WO2022067661A1 - Solid state imaging device with low fixed pattern noise - Google Patents

Solid state imaging device with low fixed pattern noise Download PDF

Info

Publication number
WO2022067661A1
WO2022067661A1 PCT/CN2020/119391 CN2020119391W WO2022067661A1 WO 2022067661 A1 WO2022067661 A1 WO 2022067661A1 CN 2020119391 W CN2020119391 W CN 2020119391W WO 2022067661 A1 WO2022067661 A1 WO 2022067661A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer gate
pixel devices
spacer width
adjacent
imaging device
Prior art date
Application number
PCT/CN2020/119391
Other languages
French (fr)
Inventor
Takahashi Seiji
Original Assignee
Huawei Technologies Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huawei Technologies Co., Ltd. filed Critical Huawei Technologies Co., Ltd.
Priority to CN202080105567.9A priority Critical patent/CN116235280A/en
Priority to PCT/CN2020/119391 priority patent/WO2022067661A1/en
Publication of WO2022067661A1 publication Critical patent/WO2022067661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14609Pixel-elements with integrated switching, control, storage or amplification elements
    • H01L27/14612Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor
    • H01L27/14614Pixel-elements with integrated switching, control, storage or amplification elements involving a transistor having a special gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14641Electronic components shared by two or more pixel-elements, e.g. one amplifier shared by two pixel elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers

Definitions

  • the present invention relates to an imaging device and a manufacturing method thereof.
  • High resolution imaging devices such as an image sensor of a camera in a mobile device have been developed, and the number of pixels arranged in an imaging device is increasing. As pixel size shrinks, it is unavoidable to reduce sidewall spacer width of devices such as transistors on a semiconductor substrate. As a result, an electric field becomes higher in order to satisfy constant voltage scaling. Especially, gate induced drain leakage (GIDL) and gate induced source leakage (GISL) become more serious.
  • GIDL gate induced drain leakage
  • GISL gate induced source leakage
  • a sidewall spacer disposed on a photodiode (PD) side is narrower than that disposed on a floating diffusion (FD) side so that effective photodiode area increases and full well capacity improves.
  • PD photodiode
  • FD floating diffusion
  • An imaging device is provided to decrease GIDL and GISL in photodiodes and floating diffusion regions, while tightening contact and gate pitch of in-pixel devices.
  • an imaging device includes a plurality of pixels, each pixel includes a transfer gate device, a reset device, a source follower device, and a row select device, and a sidewall spacer width of the transfer gate device is wider than a sidewall spacer width of other in-pixel devices.
  • a difference between the sidewall spacer width of the transfer gate device and the sidewall spacer width of the other in-pixel devices is equal to or greater than 3 nanometers.
  • an imaging device wherein a sidewall spacer width of a transfer gate device and a sidewall spacer width of a source side of an adjacent device, which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, are wider than the sidewall spacer width of a drain side of the adjacent device, and the sidewall spacer width of a source follower device, a row-select device, and other in-pixel devices.
  • the sidewall spacer width of the transfer gate device and the sidewall spacer width of the source side of the adjacent device are wider than the sidewall spacer width of a drain side of the adjacent device, and the sidewall spacer width of a source follower device, a row-select device, and other in-pixel devices by 3 nanometers or more.
  • an imaging device includes a plurality of pixels, each pixel includes a transfer gate device, a reset device, a source follower device, and a row select device, and a gate offset spacer width of the transfer gate device is wider than a gate offset spacer width of other in-pixel devices.
  • a difference between the gate offset spacer width of the transfer gate device and the gate offset spacer width of the other in-pixel devices is equal to or greater than 3 nanometers.
  • an imaging device wherein a gate offset spacer width of a transfer gate device and a gate offset spacer width of a source side of an adjacent device, which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, are wider than the gate offset spacer width of a drain side of the adjacent device, and the gate offset spacer width of a source follower device, a row-select device, and other in-pixel devices.
  • the gate offset spacer width of the transfer gate device and the gate offset spacer width of the source side of the adjacent device are wider than the gate offset spacer width of a drain side of the adjacent device, and the gate offset spacer width of a source follower device, a row-select device, and other in-pixel devices by 3 nanometers or more.
  • a manufacturing method of an imaging device includes: forming gate offset spacers at both sides of a transfer gate device and other in-pixel devices; forming an insulation film over the transfer gate device and the other in-pixel devices; etching the insulation film over the other in-pixel devices by isotropic etching; and etching the insulation film over the transfer gate device and the other in-pixel devices by anisotropic etching.
  • a manufacturing method of an imaging device includes: forming gate offset spacers at both sides of a transfer gate device, an adjacent device which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, and other in-pixel devices; forming an insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices; etching the insulation film over the other in-pixel devices and a drain side of the adjacent device by isotropic etching; and etching the insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices by anisotropic etching.
  • a manufacturing method of an imaging device includes: forming an insulation film over a transfer gate device and other in-pixel devices; etching the insulation film over the other in-pixel devices by isotropic etching; etching the insulation film over the transfer gate device and the other in-pixel devices by anisotropic etching; and forming sidewall spacers at both sides of the transfer gate device and the other in-pixel devices.
  • a manufacturing method of an imaging device includes: forming an insulation film over a transfer gate device, an adjacent device which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, and other in-pixel devices; etching the insulation film over the other in-pixel devices and a drain side of the adjacent device by isotropic etching; etching the insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices by anisotropic etching; and forming sidewall spacers at both sides of the transfer gate device, the adjacent device, and the other in-pixel devices.
  • FIG. 1 shows an example block diagram of an imaging system 201
  • FIG. 2 shows an example circuit diagram of an imaging device
  • FIG. 3 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to an embodiment of the present invention
  • FIG. 4 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention
  • FIG. 5 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to another embodiment of the present invention
  • FIG. 6 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention
  • FIG. 7 shows an example circuit diagram of an imaging device
  • FIG. 8 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 7 according to an embodiment of the present invention
  • FIG. 9 shows an example circuit diagram of the imaging device in which two sets of the PDs and the TXs share the in-pixel devices.
  • FIG. 10 shows an example circuit diagram of the imaging device in which four sets of the PDs and the TXs share the in-pixel devices
  • FIG. 11 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 10 according to another embodiment of the present invention
  • FIG. 12 shows a cross-sectional view of a part of the imaging device in which the difference between the sidewall spacer width of the TX and the sidewall spacer width of the other in-pixel devices is made by a source/drain (S/D) sidewall spacer;
  • S/D source/drain
  • FIG. 13 shows a cross-sectional view of a part of the imaging device in which the difference between the sidewall spacer width of the TX and the sidewall spacer width of the other in-pixel devices is made by a gate offset spacer;
  • FIG. 14 to FIG. 21 show examples of a first to eighth cross-sectional views of a substrate on which an imaging device is manufactured according to an example of a manufacturing process
  • FIG. 22 to FIG. 25 show examples of a first to fourth cross-sectional views of a substrate on which an imaging device is manufactured according to an example of another manufacturing process
  • FIG. 26 shows another example block diagram of an imaging system 201.
  • FIG. 27 shows various applications for a camera system.
  • FIG. 1 shows an example block diagram of an imaging system 201.
  • the imaging system 201 includes a control circuit 205, a pixel array 209, a readout circuit 210, a signal processing circuit 206.
  • the pixel array 205 is a two-dimensional array of pixels. Each pixel may be an imaging device as shown in FIG. 2. The pixels are arranged in rows (R1 to Ry) and columns (C1 to Cx) to obtain image data of a subject.
  • the control circuit 205 controls the pixel array 209, for example, generates a shutter signal.
  • the image data is readout by the readout circuit 210 via bit lines and sent to the signal processing circuit 206.
  • FIG. 2 shows an example circuit diagram of an imaging device which may be a pixel in FIG. 1.
  • a photodiode (PD) converts light into an electrical charge.
  • the electrical charge is selectively transmitted to a floating diffusion (FD) via a transfer gate device (TX) .
  • the FD is connected to a gate of a source follower device (SF) , and an output signal (Vout) is transmitted to a signal line via a row select device (SEL) .
  • a current source (Icolumn) is connected between the SEL and a ground. Accordingly, if gates of the TX and the SEL are turned on, the output signal corresponding to the electrical signal from the PD is obtained on the signal line.
  • a reset device selectively resets an electrical charge accumulated in the FD.
  • a dual conversion gain device (DCG) (not shown in FIG. 2, but shown in FIG. 7) may be connected between the RST and the FD, in order to realize high dynamic range by combining two types of gains.
  • FIG. 3 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to an embodiment of the present invention.
  • the width of a sidewall spacer 74 is wider than the width of sidewall spacers 71, 72, and 73.
  • FIG. 4 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention.
  • the sidewall spacer width on the FD side is sensitive to GIDL. Therefore, the sidewall spacer width (Wt) of the TX is wider than the sidewall spacer width (Wd) of the other in-pixel devices including the RST, the SF, the SEL, and the DCG.
  • the difference between Wt and Wd is equal to or greater than 3 nm (nano meter) .
  • the transfer gate device (TX) can be a planar or a vertical.
  • FIG. 5 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to another embodiment of the present invention.
