured without generating a pretilt angle, and a low drive voltage can be produced.
  • a method for manufacturing a liquid crystal display element that can manufacture a transverse electric field liquid crystal display element with a small decrease in VHR (voltage retention rate) even at high temperatures, and a method for manufacturing a liquid crystal display element, which can simultaneously realize the change in voltage and increase the response speed when the voltage is off. It is an object of the present invention to provide the liquid crystal display element, a liquid crystal composition that can be used for the liquid crystal display element, and a radically polymerizable compound.
  • a liquid crystal comprising a step of polymerizing the radically polymerizable compound in a state where the liquid crystal and the liquid crystal composition containing the radically polymerizable compound represented by the following formula (A) are in contact with a radical generating film.
  • Method of manufacturing display element M represents a radically polymerizable polymerizable group
  • R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • the three Xs are independent of each other.
  • Y represents a single bond, -O-, -S-, or -NR-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond site.
  • R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.
  • [2] The method for producing a liquid crystal display element according to [1], wherein the aromatic hydrocarbon group which may have the substituent in the formula (B) is a phenyl group.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R d represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • the radical-generating film is coated with a composition containing a compound having an organic group that generates a radical and a polymer, and cured to form a film, whereby the organic group that generates the radical is obtained.
  • the polymer containing an organic group that induces radical polymerization is selected from a polyimide precursor, a polyimide, a polyurea, and a polyamide obtained by using a diamine component containing a diamine containing an organic group that induces radical polymerization.
  • the organic group that induces radical polymerization is an organic group represented by the following formulas [X-1] to [X-18], [W], [Y], or [Z], [9]. The method for manufacturing a liquid crystal display element according to the above.
  • S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively, and R is.
  • S2R or NR when a part of the ⁇ CH2 - group of the alkyl group is replaced with an oxygen atom, the oxygen atom is directly bonded to S2 or N. No.).
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
  • Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent.
  • R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and R 9 and R 10 are alkyl groups. In the case of, they may be bonded to each other at the ends to form a ring structure.
  • Q represents any of the following structures.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is indicated.
  • S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • the diamine containing an organic group that induces radical polymerization is a diamine having a structure represented by the following formula (6), the following formula (7), or the following formula (7'), [9] or [10]
  • R 6 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH 2 O-, -N. Represents (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
  • R 8 represents a radical polymerization reactive group represented by a formula selected from the following formulas [X-1] to [X-18].
  • S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively, and R is.
  • S2R or NR when a part of the ⁇ CH2 - group of the alkyl group is replaced with an oxygen atom, the oxygen atom is directly bonded to S2 or N. No.).
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.))) (In equations (7) and (7'), T 1 and T 2 are independently single-bonded, -O-, -S-, -COO-, -OCO-, -NHCO-, -CONH-, respectively. -NH-, -CH 2 O-, -N (CH 3 )-, -CON (CH 3 )-, or -N (CH 3 ) CO-.
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , -SO 2- , -O.
  • J is an organic group represented by a formula selected from the following formulas [W], [Y] and [Z].
  • R 9 and R 10 independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q is described below. Represents either structure.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond.
  • S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • q is independently 0 or 1
  • at least one q is 1
  • p represents an integer of 1 to 2.
  • a liquid crystal composition comprising a liquid crystal display and a radically polymerizable compound represented by the following formula (A).
  • M represents a radically polymerizable polymerizable group
  • R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • the three Xs are independent of each other.
  • Y represents a single bond, -O-, -S-, or -NR-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond site.
  • R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.
  • the radically polymerizable compound in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound represented by the following formula (A) is in contact with the radically polymerized film of the first substrate having the radically generated film.
  • a liquid crystal display element characterized by having a polymerization reaction.
  • M represents a radically polymerizable polymerizable group
  • R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • the three Xs are independent of each other.
  • a weak anchoring transverse electric field liquid crystal display element in narrowing the cell gap, can be stably manufactured without generating a pretilt angle, and at the same time, the drive voltage can be lowered and the response speed when the voltage is turned off can be increased at the same time.
  • a method for manufacturing a liquid crystal display element that can be realized and that can produce a transverse electric field liquid crystal display element with a small decrease in VHR even at high temperatures, the liquid crystal display element, a liquid crystal composition that can be used for them, and radical polymerizable. Compounds can be provided.
  • the present invention is an additive (with a specific structure) capable of suppressing the development of a pretilt angle due to the formation of a weak anchoring film and stably producing a highly reliable weak anchoring transverse electric field liquid crystal display element even in a narrow cell gap. It utilizes a radically polymerizable compound). For example, a step of preparing a cell having a liquid crystal composition containing a liquid crystal and a radically polymerizable compound having a specific structure between a first substrate having a radical generating film and a second substrate having a liquid crystal alignment film, and the above-mentioned step.
  • It is a method for manufacturing a weak anchoring transverse electric field liquid crystal display element which comprises a step of imparting sufficient energy to a cell to polymerize the radically polymerizable compound.
  • a method for producing a liquid crystal cell comprising a step of creating a cell and a step of filling a liquid crystal composition containing a liquid crystal and a radically polymerizable compound having a specific structure between the first substrate and the second substrate.
  • one substrate has an oriented radical generation film
  • the other substrate has a uniaxially oriented liquid crystal alignment film
  • one of the substrates has a comb tooth for driving the liquid crystal.
  • the "weak anchoring film” means that there is no force to regulate the orientation of liquid crystal molecules in the in-plane direction, or even if there is, it is weaker than the intramolecular force between liquid crystals.
  • the weak anchoring film is not limited to the solid film, but also includes a liquid film covering the solid surface.
  • a liquid crystal display element uses a film that regulates the orientation of liquid crystal molecules, that is, a liquid crystal alignment film in pairs to align the liquid crystal, but even when the weak anchoring film and the liquid crystal alignment film are used in pairs, the liquid crystal is oriented. Can be made to.
  • Horizontal orientation refers to a state in which the major axes of liquid crystal molecules are arranged substantially parallel to the liquid crystal alignment film surface, and inclined orientation of about several degrees is also included in the category of horizontal orientation.
  • the applicant of the present application comprises a step of imparting sufficient energy to polymerize the radically polymerizable compound in a state where the liquid crystal composition containing the liquid crystal and the radically polymerizable compound is in contact with the radical generating film.
  • a method for producing a zero-plane anchoring film is proposed (see claim 1 of International Publication No. 2019/004433). [0077] to [0086] of International Publication No. 2019/004433 exemplify the radically polymerizable compound used in the proposal.
  • the present inventors can stably manufacture a weak anchoring lateral electric field liquid crystal display element without generating a pretilt angle in a narrow cell gap, and can reduce the drive voltage and turn off the voltage.
  • the radically polymerizable compound having a specific structure is represented by the following formula (A).
  • M represents a radically polymerizable polymerizable group
  • R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • the three Xs are independent of each other.
  • Y represents a single bond, -O-, -S-, or -NR-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond site.
  • R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.
  • a radically polymerizable compound is polymerized in a state where the liquid crystal and the liquid crystal composition containing the radically polymerizable compound represented by the formula (A) are in contact with the radical generating film.
  • the present inventors have stated that a weak anchoring film is obtained by changing the surface of the radical-generating film by the polymerization reaction of the radically polymerizable compound using the radical generated by the radical-generating film. I'm guessing.
  • a weak anchoring lateral electric field liquid crystal display element can be stably manufactured without generating a pretilt angle in a narrow cell gap, and the drive voltage can be lowered and the response speed when the voltage is turned off.
  • the voltage can be increased, and in addition, a lateral electric field liquid crystal display element with a small decrease in VHR even at a high temperature can be manufactured.
  • the present inventors consider how the radically polymerizable compound represented by the formula (A) contributes to this as follows.
  • the radically polymerizable compound M represented by the formula (A) contributes to the radical polymerization of the radically polymerizable compound.
  • the radically polymerizable compound represented by the formula (A) -SiR 2 R 3 R 4 contributes to the suppression of the generation of pretilt angle, the improvement of the response speed, and the high VHR at high temperature.
  • the inventors are speculating.
  • the narrow cell gap means a cell gap of 3.5 ⁇ m or less.
  • the radical-generating film-forming composition for forming a radical-generating film used in the present invention contains a polymer as a component and contains a group capable of generating radicals. At that time, the composition may contain a polymer to which a group capable of generating radicals is bonded, or a composition of a compound having a group capable of generating radicals and a polymer serving as a base resin. It may be a thing. By applying and curing such a composition to form a film, a radical generation film in which radical-generating groups are immobilized in the film can be obtained.
  • the group capable of generating radicals is preferably an organic group that induces radical polymerization.
  • Examples of such an organic group that induces radical polymerization include organic groups represented by the following formulas [X-1] to [X-18], [W], [Y], and [Z].
  • [X-1] to [X-18] * indicates a binding site
  • S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively, and R is.
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.
  • Ar is a group consisting of phenylene, naphthylene, and biphenylylene which may have an organic group and / or a halogen atom as a substituent.
  • R 9 and R 10 each independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and R 9 and R 10 are alkyl groups. In the case of, they may be bonded to each other at the ends to form a ring structure.
  • Q represents any of the following structures.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond. The site is shown.).
  • S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms. )
  • the polymer at least one polymer selected from the group consisting of a polyimide precursor, a polyimide, a polyurea, a polyamide, a polyacrylate, a polymethacrylate, and a polyorganosiloxane is preferable.
  • a methacrylic group is used as a monomer component.
  • a monomer having a photoreactive side chain containing at least one selected from an acrylic group, a vinyl group, an allyl group, a coumarin group, a styryl group and a cinnamoyl group, and a site that is decomposed by ultraviolet irradiation and generates a radical is a side chain. It is preferable to use the monomer contained in the above.
  • the monomer that generates radicals has a problem that it spontaneously polymerizes, and becomes an unstable compound. Therefore, it has a radical generation site in terms of ease of synthesis.
  • Polymers derived from diamines are preferred, and polyimide precursors such as polyamic acids and polyamic acid esters, polyimides, polyureas, polyamides and the like are more preferred.
  • the polymer containing an organic group that induces radical polymerization is at least one weight selected from a polyimide precursor, a polyimide, a polyurea, and a polyamide obtained by using a diamine component containing a diamine containing an organic group that induces radical polymerization. It is preferably coalesced.
  • the diamine containing an organic group that induces such radical polymerization is, specifically, for example, a diamine having a side chain that can generate radicals and can be polymerized, and has a structure represented by the following formula (6). Examples include, but are not limited to, having diamines.
  • R 6 is a single bond, -CH 2- , -O-, -COO-, -OCO-, -NHCO-, -CONH-, -NH-, -CH 2 O-, -N.
  • R 7 represents an alkylene group having 1 to 20 carbon atoms which is single-bonded, or unsubstituted or substituted with a fluorine atom, and one or more of any -CH 2- or -CF 2- of the alkylene group is independent of each other.
  • R 8 represents a radical polymerization reactive group represented by a formula selected from the following formulas [X-1] to [X-18].
  • [X-1] to [X-18] * indicates a binding site
  • S 1 and S 2 independently represent -O-, -NR-, or -S-, respectively, and R is.
  • R 1 and R 2 independently represent a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms.)
  • the bonding position of the two amino groups (-NH 2 ) in the formula (6) is not limited. Specifically, with respect to the bonding group of the side chain, 2,3 positions, 2,4 positions, 2,5 positions, 2,6 positions, 3,4 positions, 3, on the benzene ring. The position of 5 is mentioned. Of these, the 2,4 position, the 2,5 position, or the 3,5 position is preferable from the viewpoint of reactivity in synthesizing the polyamic acid. Considering the ease of synthesizing the diamine, the positions 2, 4 or 3, 5 are more preferable.
  • diamine having a photoreactive group including at least one selected from the group consisting of a methacryl group, an acrylic group, a vinyl group, an allyl group, a coumaryl group, a styryl group and a cinnamoyl group are as follows. Examples include, but are not limited to, compounds.
  • J 1 is a bonding group selected from a single bond, -O-, -COO-, -NHCO-, and -NH-
  • J 2 is a single bond, or unsubstituted or substituted with a fluorine atom. Represents an alkylene group having 1 to 20 carbon atoms.
  • diamines having a site that is decomposed by ultraviolet irradiation to generate radicals as a side chain have a structure represented by the following formula (7) or formula (7').
  • Diamines having, but are not limited to, may be mentioned.
  • T 1 and T 2 are independently single-bonded, -O-, -S-, -COO-, -OCO-, -NHCO-, -CONH-, respectively.
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -COO-,-(CH 2 ) m- , -SO 2- , -O.
  • J is an organic group represented by a formula selected from the following formulas [W], [Y] and [Z].
  • R 9 and R 10 independently represent an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms, and Q is described below. Represents either structure.
  • R 11 represents -CH 2- , -NR-, -O-, or -S-, R independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and * represents a bond.
  • S 3 represents a single bond, -O-, -NR- (R represents a hydrogen atom or an alkyl group having 1 to 14 carbon atoms), or -S-.
  • R 12 represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 10 carbon atoms or an alkoxy group having 1 to 10 carbon atoms.
  • equation (7') q is independently 0 or 1, at least one q is 1, and p represents an integer of 1 to 2.
  • the bonding position of the two amino groups (-NH 2 ) in the above formula (7) is not limited. Specifically, with respect to the bonding group of the side chain, 2,3 positions, 2,4 positions, 2,5 positions, 2,6 positions, 3,4 positions, 3, on the benzene ring. The position of 5 is mentioned. Of these, the 2,4 position, the 2,5 position, or the 3,5 position is preferable from the viewpoint of reactivity in synthesizing the polyamic acid.
  • n is an integer of 2 to 8.
  • the bonding position of the amino group (-NH 2 ) and the bonding group E on the benzene ring in the above formula (7') is not limited.
  • the para position is preferable from the viewpoint of availability of raw materials, orientation quality when used as a liquid crystal display element, and black brightness.
  • n is an integer of 2 to 8
  • E is a single bond, -O-, -C (CH 3 ) 2- , -NH-, -CO-, -NHCO-, -CONH-,-.
  • the above diamine can be used alone or in combination of two or more depending on the liquid crystal orientation when the radical generation film is formed, the sensitivity in the polymerization reaction, the voltage holding characteristic, the accumulated charge and the like.
  • the diamine containing an organic group that induces such radical polymerization it is preferable to use an amount of 5 to 50 mol% of the total diamine component used for synthesizing the polymer contained in the radical generation film forming composition. It is preferably 10 to 40 mol%, and particularly preferably 15 to 30 mol%.
  • the polymer used for the radical polymerization film of the present invention is obtained from a diamine
  • other diamines other than the diamine containing an organic group that induces the radical polymerization are used as the diamine component as long as the effect of the present invention is not impaired. Can be used together.
  • p-phenylenediamine 2,3,5,6-tetramethyl-p-phenylenediamine, 2,5-dimethyl-p-phenylenediamine, m-phenylenediamine, 2,4-dimethyl-m- Phenylene diamine, 2,5-diaminotoluene, 2,6-diaminotoluene, 2,5-diaminophenol, 2,4-diaminophenol, 3,5-diaminophenol, 3,5-diaminobenzyl alcohol, 2,4- Diaminobenzyl alcohol, 4,6-diaminoresorcinol, 4,4'-diaminobiphenyl, 3,3'-dimethyl-4,4'-diaminobiphenyl, 3,3'-dimethoxy-4,4'-diaminobiphenyl, 3 , 3'-Dihydroxy-4,4'-diaminobiphenyl, 3,3'-dicarboxy-4,4'
  • Alicyclic diamines 1,3-diaminopropane, 1,4-diaminobutane, 1,5-diaminopentane, 1,6-diaminohexane, 1,7-diaminoheptane, 1,8-diaminooctane, 1, Aliphatic diamines such as 9-diaminononane, 1,10-diaminodecane, 1,11-diaminoundecane, 1,12-diaminododecane; 1,3-bis [2- (p-aminophenyl) ethyl] urea, 1, Diamine having a urea structure such as 3-bis [2- (p-aminophenyl) ethyl] -1-tert-butoxycarbonyl urea; Np-aminophenyl-4-p-aminophenyl (tert-butoxycarbonyl) amino Diamine having a nitrogen-containing unsaturated
  • the above other diamines may be used alone or in combination of two or more depending on the liquid crystal orientation when the radical generation film is formed, the sensitivity in the polymerization reaction, the voltage holding characteristics, the accumulated charge and the like. ..
  • the tetracarboxylic dianhydride that reacts with the above diamine component in the synthesis when the polymer is a polyamic acid is not particularly limited. Specifically, pyromellitic acid, 2,3,6,7-naphthalenetetracarboxylic acid, 1,2,5,6-naphthalenetetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid, 2, 3,6,7-Anthracenetetracarboxylic acid, 1,2,5,6-anthracenetetracarboxylic acid, 3,3', 4,4'-biphenyltetracarboxylic acid, 2,3,3', 4'-biphenyl Tetracarboxylic acid, bis (3,4-dicarboxyphenyl) ether, 3,3', 4,4'-benzophenone tetracarboxylic acid, bis (3,4-dicarboxyphenyl) sulfone, bis (3,4-dicarboxyphenyl
  • one or two or more types of tetracarboxylic dianhydride may be used in combination depending on the liquid crystal orientation when the radical generating film is formed, the sensitivity in the polymerization reaction, the voltage holding property, the accumulated charge, and the like. ..
  • the structure of the tetracarboxylic acid dialkyl ester to be reacted with the above diamine component in the synthesis when the polymer is a polyamic acid ester is not particularly limited, but specific examples thereof are given below.
  • aliphatic tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1.
  • aromatic tetracarboxylic acid dialkyl ester examples include pyromellitic acid dialkyl ester, 3,3', 4,4'-biphenyltetracarboxylic acid dialkyl ester, 2,2', 3,3'-biphenyltetracarboxylic acid dialkyl ester, and the like.
  • the diisocyanate to be reacted with the above diamine component is not particularly limited and can be used depending on availability and the like.
  • the specific structure of the diisocyanate is shown below.
  • R 2 and R 3 represent an aliphatic hydrocarbon group having 1 to 10 carbon atoms.
  • K-1 to K-5 are inferior in reactivity but have the advantage of improving solvent solubility
  • aromatic diisocyanates shown in K-6 to K-13 are highly reactive and heat resistant.
  • K-1, K-7, K-8, K-9, and K-10 are preferable in terms of versatility and characteristics
  • K-12 is preferable from the viewpoint of electrical characteristics
  • K-13 is preferable from the viewpoint of liquid crystal orientation.
  • Two or more kinds of diisocyanates can be used in combination, and it is preferable to apply various diisocyanates according to the desired characteristics.
  • diisocyanates can be replaced with the tetracarboxylic acid dianhydride described above, and they may be used in the form of a copolymer of polyamic acid and polyurea. It may be used in the form of a copolymer.
  • the structure of the dicarboxylic acid to be reacted in the synthesis when the polymer is polyamide is not particularly limited, but specific examples are as follows.
