WO2022070732A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2022070732A1
WO2022070732A1 PCT/JP2021/031958 JP2021031958W WO2022070732A1 WO 2022070732 A1 WO2022070732 A1 WO 2022070732A1 JP 2021031958 W JP2021031958 W JP 2021031958W WO 2022070732 A1 WO2022070732 A1 WO 2022070732A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
right wheels
wheel
difference
control device
Prior art date
Application number
PCT/JP2021/031958
Other languages
French (fr)
Japanese (ja)
Inventor
亮太 ▲高▼橋
直樹 ▲高▼橋
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020165171A external-priority patent/JP7480661B2/en
Priority claimed from JP2020165172A external-priority patent/JP2022057096A/en
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Publication of WO2022070732A1 publication Critical patent/WO2022070732A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/02Control of vehicle driving stability
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle control device equipped with a pair of electric motors for driving the left and right wheels and a differential mechanism for applying a torque difference to the left and right wheels.
  • One of the purposes of this case was created in light of the above-mentioned problems, and provides a vehicle control device that can improve the protection of hardware while improving the running stability of the vehicle. It is to be. Not limited to this purpose, it is also possible to exert an action / effect derived from each configuration shown in the “mode for carrying out the invention” described later, which cannot be obtained by the conventional technique. It can be positioned as a purpose.
  • the disclosed vehicle control device is a vehicle control device equipped with a pair of electric motors for driving the left and right wheels and a differential mechanism for applying a torque difference to the left and right wheels, and one of the left and right wheels has a higher wheel speed.
  • the movement torque calculation unit that calculates the movement torque, which is the torque obtained by subtracting the road surface reaction force torque received from the road surface from the required torque of
  • a feed forward control unit for moving a moving torque from one motor that mainly drives one of the wheels having a high wheel speed to the other motor that mainly drives the other having a low wheel speed is provided.
  • the protection of hardware can be improved.
  • a vehicle control device 10 as an embodiment will be described with reference to FIGS. 1 to 6.
  • the vehicle to which the control device 10 is applied is equipped with a pair of electric motors 1 (electric motors) for driving the left and right wheels 5 (here, rear wheels) and a differential mechanism 3 for imparting a torque difference to the left and right wheels 5.
  • Suffixes such as R and L added to the numerical code in this embodiment represent the arrangement position of the element related to the code (being on the right side or the left side of the vehicle).
  • 5R represents one of the left and right wheels 5 located on the right side (that is, the right wheel) of the vehicle
  • 5L represents the other (that is, the left wheel) located on the left side (Left).
  • the pair of motors 1 has a function of driving at least one of the front wheels or the rear wheels of the vehicle, and may have a function of driving all four wheels.
  • one arranged on the right side is also called a right electric motor 1R (right motor), and the other arranged on the left side is also called a left electric motor 1L (left motor).
  • the right motor 1R and the left motor 1L operate independently of each other and can individually output driving forces having different magnitudes from each other.
  • These electric motors 1 are connected to the differential mechanism 3 via a pair of deceleration mechanisms 2 separately provided from each other.
  • the right electric motor 1R and the left electric motor 1L of this embodiment have the same rated output.
  • the right motor 1R is the motor 1 that mainly drives the right wheel 5R
  • the left motor 1L is the motor 1 that mainly drives the left wheel 5L.
  • the expression "mainly” here means that the motor 1 located closer to the left wheel 5L than the right wheel 5R on the collinear diagram is the left motor 1L, and is to the right of the left wheel 5L on the collinear diagram. It is an expression intended that the motor 1 arranged at a position close to the wheel 5R is the right motor 1R.
  • the angular velocities of the pair of motors 1 and the left and right wheels 5 are arranged linearly on the collinear diagram.
  • each motor 1 is reflected in each of the left and right wheels 5
  • the driving force of the right motor 1R is easily reflected in the rotating state of the right wheel 5R
  • the driving force of the left motor 1L is reflected in the rotating state of the left wheel 5L. Easy to be reflected.
  • the right wheel 5R rotates at an angular velocity closer to the right motor 1R than the left wheel 5L (at least an angular velocity equal to or higher than the left wheel 5L), and the left wheel 5L is to the left of the right wheel 5R.
  • the expression is intended to rotate at an angular velocity close to that of the motor 1L (at least an angular velocity equal to or higher than that of the right wheel 5R).
  • the driving force of the right motor 1R is transmitted to at least the right wheel 5R, and may also be transmitted to the left wheel 5L.
  • the driving force of the left motor 1L is transmitted to at least the left wheel 5L, and in addition to this, it can be transmitted to the right wheel 5R.
  • the relationship between the pair of electric motors 1 and the left and right wheels 5 of this embodiment is different from the relationship between the motor and the drive wheels in, for example, an electric vehicle in which the left and right wheels are individually driven by an in-wheel motor.
  • the deceleration mechanism 2 is a mechanism that increases the torque by decelerating the driving force output from the motor 1.
  • the reduction ratio G of the reduction mechanism 2 is appropriately set according to the output characteristics and performance of the motor 1.
  • one arranged on the right side is also called a right deceleration mechanism 2R, and the other arranged on the left side is also called a left deceleration mechanism 2L.
  • the right deceleration mechanism 2R and the left deceleration mechanism 2L of this embodiment have the same reduction ratio G. If the torque performance of the motor 1 is sufficiently high, the deceleration mechanism 2 may be omitted.
  • the differential mechanism 3 is a differential mechanism having a yaw control function (AYC function), and is a wheel shaft 4 (right wheel shaft 4R) connected to the right wheel 5R and a wheel shaft 4 (left wheel) connected to the left wheel 5L. It is interposed between the shaft 4L).
  • the yaw control function is a function that adjusts the yaw moment by positively controlling the sharing ratio of the driving force (driving torque) of the left and right wheels to stabilize the posture of the vehicle.
  • a gear train such as a planetary gear mechanism or a differential gear mechanism is built.
  • the driving force transmitted from the pair of motors 1 is distributed to each of the left and right wheels 5 via these gear trains.
  • the vehicle drive device including the pair of motors 1 and the differential mechanism 3 is also referred to as a DM-AYC (Dual-Motor Active Yaw Control) device.
  • FIG. 2 is a schematic diagram illustrating the structures of the deceleration mechanism 2 and the differential mechanism 3.
  • the reduction ratio G of the reduction mechanism 2 is expressed as the ratio of the rotational angular velocity transmitted from the motor 1 to the reduction mechanism 2 and the rotation angular velocity transmitted from the reduction mechanism 2 to the differential mechanism 3 (or the ratio of the number of teeth of the gear). be able to.
  • the gear ratio of the path in which the driving force of the left motor 1L is transmitted to the right wheel 5R is expressed as b 1 , and the driving force of the right motor 1R is transmitted to the left wheel 5L.
  • the rotational angular velocities of the left and right motors 1 are the motor angular velocities ⁇ Lm and ⁇ Rm
  • the rotational angular velocities of the left and right wheels 5 are the wheel speeds ⁇ Lw and ⁇ Rw , respectively, in this embodiment.
  • the following equations 1 and 2 hold.
  • the motor 1 is electrically connected to the battery 7 via the inverter 6.
  • the inverter 6 is a converter (DC-AC inverter) that mutually converts the power of the DC circuit on the battery 7 side (DC power) and the power of the AC circuit on the electric motor 1 side (AC power).
  • the battery 7 is, for example, a lithium ion battery or a nickel hydrogen battery, and is a secondary battery capable of supplying a high voltage direct current of several hundred volts.
  • the DC power is converted into AC power by the inverter 6 and supplied to the motor 1.
  • the generated power is converted into DC power by the inverter 6 and charged to the battery 7.
  • the operating state of the inverter 6 is controlled by the control device 10.
  • the control device 10 is a computer (electronic control device) that controls the output of the motor 1 by managing the operating state of the inverter 6.
  • a processor central processing unit
  • a memory main memory
  • a storage device storage
  • an interface device and the like (not shown) are built in the control device 10, and these are connected to each other so as to be communicable via an internal bus. ..
  • the control device 10 of the present embodiment has feedforward control (hereinafter referred to as FF control) for moving a part of the drive torque from one of the pair of motors 1 to the other, and feedback for reducing both the drive torque of the pair of motors 1. Control (hereinafter referred to as FB control) is carried out.
  • FF control feedforward control
  • FB control feedback for reducing both the drive torque of the pair of motors 1.
  • the motor 1 that mainly drives one of the left and right wheels 5 with a higher wheel speed and the other with a lower wheel speed are mainly used.
  • the drive torque is transferred to the motor 1 to be driven. Further, in the FB control, the drive torque of at least one of the motors 1 is reduced according to the degree of slip.
  • the control device 10 is connected to an accelerator sensor 13, a brake sensor 14, a steering angle sensor 15, a vehicle speed sensor 16, a motor rotation speed sensor 18, and a wheel speed sensor 19.
  • the accelerator sensor 13 is a sensor that detects the amount of depression of the accelerator pedal (accelerator opening degree) and the depression speed thereof.
  • the brake sensor 14 is a sensor that detects the amount of depression of the brake pedal (brake pedal stroke) and the depression speed thereof.
  • the steering angle sensor 15 is a sensor that detects the steering angle (actual steering angle or steering angle of the steering) of the left and right wheels 5
  • the vehicle speed sensor 16 is a sensor that detects the vehicle speed (traveling speed).
  • the motor rotation speed sensor 18 is a sensor that detects the rotation angular velocity (motor angular velocity ⁇ Lm , ⁇ Rm ) of the motor 1, and is individually provided for each motor 1.
  • the wheel speed sensor 19 is a sensor that detects the rotational angular velocities (wheel speeds ⁇ Lw , ⁇ Rw ) of the left and right wheels 5 (or wheel axles 4), and is located in the vicinity of the left wheel 5L and in the vicinity of the right wheel 5R, respectively. It is provided individually.
  • the control device 10 controls the output of the pair of electric motors 1 by controlling the operating state of the inverter 6 based on the information detected by the sensors 13 to 16, 18 to 19.
  • the control device 10 is one of the electronic control units (ECU, Electronic Control Unit) mounted on the vehicle, and is an electronic device equipped with a processor and a memory.
  • the processor is, for example, a microprocessor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), and the memory is, for example, ROM (Read Only Memory), RAM (Random Access Memory), non-volatile memory, or the like.
  • the content of the control to be executed is recorded and stored in the memory as firmware or an application program, and when the program is executed, the content of the program is expanded in the memory space and executed by the processor.
  • a movement torque calculation unit 37 As shown in FIG. 1, a movement torque calculation unit 37, a slip estimation unit 21, a movement gain calculation unit 22, a limit gain calculation unit 23, and a control unit 24 are provided inside the control device 10. Further, the control unit 24 is provided with a feedforward control unit 25 (FF control unit 25) in charge of FF control and a feedback control unit 26 (FB control unit 26) in charge of FB control.
  • FF control unit 25 feedforward control unit 25
  • FB control unit 26 feedback control unit 26
  • the moving torque calculation unit 37 calculates the moving torques T LAYC and T RAY C, which are a part of the required torques T Lreq and T R req of the left and right wheels 5.
  • the moving torques T LAYC and T RAYC are torques obtained by subtracting the road surface reaction force torques T L road and T R road received from the road surface from the required torques T L req and T R req of one of the left and right wheels 5 having a higher wheel speed.
  • the moving torque calculation unit 37 will be described later.
  • the slip estimation unit 21 estimates the slip degree of the left and right wheels 5.
  • of the difference between the estimated moving speed and the actual moving speed of the left and right wheels 5 is calculated.
  • the estimated moving speed is calculated based on, for example, the vehicle speed and steering angle of the vehicle, and the actual moving speed is calculated based on the wheel speeds ⁇ Lw and ⁇ Rw of the left and right wheels 5. Rudder.
  • the movement gain calculation unit 22 calculates the movement gains K L1 and K R1 having a magnitude corresponding to the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5.
  • the moving gains K L1 and K R1 are gains used in FF control, and are set according to the absolute value
  • the values of the moving gains K L1 and K R1 are calculated only for one of the left and right wheels 5 having a higher wheel speed, and the value of the other is 0.
  • the value of the right movement gain K R1 is set to 0, and the value of the left movement gain K L1 is calculated based on the wheel speed ⁇ Lw of the left wheel 5L.
  • the wheel
  • becomes large, and the movement gains K L1 and K R1 are large (for example, 1). Is set to.
  • of the deviation becomes small, and the movement gains K L1 and K R1 are set to small values (for example, 0).
  • the rotation speed of the turning inner ring may be lower than the rotation speed of the turning outer ring, and the difference in actual rotation speed may be large.
  • the target rotation speed difference is also large, so the absolute value of the deviation
  • FIG. 3 is a graph illustrating the relationship between the absolute value of deviation
  • the moving gains K L1 and K R1 are set to 0.
  • of the deviation is from 0 to a predetermined value is a region where the torque movement amount by the FF control becomes 0 substantially, and is a dead zone in terms of control.
  • is greater than or equal to a predetermined value, the larger the value, the larger the movement gains K L1 and K R1 are set.
  • the moving gains K L1 and K R1 have the characteristic that the larger the absolute value
  • the upper limit of the moving gains K L1 and K R1 is 1. This prevents a situation in which the torque transfer amount is excessively increased.
  • the limit gain calculation unit 23 calculates the limit gains K L2 and K R 2 having a magnitude corresponding to the degree of slip of the left and right wheels 5.
  • the limiting gains K L2 and K R2 are gains used in FB control, and are set according to the absolute value
  • the values of the limiting gains K L2 and K R2 are set to smaller values, for example, as the absolute value
  • the values of the limiting gains K L2 and K R2 are set individually for each of the pair of motors 1.
  • the limiting gain K L2 of the motor 1 on the left wheel 5L side is the limiting gain K of the motor 1 on the right wheel 5R side.
  • of the difference becomes large, and the limiting gains K L2 and K R2 become large. It is set to a small value (eg 0).
  • of the difference becomes small, and the limiting gains K L2 and K R2 are set to large values (for example, 1). In this way, the values of the limiting gains K L2 and K R2 are individually set for each of the pair of motors 1 according to the degree of slip of each of the left and right wheels 5.
  • FIG. 4 is a graph illustrating the relationship between the absolute value
  • the limiting gains K L2 and K R2 are set to 1.
  • of the difference is from 0 to a predetermined value is a region where there is substantially no torque limitation due to FB control, and is a dead zone in terms of control.
  • of the difference is greater than or equal to a predetermined value, the larger the value, the smaller the limiting gains K L2 and K R 2 are set.
  • the limiting gains K L2 and K R2 have the characteristic that the larger the absolute value
  • the control unit 24 has a feedforward control unit 25 (FF control unit 25) and a feedback control unit 26 (FB control unit 26).
  • the FF control unit 25 mainly drives one of the left and right wheels 5 having a higher wheel speed when there is a deviation between the target rotation speed difference of the left and right wheels 5 and the actual rotation speed difference.
  • FF control is performed to move a part of the wheel speed to the other motor 1 that mainly drives the other wheel having a low wheel speed.
  • the torque movement amount is set according to the movement gains K L1 and K R1 .
  • the FB control unit 26 implements FB control that reduces the drive torque of at least one of the pair of electric motors 1 according to the degree of slip.
  • the torque limit amount is set according to the limit gains K L2 and K R 2 .
  • FIG. 5 is a block diagram illustrating a specific processing content in the control device 10.
  • the control device 10 includes an axle required torque calculation unit 31, an axle actual torque calculation unit 32, an axle angular velocity calculation unit 33, an inertia estimation unit 34, an inertia estimation unit 35, a road surface reaction force torque calculation unit 36, and a moving torque calculation unit. 37, a slip estimation unit 21, a moving gain calculation unit 22, a limiting gain calculation unit 23, a multiplication unit 38, and a second multiplication unit 39 are provided. These elements are shown by classifying the functions of the control device 10 for convenience.
  • the elements mainly related to the calculation of the torque movement amount in the FF control are the axle required torque calculation unit 31, the axle actual torque calculation unit 32, the axle angular velocity calculation unit 33, the inertia estimation unit 34, and the inertia shuttlek.
  • the elements mainly related to the calculation of the torque limit amount in the FB control are the limit gain calculation unit 23 and the second multiplication unit 39.
  • the slip estimation unit 21 is also involved in calculating the torque limit amount.