  • the width of the sidewall spacer 74 and the width of the right side (the side where wiring shown as a bold line is arranged between the FD and the RST) of the sidewall spacer 73 are wider than the width of the left, upper, and lower sides (the sides where wiring is not arranged between the FD and the RST) of the sidewall spacer 73, and the width of the sidewall spacers 71 and 72.
  • FIG. 6 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention.
  • the sidewall spacer width of the TX and the source side (S) of the RST are wider than the drain side (D) of the RST, and the source and drain (S/D) sides of the SF, the SEL, the other in-pixel devices.
  • the DCG device may be connected between the RST device and the FD as shown in FIG. 7.
  • FIG. 8 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 7 according to another embodiment of the present invention.
  • the width of the sidewall spacer 74 and the width of the right side (the side where wiring shown as a bold line is arranged between the FD and the DCG) of the sidewall spacer 75 are wider than the width of the left, upper, and lower sides (the sides where wiring is not arranged between the FD and the DCG) of the sidewall spacer 75, and the width of the sidewall spacers 71, 72, and 73.
  • the RST is a device other than the TX and is arranged adjacent to the FD.
  • the DCG is a device other than the TX and is arranged adjacent to the FD.
  • the imaging devices in FIG. 2 and FIG. 7 include one PD. However, in-pixel devices may be shared by multiple PDs.
  • the imaging device in FIG. 9 includes two sets of the PDs and the TXs, and the other in-pixel devices are shared.
  • the imaging device in FIG. 10 includes four sets of the PDs and the TXs, and the other in-pixel devices are shared.
  • FIG. 11 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 10 according to another embodiment of the present invention.
  • the width of the sidewall spacers 74 and the width of the lower side (the side where wiring shown as a bold line is arranged between the FD and the DCG) of the sidewall spacer 75 are wider than the width of the left, right, and upper sides (the sides where wiring is not arranged between the FD and the DCG) of the sidewall spacer 75, and the width of the sidewall spacers 71, 72, and 73.
  • the embodiments of the present invention can be applied for more than 4 sets of the PDs and the TXs that share the in-pixel devices as well.
  • the difference between the sidewall spacer width of the TX and the sidewall spacer width of the other in-pixel devices is made by a source/drain (S/D) sidewall spacer as shown in FIG. 12.
  • Material of the S/D sidewall spacer can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material.
  • the S/D sidewall spacer can be single or multiple layers.
  • the above difference may be made by a gate offset spacer as shown in FIG. 13.
  • Material of the gate offset spacer can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material.
  • FIG. 14 to FIG. 21 show examples of a first to eighth cross-sectional views of a substrate on which an imaging device is manufactured.
  • a raw material for example, a semiconductor substrate 10 is provided.
  • a shallow trench isolation (STI) process is carried out to form field oxide films 21 and 22 in the substrate 10.
  • each device can be separated only by impurities without the STI.
  • a mask is formed to expose the region where a PD is to be formed, and ion impurities are implanted into the substrate 10 to form a PD extending to a predetermined depth.
  • n-type photodiode phosphorus or arsenic or a combination thereof is implanted, and Boron or BF2 is used for isolation.
  • Boron or BF2 are implanted and phosphorus or arsenic or a combination thereof is used for isolation.
  • a gate insulation film is formed on the substrate 10, a conductive film is formed thereon, a patterning process is carried out to form gate patterns 41 to 44 (the gate insulation film is separated into 31 to 34) , and a resist pattern is removed.
  • an insulation film is formed over the substrate 10 for gate offset spacer deposition.
  • Material of this insulation film can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material
  • a mask is formed to cover the PD and the TX. In addition to the PD and the TX, the mask may be formed to cover the right half of the RST.
  • the insulation film in the area where the mask is not formed is etched to some extent by isotropic etching, and a thin film remains.
  • the mask is removed, and the upper side of the thick film which covers the PD and the TX is etched by anisotropic etching.
  • the upper side of the thin film is over-etched.
  • a first ion-implantation mask is formed to cover the PD and the TX, and lightly doped regions 51 to 54 are formed at both sides of the SEL, SF, and RST by injecting ion impurities, and the first ion-implantation mask is removed.
  • an insulation film is formed over the substrate 10 and then etched to form spacers 71a to 74b at the both sides of the SEL, SF, RST, and TX.
  • Material of this insulation file can be can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material.
  • a second ion-implantation mask is formed to cover the PD and the TX. Ion impurities are implanted into the substrate 10 to form heavily doped regions 61 to 64, and the FD.
  • n-type photodiode In the case of n-type photodiode, n-type conductive layers are made, and in the case of p-type photodiode, p-type conductive layers are made.
  • the heavily doped regions 61 to 64 are self-aligned to their corresponding spacers, and the lightly doped region 52 between the SEL and the SF is divided into two parts and the lightly doped region 53 between the SF and the RST is divided into two parts.
  • the second ion-implantation mask is removed.
  • back end of line (BEOL) process is carried out, and metallic interconnections 81 to 88 are formed. Namely, a thick insulation file is formed, contact holes are formed, and a metallic film is deposited and patterned. Then, the imaging device placed on the substrate 10 is connected to a logic circuit placed on another substrate 11 by bonding such as copper to copper bonding or other inter-silicon wafer connections.
  • BEOL back end of line
  • DTIs deep trench isolations
  • Metal grids 101 and 102 are placed on an insulation film of the back of the substrate 10 at the border of the pixels, in order to restrain a flare and a ghost.
  • Color filters are provided within a layer 110 at the position corresponding to the PDs.
  • Microlens 121 and 122 are provided at the position corresponding to the PDs. For example, there may be different sizes of the PDs, and the PDs may be arranged in staggered positions in the horizontal direction of FIG. 21.
  • FIG. 22 to FIG. 25 show examples of a first to fourth cross-sectional views of a substrate on which an imaging device is manufactured.
  • the upper side of the insulation film is etched by anisotropic etching, a first ion-implantation mask is formed to cover the PD and the TX, lightly doped regions are formed at both sides of the SEL, SF, and RST by injecting ion impurities, and the first ion-implantation mask is removed.
  • An insulation film is formed over the substrate 10. Material this insulation film can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material.
  • a mask is formed to cover the PD and the TX.
  • the mask may be formed to cover the right half of the RST.
  • the film in the area where the mask is not formed is etched to some extent by isotropic etching, and a thin film remains.
  • the mask is removed, and the upper side of the insulation film is etched by anisotropic etching, and the upper side of the thin film is over-etched.
  • a second ion-implantation mask is formed to cover the PD and the TX, ion impurities are implanted into the substrate to form heavily doped regions 61 to 64 of N-type conductive layers, and the FD.
  • the heavily doped regions 61 to 64 are self-aligned to their corresponding spacers, and the lightly doped region 52 between the SEL and the SF is divided into two parts and the lightly doped region 53 between the SF and the RST is divided into two parts.
  • the second ion-implantation mask is removed. After that, the same process as described with reference to FIG. 21 is performed.
  • FIG. 26 shows another example block diagram of an imaging system 201.
  • the imaging system 201 includes an optical system 202 such as one or more lens, a shutter device 203, a solid-state image sensor 204, a control circuit 205, a signal processing circuit 206, a monitor 207, and a memory 208.
  • the solid-state image sensor 204 includes, for example, the pixel array 209 and the readout circuit 210 in FIG. 1, and obtains image data of a subject through the lens 202 and the shutter device 203, under the control of the control circuit 205.
  • the signal processing circuit 206 outputs the obtained image data to the monitor 207 or stores the image data in the memory 208.
  • FIG. 27 shows various applications for a camera system.
  • the imaging device according to the embodiment of the present invention can be applied to, for example, a mobile phone camera, a digital camera, a network camera, a security and surveillance camera, a video camcorder, an automotive and transport camera, a medical camera, and machine visions.
  • the embodiment of the present invention can be applied to array devices and different substrates such as bulk silicon, silicon-on-insulator substrate, silicon-germanium substrate, and other photosensitive substrates.
  • the embodiment of the present invention can reduce GIDL in a floating diffusion node, leading to better fixed pattern noise. This allows to tighten pixel device related design rule, and improve source follower device ransom noise and RTS noise by enlarging the device size. Wider sidewall spacer of the TX can enhance conversion gain because of lower parasitic capacitance, which will result in lower pixel and circuit noise.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