  • the aliphatic dicarboxylic acid include malonic acid, oxalic acid, dimethylmalonic acid, succinic acid, fumaric acid, glutaric acid, adipic acid, muconic acid, 2-methyladipic acid, trimethyladipic acid, pimelic acid, and 2,2-dimethylglutal.
  • dicarboxylic acids such as acids, 3,3-diethylsuccinic acid, adipic acid, sebacic acid and suberic acid.
  • Examples of the alicyclic dicarboxylic acid include 1,1-cyclopropanedicarboxylic acid, 1,2-cyclopropanedicarboxylic acid, 1,1-cyclobutanedicarboxylic acid, 1,2-cyclobutanedicarboxylic acid, and 1,3-cyclobutanedicarboxylic acid.
  • aromatic dicarboxylic acids examples include o-phthalic acid, isophthalic acid, terephthalic acid, 5-methylisophthalic acid, 5-tert-butylisophthalic acid, 5-aminoisophthalic acid, 5-hydroxyisophthalic acid, and 2,5-dimethylterephthalic acid.
  • dicarboxylic acid containing a heterocycle examples include 1,5- (9-oxofluorene) dicarboxylic acid, 3,4-furandicarboxylic acid, 4,5-thiazoledicarboxylic acid, 2-phenyl-4,5-thiazoledicarboxylic acid, and the like.
  • 1,2,5-Thiadiazol-3,4-dicarboxylic acid 1,2,5-oxadiazole-3,4-dicarboxylic acid, 2,3-pyridinedicarboxylic acid, 2,4-pyridinedicarboxylic acid, 2, Examples thereof include 5-pyridinedicarboxylic acid, 2,6-pyridinedicarboxylic acid, 3,4-pyridinedicarboxylic acid, and 3,5-pyridinedicarboxylic acid.
  • various dicarboxylic acids may have an acid dihalide or an anhydrous structure. It is particularly preferable that these dicarboxylic acids are dicarboxylic acids capable of giving a polyamide having a linear structure from the viewpoint of maintaining the orientation of the liquid crystal molecules.
  • terephthalic acid isoterephthalic acid, 1,4-cyclohexanedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 4,4'-diphenylmethanedicarboxylic acid, 4,4'-diphenylethanedicarboxylic acid, 4,4 '-Diphenylpropandicarboxylic acid, 4,4'-diphenylhexafluoropropanedicarboxylic acid, 2,2-bis (phenyl) propandicarboxylic acid, 4,4-terphenyldicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2, 5-Ppyridinedicarboxylic acid or acid dihalide thereof and the like are preferably used. Some of these compounds have isomers, but they may be mixtures containing them. Further, two or more kinds of compounds may be used in combination.
  • the dicarboxylic acids used in the present invention are not limited to the above-mentioned
  • tetracarboxylic acid diester tetracarboxylic acid diester
  • diamine component raw material diamine
  • tetracarboxylic acid dianhydride component raw material tetracarboxylic acid diester
  • diisocyanate and dicarboxylic acid tetracarboxylic acid diester
  • a diamine component is a method of reacting a diamine component with one or more components selected from a tetracarboxylic dianhydride component, a tetracarboxylic acid diester, a diisocyanate and a dicarboxylic acid in an organic solvent.
  • the reaction between the diamine component and the tetracarboxylic dianhydride component is advantageous in that it proceeds relatively easily in an organic solvent and no by-products are generated.
  • the organic solvent used in the above reaction is not particularly limited as long as it dissolves the produced polymer. Further, even if the organic solvent does not dissolve the polymer, it may be mixed with the above solvent and used as long as the produced polymer does not precipitate. Since the water content in the organic solvent inhibits the polymerization reaction and further causes the produced polymer to be hydrolyzed, it is preferable to use a dehydrated and dried organic solvent.
  • organic solvent examples include N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylformamide, N-methylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, 2 -Pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide, N-methylcaprolactam, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylphosphoramide, ⁇ -Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethylamyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cell solve, ethyl cell solve, methyl cello
  • the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic acid dianhydride component is used as it is or is organic.
  • a method of adding a tetracarboxylic acid dianhydride component dispersed or dissolved in a solvent conversely a method of adding a diamine component to a solution in which a tetracarboxylic acid dianhydride component is dispersed or dissolved in an organic solvent, a method of adding a tetracarboxylic acid dianhydride component and a diamine component.
  • Examples thereof include a method of adding alternately, and any of these methods may be used.
  • the diamine component or the tetracarboxylic dianhydride component is composed of a plurality of types of compounds, they may be reacted in a premixed state, may be reacted individually in sequence, or may be reacted individually, and have a low molecular weight.
  • the bodies may be mixed and reacted to form a high molecular weight compound.
  • the temperature at which the diamine component and the tetracarboxylic dianhydride component are reacted can be selected from any temperature, and is, for example, in the range of -20 to 100 ° C, preferably -5 to 80 ° C.
  • the reaction can be carried out at any concentration, for example, the total amount of the diamine component and the tetracarboxylic dianhydride component is 1 to 50% by mass, preferably 5 to 30% by mass with respect to the reaction solution. ..
  • the ratio of the total number of moles of the tetracarboxylic acid dianhydride component to the total number of moles of the diamine component in the above polymerization reaction can be arbitrarily selected according to the molecular weight of the polyamic acid to be obtained. Similar to a normal polycondensation reaction, the closer the molar ratio is to 1.0, the larger the molecular weight of the polyamic acid produced. The preferred range is 0.8 to 1.2.
  • the method for synthesizing the polymer used in the present invention is not limited to the above-mentioned method, and when synthesizing a polyamic acid, the above-mentioned tetracarboxylic acid dianhydride is used in the same manner as a general method for synthesizing a polyamic acid.
  • a tetracarboxylic acid having a corresponding structure or a tetracarboxylic acid derivative such as a tetracarboxylic acid dihalide can be used and reacted by a known method to obtain the corresponding polyamic acid.
  • diamine and diisocyanate may be reacted.
  • a diamine and a component selected from a tetracarboxylic acid diester and a dicarboxylic acid are induced into an acid halide in the presence of a known condensing agent or by a known method. , Diamine may be reacted.
  • polyimide can be obtained by ring-closing (imidizing) the polyamic acid.
  • the imidization rate as used herein is the ratio of the imide group to the total amount of the imide group and the carboxy group derived from the tetracarboxylic acid dianhydride.
  • the imidization ratio does not necessarily have to be 100%, and can be arbitrarily adjusted according to the application and purpose.
  • the imidization ratio of the polyimide in the present invention is preferably 30% or more because the voltage retention rate can be increased, and on the other hand, from the viewpoint of whitening characteristics, that is, from the viewpoint of suppressing the precipitation of the polymer in the varnish, 80 % Or less is preferable.
  • the temperature at which the polyamic acid is thermally imidized in the solution is usually 100 to 400 ° C, preferably 120 to 250 ° C, and it is preferable to remove the water generated by the imidization reaction from the outside of the system.
  • the catalytic imidization of the polyamic acid can be carried out by adding a basic catalyst and an acid anhydride to the solution of the polyamic acid and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is usually 0.5 to 30 mol times, preferably 2 to 20 mol times the amount of the amic acid group
  • the amount of acid anhydride is usually 1 to 50 mol times, preferably 1 to 50 mol times the amic acid group. It is 3 to 30 mol times.
  • Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, trioctylamine and the like, and among them, pyridine is preferable because it has an appropriate basicity for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride and the like, and among them, acetic anhydride is preferable because it facilitates purification after the reaction is completed.
  • the imidization rate by catalytic imidization can be controlled by adjusting the amount of catalyst, the reaction temperature, the reaction time, and the like.
  • the reaction solution When recovering the produced polymer from the reaction solution of the polymer, the reaction solution may be put into a poor solvent and precipitated.
  • the poor solvent used for precipitate formation include methanol, acetone, hexane, butyl cellsolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, water and the like.
  • the polymer put into a poor solvent and precipitated can be collected by filtration and then dried at room temperature or by heating under normal pressure or reduced pressure.
  • impurities in the polymer can be reduced.
  • the poor solvent at this time include alcohols, ketones, hydrocarbons, and the like, and it is preferable to use three or more kinds of poor solvents selected from these because the efficiency of purification is further improved.
  • the radical generation film-forming composition used in the present invention is other than a polymer containing an organic group that induces radical polymerization. It may contain other polymers. At that time, the content of the other polymer in all the components of the polymer is preferably 5 to 95% by mass, more preferably 30 to 70% by mass.
  • the molecular weight of the polymer contained in the radical generation film forming composition is GPC (GPC) when the strength of the radical generation film obtained by applying the radical generation film, the workability at the time of forming the coating film, the uniformity of the coating film, etc. are taken into consideration.
  • the weight average molecular weight measured by the Gel Permeation Chromatography method is preferably 5,000 to 1,000,000, more preferably 10,000 to 150,000.
  • At least one polymer obtained by using the diamine component in which the diamine to be used is 0 mol% of the total diamine component used for synthesizing the polymer contained in the radical generation film forming composition may be used.
  • Examples of the compound having a group that generates a radical to be added at that time include the following.
  • the compound that generates radicals by heat is a compound that generates radicals by heating to a temperature higher than the decomposition temperature.
  • radical thermal polymerization initiators include ketone peroxides (methyl ethyl ketone peroxide, cyclohexanone peroxide, etc.), diacyl peroxides (acetyl peroxide, benzoyl peroxide, etc.), and hydroperoxides (peroxidation).
  • the compound that generates radicals with light is not particularly limited as long as it is a compound that initiates radical polymerization by light irradiation.
  • radical photopolymerization initiators include benzophenone, Michler's ketone, 4,4'-bis (diethylamino) benzophenone, xanthone, thioxanthone, isopropylxanthone, 2,4-diethylthioxanthone, 2-ethylanthraquinone, acetophenone and 2-hydroxy.
  • the radical generation film is made of a polymer containing an organic group that induces radical polymerization
  • the group that generates the above radical is used for the purpose of promoting radical polymerization when energy is applied.
  • the compound may be contained.
  • the radical generating film forming composition can contain a polymer component, and if necessary, an organic solvent that dissolves or disperses a radical generating agent or other contained components.
  • an organic solvent is not particularly limited, and examples thereof include organic solvents as exemplified in the above-mentioned synthesis of polyamic acid.
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, N-ethyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, 3-methoxy-N, N-dimethylpropanamide and the like are soluble. It is preferable from the viewpoint of.
  • N-methyl-2-pyrrolidone or N-ethyl-2-pyrrolidone is preferable, but two or more kinds of mixed solvents may be used.
  • a solvent that improves the uniformity and smoothness of the coating film by mixing it with an organic solvent having high solubility of the components contained in the radical generation film forming composition.
  • Examples of the solvent for improving the uniformity and smoothness of the coating material include isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve (ethylene glycol monobutyl ether), methyl cellosolve acetate, butyl cellosolve acetate, and ethyl cellosolve acetate.
  • the radical generation film forming composition may contain components other than the above. Examples thereof include compounds that improve the film thickness uniformity and surface smoothness when the radical generation film forming composition is applied, compounds that improve the adhesion between the radical generation film forming composition and the substrate, and radical generation film formation. Examples thereof include compounds that further improve the film strength of the composition.
  • Examples of the compound that improves the uniformity of the film thickness and the surface smoothness include a fluorine-based surfactant, a silicone-based surfactant, and a nonion-based surfactant. More specifically, for example, Ftop EF301, EF303, EF352 (manufactured by Mitsubishi Materials Electronics Chemical Co., Ltd.), Megafuck F171, F173, R-30 (manufactured by DIC), Florard FC430, FC431 (manufactured by 3M), Asahi. Examples thereof include Guard AG710 (manufactured by AGC), Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by AGC Seimi Chemical). When these surfactants are used, the ratio of their use is preferably 0.01 to 2 parts by mass, more preferably 0, with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. It is 0.01 to 1 part by mass.
  • the compound that improves the adhesion between the radical generation film forming composition and the substrate include a functional silane-containing compound and an epoxy group-containing compound.
  • a functional silane-containing compound and an epoxy group-containing compound For example, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane.
  • a phenol compound such as 2,2'-bis (4-hydroxy-3,5-dihydroxymethylphenyl) propane or tetra (methoxymethyl) bisphenol is added. May be good.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the polymer contained in the radical generation film forming composition. Is.
  • the radical generating film forming composition includes a dielectric or a conductive material for changing the electrical properties such as the dielectric constant and the conductivity of the radical generating film as long as the effect of the present invention is not impaired. Substances may be added.
  • the radical generation film of the present invention can be obtained, for example, by using the above-mentioned radical generation film forming composition.
  • a cured film obtained by applying the radical generation film forming composition used in the present invention to a substrate and then drying and firing it can be used as it is as a radical generation film.
  • this cured film can be subjected to alignment processing by rubbing, polarization, light of a specific wavelength, or the like, and by processing an ion beam or the like, and UV (ultraviolet rays) are applied to the liquid crystal display element after filling the liquid crystal as a PSA alignment film. ) Is also possible.
  • the substrate on which the radical generation film forming composition is applied is not particularly limited as long as it is a highly transparent substrate, but a substrate on which a transparent electrode for driving a liquid crystal display is formed is preferable.
  • glass plates polycarbonate, poly (meth) acrylate, polyethersulfone, polyarylate, polyurethane, polysulfone, polyether, polyetherketone, trimethylpentene, polyolefin, polyethylene terephthalate, (meth) acrylonitrile, and tri.
  • a substrate in which a transparent electrode is formed on a plastic plate such as acetyl cellulose, diacetyl cellulose, acetate butylate cellulose or the like.
  • electrode patterns such as standard IPS comb tooth electrodes and PSA fishbone electrodes and protrusion patterns such as MVA can also be used.
  • an element such as a transistor is used between an electrode for driving a liquid crystal display and a substrate.
  • a transmissive liquid crystal display element When a transmissive liquid crystal display element is intended, it is common to use a substrate as described above, but when a reflective liquid crystal display element is intended, silicon is used only on one side of the substrate. An opaque substrate such as a wafer can also be used. At that time, a material such as aluminum that reflects light can be used for the electrodes formed on the substrate.
  • Examples of the method for applying the radical-generating film-forming composition include a spin coating method, a printing method, an inkjet method, a spray method, a roll coating method, and the like, but the transfer printing method is widely used industrially from the viewpoint of productivity. It is also suitably used in the present invention.
  • the step of drying after applying the radical generation film forming composition is not always necessary, but if the time from application to firing is not constant for each substrate or if it is not fired immediately after coating, it is dried. It is preferable to include the process.
  • the drying is not particularly limited as long as the solvent is removed to the extent that the shape of the coating film is not deformed by transporting the substrate or the like, and the drying means thereof is not particularly limited.
  • a method of drying on a hot plate having a temperature of 40 to 150 ° C., preferably 60 to 100 ° C. for 0.5 to 30 minutes, preferably 1 to 5 minutes can be mentioned.
  • the coating film formed by applying the radical generation film forming composition by the above method can be fired to form a cured film.
  • the firing temperature can be usually any temperature of 100 to 350 ° C., but is preferably 140 to 300 ° C., more preferably 150 to 230 ° C., and further preferably 160 to 220 ° C.
  • the firing time is usually any time of 5 to 240 minutes. It is preferably 10 to 90 minutes, more preferably 20 to 90 minutes.
  • a generally known method for example, a hot plate, a hot air circulation oven, an IR (infrared) type oven, a belt furnace, or the like can be used.
  • the thickness of this cured film can be selected as needed, but preferably 5 nm or more, more preferably 10 nm or more, because the reliability of the liquid crystal display element is improved. Further, when the thickness of the cured film is preferably 300 nm or less, more preferably 150 nm or less, the power consumption of the liquid crystal display element does not become extremely large, which is preferable.
  • the radical generating film can be subjected to uniaxial orientation treatment.
  • the method for performing the uniaxial alignment treatment include a photoalignment method, an orthorhombic vapor deposition method, rubbing, and a uniaxial alignment treatment using a magnetic field.
  • the substrate is moved so that the rubbing cloth and the film come into contact with each other while rotating the rubbing roller around which the rubbing cloth is wound.
  • the alignment process can be performed by irradiating the entire surface of the film with polarized UV having a specific wavelength and heating the film as necessary.
  • the direction is selected by the electrical properties of the liquid crystal, but when a liquid crystal having positive dielectric anisotropy is used, the rubbing direction is the comb tooth electrode. It is preferable that the direction is substantially the same as the extending direction of.
  • a step of creating a weak anchoring part and a strong anchoring part there is a method of irradiating radiation with an arbitrary pattern via a photomask or the like.
  • the radiation used in this step include polarized light or light having a specific wavelength, an ion beam, and the like. It is particularly preferable to irradiate light having a wavelength having the highest absorbance at the portion corresponding to the photoradical generation site.
  • the second substrate of the present invention may or may not have a radical generation film.
  • the second substrate is preferably a substrate having a conventionally known liquid crystal alignment film.
  • the first substrate may be a substrate having a comb tooth electrode
  • the second substrate may be a facing substrate
  • the second substrate may be a substrate having a comb tooth electrode
  • the first substrate may be a facing substrate.
  • the liquid crystal cell of the present invention comprises a substrate having the radical generating film (first substrate) and a substrate having a known liquid crystal alignment film (second substrate) after forming a radical generating film on the substrate by the above method. Is obtained by arranging the radical generating film and the liquid crystal alignment film so as to face each other, sandwiching a spacer, fixing with a sealing agent, and injecting and sealing a liquid crystal composition containing a liquid crystal and a radically polymerizable compound. Be done. At that time, the size of the spacer used is usually 1 to 30 ⁇ m, but preferably 2 to 10 ⁇ m.
  • the method of injecting a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is not particularly limited, and a vacuum method of injecting a mixture containing the liquid crystal and the polymerizable compound after depressurizing the inside of the produced liquid crystal cell, polymerization with the liquid crystal.
  • a dropping method in which a mixture containing a sex compound is dropped and then sealed.
  • the radically polymerizable compound of the present invention is represented by the following formula (A).
  • M represents a radically polymerizable polymerizable group
  • R 1 represents a linear or branched aliphatic hydrocarbon group having 1 to 10 carbon atoms
  • the three Xs are independent of each other.
  • Y represents a single bond, -O-, -S-, or -NR-
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • * represents a bond site.
  • R 2 , R 3 and R 4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.
  • the aliphatic hydrocarbon group in R1 has 1 to 10 carbon atoms, may have 1 to 8 carbon atoms, may have 1 to 6 carbon atoms, and may have 1 to 4 carbon atoms. May be good.
  • the alkyl group having 1 to 6 carbon atoms in R 2 , R 3 and R 4 may be, for example, an alkyl group having 1 to 5 carbon atoms or an alkyl group having 1 to 4 carbon atoms. good. These alkyl groups may have a linear structure or a branched structure.
  • the aromatic hydrocarbon groups in R 2 , R 3 and R 4 may be unsubstituted or the hydrogen atom may be substituted with a substituent.