  • the axle required torque calculation unit 31 calculates the required torques T Lreq and T R req for each of the left and right wheels 5.
  • the left axle required torque T L req and the right axle required torque T R req are individually calculated based on the accelerator opening, the brake pedal stroke, the steering angle, and the vehicle speed detected by various sensors 13 to 16. In these calculations, the lateral acceleration, longitudinal acceleration, yaw rate, road surface gradient, etc. of the vehicle may be taken into consideration.
  • the information of the required torques T Lreq and T R req calculated here is transmitted to the moving torque calculation unit 37.
  • the axle actual torque calculation unit 32 calculates the axle actual torques T Lds and T R ds for each of the left and right wheels 5.
  • the left axle actual torque T Lds and the right axle actual torque T R ds are calculated individually based on the magnitude of the torque (motor torque) output by each electric motor 1.
  • the magnitude of the motor torque is calculated based on, for example, the motor output (power consumption) and the motor angular velocities ⁇ Lm and ⁇ Rm .
  • the information of the actual axle torques T Lds and T R ds calculated here is transmitted to the road surface reaction force torque calculation unit 36.
  • the axle angular velocity calculation unit 33 calculates the wheel speeds ⁇ Lw and ⁇ Rw (axle angular velocity) for each of the left and right wheels 5.
  • the left wheel speed ⁇ Lw and the right wheel speed ⁇ Rw are based on the motor angular velocities ⁇ Lm and ⁇ Rm , the reduction ratio G and the gear ratios b 1 and b 2 . And are calculated individually.
  • the information on the wheel speeds ⁇ Lw and ⁇ Rw calculated here is transmitted to the inertia estimation unit 34 and the inertia torque calculation unit 35.
  • the inertia estimation unit 34 estimates the inertia J ML and J MR (moment of inertia) for each path from the left and right motors 1 to the left and right wheels 5.
  • the left path inertia J ML and the right path inertia J M R are individually based on, for example, the time derivative of the wheel speeds ⁇ Lw and ⁇ Rw , the motor inertia Im, the reduction ratio G, and the gear ratios b 1 and b 2 . It is calculated to.
  • the inertia J ML and J MR information calculated here is transmitted to the inertia torque calculation unit 35.
  • inertia J ML and J MR change according to the ratio of the time derivative values of the wheel speeds ⁇ Lw and ⁇ Rw .
  • the formulas for calculating inertia J ML and J MR are illustrated in Equations 3 and 4 below.
  • the inertia shuttle calculation unit 35 calculates the inertia torque T L and T R for each route from the left and right motors 1 to the left and right wheels 5.
  • the left-route inertia torque which is an inertial torque that acts on the route from the left motor 1L to the left wheel 5L
  • the right-route inertia torque TR which is the inertial shuttlek that acts on the route from the right motor 1R to the right wheel 5R . And are calculated individually.
  • the left path inertia torque T L is calculated by multiplying the sum of the left path inertia J M L and the wheel inertia I wheel by the angular acceleration of the left wheel 5 L.
  • the right path inertia torque TR is calculated by multiplying the sum of the right path inertia J MR and the wheel inertia I wheel by the angular acceleration of the right wheel 5R.
  • the information of the inertia pavement T L and T R calculated here is transmitted to the road surface reaction force torque calculation unit 36.
  • the formulas for calculating the inertia torque T L and T R are illustrated in the following formulas 5 and 6.
  • the road surface reaction force torque calculation unit 36 calculates the road surface reaction force torques T Lroad and T R road of the left and right wheels 5.
  • the road surface reaction torque of the left and right wheels 5 is based on the actual axle torques T L ds and T R ds calculated by the actual axle torque calculation unit 32 and the inertial shuttle torque T L and T R calculated by the inertial shuttle torque calculation unit 35.
  • T Lroad and T R road are calculated individually.
  • the information of the road surface reaction force torques T Lroad and T R road calculated here is transmitted to the moving torque calculation unit 37.
  • the calculation formulas for the road surface reaction force torques T Lroad and T R road are illustrated in the following formulas 7 and 8.
  • the moving torque calculation unit 37 calculates the moving torques T LAYC and T RAY C, which are a part of the required torques T Lreq and T R req of the left and right wheels 5.
  • the moving torques T LAYC and T RAYC are torques obtained by subtracting the road surface reaction force torques T L road and T R road received from the road surface from the required torques T L req and T R req of one of the left and right wheels 5 having a higher wheel speed.
  • the moving torque T LAY C of the left wheel 5L is the size obtained by subtracting the road surface reaction force torque T L road of the left wheel 5L from the left axle required torque T L req
  • the moving torque T RAY C of the right wheel 5R is right from the right axle required torque T R req.
  • the size is obtained by subtracting the road surface reaction torque T R road of the wheel 5R.
  • the information of the moving torques T LAYC and T RAYC calculated here is transmitted to the multiplication unit 38.
  • the calculation formulas for the moving torques T LAYC and T RAYC are illustrated in the following formulas 9 and 10.
  • the moving torque calculation unit 37 calculates the absolute value
  • D VRERR the absolute value of deviation
  • the target rotation speed difference is calculated based on, for example, the vehicle speed and steering angle of the vehicle
  • the actual rotation speed difference is based on the wheel speeds ⁇ Lw and ⁇ Rw of the left and right wheels 5. Is calculated.
  • of the deviation calculated here is transmitted to the movement gain calculation unit 22, and is used for calculating the torque movement amount in the FF control.
  • the slip estimation unit 21 estimates the slip degree of the left and right wheels 5.
  • of the difference between the estimated moving speed of the left and right wheels 5 and the actual moving speed is calculated. Further, the information of the absolute value
  • the movement gain calculation unit 22 determines the movement gains K L1 and K R 1 based on the absolute value
  • the values of the moving gains K L1 and K R1 are calculated for only one of the left and right wheels 5 having a higher wheel speed, and the value of the other is 0. For example, when the wheel speed of the left wheel 5L is higher than that of the right wheel 5R, the value of the right movement gain K R1 is set to 0, and the absolute value of the deviation between the target rotation speed difference and the actual rotation speed difference
  • the movement gain calculation unit 22 of the present embodiment has a movement gain K based on the absolute value
  • the information of the movement gains K L1 and K R1 calculated here is transmitted to the multiplication unit 38.
  • the limit gain calculation unit 23 calculates the limit gains K L2 and K R 2 based on the slip degree of the left and right wheels 5.
  • the values of the limiting gains K L2 and K R2 are calculated individually for each of the pair of motors 1.
  • the limit gain calculation unit 23 of this embodiment sets the limit gains K L2 and K R 2 based on the absolute value
  • the information of the limiting gains K L2 and K R2 calculated here is transmitted to the second multiplication unit 39.
  • the multiplication unit 38 calculates the torque movement amount obtained by multiplying the movement torques T LAYC and T RAYC calculated by the movement torque calculation unit 37 by the values of the movement gains K L1 and K R1 .
  • the torque movement amount is calculated for only one of the left and right wheels 5 having a higher wheel speed. Further, a torque having a magnitude corresponding to the torque movement amount is subtracted from the drive torque of the electric motor 1 on the wheel side having a high wheel speed, and is added to the drive torque of the electric motor 1 on the wheel side having a low wheel speed.
  • the information on the drive torque of each motor 1 calculated here is transmitted to the second multiplication unit 39.
  • the second multiplication unit 39 calculates a value (drive torque after torque limitation, torque limit amount) obtained by multiplying the drive torque of each motor 1 calculated by the multiplication unit 38 by the values of the limiting gains K L2 and K R2 . Is.
  • the drive torque after the torque limit is calculated individually for each of the pair of motors 1. Therefore, the magnitude of the drive torque transmitted to each of the left and right wheels 5 is individually reduced according to the degree of slip of each.
  • the information on the drive torque after the torque limit calculated here is transmitted to the control unit 24. In the control unit 24, the drive torque of the pair of electric motors 1 is individually controlled.
  • the FF control is executed by the control unit 24 when any of the values of the moving gains K L1 and K R1 exceeds 0.
  • the state in which the values of the movement gains K L1 and K R1 are both 0 corresponds to the state in which the FF control is not substantially executed (the state in which the torque movement amount is 0).
  • the FB control is performed by the control unit 24 when any of the values of the limiting gains K L2 and K R 2 is less than 1.
  • the state in which the values of the limiting gains K L2 and K R2 are both 1 corresponds to a state in which the FB control is not substantially executed (a state in which the torque is not limited).
  • FIG. 6 is a flowchart for explaining a control procedure executed by the control device 10.
  • FF control and FB control are carried out.
  • the drive torque is transferred from the motor 1 that drives one of the wheels having a high wheel speed to the motor 1 of the other. That is, the increase in the drive torque of the wheel having a high wheel speed is suppressed while the total drive torque is maintained.
  • the FB control the drive torque of the motor 1 is reduced according to the degree of slip.
  • Steps A1 to A8 mainly relate to processing corresponding to FF control.
  • the road surface reaction force torque calculation unit 36 calculates the road surface reaction force torques T Lroad and T R road of the left and right wheels 5.
  • the road surface reaction force torques T Lroad and T R road are calculated based on, for example, the actual axle torques T L ds and T R ds and the inertial shuttle torque T L and T R.
  • the moving torque calculation unit 37 calculates the moving torques T LAYC and T RAY C.
  • the moving torques T LAYC and T RAYC are calculated based on, for example, the required torques T Lreq and T R req and the road surface reaction force torques T L road and T R road.
  • step A3 it is determined whether or not the required torques T Lreq and T R req exceed the road surface reaction force torques T L road and T R road for each of the left and right wheels 5. For example, it is determined whether or not the left axle required torque T L req for the left wheel 5L exceeds the road surface reaction force torque T Lroad , and the right axle required torque T R req for the right wheel 5R exceeds the road surface reaction torque T R road. Whether or not it is determined. If T Lreq > T Lroad , the process relating to the left wheel 5L proceeds to step A8, and torque transfer from at least the left wheel 5L to the right wheel 5R is prohibited. Further, when T Rreq > T R road , the process relating to the right wheel 5R proceeds to step A8, and at least torque transfer from the right wheel 5R to the left wheel 5L is prohibited.
  • step A4 If the required torque T Lreq or T R req exceeds the road surface reaction torque T L road or T R road for any of the left and right wheels 5, the process proceeds to step A4, and whether or not the wheel is on the side with the higher wheel speed is determined. It is judged. Here, if the wheel speed is not on the high side, the process proceeds to step A8, and torque movement is prohibited. On the other hand, if the wheel speed is higher, the process proceeds to step A5. In step A5, the movement gain calculation unit 22 calculates the movement gains K L1 and K R1 on the side where the wheel speed is high.
  • the left wheel 5L is a wheel with a high wheel speed and T Lreq ⁇ T Lroad
  • The value of the movement gain K L1 of the left wheel 5L is calculated.
  • the value of the movement gain K R1 of the right wheel 5R is set to 0.
  • step A6 the multiplication unit 38 calculates the torque movement amount for one of the left and right wheels 5 having a higher wheel speed.
  • the torque movement amount is calculated by multiplying the movement torque T LAY C of the left wheel 5L by the value of the movement gain K L1 .
  • step A7 the drive torque obtained by moving the torque movement amount calculated in the previous step from the side where the wheel speed is high to the side where the wheel speed is low is calculated. That is, the torque corresponding to the torque movement amount is subtracted from the drive torque of the motor 1 on the side where the wheel speed is high, and it is added to the drive torque of the motor 1 on the side where the wheel speed is low.
  • Steps B1 and B2 mainly relate to the processing corresponding to the FB control.
  • the limiting gain calculation unit 23 calculates the limiting gains K L2 and K R 2 .
  • the limit gain K L2 is calculated based on the absolute value of the difference between the estimated movement speed of the left wheel 5L and the actual movement speed
  • the limiting gain K R2 is calculated based on u
  • the estimated moving speed is calculated based on, for example, the vehicle speed and the steering angle of the vehicle, and the actual moving speed is calculated based on the wheel speeds ⁇ Lw and ⁇ Rw of the left and right wheels 5.
  • step B2 in the second multiplication unit 39, the drive torque calculated in step A7 is multiplied by the limiting gains K L2 and K R2 , and the final drive torque for each motor 1 is calculated.
  • the drive torque of each motor 1 is reduced as the limiting gains K L2 and K R2 are smaller.
  • the control unit 24 controls each motor 1 based on the information of the final drive torque calculated here. In this way, both FF control and FB control are performed.
  • the moving torques T LAYC and T RAY C which are the torques obtained by subtracting the road surface reaction force torques T L road and T R road from the required torques T L req and T R req of the left and right wheels 5, are always calculated. Further, when there is a deviation between the target rotation speed difference of the left and right wheels 5 and the actual rotation speed difference, the FF that moves the drive torque corresponding to the movement torques T LAYC and T RAY C from one motor 1 to the other motor 1. Control is enforced.
  • the slip estimation unit 21 estimates the slip degree of the left and right wheels 5. Further, the control unit 24 performs FF control and FB control according to the deviation between the target rotation speed difference and the actual rotation speed difference and the slip degree.
  • the FF control the drive torque is transferred from the motor 1 that drives one of the wheels having a high wheel speed to the motor 1 of the other.
  • the FB control the drive torque of the pair of motors 1 is reduced together.
  • the limiting gain calculation unit 23 calculates the limiting gains K L2 and K R2 according to the absolute value
  • the control unit 24 controls to reduce the drive torque by multiplying the drive torque of each motor 1 calculated by the multiplication unit 38 by the values of the limiting gains K L2 and K R2 . ..
  • the drive torque can be appropriately controlled according to the traveling state of the vehicle, and the torque difference that can occur during slipping can be reduced while maintaining the posture stability of the vehicle body. Therefore, the protection of the hardware can be further improved.
  • the limiting gains K L2 and K R2 illustrated in FIG. 4 are 1 if the absolute value
  • the larger the value the closer to 0 it has. With such a setting, the larger the slip degree of the left and right wheels 5, the stronger the limit of the drive torque of each motor 1 can be, and the torque difference can be reduced.
  • of the difference is less than a predetermined value is a region where there is substantially no torque limit. In this way, when the slip degree is small, the torque limit can be released.
  • the estimated moving speed of the left and right wheels 5 is calculated based on the vehicle speed and steering angle of the vehicle. By such calculation, the magnitude of the slip degree of the left and right wheels 5 can be accurately grasped, and the drive torque of the electric motor 1 can be appropriately moved. Therefore, it is possible to suppress the occurrence of an excessive torque difference, and it is possible to further improve the protection of the hardware.
  • the movement gain calculation unit 22 determines the movement gains K L1 and K R1 according to the absolute value
  • the torque movement amount can be appropriately controlled according to the traveling state of the vehicle, and the torque difference that may occur at the time of slipping can be reduced while maintaining the posture stability of the vehicle body. Therefore, the protection of the hardware can be further improved.
  • the moving gains K L1 and K R1 illustrated in FIG. 3 are 0 if the absolute value
  • of the deviation is less than a predetermined value is a region where the torque movement amount is substantially zero.
  • the upper limit values of the movement gains K L1 and K R1 may be set to be larger than 1 (for example, within the range of 1.1 to 2.0).
  • control device 10 applied to the rear wheels of the vehicle is exemplified, but it is possible to apply the same control device 10 to the front wheels, and the same control device 10 is applied to both the front and rear wheels. It is also possible to apply. It is also possible to apply the control device 10 to a hybrid vehicle using the electric motor 1 and the internal combustion engine as a drive source. At least, by mounting the same functions as the slip estimation unit 21 and the control unit 24 in the above embodiment on the control device 10, the same effects as those in the above embodiment can be obtained.
  • the torque movement amount is calculated by multiplying the movement torques T LAYC and T RAYC by the values of the movement gains K L1 and K R1 , but the movement gains K L1 and K R1 are multiplied.
  • the calculation configuration may be such that the torque reduction amount is calculated by changing the parameters.
  • is a shape in which the graph in FIG. 3 is horizontally inverted.
  • the limiting gains K L2 and K R2 and the calculation configuration may be such that the torque limit amount is calculated using the limiting gains K L2 and K R2 .
  • of the difference is a shape in which the graph in FIG. 4 is horizontally inverted. Therefore, the gain characteristics are not limited to those shown in FIGS. 3 and 4.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Power Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