An imaging device (201), wherein a sidewall spacer (74) width of a transfer gate device (TX) is wider than the sidewall spacer (71, 72, 73) width of other in-pixel devices. It can decrease GIDL and GISL in photodiodes (PD) and floating diffusion (FD) regions, while tightening contact and gate pitch of in-pixel devices.

Description

SOLID STATE IMAGING DEVICE WITH LOW FIXED PATTERN NOISE TECHNICAL FIELD
The present invention relates to an imaging device and a manufacturing method thereof.
BACKGROUND
High resolution imaging devices such as an image sensor of a camera in a mobile device have been developed, and the number of pixels arranged in an imaging device is increasing. As pixel size shrinks, it is unavoidable to reduce sidewall spacer width of devices such as transistors on a semiconductor substrate. As a result, an electric field becomes higher in order to satisfy constant voltage scaling. Especially, gate induced drain leakage (GIDL) and gate induced source leakage (GISL) become more serious.
In a prior art, a sidewall spacer disposed on a photodiode (PD) side is narrower than that disposed on a floating diffusion (FD) side so that effective photodiode area increases and full well capacity improves. However, this will result in a GISL issue during charge integration, and lead to higher fixed pattern noise and higher dark signal non-uniformity.
SUMMARY
An imaging device is provided to decrease GIDL and GISL in photodiodes and floating diffusion regions, while tightening contact and gate pitch of in-pixel devices.
According to a first aspect, an imaging device is provided, wherein the imaging device includes a plurality of pixels, each pixel includes a transfer gate device, a reset device, a source follower device, and a row select device, and a sidewall spacer width of the transfer gate device is wider than a sidewall spacer width of other in-pixel devices.
In a possible implementation manner of the first aspect, a difference between the sidewall spacer width of the transfer gate device and the sidewall spacer width of the other in-pixel devices is equal to or greater than 3 nanometers.
According to a second aspect, an imaging device is provided, wherein a sidewall spacer width of a transfer gate device and a sidewall spacer width of a source side of an adjacent device,  which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, are wider than the sidewall spacer width of a drain side of the adjacent device, and the sidewall spacer width of a source follower device, a row-select device, and other in-pixel devices.
In a possible implementation manner of the second aspect, the sidewall spacer width of the transfer gate device and the sidewall spacer width of the source side of the adjacent device are wider than the sidewall spacer width of a drain side of the adjacent device, and the sidewall spacer width of a source follower device, a row-select device, and other in-pixel devices by 3 nanometers or more.
According to a third aspect, an imaging device is provided, wherein the imaging device includes a plurality of pixels, each pixel includes a transfer gate device, a reset device, a source follower device, and a row select device, and a gate offset spacer width of the transfer gate device is wider than a gate offset spacer width of other in-pixel devices.
In a possible implementation manner of the third aspect, a difference between the gate offset spacer width of the transfer gate device and the gate offset spacer width of the other in-pixel devices is equal to or greater than 3 nanometers.
According to a fourth aspect, an imaging device is provided, wherein a gate offset spacer width of a transfer gate device and a gate offset spacer width of a source side of an adjacent device, which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, are wider than the gate offset spacer width of a drain side of the adjacent device, and the gate offset spacer width of a source follower device, a row-select device, and other in-pixel devices.
In a possible implementation manner of the fourth aspect, the gate offset spacer width of the transfer gate device and the gate offset spacer width of the source side of the adjacent device are wider than the gate offset spacer width of a drain side of the adjacent device, and the gate offset spacer width of a source follower device, a row-select device, and other in-pixel devices by 3 nanometers or more.
According to a fifth aspect, a manufacturing method of an imaging device is provided, wherein the method includes: forming gate offset spacers at both sides of a transfer gate device and other in-pixel devices; forming an insulation film over the transfer gate device and the other in-pixel devices; etching the insulation film over the other in-pixel devices by isotropic etching; and etching the insulation film over the transfer gate device and the other in-pixel devices by anisotropic etching.
According to a sixth aspect, a manufacturing method of an imaging device is provided, wherein the method includes: forming gate offset spacers at both sides of a transfer gate device, an adjacent device which is a device other than the transfer gate device and is arranged adjacent to a  floating diffusion, and other in-pixel devices; forming an insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices; etching the insulation film over the other in-pixel devices and a drain side of the adjacent device by isotropic etching; and etching the insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices by anisotropic etching.
According to a seventh aspect, a manufacturing method of an imaging device is provided, wherein the method includes: forming an insulation film over a transfer gate device and other in-pixel devices; etching the insulation film over the other in-pixel devices by isotropic etching; etching the insulation film over the transfer gate device and the other in-pixel devices by anisotropic etching; and forming sidewall spacers at both sides of the transfer gate device and the other in-pixel devices.
According to an eighth aspect, a manufacturing method of an imaging device is provided, wherein the method includes: forming an insulation film over a transfer gate device, an adjacent device which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, and other in-pixel devices; etching the insulation film over the other in-pixel devices and a drain side of the adjacent device by isotropic etching; etching the insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices by anisotropic etching; and forming sidewall spacers at both sides of the transfer gate device, the adjacent device, and the other in-pixel devices.
BRIEF DESCRIPTION OF DRAWINGS
To describe the technical solutions in the embodiments of the present invention or in the prior art more clearly, the following briefly introduces the accompanying drawings required for describing the embodiments or the prior art. The accompanying drawings in the following description show merely some embodiments of the present invention, and a person of ordinary skill in the art may still derive other drawings from these accompanying drawings without creative efforts.
FIG. 1 shows an example block diagram of an imaging system 201;
FIG. 2 shows an example circuit diagram of an imaging device;
FIG. 3 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to an embodiment of the present invention;
FIG. 4 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention;
FIG. 5 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to another embodiment of the present invention;
FIG. 6 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention;
FIG. 7 shows an example circuit diagram of an imaging device;
FIG. 8 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 7 according to an embodiment of the present invention;
FIG. 9 shows an example circuit diagram of the imaging device in which two sets of the PDs and the TXs share the in-pixel devices.