  • substituent of the aromatic hydrocarbon group which may have a substituent include a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxy group having 1 to 4 carbon atoms, and a halogen having 1 to 4 carbon atoms. Examples thereof include an alkylated group and an alkoxy halide group having 1 to 4 carbon atoms.
  • the halogenation in the alkyl halide group and the halogenated alkoxy group may be total halogenation or partial halogenation.
  • halogen atom examples include a fluorine atom and a chlorine atom.
  • aromatic hydrocarbon group in the aromatic hydrocarbon group which may have a substituent examples include a phenyl group and a naphthyl group. The number of substituents in the aromatic hydrocarbon group is not particularly limited.
  • the number of groups represented by the formula (B) is one or more, and may be one, two, or three. May be.
  • the three Xs are independent of each other. Therefore, in the radically polymerizable compound represented by the formula (A), when there are two or more groups represented by the formula (B), the groups represented by the two or more formulas (B) have the same structure. It may be present or may have a different structure.
  • R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group which may have a substituent. Therefore, in the formula (B), one of R 2 , R 3 , and R 4 may be an aromatic hydrocarbon group which may have a substituent, or R 2 , R 3 , and R 4 . Two may be aromatic hydrocarbon groups which may have a substituent, and three of R 2 , R 3 and R 4 may be an aromatic hydrocarbon group which may have a substituent. There may be.
  • the radically polymerizable polymerizable group M of the radically polymerizable compound is preferably a polymerizable group selected from the following structures.
  • * indicates a binding site.
  • R b represents a linear alkyl group having 2 to 8 carbon atoms
  • E represents a single bond, -O-, -NR c- , -S-, an ester bond and an amide bond.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms;
  • R d represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • Examples of the radically polymerizable compound represented by the formula (A) include radically polymerizable compounds satisfying the following (1) to (3).
  • M represents the following structure (C) or structure (D)
  • R 1 represents an aliphatic hydrocarbon group having a linear or branched structure having 1 to 10 carbon atoms.
  • Each X independently represents a hydrogen atom or formula (B). However, at least one of the three Xs represents equation (B).
  • R2 , R3 , and R4 each independently represent an aromatic hydrocarbon group which may have an alkyl group or a substituent having 1 to 6 carbon atoms.
  • R 2 , R 3 and R 4 represents an aromatic hydrocarbon group which may have a substituent.
  • Examples of the radically polymerizable compound contained in the formula (A) include the following radically polymerizable compounds.
  • the liquid crystal composition contains at least the liquid crystal and the radically polymerizable compound.
  • the content of the radically polymerizable compound in the liquid crystal composition is preferably 0.5% by mass or more, more preferably 1% by mass or more, and preferably 1% by mass or more, based on the total mass of the liquid crystal and the radically polymerizable compound. It is 10% by mass or less, more preferably 5% by mass or less.
  • a plurality of compounds having other monofunctional radically polymerizable groups (hereinafter, may be referred to as “other radically polymerizable compounds”) are used in combination. May be.
  • radically polymerizable compounds have unsaturated bonds capable of performing radical polymerization in the presence of organic radicals, and are, for example, tert-butyl methacrylate, hexyl methacrylate, 2-ethylhexyl methacrylate, nonyl methacrylate, lauryl.
  • Methacrylate monomers such as methacrylate, n-octyl methacrylate; acrylate monomers such as tert-butyl acrylate, hexyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, lauryl acrylate, n-octyl acrylate; styrene, styrene derivatives (eg, o- , M-, p-methoxystyrene, o-, m-, p-tert-butoxystyrene, o-, m-, p-chloromethylstyrene, etc.), vinyl esters (eg, vinyl acetate, vinyl propionate, benzoate) Vinyl acid acid, etc.), vinyl ketones (eg, vinyl methyl ketone, vinyl hexyl ketone, methyl isopropenyl ketone, etc.), N-vinyl compounds (eg,
  • Ra and R b each independently represent a linear alkyl group having 2 to 8 carbon atoms, and E is a single bond, —O—, —NR c ⁇ , —S—, an ester bond, And a bonding group selected from an amide bond.
  • R c represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • At least one of the radically polymerizable compounds contained in the liquid crystal composition has a compound having a polymerizable unsaturated bond in one molecule, which is compatible with the liquid crystal, that is, a monofunctional radically polymerizable group. It is preferably a compound.
  • Those are preferable from the viewpoints of ease of synthesis, compatibility with liquid crystal, and polymerization reactivity, and specifically, compounds represented by the following structures are preferable, but are not particularly limited.
  • the liquid crystal composition contains a radically polymerizable compound in which the Tg of the polymer obtained by polymerizing the radically polymerizable compound is 100 ° C. or lower.
  • the polymer obtained by polymerizing a radically polymerizable compound preferably has a Tg of 100 ° C. or lower, more preferably 0 ° C. or lower.
  • the liquid crystal generally refers to a substance exhibiting both solid and liquid properties, and typical liquid crystal phases include nematic liquid crystal and smectic liquid crystal, but the liquid crystal that can be used in the present invention is not particularly limited.
  • One example is 4-pentyl-4'-cyanobiphenyl.
  • the liquid crystal cell into which the mixture (liquid crystal composition) containing the liquid crystal and the radically polymerizable compound is introduced to carry out the polymerization reaction of the radically polymerizable compound.
  • This can be done, for example, by applying heat or UV irradiation, and the radically polymerizable compound is polymerized in situ to exhibit the desired properties.
  • UV irradiation is preferable because it enables oriented patterning and allows the polymerization reaction to occur in a shorter time.
  • heating may be performed during UV irradiation.
  • the heating temperature at the time of UV irradiation is preferably in a temperature range in which the introduced liquid crystal exhibits liquid crystal properties, is usually 40 ° C. or higher, and is preferably heated at a temperature lower than a temperature at which the liquid crystal changes to an isotropic phase.
  • the UV irradiation wavelength in the case of UV irradiation, it is preferable to select the wavelength having the best reaction quantum yield of the reactive polymerizable compound, and the UV irradiation amount is usually 0.01 to 30 J / cm 2 . However, preferably, it is 10 J / cm 2 or less, and the smaller the UV irradiation amount, the more the reliability deterioration due to the destruction of the members constituting the liquid crystal display can be suppressed, and the UV irradiation time can be reduced, so that the manufacturing process can be performed. It is suitable because it improves tact.
  • the heating in the case of polymerizing only by heating instead of UV irradiation is performed in a temperature range in which the temperature at which the polymerizable compound reacts and is lower than the decomposition temperature of the liquid crystal display. Specifically, it is 100 to 150 ° C.
  • a liquid crystal display element can be manufactured using the liquid crystal cell thus obtained.
  • the liquid crystal display element has, for example, a first substrate, a second substrate arranged to face the first substrate, and a liquid crystal filled between the first substrate and the second substrate. Then, the liquid crystal display element is subjected to radical polymerization in a state where the liquid crystal and the liquid crystal composition containing the radically polymerizable compound represented by the formula (A) are brought into contact with the radical generating film of the first substrate having the radical generating film. It is made by polymerizing a sex compound.
  • the liquid crystal display element can be made into a reflective liquid crystal display element by, for example, providing a reflective electrode, a transparent electrode, a ⁇ / 4 plate, a polarizing film, a color filter layer, or the like in the liquid crystal cell according to a conventional method. Further, a transmissive liquid crystal display element can be obtained by providing the liquid crystal cell with a backlight, a polarizing plate, a ⁇ / 4 plate, a transparent electrode, a polarizing film, a color filter layer and the like according to a conventional method, if necessary.
  • FIG. 1 is a schematic cross-sectional view showing an example of a transverse electric field liquid crystal display element of the present invention, and is an example of an IPS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2c and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2a and the base material 2a, and is formed so as to cover the plurality of linear electrodes 2b arranged in a comb tooth shape and the linear electrodes 2b on the base material 2a. It also has a liquid crystal alignment film 2c.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2c is, for example, a weak anchoring film obtained by chemically changing a radical generation film.
  • the liquid crystal alignment film on the comb-shaped electrode substrate side is obtained, for example, by polymerizing a radically polymerizable compound in a state where a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is in contact with a radical generating film.
  • a voltage is applied to the linear electrodes 2b, an electric field is generated between the linear electrodes 2b as shown by the electric lines of force L.
  • FIG. 2 is a schematic cross-sectional view showing another example of the transverse electric field liquid crystal display element of the present invention, and is an example of an FFS mode liquid crystal display element.
  • the liquid crystal 3 is sandwiched between the comb tooth electrode substrate 2 provided with the liquid crystal alignment film 2h and the opposed substrate 4 provided with the liquid crystal alignment film 4a.
  • the comb tooth electrode substrate 2 is formed on the base material 2d, the surface electrode 2e formed on the base material 2d, the insulating film 2f formed on the surface electrode 2e, and the insulating film 2f, and has a comb tooth shape.
  • the facing substrate 4 has a base material 4b and a liquid crystal alignment film 4a formed on the base material 4b.
  • the liquid crystal alignment film 2h is, for example, a weak anchoring film obtained by chemically changing a radical generating film.
  • the liquid crystal alignment film on the comb-shaped electrode substrate side is obtained, for example, by polymerizing a radically polymerizable compound in a state where a liquid crystal composition containing a liquid crystal and a radically polymerizable compound is in contact with a radical generating film.
  • the lateral electric field liquid crystal display element 1 when a voltage is applied to the surface electrode 2e and the linear electrode 2g, an electric field is generated between the surface electrode 2e and the linear electrode 2g as shown by the electric lines of force L.
  • TC-1 to TC-3 Compounds represented by the following formulas (TC-1) to (TC-3), respectively.
  • Add-1 to Add-11 Compounds represented by the following formulas (Add-1) to (Add-11), respectively.
  • Addd-C1 to Add-C3 The following formulas (Add-C1) to (Add-C3, respectively).
  • AD-1 Compound represented by the following formula (AD-1)
  • N N-dimethylformamide (as an additive, lithium bromide monohydrate (LiBr ⁇ H 2 O) is 30 mmol / L (liter), phosphoric acid / anhydrous crystal (o-phosphoric acid) is 30 mmol / L, tetrahydrofuran (THF) is 10 mL / L)
  • Flow rate 1.0 mL / min Standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight; about 900,000, 150,000, 100,000 and 30,000) (Tosoh) and polyethylene glycol (molecular weight; about) 12,000, 4,000 and 1,000) (manufactured by Polymer Laboratory).
  • FT-NMR Fourier transform type superconducting nuclear magnetic resonance apparatus
  • the chemical imidization rate is determined by using a proton derived from a structure that does not change before and after imidization as a reference proton, and the peak integrated value of this proton and the proton derived from the NH group of the amic acid appearing in the vicinity of 9.5 to 10.0 ppm. It was calculated by the following formula using the peak integrated value.
  • x is the integrated proton peak value derived from the NH group of the amic acid
  • y is the integrated peak value of the reference proton
  • is the integrated value of the amic acid in the case of a polyamic acid (imidization rate is 0%).
  • Imidization rate (%) (1- ⁇ ⁇ x / y) ⁇ 100
  • TC-1 (1.84 g: 9.40 mmol) and NMP (10.0 g) were added and reacted at room temperature for 18 hours to have a viscosity of about 1120 mPa ⁇ s and a solid content concentration of 20 mass.
  • % Polyamic acid solution (PAA-1) was obtained.
  • the molecular weight of this polyamic acid was a number average molecular weight: 11200 and a weight average molecular weight: 31360.
  • the polyamic acid solution (PAA-1) (40.0 g) obtained above was weighed in a 300 mL eggplant flask equipped with a stirrer and a nitrogen introduction tube, NMP (74.3 g) was added, and the mixture was stirred at room temperature for a while.
  • anhydrous acetic acid (5.61 g: 54.98 mmol) and pyridine (2.90 g, 36.65 mmol) were added, and the mixture was stirred at room temperature for 30 minutes under a nitrogen atmosphere and then reacted at 50 ° C. for 3 hours under a nitrogen atmosphere.
  • the reaction solution was slowly poured into methanol (500 mL) cooled to 10 ° C. or lower to precipitate a solid, and the mixture was stirred for 10 minutes. The precipitate was separated by filtration, and the slurry was washed again with methanol (200 mL) for 30 minutes twice in total, and the solid was vacuum dried at 80 ° C.
  • DA-2 (3.42 g: 14.00 mmol) and DA-4 (4.11 g: 6.00 mmol) were weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (56.8 g) was weighed. ), Stir and dissolve in a nitrogen atmosphere, then add TC-3 (4.26 g: 19.00 mol) and NMP (10.0 g) in an ice bath while keeping the temperature below 10 ° C., and add 24 at room temperature.
  • PAA-2 polyamic acid solution having a viscosity of about 680 mPa ⁇ s and a solid content concentration of 15% by mass was obtained.
  • the molecular weight of this polyamic acid was a number average molecular weight: 17200 and a weight average molecular weight: 48160.
  • DA-2 (3.42 g: 14.00 mmol) and DA-5 (1.55 g: 6.00 mmol) were weighed in a 100 mL four-necked flask equipped with a mechanical stirrer and a nitrogen introduction tube, and NMP (42.0 g) was weighed. ), Stir and dissolve in a nitrogen atmosphere, then add TC-3 (4.21 g: 18.8 mmol) and NMP (10.0 g) in an ice bath while keeping the temperature below 10 ° C., and add 24 at room temperature.
  • a polyamic acid solution (PAA-3) having a viscosity of about 710 mPa ⁇ s and a solid content concentration of 15% by mass was obtained.
  • the molecular weight of this polyamic acid was a number average molecular weight: 15500 and a weight average molecular weight: 41800.
  • a substrate with electrodes was prepared.
  • the substrate is a non-alkali glass substrate having a size of 30 mm ⁇ 35 mm and a thickness of 0.7 mm.
  • the size of each pixel is 10 mm in length and about 5 mm in width.
  • an IPS board Hereinafter referred to as an IPS board.
  • the radical generation film forming composition AL-1 and AL-2 obtained by the above method, the liquid crystal alignment agent AL-3, and the liquid crystal alignment agent SE-6414 for horizontal alignment (manufactured by Nissan Chemical Industries, Ltd.). ) Is filtered through a filter having a pore size of 1.0 ⁇ m, and then the prepared IPS substrate and a glass substrate having an ITO film formed on the back surface and having a columnar spacer having a height of 3.0 ⁇ m (hereinafter referred to as a facing substrate). It was coated and filmed by the spin coating method. Then, it was dried on a hot plate at 80 ° C. for 80 minutes and then fired at 230 ° C.
  • the rubbing method is used for AL-1 and SE-6414, and a rubbing device manufactured by Iinuma Gauge, a rubbing cloth (YA-20R) manufactured by Yoshikawa Kako, a rubbing roller (diameter 10.0 cm), and a stage.
  • the feed rate was 30 mm / s
  • the roller rotation speed was 700 rpm
  • the pushing pressure was 0.3 mm.
  • a UV exposure device manufactured by Ushio, Inc. is used so that the irradiation amount of linearly polarized UV having an extinction ratio of about 26: 1 is 300 mJ / cm 2 based on the wavelength of 254 nm.
  • a radical generation alignment film is used on the IPS substrate side for the display element to be the target of the embodiment and some display elements to be compared (Comparative Examples 2 to 4, 6 to 8).
  • Comparative Example 1 A part of the display elements to be compared (Comparative Example 1) using a combination of AL-1 or AL-2 and those provided with the liquid crystal alignment film SE-6414 or AL-3 on the facing substrate side.
  • SE-6414 or AL-3 was used for both substrates.
  • the cells were combined so that their orientation directions were parallel to each other, and the periphery was sealed leaving the liquid crystal injection port, to prepare an empty cell having a cell gap of about 3.0 ⁇ m.
  • As the liquid crystal mixture used LC-A (manufactured by DIC Corporation, ⁇ n: 0.130, ⁇ : 4.4) was used.
  • Add-C1 to Add-C2 those purchased from Tokyo Chemical Industry were used.
  • the obtained liquid crystal cell constitutes an IPS mode liquid crystal display element.
  • the obtained liquid crystal cell was heat-treated at 120 ° C. for 10 minutes, and UV (UV lamp: FLR40SUV32 / A-1) was applied using a UV-FL irradiation device manufactured by Toshiba Lighting & Technology Corporation in a state where no voltage was applied. Irradiation for 30 minutes was performed to obtain a liquid crystal display element.
  • VT curve and drive threshold voltage, maximum luminance voltage, transmittance evaluation A white LED backlight and a luminance meter are set so that the optical axes are aligned, and a liquid crystal cell (liquid crystal display element) with a polarizing plate is set between them so that the brightness is the smallest, and the voltage is applied to 8V at 1V intervals.
  • the VT curve was measured by applying and measuring the brightness at the voltage. From the obtained VT curve, the value of the voltage (Vmax) at which the brightness was maximized was estimated. Further, the maximum transmittance (Tmax) was estimated by comparing the maximum transmitted luminance in the VT curve with the transmitted luminance at the time of parallel Nicol set to 100% via the liquid crystal cell to which no voltage was applied.
  • VHR voltage retention rate
  • the voltage retention rate at room temperature was measured.
  • a voltage of 4 V for 60 ⁇ s was applied to the prepared liquid crystal display element at a temperature of 23 ° C. and measuring the voltage after 16.7 ms, how much the voltage could be maintained was calculated as the voltage retention rate.
  • the voltage retention rate at high temperature was measured.
  • a voltage of 1 V was applied to the prepared liquid crystal display element at a temperature of 70 ° C. for 60 ⁇ s, and the voltage after 1667 ms was measured to measure how much the voltage could be maintained as the voltage retention rate.
  • a VHR-1 voltage holding rate measuring device manufactured by Toyo Corporation was used for measuring the voltage holding rate.
  • Table 1 shows the compositions of the polymers synthesized in Synthesis Examples 13 to 15.
  • Table 2 shows the compositions of the liquid crystal alignment agent or the radical-generating film-forming composition prepared in Preparation Examples 1 to 3.
  • Table 3 shows the contents of Examples and Comparative Examples of the liquid crystal cells subjected to the alignment treatment by the rubbing method.
  • Tables 4-1 and 4-2 show the characteristics evaluation results of the liquid crystal cells that have been oriented by the rubbing method.
  • the orientation state and the black brightness are good, and the occurrence of the pretilt angle on the weak anchoring side is not confirmed and is 0. It was less than 1 °. It can be seen that Vmax is also significantly reduced as compared with the strong anchoring liquid crystal cell of Comparative Example 1, and the transmittance is greatly improved as compared with Comparative Examples 1 to 4. On the other hand, in Comparative Examples 2 to 3, the liquid crystal display element using Addd-C1 or Addd-C2 as an additive has many rubbing streaks and poor black brightness.
  • the additive of the present invention good weak anchoring IPS characteristics can be obtained even when such a liquid crystal display having a high ⁇ n and a small ⁇ can be used, and the response speed can be improved by narrowing the cell gap. Further, the VHR was also higher than that of Comparative Examples 2 to 4 especially at high temperature, and it was found that the reliability can be improved by using the additive of the present invention.
  • Table 5 shows the contents of Examples and Comparative Examples of the liquid crystal cells subjected to the alignment treatment by the optical alignment method.
  • Table 6 shows the characteristics evaluation results of the liquid crystal cells that have been oriented by the optical alignment method.
  • the anisotropy of the pre-tilt angle does not appear, so if a relatively large pre-tilt angle occurs due to some influence, the direction of the pre-tilt angle is not specified and it becomes a domain. It is presumed that the domain cannot be driven because the domain area is expanded by the electric field when it is tried to be driven. It has been found that the additive of the present invention is very useful because no domain is generated even when photo-orientation is used and good weak anchoring IPS characteristics can be obtained. As for VHR, it was found that VHR was good at high temperature as well as rubbing, and it was found that the use of this polymerizable compound as an additive for weak anchoring IPS was effective in improving reliability.
  • the present invention it is possible to provide a lateral electric field liquid crystal display element capable of realizing high backlight transmittance and fast response speed without generating a pretilt angle or a domain even when a liquid crystal having a high ⁇ n and a low ⁇ is used.
  • a liquid crystal display element with good reliability can be obtained. Therefore, the liquid crystal display element obtained by the method of the present invention is useful as a horizontal electric field drive type liquid crystal display element.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