The present invention relates to a vehicle control device 10 mounted with: a pair of electric motors 1 that drive left and right wheels 5; and a differential mechanism 3 that imparts a torque difference to the left and right wheels 5. This control device 10 comprises: a moving torque calculation unit 37 for calculating a moving torque that is a torque obtained by subtracting a road surface reaction force torque received from a road surface from a request torque of one of the left and right wheels 5 having a larger wheel speed; and a feed forward control unit 25 which, if there is a deviation between the target rotational speed difference of the left and right wheels 5 and the actual rotational speed difference thereof, moves the moving torque from one of the electric motors 1 for mainly driving the one of the left and right wheels 5 having the larger wheel speed to the other of the electric motors 1 for mainly driving the other of the left and right wheels 5 having a smaller wheel speed.

Description

車両の制御装置Vehicle control device
 本発明は、左右輪を駆動する一対の電動機とその左右輪にトルク差を付与する差動機構とが搭載された車両の制御装置に関する。 The present invention relates to a vehicle control device equipped with a pair of electric motors for driving the left and right wheels and a differential mechanism for applying a torque difference to the left and right wheels.
 従来、車両の左右輪を電動機(電動モータ)で駆動する制御装置において、片方の電動機が故障(トルクダウン)した場合にもう片方の電動機の出力を増減させるものが知られている。このような制御により、過度なトルク制限が避けやすくなり、車両の走行安定性が向上しうる(特許文献1参照)。 Conventionally, in a control device that drives the left and right wheels of a vehicle with an electric motor (motor), it is known that the output of the other electric motor is increased or decreased when one of the electric motors fails (torque down). By such control, it becomes easy to avoid excessive torque limitation, and the running stability of the vehicle can be improved (see Patent Document 1).
特開2017-005958号公報Japanese Unexamined Patent Publication No. 2017-005958
 左右輪の片側がスリップした後に再びグリップした場合、左右輪のイナーシャトルクによって車軸上に過大なトルク差が発生する。このトルク差の大きさは、スリップ量が大きくグリップが強いほど増大し、ハードウェアの許容量を超えるおそれがある。このような課題に対してスリップ時における左右輪のトルク差を小さくすれば、過大なトルク差は抑制されうる。しかしながら、車輪がスリップしてからグリップするまでの時間が短時間であれば、左右輪のトルク差を十分に低減させることが難しく、ハードウェアの保護性が低下してしまう。特に、スリップ量が過多になったような場合には、トルク差を抑制するだけでなく、左右輪の各々のトルクを小さくすることが好ましい。 If one side of the left and right wheels slips and then grips again, an excessive torque difference will occur on the axle due to the inertial shuttlek of the left and right wheels. The magnitude of this torque difference increases as the slip amount is larger and the grip is stronger, which may exceed the hardware allowance. If the torque difference between the left and right wheels at the time of slip is reduced to solve such a problem, an excessive torque difference can be suppressed. However, if the time from slipping of the wheel to gripping is short, it is difficult to sufficiently reduce the torque difference between the left and right wheels, and the protection of the hardware is lowered. In particular, when the slip amount becomes excessive, it is preferable not only to suppress the torque difference but also to reduce the torque of each of the left and right wheels.
 本件の目的の一つは、上記のような課題に照らして創案されたものであり、車両の走行安定性を向上させつつ、ハードウェアの保護性を改善できるようにした車両の制御装置を提供することである。なお、この目的に限らず、後述する「発明を実施するための形態」に示す各構成から導き出される作用効果であって、従来の技術では得られない作用効果を奏することも、本件の他の目的として位置付けることができる。 One of the purposes of this case was created in light of the above-mentioned problems, and provides a vehicle control device that can improve the protection of hardware while improving the running stability of the vehicle. It is to be. Not limited to this purpose, it is also possible to exert an action / effect derived from each configuration shown in the “mode for carrying out the invention” described later, which cannot be obtained by the conventional technique. It can be positioned as a purpose.
 開示の車両の制御装置は、左右輪を駆動する一対の電動機と左右輪にトルク差を付与する差動機構とが搭載された車両の制御装置であって、左右輪のうち車輪速の大きい一方の要求トルクから、路面から受ける路面反力トルクを減じたトルクである移動トルクを算出する移動トルク算出部と、左右輪の目標回転速度差と実回転速度差との偏差がある場合に、左右輪のうち車輪速の大きい一方を主に駆動する一方の電動機から車輪速の小さい他方を主に駆動する他方の電動機へと移動トルクを移動させるフィードフォワード制御部と、を備える。 The disclosed vehicle control device is a vehicle control device equipped with a pair of electric motors for driving the left and right wheels and a differential mechanism for applying a torque difference to the left and right wheels, and one of the left and right wheels has a higher wheel speed. When there is a deviation between the target rotation speed difference between the left and right wheels and the actual rotation speed difference between the movement torque calculation unit that calculates the movement torque, which is the torque obtained by subtracting the road surface reaction force torque received from the road surface from the required torque of A feed forward control unit for moving a moving torque from one motor that mainly drives one of the wheels having a high wheel speed to the other motor that mainly drives the other having a low wheel speed is provided.
 開示の車両の制御装置によれば、ハードウェアの保護性を改善できる。 According to the disclosed vehicle control device, the protection of hardware can be improved.
実施例としての制御装置が適用された車両の模式図である。It is a schematic diagram of the vehicle to which the control device as an Example is applied. 図1に示す車両の差動装置の構造を説明するための模式図である。It is a schematic diagram for demonstrating the structure of the differential device of the vehicle shown in FIG. 図1に示す左右輪の目標回転速度差及び実回転速度差の偏差と移動ゲインとの関係を例示するグラフである。It is a graph exemplifying the relationship between the deviation of the target rotation speed difference and the actual rotation speed difference of the left and right wheels shown in FIG. 1 and the movement gain. 図1に示す左右輪のスリップ値(推定移動速度と実移動速度との差)と制限ゲインとの関係を例示するグラフである。It is a graph which illustrates the relationship between the slip value (difference between the estimated movement speed and the actual movement speed) of the left and right wheels shown in FIG. 1 and the limiting gain. 図1に示す制御装置での処理内容を説明するためのブロック図である。It is a block diagram for demonstrating the processing content in the control apparatus shown in FIG. 図1に示す制御装置で実行される制御の手順を説明するためのフローチャートである。It is a flowchart for demonstrating the procedure of the control executed by the control apparatus shown in FIG.
[1.装置構成]
 図1~図6を参照して、実施例としての車両の制御装置10について説明する。この制御装置10が適用される車両には、左右輪5(ここでは後輪)を駆動する一対の電動機1(電動モータ)とその左右輪5にトルク差を付与する差動機構3とが搭載される。この実施例で数字符号に付加されるRやLなどの接尾符号は、当該符号にかかる要素の配設位置(車両の右側や左側にあること)を表す。例えば、5Rは左右輪5のうち車両の右側(Right)に位置する一方(すなわち右輪)を表し、5Lは左側(Left)に位置する他方(すなわち左輪)を表す。
[1. Device configuration]
A vehicle control device 10 as an embodiment will be described with reference to FIGS. 1 to 6. The vehicle to which the control device 10 is applied is equipped with a pair of electric motors 1 (electric motors) for driving the left and right wheels 5 (here, rear wheels) and a differential mechanism 3 for imparting a torque difference to the left and right wheels 5. Will be done. Suffixes such as R and L added to the numerical code in this embodiment represent the arrangement position of the element related to the code (being on the right side or the left side of the vehicle). For example, 5R represents one of the left and right wheels 5 located on the right side (that is, the right wheel) of the vehicle, and 5L represents the other (that is, the left wheel) located on the left side (Left).
 一対の電動機1は、車両の前輪または後輪の少なくともいずれかを駆動する機能を持つものであり、四輪すべてを駆動する機能を持ちうる。一対の電動機1のうち右側に配置される一方は右電動機1R(右モータ)とも呼ばれ、左側に配置される他方は左電動機1L(左モータ)とも呼ばれる。右電動機1R及び左電動機1Lは、互いに独立して作動し、互いに異なる大きさの駆動力を個別に出力しうる。これらの電動機1は、互いに別設された一対の減速機構2を介して差動機構3に接続される。本実施例の右電動機1R及び左電動機1Lは、定格出力が同一である。 The pair of motors 1 has a function of driving at least one of the front wheels or the rear wheels of the vehicle, and may have a function of driving all four wheels. Of the pair of motors 1, one arranged on the right side is also called a right electric motor 1R (right motor), and the other arranged on the left side is also called a left electric motor 1L (left motor). The right motor 1R and the left motor 1L operate independently of each other and can individually output driving forces having different magnitudes from each other. These electric motors 1 are connected to the differential mechanism 3 via a pair of deceleration mechanisms 2 separately provided from each other. The right electric motor 1R and the left electric motor 1L of this embodiment have the same rated output.
 本実施例では、右電動機1Rが主に右輪5Rを駆動する電動機1であり、左電動機1Lが主に左輪5Lを駆動する電動機1である。ここでいう「主に」との表現は、共線図上で右輪5Rよりも左輪5Lに近い位置に配置される電動機1が左電動機1Lであり、共線図上で左輪5Lよりも右輪5Rに近い位置に配置される電動機1が右電動機1Rであることが意図された表現である。本実施例の車両においては、一対の電動機1及び左右輪5の角速度が共線図上で直線状に配置される関係を持つ。各電動機1の駆動力は、左右輪5の各々に反映されるものの、右電動機1Rの駆動力は右輪5Rの回転状態に反映されやすく、左電動機1Lの駆動力は左輪5Lの回転状態に反映されやすい。 In this embodiment, the right motor 1R is the motor 1 that mainly drives the right wheel 5R, and the left motor 1L is the motor 1 that mainly drives the left wheel 5L. The expression "mainly" here means that the motor 1 located closer to the left wheel 5L than the right wheel 5R on the collinear diagram is the left motor 1L, and is to the right of the left wheel 5L on the collinear diagram. It is an expression intended that the motor 1 arranged at a position close to the wheel 5R is the right motor 1R. In the vehicle of this embodiment, the angular velocities of the pair of motors 1 and the left and right wheels 5 are arranged linearly on the collinear diagram. Although the driving force of each motor 1 is reflected in each of the left and right wheels 5, the driving force of the right motor 1R is easily reflected in the rotating state of the right wheel 5R, and the driving force of the left motor 1L is reflected in the rotating state of the left wheel 5L. Easy to be reflected.
 また、上記の「主に」との表現は、右輪5Rが左輪5Lよりも右電動機1Rに近い角速度(少なくとも左輪5Lと同一以上の角速度)で回転し、左輪5Lが右輪5Rよりも左電動機1Lに近い角速度(少なくとも右輪5Rと同一以上の角速度)で回転することが意図された表現であるともいえる。右電動機1Rの駆動力は、少なくとも右輪5Rへと伝達され、これに加えて左輪5Lへも伝達されうる。同じく、左電動機1Lの駆動力は、少なくとも左輪5Lへと伝達され、これに加えて右輪5Rへも伝達されうる。このような意味で、本実施例の一対の電動機1と左右輪5との関係は、例えばインホイールモータによって左右輪が個別に駆動される電動車両におけるモータと駆動輪との関係と相違する。 Further, in the above expression "mainly", the right wheel 5R rotates at an angular velocity closer to the right motor 1R than the left wheel 5L (at least an angular velocity equal to or higher than the left wheel 5L), and the left wheel 5L is to the left of the right wheel 5R. It can be said that the expression is intended to rotate at an angular velocity close to that of the motor 1L (at least an angular velocity equal to or higher than that of the right wheel 5R). The driving force of the right motor 1R is transmitted to at least the right wheel 5R, and may also be transmitted to the left wheel 5L. Similarly, the driving force of the left motor 1L is transmitted to at least the left wheel 5L, and in addition to this, it can be transmitted to the right wheel 5R. In this sense, the relationship between the pair of electric motors 1 and the left and right wheels 5 of this embodiment is different from the relationship between the motor and the drive wheels in, for example, an electric vehicle in which the left and right wheels are individually driven by an in-wheel motor.
 減速機構2は、電動機1から出力される駆動力を減速することでトルクを増大させる機構である。減速機構2の減速比Gは、電動機1の出力特性や性能に応じて適宜設定される。一対の減速機構2のうち右側に配置される一方は右減速機構2Rとも呼ばれ、左側に配置される他方は左減速機構2Lとも呼ばれる。本実施例の右減速機構2R及び左減速機構2Lは、減速比Gが同一である。電動機1のトルク性能が十分に高い場合には、減速機構2を省略してもよい。 The deceleration mechanism 2 is a mechanism that increases the torque by decelerating the driving force output from the motor 1. The reduction ratio G of the reduction mechanism 2 is appropriately set according to the output characteristics and performance of the motor 1. Of the pair of deceleration mechanisms 2, one arranged on the right side is also called a right deceleration mechanism 2R, and the other arranged on the left side is also called a left deceleration mechanism 2L. The right deceleration mechanism 2R and the left deceleration mechanism 2L of this embodiment have the same reduction ratio G. If the torque performance of the motor 1 is sufficiently high, the deceleration mechanism 2 may be omitted.
 差動機構3は、ヨーコントロール機能(AYC機能)を持ったディファレンシャル機構であり、右輪5Rに連結される車輪軸4(右車輪軸4R)と左輪5Lに連結される車輪軸4(左車輪軸4L)との間に介装される。ヨーコントロール機能とは、左右輪の駆動力(駆動トルク)の分担割合を積極的に制御することでヨーモーメントを調節し、車両の姿勢を安定させる機能である。差動機構3の内部には、遊星歯車機構や差動歯車機構などのギヤ列が内蔵される。一対の電動機1から伝達される駆動力は、これらのギヤ列を介して左右輪5の各々に分配される。なお、一対の電動機1と差動機構3とを含む車両駆動装置は、DM-AYC(Dual-Motor Active Yaw Control)装置とも呼ばれる。 The differential mechanism 3 is a differential mechanism having a yaw control function (AYC function), and is a wheel shaft 4 (right wheel shaft 4R) connected to the right wheel 5R and a wheel shaft 4 (left wheel) connected to the left wheel 5L. It is interposed between the shaft 4L). The yaw control function is a function that adjusts the yaw moment by positively controlling the sharing ratio of the driving force (driving torque) of the left and right wheels to stabilize the posture of the vehicle. Inside the differential mechanism 3, a gear train such as a planetary gear mechanism or a differential gear mechanism is built. The driving force transmitted from the pair of motors 1 is distributed to each of the left and right wheels 5 via these gear trains. The vehicle drive device including the pair of motors 1 and the differential mechanism 3 is also referred to as a DM-AYC (Dual-Motor Active Yaw Control) device.