FIG. 10 shows an example circuit diagram of the imaging device in which four sets of the PDs and the TXs share the in-pixel devices;
FIG. 11 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 10 according to another embodiment of the present invention;
FIG. 12 shows a cross-sectional view of a part of the imaging device in which the difference between the sidewall spacer width of the TX and the sidewall spacer width of the other in-pixel devices is made by a source/drain (S/D) sidewall spacer;
FIG. 13 shows a cross-sectional view of a part of the imaging device in which the difference between the sidewall spacer width of the TX and the sidewall spacer width of the other in-pixel devices is made by a gate offset spacer;
FIG. 14 to FIG. 21 show examples of a first to eighth cross-sectional views of a substrate on which an imaging device is manufactured according to an example of a manufacturing process; and
FIG. 22 to FIG. 25 show examples of a first to fourth cross-sectional views of a substrate on which an imaging device is manufactured according to an example of another manufacturing process;
FIG. 26 shows another example block diagram of an imaging system 201; and
FIG. 27 shows various applications for a camera system.
DESCRIPTION OF EMBODIMENTS
The following clearly and completely describes the technical solutions in the embodiments of the present invention with reference to the accompanying drawings in the  embodiments of the present invention. The described embodiments are only some but not all of the embodiments of the present invention. All other embodiments obtained by a person of ordinary skill in the art based on the embodiments of the present invention without creative efforts shall fall within the protected scope of the present invention.
FIG. 1 shows an example block diagram of an imaging system 201. The imaging system 201 includes a control circuit 205, a pixel array 209, a readout circuit 210, a signal processing circuit 206. The pixel array 205 is a two-dimensional array of pixels. Each pixel may be an imaging device as shown in FIG. 2. The pixels are arranged in rows (R1 to Ry) and columns (C1 to Cx) to obtain image data of a subject. The control circuit 205 controls the pixel array 209, for example, generates a shutter signal. The image data is readout by the readout circuit 210 via bit lines and sent to the signal processing circuit 206.
FIG. 2 shows an example circuit diagram of an imaging device which may be a pixel in FIG. 1. A photodiode (PD) converts light into an electrical charge. The electrical charge is selectively transmitted to a floating diffusion (FD) via a transfer gate device (TX) . The FD is connected to a gate of a source follower device (SF) , and an output signal (Vout) is transmitted to a signal line via a row select device (SEL) . A current source (Icolumn) is connected between the SEL and a ground. Accordingly, if gates of the TX and the SEL are turned on, the output signal corresponding to the electrical signal from the PD is obtained on the signal line. A reset device (RST) selectively resets an electrical charge accumulated in the FD. A dual conversion gain device (DCG) (not shown in FIG. 2, but shown in FIG. 7) may be connected between the RST and the FD, in order to realize high dynamic range by combining two types of gains.
FIG. 3 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to an embodiment of the present invention. It should be noted that the width of a sidewall spacer 74 is wider than the width of  sidewall spacers  71, 72, and 73. FIG. 4 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention. The sidewall spacer width on the FD side is sensitive to GIDL. Therefore, the sidewall spacer width (Wt) of the TX is wider than the sidewall spacer width (Wd) of the other in-pixel devices including the RST, the SF, the SEL, and the DCG. The difference between Wt and Wd is equal to or greater than 3 nm (nano meter) . The transfer gate device (TX) can be a planar or a vertical.
FIG. 5 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 2 according to another embodiment of the present invention. It should be noted that the width of the sidewall spacer 74 and the width of the right side (the side where wiring shown as a bold line is arranged between the FD and the RST) of the  sidewall spacer 73 are wider than the width of the left, upper, and lower sides (the sides where wiring is not arranged between the FD and the RST) of the sidewall spacer 73, and the width of the  sidewall spacers  71 and 72. FIG. 6 shows a cross-sectional view of a part of the imaging device formed on the semiconductor substrate according to the embodiment of the present invention. The sidewall spacer width of the TX and the source side (S) of the RST are wider than the drain side (D) of the RST, and the source and drain (S/D) sides of the SF, the SEL, the other in-pixel devices.
As described above, the DCG device may be connected between the RST device and the FD as shown in FIG. 7. FIG. 8 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 7 according to another embodiment of the present invention. It should be noted that the width of the sidewall spacer 74 and the width of the right side (the side where wiring shown as a bold line is arranged between the FD and the DCG) of the sidewall spacer 75 are wider than the width of the left, upper, and lower sides (the sides where wiring is not arranged between the FD and the DCG) of the sidewall spacer 75, and the width of the  sidewall spacers  71, 72, and 73. In FIG. 5, the RST is a device other than the TX and is arranged adjacent to the FD. In FIG. 8, the DCG is a device other than the TX and is arranged adjacent to the FD.
The imaging devices in FIG. 2 and FIG. 7 include one PD. However, in-pixel devices may be shared by multiple PDs. The imaging device in FIG. 9 includes two sets of the PDs and the TXs, and the other in-pixel devices are shared. The imaging device in FIG. 10 includes four sets of the PDs and the TXs, and the other in-pixel devices are shared. FIG. 11 shows a top view of an example circuit layout formed on a semiconductor substrate for the imaging device shown in FIG. 10 according to another embodiment of the present invention. It should be noted that the width of the sidewall spacers 74 and the width of the lower side (the side where wiring shown as a bold line is arranged between the FD and the DCG) of the sidewall spacer 75 are wider than the width of the left, right, and upper sides (the sides where wiring is not arranged between the FD and the DCG) of the sidewall spacer 75, and the width of the  sidewall spacers  71, 72, and 73. The embodiments of the present invention can be applied for more than 4 sets of the PDs and the TXs that share the in-pixel devices as well.
In FIG. 4, the difference between the sidewall spacer width of the TX and the sidewall spacer width of the other in-pixel devices is made by a source/drain (S/D) sidewall spacer as shown in FIG. 12. Material of the S/D sidewall spacer can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material. The S/D sidewall spacer can be single or multiple layers. The above difference may be made by a gate offset spacer as shown in FIG. 13. Material of the gate offset spacer can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or  other insulator material. A manufacturing process for the latter case will be described below with reference to FIG. 14 to FIG. 21, and a manufacturing process for the former case will be described below with reference to FIG. 22 to FIG. 25.
With reference to FIG. 14 to FIG. 21, the following describes an example of a manufacturing process of an imaging device according to an embodiment of the present invention. FIG. 14 to FIG. 21 show examples of a first to eighth cross-sectional views of a substrate on which an imaging device is manufactured.