液晶及び下記式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるステップを含む、液晶表示素子の製造方法。 (式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。) (式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)

Description

液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
 本発明は、安価な手法かつ複雑な工程を含まない手法にて、弱アンカリング膜を製造することが可能であり、かつポリマーによる液晶層の安定化技術を応用した、液晶表示素子の製造方法、及び、更なる低電圧駆動を実現するための液晶表示素子、並びにそれらに利用可能な液晶組成物、及びラジカル重合性化合物に関するものである。
 近年、携帯電話、コンピュータ及びテレビのディスプレイなどには液晶表示素子が広く用いられている。液晶表示素子は薄型、軽量、低消費電力などの特性を有しており、今後はVR(Virtual Reality)や超高精細のディスプレイ等、更なるコンテンツへの応用が期待されている。液晶ディスプレイの表示方式には、TN(Twisted Nematic)、IPS(In-Plane Switching)、VA(Vertical Alignment)など様々な表示モードが提案されているが、すべてのモードには液晶を所望の配向状態に誘導する膜(液晶配向膜)が使用されている。
 特にタブレットPCやスマートフォン、スマートTV等のタッチパネルを具備した製品には、タッチしても表示が乱れにくいIPSモードが好まれており、近年ではコントラスト向上や視野角特性の向上の点でFFS(Frindge Field Switching)を用いた液晶表示素子や、光配向を用いた非接触技術を用いた技術が用いられるようになってきた。
 しかしながら、FFSはIPSに比べ基板の製造コストが大きく、Vcomシフトと呼ばれるFFSモード特有の表示不良が発生する課題がある。また光配向に関しては、ラビング法に比べ、製造できる素子の大きさを大きくできる点や表示特性を大きく向上できるというメリットがあるが、光配向の原理上の課題(分解型であれば分解物由来の表示不良、異性化型であれば配向力不足による焼き付き等)が挙げられる。それらの課題を解決するために液晶表示素子メーカーや液晶配向膜メーカーは種々工夫を行っているのが現状である。
 一方で、近年弱アンカリングというものを利用したIPSモードが提案されており、この手法を用いることで従来のIPSモードに比べてコントラスト向上や大幅な低電圧駆動が可能になるという報告がされている(特許文献1参照)。
 具体的には、片側の基板には強いアンカリングエネルギーを有する液晶配向膜を用い、一方の横電界を発生させる方の電極を具備した基板側には一切液晶の配向規制力を有さなくなるような処理を施し、それらを用いてIPSモードの液晶表示素子を作る方法である。
 近年では、濃厚ポリマーブラシ等を用いて弱状態を作り出す、弱アンカリングIPSモードの技術提案がなされている(特許文献2参照)。この技術によりコントラスト比の大幅な向上や駆動電圧の大幅な低下を実現している。
 一方で、応答速度特に電圧OFF時の応答速度が著しく低下する課題がある。これは駆動電圧が低くなるため、通常の駆動方式に比べ弱い電界で応答させることによる影響と、配向膜のアンカリング力が極めて小さいが故に、液晶の復元に時間がかかってしまうことに起因する。
 これを解決する方法として、画素電極上のみ弱アンカリングにする手法が提案されている(特許文献3参照)。これにより輝度の向上と応答速度の両立が可能になることが報告されている。
特許第4053530号公報 特開2013-231757号公報 特開2017-211566号公報
 IPS櫛歯電極の電極上のみ弱アンカリングにすることで駆動時の応答速度遅延が抑制される一方で、電極上のみ弱アンカリングの状態にするためには非常に細かな領域に異なる材料を塗り分けする等の難しい技術を用意する必要があり、実際の工業化には大きな課題となることが考えられる。
 これらとは別の方法で、セルギャップを狭くすることによる応答速度の改善が検討されている。通常、液晶表示素子はセルギャップが狭くなるほど応答速度が速くなる傾向にある。しかし、その反面、透過率が低下してしまう問題がある。これを解決するには複屈折率差(Δn)の大きな液晶の使用が挙げられる。セルギャップDとΔnの積(リタデーション)が300nm~400nm(測定波長550nm)となるように設定することで、透過率の低下を解決できる。しかしながら、Δnを大きくする場合、基本的にはそのパラメーターだけを変えることはできず、Δε(誘電率異方性)や弾性係数等のパラメーターも変わるため、液晶の基礎物性が大きく変化することが考えられる。例えば弱アンカリング配向のような場合、液晶が垂直方向に配向してしまうようなケースが発生する可能性等も考えられる。よって、ΔnやΔε等のパラメーターが変化しても安定した弱アンカリング特性が得られることが重要課題となる。
 このような技術的課題を解決できればパネルメーカーとしても大きなコストメリットとなり、バッテリーの消費抑制や画質の向上等にもメリットとなることが考えられる。
 本発明は、上記のような課題を解決するためになされたものであり、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度も速くすることが同時に実現でき、加えて高温時においてもVHR(電圧保持率)の低下が少ない横電界液晶表示素子が製造可能な液晶表示素子の製造方法、及び当該液晶表示素子、並びにそれらに利用可能な液晶組成物、及びラジカル重合性化合物を提供することを目的とする。
 本発明者らは、上記の課題を解決する為、鋭意検討を行った結果、上記の課題を解決出来ることを見出し、以下の要旨を有する本発明を完成させた。
 すなわち、本発明は以下を包含する。
 [1] 液晶及び下記式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるステップを含む、液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000019
(式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
Figure JPOXMLDOC01-appb-C000020
(式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
[2] 前記式(B)中、前記置換基を有していてもよい芳香族炭化水素基がフェニル基である[1]に記載の液晶表示素子の製造方法。
 [3] 前記式(A)中のMが以下の構造から選ばれる、[1]または[2]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000021
(式中、*は結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、または炭素数1~4のアルキル基を示す。Rは水素原子、または炭素数1~6のアルキル基を表す。)
 [4] 前記ラジカル発生膜が一軸配向処理されたラジカル発生膜である、[1]~[3]のいずれかに記載の液晶表示素子の製造方法。
 [5] 前記重合反応させるステップが無電界条件下で行われる、[1]~[4]のいずれかに記載の液晶表示素子の製造方法。
 [6] 前記ラジカル発生膜が、ラジカル重合を誘発する有機基が固定化されて成る膜である、[1]~[5]のいずれかに記載の液晶表示素子の製造方法。
 [7] 前記ラジカル発生膜が、ラジカルを発生する有機基を有する化合物と重合体とを含有する組成物を塗布、および硬化して膜を形成することにより、前記ラジカルを発生する有機基を前記膜中に固定化させて得られる、[1]~[5]のいずれかに記載の液晶表示素子の製造方法。
 [8] 前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る、[1]~[5]のいずれかに記載の液晶表示素子の製造方法。
 [9] 前記ラジカル重合を誘発する有機基を含有する重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体である、[8]に記載の液晶表示素子の製造方法。
 [10] 前記ラジカル重合を誘発する有機基が下記式[X-1]~[X-18]、[W]、[Y]、または[Z]で表される有機基である、[9]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000022
(式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000023
(式[W]、[Y]、および[Z]中、*は結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000024
(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
 [11] 前記ラジカル重合を誘発する有機基を含有するジアミンが下記式(6)、下記式(7)、または下記式(7’)で表される構造を有するジアミンである、[9]または[10]に記載の液晶表示素子の製造方法。
Figure JPOXMLDOC01-appb-C000025
(式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
 Rは、下記式[X-1]~[X-18]から選択される式で表されるラジカル重合反応性基を表す。
Figure JPOXMLDOC01-appb-C000026
(式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。))
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
(式(7)及び(7’)中、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
 Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
 Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、または-COO-(CH-OCO-であり、mは1~8の整数であり、
 Jは下記式[W]、[Y]及び[Z]から選ばれる式で表される有機基である。
Figure JPOXMLDOC01-appb-C000029
(式[W]、[Y]、および[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000030
(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。))式(7’)中、qはそれぞれ独立に0又は1であり、少なくとも1つのqは1であり、pは1~2の整数を表す。)
 [12] 前記ラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
 前記第一基板における前記ラジカル発生膜が前記第二基板に対向するように、前記第一基板および前記第二基板を対向配置するステップ、
 前記第一基板と前記第二基板との間に、前記液晶組成物を充填するステップ、および
 前記重合反応させるステップ、
を含む、[1]~[11]のいずれかに記載の液晶表示素子の製造方法。
 [13] 前記第二基板がラジカル発生膜を有しない第二基板である、[12]に記載の液晶表示素子の製造方法。
 [14] 前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である、[12]に記載の液晶表示素子の製造方法。
 [15] 前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である、[14]に記載の液晶表示素子の製造方法。
 [16] 前記第一基板および前記第二基板のいずれか一方が櫛歯電極を有する基板である、[12]~[15]のいずれかに記載の液晶表示素子の製造方法。
 [17] 液晶及び下記式(A)で表されるラジカル重合性化合物を含有することを特徴とする液晶組成物。
Figure JPOXMLDOC01-appb-C000031
(式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
Figure JPOXMLDOC01-appb-C000032
(式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
 [18] 前記式(B)中の前記置換基を有していてもよい芳香族炭化水素基がフェニル基である[17]に記載の液晶組成物。
 [19] 前記式(A)中のMが以下の構造から選ばれる、[17]または[18]に記載の液晶組成物。
Figure JPOXMLDOC01-appb-C000033
(式中、*は結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、または炭素数1~4のアルキル基を表す。Rは水素原子、または炭素数1~6のアルキル基を表す。)
 [20] 第一基板、前記第一基板に対向して配置された第二基板、および前記第一基板と前記第二基板との間に充填された液晶を有し、
 前記液晶及び下記式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜を有する前記第一基板の前記ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させてなる、ことを特徴とする液晶表示素子。
Figure JPOXMLDOC01-appb-C000034
(式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
Figure JPOXMLDOC01-appb-C000035
(式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
 [21] 前記第一基板および前記第二基板のいずれか一方が櫛歯電極を有する基板である、[20]に記載の液晶表示素子。
 [22] 低電圧駆動横電界液晶表示素子である、[20]または[21]に記載の液晶表示素子。
 [23] 下記式(F-1)~(F-6)のいずれかで表されるラジカル重合性化合物。
Figure JPOXMLDOC01-appb-C000036
 本発明によれば、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度も速くすることが同時に実現でき、加えて高温時においてもVHRの低下が少ない横電界液晶表示素子が製造可能な液晶表示素子の製造方法、及び当該液晶表示素子、並びにそれらに利用可能な液晶組成物、及びラジカル重合性化合物を提供できる。
本発明の横電界液晶表示素子の一例を示す概略断面図である。 本発明の横電界液晶表示素子の他の例を示す概略断面図である。
 本発明は、弱アンカリング膜形成に伴うプレチルト角の発現等が抑制でき、狭セルギャップ化においても安定的に高信頼な弱アンカリング横電界液晶表示素子を作製可能な添加剤(特定構造のラジカル重合性化合物)を利用するものである。例えば、液晶及び特定構造のラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜を有する第一基板と、液晶配向膜を有する第二基板との間に有するセルを用意するステップ、及び前記セルに、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、弱アンカリング横電界液晶表示素子の製造方法である。好ましくは、ラビング又は光配向により配向処理されたラジカル発生膜を有する第一基板と、ラジカル発生膜を有しない液晶配向膜を有する第二基板とを用意するステップ、それぞれの基板が対向するようにセルを作成するステップ、および、第一基板と第二基板との間に、液晶及び特定構造のラジカル重合性化合物を含有する液晶組成物を充填するステップを含む液晶セルの製造方法である。例えば、片方の基板に配向処理されたラジカル発生膜を有しており、もう一方の基板に一軸配向処理された液晶配向膜を有し、どちらか一方の基板が液晶を駆動させるための櫛歯電極を有する基板である、低電圧駆動横電界液晶表示素子の作成方法である。
 本発明において「弱アンカリング膜」とは、面内方向における液晶分子の配向規制力が全く無いか、あったとしても液晶同士の分子間力よりも弱く、この膜のみでは液晶分子をいずれの方向にも一軸配向させない膜をいう。また、この弱アンカリング膜は、固体膜に限定されず固体表面を覆う液体膜も含まれる。通常、液晶表示素子には液晶分子の配向を規制する膜、すなわち液晶配向膜を対で用いて液晶を配向させるが、この弱アンカリング膜と液晶配向膜を対で用いた場合も液晶を配向させることが出来る。これは、液晶配向膜の配向規制力が液晶分子同士の分子間力によって液晶層の厚み方向にも伝達し、結果として弱アンカリング膜に近接する液晶分子も配向するからである。よって液晶配向膜に水平配向用の液晶配向膜を用いた場合においては液晶セル内全体で水平配向状態を作り出すことが出来る。水平配向とは液晶分子の長軸が液晶配向膜面に対してほぼ平行に配列している状態をいい、数度程度の傾斜配向も水平配向の範疇に含まれる。
 本願の出願人は、液晶及びラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるステップを含む、ゼロ面アンカリング膜の製造方法を提案している(国際公開第2019/004433号の請求項1参照)。国際公開第2019/004433号の〔0077〕~〔0086〕には、当該提案に用いるラジカル重合性化合物が例示されている。
 本発明者らは、上記提案の技術を利用し、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度も速くすることが同時に実現でき、加えて高温時においてもVHRの低下が少ない横電界液晶表示素子を作製するために鋭意検討を行った。その結果、ラジカル重合性化合物の中でも特定構造のラジカル重合性化合物を用いることで、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度も速くすることが同時に実現でき、加えて高温時においてもVHRの低下が少ない横電界液晶表示素子が製造可能になることを見出した。
 ここで、特定構造のラジカル重合性化合物は、下記式(A)で表される。
Figure JPOXMLDOC01-appb-C000037
(式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
Figure JPOXMLDOC01-appb-C000038
(式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
 本発明の液晶表示素子の製造方法においては、液晶及び式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、ラジカル重合性化合物を重合反応させるステップを含む。このステップにおいては、ラジカル発生膜により発生したラジカルを利用したラジカル重合性化合物の重合反応によって、ラジカル発生膜の表面に変化が生じ、弱アンカリング膜が得られていると、本発明者らは推測している。しかし、かかるステップによるラジカル発生膜の表面の変化が、ラジカル発生膜自体の変化であるのか、それともラジカル発生膜上にラジカル重合性化合物の重合層が形成されていることによる変化であるのかは、確認が困難である。そのため、かかるステップによる結果物を特定するには至っていない。
 本発明においては、上記ステップを行うことで、狭セルギャップ化において、プレチルト角が発生せず安定的に弱アンカリング横電界液晶表示素子が作製でき、低駆動電圧化と電圧Off時の応答速度も速くすることが同時に実現でき、加えて高温時においてもVHRの低下が少ない横電界液晶表示素子が製造可能となる。式(A)で表されるラジカル重合性化合物がそのことにどのように寄与しているかについて、本発明者らは以下のように考えている。
 式(A)で表されるラジカル重合性化合物のMは、ラジカル重合性化合物のラジカル重合に寄与する。そのことにより、弱アンカリング膜が形成でき、低駆動電圧化が実現できる。
 また、式(A)で表されるラジカル重合性化合物の-SiRは、プレチルト角の発生の抑制、応答速度の改善、及び高温時の高VHRに寄与していると、本発明者らは推測している。
 なお、本明細書において狭セルギャップとは、3.5μm以下のセルギャップを意味する。
[ラジカル発生膜形成組成物]
 本発明に用いるラジカル発生膜を形成するためのラジカル発生膜形成組成物は、成分として、重合体を含有し、ラジカルを発生しうる基を含有する。その際、当該組成物は、ラジカルを発生しうる基が結合した重合体を含有するものであってもよいし、ラジカルを発生しうる基を有する化合物と、ベース樹脂となる重合体との組成物であってもよい。このような組成物を塗布、硬化して膜を形成することにより、ラジカルを発生しうる基が膜中に固定化されたラジカル発生膜を得ることができる。ラジカルを発生しうる基は、ラジカル重合を誘発する有機基であることが好ましい。
 そのような、ラジカル重合を誘発する有機基としては下記式[X-1]~[X-18]、[W]、[Y]、[Z]で表される有機基が挙げられる。
Figure JPOXMLDOC01-appb-C000039
(式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。)
Figure JPOXMLDOC01-appb-C000040
(式[W]、[Y]、および[Z]中、*は結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000041
(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)。Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
 重合体としては、ポリイミド前駆体、ポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレート、及びポリオルガノシロキサンからなる群から選ばれる少なくとも1種の重合体が好ましい。
 本発明に用いるラジカル発生膜を得るために、前記ラジカル重合を誘発する有機基を有する重合体を用いる場合、ラジカルを発生しうる基を有する重合体を得るには、モノマー成分として、メタクリル基、アクリル基、ビニル基、アリル基、クマリン基、スチリル基及びシンナモイル基から選択される少なくとも一種を含む光反応性の側鎖を有するモノマーや、紫外線照射により分解し、ラジカルを発生する部位を側鎖に有するモノマーを用いて製造することが好ましい。一方で、ラジカルを発生するモノマーはそれ自体が自発的に重合をしてしまうなどの問題点が考えられ、不安定化合物となってしまうため、合成のしやすさの点ではラジカル発生部位を有するジアミンから誘導される重合体が好ましく、ポリアミック酸やポリアミック酸エステル等のポリイミド前駆体、ポリイミド、ポリウレア、ポリアミドなどがより好ましい。
 ラジカル重合を誘発する有機基を含有する重合体は、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体であることが好ましい。
 そのようなラジカル重合を誘発する有機基を含有するジアミンは、具体的には、例えば、ラジカルを発生し重合可能な側鎖を有するジアミンであり、下記の式(6)で表される構造を有するジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000042
(式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
 Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
 Rは、下記式[X-1]~[X-18]から選択される式で表されるラジカル重合反応性基を表す。
Figure JPOXMLDOC01-appb-C000043
(式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。))
 式(6)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。ジアミンを合成する際の容易性も加味すると、2,4の位置、又は3,5の位置がより好ましい。
 メタクリル基、アクリル基、ビニル基、アリル基、クマリル基、スチリル基及びシンナモイル基からなる群から選ばれる少なくとも1種を含む光反応性基を有するジアミンとしては、具体的には、以下のような化合物が挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000044
(式中、Jは単結合、-O-、-COO-、-NHCO-、及び-NH-より選ばれる結合基であり、Jは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表す。)
 ラジカル重合を誘発する有機基を含有するジアミンのうち、紫外線照射により分解してラジカルを発生する部位を側鎖として有するジアミンは、下記の式(7)又は式(7’)で表される構造を有するジアミンを挙げることができるが、これに限定されるものではない。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
(式(7)及び(7’)中、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
 Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
 Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、または-COO-(CH-OCO-であり、mは1~8の整数であり、
 Jは下記式[W]、[Y]及び[Z]から選ばれる式で表される有機基であり、
Figure JPOXMLDOC01-appb-C000047
(式[W]、[Y]、および[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、Qは下記のいずれかの構造を表す。
Figure JPOXMLDOC01-appb-C000048
(式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)。Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。))式(7’)中、qはそれぞれ独立に0又は1であり、少なくとも1つのqは1であり、pは1~2の整数を表す。)
 上記式(7)における二つのアミノ基(-NH)の結合位置は限定されない。具体的には、側鎖の結合基に対して、ベンゼン環上の2,3の位置、2,4の位置、2,5の位置、2,6の位置、3,4の位置、3,5の位置が挙げられる。なかでも、ポリアミック酸を合成する際の反応性の観点から、2,4の位置、2,5の位置、又は3,5の位置が好ましい。
 特に合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000049
(式中、nは2~8の整数である。)
 上記式(7’)におけるベンゼン環上のアミノ基(-NH)と結合基Eの結合位置は限定されない。原料の入手性や、液晶表示素子にした際の配向品位や黒輝度の観点から、パラ位が好ましい。
 式(7)及び式(7’)で表されるジアミンにおいては特に合成の容易さ、汎用性の高さ、特性などの点を鑑みて、下記式で表される構造が最も好ましいが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000050
(式中、nは2~8の整数であり、Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-CONH-、-COO-、-OCO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-C(CH-O-、-CO-(CH-、-(CH-CO-、-NH-(CH-、-(CH-NH-、-SO-(CH-、-(CH-SO-、-CONH-(CH-、-(CH-NHCO-、-CONH-(CH-NHCO-または-COO-(CH-OCO-であり、mは1~8の整数である。)
 上記のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 このようなラジカル重合を誘発する有機基を含有するジアミンは、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の5~50モル%となる量を用いることが好ましく、より好ましくは10~40モル%であり、特に好ましくは15~30モル%である。
