WO2022068856A1 - 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法 - Google Patents

高等向性和长接触疲劳寿命的高碳轴承钢及制造方法 Download PDF

Info

Publication number
WO2022068856A1
WO2022068856A1 PCT/CN2021/121606 CN2021121606W WO2022068856A1 WO 2022068856 A1 WO2022068856 A1 WO 2022068856A1 CN 2021121606 W CN2021121606 W CN 2021121606W WO 2022068856 A1 WO2022068856 A1 WO 2022068856A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing steel
contact fatigue
fatigue life
steel
carbon bearing
Prior art date
Application number
PCT/CN2021/121606
Other languages
English (en)
French (fr)
Inventor
曹文全
俞峰
王辉
王存宇
徐海峰
许达
刘正东
Original Assignee
钢铁研究总院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 钢铁研究总院 filed Critical 钢铁研究总院
Publication of WO2022068856A1 publication Critical patent/WO2022068856A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Definitions

  • the invention belongs to the technical field of homogenization and refinement control of inclusions, carbides and matrix structures of high-end special steels, and particularly provides a high-carbon bearing steel with high tropism and long contact fatigue life and a manufacturing method.
  • Bearings are the key basic parts of various high-end equipment, and their service life and reliability determine the life and reliability of the main engine, and bearing steel is the key factor for bearing performance. With the continuous improvement of the life and reliability of the main engine, the contact fatigue life and reliability of bearing steel are required to be continuously improved.
  • Long-life and high-reliability bearing steel not only requires high contact fatigue performance, excellent wear resistance, but also requires high isotropy and toughness.
  • the impact toughness and tensile strength of traditional bearing steel are relatively low, especially the impact toughness and tensile strength in the vertical rolling direction are insufficient, resulting in low contact fatigue performance and reliability of bearing steel, which cannot meet the long life of various high-end equipment. In order to meet the demand, it is necessary to develop bearing steel materials with longer contact fatigue life, better wear resistance and higher toughness.
  • the impact toughness and mechanical properties of traditional bearing steel are quite different in parallel and vertical rolling directions, which seriously affects the strength, toughness, wear resistance and contact fatigue properties of bearing steel.
  • the main elements that lead to the anisotropy of mechanical properties of traditional bearing steel include at least three.
  • the traditional bearing steel contains a high sulfur content ( ⁇ 0.015%), which leads to the formation of parallel to the rolling direction during the casting and rolling process of the bearing steel.
  • the elongated sulfide (MnS) splits the matrix structure perpendicular to the rolling direction, resulting in the mechanical properties of this direction being much lower than those parallel to the rolling direction;
  • second, during the casting and rolling process, traditional bearing steel It is easy to form network carbides and banded carbides, which seriously reduces the impact toughness and mechanical properties;
  • third, the original austenite grains in high carbon bearing steel are generally not less than 20 microns, which is not conducive to the improvement of bearing steel strength and toughness.
  • the invention provides a high-carbon bearing steel with high tropism and long contact fatigue life and a manufacturing method, and the chemical composition design and manufacturing method of the high-carbon bearing steel with isotropy and long contact fatigue life.
  • the invention proposes a new type of bearing steel chemical composition design combining ultra-low sulfur (S% ⁇ 10ppm) and micro-alloying (mainly micro-alloying elements are Nb, V and Mo) to reduce the mesh and band in the bearing steel.
  • the carbide grade further improves the isotropy and toughness of the bearing steel.
  • the new bearing steel based on the combined composition design of ultra-low sulfur and microalloying and the existing bearing steel production equipment process has high isotropic properties: the tensile strength in the vertical rolling direction is Rm ⁇ 2450MPa, and it is the same as that in the parallel rolling direction.
  • the tensile strength ratio is not less than 0.8; the impact toughness Aku in the vertical rolling direction is not less than 13J, and the impact toughness ratio in the parallel rolling direction is not less than 0.8. More importantly, the contact fatigue performance of the new bearing steel is improved by 5-10 times.
  • the chemical composition design idea of the present invention a new chemical composition design combining ultra-low sulfur composition control and microalloying of Nb, Mo, V and other elements to obtain high-end bearing steel with high tropism and ultra-long contact fatigue life.
  • the chemical composition of the bearing steel of the present invention is ultra-low sulfur and micro-alloying on the basis of the traditional GCr15 chemical composition, and the composition is designed as: C: 0.93-1.05wt%, Cr: 1.45-1.60wt%, Si: 0.20-0.35 wt%, Mn: 0.25-0.45wt%, P ⁇ 0.015wt%, S ⁇ 10ppm, Nb: 0.01-0.20wt%, Mo: 0.01-0.20wt%, V: 0.01-0.20wt%, the balance is Fe;
  • the addition of Nb, V, Mo microalloying elements is single or combined addition, but the total amount of microalloying elements is limited within the range of 0.05wt% ⁇ Nb+Mo+V ⁇ 0.40wt%.
  • the carbide content in the bearing steel should be controlled within the range of 0.93wt%-1.05wt%;
  • Mn As an element for improving the hardenability of bearing steel, it should not be less than 0.25wt%. Excessive Mn content will make it more difficult to control Mn segregation at grain boundaries and retained austenite content, generally not exceeding 0.45wt%;
  • Si As an element that improves the elastic properties of bearing steel, the presence of Si can not only inhibit the appearance of cementite during low temperature tempering of bearing steel, but also increase the elastic limit of bearing steel. But too high Si content will reduce the cutting performance of high carbon bearing steel, so the Si content in the new bearing steel should be controlled between 0.20wt%-0.35wt%;
  • Cr As an element that improves the hardenability of bearing steel and promotes the stability of carbides, it plays the role of high hardness of the matrix and stabilizing carbides, and the content of Cr in the bearing steel is required to be not less than 1.45wt%. However, too high Cr content is not conducive to carbide control on the one hand, and is also not conducive to the improvement of strength and toughness. Therefore, the content of Cr element should be controlled within the range of 1.45wt%-1.60wt%;