Referring to FIG. 14, a raw material, for example, a semiconductor substrate 10 is provided. In order to prevent interference with neighboring imaging devices, a shallow trench isolation (STI) process is carried out to form  field oxide films  21 and 22 in the substrate 10. In another embodiment, each device can be separated only by impurities without the STI. A mask is formed to expose the region where a PD is to be formed, and ion impurities are implanted into the substrate 10 to form a PD extending to a predetermined depth. In the case of n-type photodiode, phosphorus or arsenic or a combination thereof is implanted, and Boron or BF2 is used for isolation. In the case of p-type photodiode, Boron or BF2 are implanted and phosphorus or arsenic or a combination thereof is used for isolation.
Next, referring to FIG. 15, a gate insulation film is formed on the substrate 10, a conductive film is formed thereon, a patterning process is carried out to form gate patterns 41 to 44 (the gate insulation film is separated into 31 to 34) , and a resist pattern is removed.
Next, as shown in FIG. 16, an insulation film is formed over the substrate 10 for gate offset spacer deposition. Material of this insulation film can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material As shown in FIG. 17, a mask is formed to cover the PD and the TX. In addition to the PD and the TX, the mask may be formed to cover the right half of the RST. As shown in FIG. 18, the insulation film in the area where the mask is not formed is etched to some extent by isotropic etching, and a thin film remains.
Next, referring to FIG. 19, the mask is removed, and the upper side of the thick film which covers the PD and the TX is etched by anisotropic etching. The upper side of the thin film is over-etched. A first ion-implantation mask is formed to cover the PD and the TX, and lightly doped regions 51 to 54 are formed at both sides of the SEL, SF, and RST by injecting ion impurities, and the first ion-implantation mask is removed.
Next, referring to FIG. 20, an insulation film is formed over the substrate 10 and then etched to form spacers 71a to 74b at the both sides of the SEL, SF, RST, and TX. Material of this insulation file can be can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material. A second ion-implantation mask is formed to cover the PD and the TX. Ion  impurities are implanted into the substrate 10 to form heavily doped regions 61 to 64, and the FD. In the case of n-type photodiode, n-type conductive layers are made, and in the case of p-type photodiode, p-type conductive layers are made. The heavily doped regions 61 to 64 are self-aligned to their corresponding spacers, and the lightly doped region 52 between the SEL and the SF is divided into two parts and the lightly doped region 53 between the SF and the RST is divided into two parts. The second ion-implantation mask is removed.
Next, referring to FIG. 21, back end of line (BEOL) process is carried out, and metallic interconnections 81 to 88 are formed. Namely, a thick insulation file is formed, contact holes are formed, and a metallic film is deposited and patterned. Then, the imaging device placed on the substrate 10 is connected to a logic circuit placed on another substrate 11 by bonding such as copper to copper bonding or other inter-silicon wafer connections.
Then, deep trench isolations (DTIs) 91 and 92 are formed, in order to decrease crosstalk between the PDs.  Metal grids  101 and 102 are placed on an insulation film of the back of the substrate 10 at the border of the pixels, in order to restrain a flare and a ghost. Color filters are provided within a layer 110 at the position corresponding to the PDs.  Microlens  121 and 122 are provided at the position corresponding to the PDs. For example, there may be different sizes of the PDs, and the PDs may be arranged in staggered positions in the horizontal direction of FIG. 21.
With reference to FIG. 22 to FIG. 25, the following describes an example of another manufacturing process of an imaging device according to an embodiment of the present invention. FIG. 22 to FIG. 25 show examples of a first to fourth cross-sectional views of a substrate on which an imaging device is manufactured.
Referring to FIG. 22, after the same process as described with reference to FIG. 14 to FIG. 16 is performed, the upper side of the insulation film is etched by anisotropic etching, a first ion-implantation mask is formed to cover the PD and the TX, lightly doped regions are formed at both sides of the SEL, SF, and RST by injecting ion impurities, and the first ion-implantation mask is removed. An insulation film is formed over the substrate 10. Material this insulation film can be oxide (SiO2) , silicon nitride (Si3N4) , silicon oxynitride (SiON) or other insulator material.
Next, referring to FIG. 23, a mask is formed to cover the PD and the TX. In addition to the PD and the TX, the mask may be formed to cover the right half of the RST. The film in the area where the mask is not formed is etched to some extent by isotropic etching, and a thin film remains.
Next, referring to FIG. 24, the mask is removed, and the upper side of the insulation film is etched by anisotropic etching, and the upper side of the thin film is over-etched.
Next, referring to FIG. 25, a second ion-implantation mask is formed to cover the PD and the TX, ion impurities are implanted into the substrate to form heavily doped regions 61 to 64  of N-type conductive layers, and the FD. The heavily doped regions 61 to 64 are self-aligned to their corresponding spacers, and the lightly doped region 52 between the SEL and the SF is divided into two parts and the lightly doped region 53 between the SF and the RST is divided into two parts. The second ion-implantation mask is removed. After that, the same process as described with reference to FIG. 21 is performed.
The imaging device according to the embodiments of the present application can be applied to an imaging system 201 such as a camera system. FIG. 26 shows another example block diagram of an imaging system 201. The imaging system 201 includes an optical system 202 such as one or more lens, a shutter device 203, a solid-state image sensor 204, a control circuit 205, a signal processing circuit 206, a monitor 207, and a memory 208. The solid-state image sensor 204 includes, for example, the pixel array 209 and the readout circuit 210 in FIG. 1, and obtains image data of a subject through the lens 202 and the shutter device 203, under the control of the control circuit 205. The signal processing circuit 206 outputs the obtained image data to the monitor 207 or stores the image data in the memory 208.
FIG. 27 shows various applications for a camera system. The imaging device according to the embodiment of the present invention can be applied to, for example, a mobile phone camera, a digital camera, a network camera, a security and surveillance camera, a video camcorder, an automotive and transport camera, a medical camera, and machine visions.
The embodiment of the present invention can be applied to array devices and different substrates such as bulk silicon, silicon-on-insulator substrate, silicon-germanium substrate, and other photosensitive substrates.
The embodiment of the present invention can reduce GIDL in a floating diffusion node, leading to better fixed pattern noise. This allows to tighten pixel device related design rule, and improve source follower device ransom noise and RTS noise by enlarging the device size. Wider sidewall spacer of the TX can enhance conversion gain because of lower parasitic capacitance, which will result in lower pixel and circuit noise.
What is disclosed above are merely exemplary embodiments of the present invention, and are certainly not intended to limit the protection scope of the present invention. A person of ordinary skill in the art may understand that all or some of the processes that implement the foregoing embodiments and equivalent modifications made in accordance with the claims of the present invention shall fall within the scope of the present invention.