 なお、本発明のラジカル発生膜に用いる重合体をジアミンから得る場合、本発明の効果を損なわない限りにおいて、上記ラジカル重合を誘発する有機基を含有するジアミン以外の、その他のジアミンをジアミン成分として併用することができる。具体的には、p-フェニレンジアミン、2,3,5,6-テトラメチル-p-フェニレンジアミン、2,5-ジメチル-p-フェニレンジアミン、m-フェニレンジアミン、2,4-ジメチル-m-フェニレンジアミン、2,5-ジアミノトルエン、2,6-ジアミノトルエン、2,5-ジアミノフェノール、2,4-ジアミノフェノール、3,5-ジアミノフェノール、3,5-ジアミノベンジルアルコール、2,4-ジアミノベンジルアルコール、4,6-ジアミノレゾルシノール、4,4’-ジアミノビフェニル、3,3’-ジメチル-4,4’-ジアミノビフェニル、3,3’-ジメトキシ-4,4’-ジアミノビフェニル、3,3’-ジヒドロキシ-4,4’-ジアミノビフェニル、3,3’-ジカルボキシ-4,4’-ジアミノビフェニル、3,3’-ジフルオロ-4,4’-ジアミノビフェニル、3,3’-ビス(トリフルオロメチル)-4,4’-ジアミノビフェニル、3,4’-ジアミノビフェニル、3,3’-ジアミノビフェニル、2,2’-ジアミノビフェニル、2,3’-ジアミノビフェニル、4,4’-ジアミノジフェニルメタン、3,3’-ジアミノジフェニルメタン、3,4’-ジアミノジフェニルメタン、2,2’-ジアミノジフェニルメタン、2,3’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、2,2’-ジアミノジフェニルエーテル、2,3’-ジアミノジフェニルエーテル、4,4’-スルホニルジアニリン、3,3’-スルホニルジアニリン、ビス(4-アミノフェニル)シラン、ビス(3-アミノフェニル)シラン、ジメチル-ビス(4-アミノフェニル)シラン、ジメチル-ビス(3-アミノフェニル)シラン、4,4’-チオジアニリン、3,3’-チオジアニリン、4,4’-ジアミノジフェニルアミン、3,3’-ジアミノジフェニルアミン、3,4’-ジアミノジフェニルアミン、2,2’-ジアミノジフェニルアミン、2,3’-ジアミノジフェニルアミン、N-メチル(4,4’-ジアミノジフェニル)アミン、N-メチル(3,3’-ジアミノジフェニル)アミン、N-メチル(3,4’-ジアミノジフェニル)アミン、N-メチル(2,2’-ジアミノジフェニル)アミン、N-メチル(2,3’-ジアミノジフェニル)アミン、4,4’-ジアミノベンゾフェノン、3,3’-ジアミノベンゾフェノン、3,4’-ジアミノベンゾフェノン、2,2’-ジアミノベンゾフェノン、2,3’-ジアミノベンゾフェノン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、1,6-ジアミノナフタレン、1,7-ジアミノナフタレン、1,8-ジアミノナフタレン、2,5-ジアミノナフタレン、2,6-ジアミノナフタレン、2,7-ジアミノナフタレン、1,2-ビス(4-アミノフェニル)エタン、1,2-ビス(3-アミノフェニル)エタン、1,3-ビス(4-アミノフェニル)プロパン、1,3-ビス(3-アミノフェニル)プロパン、1,4-ビス(4-アミノフェニル)ブタン、1,4-ビス(3-アミノフェニル)ブタン、ビス(3,5-ジエチル-4-アミノフェニル)メタン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,4-ビス(4-アミノフェニル)ベンゼン、1,3-ビス(4-アミノフェニル)ベンゼン、1,4-ビス(4-アミノベンジル)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、4,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、4,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,4’-[1,3-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,4-フェニレンビス(メチレン)]ジアニリン、3,3’-[1,3-フェニレンビス(メチレン)]ジアニリン、1,4-フェニレンビス[(4-アミノフェニル)メタノン]、1,4-フェニレンビス[(3-アミノフェニル)メタノン]、1,3-フェニレンビス[(4-アミノフェニル)メタノン]、1,3-フェニレンビス[(3-アミノフェニル)メタノン]、1,4-フェニレンビス(4-アミノベンゾエート)、1,4-フェニレンビス(3-アミノベンゾエート)、1,3-フェニレンビス(4-アミノベンゾエート)、1,3-フェニレンビス(3-アミノベンゾエート)、ビス(4-アミノフェニル)テレフタレート、ビス(3-アミノフェニル)テレフタレート、ビス(4-アミノフェニル)イソフタレート、ビス(3-アミノフェニル)イソフタレート、N,N’-(1,4-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(4-アミノベンズアミド)、N,N’-(1,4-フェニレン)ビス(3-アミノベンズアミド)、N,N’-(1,3-フェニレン)ビス(3-アミノベンズアミド)、N,N’-ビス(4-アミノフェニル)テレフタルアミド、N,N’-ビス(3-アミノフェニル)テレフタルアミド、N,N’-ビス(4-アミノフェニル)イソフタルアミド、N,N’-ビス(3-アミノフェニル)イソフタルアミド、9,10-ビス(4-アミノフェニル)アントラセン、4,4’-ビス(4-アミノフェノキシ)ジフェニルスルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノフェニル)ヘキサフルオロプロパン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-アミノフェニル)プロパン、2,2-ビス(3-アミノ-4-メチルフェニル)プロパン、トランス-1,4-ビス(4-アミノフェニル)シクロヘキサン、3,5-ジアミノ安息香酸、2,5-ジアミノ安息香酸、ビス(4-アミノフェノキシ)メタン、1,2-ビス(4-アミノフェノキシ)エタン、1,3-ビス(4-アミノフェノキシ)プロパン、1,3-ビス(3-アミノフェノキシ)プロパン、1,4-ビス(4-アミノフェノキシ)ブタン、1,4-ビス(3-アミノフェノキシ)ブタン、1,5-ビス(4-アミノフェノキシ)ペンタン、1,5-ビス(3-アミノフェノキシ)ペンタン、1,6-ビス(4-アミノフェノキシ)へキサン、1,6-ビス(3-アミノフェノキシ)へキサン、1,7-ビス(4-アミノフェノキシ)ヘプタン、1,7-ビス(3-アミノフェノキシ)ヘプタン、1,8-ビス(4-アミノフェノキシ)オクタン、1,8-ビス(3-アミノフェノキシ)オクタン、1,9-ビス(4-アミノフェノキシ)ノナン、1,9-ビス(3-アミノフェノキシ)ノナン、1,10-ビス(4-アミノフェノキシ)デカン、1,10-ビス(3-アミノフェノキシ)デカン、1,11-ビス(4-アミノフェノキシ)ウンデカン、1,11-ビス(3-アミノフェノキシ)ウンデカン、1,12-ビス(4-アミノフェノキシ)ドデカン、1,12-ビス(3-アミノフェノキシ)ドデカンなどの芳香族ジアミン;ビス(4-アミノシクロヘキシル)メタン、ビス(4-アミノ-3-メチルシクロヘキシル)メタンなどの脂環式ジアミン;1,3-ジアミノプロパン、1,4-ジアミノブタン、1,5-ジアミノペンタン、1,6-ジアミノへキサン、1,7-ジアミノヘプタン、1,8-ジアミノオクタン、1,9-ジアミノノナン、1,10-ジアミノデカン、1,11-ジアミノウンデカン、1,12-ジアミノドデカンなどの脂肪族ジアミン;1,3-ビス[2-(p-アミノフェニル)エチル]ウレア、1,3-ビス[2-(p-アミノフェニル)エチル]-1-tert-ブトキシカルボニルウレア等のウレア構造を有するジアミン;N-p-アミノフェニル-4-p-アミノフェニル(tert-ブトキシカルボニル)アミノメチルピペリジン等の含窒素不飽和複素環構造を有するジアミン;N-tert-ブトキシカルボニル-N-(2-(4-アミノフェニル)エチル)-N-(4-アミノベンジル)アミン等のN-Boc基(Bocはtert-ブトキシカルボニル基を表す)を有するジアミン等が挙げられる。
 上記その他のジアミンは、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上を混合して使用することもできる。
 重合体がポリアミック酸である場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸二無水物は特に限定されない。具体的には、ピロメリット酸、2,3,6,7-ナフタレンテトラカルボン酸、1,2,5,6-ナフタレンテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸、2,3,6,7-アントラセンテトラカルボン酸、1,2,5,6-アントラセンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、2,3,3’,4’-ビフェニルテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)エーテル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、ビス(3,4-ジカルボキシフェニル)スルホン、ビス(3,4-ジカルボキシフェニル)メタン、2,2-ビス(3,4-ジカルボキシフェニル)プロパン、1,1,1,3,3,3-ヘキサフルオロ-2,2-ビス(3,4-ジカルボキシフェニル)プロパン、ビス(3,4-ジカルボキシフェニル)ジメチルシラン、ビス(3,4-ジカルボキシフェニル)ジフェニルシラン、2,3,4,5-ピリジンテトラカルボン酸、2,6-ビス(3,4-ジカルボキシフェニル)ピリジン、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸、3,4,9,10-ペリレンテトラカルボン酸、1,3-ジフェニル-1,2,3,4-シクロブタンテトラカルボン酸、4,4’-オキシジフタル酸、1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロペンタンテトラカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸、1,2,3,4-シクロヘプタンテトラカルボン酸、テトラヒドロフラン-2,3,4,5-テトラカルボン酸、2-(3,4-ジカルボキシシクロへキシル)コハク酸、2,3,5-トリカルボキシシクロペンチル酢酸、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸、ビシクロ[4.3.0]ノナン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,7,9-テトラカルボン酸、ビシクロ[4.4.0]デカン-2,4,8,10-テトラカルボン酸、トリシクロ[6.3.0.0<2,6>]ウンデカン-3,5,9,11-テトラカルボン酸、1,2,3,4-ブタンテトラカルボン酸、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸、ビシクロ[2.2.2]オクタ-7-エン-2,3,5,6-テトラカルボン酸、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロへキサン-1,2-ジカルボン酸、テトラシクロ[6.2.1.1<3,6>.0<2,7>]ドデカン-4,5,9,10-テトラカルボン酸、3,5,6-トリカルボキシノルボルナン-2:3,5:6ジカルボン酸、1,2,4,5-シクロヘキサンテトラカルボン酸等のテトラカルボン酸の二無水物が挙げられる。
 勿論、テトラカルボン酸二無水物も、ラジカル発生膜とした際の液晶配向性、重合反応における感度、電圧保持特性、蓄積電荷などの特性に応じて、1種類又は2種類以上併用してもよい。
 重合体がポリアミック酸エステルである場合の合成で、上記のジアミン成分と反応させるテトラカルボン酸ジアルキルエステルの構造は特に限定されないが、その具体例を以下に挙げる。
 脂肪族テトラカルボン酸ジエステルの具体的な例としては1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、テトラヒドロフラン-2,3,4,5-テトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、2-(3,4-ジカルボキシシクロヘキシル)コハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3.3.0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.0<2,5>]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.1<2,7>.0<3,6>.1<9,14>.0<10,13>]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレンー1,2-ジカルボンジアルキルエステルなどが挙げられる。
 芳香族テトラカルボン酸ジアルキルエステルとしては、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどが挙げられる。
 重合体がポリウレアである場合の合成で、上記のジアミン成分と反応させるジイソシアネートに関しては、特に限定はせず、入手性等に応じて使用することができる。ジイソシアネートの具体的構造を以下に示す。
Figure JPOXMLDOC01-appb-C000051
 式中R、およびRは炭素数1~10の脂肪族炭化水素基を表す。
 K-1~K-5に示す脂肪族ジイソシアネートは、反応性は劣るが溶媒溶解性を向上させるメリットがあり、K-6~K-13に示すような芳香族ジイソシアネートは反応性に富み耐熱性を向上させる効果があるが、溶媒溶解性を低下させる欠点が挙げられる。汎用性や特性面においてはK-1、K-7、K-8、K-9、K-10が好ましく、電気特性の観点ではK-12、液晶配向性の観点ではK-13が好ましい。ジイソシアネートは2種以上を併用して使用することもでき、得たい特性に応じて種々適用するのが好ましい。
 また、一部のジイソシアネートを上記で説明したテトラカルボン酸二無水物に置き換えることもでき、ポリアミック酸とポリウレアの共重合体のような形で使用しても良く、化学イミド化によってポリイミドとポリウレアの共重合体のような形で使用しても良い。
 重合体がポリアミドである場合の合成で、反応させるジカルボン酸の構造は特に限定されないが、あえて具体例を以下に挙げれば以下のとおりである。脂肪族ジカルボン酸としては、マロン酸、蓚酸、ジメチルマロン酸、コハク酸、フマル酸、グルタル酸、アジピン酸、ムコン酸、2-メチルアジピン酸、トリメチルアジピン酸、ピメリン酸、2,2-ジメチルグルタル酸、3,3-ジエチルコハク酸、アゼライイン酸、セバシン酸およびスベリン酸等のジカルボン酸を挙げることができる。
 脂環式系のジカルボン酸としては、1,1-シクロプロパンジカルボン酸、1,2-シクロプロパンジカルボン酸、1,1-シクロブタンジカルボン酸、1,2-シクロブタンジカルボン酸、1,3-シクロブタンジカルボン酸、3,4-ジフェニル-1,2-シクロブタンジカルボン酸、2,4-ジフェニル-1,3-シクロブタンジカルボン酸、1-シクロブテン-1,2-ジカルボン酸、1-シクロブテン-3,4-ジカルボン酸、1,1-シクロペンタンジカルボン酸、1,2-シクロペンタンジカルボン酸、1,3-シクロペンタンジカルボン酸、1,1-シクロヘキサンジカルボン酸、1,2-シクロヘキサンジカルボン酸、1,3-シクロヘキサンジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,4-(2-ノルボルネン)ジカルボン酸、ノルボルネン-2,3-ジカルボン酸、ビシクロ[2.2.2]オクタン-1,4-ジカルボン酸、ビシクロ[2.2.2]オクタン-2,3-ジカルボン酸、2,5-ジオキソ-1,4-ビシクロ[2.2.2]オクタンジカルボン酸、1,3-アダマンタンジカルボン酸、4,8-ジオキソ-1,3-アダマンタンジカルボン酸、2,6-スピロ[3.3]ヘプタンジカルボン酸、1,3-アダマンタン二酢酸、カンファー酸等を挙げることができる。
 芳香族ジカルボン酸としては、o-フタル酸、イソフタル酸、テレフタル酸、5-メチルイソフタル酸、5-tert-ブチルイソフタル酸、5-アミノイソフタル酸、5-ヒドロキシイソフタル酸、2,5-ジメチルテレフタル酸、テトラメチルテレフタル酸、1,4-ナフタレンジカルボン酸、2,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、1,4-アントラセンジカルボン酸、1,4-アントラキノンジカルボン酸、2,5-ビフェニルジカルボン酸、4,4’-ビフェニルジカルボン酸、1,5-ビフェニレンジカルボン酸、4,4”-ターフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、4,4’-ビベンジルジカルボン酸、4,4’-スチルベンジカルボン酸、4,4’-トランジカルボン酸、4,4’-カルボニル二安息香酸、4,4’-スルホニル二安息香酸、4,4’-ジチオ二安息香酸、p-フェニレン二酢酸、3,3’-p-フェニレンジプロピオン酸、4-カルボキシ桂皮酸、p-フェニレンジアクリル酸、3,3’-[4,4’-(メチレンジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]ジプロピオン酸、4,4’-[4,4’-(オキシジ-p-フェニレン)]二酪酸、(イソプロピリデンジ-p-フェニレンジオキシ)二酪酸、ビス(p-カルボキシフェニル)ジメチルシラン等のジカルボン酸を挙げることができる。
 複素環を含むジカルボン酸としては、1,5-(9-オキソフルオレン)ジカルボン酸、3,4-フランジカルボン酸、4,5-チアゾールジカルボン酸、2-フェニル-4,5-チアゾールジカルボン酸、1,2,5-チアジアゾール-3,4-ジカルボン酸、1,2,5-オキサジアゾール-3,4-ジカルボン酸、2,3-ピリジンジカルボン酸、2,4-ピリジンジカルボン酸、2,5-ピリジンジカルボン酸、2,6-ピリジンジカルボン酸、3,4-ピリジンジカルボン酸、3,5-ピリジンジカルボン酸等を挙げることができる。
 上記の各種ジカルボン酸は酸ジハライドあるいは無水の構造のものであってもよい。これらのジカルボン酸類は、特に直線的な構造のポリアミドを与えることが可能なジカルボン酸類であることが液晶分子の配向性を保つ上から好ましい。これらの中でも、テレフタル酸、イソテレフタル酸、1,4-シクロヘキサンジカルボン酸、4,4’-ビフェニルジカルボン酸、4,4’-ジフェニルメタンジカルボン酸、4,4’-ジフェニルエタンジカルボン酸、4,4’-ジフェニルプロパンジカルボン酸、4,4’-ジフェニルヘキサフルオロプロパンジカルボン酸、2,2-ビス(フェニル)プロパンジカルボン酸、4、4-ターフェニルジカルボン酸、2,6-ナフタレンジカルボン酸、2,5-ピリジンジカルボン酸またはこれらの酸ジハライド等が好ましく用いられる。これらの化合物には異性体が存在するものもあるが、それらを含む混合物であってもよい。また、2種以上の化合物を併用してもよい。なお、本発明に使用するジカルボン酸類は、上記の例示化合物に限定されるものではない。
 原料であるジアミン(「ジアミン成分」とも記載する)と原料であるテトラカルボン酸二無水物(「テトラカルボン酸二無水物成分」とも記載する)、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる成分との反応により、ポリアミック酸、ポリアミック酸エステル、ポリウレア、ポリアミドを得るにあたっては、公知の合成手法を用いることができる。一般的には、ジアミン成分とテトラカルボン酸二無水物成分、テトラカルボン酸ジエステル、ジイソシアネート及びジカルボン酸から選ばれる一種以上の成分とを、有機溶媒中で反応させる方法である。
 ジアミン成分とテトラカルボン酸二無水物成分との反応は、有機溶媒中で比較的容易に進行し、かつ副生成物が発生しない点で有利である。
 上記反応に用いる有機溶媒としては、生成した重合体が溶解するものであれば特に限定されない。さらに、重合体が溶解しない有機溶媒であっても、生成した重合体が析出しない範囲で、上記溶媒に混合して使用してもよい。なお、有機溶媒中の水分は、重合反応を阻害し、さらには生成した重合体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。
 有機溶媒としては、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、N-メチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルホスホルアミド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライム、4-ヒドロキシ-4-メチル-2-ペンタノン、2-エチル-1-ヘキサノール等が挙げられる。これらの有機溶媒は単独で使用しても、混合して使用してもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を撹拌し、テトラカルボン酸二無水物成分をそのまま、又は有機溶媒に分散あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物成分を有機溶媒に分散あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物成分とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分又はテトラカルボン酸二無水物成分が複数種の化合物からなる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ高分子量体としてもよい。
 ジアミン成分とテトラカルボン酸二無水物成分とを反応させる際の温度は、任意の温度を選択することができ、例えば、-20~100℃、好ましくは-5~80℃の範囲である。また、反応は任意の濃度で行うことができ、例えば、反応液に対してジアミン成分とテトラカルボン酸二無水物成分との合計量が1~50質量%、好ましくは5~30質量%である。
 上記の重合反応における、ジアミン成分の合計モル数に対するテトラカルボン酸二無水物成分の合計モル数の比率は、得ようとするポリアミック酸の分子量に応じて任意の値を選択することができる。通常の重縮合反応と同様に、このモル比が1.0に近いほど生成するポリアミック酸の分子量は大きくなる。好ましい範囲としては、0.8~1.2である。
 本発明に用いられる重合体を合成する方法は、上記の手法に限定されず、ポリアミック酸を合成する場合は、一般的なポリアミック酸の合成方法と同様に、上記のテトラカルボン酸二無水物に代えて、対応する構造のテトラカルボン酸又はテトラカルボン酸ジハライドなどのテトラカルボン酸誘導体を用い、公知の方法で反応させることでも対応するポリアミック酸を得ることができる。また、ポリウレアを合成する場合は、ジアミンとジイソシアネートとを反応させればよい。ポリアミック酸エステルまたはポリアミドを製造する際には、ジアミンと、テトラカルボン酸ジエステル及びジカルボン酸から選ばれる成分を、公知の縮合剤の存在下で、又は、公知の方法で酸ハライドに誘導したのちに、ジアミンと反応させればよい。
 また、上記ポリアミック酸を閉環(イミド化)させることによりポリイミドを得ることができる。なお、本明細書でいうイミド化率とは、テトラカルボン酸二無水物由来のイミド基とカルボキシ基との合計量に占めるイミド基の割合のことである。ポリイミドにおいては、イミド化率は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。本発明におけるポリイミドのイミド化率は、電圧保持率を高くできることから、30%以上であることが好ましく、一方、白化特性の、すなわち、ワニス中での重合体の析出を抑制する観点から、80%以下が好ましい。
 ポリアミック酸を溶液中で熱イミド化させる場合の温度は、通常100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行うことが好ましい。
 ポリアミック酸の触媒イミド化は、ポリアミック酸の溶液に、塩基性触媒と酸無水物とを添加し、通常-20~250℃、好ましくは0~180℃で撹拌することにより行うことができる。塩基性触媒の量は、アミック酸基の通常0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量は、アミック酸基の通常1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸、無水ピロメリット酸などを挙げることができるが、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間などを調節することにより制御することができる。
 重合体の反応溶液から、生成した重合体を回収する場合には、反応溶液を貧溶媒に投入して沈殿させればよい。沈殿生成に用いる貧溶媒としては、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。貧溶媒に投入して沈殿させたポリマーは、濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の貧溶媒として、例えば、アルコール類、ケトン類、炭化水素などが挙げられ、これらの内から選ばれる3種類以上の貧溶媒を用いると、より一層精製の効率が上がるので好ましい。
 また、前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合、本発明に用いるラジカル発生膜形成組成物は、ラジカル重合を誘発する有機基を含有する重合体以外の他の重合体を含有していてもよい。その際、重合体全成分中における、他の重合体の含有量は5~95質量%が好ましく、より好ましくは30~70質量%である。
 ラジカル発生膜形成組成物が有する重合体の分子量は、ラジカル発生膜を塗布して得られるラジカル発生膜の強度、塗膜形成時の作業性、塗膜の均一性等を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で、5,000~1,000,000が好ましく、より好ましくは、10,000~150,000である。
 本発明に用いるラジカル発生膜を、ラジカルを発生する基を有する化合物と重合体との組成物を塗布、硬化して膜を形成することにより膜中に固定化させて得る場合の重合体としては、上記の製造方法に準じて製造されるポリイミド前駆体、及びポリイミド、ポリウレア、ポリアミド、ポリアクリレート、ポリメタクリレートなどからなる群から選ばれる重合体であって、上記ラジカル重合を誘発する有機基を含有するジアミンが、ラジカル発生膜形成組成物に含有させる重合体の合成に用いるジアミン成分全体の0モル%であるジアミン成分を用いて得られる少なくとも1種の重合体を用いてもよい。その際に添加するラジカルを発生する基を有する化合物としては、以下のものが挙げられる。
 熱でラジカルを発生する化合物としては、分解温度以上に加熱することにより、ラジカルを発生させる化合物である。このようなラジカル熱重合開始剤としては、例えば、ケトンパーオキサイド類(メチルエチルケトンパーオキサイド、シクロヘキサノンパーオキサイド等)、ジアシルパーオキサイド類(アセチルパーオキサイド、ベンゾイルパーオキサイド等)、ハイドロパーオキサイド類(過酸化水素、tert-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド等)、ジアルキルパーオキサイド類(ジ-tert-ブチルパーオキサイド、ジクミルパーオキサイド、ジラウロイルパーオキサイド等)、パーオキシケタール類(ジブチルパーオキシシクロヘキサン等)、アルキルパーエステル類(パーオキシネオデカン酸-tert-ブチルエステル、パーオキシピバリン酸-tert-ブチルエステル、パーオキシ2-エチルシクロヘキサン酸-tert-アミルエステル等)、過硫酸塩類(過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウム等)、アゾ系化合物(アゾビスイソブチロニトリル、および2,2’-ジ(2-ヒドロキシエチル)アゾビスイソブチロニトリル等)が挙げられる。このようなラジカル熱重合開始剤は、1種を単独で使用することもできるし、あるいは2種以上を組み合わせて使用することもできる。
 光でラジカルを発生する化合物としては、ラジカル重合を光照射によって開始する化合物であれば特に限定されない。このようなラジカル光重合開始剤としては、ベンゾフェノン、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、キサントン、チオキサントン、イソプロピルキサントン、2,4-ジエチルチオキサントン、2-エチルアントラキノン、アセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2-ヒドロキシ-2-メチル-4’-イソプロピルプロピオフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、イソプロピルベンゾインエーテル、イソブチルベンゾインエーテル、2,2-ジエトキシアセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、カンファーキノン、ベンズアントロン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミル、4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4,4’-トリ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾイルジフェニルフォスフィンオキサイド、2-(4’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(3’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’,4’-ジメトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(2’-メトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4’-ペンチルオキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、4-[p-N,N-ジ(エトキシカルボニルメチル)]-2,6-ジ(トリクロロメチル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(2’-クロロフェニル)-s-トリアジン、1,3-ビス(トリクロロメチル)-5-(4’-メトキシフェニル)-s-トリアジン、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-メルカプトベンゾチアゾール、3,3’-カルボニルビス(7-ジエチルアミノクマリン)、2-(o-クロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2-クロロフェニル)-4,4’,5,5’-テトラキス(4-エトキシカルボニルフェニル)-1,2’-ビイミダゾール、2,2’-ビス(2,4-ジクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’ビス(2,4-ジブロモフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、2,2’-ビス(2,4,6-トリクロロフェニル)-4,4’,5,5’-テトラフェニル-1,2’-ビイミダゾール、3-(2-メチル-2-ジメチルアミノプロピオニル)カルバゾール、3,6-ビス(2-メチル-2-モルホリノプロピオニル)-9-n-ドデシルカルバゾール、1-ヒドロキシシクロヘキシルフェニルケトン、ビス(5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム、3,3’,4,4’-テトラ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’,4,4’-テトラ(tert-ヘキシルペルオキシカルボニル)ベンゾフェノン、3,3’-ジ(メトキシカルボニル)-4,4’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、3,4’-ジ(メトキシカルボニル)-4,3’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、4,4’-ジ(メトキシカルボニル)-3,3’-ジ(tert-ブチルペルオキシカルボニル)ベンゾフェノン、2-(3-メチル-3H-ベンゾチアゾール-2-イリデン)-1-ナフタレン-2-イル-エタノン、又は2-(3-メチル-1,3-ベンゾチアゾール-2(3H)-イリデン)-1-(2-ベンゾイル)エタノン等を挙げることができる。これらの化合物は単独で使用してもよく、2つ以上を混合して使用することもできる。
 なお、前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る場合であっても、エネルギーを与えた際にラジカル重合を促進する目的で、上記のラジカルを発生する基を有する化合物を含有させてもよい。
 ラジカル発生膜形成組成物は、重合体成分、必要に応じてラジカル発生剤その他の含有成分を溶解又は分散する有機溶媒を含有することができる。そのような有機溶媒に特に限定はなく、例えば、上記のポリアミック酸の合成で例示したような有機溶媒を挙げることができる。中でも、N-メチル-2-ピロリドン、γ-ブチロラクトン、N-エチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、3-メトキシ-N,N-ジメチルプロパンアミド等は、溶解性の観点から好ましい。特に、N-メチル-2-ピロリドン又はN-エチル-2-ピロリドンが好ましいが、2種類以上の混合溶媒を用いてもよい。
 また、塗膜の均一性や平滑性を向上させる溶媒を、ラジカル発生膜形成組成物の含有成分の溶解性が高い有機溶媒に混合して使用すると好ましい。