  • Ni is an element that improves the toughness of bearing steel, but due to the high price of Ni, the Ni content in bearing steel is generally controlled to be no more than 0.25wt%;
  • Cu is an element beneficial to the improvement of corrosion resistance in bearing steel, but too high Cu content is not conducive to hot working of bearing steel, and its content should not be greater than 0.20wt%.
  • Nb, Mo, and V All are micro-alloying elements, which can be regulated by heat treatment to form single or composite strong carbides, thereby refining the carbide and matrix prior austenite grain sizes of bearing steel, and further improving new bearings Isotropy, toughness and contact fatigue properties of steel.
  • their content should be within the range of ⁇ 0.2wt%, and the total amount of Nb, Mo, V microalloying elements should be controlled within 0.05wt% ⁇ Nb+Mo+V Within the range of ⁇ 0.40wt%.
  • the steel production process of the present invention is a manufacturing process such as smelting, casting, hot rolling, and heat treatment, and the specific process steps and controlled parameters are as follows:
  • Hot rolling bar heating the billet at 1100-1250°C, first rough rolling and then finish rolling, then rapidly cooled to 500-700°C and then slowly cooled to room temperature to reduce or even avoid the appearance of reticulated carbides, and obtain the rolled state Bearing steel bars;
  • Spheroidizing annealing is performed on the hot-deformed steel.
  • the specific spheroidizing annealing process is: firstly heated to 770-840°C and kept for 2-10h, then cooled to 680-750°C at 10-30°C/h and kept at this temperature Incubate for 2-10 hours, and finally cool to 400-700°C at 10-30°C/h, and then air-cool to room temperature.
  • the microstructure of carbides with uniform distribution and fine quality on the fine ferrite matrix is obtained, and the industrial production of new bearing steel bars is completed.
  • the spheroidized annealed bearing steel is subjected to quenching and tempering heat treatment to obtain bearing steel with high strength and toughness, high directional performance and long service life.
  • the specific quenching and tempering process is: firstly heated to 820-860°C for 0.2-2 hours, then oil quenched to room temperature, and finally the quenched bar is tempered at 150-250°C for 1-6 hours to obtain spherical carbides High hardness and high toughness microstructure evenly distributed on the martensite matrix.
  • the high strength, toughness and ultra-high contact fatigue properties of the invention steel provide a high-end material basis for ultra-long contact fatigue life and high-reliability bearing manufacturing.
  • the novel bearing steel with ultra-low sulfur and micro-alloying as the main features described in the present invention can be industrialized on a large scale by the existing process equipment such as smelting, continuous casting, hot rolling and heat treatment.
  • Figure 1 is the metallographic diagram of 1# steel A-class fine series 0.5;
  • Figure 2 is the metallographic diagram of 8# steel A-class fine series 2.0;
  • Figure 3 is a metallographic diagram of grade 1 carbide strip and mesh of 6# steel
  • Figure 4 is the metallographic diagram of grade 3 carbide ribbon and mesh of 8# steel
  • Figure 5 is a metallographic diagram of grade 1 carbide strip and mesh of 6# steel
  • Figure 6 is a grade 3 metallographic diagram of carbide ribbon and mesh of 8# steel.
  • This embodiment is mainly aimed at 50 kg induction furnace smelting, die casting and forging of the new bearing steel, and evaluation of the structure, mechanical properties, contact fatigue properties, etc. through quenching and low temperature tempering.
  • Step 1 Inventing the smelting of steel:
  • the cast ingot is a 50kg round ingot with a diameter of 120mm.
  • Step 2 Forging of Steel:
  • the ingot of 1-8# steel is heated at 1200°C and kept for 6 hours before forging and billeting.
  • the opening temperature of forging is 1150 °C
  • the final forging temperature is 900 °C
  • the water is cooled to 600 °C and then slowly cooled to room temperature.
  • the final product size is a 60mm diameter bar.
  • Step 3 Bar spheroidizing annealing:
  • the above-mentioned forging billets were spheroidized and annealed according to the following process: firstly heated at 790°C and kept for 4 hours, then furnace cooled to 720°C at 15°C/hour and kept at this temperature for 2 hours, and finally cooled to 650°C at 15°C/hour. °C and air-cooled to room temperature.
  • Step 4 Quenching and tempering of spheroidized material:
  • the spheroidized bar was heated to 840°C for 0.5 hours for quenching and 170°C for 3 hours for tempering to evaluate the microstructure, mechanical properties and contact fatigue properties.
  • the specific evaluation results are shown in Table 2.
  • Step 5 Structural Performance Evaluation:
  • a is the ratio of the tensile strength perpendicular to the rolling direction to the tensile strength parallel to the rolling direction;
  • b is the ratio of the impact toughness Aku perpendicular to the rolling direction to the impact toughness Aku parallel to the rolling direction;
  • Table 3 compares the sulfide rating results of the invention steel and the comparison steel. It can be seen that the ultra-low sulfur chemical composition control endows the bearing steel with equiaxed and evenly distributed sulfides; Table 4 shows the carbide bands of the invention steel and the comparison steel. The results of grading of carbide and carbide network show that the alloying design of new steel grades greatly reduces the carbide band and network grades of bearing steel, and greatly improves the uniformity of carbide distribution in bearing steel.
  • Figures 1 and 2 show the comparison of A-type fine series inclusions of 1# invention steel and 8# comparative steel, respectively, which further illustrates the effect of low sulfur content on the morphology of sulfide inclusions.
  • Figures 3 and 4 show the comparison of the banded structure of the 6# invention steel and the 8# steel, respectively
  • Figures 5 and 6 show the comparison of the network carbide of the 6# invention steel and the 8# steel, respectively.
  • Figures 3-6 further demonstrate that the chemical composition design of microalloying greatly reduces the carbide band and mesh levels in bearing steel. Therefore, it can be concluded that sulfide refinement, small amount and good control of carbide band network in the invention steel are the decisive factors for obtaining the good isotropy of the invention steel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