Claims (12)

  1. An imaging device, comprising a plurality of pixels, wherein each pixel comprises a transfer gate device, a reset device, a source follower device, and a row select device,
    wherein a sidewall spacer width of the transfer gate device is wider than a sidewall spacer width of other in-pixel devices.
  2. The imaging device according to claim 1, wherein a difference between the sidewall spacer width of the transfer gate device and the sidewall spacer width of the other in-pixel devices is equal to or greater than 3 nanometers.
  3. An imaging device, wherein
    a sidewall spacer width of a transfer gate device and a sidewall spacer width of a source side of an adjacent device, which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, are wider than the sidewall spacer width of a drain side of the adjacent device, and the sidewall spacer width of a source follower device, a row-select device, and other in-pixel devices.
  4. The imaging device according to claim 3, wherein the sidewall spacer width of the transfer gate device and the sidewall spacer width of the source side of the adjacent device are wider than the sidewall spacer width of a drain side of the adjacent device, and the sidewall spacer width of a source follower device, a row-select device, and other in-pixel devices by 3 nanometers or more.
  5. An imaging device, comprising a plurality of pixels, wherein each pixel comprises a transfer gate device, a reset device, a source follower device, and a row select device,
    wherein a gate offset spacer width of the transfer gate device is wider than a gate offset spacer width of other in-pixel devices.
  6. The imaging device according to claim 5, wherein a difference between the gate offset spacer width of the transfer gate device and the gate offset spacer width of the other in-pixel devices is equal to or greater than 3 nanometers.
  7. An imaging device, wherein
    a gate offset spacer width of a transfer gate device and a gate offset spacer width of a source side of an adjacent device, which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, are wider than the gate offset spacer width of a drain side of the adjacent device, and the gate offset spacer width of a source follower device, a row-select device, and other in-pixel devices.
  8. The imaging device according to claim 7, wherein the gate offset spacer width of the  transfer gate device and the gate offset spacer width of the source side of the adjacent device are wider than the gate offset spacer width of a drain side of the adjacent device, and the gate offset spacer width of a source follower device, a row-select device, and other in-pixel devices by 3 nanometers or more.
  9. A manufacturing method of an imaging device, comprising:
    forming gate offset spacers at both sides of a transfer gate device and other in-pixel devices;
    forming an insulation film over the transfer gate device and the other in-pixel devices;
    etching the insulation film over the other in-pixel devices by isotropic etching; and
    etching the insulation film over the transfer gate device and the other in-pixel devices by anisotropic etching.
  10. A manufacturing method of an imaging device, comprising:
    forming gate offset spacers at both sides of a transfer gate device, an adjacent device which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, and other in-pixel devices;
    forming an insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices;
    etching the insulation film over the other in-pixel devices and a drain side of the adjacent device by isotropic etching; and
    etching the insulation film over the transfer gate device, the adjacent device, and the other in-pixel devices by anisotropic etching.
  11. A manufacturing method of an imaging device, comprising:
    forming an insulation film over a transfer gate device and other in-pixel devices;
    etching the insulation film over the other in-pixel devices by isotropic etching;
    etching the insulation film over the transfer gate device and the other in-pixel devices by anisotropic etching; and
    forming sidewall spacers at both sides of the transfer gate device and the other in-pixel devices.
  12. A manufacturing method of an imaging device, comprising:
    forming an insulation film over a transfer gate device, an adjacent device which is a device other than the transfer gate device and is arranged adjacent to a floating diffusion, and other in-pixel devices;
    etching the insulation film over the other in-pixel devices and a drain side of the adjacent device by isotropic etching;
    etching the insulation film over the transfer gate device, the adjacent device, and the other  in-pixel devices by anisotropic etching; and
    forming sidewall spacers at both sides of the transfer gate device, the adjacent device, and the other in-pixel devices.
PCT/CN2020/119391 2020-09-30 2020-09-30 Solid state imaging device with low fixed pattern noise WO2022067661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080105567.9A CN116235280A (en) 2020-09-30 2020-09-30 Solid-state imaging device having low fixed pattern noise
PCT/CN2020/119391 WO2022067661A1 (en) 2020-09-30 2020-09-30 Solid state imaging device with low fixed pattern noise