 図2は、減速機構2及び差動機構3の構造を例示する概略図である。減速機構2の減速比Gは、電動機1から減速機構2に伝達される回転角速度と、減速機構2から差動機構3に伝達される回転角速度の比(あるいはギヤの歯数の比)として表すことができる。また、差動機構3の内部において、左電動機1Lの駆動力が右輪5Rに伝達される経路のギヤ比をb1と表現し、右電動機1Rの駆動力が左輪5Lに伝達される経路のギヤ比をb2と表現し、左右の電動機1の回転角速度をモータ角速度ωLm,ωRmとおき、左右輪5の回転角速度をそれぞれ車輪速ωLw,ωRwとおけば、本実施例では以下の式1~式2が成立する。 FIG. 2 is a schematic diagram illustrating the structures of the deceleration mechanism 2 and the differential mechanism 3. The reduction ratio G of the reduction mechanism 2 is expressed as the ratio of the rotational angular velocity transmitted from the motor 1 to the reduction mechanism 2 and the rotation angular velocity transmitted from the reduction mechanism 2 to the differential mechanism 3 (or the ratio of the number of teeth of the gear). be able to. Further, inside the differential mechanism 3, the gear ratio of the path in which the driving force of the left motor 1L is transmitted to the right wheel 5R is expressed as b 1 , and the driving force of the right motor 1R is transmitted to the left wheel 5L. If the gear ratio is expressed as b 2 , the rotational angular velocities of the left and right motors 1 are the motor angular velocities ω Lm and ω Rm , and the rotational angular velocities of the left and right wheels 5 are the wheel speeds ω Lw and ω Rw , respectively, in this embodiment. The following equations 1 and 2 hold.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 電動機1は、インバータ6を介してバッテリ7に電気的に接続される。インバータ6は、バッテリ7側の直流回路の電力(直流電力)と電動機1側の交流回路の電力(交流電力)とを相互に変換する変換器(DC-ACインバーター)である。また、バッテリ7は、例えばリチウムイオン電池やニッケル水素電池であり、数百ボルトの高電圧直流電流を供給しうる二次電池である。電動機1の力行時には、直流電力がインバータ6で交流電力に変換されて電動機1に供給される。電動機1の発電時には、発電電力がインバータ6で直流電力に変換されてバッテリ7に充電される。インバータ6の作動状態は、制御装置10によって制御される。 The motor 1 is electrically connected to the battery 7 via the inverter 6. The inverter 6 is a converter (DC-AC inverter) that mutually converts the power of the DC circuit on the battery 7 side (DC power) and the power of the AC circuit on the electric motor 1 side (AC power). Further, the battery 7 is, for example, a lithium ion battery or a nickel hydrogen battery, and is a secondary battery capable of supplying a high voltage direct current of several hundred volts. When the motor 1 is power running, the DC power is converted into AC power by the inverter 6 and supplied to the motor 1. At the time of power generation of the motor 1, the generated power is converted into DC power by the inverter 6 and charged to the battery 7. The operating state of the inverter 6 is controlled by the control device 10.
 制御装置10は、インバータ6の作動状態を管理することで電動機1の出力を制御するコンピュータ(電子制御装置)である。制御装置10の内部には、図示しないプロセッサ(中央処理装置),メモリ(メインメモリ),記憶装置(ストレージ),インタフェース装置などが内蔵され、内部バスを介してこれらが互いに通信可能に接続される。本実施例の制御装置10は、一対の電動機1の一方から他方へと駆動トルクの一部を移動させるフィードフォワード制御(以下、FF制御)と、一対の電動機1の駆動トルクをともに減少させるフィードバック制御(以下、FB制御)とを実施する。FF制御では、左右輪5の目標回転速度差と実回転速度差との偏差がある場合に、左右輪5のうち車輪速の大きい一方を主に駆動する電動機1から車輪速の小さい他方を主に駆動する電動機1へと駆動トルクが移送される。また、FB制御では、スリップ度合いに応じて、電動機1のうち少なくとも一方の駆動トルクが削減される。 The control device 10 is a computer (electronic control device) that controls the output of the motor 1 by managing the operating state of the inverter 6. A processor (central processing unit), a memory (main memory), a storage device (storage), an interface device, and the like (not shown) are built in the control device 10, and these are connected to each other so as to be communicable via an internal bus. .. The control device 10 of the present embodiment has feedforward control (hereinafter referred to as FF control) for moving a part of the drive torque from one of the pair of motors 1 to the other, and feedback for reducing both the drive torque of the pair of motors 1. Control (hereinafter referred to as FB control) is carried out. In FF control, when there is a deviation between the target rotation speed difference of the left and right wheels 5 and the actual rotation speed difference, the motor 1 that mainly drives one of the left and right wheels 5 with a higher wheel speed and the other with a lower wheel speed are mainly used. The drive torque is transferred to the motor 1 to be driven. Further, in the FB control, the drive torque of at least one of the motors 1 is reduced according to the degree of slip.
 制御装置10には、図1に示すように、アクセルセンサ13,ブレーキセンサ14,舵角センサ15,車速センサ16,モータ回転速度センサ18,車輪速センサ19が接続される。アクセルセンサ13はアクセルペダルの踏み込み量(アクセル開度)やその踏み込み速度を検出するセンサである。ブレーキセンサ14は、ブレーキペダルの踏み込み量(ブレーキペダルストローク)やその踏み込み速度を検出するセンサである。舵角センサ15は、左右輪5の舵角(実舵角またはステアリングの操舵角)を検出するセンサであり、車速センサ16は、車速(走行速度)を検出するセンサである。 As shown in FIG. 1, the control device 10 is connected to an accelerator sensor 13, a brake sensor 14, a steering angle sensor 15, a vehicle speed sensor 16, a motor rotation speed sensor 18, and a wheel speed sensor 19. The accelerator sensor 13 is a sensor that detects the amount of depression of the accelerator pedal (accelerator opening degree) and the depression speed thereof. The brake sensor 14 is a sensor that detects the amount of depression of the brake pedal (brake pedal stroke) and the depression speed thereof. The steering angle sensor 15 is a sensor that detects the steering angle (actual steering angle or steering angle of the steering) of the left and right wheels 5, and the vehicle speed sensor 16 is a sensor that detects the vehicle speed (traveling speed).
 モータ回転速度センサ18は、電動機1の回転角速度(モータ角速度ωLm,ωRm)を検出するセンサであり、各電動機1に個別に設けられる。同様に、車輪速センサ19は、左右輪5(または車輪軸4)の回転角速度(車輪速ωLw,ωRw)を検出するセンサであり、左輪5Lの近傍及び右輪5Rの近傍のそれぞれに個別に設けられる。制御装置10は、これらのセンサ13~16,18~19で検出された情報に基づいてインバータ6の作動状態を制御することで、一対の電動機1の出力を制御する。 The motor rotation speed sensor 18 is a sensor that detects the rotation angular velocity (motor angular velocity ω Lm , ω Rm ) of the motor 1, and is individually provided for each motor 1. Similarly, the wheel speed sensor 19 is a sensor that detects the rotational angular velocities (wheel speeds ω Lw , ω Rw ) of the left and right wheels 5 (or wheel axles 4), and is located in the vicinity of the left wheel 5L and in the vicinity of the right wheel 5R, respectively. It is provided individually. The control device 10 controls the output of the pair of electric motors 1 by controlling the operating state of the inverter 6 based on the information detected by the sensors 13 to 16, 18 to 19.
 制御装置10は、車両に搭載される電子制御装置(ECU,Electronic Control Unit)の一つであり、プロセッサとメモリとを搭載した電子デバイスである。プロセッサは、例えばCPU(Central Processing Unit),MPU(Micro Processing Unit)などのマイクロプロセッサであり、メモリは、例えばROM(Read Only Memory),RAM(Random Access Memory),不揮発メモリなどである。制御装置10実施される制御の内容は、ファームウェアやアプリケーションプログラムとしてメモリに記録,保存されており、プログラムの実行時にはプログラムの内容がメモリ空間内に展開されて、プロセッサによって実行される。 The control device 10 is one of the electronic control units (ECU, Electronic Control Unit) mounted on the vehicle, and is an electronic device equipped with a processor and a memory. The processor is, for example, a microprocessor such as a CPU (Central Processing Unit) or MPU (Micro Processing Unit), and the memory is, for example, ROM (Read Only Memory), RAM (Random Access Memory), non-volatile memory, or the like. The content of the control to be executed is recorded and stored in the memory as firmware or an application program, and when the program is executed, the content of the program is expanded in the memory space and executed by the processor.
[2.制御]
 図1に示すように、制御装置10の内部には、移動トルク算出部37,スリップ推定部21,移動ゲイン算出部22,制限ゲイン算出部23,制御部24が設けられる。また、制御部24には、FF制御を担当するフィードフォワード制御部25(FF制御部25)と、FB制御を担当するフィードバック制御部26(FB制御部26)とが設けられる。これらの要素は、制御装置10の機能を便宜的に分類して示したものである。これらの要素は、独立したプログラムとして各々を記述することができ、あるいは複数の要素を合体させた複合プログラムとして記述することもできる。各要素に相当するプログラムは、制御装置10のメモリや記憶装置に記憶され、プロセッサで実行される。
[2. control]
As shown in FIG. 1, a movement torque calculation unit 37, a slip estimation unit 21, a movement gain calculation unit 22, a limit gain calculation unit 23, and a control unit 24 are provided inside the control device 10. Further, the control unit 24 is provided with a feedforward control unit 25 (FF control unit 25) in charge of FF control and a feedback control unit 26 (FB control unit 26) in charge of FB control. These elements are shown by classifying the functions of the control device 10 for convenience. Each of these elements can be described as an independent program, or can be described as a composite program in which a plurality of elements are combined. The program corresponding to each element is stored in the memory of the control device 10 or the storage device, and is executed by the processor.
 移動トルク算出部37は、左右輪5の要求トルクTLreq,TRreqの一部である移動トルクTLAYC,TRAYCを算出するものである。移動トルクTLAYC,TRAYCとは、左右輪5のうち車輪速の大きい一方の要求トルクTLreq,TRreqから、路面から受ける路面反力トルクTLroad,TRroadを減じたトルクである。この移動トルク算出部37については後述する。 The moving torque calculation unit 37 calculates the moving torques T LAYC and T RAY C, which are a part of the required torques T Lreq and T R req of the left and right wheels 5. The moving torques T LAYC and T RAYC are torques obtained by subtracting the road surface reaction force torques T L road and T R road received from the road surface from the required torques T L req and T R req of one of the left and right wheels 5 having a higher wheel speed. The moving torque calculation unit 37 will be described later.
 スリップ推定部21は、左右輪5のスリップ度合いを推定するものである。ここでは、スリップ度合いを評価するための指標として、左右輪5の推定移動速度と実移動速度との差の絶対値|u|が算出される。差の絶対値|u|の推定に際し、推定移動速度は、例えば車両の車速及び操舵角に基づいて算出され、実移動速度は、左右輪5の車輪速ωLw,ωRwに基づいて算出される。 The slip estimation unit 21 estimates the slip degree of the left and right wheels 5. Here, as an index for evaluating the degree of slip, the absolute value | u | of the difference between the estimated moving speed and the actual moving speed of the left and right wheels 5 is calculated. In estimating the absolute value of the difference | u |, the estimated moving speed is calculated based on, for example, the vehicle speed and steering angle of the vehicle, and the actual moving speed is calculated based on the wheel speeds ω Lw and ω Rw of the left and right wheels 5. Rudder.
 移動ゲイン算出部22は、左右輪5の目標回転速度差と実回転速度差との偏差に応じた大きさの移動ゲインKL1,KR1を算出するものである。移動ゲインKL1,KR1とは、FF制御で使用されるゲインであり、左右輪5の目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|に応じて設定される。移動ゲインKL1,KR1の値は、例えば偏差の絶対値|DVRERR|が大きいほど大きな値に設定される。なお、移動ゲインKL1,KR1の値は、左右輪5のうち車輪速が大きい片方のみについて算出され、他方の値は0とされる。例えば、右輪5Rよりも左輪5Lの車輪速が大きい場合には、右移動ゲインKR1の値が0とされ、左輪5Lの車輪速ωLwに基づいて左移動ゲインKL1の値が算出される。 The movement gain calculation unit 22 calculates the movement gains K L1 and K R1 having a magnitude corresponding to the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5. The moving gains K L1 and K R1 are gains used in FF control, and are set according to the absolute value | D VRERR | of the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5. For example, the larger the absolute value | D VRERR | of the deviation, the larger the values of the moving gains K L1 and K R1 are set. The values of the moving gains K L1 and K R1 are calculated only for one of the left and right wheels 5 having a higher wheel speed, and the value of the other is 0. For example, when the wheel speed of the left wheel 5L is higher than that of the right wheel 5R, the value of the right movement gain K R1 is set to 0, and the value of the left movement gain K L1 is calculated based on the wheel speed ω Lw of the left wheel 5L. The wheel.
 具体例を挙げると、左右輪5の実回転速度差が目標回転速度差から大きく離れれば、偏差の絶対値|DVRERR|が大きくなり、移動ゲインKL1,KR1が大きい値(例えば1)に設定される。反対に、実回転速度差が目標回転速度差に近づけば、偏差の絶対値|DVRERR|が小さくなり、移動ゲインKL1,KR1が小さい値(例えば0)に設定される。なお、車両旋回時には旋回内輪の回転速度が旋回外輪の回転速度よりも低速になり、実回転速度差が大きくなることがある。しかし、このような状況では目標回転速度差も大きくなるため、スリップが発生していない限り、偏差の絶対値|DVRERR|は比較的小さい値となる。 To give a specific example, if the difference in the actual rotation speeds of the left and right wheels 5 is far from the target rotation speed difference, the absolute value of the deviation | D VRERR | becomes large, and the movement gains K L1 and K R1 are large (for example, 1). Is set to. On the contrary, when the actual rotation speed difference approaches the target rotation speed difference, the absolute value | D VRERR | of the deviation becomes small, and the movement gains K L1 and K R1 are set to small values (for example, 0). When the vehicle is turning, the rotation speed of the turning inner ring may be lower than the rotation speed of the turning outer ring, and the difference in actual rotation speed may be large. However, in such a situation, the target rotation speed difference is also large, so the absolute value of the deviation | D VRERR | is relatively small unless slip occurs.
 図3は、偏差の絶対値|DVRERR|と左右輪5の移動ゲインKL1,KR1との関係を例示するグラフである。この例では、偏差の絶対値|DVRERR|が所定値未満のときには移動ゲインKL1,KR1が0に設定されている。偏差の絶対値|DVRERR|が0から所定値までの領域は、実質的にFF制御によるトルク移動量が0になる領域であって制御上の不感帯である。また、偏差の絶対値|DVRERR|が所定値以上のときには、その値が大きいほど移動ゲインKL1,KR1が大きく設定されている。移動ゲインKL1,KR1は、偏差の絶対値|DVRERR|が大きいほど1に近づく特性を持つ。この設定により、左右輪5の目標回転速度差と実回転速度差との偏差が大きいほど、より多くのトルクが車輪速の大きい車輪側から車輪速の小さい車輪側へと移動することになる。なお、移動ゲインKL1,KR1の上限値は1である。これにより、トルク移動量が過剰に増加するような事態が防止されている。 FIG. 3 is a graph illustrating the relationship between the absolute value of deviation | D VRERR | and the moving gains K L1 and K R1 of the left and right wheels 5. In this example, when the absolute value | D VRERR | of the deviation is less than the predetermined value, the moving gains K L1 and K R1 are set to 0. The region where the absolute value | D VRERR | of the deviation is from 0 to a predetermined value is a region where the torque movement amount by the FF control becomes 0 substantially, and is a dead zone in terms of control. When the absolute value of deviation | D VRERR | is greater than or equal to a predetermined value, the larger the value, the larger the movement gains K L1 and K R1 are set. The moving gains K L1 and K R1 have the characteristic that the larger the absolute value | D VRERR | of the deviation, the closer to 1. With this setting, the larger the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5, the more torque moves from the wheel side where the wheel speed is high to the wheel side where the wheel speed is low. The upper limit of the moving gains K L1 and K R1 is 1. This prevents a situation in which the torque transfer amount is excessively increased.