一种高等向性和长接触疲劳寿命的高碳轴承钢及制造方法,成分设计为:C:0.93-1.05wt%、Cr:1.45-1.60wt%、Si:0.20-0.35wt%,Mn:0.25-0.45wt%、P≤0.015wt%、S≤10ppm、Nb:0.01-0.20wt%、Mo:0.01-0.20wt%、V:0.01-0.20wt%,余量为Fe;其中Nb、V、Mo微合金化元素的添加的为单一或联合添加,微合金总量限制在0.05%≤Nb+Mo+V≤0.40%的范围内。优点在于,获得高等向性和超长接触疲劳寿命的高端轴承钢。

Description

高等向性和长接触疲劳寿命的高碳轴承钢及制造方法
本申请要求于2020年09月29日提交中国专利局、申请号为CN202011055618.X、发明名称为“高等向性和长接触疲劳寿命的高碳轴承钢及制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于高端特殊钢的夹杂物、碳化物与基体组织均质化和细质化控制技术领域,特别是提供了一种高等向性和长接触疲劳寿命的高碳轴承钢及制造方法。
背景技术
轴承是各种高端装备的关键基础件,其服役寿命与可靠性决定了主机的寿命与可靠性,而轴承钢则是轴承性能好坏的关键因素。随着主机寿命和可靠性不断提升,要求轴承钢的接触疲劳寿命与可靠性也不断提高。长寿命和高可靠性轴承钢不仅需要高的接触疲劳性能、优异的耐磨性能,还需要较高的等向性和强韧性。但传统轴承钢的冲击韧性和抗拉强度相对较低,特别是垂直轧向的冲击韧性和抗拉强度不足,导致轴承钢的接触疲劳性能和可靠性偏低,不能满足各种高端装备长寿命需求,需要开发更长接触疲劳寿命、更优异耐磨性和更高强韧性轴承钢材料。
传统轴承钢的冲击韧性和力学性能在平行与垂直轧向等方向差别较大,严重影响了轴承钢的强韧性、耐磨性和接触疲劳性能。导致传统轴承钢力学性能各向异性的主要元素至少包括三个,一是传统轴承钢中含有较高的硫含量(≤0.015%),导致轴承钢铸造和轧制过程中形成平行于轧向的长条状硫化物(MnS),割裂了垂直于轧向的基体组织,导致该方向的力学性能远远低于平行于轧向的力学性能;二是在铸造和轧制过程中,传统轴承钢易于形成网状碳化物和带状碳化物,严重降低了冲击韧性和力学性能;三是高碳轴承钢中原始奥氏体晶粒一般不小于20微米,不利于轴承钢强韧性提升。因此未来长寿命轴承钢需要进行等向性能和高强韧性的夹杂物、碳化物和基体组织的细化与均匀化,从而获得高等向性、高强韧性和超长接触疲劳性能的高碳轴承钢。
发明内容
本发明提供了一种高等向性和长接触疲劳寿命的高碳轴承钢及制造方法,具备等向性和长接触疲劳寿命的高碳轴承钢化学成分设计及其制造方法。
本发明提出了超低硫(S%≤10ppm)和微合金化(主要微合金化元素为Nb、V和Mo)相结合的新型轴承钢化学成分设计,降低轴承钢中的网状与带状碳化物级别,进一步提升轴承钢的等向性与强韧性。借助现有轴承钢的冶炼、铸造、热轧和热处理等生产装备和工艺实现超低硫和微合金化为特征的新型化学成分轴承钢工业化制造。基于超低硫和微合金化相结合成分设计和现有轴承钢生产装备工艺制造的新型轴承钢具有高的等向性能:垂直轧向的抗拉强度Rm≥2450MPa,且其与平行轧向的抗拉强度比值不低于0.8;垂直轧向的冲击韧性Aku≥13J,且其与平行轧向的冲击韧性比值也不低于0.8。另外更加重要的是新型轴承钢的接触疲劳性能提升5-10倍。
本发明化学成分设计思路:超低硫成分控制和Nb、Mo、V等元素微合金化相结合的新型化学成分设计,获得高等向性和超长接触疲劳寿命的高端轴承钢。
本发明轴承钢的化学成分是在传统GCr15化学成分的基础上进行超低硫和微合金化,成分设计为:C:0.93-1.05wt%、Cr:1.45-1.60wt%、Si:0.20-0.35wt%,Mn:0.25-0.45wt%、P≤0.015wt%、S≤10ppm、Nb:0.01-0.20wt%、Mo:0.01-0.20wt%、V:0.01-0.20wt%,余量为Fe;其中Nb、V、Mo微合金化元素的添加为单一或联合添加,但微合金化元素的总量限制在0.05wt%≤Nb+Mo+V≤0.40wt%的范围内。