 塗膜の均一性や平滑性を向上させる溶媒としては、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ(エチレングリコールモノブチルエーテル)、メチルセロソルブアセテート、ブチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、乳酸n-プロピル、乳酸n-ブチル、乳酸イソアミル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、2-エチル-1-ヘキサノールなどが挙げられる。これらの溶媒は複数種類を混合してもよい。これらの溶媒を用いる場合は、ラジカル発生膜形成組成物に含まれる溶媒全体の5~80質量%であることが好ましく、より好ましくは20~60質量%である。
 ラジカル発生膜形成組成物には、上記以外の成分を含有させてもよい。その例としては、ラジカル発生膜形成組成物を塗布した際の膜厚均一性や表面平滑性を向上させる化合物、ラジカル発生膜形成組成物と基板との密着性を向上させる化合物、ラジカル発生膜形成組成物の膜強度をさらに向上させる化合物などが挙げられる。
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられる。より具体的には、例えば、エフトップEF301、EF303、EF352(三菱マテリアル電子化成社製)、メガファックF171、F173、R-30(DIC社製)、フロラードFC430、FC431(スリーエム社製)、アサヒガードAG710(AGC社製)、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(AGCセイミケミカル社製)などが挙げられる。これらの界面活性剤を使用する場合、その使用割合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。
 ラジカル発生膜形成組成物と基板との密着性を向上させる化合物の具体例としては、官能性シラン含有化合物やエポキシ基含有化合物などが挙げられる。例えば、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-(3-トリエトキシシリルプロピル)トリエチレンテトラミン、N-(3-トリメトキシシリルプロピル)トリエチレンテトラミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサン、N,N,N’,N’-テトラグリシジル-4、4’-ジアミノジフェニルメタン、3-(N-アリル-N-グリシジル)アミノプロピルトリメトキシシラン、3-(N,N-ジグリシジル)アミノプロピルトリメトキシシランなどが挙げられる。
 また、ラジカル発生膜の膜強度をさらに上げるためには、2,2’-ビス(4-ヒドロキシ-3,5-ジヒドロキシメチルフェニル)プロパン、テトラ(メトキシメチル)ビスフェノール等のフェノール化合物を添加してもよい。これらの化合物を使用する場合は、ラジカル発生膜形成組成物に含有される重合体の総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。
 さらに、ラジカル発生膜形成組成物には、上記の他、本発明の効果が損なわれない範囲であれば、ラジカル発生膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。
[ラジカル発生膜]
 本発明のラジカル発生膜は、例えば、上記ラジカル発生膜形成組成物を用いて得られる。例えば、本発明に用いるラジカル発生膜形成組成物を、基板に塗布した後、乾燥・焼成を行うことで得られる硬化膜を、そのままラジカル発生膜として用いることもできる。また、この硬化膜をラビングや偏光又は特定の波長の光等を照射、イオンビーム等の処理にて配向処理を行うことができ、PSA用配向膜として液晶充填後の液晶表示素子にUV(紫外線)を照射することも可能である。
 ラジカル発生膜形成組成物を塗布する基板としては、透明性の高い基板であれば特に限定されないが、基板上に液晶を駆動するための透明電極が形成された基板が好ましい。
 具体例を挙げると、ガラス板、ポリカーボネート、ポリ(メタ)アクリレート、ポリエーテルサルホン、ポリアリレート、ポリウレタン、ポリサルホン、ポリエーテル、ポリエーテルケトン、トリメチルペンテン、ポリオレフィン、ポリエチレンテレフタレート、(メタ)アクリロニトリル、トリアセチルセルロース、ジアセチルセルロース、アセテートブチレートセルロースなどのプラスチック板などに透明電極が形成された基板を挙げることができる。
 IPS方式の液晶表示素子に使用できる基板には、標準的なIPS櫛歯電極やPSAフィッシュボーン電極といった電極パターンやMVAのような突起パターンでも使用できる。
 また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。
 透過型の液晶表示素子を意図している場合は、上記の如き基板を用いることが一般的であるが、反射型の液晶表示素子を意図している場合では、片側の基板のみにならばシリコンウエハー等の不透明な基板も用いることが可能である。その際、基板に形成された電極には、光を反射するアルミニウムの如き材料を用いることもできる。
 ラジカル発生膜形成組成物の塗布方法としては、スピンコート法、印刷法、インクジェット法、スプレー法、ロールコート法などが挙げられるが、生産性の面から工業的には転写印刷法が広く用いられており、本発明でも好適に用いられる。
 ラジカル発生膜形成組成物を塗布した後の乾燥の工程は、必ずしも必要とされないが、塗布後から焼成までの時間が基板ごとに一定していない場合、又は塗布後ただちに焼成されない場合には、乾燥工程を含める方が好ましい。この乾燥は、基板の搬送等により塗膜形状が変形しない程度に溶媒が除去されていればよく、その乾燥手段については特に限定されない。例えば、温度40~150℃、好ましくは60~100℃のホットプレート上で、0.5~30分、好ましくは1~5分乾燥させる方法が挙げられる。
 上記の方法でラジカル発生膜形成組成物を塗布して形成される塗膜は、焼成して硬化膜とすることができる。その際、焼成温度は、通常100~350℃の任意の温度で行うことができるが、好ましくは140~300℃であり、より好ましくは150~230℃、更に好ましくは160~220℃である。焼成時間は通常5~240分の任意の時間で焼成を行うことができる。好ましくは10~90分であり、より好ましくは20~90分である。加熱は、通常公知の方法、例えば、ホットプレート、熱風循環オーブン、IR(赤外線)型オーブン、ベルト炉などを用いることができる。
 この硬化膜の厚みは必要に応じて選択することができるが、好ましくは5nm以上、より好ましくは10nm以上の場合、液晶表示素子の信頼性が向上するので好適である。また、硬化膜の厚みが好ましくは300nm以下、より好ましくは150nm以下の場合は、液晶表示素子の消費電力が極端に大きくならないので好適である。
 以上のようにしてラジカル発生膜を有する第一基板を得ることができるが、当該ラジカル発生膜に一軸配向処理を施すことができる。一軸配向処理を行う方法としては、光配向法、斜方蒸着法、ラビング、磁場による一軸配向処理等が挙げられる。
 一方向にラビング処理することによる配向処理を行う場合には、例えば、ラビング布が巻きつけられたラビングローラーを回転させながら、ラビング布と膜とが接触するように基板を移動させる。光配向法を用いる場合には、特定波長の偏光UVを膜全面に照射し、必要に応じて加熱することにより配向処理ができる。
 櫛歯電極が形成されている本発明の第一基板の場合、液晶の電気的物性によって方向が選択されるが、正の誘電異方性を有する液晶を用いる場合において、ラビング方向は櫛歯電極の延びている方向とほぼ同一の方向とすることが好ましい。
 弱アンカリング部と強アンカリング部を作り出す工程として、フォトマスク等を介して任意のパターンにて放射線を照射する方法が挙げられる。これは予めラジカル発生膜に放射線を照射することによりラジカル発生部位を消失させ、弱アンカリング状態にならないようにする工程である。この工程を行う際の放射線として偏光又は特定の波長の光や、イオンビーム等が挙げられる。光ラジカル発生部位に該当する部分の吸光度が最も高くなる波長の光を照射することが特に好ましい。
 本発明の第二基板は、ラジカル発生膜を有していてもよいし、有していなくてもよい。第二基板は従来から知られている液晶配向膜を有する基板とすることが好ましい。
 本発明においては、第一基板が櫛歯電極を有する基板であり、第二基板が対向基板であってもよい。また、本発明においては、第二基板が櫛歯電極を有する基板であり、第一基板が対向基板であってもよい。
<液晶セル>
 本発明の液晶セルは、上記の方法により、基板にラジカル発生膜を形成した後、当該ラジカル発生膜を有する基板(第一基板)と、公知の液晶配向膜を有する基板(第二基板)とを、ラジカル発生膜と液晶配向膜とが向かい合うように配置し、スペーサーを挟んで、シール剤で固定し、液晶及びラジカル重合性化合物を含有する液晶組成物を注入して封止することにより得られる。その際、用いるスペーサーの大きさは通常1~30μmであるが、好ましくは2~10μmである。
 液晶及びラジカル重合性化合物を含有する液晶組成物を注入する方法は特に制限されず、作製した液晶セル内を減圧にした後、液晶と重合性化合物を含む混合物を注入する真空法、液晶と重合性化合物とを含む混合物を滴下した後に封止を行う滴下法などを挙げることができる。
<ラジカル重合性化合物、及び液晶組成物>
 本発明のラジカル重合性化合物は、下記式(A)で表される。
Figure JPOXMLDOC01-appb-C000052
(式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
Figure JPOXMLDOC01-appb-C000053
(式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
 Rにおける脂肪族炭化水素基の炭素数は1~10であり、炭素数1~8であってもよいし、炭素数1~6であってもよいし、炭素数1~4であってもよい。
 R、R、及びRにおける炭素数1~6のアルキル基としては、例えば、炭素数1~5のアルキル基であってもよいし、炭素数1~4のアルキル基であってもよい。これらアルキル基は、直鎖構造であってもよいし、分岐構造であってもよい。
 R、R、及びRにおける芳香族炭化水素基は、無置換であってもよいし、水素原子が置換基により置換されていてもよい。
 置換基を有していてもよい芳香族炭化水素基の置換基としては、例えば、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のアルコキシ基、炭素数1~4のハロゲン化アルキル基、炭素数1~4のハロゲン化アルコキシ基などが挙げられる。ハロゲン化アルキル基、およびハロゲン化アルコキシ基におけるハロゲン化は、全ハロゲン化であってもよいし、一部のハロゲン化であってもよい。ハロゲン原子としては、例えば、フッ素原子、塩素原子などが挙げられる。
 置換基を有していてもよい芳香族炭化水素基における芳香族炭化水素基としては、例えば、フェニル基、ナフチル基が挙げられる。
 芳香族炭化水素基における置換基の数としては、特に限定されない。
 式(A)で表されるラジカル重合性化合物において、式(B)で表される基は1つ以上であり、1つであってもよいし、2つであってもよいし、3つであってもよい。
 式(A)で表されるラジカル重合性化合物において、3つのXはそれぞれ独立している。そのため、式(A)で表されるラジカル重合性化合物において、式(B)で表される基が2つ以上の場合、2つ以上の式(B)で表される基は、同じ構造であってもよいし、異なる構造であってもよい。
 式(B)において、R、R、およびRの少なくとも一つは、置換基を有していてもよい芳香族炭化水素基であってもよい。そのため、式(B)において、R、R、およびRの一つが置換基を有していてもよい芳香族炭化水素基であってもよいし、R、R、およびRの二つが置換基を有していてもよい芳香族炭化水素基であってもよし、R、R、およびRの三つが置換基を有していてもよい芳香族炭化水素基であってもよい。
 そして、前記ラジカル重合性化合物のラジカル重合可能な重合性基Mとしては以下の構造から選ばれる重合性基が好ましい。
Figure JPOXMLDOC01-appb-C000054
(式中、*は結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、または炭素数1~4のアルキル基を示す。Rは水素原子、または炭素数1~6のアルキル基を表す。)
 式(A)で表されるラジカル重合性化合物としては、例えば、以下の(1)~(3)を満たすラジカル重合性化合物が挙げられる。
 (1):式(A)中、Mは下記構造(C)又は構造(D)を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。
 (2):式(B)中、Yは-O-を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。ただし、R、R、およびRの少なくとも一つは、置換基を有していてもよい芳香族炭化水素基を表す。
 (3):下記式(E)で表されるラジカル重合性化合物ではない。
Figure JPOXMLDOC01-appb-C000055
(構造(C)、及び構造(D)中、*は結合部位を示す。)
 式(A)に含まれるラジカル重合性化合物としては、例えば、以下のラジカル重合性化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000056
 液晶組成物は、液晶と、上記ラジカル重合性化合物とを少なくとも含有する。
 液晶組成物中の上記ラジカル重合性化合物の含有量は、液晶とラジカル重合性化合物との合計質量に対して、好ましくは0.5質量%以上、より好ましくは1質量%以上であり、好ましくは10質量%以下、より好ましくは5質量%以下である。
 また、液晶組成物においては、上記ラジカル重合性化合物とは別に他の単官能のラジカル重合性基を有する化合物(以下、「他のラジカル重合性化合物」と称することがある)とを複数併用してもよい。
 他のラジカル重合性化合物は、有機ラジカルの存在下でラジカル重合を行うことが可能な不飽和結合を有するものであり、例えば、tert-ブチルメタクリレート、ヘキシルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、ラウリルメタクリレート、n-オクチルメタクリレートなどのメタクリレート系モノマー;tert-ブチルアクリレート、ヘキシルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、ラウリルアクリレート、n-オクチルアクリレートなどのアクリレート系モノマー;スチレン、スチレン誘導体(例えば、o-、m-、p-メトキシスチレン、o-、m-、p-tert-ブトキシスチレン、o-、m-、p-クロロメチルスチレンなど)、ビニルエステル類(例えば、酢酸ビニル、プロピオン酸ビニル、安息香酸ビニルなど)、ビニルケトン類(例えば、ビニルメチルケトン、ビニルヘキシルケトン、メチルイソプロペニルケトンなど)、N-ビニル化合物(例えば、N-ビニルピロリドン、N-ビニルピロール、N-ビニルカルバゾール、N-ビニルインドールなど)、(メタ)アクリル酸誘導体(例えば、アクリロニトリル、メタアクリロニトリル、アクリルアミド、イソプロピルアクリルアミド、メタクリルアミドなど)、ハロゲン化ビニル類(例えば、塩化ビニル、塩化ビニリデン、テトラクロロエチレン、ヘキサクロロプレン、フッ化ビニルなど)などのビニルモノマーが挙げられるが、これらに限定はしない。また、これらは、液晶と相溶性を有することが好ましい。
 また、他のラジカル重合性化合物としては、下記式(1)で表される化合物も好ましい。
Figure JPOXMLDOC01-appb-C000057
(式(1)中、RおよびRはそれぞれ独立に炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合、およびアミド結合から選ばれる結合基を表す。Rは水素原子または炭素数1~4のアルキル基を表す。)
 液晶組成物に含有されるラジカル重合性化合物のうち少なくとも一種は、液晶と相溶性を有する、一分子中に一個の重合性不飽和結合を有する化合物、すなわち、単官能のラジカル重合性基を有する化合物であることが好ましい。
 そして、前記式(1)で表されるラジカル重合性化合物としては式中Eがエステル結合(-C(=O)-O-または-O-C(=O)-で表される結合)のものが合成のしやすさや液晶への相溶性、重合反応性の観点で好ましく、具体的には以下のような構造で表される化合物が好ましいが、特に限定はしない。
Figure JPOXMLDOC01-appb-C000058
 また、液晶組成物において、ラジカル重合性化合物を重合させて得られるポリマーのTgが100℃以下になるラジカル重合性化合物を含有することが好ましい。
 これらの各種ラジカル重合性モノマーは、単独で使用しても、2種以上を併用してもよい。また、これらは、液晶と相溶性を有することが好ましい。
 ラジカル重合性化合物を重合させて得られるポリマーは、そのTgを100℃以下とすることが好ましく、より好ましくは0℃以下である。
 なお、液晶とは一般に固体と液体の両方の性質を示す状態にある物質をいい、代表的な液晶相としてネマティック液晶とスメクティック液晶があるが、本発明において使用できる液晶は特に限定されない。一例を挙げれば4-ペンチル-4’-シアノビフェニルである。
 次に、この液晶とラジカル重合性化合物とを含む混合物(液晶組成物)が導入された液晶セルに当該ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与える。これは、例えば、熱を加えるか、UV照射することにより実施することができ、当該ラジカル重合性化合物がその場で重合されることで、所望の特性が発現する。中でも配向性のパターニングが可能となり、更に短時間で重合反応させられる点で、UV照射が好ましい。
 またUV照射の際、加熱を行ってもよい。UV照射を行う際の加熱温度は、導入された液晶が液晶性を発現する温度範囲が好ましく、通常40℃以上であり、液晶の等方相に変わる温度未満での加熱が好ましい。
 ここで、UV照射する場合におけるUV照射波長は、反応する重合性化合物の反応量子収率の最も良い波長を選択することが好ましく、UVの照射量は、通常0.01~30J/cmであるが、好ましくは、10J/cm以下であり、UV照射量が少ないほうが、液晶ディスプレイを構成する部材の破壊からなる信頼性低下を抑制でき、かつUV照射時間を減らせることで製造上のタクトが向上するので好適である。
 また、UV照射ではなく、加熱のみで重合させる場合の加熱は、重合性化合物の反応する温度であって、液晶の分解温度未満となる温度範囲で行うことが好ましい。具体的には、100~150℃である。
 ラジカル重合性化合物を重合反応させるのに十分なエネルギーを与えるとき、電圧を印加しない、無電界状態であることが好ましい。
<液晶表示素子>
 このようにして得られた液晶セルを用いて液晶表示素子を作製することができる。
 液晶表示素子は、例えば、第一基板、第一基板に対向して配置された第二基板、および第一基板と第二基板との間に充填された液晶を有する。そして、液晶表示素子は、液晶及び式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜を有する第一基板のラジカル発生膜に接触させた状態で、ラジカル重合性化合物を重合反応させてなる。
 液晶表示素子は、例えば、液晶セルに必要に応じて反射電極、透明電極、λ/4板、偏光膜、カラーフィルター層等を常法に従って設けることにより反射型液晶表示素子とすることができる。また、液晶セルに必要に応じてバックライト、偏光板、λ/4板、透明電極、偏光膜、カラーフィルター層等を常法に従って設けることにより透過型液晶表示素子とすることができる。
 図1は、本発明の横電界液晶表示素子の一例を示す概略断面図であり、IPSモード液晶表示素子の例である。
 図1に例示する横電界液晶表示素子1においては、液晶配向膜2cを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2aと、基材2a上に形成され、櫛歯状に配置された複数の線状電極2bと、基材2a上に線状電極2bを覆うように形成された液晶配向膜2cとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2cは、例えば、ラジカル発生膜を化学変化させて得られる弱アンカリング膜である。櫛型電極基板側の液晶配向膜は、例えば、ラジカル発生膜に、液晶とラジカル重合性化合物とを含有する液晶組成物を接触させた状態で、ラジカル重合性化合物を重合反応させて得られる。
 この横電界液晶表示素子1においては、線状電極2bに電圧が印加されると、電気力線Lで示すように線状電極2b間で電界が発生する。
 図2は、本発明の横電界液晶表示素子の他の例を示す概略断面図であり、FFSモード液晶表示素子の例である。
 図2に例示する横電界液晶表示素子1においては、液晶配向膜2hを具備する櫛歯電極基板2と液晶配向膜4aを具備する対向基板4との間に、液晶3が挟持されている。櫛歯電極基板2は、基材2dと、基材2d上に形成された面電極2eと、面電極2e上に形成された絶縁膜2fと、絶縁膜2f上に形成され、櫛歯状に配置された複数の線状電極2gと、絶縁膜2f上に線状電極2gを覆うように形成された液晶配向膜2hとを有している。対向基板4は、基材4bと、基材4b上に形成された液晶配向膜4aとを有している。液晶配向膜2hは、例えば、ラジカル発生膜を化学変化させて得られる弱アンカリング膜である。櫛型電極基板側の液晶配向膜は、例えば、ラジカル発生膜に、液晶とラジカル重合性化合物とを含有する液晶組成物を接触させた状態で、ラジカル重合性化合物を重合反応させて得られる。
 この横電界液晶表示素子1においては、面電極2eおよび線状電極2gに電圧が印加されると、電気力線Lで示すように面電極2eおよび線状電極2g間で電界が発生する。
 以下に実施例を挙げて本発明を具体的に説明するが、本発明は、これらの実施例に限定して解釈されるものではない。化合物の略号、及び各特性の測定方法は以下のとおりである。
(ジアミン)
 DA-1~DA-5:それぞれ、下記式(DA-1)~(DA-5)で表される化合物
Figure JPOXMLDOC01-appb-C000059
(テトラカルボン酸二無水物)
 TC-1~TC-3:それぞれ、下記式(TC-1)~(TC-3)で表される化合物
Figure JPOXMLDOC01-appb-C000060
(添加剤)
 Add-1~Add-11:それぞれ、下記式(Add-1)~(Add-11)で表される化合物
 Add-C1~Add-C3:それぞれ、下記式(Add-C1)~(Add-C3)で表される化合物
 AD-1:下記式(AD-1)で表される化合物
Figure JPOXMLDOC01-appb-C000061
(溶媒)
 THF:テトラヒドロフラン
 CHCl:ジクロロメタン
 CHCl:クロロホルム
 DMF:N,N-ジメチルホルムアミド
 NMP:N-メチル-2-ピロリドン
 BCS:ブチルセロソルブ
 GBL:γ-ブチロラクトン
(反応試剤)
 TEA:トリエチルアミン
 DMAP:4-ジメチルアミノピリジン
(その他)
 BHT:2,6-ジ-tert-ブチル-p-クレゾール
 MEHQ:4-メトキシフェノール
<粘度測定>
 ポリアミック酸溶液などの粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL(ミリリットル)、コーンロータTE-1(1°34’、R24)、温度25℃において測定した。
<分子量の測定>
 ポリイミド前駆体及びポリイミドなどの分子量は、常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)(昭和電工社製)、カラム(GPC KD-803,GPC KD-805)(昭和電工社製)を用いて、以下のようにして測定した。
 カラム温度:50℃
 溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム一水和物(LiBr・HO)が30mmol/L(リットル)、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10mL/L)
 流速:1.0mL/分
 検量線作成用標準サンプル:TSK 標準ポリエチレンオキサイド(分子量;約900,000、150,000、100,000及び30,000)(東ソー社製)及びポリエチレングリコール(分子量;約12,000、4,000及び1,000)(ポリマーラボラトリー社製)。
<イミド化率の測定>
 ポリイミド粉末20mgをNMRサンプル管(草野科学社製 NMRサンプリングチューブスタンダード φ5)に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05質量%テトラメチルシラン(TMS)混合品)1.0mLを添加し、超音波をかけて完全に溶解させた。この溶液をフーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER製)にて500MHzのプロトンNMRを測定した。
 化学イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5~10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお、式中、xはアミック酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基のプロトン1個に対する基準プロトンの個数割合である。
   イミド化率(%)=(1-α・x/y)×100
<<合成例 弱アンカリングIPS用添加剤の合成>>
 下記合成例に記載の生成物はH-NMR分析により同定した(分析条件は下記の通り)。
 装置:フーリエ変換型超伝導核磁気共鳴装置(FT-NMR)「AVANCE III」(BRUKER社製)500MHz。
 溶媒:CDCl(重水素化クロロホルム)又はDMSO-d(重水素化ジメチルスルホキシド)。
 基準物質:テトラメチルシラン(TMS)(δ0.0 ppm for H)。
<合成例1 Add-1(2-((Triisopropylsilyl)oxy)ethyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000062
(第1工程)
 撹拌子を備えた300mL4つ口フラスコに、2-Bromoethanol(12.96g:103.73mmol)、Imidazole(7.06g:103.73mmol)、Triisopropylsilyl Chloride(10.00g:51.87mmol)、及びCHCl(200mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(9.19g:収率63%、無色透明液体)を得た。
(第2工程)
 撹拌子を備えた300mL4つ口フラスコに第1工程で得られた(2-Bromoethoxy)triisopropylsilane(9.00g:32.68mmol)、Potassium methacrylate(4.77g:38.39mmol)、BHT(0.07g:0.32mmol)、及びDMF(200mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、200mLのヘプタンに反応溶液を注ぎ、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-1(8.80g:収率96%、淡黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:6.03(1H)、5.67(1H)、4.20-4.18(2H)、3.91-3.89(2H)、1.88(3H)、1.09-1.00(21H)
<合成例2 Add-2(2-((tert-butyldimethylsilyl)oxy)ethyl methacrylateの合成>
Figure JPOXMLDOC01-appb-C000063
(第1工程)
 撹拌子を備えた300mL4つ口フラスコに、2-Bromoethanol(16.58g:132.70mmol)、Imidazole(9.03g:132.70mmol)、tert-butyldimethylchlorosilane(10.00g:66.35mmol)、及びCHCl(200mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(7.30g:収率46%、無色透明液体)を得た。
(第2工程)
 撹拌子を備えた300mL4つ口フラスコに第1工程で得られた(2-bromoethoxy)(tert-butyl)dimethylsilane(7.00g:29.26mmol)、Potassium methacrylate(4.36g:35.11mmol)、BHT(0.06g:0.29mmol)、及びDMF(200mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、200mLのヘプタンに反応溶液を注ぎ、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-2(5.80g:収率86%、淡黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:6.03(1H)、5.69(1H)、4.16-4.14(2H)、3.82-3.80(2H)、1.88(3H)、0.85(9H)、0.04(6H)
<合成例3 Add-3(2-((tert-butyldiphenylsilyl)oxy)ethyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000064
(第1工程)
 撹拌子を備えた300mL4つ口フラスコに、2-Bromoethanol(18.19g:145.53mmol)、Imidazole(9.91:145.53mmol)、tert-Butyldiphenylchlorosilane(10.00g:36.38mmol)、及びCHCl(400mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(9.78g:収率74%、無色透明液体)を得た。
(第2工程)
 撹拌子を備えた300mL4つ口フラスコに第1工程で得られた(2-bromoethoxy)(tert-butyl)diphenylsilane(9.78:26.91mmol)、Potassium methacrylate(4.00g:32.29mmol)、BHT(0.057g:0.26mmol)、及びDMF(200mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、200mLのヘプタンに反応溶液を注ぎ、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=20/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-3(6.55g:収率34%、淡黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:7.63-7.62(4H)、7.48-7.41(6H)、6.03(1H)、5.70-5.71(1H)、4.25-4.27(2H)、3.87-3.89(2H)、1.89(3H)、0.98(9H)