 制限ゲイン算出部23は、左右輪5のスリップ度合いに応じた大きさの制限ゲインKL2,KR2を算出するものである。制限ゲインKL2,KR2とは、FB制御で使用されるゲインであり、左右輪5の推定移動速度と実移動速度との差の絶対値|u|に応じて設定される。制限ゲインKL2,KR2の値は、例えば差の絶対値|u|が大きいほど小さな値に設定される。なお、制限ゲインKL2,KR2の値は、一対の電動機1の各々について個別に設定される。例えば、左輪5Lのスリップ度合いが右輪5Rのスリップ度合いよりも大きい(スリップ量が大きい)場合には、左輪5L側の電動機1の制限ゲインKL2が右輪5R側の電動機1の制限ゲインKR2よりも小さな値に設定される。 The limit gain calculation unit 23 calculates the limit gains K L2 and K R 2 having a magnitude corresponding to the degree of slip of the left and right wheels 5. The limiting gains K L2 and K R2 are gains used in FB control, and are set according to the absolute value | u | of the difference between the estimated moving speed and the actual moving speed of the left and right wheels 5. The values of the limiting gains K L2 and K R2 are set to smaller values, for example, as the absolute value | u | of the difference increases. The values of the limiting gains K L2 and K R2 are set individually for each of the pair of motors 1. For example, when the slip degree of the left wheel 5L is larger than the slip degree of the right wheel 5R (the slip amount is large), the limiting gain K L2 of the motor 1 on the left wheel 5L side is the limiting gain K of the motor 1 on the right wheel 5R side. Set to a value smaller than R2 .
 具体例を挙げると、左右輪5の片方がスリップすることでその車輪の実移動速度が推定移動速度から大きく離れれば、差の絶対値|u|が大きくなり、制限ゲインKL2,KR2が小さい値(例えば0)に設定される。反対に、スリップが収まって実移動速度が推定移動速度に近づけば、差の絶対値|u|が小さくなり、制限ゲインKL2,KR2が大きな値(例えば1)に設定される。このように制限ゲインKL2,KR2の値は、左右輪5の各々のスリップ度合いに応じて、一対の電動機1の各々に対して個別に設定される。 To give a specific example, if one of the left and right wheels 5 slips and the actual moving speed of that wheel deviates significantly from the estimated moving speed, the absolute value | u | of the difference becomes large, and the limiting gains K L2 and K R2 become large. It is set to a small value (eg 0). On the contrary, when the slip is settled and the actual moving speed approaches the estimated moving speed, the absolute value | u | of the difference becomes small, and the limiting gains K L2 and K R2 are set to large values (for example, 1). In this way, the values of the limiting gains K L2 and K R2 are individually set for each of the pair of motors 1 according to the degree of slip of each of the left and right wheels 5.
 図4は、差の絶対値|u|と左右輪5の制限ゲインKL2,KR2との関係を例示するグラフである。この例では、差の絶対値|u|が所定値未満のときには制限ゲインKL2,KR2が1に設定されている。差の絶対値|u|が0から所定値までの領域は、実質的にFB制御によるトルク制限のない領域であって制御上の不感帯である。また、差の絶対値|u|が所定値以上のときには、その値が大きいほど制限ゲインKL2,KR2が小さく設定されている。制限ゲインKL2,KR2は、差の絶対値|u|が大きいほど0に近づく特性を持つ。この設定により、左右輪5のスリップ度合いが大きいほど、電動機1の駆動トルクが減少することになる。 FIG. 4 is a graph illustrating the relationship between the absolute value | u | of the difference and the limiting gains K L2 and K R 2 of the left and right wheels 5. In this example, when the absolute value | u | of the difference is less than the predetermined value, the limiting gains K L2 and K R2 are set to 1. The region where the absolute value | u | of the difference is from 0 to a predetermined value is a region where there is substantially no torque limitation due to FB control, and is a dead zone in terms of control. When the absolute value | u | of the difference is greater than or equal to a predetermined value, the larger the value, the smaller the limiting gains K L2 and K R 2 are set. The limiting gains K L2 and K R2 have the characteristic that the larger the absolute value | u | of the difference, the closer to 0. With this setting, the greater the slip degree of the left and right wheels 5, the smaller the drive torque of the electric motor 1.
 制御部24は、フィードフォワード制御部25(FF制御部25)と、フィードバック制御部26(FB制御部26)とを有する。FF制御部25は、左右輪5の目標回転速度差と実回転速度差との偏差がある場合に、左右輪5のうち車輪速の大きい一方を主に駆動する一方の電動機1についての駆動トルクの一部を、車輪速の小さい他方を主に駆動する他方の電動機1へと移動させるFF制御を実施する。トルク移動量は、移動ゲインKL1,KR1に応じた大きさとされる。また、FB制御部26は、スリップ度合いに応じて一対の電動機1のうち少なくとも一方の駆動トルクを減少させるFB制御を実施する。トルク制限量は、制限ゲインKL2,KR2に応じた大きさとされる。 The control unit 24 has a feedforward control unit 25 (FF control unit 25) and a feedback control unit 26 (FB control unit 26). The FF control unit 25 mainly drives one of the left and right wheels 5 having a higher wheel speed when there is a deviation between the target rotation speed difference of the left and right wheels 5 and the actual rotation speed difference. FF control is performed to move a part of the wheel speed to the other motor 1 that mainly drives the other wheel having a low wheel speed. The torque movement amount is set according to the movement gains K L1 and K R1 . Further, the FB control unit 26 implements FB control that reduces the drive torque of at least one of the pair of electric motors 1 according to the degree of slip. The torque limit amount is set according to the limit gains K L2 and K R 2 .
 図5は、制御装置10での具体的な処理内容を例示するブロック図である。この制御装置10には、車軸要求トルク算出部31,車軸実トルク算出部32,車軸角速度算出部33,イナーシャ推定部34,イナーシャトルク算出部35,路面反力トルク算出部36,移動トルク算出部37,スリップ推定部21,移動ゲイン算出部22,制限ゲイン算出部23,乗算部38,第二乗算部39が設けられる。これらの要素は、制御装置10の機能を便宜的に分類して示したものである。 FIG. 5 is a block diagram illustrating a specific processing content in the control device 10. The control device 10 includes an axle required torque calculation unit 31, an axle actual torque calculation unit 32, an axle angular velocity calculation unit 33, an inertia estimation unit 34, an inertia estimation unit 35, a road surface reaction force torque calculation unit 36, and a moving torque calculation unit. 37, a slip estimation unit 21, a moving gain calculation unit 22, a limiting gain calculation unit 23, a multiplication unit 38, and a second multiplication unit 39 are provided. These elements are shown by classifying the functions of the control device 10 for convenience.
 上記の要素のうち、主にFF制御でのトルク移動量の算出に関係する要素は、車軸要求トルク算出部31,車軸実トルク算出部32,車軸角速度算出部33,イナーシャ推定部34,イナーシャトルク算出部35,路面反力トルク算出部36,移動トルク算出部37,移動ゲイン算出部22,乗算部38である。また、主にFB制御でのトルク制限量の算出に関係する要素は、制限ゲイン算出部23,第二乗算部39である。なお、スリップ推定部21は、トルク制限量の算出にも関係している。 Among the above elements, the elements mainly related to the calculation of the torque movement amount in the FF control are the axle required torque calculation unit 31, the axle actual torque calculation unit 32, the axle angular velocity calculation unit 33, the inertia estimation unit 34, and the inertia shuttlek. The calculation unit 35, the road surface reaction force torque calculation unit 36, the movement torque calculation unit 37, the movement gain calculation unit 22, and the multiplication unit 38. Further, the elements mainly related to the calculation of the torque limit amount in the FB control are the limit gain calculation unit 23 and the second multiplication unit 39. The slip estimation unit 21 is also involved in calculating the torque limit amount.
 車軸要求トルク算出部31は、左右輪5のそれぞれについての要求トルクTLreq,TRreqを算出するものである。ここでは、例えば各種センサ13~16で検出されたアクセル開度,ブレーキペダルストローク,舵角,車速に基づき、左車軸要求トルクTLreqと右車軸要求トルクTRreqとが個別に算出される。これらの算出に際し、車両の横加速度や前後加速度,ヨーレート,路面勾配などを考慮してもよい。ここで算出された要求トルクTLreq,TRreqの情報は、移動トルク算出部37に伝達される。 The axle required torque calculation unit 31 calculates the required torques T Lreq and T R req for each of the left and right wheels 5. Here, for example, the left axle required torque T L req and the right axle required torque T R req are individually calculated based on the accelerator opening, the brake pedal stroke, the steering angle, and the vehicle speed detected by various sensors 13 to 16. In these calculations, the lateral acceleration, longitudinal acceleration, yaw rate, road surface gradient, etc. of the vehicle may be taken into consideration. The information of the required torques T Lreq and T R req calculated here is transmitted to the moving torque calculation unit 37.
 車軸実トルク算出部32は、左右輪5のそれぞれについての車軸実トルクTLds,TRdsを算出するものである。ここでは、例えば各電動機1が出力しているトルク(モータトルク)の大きさに基づき、左車軸実トルクTLdsと右車軸実トルクTRdsとが個別に算出される。モータトルクの大きさは、例えばモータ出力(消費電力)とモータ角速度ωLm,ωRmとに基づいて算出される。ここで算出された車軸実トルクTLds,TRdsの情報は、路面反力トルク算出部36に伝達される。 The axle actual torque calculation unit 32 calculates the axle actual torques T Lds and T R ds for each of the left and right wheels 5. Here, for example, the left axle actual torque T Lds and the right axle actual torque T R ds are calculated individually based on the magnitude of the torque (motor torque) output by each electric motor 1. The magnitude of the motor torque is calculated based on, for example, the motor output (power consumption) and the motor angular velocities ω Lm and ω Rm . The information of the actual axle torques T Lds and T R ds calculated here is transmitted to the road surface reaction force torque calculation unit 36.
 車軸角速度算出部33は、左右輪5のそれぞれについての車輪速ωLw,ωRw(車軸角速度)を算出するものである。ここでは、例えば上記の式1,式2に示すように、モータ角速度ωLm,ωRmと減速比Gとギヤ比b1,b2とに基づき、左車輪速ωLwと右車輪速ωRwとが個別に算出される。ここで算出された車輪速ωLw,ωRwの情報は、イナーシャ推定部34とイナーシャトルク算出部35とに伝達される。 The axle angular velocity calculation unit 33 calculates the wheel speeds ω Lw and ω Rw (axle angular velocity) for each of the left and right wheels 5. Here, for example, as shown in the above equations 1 and 2, the left wheel speed ω Lw and the right wheel speed ω Rw are based on the motor angular velocities ω Lm and ω Rm , the reduction ratio G and the gear ratios b 1 and b 2 . And are calculated individually. The information on the wheel speeds ω Lw and ω Rw calculated here is transmitted to the inertia estimation unit 34 and the inertia torque calculation unit 35.
 イナーシャ推定部34は、左右の電動機1から左右輪5までの各経路についてのイナーシャJML,JMR(慣性モーメント)を推定するものである。ここでは、例えば車輪速ωLw,ωRwの時間微分値,モータイナーシャIm,減速比G,ギヤ比b1,b2などに基づき、左経路イナーシャJMLと右経路イナーシャJMRとが個別に算出される。ここで算出されたイナーシャJML,JMRの情報は、イナーシャトルク算出部35に伝達される。なお、イナーシャJML,JMRの大きさは、車輪速ωLw,ωRwの時間微分値の比率に応じて変化する。イナーシャJML,JMRの算定式を以下の式3,式4に例示する。 The inertia estimation unit 34 estimates the inertia J ML and J MR (moment of inertia) for each path from the left and right motors 1 to the left and right wheels 5. Here, the left path inertia J ML and the right path inertia J M R are individually based on, for example, the time derivative of the wheel speeds ω Lw and ω Rw , the motor inertia Im, the reduction ratio G, and the gear ratios b 1 and b 2 . It is calculated to. The inertia J ML and J MR information calculated here is transmitted to the inertia torque calculation unit 35. The magnitudes of inertia J ML and J MR change according to the ratio of the time derivative values of the wheel speeds ω Lw and ω Rw . The formulas for calculating inertia J ML and J MR are illustrated in Equations 3 and 4 below.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 イナーシャトルク算出部35は、左右の電動機1から左右輪5までの各経路についてのイナーシャトルクTL,TRを算出するものである。ここでは、左電動機1Lから左輪5Lまでの経路に作用するイナーシャトルクである左経路イナーシャトルクTLと、右電動機1Rから右輪5Rまでの経路に作用するイナーシャトルクである右経路イナーシャトルクTRとが個別に算出される。 The inertia shuttle calculation unit 35 calculates the inertia torque T L and T R for each route from the left and right motors 1 to the left and right wheels 5. Here, the left-route inertia torque, which is an inertial torque that acts on the route from the left motor 1L to the left wheel 5L, and the right-route inertia torque TR, which is the inertial shuttlek that acts on the route from the right motor 1R to the right wheel 5R . And are calculated individually.
 左経路イナーシャトルクTLは、左経路イナーシャJMLと車輪イナーシャIwheelとの和に左輪5Lの角加速度を乗じることで算出される。同様に、右経路イナーシャトルクTRは、右経路イナーシャJMRと車輪イナーシャIwheelとの和に右輪5Rの角加速度を乗じることで算出される。ここで算出されたイナーシャトルクTL,TRの情報は、路面反力トルク算出部36に伝達される。イナーシャトルクTL,TRの算定式を以下の式5,式6に例示する。 The left path inertia torque T L is calculated by multiplying the sum of the left path inertia J M L and the wheel inertia I wheel by the angular acceleration of the left wheel 5 L. Similarly, the right path inertia torque TR is calculated by multiplying the sum of the right path inertia J MR and the wheel inertia I wheel by the angular acceleration of the right wheel 5R. The information of the inertia pavement T L and T R calculated here is transmitted to the road surface reaction force torque calculation unit 36. The formulas for calculating the inertia torque T L and T R are illustrated in the following formulas 5 and 6.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 路面反力トルク算出部36は、左右輪5の路面反力トルクTLroad,TRroadを算出するものである。ここでは、車軸実トルク算出部32で算出された車軸実トルクTLds,TRdsとイナーシャトルク算出部35で算出されたイナーシャトルクTL,TRとに基づき、左右輪5の路面反力トルクTLroad,TRroadが個別に算出される。ここで算出された路面反力トルクTLroad,TRroadの情報は、移動トルク算出部37に伝達される。路面反力トルクTLroad,TRroadの算定式を以下の式7,式8に例示する。 The road surface reaction force torque calculation unit 36 calculates the road surface reaction force torques T Lroad and T R road of the left and right wheels 5. Here, the road surface reaction torque of the left and right wheels 5 is based on the actual axle torques T L ds and T R ds calculated by the actual axle torque calculation unit 32 and the inertial shuttle torque T L and T R calculated by the inertial shuttle torque calculation unit 35. T Lroad and T R road are calculated individually. The information of the road surface reaction force torques T Lroad and T R road calculated here is transmitted to the moving torque calculation unit 37. The calculation formulas for the road surface reaction force torques T Lroad and T R road are illustrated in the following formulas 7 and 8.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 移動トルク算出部37は、左右輪5の要求トルクTLreq,TRreqの一部である移動トルクTLAYC,TRAYCを算出するものである。移動トルクTLAYC,TRAYCとは、左右輪5のうち車輪速の大きい一方の要求トルクTLreq,TRreqから、路面から受ける路面反力トルクTLroad,TRroadを減じたトルクである。例えば、左輪5Lの移動トルクTLAYCは左車軸要求トルクTLreqから左輪5Lの路面反力トルクTLroadを減じた大きさとなり、右輪5Rの移動トルクTRAYCは右車軸要求トルクTRreqから右輪5Rの路面反力トルクTRroadを減じた大きさとなる。ここで算出された移動トルクTLAYC,TRAYCの情報は、乗算部38に伝達される。移動トルクTLAYC,TRAYCの算定式を以下の式9,式10に例示する。 The moving torque calculation unit 37 calculates the moving torques T LAYC and T RAY C, which are a part of the required torques T Lreq and T R req of the left and right wheels 5. The moving torques T LAYC and T RAYC are torques obtained by subtracting the road surface reaction force torques T L road and T R road received from the road surface from the required torques T L req and T R req of one of the left and right wheels 5 having a higher wheel speed. For example, the moving torque T LAY C of the left wheel 5L is the size obtained by subtracting the road surface reaction force torque T L road of the left wheel 5L from the left axle required torque T L req, and the moving torque T RAY C of the right wheel 5R is right from the right axle required torque T R req. The size is obtained by subtracting the road surface reaction torque T R road of the wheel 5R. The information of the moving torques T LAYC and T RAYC calculated here is transmitted to the multiplication unit 38. The calculation formulas for the moving torques T LAYC and T RAYC are illustrated in the following formulas 9 and 10.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 また、移動トルク算出部37は、左右輪5の目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|を算出する。偏差の絶対値|DVRERR|の算出に際し、目標回転速度差は、例えば車両の車速及び操舵角に基づいて算出され、実回転速度差は、左右輪5の車輪速ωLw,ωRwに基づいて算出される。ここで算出された偏差の絶対値|DVRERR|の情報は、移動ゲイン算出部22に伝達され、FF制御でのトルク移動量の算出に用いられる。 Further, the moving torque calculation unit 37 calculates the absolute value | D VRERR | of the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5. In calculating the absolute value of deviation | D VRERR |, the target rotation speed difference is calculated based on, for example, the vehicle speed and steering angle of the vehicle, and the actual rotation speed difference is based on the wheel speeds ω Lw and ω Rw of the left and right wheels 5. Is calculated. The information of the absolute value | D VRERR | of the deviation calculated here is transmitted to the movement gain calculation unit 22, and is used for calculating the torque movement amount in the FF control.