在热处理控制、力学和抗疲劳方面,通过正火处理或球化退火处理,获得均匀细小的碳化物。通过常规轴承钢淬火和低温回火,获得超细的原奥氏体组织、碳化物颗粒,其中原始奥氏体晶粒度不小于10级。在力学性能和接触疲劳性能上,发明钢平行于轧向的抗拉强度Rm≥2450MPa,垂直于轧向的抗拉强度Rm≥2200MPa,平行于轧向的冲击韧性Aku≥13J,垂直于轧向的冲击韧性Aku≥10.5J;在接触疲劳性能方面,发明钢在4.5GPa的赫兹应力下的接触疲劳寿命L 10达到5-12×10 7次,比传统高 碳轴承钢高出为5-10倍。
本发明各元素的作用及配比依据如下:
C:作为轴承钢中碳化物形成元素和高淬透性、淬硬性元素,一方面要保证10%左右的碳化物含量,但过高的碳化物含量则会产生粗大碳化物,另一方面又要保证马氏体基体的硬度超过58HRC。因此轴承钢中的碳含量应控制在0.93wt%-1.05wt%的范围内;
Mn:作为提升轴承钢淬透性的元素,不应低于0.25wt%。过高的Mn含量会导致Mn在晶界偏析和残余奥氏体含量控制难度加大,一般不超过0.45wt%;
Si:作为轴承钢中提高弹性性能的元素,Si的存在不仅可以抑制轴承钢低温回火过程中渗碳体的出现,同时提高轴承钢的弹性极限。但过高的Si含量会降低高碳轴承钢的切削性能,因此新型轴承钢中的Si含量应控制在0.20wt%-0.35wt%之间;
Cr:作为提高轴承钢淬透性和促进碳化物稳定的元素,起到基体高硬度和稳定碳化物的作用,需要轴承钢中的Cr含量不低于1.45wt%。但是过高的Cr含量一方面不利于碳化物控制,同时也不利于强韧性提升。因此Cr元素含量应该控制在1.45wt%-1.60wt%的范围内;
S:作为轴承钢原材料的带入元素,过高的S含量会导致钢液凝固过程中产生大片状硫化物(MnS),在轧制过程中形成平行于轧制方向的长条状MnS,割裂了垂直于轧制方向的轴承钢基体,恶化了垂直于轧制方向的轴承钢强韧性,需要严格控制。为了保证轴承钢的高等向性,需要将轴承钢中的S含量控制在10ppm以下;
P:作为轴承钢原材料的带入元素,过高的P含量会导致钢液凝固过程中在晶界偏聚,恶化轴承钢的强韧性,需要加以控制。但考虑到轴承钢生产经济性和保证轴承钢强韧性,需要将轴承钢中的P含量控制在P≤0.015wt%;
Ni:Ni是提高轴承钢韧性的一种元素,但由于Ni价格过高,所以一般控制轴承钢中的Ni含量不大于0.25wt%;
Cu:Cu是轴承钢中有益于耐蚀性提升的元素,但过高的Cu含量不利于轴承钢的热加工,其含量不应大于0.20wt%的范围内。
Nb、Mo、和V:均是微合金化元素,可以通过热处理调控,形成单一或复合的强碳化物,从而细化轴承钢的碳化物与基体原奥氏体晶粒尺寸,进一步提升新型轴承钢的等向性、强韧性和接触疲劳性能。但考虑到Nb、Mo、和V微合金化元素成本较高,应将其含量≤0.2wt%范围内,且Nb、Mo、V微合金总添加量控制在0.05wt%≤Nb+Mo+V≤0.40wt%的范围内。
本发明的制造工艺及条件为:
本发明钢生产工艺为冶炼、铸造、热轧、热处理等制造工艺过程,具体工艺步骤及控制的参数如下:
(1)钢的冶炼与凝固:适用于转炉、电炉和感应炉冶炼,采用连铸生产铸坯或模铸生产铸锭;
(2)铸坯或铸锭的热轧或热连轧或锻造
热连轧棒材:将铸坯经1100-1250℃加热,先粗轧后精轧,轧后快速冷却到在500-700℃后缓冷到室温减少甚至避免网状碳化物出现,得到轧态轴承钢棒材;
(3)球化退火热处理
对热变形后的钢材进行球化退火,具体球化退火工艺为:先加热到770-840℃并保温2-10h,然后以10-30℃/h炉冷到680-750℃并在此温度下保温2-10小时,最后以10-30℃/h炉冷到400-700℃后出炉空冷到室温。球化退火后获得细小铁素体基体上分布均匀和细质的碳化物的微观组织结构,完成新型轴承钢棒材工业化生产。
(4)淬回火热处理
将球化退火的轴承钢进行淬回火热处理,可以获得高强韧、高等向性能、超长寿命轴承钢。具体淬回火工艺为:先加热到820-860℃保温0.2-2小时,然后油淬火到室温,最后将淬火棒材在150-250℃进行1-6小时的回火处理,获得球状碳化物均匀分布在马氏体基体上的高硬度和高强韧的组织结构。