<合成例4 Add-4(2-(trimethylsilyl)ethyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000065
(第1工程)
 撹拌子を備えた300mL4つ口フラスコに、2-(Trimethylsilyl)ethanol(10.00g:84.6mmol)、Pyridine(13.38g:169.1mmol)、Methacryloyl chloride(11.50g:110.0mmol)、及びTHF(100mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-4(12.00g:収率76%、淡黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in CDCl:6.06(1H)、5.51(1H)、4.21-4.24(2H)、1.92(3H)、1.00-1.03(2H)、0.03-0.05(9H)
<合成例5 Add-5(3-(trimethylsilyl)propyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000066
(第1工程)
 撹拌子を備えた300mL4つ口フラスコに、3-(Trimethylsilyl)-1-propanol(5.00g:37.8mmol)、Pyridine(5.98g:75.6mmol)、Methacryloyl chloride(5.14g:49.1mmol)、及びTHF(50mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=20/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-5(6.56g:収率87%、淡黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in CDCl:6.08(1H)、5.52(1H)、4.06-4.09(2H)、1.92(3H)、1.61-1.67(2H)、0.48-0.52(2H)、0.01(9H)
<合成例6 Add-6(3-((tert-butyldiphenylsilyl)oxy)propyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000067
(第1工程)
 撹拌子を備えた1L4つ口フラスコに、3-Chloro-1-propanol(68.79g:727.6mmol)、Imidazole(49.53g:727.6mmol)、tert-Butyldiphenylchlorosilane(50.00g:181.9mmol)、及びCHCl(300mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(400mL)を加え、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(42.79g:収率71%、淡黄色透明液体)を得た。
(第2工程)
 撹拌子を備えた500mL4つ口フラスコに第1工程で得られたtert-butyl(3-chloropropoxy)diphenylsilane(14.55g:43.7mmol)、Potassium methacrylate(8.14g:65.6mmol)、Potassium iodide(0.73g:4.4mmol)、BHT(0.096g:0.44mmol)、及びDMF(150mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、ヘプタン(600mL)に反応溶液を注ぎ、分液ロートを用いて純水(100mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-6(14.54g:収率87%、黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:7.60-7.62(4H)、7.40-7.46(6H)、5.96(1H)、5.64(1H)、4.22-4.25(2H)、3.73-3.75(2H)、1.88-1.90(2H)、1.84(3H)、0.99(9H)
<合成例7 Add-7(2-((tert-butyldiphenylsilyl)oxy)ethyl acrylate)の合成>
Figure JPOXMLDOC01-appb-C000068
(第1工程)
 撹拌子を備えた1L4つ口フラスコに、2-Bromoethanol(45.46g:363.8mmol)、Imidazole(24.77g:363.8mmol)、tert-Butyldiphenylchlorosilane(25.00g:91.0mmol)、及びCHCl(150mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(200mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(23.93g:収率72%、淡黄色液体)を得た。
(第2工程)
 撹拌子を備えた500mL4つ口フラスコに第1工程で得られた(2-bromoethoxy)(tert-butyl)diphenylsilane(20.18g:55.6mmol)、Potassium acrylate(9.18g:83.3mmol)、BHT(1.23g:5.6mmol)、及びDMF(200mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、600mLのヘプタンに反応溶液を注ぎ、分液ロートを用いて純水(300mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-7(13.88g:収率70%、黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:7.62-7.64(4H)、7.41-7.49(6H)、6.31-6.35(1H)、6.16-6.21(1H)、5.96-5.98(1H)、4.26-4.27(2H)、3.86-3.88(2H)、0.99(9H)
<合成例8 Add-8(3-((tert-butyldiphenylsilyl)oxy)propyl acrylate)の合成>
Figure JPOXMLDOC01-appb-C000069
(第1工程)
 撹拌子を備えた500mL4つ口フラスコに、3-Bromo-1-propanol(47.34g:340.6mmol)、Imidazole(23.19g:340.6mmol)、tert-Butyldiphenylchlorosilane(20.00g:85.2mmol)、及びCHCl(150mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(150mL)を加え、分液ロートを用いて純水(200mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(20.35g:収率63%、黄色液体)を得た。
(第2工程)
 撹拌子を備えた500mL4つ口フラスコに第1工程で得られた(3-bromopropoxy)(tert-butyl)diphenylsilane(19.26g:51.0mmol)、Potassium acrylate(6.75g:61.2mmol)、BHT(1.12g:5.1mmol)、及びDMF(200mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、ヘプタン(600mL)に反応溶液を注ぎ、分液ロートを用いて純水(500mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-8(13.63g:収率73%、黄色液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:7.60-7.63(4H)、7.41-7.48(6H)、6.27-6.31(1H)、6.11-6.17(1H)、5.92-5.94(1H)、4.24-4.26(2H)、3.72-3.75(2H)、1.87-1.90(2H)、0.99(9H)
<合成例9 Add-9(4-((tert-butyldiphenylsilyl)oxy)butyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000070
(第1工程)
 撹拌子を備えた500mL4つ口フラスコに、1,4-Butanediol(49.57g:550.0mmol)、Imidazole(14.86g:218.3mmol)、tert-Butyldiphenylchlorosilane(15.00g:54.6mmol)、及びCHCl(100mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(200mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(16.78g:収率93%、透明液体)を得た。
(第2工程)
 撹拌子を備えた500mL4つ口フラスコに第1工程で得られた4-((tert-butyldiphenylsilyl)oxy)butan-1-ol(15.75g:47.9mmol)、Methacryloyl chloride(6.01g:57.5mmol)、Pyridine(5.70g:72.1mmol)、及びTHF(150mL)を秤量し、室温(20℃)にて24時間撹拌した。HPLCにて反応の終了を確認した後、ヘプタン(500mL)に反応溶液を注ぎ、分液ロートを用いて純水(500mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-9(8.92g:収率43%、透明液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in CDCl:7.65-7.67(4H)、7.36-7.44(6H)、6.07(1H)、5.53(1H)、4.13-4.16(2H)、3.68-3.70(2H)、1.93(3H)、1.75-1.79(2H)、1.63-1.67(2H)、1.05(9H)
<合成例10 Add-10(5-((tert-butyldiphenylsilyl)oxy)pentyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000071
(第1工程)
 撹拌子を備えた500mL4つ口フラスコに、1,5-Pentanediol(50.00g:480.0mmol)、Imidazole(13.07g:192.0mmol)、tert-Butyldiphenylchlorosilane(13.19g:48.0mmol)、及びCHCl(90mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(200mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(15.00g:収率91%、透明液体)を得た。
(第2工程)
 撹拌子を備えた500mL4つ口フラスコに第1工程で得られた5-((tert-butyldiphenylsilyl)oxy)pentan-1-ol(15.00g:43.8mmol)、Methacryloyl chloride(5.49g:52.6mmol)、Pyridine(5.20g:65.7mmol)、及びTHF(150mL)を秤量し、室温(20℃)にて24時間撹拌した。HPLCにて反応の終了を確認した後、500mLのヘプタンに反応溶液を注ぎ、分液ロートを用いて純水(500mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-10(14.31g:収率80%、透明液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in CDCl:7.64-7.66(4H)、7.34-7.40(6H)、6.07(1H)、5.52(1H)、4.10-4.13(2H)、3.64-3.67(2H)、1.93(3H)、1.62-1.68(2H)、1.56-1.60(2H)、1.44-1.49(2H)、1.03(9H)
<合成例11 Add-11(2,2,10,10-tetramethyl-3,3,9,9-tetraphenyl-4,8-dioxa-3,9-disilaundecan-6-yl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000072
(第1工程)
 撹拌子を備えた500mL4つ口フラスコに、1,2,3-Propanetriol(4.60g:50.0mmol)、TEA(12.10g:119.6mmol)、DMAP(0.37g:3.0mmol)、tert-Butyldiphenylchlorosilane(30.20g:109.9mmol)、及びCHCl(120mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、ヘプタン(200mL)を加え、分液ロートを用いて純水(200mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=10/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(23.73g:収率83%、淡黄色液体)を得た。
(第2工程)
 撹拌子を備えた500mL4つ口フラスコに第1工程で得られた2,2,10,10-tetramethyl-3,3,9,9-tetraphenyl-4,8-dioxa-3,9-disilaundecan-6-ol(21.09g:37.1mmol)、Methacryloyl chloride(15.51g:148.4mmol)、Pyridine(14.66g:185.3mmol)、4-Dimethylaminopyridine(1.81g:14.8mmol)、及びTHF(200mL)を秤量し、室温(20℃)にて24時間撹拌した。HPLCにて反応の終了を確認した後、500mLのヘプタンに反応溶液を注ぎ、分液ロートを用いて純水(500mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-11(20.61g:収率88%、透明液体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in CDCl:7.62-7.65(8H)、7.38-7.42(4H)、7.31-7.36(8H)、6.11(1H)、5.56(1H)、5.15-5.19(1H)、3.89-3.90(4H)、1.93(3H)、1.00(18H)
<合成例12 Add-C3(3-(trityloxy)propyl methacrylate)の合成>
Figure JPOXMLDOC01-appb-C000073
(第1工程)
 撹拌子を備えた200mL4つ口フラスコに、3-Bromo-1-propanol(10.93g:78.6mmol)、TEA(7.96g:78.6mmol)、DMAP(0.96g:7.8mmol)、Trityl chloride(10.96g:39.3mmol)、及びCHCl(100mL)を秤量し、室温(20℃)にて12時間撹拌した。HPLCにて反応の終了を確認した後、この反応溶液を、ロータリーエバポレーターを用いて濃縮し、酢酸エチル(500mL)を加え、分液ロートを用いて純水(400mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=100/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物(8.06g:収率54%、白色固体)を得た。
(第2工程)
 撹拌子を備えた200mL4つ口フラスコに第1工程で得られた((3-bromopropoxy)methanetriyl)tribenzene(8.06g:21.1mmol)、Potassium methacrylate(3.14g:25.3mmol)、MEHQ(0.26g:2.1mmol)、及びDMF(80mL)を秤量し、80℃にて24時間撹拌した。HPLCにて反応の終了を確認した後、酢酸エチル(400mL)に反応溶液を注ぎ、分液ロートを用いて純水(500mL)で3回洗浄した。洗浄後、硫酸マグネシウムで脱水し、ロータリーエバポレーターを用いて溶媒留去を行うことで粗物を得た。精製はシリカゲルカラムクロマトグラフィー(展開溶媒:ヘプタン/酢酸エチル=50/1(容量比))にて行い、溶媒留去と真空乾燥を行うことにより目的物であるAdd-C3(5.91g:収率73%、白色固体)を得た。H-NMR測定により目的物であることを確認した。
 H-NMR(500MHz) in DMSO-d:7.31-7.38(12H)、7.24-7.27(3H)、5.90(1H)、5.62(1H)、4.22-4.24(2H)、3.05-3.08(2H)、1.89-1.91(2H)、1.80(3H)
<<ポリアミック酸・ポリイミドの合成>>
<合成例13>
 メカニカルスターラー及び窒素導入管を備え付けた100mL四つ口フラスコに、DA-1(1.08g:10.00mmol)及びDA-3(3.30g:10.00mmol)を量り取り、NMP(24.9g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-2(2.50g:10.00mmol)を加え、窒素雰囲気下50℃で6時間反応させた。室温に戻した後、TC-1(1.84g:9.40mmol)及びNMP(10.0g)を加え、室温で18時間反応させることにより、粘度が約1120mPa・s、固形分濃度が20質量%のポリアミック酸溶液(PAA-1)を得た。このポリアミック酸の分子量は、数平均分子量:11200、重量平均分子量:31360であった。
 撹拌子と窒素導入管を備え付けた300mLのナスフラスコに、上記で得られたポリアミック酸溶液(PAA-1)(40.0g)を量り取り、NMP(74.3g)を加え室温でしばらく撹拌した後、無水酢酸(5.61g:54.98mmol)及びピリジン(2.90g、36.65mmol)を加え、窒素雰囲気下室温で30分撹拌した後、窒素雰囲気下50℃で3時間反応させた。反応終了後、10℃以下に冷やしたメタノール(500mL)中に撹拌しながら反応溶液をゆっくり注ぎ固体を析出させ、10分間撹拌した。この沈殿物を濾過により分取し、再びメタノール(200mL)で30分間スラリー洗浄を計2回行い、固体を80℃で真空乾燥させることにより目的とするポリイミド粉末(SPI-1)(7.04g、収率88%)を得た。このポリイミドのイミド化率は57%、分子量は数平均分子量:10400、重量平均分子量:29120であった。
<合成例14>
 メカニカルスターラー及び窒素導入管を備え付けた100mL四つ口フラスコに、DA-2(3.42g:14.00mmol)及びDA-4(4.11g:6.00mmol)を量り取り、NMP(56.8g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-3(4.26g:19.00mol)及びNMP(10.0g)を加え、室温で24時間反応させることにより、粘度が約680mPa・s、固形分濃度が15質量%のポリアミック酸溶液(PAA-2)を得た。このポリアミック酸の分子量は、数平均分子量:17200、重量平均分子量:48160であった。
<合成例15>
 メカニカルスターラー及び窒素導入管を備え付けた100mL四つ口フラスコに、DA-2(3.42g:14.00mmol)及びDA-5(1.55g:6.00mmol)を量り取り、NMP(42.0g)を加え、窒素雰囲気下で撹拌し溶解させた後、氷浴にて10℃以下を保ちながらTC-3(4.21g:18.8mmol)及びNMP(10.0g)を加え、室温で24時間反応させることにより、粘度が約710mPa・s、固形分濃度が15質量%のポリアミック酸溶液(PAA-3)を得た。このポリアミック酸の分子量は、数平均分子量:15500、重量平均分子量:41800であった。
<<液晶配向剤の調製>>
<調製例1 ラジカル発生膜形成組成物AL-1の調製>
 撹拌子を備えた50mL三角フラスコに、上記合成例13で得られたポリイミド粉末(SPI-1)を2.0g量り取り、NMP(18.0g)を加え室温で12時間撹拌して溶解させた。固体がすべて溶けたのを確認した後、NMP(8.0g)、BCS(12.0g)、及びAD-1(0.20g)を加え、室温で1時間撹拌することで、本発明で使用する液晶配向剤兼ラジカル発生膜形成組成物(AL-1)を得た。
<調製例2 ラジカル発生膜形成組成物AL-2の調製>
 撹拌子を備えた50mL三角フラスコに、上記合成例14で得られたポリアミック酸溶液(PAA-2)を15.0g量り取り、NMP(16.5g)及びBCS(13.5g)を加え、室温で1時間撹拌することで、本発明で使用する液晶配向剤兼ラジカル発生膜形成組成物(AL-2)を得た。
<調製例3 液晶配向剤AL-3の調製>
 撹拌子を備えた50mL三角フラスコに、上記合成例15で得られたポリアミック酸溶液(PAA-3)を15.0g量り取り、NMP(16.5g)及びBCS(13.5g)を加え、室温で1時間撹拌することで、本発明で使用する液晶配向剤(AL-3)を得た。
<液晶表示素子の作成>
 以下に、液晶配向性および電気光学応答を評価するための液晶セルの作製方法を示す。
 初めに電極付きの基板を準備した。基板は、30mm×35mmの大きさで、厚さが0.7mmの無アルカリガラス基板である。基板上には電極幅が3μm、電極と電極の間隔が6μm、基板の長辺に対して10°の角度となるような櫛歯型パターンを備えたITO(Indium-Tin-Oxide)電極が形成され、画素を形成している。各画素のサイズは、縦10mmで横約5mmである。以後IPS基板と呼ぶ。
 次に、上記の方法で得られたラジカル発生膜形成組成物AL-1、AL-2、及び液晶配向剤AL-3、並びに水平配向用の液晶配向剤であるSE-6414(日産化学社製)を孔径1.0μmのフィルターで濾過した後、準備された上記IPS基板と、裏面にITO膜が成膜されており、かつ高さ3.0μmの柱状のスペーサーを有するガラス基板(以後対向基板と呼ぶ)にスピンコート法にて塗布・成膜を行った。次いで、80℃のホットプレート上で80分乾燥後、230℃で20分焼成し、膜厚100nmの塗膜を得た。IPS基板側のポリイミド膜においては、櫛歯の方向に添う方向で配向処理を行い、対向基板側ポリイミド膜においては櫛歯電極と直交する方向に配向処理を行った。尚、配向処理においては、AL-1およびSE-6414においてはラビング法を用い、飯沼ゲージ社製ラビング装置、吉川化工社製ラビング布(YA-20R)、ラビングローラー(径10.0cm)、ステージ送り速度30mm/s、ローラー回転数700rpm、押し込み圧0.3mmにて行った。AL-2、AL-3においてはいずれもウシオ電機社製のUV露光装置を用い、消光比が約26:1の直線偏光UVを、254nmの波長を基準として照射量300mJ/cmになるように偏光UVを照射し、230℃にて20分加熱することで行い配向処理を行った。
 その後、上記2種類の基板を用いて、実施例の対象とする表示素子及び比較対象とする一部の表示素子(比較例2~4、6~8)に関してはIPS基板側にラジカル発生配向膜AL-1またはAL-2、対向基板側に液晶配向膜SE-6414またはAL-3を設けたもの同士の組み合わせにて作製したものを用い、比較対象とする一部の表示素子(比較例1及び比較例5)においては両方の基板にSE-6414またはAL-3を用いたものを使用した。それぞれの配向方向が平行になるように組み合わせ、液晶注入口を残して周囲をシールし、セルギャップが約3.0μmの空セルを作製した。この空セルに、上記合成例にて得られた(Add-1)~(Add-11)を2質量%添加した液晶混合物、および比較対象として無添加の液晶混合物または(Add-C1)~(Add-C3)を2質量%添加した液晶混合物を用い、それぞれ常温で真空注入した後、注入口を封止して、アンチパラレル配向の液晶セルとした。尚、使用した液晶混合物はLC-A(DIC社製、Δn:0.130、Δε:4.4)を用いた。Add-C1~Add-C2はそれぞれ東京化成工業から購入したものを使用した。
 得られた液晶セルは、IPSモード液晶表示素子を構成する。その後、得られた液晶セルを120℃で10分加熱処理を行い、電圧を印加していない状態で東芝ライテック社製UV-FL照射装置を用いてUV(UVランプ:FLR40SUV32/A-1)を30分間照射して液晶表示素子を得た。
<液晶配向性の評価>
 偏光顕微鏡を用い、偏光版をクロスニコルに設定し、液晶セルの輝度が最も小さくなる状態で固定し、そこから1°液晶セルを回転させ、液晶の配向状態の観察を行った。ムラやドメイン等の配向不良が観察されない場合あるいは非常に軽微な場合は「良好」とし、明確に観察させた場合は「不良」と定義して評価を行った。
 また、同偏光顕微鏡にフォトダイオードを取り付け、電流-電圧変換アンプを介してエレクトロメーターに接続し、クロスニコル下で輝度が最も小さくなる条件での電圧をモニターすることで黒輝度(V:a.u.)の測定を行った。
<V-Tカーブの測定と駆動閾値電圧、最大輝度電圧、透過率評価>
 光軸が合うように白色LEDバックライトと輝度計をセットし、その間に、輝度が最も小さくなるように偏光板を取り付けた液晶セル(液晶表示素子)をセットし、1V間隔で8Vまで電圧を印加し、電圧における輝度を測定することでV-Tカーブの測定を行った。得られたV-Tカーブから輝度が最大になる電圧(Vmax)の値を見積もった。また、電圧無印加の液晶セルを介して、パラレルニコル時の透過輝度を100%とし、V-Tカーブでの最大透過輝度を比較することにより最大透過率(Tmax)として見積もった。
<応答時間(Ton、Toff)の測定>
 上記V-Tカーブの測定で使用した装置を用い、輝度計をオシロスコープに接続し、最大輝度になる電圧を印加した際の応答速度(Ton)及び電圧を0Vに戻した際の応答速度(Toff)を測定した。
<電圧保持率(VHR)の測定>
 常温での電圧保持率の測定を行った。作成した液晶表示素子に、23℃の温度下で4Vの電圧を60μs間印加し、16.7ms後の電圧を測定することで、電圧がどのくらい保持できているかを電圧保持率として計算した。
 また、高温での電圧保持率の測定を行った。作成した液晶表示素子に、70℃の温度下で1Vの電圧を60μs間印加し、1667ms後の電圧を測定することで、電圧がどのくらい保持できているかを電圧保持率として測定した。
 なお、電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。
<重合体の内容>
 合成例13~合成例15で合成した重合体の組成を表1に示す。
Figure JPOXMLDOC01-appb-T000074
<液晶配向剤またはラジカル発生膜形成組成物の内容>
 調製例1~調製例3で調製した液晶配向剤またはラジカル発生膜形成組成物の組成を表2に示す。
Figure JPOXMLDOC01-appb-T000075
<液晶セル内容(ラビング)>
 ラビング法にて配向処理を行った液晶セルの実施例及び比較例の内容を表3に示す。
Figure JPOXMLDOC01-appb-T000076
<特性評価結果>
 ラビング法にて配向処理を行った液晶セルの特性評価結果を表4-1及び表4-2に示す。
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000078
 本発明の添加剤(Add-1)~(Add-11)を用いた弱アンカリング液晶セルにおいて、配向状態及び黒輝度が良好であり、弱アンカリング側のプレチルト角の発生は確認されず0.1°以下であった。Vmaxも比較例1の強アンカリング液晶セルと比べて大きく低下し、透過率が比較例1~4と比べて大きく向上していることが分かる。一方で、比較例2~3において、Add-C1又はAdd-C2を添加剤として使用した液晶表示素子は、ラビングの筋が多く確認され、黒輝度も悪い。また、比較例2~4は、比較例1の強アンカリング液晶セルと比べるとVmaxは低下しているが透過率は低下する挙動が確認された。これは弱アンカリング化に伴うプレチルト角の発生によるものであることが分かり、比較例2では約72°、比較例3では83°と非常に大きなプレチルト角が発生していることがわかった。一方で応答速度に関しても合成例1~11の添加剤を用いた実施例1~11の液晶セルは比較例1の強アンカリング液晶セルより応答速度は少し遅くなっているが、それでも許容の範囲であって早い応答速度を実現しており、比較例2~4よりも大きく改善していることが分かる。上記実施例及び比較例において、LC-Aに代えて、液晶にメルク社製MLC-3019(Δn:0.104、Δε:9.9)を用いた場合は、比較例2~4で使用したAdd-C1~Add-C3を用いた場合においても良好な弱アンカリングIPS特性を得ることができるが、LC-AのようにΔnが大きな液晶やΔεが小さい液晶に使用すると良好な弱アンカリングIPSの特性が得られなくなる。これは、例えばセルギャップを狭くして(例えば、3.5μm以下にして)液晶表示素子を作製する場合には、比較例2~4で使用したような添加剤では対応ができないことを意味する。本発明の添加剤ではこのような高いΔn及び小さなΔεの液晶を使用しても良好な弱アンカリングIPSの特性を得ることができ、セルギャップの狭小化による応答速度改善が可能になる。またVHRに関しても、特に高温下においては比較例2~4と比べても高く、本発明の添加剤を使用することで信頼性を改善することができることが分かった。
<液晶セル内容(光配向)>
 光配向法にて配向処理を行った液晶セルの実施例及び比較例の内容を表5に示す。
Figure JPOXMLDOC01-appb-T000079
<特性評価結果>
 光配向法にて配向処理を行った液晶セルの特性評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000080
 光配向法を用いて作製した弱アンカリングIPSにおいても、本発明の添加剤(Add-1)~(Add-11)を用いた場合には、ラビング法を用いて作成した弱アンカリングIPSと同様の良好な特性が得られることを確認した。一方、比較例2~4で使用した(Add-C1)、(Add-C2)、又は(Add-C3)を用いると比較例6~8のようにドメインが発生し駆動出来ない状態になった。光配向の場合、ラビング法とは異なりプレチルト角の異方性が発現しないため、何等かの影響で比較的大きなプレチルト角が発生した場合、プレチルト角の方向が規定されずドメインとなってしまい、駆動しようとするとドメインの領域が電界によって拡大してしまうためにか駆動が出来なくなったと推測される。本発明の添加剤を用いると、光配向を用いてもドメインは発生せず、良好な弱アンカリングIPS特性を得ることができるため、非常に有用であることが分かった。VHRに関してもラビング同様に高温下でVHRが良好であることが分かり、本重合性化合物を弱アンカリングIPSの添加剤として使用すると信頼性向上に効果があることが判明した。
 本発明によれば、高Δn、低Δεの液晶を使用してもプレチルト角やドメインが発生せず、高いバックライト透過率、早い応答速度を実現できる横電界液晶表示素子を提供することができ、また良好な信頼性の液晶表示素子を得ることができる。よって本発明の方法で得られる液晶表示素子は、横電界駆動方式の液晶表示素子として有用である。
 1  横電界液晶表示素子
 2  櫛歯電極基板
 2a 基材
 2b 線状電極
 2c 液晶配向膜
 2d 基材
 2e 面電極
 2f 絶縁膜
 2g 線状電極
 2h 液晶配向膜
 3  液晶
 4  対向基板
 4a 液晶配向膜
 4b 基材
 L  電気力線