 スリップ推定部21は、左右輪5のスリップ度合いを推定するものである。ここでは、左右輪5の推定移動速度と実移動速度との差の絶対値|u|が算出される。また、差の絶対値|u|の情報は、制限ゲイン算出部23に伝達され、FB制御でのトルク制限量の算出に用いられる。 The slip estimation unit 21 estimates the slip degree of the left and right wheels 5. Here, the absolute value | u | of the difference between the estimated moving speed of the left and right wheels 5 and the actual moving speed is calculated. Further, the information of the absolute value | u | of the difference is transmitted to the limit gain calculation unit 23 and used for calculating the torque limit amount in the FB control.
 移動ゲイン算出部22は、移動トルク算出部37で算出された左右輪5の目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|に基づき、移動ゲインKL1,KR1を算出するものである。移動ゲインKL1,KR1の値は、左右輪5のうち車輪速が大きい片方のみについて算出され、他方の値は0とされる。例えば、右輪5Rよりも左輪5Lの車輪速が大きい場合には、右移動ゲインKR1の値が0とされ、目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|に基づいて左移動ゲインKL1の値が算出される。また、本実施例の移動ゲイン算出部22は、図3に示す関係に則り、左右輪5の目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|に基づいて移動ゲインKL1,KR1の値を算出する。ここで算出された移動ゲインKL1,KR1の情報は、乗算部38に伝達される。 The movement gain calculation unit 22 determines the movement gains K L1 and K R 1 based on the absolute value | D VRERR | of the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5 calculated by the movement torque calculation unit 37. It is to be calculated. The values of the moving gains K L1 and K R1 are calculated for only one of the left and right wheels 5 having a higher wheel speed, and the value of the other is 0. For example, when the wheel speed of the left wheel 5L is higher than that of the right wheel 5R, the value of the right movement gain K R1 is set to 0, and the absolute value of the deviation between the target rotation speed difference and the actual rotation speed difference | D VRERR | Based on this, the value of the left movement gain K L1 is calculated. Further, the movement gain calculation unit 22 of the present embodiment has a movement gain K based on the absolute value | D VRERR | of the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5 according to the relationship shown in FIG. Calculate the values of L1 and K R1 . The information of the movement gains K L1 and K R1 calculated here is transmitted to the multiplication unit 38.
 制限ゲイン算出部23は、左右輪5のスリップ度合いに基づき、制限ゲインKL2,KR2を算出するものである。制限ゲインKL2,KR2の値は、一対の電動機1の各々に対して個別に算出される。本実施例の制限ゲイン算出部23は、図4に示す関係に則り、左右輪5の推定移動速度と実移動速度との差の絶対値|u|に基づいて制限ゲインKL2,KR2を算出する。ここで算出された制限ゲインKL2,KR2の情報は、第二乗算部39に伝達される。 The limit gain calculation unit 23 calculates the limit gains K L2 and K R 2 based on the slip degree of the left and right wheels 5. The values of the limiting gains K L2 and K R2 are calculated individually for each of the pair of motors 1. The limit gain calculation unit 23 of this embodiment sets the limit gains K L2 and K R 2 based on the absolute value | u | of the difference between the estimated movement speed and the actual movement speed of the left and right wheels 5 according to the relationship shown in FIG. calculate. The information of the limiting gains K L2 and K R2 calculated here is transmitted to the second multiplication unit 39.
 乗算部38は、移動トルク算出部37で算出された移動トルクTLAYC,TRAYCに移動ゲインKL1,KR1の値を乗じたトルク移動量を算出するものである。トルク移動量は、左右輪5のうち車輪速が大きい片方のみについて算出される。また、トルク移動量に対応する大きさのトルクが車輪速の大きい車輪側の電動機1の駆動トルクから減算されるとともに、車輪速が小さい車輪側の電動機1の駆動トルクに加算される。ここで算出された各電動機1の駆動トルクの情報は、第二乗算部39に伝達される。 The multiplication unit 38 calculates the torque movement amount obtained by multiplying the movement torques T LAYC and T RAYC calculated by the movement torque calculation unit 37 by the values of the movement gains K L1 and K R1 . The torque movement amount is calculated for only one of the left and right wheels 5 having a higher wheel speed. Further, a torque having a magnitude corresponding to the torque movement amount is subtracted from the drive torque of the electric motor 1 on the wheel side having a high wheel speed, and is added to the drive torque of the electric motor 1 on the wheel side having a low wheel speed. The information on the drive torque of each motor 1 calculated here is transmitted to the second multiplication unit 39.
 第二乗算部39は、乗算部38で算出された各電動機1の駆動トルクに制限ゲインKL2,KR2の値を乗じた値(トルク制限後の駆動トルク,トルク制限量)を算出するものである。トルク制限後の駆動トルクは、一対の電動機1の各々に対して個別に算出される。したがって、左右輪5の各々に伝達される駆動トルクの大きさが、各々のスリップ度合いに応じて個別に削減されることになる。ここで算出されたトルク制限後の駆動トルクの情報は、制御部24に伝達される。制御部24では、一対の電動機1の駆動トルクが個別に制御される。 The second multiplication unit 39 calculates a value (drive torque after torque limitation, torque limit amount) obtained by multiplying the drive torque of each motor 1 calculated by the multiplication unit 38 by the values of the limiting gains K L2 and K R2 . Is. The drive torque after the torque limit is calculated individually for each of the pair of motors 1. Therefore, the magnitude of the drive torque transmitted to each of the left and right wheels 5 is individually reduced according to the degree of slip of each. The information on the drive torque after the torque limit calculated here is transmitted to the control unit 24. In the control unit 24, the drive torque of the pair of electric motors 1 is individually controlled.
 制御部24でFF制御が実施されるのは、移動ゲインKL1,KR1のいずれかの値が0を超えているときである。移動ゲインKL1,KR1の値がともに0である状態は、実質的にFF制御が実施されていない状態(トルク移動量が0である状態)に相当する。また、制御部24でFB制御が実施されるのは、制限ゲインKL2,KR2のいずれかの値が1未満であるときである。制限ゲインKL2,KR2の値がともに1である状態は、実質的にFB制御が実施されていない状態(トルクが制限されていない状態)に相当する。 The FF control is executed by the control unit 24 when any of the values of the moving gains K L1 and K R1 exceeds 0. The state in which the values of the movement gains K L1 and K R1 are both 0 corresponds to the state in which the FF control is not substantially executed (the state in which the torque movement amount is 0). Further, the FB control is performed by the control unit 24 when any of the values of the limiting gains K L2 and K R 2 is less than 1. The state in which the values of the limiting gains K L2 and K R2 are both 1 corresponds to a state in which the FB control is not substantially executed (a state in which the torque is not limited).
[3.フローチャート]
 図6は、制御装置10で実行される制御の手順を説明するためのフローチャートである。このフローチャートでは、FF制御とFB制御とが実施される。FF制御では、車輪速の大きい一方を駆動する電動機1から他方の電動機1へと駆動トルクが移送される。つまり、トータルの駆動トルクが保持されたまま、車輪速の大きい車輪の駆動トルクの上昇が抑制されることになる。また、FB制御では、スリップ度合いに応じて電動機1の駆動トルクが削減される。これらの制御を併用することで、イナーシャトルクTL,TRに由来する過大なトルク差が発生しにくくなり、車両の走行安定性が向上するとともに、車輪軸4や差動機構3といった左右輪5まわりのハードウェアの保護性が向上する。
[3. flowchart]
FIG. 6 is a flowchart for explaining a control procedure executed by the control device 10. In this flowchart, FF control and FB control are carried out. In the FF control, the drive torque is transferred from the motor 1 that drives one of the wheels having a high wheel speed to the motor 1 of the other. That is, the increase in the drive torque of the wheel having a high wheel speed is suppressed while the total drive torque is maintained. Further, in the FB control, the drive torque of the motor 1 is reduced according to the degree of slip. By using these controls together, the excessive torque difference caused by the inertia shuttle TL and TR is less likely to occur, the running stability of the vehicle is improved, and the left and right wheels such as the wheel axle 4 and the differential mechanism 3 are less likely to occur. 5 The protection of the surrounding hardware is improved.
 ステップA1~A8は、主にFF制御に対応する処理に関するものである。
 ステップA1では、路面反力トルク算出部36において、左右輪5の路面反力トルクTLroad,TRroadが算出される。路面反力トルクTLroad,TRroadは、例えば車軸実トルクTLds,TRdsとイナーシャトルクTL,TRとに基づいて算出される。続くステップA2では、移動トルク算出部37において、移動トルクTLAYC,TRAYCが算出される。移動トルクTLAYC,TRAYCは、例えば要求トルクTLreq,TRreqと路面反力トルクTLroad,TRroadとに基づいて算出される。
Steps A1 to A8 mainly relate to processing corresponding to FF control.
In step A1, the road surface reaction force torque calculation unit 36 calculates the road surface reaction force torques T Lroad and T R road of the left and right wheels 5. The road surface reaction force torques T Lroad and T R road are calculated based on, for example, the actual axle torques T L ds and T R ds and the inertial shuttle torque T L and T R. In the following step A2, the moving torque calculation unit 37 calculates the moving torques T LAYC and T RAY C. The moving torques T LAYC and T RAYC are calculated based on, for example, the required torques T Lreq and T R req and the road surface reaction force torques T L road and T R road.
 ステップA3では、左右輪5の各々について、要求トルクTLreq,TRreqが路面反力トルクTLroad,TRroadを超えているか否かが判定される。例えば、左輪5Lに関する左車軸要求トルクTLreqが路面反力トルクTLroadを超えているか否かが判定されるとともに、右輪5Rに関する右車軸要求トルクTRreqが路面反力トルクTRroadを超えているか否かが判定される。ここでTLreq>TLroadである場合には、左輪5Lに関する処理がステップA8に進み、少なくとも左輪5Lから右輪5Rへのトルク移動が禁止される。また、TRreq>TRroadである場合には、右輪5Rに関する処理がステップA8に進み、少なくとも右輪5Rから左輪5Lへのトルク移動が禁止される。 In step A3, it is determined whether or not the required torques T Lreq and T R req exceed the road surface reaction force torques T L road and T R road for each of the left and right wheels 5. For example, it is determined whether or not the left axle required torque T L req for the left wheel 5L exceeds the road surface reaction force torque T Lroad , and the right axle required torque T R req for the right wheel 5R exceeds the road surface reaction torque T R road. Whether or not it is determined. If T Lreq > T Lroad , the process relating to the left wheel 5L proceeds to step A8, and torque transfer from at least the left wheel 5L to the right wheel 5R is prohibited. Further, when T Rreq > T R road , the process relating to the right wheel 5R proceeds to step A8, and at least torque transfer from the right wheel 5R to the left wheel 5L is prohibited.
 左右輪5のいずれかについて要求トルクTLreq,TRreqが路面反力トルクTLroad,TRroadを超えている場合にはステップA4に進み、その車輪が車輪速の大きい側であるか否かが判定される。ここで、車輪速の大きい側でない場合にはステップA8に進み、トルク移動が禁止される。一方、車輪速の大きい側である場合には、ステップA5に進む。ステップA5では、移動ゲイン算出部22において車輪速の大きい側の移動ゲインKL1,KR1が算出される。例えば、左輪5Lが車輪速の大きい車輪であってTLreq≦TLroadである場合には、左右輪5の目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|に基づいて、左輪5Lの移動ゲインKL1の値が算出される。このとき、右輪5Rの移動ゲインKR1の値は、0とされる。 If the required torque T Lreq or T R req exceeds the road surface reaction torque T L road or T R road for any of the left and right wheels 5, the process proceeds to step A4, and whether or not the wheel is on the side with the higher wheel speed is determined. It is judged. Here, if the wheel speed is not on the high side, the process proceeds to step A8, and torque movement is prohibited. On the other hand, if the wheel speed is higher, the process proceeds to step A5. In step A5, the movement gain calculation unit 22 calculates the movement gains K L1 and K R1 on the side where the wheel speed is high. For example, when the left wheel 5L is a wheel with a high wheel speed and T Lreq ≤ T Lroad , the absolute value of the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5 | D VRERR | , The value of the movement gain K L1 of the left wheel 5L is calculated. At this time, the value of the movement gain K R1 of the right wheel 5R is set to 0.
 ステップA6では、乗算部38において、左右輪5のうち車輪速の大きい片方の車輪についてのトルク移動量が算出される。例えば、左輪5Lの移動トルクTLAYCに移動ゲインKL1の値を乗じたトルク移動量が算出される。続くステップA7では、前ステップで算出されたトルク移動量を車輪速の大きい側から車輪速の小さい側へと移動させた駆動トルクが算出される。すなわち、車輪速の大きい側の電動機1の駆動トルクからトルク移動量に相当するトルクが減算されるとともに、車輪速の小さい側の電動機1の駆動トルクにそれが加算される。 In step A6, the multiplication unit 38 calculates the torque movement amount for one of the left and right wheels 5 having a higher wheel speed. For example, the torque movement amount is calculated by multiplying the movement torque T LAY C of the left wheel 5L by the value of the movement gain K L1 . In the following step A7, the drive torque obtained by moving the torque movement amount calculated in the previous step from the side where the wheel speed is high to the side where the wheel speed is low is calculated. That is, the torque corresponding to the torque movement amount is subtracted from the drive torque of the motor 1 on the side where the wheel speed is high, and it is added to the drive torque of the motor 1 on the side where the wheel speed is low.
 ステップB1~B2は、主にFB制御に対応する処理に関するものである。