通过超低硫化学成分和微合金化相结合的成分设计,实现高端特殊钢中硫化物的少量化和细小化,碳化物和基体组织的细化与均匀化,从而实现轴承钢的力学性能在各个方向基本一致,避免了传统轴承钢平行轧向和 垂直轧向等方向力学性能的巨大差异,实现轴承钢强韧性和接触疲劳寿命的大幅度提升。发明钢的高强韧性和超高接触疲劳性能为超长接触疲劳寿命和高可靠轴承制造提供了高端材料基础。本发明所阐述的以超低硫和微合金化为主要特征的新型轴承钢可以通过冶炼、连铸、热轧和热处理等现有工艺装备进行大规模工业化生产。
说明书附图
图1为1#钢A类细系0.5级金相图;
图2为8#钢A类细系2.0级金相图;
图3为6#钢的碳化物带状和网状1级金相图;
图4为8#钢的碳化物带状和网状3级金相图;
图5为6#钢的碳化物带状和网状1级金相图;
图6为8#钢的碳化物带状和网状3级金相图。
具体实施方式
实施例:
本实施例主要针对于新型轴承钢进行50公斤感应炉冶炼、模铸、锻造制造新型轴承钢和通过淬火与低温回火进行组织结构、力学性能、接触疲劳性能等的评价。
钢的冶炼:
本发明钢8炉钢的化学成分见表1。
表1 发明钢的化学成分(wt%)余量为Fe
Figure PCTCN2021121606-appb-000001
Figure PCTCN2021121606-appb-000002
本发明轴承钢制备工艺流程实施事例如下:
步骤1:发明钢的冶炼:
由试验室真空感应炉冶炼,浇铸锭型为50kg的圆锭,铸锭直径120mm。
步骤2:钢的锻造:
1-8#钢的钢锭经过1200℃加热,保温6小时,进行锻造开坯。锻造的开锻温度1150℃,终锻温度900℃,锻后水冷到600℃后缓冷到室温。最终成品尺寸为直径60mm棒材。
步骤3:棒材球化退火:
将上述锻造坯料按照如下工艺进行球化退火:先加热790℃并保温4小时后以15℃/小时炉冷到720℃并在此温度下保温2小时,最后以15℃/小时炉冷到650℃后出炉空冷到室温。
步骤4:球化材淬回火:
将球化后棒材加热到840℃保温0.5小时进行淬火和170℃保温3小时进行回火处理,以进行微观组织结构、力学性能、接触疲劳性能评价。具体评价结果见表2所示。
步骤5:结构性能评价:
通过洛氏硬度计进行淬回火钢硬度测试。通过标准拉伸和冲击进行垂直和平行于锻造方向的等向性和强韧性评价。通过接触疲劳试验机进行轴承钢的接触疲劳寿命评价。具体结果如表2所示。可以看出,超低硫和微合金化轴承钢比普通轴承钢具有更高的等向性、更高强韧性、和更长接触疲劳寿命。
表2 发明钢和对比钢性能
Figure PCTCN2021121606-appb-000003
Figure PCTCN2021121606-appb-000004
*表2中a为垂直于轧制方向抗拉强度与平行于轧制方向抗拉强度的比值;
**表2中b为垂直于轧制方向冲击韧性Aku与平行于轧制方向冲击韧性Aku的比值;
表3发明钢与对比钢的硫化物评级结果对比,可以看出,超低硫化学成分控制赋予了轴承钢等轴均匀分布的硫化物;表4给出了发明钢与对比钢的碳化物带状与碳化物网状评级结果,表明新钢种合金化设计极大程度降低了轴承钢的碳化物带状与网状级别,大幅度提高了轴承钢碳化物分布均匀性。图1和图2分别给出了1#发明钢和8#对比钢的A类细系夹杂物对比,进一步说明低硫含量对硫化物夹杂形貌的影响。图3和图4分别给出了6#发明钢与8#钢的带状组织对比图,图5和图6分别给出了6#发明钢与8#钢的网状碳化物对比图。图3-图6进一步证明微合金化的化学成分设计大幅度降低了轴承钢碳化物带状和网状级别。因此可以得出结论发明钢中硫化物细化、少量化以及碳化物带状网状的良好控制是获得发明钢良好等向性的决定性因素。
表3 发明钢与对比钢的A类夹杂物的评级结果
Figure PCTCN2021121606-appb-000005
表4 发明钢与对比钢的碳化物评级结果
Figure PCTCN2021121606-appb-000006
Figure PCTCN2021121606-appb-000007
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (11)