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119391 WO2022067661A1 (en) 2020-09-30 2020-09-30 Solid state imaging device with low fixed pattern noise

Publications (1)

Publication Number Publication Date
WO2022067661A1 true WO2022067661A1 (en) 2022-04-07

Family

ID=80949302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119391 WO2022067661A1 (en) 2020-09-30 2020-09-30 Solid state imaging device with low fixed pattern noise

Country Status (2)

Country Link
CN (1) CN116235280A (en)
WO (1) WO2022067661A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058473A (en) * 2000-12-30 2002-07-12 박종섭 Image sensor formation method capable of reducing node capacitance of floating diffusion area
US20090302358A1 (en) * 2008-06-04 2009-12-10 Omnivision Technologies, Inc. CMOS image sensor with high full-well-capacity
CN103378117A (en) * 2012-04-25 2013-10-30 台湾积体电路制造股份有限公司 Backside illuminated image sensor with negatively charged layer
US20160211293A1 (en) * 2015-01-20 2016-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device with white pixel improvement
CN107104115A (en) * 2015-12-28 2017-08-29 瑞萨电子株式会社 Semiconductor devices and its manufacture method
CN108475690A (en) * 2016-01-21 2018-08-31 索尼公司 Semiconductor device, its manufacturing method, solid-state imaging element and electronic equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020058473A (en) * 2000-12-30 2002-07-12 박종섭 Image sensor formation method capable of reducing node capacitance of floating diffusion area
US20090302358A1 (en) * 2008-06-04 2009-12-10 Omnivision Technologies, Inc. CMOS image sensor with high full-well-capacity
CN103378117A (en) * 2012-04-25 2013-10-30 台湾积体电路制造股份有限公司 Backside illuminated image sensor with negatively charged layer
US20160211293A1 (en) * 2015-01-20 2016-07-21 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device with white pixel improvement
CN107104115A (en) * 2015-12-28 2017-08-29 瑞萨电子株式会社 Semiconductor devices and its manufacture method
CN108475690A (en) * 2016-01-21 2018-08-31 索尼公司 Semiconductor device, its manufacturing method, solid-state imaging element and electronic equipment

Also Published As

Publication number Publication date
CN116235280A8 (en) 2024-05-31
CN116235280A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
EP2437299B1 (en) Method for manufacturing a solid-state image pickup device
US8716769B2 (en) Image sensors including color adjustment path
US7364960B2 (en) Methods for fabricating solid state image sensor devices having non-planar transistors
US8298851B2 (en) Method of manufacturing a solid-state imaging device with a silicide blocking layer and electronic apparatus
US11417691B2 (en) Image sensor including dummy patterns positioned between adjacent transfer gates
KR102272115B1 (en) A semiconductor imaging device having improved dark current performance
KR101770289B1 (en) Image sensor and method of forming the same
JP2017195215A (en) Imaging device and method of manufacturing the same
TWI836198B (en) Image sensor and method for forming the same
US20140078337A1 (en) Solid-state image sensor, method of manufacturing the same, and camera
US10381389B2 (en) Solid state imaging device, manufacturing method of solid state imaging device, and imaging system
US20160156817A1 (en) Manufacturing method of imaging apparatus, imaging apparatus, and imaging system
JP6727897B2 (en) Solid-state imaging device, method of manufacturing solid-state imaging device, and imaging system
US20070145443A1 (en) CMOS Image Sensor and Method of Manufacturing the Same
US9029182B2 (en) Method of manufacturing solid-state image sensor
WO2022067661A1 (en) Solid state imaging device with low fixed pattern noise
US9871068B1 (en) Methods and apparatus for an image sensor with a multi-branch transistor
WO2022104658A1 (en) Solid state imaging device
JP2011204884A (en) Photoelectric conversion device, and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955686

Country of ref document: EP

Kind code of ref document: A1