 ステップB1では、制限ゲイン算出部23において制限ゲインKL2,KR2が算出される。例えば、左輪5Lの推定移動速度と実移動速度との差の絶対値|u|に基づいて制限ゲインKL2が算出され、右輪5Rの推定移動速度と実移動速度との差の絶対値|u|に基づいて制限ゲインKR2が算出される。推定移動速度は、例えば車両の車速及び操舵角に基づいて算出され、実移動速度は、左右輪5の車輪速ωLw,ωRwに基づいて算出される。
Steps B1 and B2 mainly relate to the processing corresponding to the FB control.
In step B1, the limiting gain calculation unit 23 calculates the limiting gains K L2 and K R 2 . For example, the limit gain K L2 is calculated based on the absolute value of the difference between the estimated movement speed of the left wheel 5L and the actual movement speed | u |, and the absolute value of the difference between the estimated movement speed and the actual movement speed of the right wheel 5R | The limiting gain K R2 is calculated based on u |. The estimated moving speed is calculated based on, for example, the vehicle speed and the steering angle of the vehicle, and the actual moving speed is calculated based on the wheel speeds ω Lw and ω Rw of the left and right wheels 5.
 続くステップB2では、第二乗算部39において、ステップA7で算出された駆動トルクに制限ゲインKL2,KR2が乗算され、各電動機1についての最終的な駆動トルクが算出される。各電動機1の駆動トルクは、制限ゲインKL2,KR2が小さいほど削減されることになる。その後、ここで算出された最終的な駆動トルクの情報に基づき、制御部24が各電動機1を制御する。このようにしてFF制御とFB制御とがともに実施される。 In the following step B2, in the second multiplication unit 39, the drive torque calculated in step A7 is multiplied by the limiting gains K L2 and K R2 , and the final drive torque for each motor 1 is calculated. The drive torque of each motor 1 is reduced as the limiting gains K L2 and K R2 are smaller. After that, the control unit 24 controls each motor 1 based on the information of the final drive torque calculated here. In this way, both FF control and FB control are performed.
[4.作用と効果]
 (1)上記の実施例では、左右輪5の要求トルクTLreq,TRreqから路面反力トルクTLroad,TRroadを減じたトルクである移動トルクTLAYC,TRAYCが常に算出される。また、左右輪5の目標回転速度差と実回転速度差との偏差がある場合に、移動トルクTLAYC,TRAYCに対応する駆動トルクを一方の電動機1から他方の電動機1へと移動させるFF制御が実施される。このように、スリップの発生に先行して電動機1のトルクを常に移動させておくことで、スリップ時における左右輪5のトルク差を減少させることができ、過大なトルク差の発生を抑制することができる。したがって、車輪軸4や差動機構3など、左右輪5まわりのハードウェアの保護性を改善できる。
[4. Action and effect]
(1) In the above embodiment, the moving torques T LAYC and T RAY C , which are the torques obtained by subtracting the road surface reaction force torques T L road and T R road from the required torques T L req and T R req of the left and right wheels 5, are always calculated. Further, when there is a deviation between the target rotation speed difference of the left and right wheels 5 and the actual rotation speed difference, the FF that moves the drive torque corresponding to the movement torques T LAYC and T RAY C from one motor 1 to the other motor 1. Control is enforced. In this way, by constantly moving the torque of the motor 1 prior to the occurrence of slip, the torque difference between the left and right wheels 5 at the time of slip can be reduced, and the occurrence of an excessive torque difference can be suppressed. Can be done. Therefore, it is possible to improve the protection of the hardware around the left and right wheels 5, such as the wheel axle 4 and the differential mechanism 3.
 (2)上記の実施例では、スリップ推定部21で左右輪5のスリップ度合いが推定される。また、制御部24では、目標回転速度差と実回転速度差との偏差及びスリップ度合いに応じてFF制御とFB制御とが実施される。FF制御は、車輪速の大きい一方を駆動する電動機1から他方の電動機1へと駆動トルクが移送される。また、FB制御では、一対の電動機1の駆動トルクがともに削減される。これらの制御を併用することで、スリップ時における左右輪5のトルク差を減少させることができ、過大なトルク差の発生を抑制することができる。したがって、車両の走行安定性を向上させつつ、車輪軸4や差動機構3など、左右輪5まわりのハードウェアの保護性を改善できる。 (2) In the above embodiment, the slip estimation unit 21 estimates the slip degree of the left and right wheels 5. Further, the control unit 24 performs FF control and FB control according to the deviation between the target rotation speed difference and the actual rotation speed difference and the slip degree. In the FF control, the drive torque is transferred from the motor 1 that drives one of the wheels having a high wheel speed to the motor 1 of the other. Further, in the FB control, the drive torque of the pair of motors 1 is reduced together. By using these controls together, the torque difference between the left and right wheels 5 at the time of slipping can be reduced, and the occurrence of an excessive torque difference can be suppressed. Therefore, it is possible to improve the protection of the hardware around the left and right wheels 5, such as the wheel axle 4 and the differential mechanism 3, while improving the running stability of the vehicle.
 (3)上記の実施例では、制限ゲイン算出部23が、左右輪5の推定移動速度と実移動速度との差の絶対値|u|に応じた制限ゲインKL2,KR2を算出している。また、制御部24は、FB制御において、乗算部38で算出された各電動機1の駆動トルクに制限ゲインKL2,KR2の値を乗じることで、駆動トルクを減少させる制御を実施している。このような制御により、例えばスリップ度合いが比較的小さい状況では要求トルクに応じた駆動トルクで各電動機1を駆動し、スリップ度合いが大きいほど駆動トルクを減少させることが容易となる。つまり、車両の走行状態に応じて駆動トルクを適切に制御することができ、車体の姿勢安定性を維持しつつスリップ時に発生しうるトルク差を減少させることができる。したがって、ハードウェアの保護性をさらに改善できる。 (3) In the above embodiment, the limiting gain calculation unit 23 calculates the limiting gains K L2 and K R2 according to the absolute value | u | of the difference between the estimated moving speed and the actual moving speed of the left and right wheels 5. There is. Further, in the FB control, the control unit 24 controls to reduce the drive torque by multiplying the drive torque of each motor 1 calculated by the multiplication unit 38 by the values of the limiting gains K L2 and K R2 . .. By such control, for example, in a situation where the slip degree is relatively small, each motor 1 is driven with a drive torque corresponding to the required torque, and it becomes easier to reduce the drive torque as the slip degree is larger. That is, the drive torque can be appropriately controlled according to the traveling state of the vehicle, and the torque difference that can occur during slipping can be reduced while maintaining the posture stability of the vehicle body. Therefore, the protection of the hardware can be further improved.
 (4)図4に例示する制限ゲインKL2,KR2は、差の絶対値|u|が所定値未満であれば1であり、差の絶対値|u|が所定値以上であればその値が大きいほど0に近づく特性を持つ。このような設定により、左右輪5のスリップ度合いが大きいほど、各電動機1の駆動トルクをより強く制限することができ、トルク差を減少させることができる。また、差の絶対値|u|が所定値未満の領域は、実質的にトルク制限がない領域である。このように、スリップ度合いが小さい場合には、トルク制限を解除することができる。 (4) The limiting gains K L2 and K R2 illustrated in FIG. 4 are 1 if the absolute value | u | of the difference is less than the predetermined value, and the limit gains K L2 and K R2 are the same if the absolute value | u | of the difference is greater than or equal to the predetermined value. The larger the value, the closer to 0 it has. With such a setting, the larger the slip degree of the left and right wheels 5, the stronger the limit of the drive torque of each motor 1 can be, and the torque difference can be reduced. Further, the region where the absolute value | u | of the difference is less than a predetermined value is a region where there is substantially no torque limit. In this way, when the slip degree is small, the torque limit can be released.
 (5)上記の左右輪5の推定移動速度は、車両の車速及び操舵角に基づいて算出される。このような演算により、左右輪5のスリップ度合いの大小を精度よく把握することができ、電動機1の駆動トルクを適切に移動させることができる。したがって、過大なトルク差の発生を抑制することができ、ハードウェアの保護性をさらに改善できる。 (5) The estimated moving speed of the left and right wheels 5 is calculated based on the vehicle speed and steering angle of the vehicle. By such calculation, the magnitude of the slip degree of the left and right wheels 5 can be accurately grasped, and the drive torque of the electric motor 1 can be appropriately moved. Therefore, it is possible to suppress the occurrence of an excessive torque difference, and it is possible to further improve the protection of the hardware.
 (6)上記の実施例では、移動ゲイン算出部22が、左右輪5の目標回転速度差と実回転速度差との偏差の絶対値|DVRERR|に応じた移動ゲインKL1,KR1を算出している。また、制御部24は、FF制御において、移動トルクTLAYC,TRAYCと移動ゲインKL1,KR1との積に対応する大きさの駆動トルクを移動させる制御を実施している。このような制御により、例えば偏差の絶対値|DVRERR|が比較的小さい状況ではトルク移動量を減少させ、偏差の絶対値|DVRERR|が大きいほどトルク移動量を増加させることが容易となる。つまり、車両の走行状態に応じてトルク移動量を適切に制御することができ、車体の姿勢安定性を維持しつつスリップ時に発生しうるトルク差を減少させることができる。したがって、ハードウェアの保護性をさらに改善できる。 (6) In the above embodiment, the movement gain calculation unit 22 determines the movement gains K L1 and K R1 according to the absolute value | D VRERR | of the deviation between the target rotation speed difference and the actual rotation speed difference of the left and right wheels 5. It is calculated. Further, in the FF control, the control unit 24 controls to move a drive torque having a size corresponding to the product of the moving torques T LAYC and T RAYC and the moving gains K L1 and K R1 . By such control, for example, when the absolute value of deviation | D VRERR | is relatively small, the torque transfer amount is decreased, and when the absolute value of deviation | D VRERR | is large, it becomes easy to increase the torque transfer amount. .. That is, the torque movement amount can be appropriately controlled according to the traveling state of the vehicle, and the torque difference that may occur at the time of slipping can be reduced while maintaining the posture stability of the vehicle body. Therefore, the protection of the hardware can be further improved.
 (7)図3に例示する移動ゲインKL1,KR1は、偏差の絶対値|DVRERR|が所定値未満であれば0であり、偏差の絶対値|DVRERR|が所定値以上であればその値が大きいほど1に近づく特性を持つ。このような設定により、左右輪5のスリップ度合いが大きいほど、より多くのトルクをスリップ輪側からグリップ輪側へと移動させることができ、トルク差を減少させることができる。 (7) The moving gains K L1 and K R1 illustrated in FIG. 3 are 0 if the absolute value | D VRERR | of the deviation is less than the predetermined value, and the absolute value | D VRERR | of the deviation is greater than or equal to the predetermined value. If the value is larger, the characteristic is closer to 1. With such a setting, the larger the slip degree of the left and right wheels 5, the more torque can be moved from the slip wheel side to the grip wheel side, and the torque difference can be reduced.
 また、偏差の絶対値|DVRERR|が所定値未満の領域は、実質的にトルク移動量が0となる領域である。このように、スリップ度合いが小さい場合には、トルク移動を停止させることができ、車体の姿勢安定性を向上させることができる。さらに、移動ゲインKL1,KR1の上限値を1にすることで、トルク移動量が過剰に増加するような事態を防止できる。ただし、トルク移動量を増加させたい場合には、移動ゲインKL1,KR1の上限値を1よりも大きく(例えば、1.1~2.0の範囲内で)設定してもよい。 Further, the region where the absolute value | D VRERR | of the deviation is less than a predetermined value is a region where the torque movement amount is substantially zero. As described above, when the slip degree is small, the torque movement can be stopped and the posture stability of the vehicle body can be improved. Furthermore, by setting the upper limit values of the movement gains K L1 and K R1 to 1, it is possible to prevent a situation in which the torque movement amount increases excessively. However, if it is desired to increase the torque movement amount, the upper limit values of the movement gains K L1 and K R1 may be set to be larger than 1 (for example, within the range of 1.1 to 2.0).
[5.変形例]
 上記の実施例はあくまでも例示に過ぎず、本実施例で明示しない種々の変形や技術の適用を排除する意図はない。本実施例の各構成は、その趣旨を逸脱しない範囲で種々変形して実施できる。また、本実施例の各構成は、必要に応じて取捨選択でき、あるいは適宜組み合わせることができる。
[5. Modification example]
The above examples are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified in this embodiment. Each configuration of this embodiment can be variously modified and implemented without departing from the spirit of the present embodiment. In addition, each configuration of this embodiment can be selected as necessary, or can be combined as appropriate.
 例えば、上記の実施例では車両の後輪に適用された制御装置10を例示したが、前輪に同様の制御装置10を適用することは可能であり、前後輪の両方に同様の制御装置10を適用することも可能である。また、電動機1及び内燃機関を駆動源としたハイブリッド車両に制御装置10を適用することも可能である。少なくとも、上記の実施例におけるスリップ推定部21及び制御部24と同様の機能を制御装置10に実装することで、上記の実施例と同様の効果を獲得することができる。 For example, in the above embodiment, the control device 10 applied to the rear wheels of the vehicle is exemplified, but it is possible to apply the same control device 10 to the front wheels, and the same control device 10 is applied to both the front and rear wheels. It is also possible to apply. It is also possible to apply the control device 10 to a hybrid vehicle using the electric motor 1 and the internal combustion engine as a drive source. At least, by mounting the same functions as the slip estimation unit 21 and the control unit 24 in the above embodiment on the control device 10, the same effects as those in the above embodiment can be obtained.
 また、上記の実施例では、移動ゲインKL1,KR1の値を移動トルクTLAYC,TRAYCに乗算することでトルク移動量を算出しているが、移動ゲインKL1,KR1が乗算されるパラメータを変更して、トルクの減少分を算出するような演算構成にしてもよい。この場合、移動ゲインKL1,KR1と偏差の絶対値|DVRERR|との関係は、図3のグラフを水平方向に左右反転させた形状となる。制限ゲインKL2,KR2についても同様であり、制限ゲインKL2,KR2を用いてトルクの制限量を算出するような演算構成にしてもよい。この場合、制限ゲインKL2,KR2と差の絶対値|u|との関係は、図4のグラフを水平方向に左右反転させた形状となる。したがって、ゲインの特性は図3,図4に示すような特性に限定されない。 Further, in the above embodiment, the torque movement amount is calculated by multiplying the movement torques T LAYC and T RAYC by the values of the movement gains K L1 and K R1 , but the movement gains K L1 and K R1 are multiplied. The calculation configuration may be such that the torque reduction amount is calculated by changing the parameters. In this case, the relationship between the moving gains K L1 and K R1 and the absolute value of the deviation | D VRERR | is a shape in which the graph in FIG. 3 is horizontally inverted. The same applies to the limiting gains K L2 and K R2 , and the calculation configuration may be such that the torque limit amount is calculated using the limiting gains K L2 and K R2 . In this case, the relationship between the limiting gains K L2 and K R2 and the absolute value | u | of the difference is a shape in which the graph in FIG. 4 is horizontally inverted. Therefore, the gain characteristics are not limited to those shown in FIGS. 3 and 4.
1 電動機
1L 左電動機
1R 右電動機
2 減速機構
2L 左減速機構
2R 右減速機構
3 差動機構
4 車輪軸
4L 左車輪軸
4R 右車輪軸
5 左右輪
5L 左輪
5R 右輪
6 インバータ
7 バッテリ
10 制御装置
13 アクセルセンサ
14 ブレーキセンサ
15 舵角センサ
16 車速センサ
18 モータ回転速度センサ
19 車輪速センサ
21 スリップ推定部
22 移動ゲイン算出部
23 制限ゲイン算出部
24 制御部
25 フィードフォワード制御部(FF制御部)
26 フィードバック制御部(FB制御部)
31 車軸要求トルク算出部
32 車軸実トルク算出部
33 車軸角速度算出部
34 イナーシャ推定部
35 イナーシャトルク算出部
36 路面反力トルク算出部
37 移動トルク算出部
38 乗算部
39 第二乗算部
 