  1. 一种高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,成分设计为:C:0.93-1.05wt%、Cr:1.45-1.60wt%、Si:0.20-0.35wt%,Mn:0.25-0.45wt%、P≤0.015wt%、S≤10ppm、Nb:0.01-0.20wt%、Mo:0.01-0.20wt%、V:0.01-0.20wt%,余量为Fe;其中Nb、V、Mo微合金化元素的添加为单一或联合添加,微合金化元素的总量限制在0.05wt%≤Nb+Mo+V≤0.40wt%的范围内;
    所述高碳轴承钢原始奥氏体晶粒度不小于10级,在力学性能和接触疲劳性能上平行于轧向的抗拉强度Rm≥2450MPa,垂直于轧向的抗拉强度Rm≥2200MPa,平行于轧向的冲击韧性Aku≥13J,垂直于轧向的冲击韧性Aku≥10.5J;在接触疲劳性能在4.5GPa的赫兹应力下的接触疲劳寿命L 10达到5-12×10 7次,比传统高碳轴承钢高出为5-10倍。
  2. 一种高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,成分设计为:C:0.93-1.05wt%、Cr:1.45-1.60wt%、Si:0.20-0.35wt%,Mn:0.25-0.45wt%、P≤0.015wt%、S≤10ppm、Nb:0.01-0.20wt%、Mo:0.01-0.20wt%、V:0.01-0.20wt%,余量为Fe;其中Nb、V、Mo微合金化元素的添加为单一或联合添加,微合金化元素的总量限制在0.05wt%≤Nb+Mo+V≤0.40wt%的范围内。
  3. 根据权利要求1所述的高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,所述垂直于轧向的抗拉强度与平行于轧向的抗拉强度的比值不低于0.8。
  4. 根据权利要求1所述的高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,所述垂直于轧向的冲击韧性与平行于轧向的冲击韧性的比值不低于0.8。
  5. 根据权利要求1所述的高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,成分设计还包括Ni和/或Cu;所述Ni的含量不大于0.25wt%,所述Cu的含量不大于0.20wt%。
  6. 根据权利要求5所述的高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,成分设计为:C:0.95wt%、Cr:1.60wt%、Si:0.35wt%,Mn:0.45wt%、P:0.010wt%、S:10ppm、Ni:0.15wt%、Cu:0.15wt%、 Nb:0.01wt%、Mo:0.20wt%、V:0.01wt%,余量为Fe;Nb+Mo+V=0.22wt%。
  7. 根据权利要求5所述的高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,成分设计为:C:0.97wt%、Cr:1.49wt%、Si:0.28wt%,Mn:0.35wt%、P:0.010wt%、S:10ppm、Ni:0.05wt%、Cu:0.05wt%、Nb:0.01wt%、Mo:0.05wt%、V:0.15wt%,余量为Fe;Nb+Mo+V=0.30wt%。
  8. 根据权利要求5所述的高等向性和长接触疲劳寿命的高碳轴承钢,其特征在于,成分设计为:C:1.05wt%、Cr:1.55wt%、Si:0.30wt%,Mn:0.40wt%、P:0.010wt%、S:5ppm、Ni:0.05wt%、Nb:0.10wt%、Mo:0.10wt%、V:0.20wt%,余量为Fe;Nb+Mo+V=0.40wt%。
  9. 一种权利要求1~8任意一项所述高等向性和长接触疲劳寿命的高碳轴承钢的制造方法,其特征在于,具体工艺步骤及控制的参数如下:
    (1)钢的冶炼与凝固:适用于转炉、电炉和感应炉冶炼,采用连铸生产铸坯或模铸生产铸锭;
    (2)铸坯或铸锭的热轧或热连轧或锻造
    热连轧棒材:将铸坯经1100-1250℃加热,先粗轧后精轧,轧后快速冷却到在500-700℃后缓冷到室温减少甚至避免网状碳化物出现,得到轧态轴承钢棒材;
    (3)球化退火热处理
    对热变形后的钢材进行球化退火,具体球化退火工艺为:先加热到770-840℃并保温2-10h,然后以10-30℃/h炉冷到680-750℃并在此温度下保温2-10小时,最后以10-30℃/h炉冷到400-700℃后出炉空冷到室温;球化退火后获得细小铁素体基体上分布均匀和细质的碳化物的微观组织结构;
    (4)淬回火热处理
    淬回火工艺为:先加热到820-860℃保温0.2-2小时,然后油淬火到室温,最后将淬火棒材在150-250℃进行1-6小时的回火处理。
  10. 根据权利要求9所述的制造方法,其特征在于,所述球化退火工艺为:先加热到790℃并保温4h,然后以15℃/h炉冷到720℃并在此温度下保温2小时,最后以15℃/h炉冷到650℃后出炉空冷到室温。
  11. 根据权利要求9所述的制备方法,其特征在于,所述淬回火工艺 为:先加热到840℃保温0.5小时,然后油淬火到室温,最后将淬火棒材在170℃进行3小时的回火处理。
PCT/CN2021/121606 2020-09-29 2021-09-29 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法 WO2022068856A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011055618.XA CN112111696A (zh) 2020-09-29 2020-09-29 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法
CN202011055618.X 2020-09-29