 

Claims (23)

  1.  液晶及び下記式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させるステップを含む、液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
  2.  前記式(B)中、前記置換基を有していてもよい芳香族炭化水素基がフェニル基である請求項1に記載の液晶表示素子の製造方法。
  3.  前記式(A)中のMが以下の構造から選ばれる、請求項1または2に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式中、*は結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、または炭素数1~4のアルキル基を示す。Rは水素原子、または炭素数1~6のアルキル基を表す。)
  4.  前記ラジカル発生膜が一軸配向処理されたラジカル発生膜である、請求項1~3のいずれかに記載の液晶表示素子の製造方法。
  5.  前記重合反応させるステップが無電界条件下で行われる、請求項1~4のいずれかに記載の液晶表示素子の製造方法。
  6.  前記ラジカル発生膜が、ラジカル重合を誘発する有機基が固定化されて成る膜である、請求項1~5のいずれかに記載の液晶表示素子の製造方法。
  7.  前記ラジカル発生膜が、ラジカルを発生する有機基を有する化合物と重合体とを含有する組成物を塗布、および硬化して膜を形成することにより、前記ラジカルを発生する有機基を前記膜中に固定化させて得られる、請求項1~5のいずれかに記載の液晶表示素子の製造方法。
  8.  前記ラジカル発生膜が、ラジカル重合を誘発する有機基を含有する重合体から成る、請求項1~5のいずれかに記載の液晶表示素子の製造方法。
  9.  前記ラジカル重合を誘発する有機基を含有する重合体が、ラジカル重合を誘発する有機基を含有するジアミンを含むジアミン成分を用いて得られるポリイミド前駆体、ポリイミド、ポリウレアおよびポリアミドから選ばれる少なくとも一種の重合体である、請求項8に記載の液晶表示素子の製造方法。
  10.  前記ラジカル重合を誘発する有機基が下記式[X-1]~[X-18]、[W]、[Y]、または[Z]で表される有機基である、請求項9に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000004
    (式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000005
    (式[W]、[Y]、および[Z]中、*は結合部位を示し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、RとR10がアルキル基の場合、末端で互いに結合し環構造を形成していても良い。Qは下記のいずれかの構造を表す。
    Figure JPOXMLDOC01-appb-C000006
    (式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。)
  11.  前記ラジカル重合を誘発する有機基を含有するジアミンが下記式(6)、下記式(7)、または下記式(7’)で表される構造を有するジアミンである、請求項9または10に記載の液晶表示素子の製造方法。
    Figure JPOXMLDOC01-appb-C000007
    (式(6)中、Rは単結合、-CH-、-O-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-を表し、
     Rは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよい;
     Rは、下記式[X-1]~[X-18]から選択される式で表されるラジカル重合反応性基を表す。
    Figure JPOXMLDOC01-appb-C000008
    (式[X-1]~[X-18]中、*は結合部位を示し、S、およびSはそれぞれ独立して-O-、-NR-、または-S-を表し、Rは水素原子、または炭素数1~10のアルキル基を表す(前記炭素数1~10のアルキル基のうち、炭素数2~10のアルキル基の-CH-基の一部は酸素原子に置き換わっていてもよい。ただし、SRまたはNRにおいて、前記アルキル基の-CH-基の一部が酸素原子に置き換わっている場合、前記酸素原子は、SまたはNには、直接結合していない。)。R、およびRはそれぞれ独立して水素原子、ハロゲン原子、または炭素数1~4のアルキル基を表す。))
    Figure JPOXMLDOC01-appb-C000009
    Figure JPOXMLDOC01-appb-C000010
    (式(7)及び(7’)中、T及びTは、それぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-NHCO-、-CONH-、-NH-、-CHO-、-N(CH)-、-CON(CH)-、又は-N(CH)CO-であり、
     Sは単結合、又は非置換もしくはフッ素原子によって置換されている炭素数1~20のアルキレン基を表し、当該アルキレン基の任意の-CH-又は-CF-の1以上は、それぞれ独立に-CH=CH-、二価の炭素環、および二価の複素環から選ばれる基で置き換えられていてもよく、さらに、次に挙げるいずれかの基、すなわち、-O-、-COO-、-OCO-、-NHCO-、-CONH-、又は-NH-が互いに隣り合わないことを条件に、これらの基で置き換えられていてもよく、
     Eは、単結合、-O-、-C(CH-、-NH-、-CO-、-NHCO-、-COO-、-(CH-、-SO-、-O-(CH-O-、-O-C(CH-、-CO-(CH-、-NH-(CH-、-SO-(CH-、-CONH-(CH-、-CONH-(CH-NHCO-、または-COO-(CH-OCO-であり、mは1~8の整数であり、
     Jは下記式[W]、[Y]及び[Z]から選ばれる式で表される有機基である。
    Figure JPOXMLDOC01-appb-C000011
    (式[W]、[Y]、および[Z]中、*はTとの結合箇所を表し、Arは有機基及び/又はハロゲン原子を置換基として有しても良いフェニレン、ナフチレン、及びビフェニリレンからなる群より選ばれる芳香族炭化水素基を示し、R及びR10は、それぞれ独立に、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表し、Qは下記のいずれかの構造を表す。
    Figure JPOXMLDOC01-appb-C000012
    (式中、R11は-CH-、-NR-、-O-、又は-S-を表し、Rはそれぞれ独立して水素原子又は炭素数1~4のアルキル基を表し、*は結合部位を示す。)Sは単結合、-O-、-NR-(Rは水素原子または炭素数1~14のアルキル基を表す。)、または-S-を表す。R12は水素原子、ハロゲン原子、炭素数1~10のアルキル基又は炭素数1~10のアルコキシ基を表す。))式(7’)中、qはそれぞれ独立に0又は1であり、少なくとも1つのqは1であり、pは1~2の整数を表す。)
  12.  前記ラジカル発生膜を有する第一基板と、ラジカル発生膜を有していてもよい第二基板とを用意するステップ、
     前記第一基板における前記ラジカル発生膜が前記第二基板に対向するように、前記第一基板および前記第二基板を対向配置するステップ、
     前記第一基板と前記第二基板との間に、前記液晶組成物を充填するステップ、および
     前記重合反応させるステップ、
    を含む、請求項1~11のいずれかに記載の液晶表示素子の製造方法。
  13.  前記第二基板がラジカル発生膜を有しない第二基板である、請求項12に記載の液晶表示素子の製造方法。
  14.  前記第二基板が、一軸配向性を有する液晶配向膜がコーティングされた基板である、請求項12に記載の液晶表示素子の製造方法。
  15.  前記一軸配向性を有する液晶配向膜が水平配向用の液晶配向膜である、請求項14に記載の液晶表示素子の製造方法。
  16.  前記第一基板および前記第二基板のいずれか一方が櫛歯電極を有する基板である、請求項12~15のいずれかに記載の液晶表示素子の製造方法。
  17.  液晶及び下記式(A)で表されるラジカル重合性化合物を含有することを特徴とする液晶組成物。
    Figure JPOXMLDOC01-appb-C000013
    (式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
    Figure JPOXMLDOC01-appb-C000014
    (式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
  18.  前記式(B)中の前記置換基を有していてもよい芳香族炭化水素基がフェニル基である請求項17に記載の液晶組成物。
  19.  前記式(A)中のMが以下の構造から選ばれる、請求項17または18に記載の液晶組成物。
    Figure JPOXMLDOC01-appb-C000015
    (式中、*は結合部位を示す。Rは炭素数2~8の直鎖アルキル基を表し、Eは単結合、-O-、-NR-、-S-、エステル結合及びアミド結合から選ばれる結合基を表す。Rは水素原子、または炭素数1~4のアルキル基を表す。Rは水素原子、または炭素数1~6のアルキル基を表す。)
  20.  第一基板、前記第一基板に対向して配置された第二基板、および前記第一基板と前記第二基板との間に充填された液晶を有し、
     前記液晶及び下記式(A)で表されるラジカル重合性化合物を含有する液晶組成物を、ラジカル発生膜を有する前記第一基板の前記ラジカル発生膜に接触させた状態で、前記ラジカル重合性化合物を重合反応させてなる、ことを特徴とする液晶表示素子。
    Figure JPOXMLDOC01-appb-C000016
    (式(A)中、Mはラジカル重合可能な重合性基を表し、Rは炭素数1~10の直鎖もしくは分岐構造を有する脂肪族炭化水素基を表し、3つのXはそれぞれ独立して水素原子または下記式(B)を表す。ただし、3つのXの少なくとも一つは式(B)を表す。)
    Figure JPOXMLDOC01-appb-C000017
    (式(B)中、Yは単結合、-O-、-S-、または-NR-を表し、Rは水素原子または炭素数1~4のアルキル基を表し、*は結合部位を示す。R、R、およびRは、それぞれ独立して、炭素数1~6のアルキル基または置換基を有していてもよい芳香族炭化水素基を表す。)
  21.  前記第一基板および前記第二基板のいずれか一方が櫛歯電極を有する基板である、請求項20に記載の液晶表示素子。
  22.  低電圧駆動横電界液晶表示素子である、請求項20または21に記載の液晶表示素子。
  23.  下記式(F-1)~(F-6)のいずれかで表されるラジカル重合性化合物。
    Figure JPOXMLDOC01-appb-C000018

     
PCT/JP2021/035557 2020-09-29 2021-09-28 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子 WO2022071286A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022553991A JPWO2022071286A1 (ja) 2020-09-29 2021-09-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-163212 2020-09-29
JP2020163212 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022071286A1 true WO2022071286A1 (ja) 2022-04-07

Family

ID=80949093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035557 WO2022071286A1 (ja) 2020-09-29 2021-09-28 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子

Country Status (3)

Country Link
JP (1) JPWO2022071286A1 (ja)
TW (1) TW202222810A (ja)
WO (1) WO2022071286A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033921A1 (ja) * 2013-09-03 2015-03-12 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
EP3543263A1 (en) * 2016-11-16 2019-09-25 Zhejiang University Polyolefin-based emulsifier and application thereof for preparing high internal phase emulsion and porous polymeric material
JP2019196480A (ja) * 2018-05-07 2019-11-14 達興材料股▲ふん▼有限公司 液晶組成物及びそれを含む液晶ディスプレイ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015033921A1 (ja) * 2013-09-03 2015-03-12 日産化学工業株式会社 液晶配向剤、液晶配向膜及び液晶表示素子
EP3543263A1 (en) * 2016-11-16 2019-09-25 Zhejiang University Polyolefin-based emulsifier and application thereof for preparing high internal phase emulsion and porous polymeric material
JP2019196480A (ja) * 2018-05-07 2019-11-14 達興材料股▲ふん▼有限公司 液晶組成物及びそれを含む液晶ディスプレイ

Also Published As

Publication number Publication date
TW202222810A (zh) 2022-06-16
JPWO2022071286A1 (ja) 2022-04-07

Similar Documents

Publication Publication Date Title
JP7234924B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2021020399A1 (ja) 横電界液晶表示素子、及び横電界液晶セルの製造方法
WO2022030602A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
JP7276149B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2022092088A1 (ja) ラジカル発生膜形成組成物、ラジカル発生膜、液晶表示素子の製造方法、及び液晶表示素子
WO2022071286A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
WO2022196565A1 (ja) 液晶組成物、液晶表示素子の製造方法、及び液晶表示素子
WO2021125319A1 (ja) 液晶配向剤、ラジカル発生膜、及び横電界液晶セルの製造方法
WO2021125327A1 (ja) パターン化された液晶表示素子の製造方法
JP7367673B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
JP7367674B2 (ja) ゼロ面アンカリング膜の製造方法及び液晶表示素子
WO2021125329A1 (ja) ラジカル発生膜形成組成物、ラジカル発生膜、及び横電界液晶セルの製造方法
WO2022092098A1 (ja) ラジカル発生膜形成組成物、ラジカル発生膜、液晶表示素子の製造方法、及び液晶表示素子
JPWO2019244820A5 (ja)
JPWO2019244821A5 (ja)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022553991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875587

Country of ref document: EP

Kind code of ref document: A1