1 Electric motor 1L Left motor 1R Right motor 2 Deceleration mechanism 2L Left deceleration mechanism 2R Right deceleration mechanism 3 Differential mechanism 4 Wheel shaft 4L Left wheel shaft 4R Right wheel shaft 5 Left and right wheels 5L Left wheel 5R Right wheel 6 Inverter 7 Battery 10 Control device 13 Accelerator sensor 14 Brake sensor 15 Steering angle sensor 16 Vehicle speed sensor 18 Motor rotation speed sensor 19 Wheel speed sensor 21 Slip estimation unit 22 Movement gain calculation unit 23 Limit gain calculation unit 24 Control unit 25 Feed forward control unit (FF control unit)
26 Feedback control unit (FB control unit)
31 Axle required torque calculation unit 32 Axle actual torque calculation unit 33 Axle angular velocity calculation unit 34 Inertia estimation unit 35 Inertia shuttle torque calculation unit 36 Road surface reaction force torque calculation unit 37 Moving torque calculation unit 38 Multiplication unit 39 Second multiplication unit

Claims (7)

  1.  左右輪を駆動する一対の電動機と前記左右輪にトルク差を付与する差動機構とが搭載された車両の制御装置であって、
     前記左右輪のうち車輪速の大きい一方の要求トルクから、路面から受ける路面反力トルクを減じたトルクである移動トルクを算出する移動トルク算出部と、
     前記左右輪の目標回転速度差と実回転速度差との偏差がある場合に、前記左右輪のうち車輪速の大きい一方を主に駆動する一方の電動機から車輪速の小さい他方を主に駆動する他方の電動機へと前記移動トルクを移動させるフィードフォワード制御部と、
    を備えることを特徴とする、車両の制御装置。
    A vehicle control device equipped with a pair of electric motors that drive the left and right wheels and a differential mechanism that applies a torque difference to the left and right wheels.
    A moving torque calculation unit that calculates the moving torque, which is the torque obtained by subtracting the road surface reaction force torque received from the road surface from the required torque of one of the left and right wheels having the higher wheel speed.
    When there is a deviation between the target rotation speed difference between the left and right wheels and the actual rotation speed difference, one of the left and right wheels that mainly drives the one with the higher wheel speed is mainly driven by the other with the smaller wheel speed. A feed forward control unit that moves the movement torque to the other motor,
    A vehicle control device, characterized in that it is provided with.
  2.  前記左右輪のスリップ度合いを推定するスリップ推定部と、
     前記スリップ度合いに応じて前記一対の電動機のうち少なくとも一方の駆動トルクを減少させるフィードバック制御部と、
    を備えることを特徴とする、請求項1記載の車両の制御装置。
    A slip estimation unit that estimates the slip degree of the left and right wheels, and a slip estimation unit.
    A feedback control unit that reduces the drive torque of at least one of the pair of motors according to the degree of slip.
    1. The vehicle control device according to claim 1.
  3.  前記左右輪の推定移動速度と実移動速度との差の絶対値に応じた制限ゲインを算出する制限ゲイン算出部を備え、
     前記フィードバック制御部が、前記駆動トルクに前記制限ゲインを乗じることで前記駆動トルクを減少させる
    ことを特徴とする、請求項2記載の車両の制御装置。
    It is equipped with a limit gain calculation unit that calculates a limit gain according to the absolute value of the difference between the estimated movement speed of the left and right wheels and the actual movement speed.
    The vehicle control device according to claim 2, wherein the feedback control unit reduces the drive torque by multiplying the drive torque by the limit gain.
  4.  前記制限ゲインは、前記差の絶対値が所定値未満であれば1であり、前記差の絶対値が前記所定値以上であればその値が大きいほど0に近づく特性を持つ
    ことを特徴とする、請求項3記載の車両の制御装置。
    The limiting gain is 1 if the absolute value of the difference is less than a predetermined value, and is characterized by having a characteristic that the larger the absolute value of the difference is, the closer it is to 0. , The vehicle control device according to claim 3.
  5.  前記左右輪の推定移動速度は、前記車両の車速及び操舵角に基づいて算出される
    ことを特徴とする、請求項3または4記載の車両の制御装置。
    The vehicle control device according to claim 3 or 4, wherein the estimated moving speeds of the left and right wheels are calculated based on the vehicle speed and the steering angle of the vehicle.
  6.  前記偏差の絶対値に応じた移動ゲインを算出する移動ゲイン算出部を備え、
     前記フィードフォワード制御部が、前記偏差がある場合に、前記移動トルクと前記移動ゲインとの積に対応するトルクを移動させる
    ことを特徴とする、請求項1~5のいずれか1項に記載の車両の制御装置。
    It is equipped with a movement gain calculation unit that calculates the movement gain according to the absolute value of the deviation.
    The one according to any one of claims 1 to 5, wherein the feedforward control unit moves a torque corresponding to a product of the moving torque and the moving gain when there is the deviation. Vehicle control device.
  7.  前記移動ゲインは、前記偏差の絶対値が所定値未満であれば0であり、前記偏差の絶対値が前記所定値以上であればその値が大きいほど1に近づく特性を持つ
    ことを特徴とする、請求項6記載の車両の制御装置。
     
    The moving gain is 0 if the absolute value of the deviation is less than a predetermined value, and is characterized by having a characteristic that the larger the absolute value of the deviation is, the closer it is to 1. , The vehicle control device according to claim 6.
PCT/JP2021/031958 2020-09-30 2021-08-31 Vehicle control device WO2022070732A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-165171 2020-09-30
JP2020165171A JP7480661B2 (en) 2020-09-30 2020-09-30 Vehicle control device
JP2020-165172 2020-09-30
JP2020165172A JP2022057096A (en) 2020-09-30 2020-09-30 Vehicle control device

Publications (1)

Publication Number Publication Date
WO2022070732A1 true WO2022070732A1 (en) 2022-04-07

Family

ID=80950053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/031958 WO2022070732A1 (en) 2020-09-30 2021-08-31 Vehicle control device

Country Status (1)

Country Link
WO (1) WO2022070732A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698418A (en) * 1992-09-16 1994-04-08 Hitachi Ltd Estimating device for counter force of road surface, differential device for right and left wheels, control device for automobile motor torque
JP2013230069A (en) * 2012-03-27 2013-11-07 Honda Motor Co Ltd Vehicular drive device
JP2017118735A (en) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 Vehicle drive force control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0698418A (en) * 1992-09-16 1994-04-08 Hitachi Ltd Estimating device for counter force of road surface, differential device for right and left wheels, control device for automobile motor torque
JP2013230069A (en) * 2012-03-27 2013-11-07 Honda Motor Co Ltd Vehicular drive device
JP2017118735A (en) * 2015-12-25 2017-06-29 トヨタ自動車株式会社 Vehicle drive force control device

Similar Documents

Publication Publication Date Title
JP6261154B2 (en) Vehicle control method using in-wheel motor
JP2004104991A (en) Control method and system for independent braking and controllability of vehicle with regenerative braking
US20110307129A1 (en) Vehicle steerability and stability control via independent wheel torque control
JP2004099029A (en) Braking and controllability control method and system of vehicle with regenerative braking
CN107848527B (en) Vehicle turning control device
WO2015190349A1 (en) Drive control device with traction control function for right-left independent drive vehicle
JP2010081720A (en) Vehicular driving force controller
KR20150062779A (en) Enhancement of cornering stability of direct-drive electric vehicle
WO2012104923A1 (en) Drive control device for hybrid vehicle, method thereof, and hybrid vehicle
JP2008062687A (en) Driving force distribution controller for vehicle
JP2017005958A (en) Electric-vehicular drive force control apparatus
JP2008126985A (en) Steering control device for vehicle
WO2024038710A1 (en) Design method and vehicle control device
JP2022057096A (en) Vehicle control device
JP4961751B2 (en) Vehicle driving force distribution device
WO2023013565A1 (en) Vehicle control device
WO2022070732A1 (en) Vehicle control device
US10752288B2 (en) Lateral motion control for cornering and regenerative braking energy capture
JP4852931B2 (en) Vehicle left and right torque distribution control device
WO2021220693A1 (en) Control device for vehicle
JP7480661B2 (en) Vehicle control device
JPH05131858A (en) Hybrid car control method
JP2023174056A (en) Braking and driving power control device
CN117693437A (en) Control system for vehicle
JP4918787B2 (en) Driving force distribution device for four-wheel independent drive vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21875035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21875035

Country of ref document: EP

Kind code of ref document: A1