Publications (1)

Publication Number Publication Date
WO2022068856A1 true WO2022068856A1 (zh) 2022-04-07

Family

ID=73797336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/121606 WO2022068856A1 (zh) 2020-09-29 2021-09-29 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法

Country Status (2)

Country Link
CN (1) CN112111696A (zh)
WO (1) WO2022068856A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749592A (zh) * 2022-04-18 2022-07-15 重庆新承航锐科技股份有限公司 一种消除9Cr18马氏体不锈钢网状碳化物的方法
CN115558867A (zh) * 2022-11-08 2023-01-03 北京科技大学烟台工业技术研究院 一种耐氯离子腐蚀的稀土微合金化高碳铬轴承钢
CN116377333A (zh) * 2023-04-27 2023-07-04 中国钢研科技集团有限公司 一种组织细质化与均质化的微合金化轴承钢铸坯

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112111696A (zh) * 2020-09-29 2020-12-22 钢铁研究总院 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法
CN113462959B (zh) * 2021-05-31 2022-05-13 钢铁研究总院 一种长寿命高可靠性大原子合金化高温轴承钢及制造方法
CN113755766A (zh) * 2021-08-16 2021-12-07 钢铁研究总院 一种大规格长寿命高碳轴承钢棒材及其制备方法
CN113718174B (zh) * 2021-08-21 2022-07-29 钢铁研究总院 一种双细化高强韧长寿命中高碳轴承钢及制备方法
CN113862561A (zh) * 2021-09-08 2021-12-31 钢铁研究总院 一种长寿命高碳轴承钢管材及其制备方法和应用
CN114086076B (zh) * 2022-01-10 2022-04-15 北京科技大学 一种高碳铬轴承钢及其制备方法
CN115386694B (zh) * 2022-08-08 2024-07-16 钢铁研究总院有限公司 高碳轴承钢心部强韧化和表面超硬化的复合热处理方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094124A2 (en) * 1999-10-18 2001-04-25 Ovako Steel AB Super clean steel
CN1460127A (zh) * 2001-01-26 2003-12-03 川崎制铁株式会社 轴承材料
CN1774521A (zh) * 2003-04-16 2006-05-17 杰富意钢铁株式会社 具有良好的滚动疲劳寿命的钢材及其制造方法
CN101619412A (zh) * 2009-07-22 2010-01-06 西安交通大学 一种本征无网状二次渗碳体钢及其应用方法
CN102459679A (zh) * 2009-05-20 2012-05-16 Skf公司 轴承部件
CN103122433A (zh) * 2013-01-31 2013-05-29 西安交通大学 一种超高碳型轴承钢
CN104032221A (zh) * 2014-03-18 2014-09-10 北京科技大学 一种铌微合金化高碳铬轴承钢及其热轧生产方法
CN109338035A (zh) * 2018-11-08 2019-02-15 江阴兴澄特种钢铁有限公司 一种风力发电机齿轮箱轴承用钢及其生产方法
CN112111696A (zh) * 2020-09-29 2020-12-22 钢铁研究总院 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3779078B2 (ja) * 1998-11-10 2006-05-24 Jfeスチール株式会社 転動疲労寿命に優れる軸受用鋼
JP5406687B2 (ja) * 2009-11-30 2014-02-05 株式会社神戸製鋼所 転動疲労寿命に優れた鋼材
CN108220807B (zh) * 2017-12-21 2020-07-24 钢铁研究总院 一种低密度高铝超高碳轴承钢及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1094124A2 (en) * 1999-10-18 2001-04-25 Ovako Steel AB Super clean steel
CN1460127A (zh) * 2001-01-26 2003-12-03 川崎制铁株式会社 轴承材料
CN1774521A (zh) * 2003-04-16 2006-05-17 杰富意钢铁株式会社 具有良好的滚动疲劳寿命的钢材及其制造方法
CN102459679A (zh) * 2009-05-20 2012-05-16 Skf公司 轴承部件
CN101619412A (zh) * 2009-07-22 2010-01-06 西安交通大学 一种本征无网状二次渗碳体钢及其应用方法
CN103122433A (zh) * 2013-01-31 2013-05-29 西安交通大学 一种超高碳型轴承钢
CN104032221A (zh) * 2014-03-18 2014-09-10 北京科技大学 一种铌微合金化高碳铬轴承钢及其热轧生产方法
CN109338035A (zh) * 2018-11-08 2019-02-15 江阴兴澄特种钢铁有限公司 一种风力发电机齿轮箱轴承用钢及其生产方法
CN112111696A (zh) * 2020-09-29 2020-12-22 钢铁研究总院 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114749592A (zh) * 2022-04-18 2022-07-15 重庆新承航锐科技股份有限公司 一种消除9Cr18马氏体不锈钢网状碳化物的方法
CN114749592B (zh) * 2022-04-18 2024-01-02 重庆新承航锐科技股份有限公司 一种消除9Cr18马氏体不锈钢网状碳化物的方法
CN115558867A (zh) * 2022-11-08 2023-01-03 北京科技大学烟台工业技术研究院 一种耐氯离子腐蚀的稀土微合金化高碳铬轴承钢
CN116377333A (zh) * 2023-04-27 2023-07-04 中国钢研科技集团有限公司 一种组织细质化与均质化的微合金化轴承钢铸坯
CN116377333B (zh) * 2023-04-27 2024-06-04 中国钢研科技集团有限公司 一种组织细质化与均质化的微合金化轴承钢铸坯

Also Published As

Publication number Publication date
CN112111696A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
WO2022068856A1 (zh) 高等向性和长接触疲劳寿命的高碳轴承钢及制造方法
US9523402B2 (en) Stainless steel brake disc and method for production thereof
CN110846580B (zh) 一种高Mo高性能Mn-Cr系风电输出齿轮用钢及其生产方法
US20220162731A1 (en) Hot-working die steel, heat treatment method thereof and hot-working die
CN111748739B (zh) 一种抗拉强度>2100MPa耐热弹簧钢及其生产方法
CN108220815B (zh) 热锻用高热强性、高冲击韧性热作模具钢及制备方法
EP2562283B1 (en) Steel part having excellent in temper softening resistance
JP5030280B2 (ja) 焼入れ性、疲労特性、靭性に優れた高炭素鋼板及びその製造方法
WO2011061812A1 (ja) 高靱性耐摩耗鋼およびその製造方法
CN113462959B (zh) 一种长寿命高可靠性大原子合金化高温轴承钢及制造方法
JP2011508073A (ja) 軸受用鋼線材、軸受用鋼線材の製造方法、軸受の熱処理方法、軸受及び軸受用鋳片の均熱拡散処理方法
CN111850399B (zh) 具有良好耐磨性耐蚀塑料模具钢及其制备方法
CN110284057A (zh) 一种高强度长寿命齿条钢
CN113718174B (zh) 一种双细化高强韧长寿命中高碳轴承钢及制备方法
US11634803B2 (en) Quench and temper corrosion resistant steel alloy and method for producing the alloy
CN110462083B (zh) 高硬度并且韧性优异的钢
CN116024412A (zh) 钒微合金化贝氏体辙叉用钢的生产方法
JP6390685B2 (ja) 非調質鋼およびその製造方法
JP2004183065A (ja) 高強度高周波焼き入れ用鋼材及びその製造方法
CN114231703A (zh) 一种高强度简化退火冷镦钢生产方法
CN113957358B (zh) 抗拉强度大于2200MPa高强度热成形钢基板及制备方法
CN111334708B (zh) 一种抗拉强度≥2250MPa且疲劳性能优异的高强度弹簧钢及其生产方法
CN113584409B (zh) 一种高速铁路用渗碳轴承钢及其制备方法
CN111479938B (zh) 热处理固化型高碳钢板及其制造方法
JP3912186B2 (ja) 耐疲労特性に優れたばね鋼

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21874511

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21874511

Country of ref document: EP

Kind code of ref document: A1