WO2022067659A1 - Utilization of a non-periodic wake-up signal - Google Patents

Utilization of a non-periodic wake-up signal Download PDF

Info

Publication number
WO2022067659A1
WO2022067659A1 PCT/CN2020/119389 CN2020119389W WO2022067659A1 WO 2022067659 A1 WO2022067659 A1 WO 2022067659A1 CN 2020119389 W CN2020119389 W CN 2020119389W WO 2022067659 A1 WO2022067659 A1 WO 2022067659A1
Authority
WO
WIPO (PCT)
Prior art keywords
time interval
signal
periodic wake
aspects
configuration information
Prior art date
Application number
PCT/CN2020/119389
Other languages
French (fr)
Inventor
Nan Zhang
Yongjun XU
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/119389 priority Critical patent/WO2022067659A1/en
Publication of WO2022067659A1 publication Critical patent/WO2022067659A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses associated with utilization of a non-periodic wake-up signal.
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) .
  • a user equipment (UE) may communicate with a base station (BS) via the downlink and uplink.
  • the downlink (or forward link) refers to the communication link from the BS to the UE
  • the uplink (or reverse link) refers to the communication link from the UE to the BS.
  • a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
  • New Radio which may also be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • 3GPP Third Generation Partnership Project
  • NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM)
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • a method of wireless communication performed by a user equipment includes receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • a method of wireless communication performed by a transmitter includes transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
  • a UE for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • a transmitter for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a transmitter (e.g., base station or a UE) , cause the transmitter to: transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
  • a transmitter e.g., base station or a UE
  • an apparatus for wireless communication includes means for receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and means for configuring the apparatus to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • an apparatus for wireless communication includes means for transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and means for transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, transmitter, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
  • Fig. 3 is a diagram illustrating an example of data communication associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
  • Fig. 4 is a diagram illustrating an example associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
  • Figs. 5 and 6 are diagrams illustrating example processes associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
  • Figs. 7 and 8 are diagrams illustrating example apparatuses associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
  • aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like.
  • the wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities.
  • a base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like.
  • Each BS may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
  • a BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) .
  • a BS for a macro cell may be referred to as a macro BS.
  • a BS for a pico cell may be referred to as a pico BS.
  • a BS for a femto cell may be referred to as a femto BS or a home BS.
  • a BS 110a may be a macro BS for a macro cell 102a
  • a BS 110b may be a pico BS for a pico cell 102b
  • a BS 110c may be a femto BS for a femto cell 102c.
  • a BS may support one or multiple (e.g., three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS.
  • the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
  • Wireless network 100 may also include relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) .
  • a relay station may also be a UE that can relay transmissions for other UEs.
  • a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d.
  • a relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
  • Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100.
  • macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs.
  • Network controller 130 may communicate with the BSs via a backhaul.
  • the BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
  • UEs 120 may be dispersed throughout wireless network 100, and each UE may be stationary or mobile.
  • a UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like.
  • a UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
  • PDA personal digital assistant
  • WLL wireless local loop
  • MTC and/or eMTC and/or mMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity.
  • a wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) .
  • UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support a particular RAT and may operate on one or more frequencies.
  • a RAT may also be referred to as a radio technology, an air interface, and/or the like.
  • a frequency may also be referred to as a carrier, a frequency channel, and/or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like.
  • V2X vehicle-to-everything
  • the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like.
  • devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz.
  • FR1 first frequency range
  • FR2 second frequency range
  • the frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies.
  • FR1 is often referred to as a “sub-6 GHz” band.
  • FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • sub-6 GHz or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) .
  • millimeter wave may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure.
  • Base station 110 may be equipped with T antennas 234a through 234t
  • UE 120 may be equipped with R antennas 252a through 252r, where in general T ⁇ 1 and R ⁇ 1.
  • a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols.
  • MCS modulation and coding schemes
  • Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) .
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t.
  • MIMO multiple-input multiple-output
  • Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
  • antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to demodulators (DEMODs) 254a through 254r, respectively.
  • Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples.
  • Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSRQ reference signal received quality
  • CQI channel quality indicator
  • one or more components of UE 120 may be included in a housing 284.
  • Network controller 130 may include communication unit 294, controller/processor 290, and memory 292.
  • Network controller 130 may include, for example, one or more devices in a core network.
  • Network controller 130 may communicate with base station 110 via communication unit 294.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
  • the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by UE 120.
  • Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240.
  • Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244.
  • Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
  • Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with utilizing a non-periodic wake-up signal, as described in more detail elsewhere herein.
  • controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • Memories 242 and 282 may store data and program codes for base station 110 and UE 120, respectively.
  • memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
  • a UE includes means for receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and/or means for configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • the means for the UE to perform operations described herein may include, for example, antenna 252, demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282.
  • the UE includes means for monitoring for the reception of the non-periodic wake-up signal after configuring the UE.
  • the UE includes means for receiving the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
  • the UE includes means for receiving an updated time interval to modify the time interval indicated by the configuration information.
  • the UE includes means for overriding a default wake-up signal cycle time with the time interval indicated by the configuration information.
  • a transmitter (e.g., base station or a UE) includes means for transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and/or means for transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
  • the means for the transmitter to perform operations described herein may include, for example, transmit processor 220 or 258, TX MIMO processor 230 or 266, modulator 232 or 254, antenna 234 or 252, demodulator 232 or 254, MIMO detector 236 or 256, receive processor 238 or 258, controller/processor 240 or 280, memory 242 or 282, and/or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a UE may conduct data communication with a wireless network device, such as a BS or another UE, in an LTE or a 5G/NR network. While conducting the data communication, the UE may function in a connected mode, an idle mode, a sleep mode, or the like. In the connected mode, the UE may actively transmit and/or receive data, for example, by actively monitoring and decoding a physical downlink control channel (PDCCH) for paging messages. The active monitoring and decoding of the PDCCH during the connected mode may consume a connected-mode amount of power.
  • a wireless network device such as a BS or another UE, in an LTE or a 5G/NR network. While conducting the data communication, the UE may function in a connected mode, an idle mode, a sleep mode, or the like. In the connected mode, the UE may actively transmit and/or receive data, for example, by actively monitoring and decoding a physical downlink control channel (PDCCH) for paging messages.
  • PDCCH physical downlink control channel
  • the UE may function in the idle mode when the UE may not be actively transmitting and/or receiving data.
  • the UE may periodically monitor and decode the PDCCH for potential paging messages received by the UE.
  • a paging message may include information encrypted by a paging radio network temporary identifier (P-RNTI) .
  • P-RNTI paging radio network temporary identifier
  • the UE may resume a connected mode. The periodic monitoring and decoding of the PDCCH may consume an idle-mode amount of power.
  • the UE may utilize a discontinuous reception (DRX) scheme, which may allow the UE to enter the sleep mode (also referred to as a low-power mode) .
  • DRX discontinuous reception
  • the UE may monitor for the PDCCH during periodic active times or On durations of a DRX cycle, which may be less frequent than the periodic monitoring and decoding in the idle mode.
  • utilization of the DRX scheme may assist in lowering a power consumption from the idle-mode amount of power to a sleep-mode amount of power.
  • the UE may utilize a wake-up signal, which may enable the UE to avoid monitoring and decoding the PDCCH during each active time or On duration. For example, the UE may monitor for a wakeup signal, such as a physical-layer signal or a PDCCH, during periodic wake-up signal occasions (PWUS occasions) . If the UE receives a wake-up signal in a PWUS occasion, the UE may awaken in a corresponding paging occasion to monitor for paging directed to the UE. If the UE does not receive a wake-up signal in a PWUS occasion, the UE may remain in the sleep mode through the paging occasion.
  • a wakeup signal such as a physical-layer signal or a PDCCH
  • utilization of the periodic wake-up signal may assist in lowering the power consumption from the sleep-mode amount of power to a periodic wake-up signal amount of power (PWUS amount of power) because the monitoring for the wake-up signal may use a reduced reception configuration (e.g., fewer antennas, a reduced processor power state, a separate wake-up signal receive processor, or the like) relative to paging monitoring.
  • a reduced reception configuration e.g., fewer antennas, a reduced processor power state, a separate wake-up signal receive processor, or the like
  • Some UEs may be designed for reduced power consumption relative to a baseline UE, such as for long deployment in the field, infrequent or simple communication (e.g., machine-type communication) , or the like.
  • Examples include a machine-type communication UE (e.g., an enhanced machine-type communication (eMTC) UE and/or a massive machine-type communication (mMTC) UE) and a narrowband Internet-of-Things (NB-IoT) UE.
  • eMTC enhanced machine-type communication
  • mMTC massive machine-type communication
  • NB-IoT narrowband Internet-of-Things
  • monitoring for and decoding the PDCCH during each PWUS occasion may use some amount of power.
  • monitoring and decoding the PDCCH during each PWUS occasion may be unnecessary during (i) an off-time (e.g., nighttime) when there is low activity in the network and the machine-type communication UE may receive fewer communications, (ii) a downtime when an operation associated with the machine-type communication UE may be suspended due to a stoppage or an interruption, and/or (iii) times when no communication is expected for the machine-type communication UE for a long period of time.
  • an off-time e.g., nighttime
  • Various aspects of techniques and apparatuses described herein may allow a UE to utilize a non-periodic wake-up signal.
  • utilizing the non-periodic wake-up signal may include the UE monitoring and decoding a PDCCH based at least in part on a non-periodic wake-up signal occasion (NPWUS occasion) .
  • NPWUS occasion may represent, for example, a time interval after substantially an end of which the UE should expect to receive a non-periodic wake-up signal.
  • the UE may receive configuration information indicating the time interval associated with a reception of the non-periodic wake-up signal, and may configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • the utilization of the non-periodic wake-up signal may provide the UE with an ability to limit unnecessary power consumption.
  • a battery life associated with a battery, responsible for supplying power to the UE may be extended.
  • Fig. 3 is a diagram illustrating an example 300 of data communication associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
  • Fig. 3 shows a UE 120 and a transmitter (TX) 310 (e.g., BS 110 or another UE 120) conducting data communication in, for example, an LTE network or a 5G/NR network.
  • the data communication may include a downlink communication from the TX 310 to the UE 120 and/or an uplink communication from the UE 120 to the TX 310.
  • the uplink and downlink communications may include, for example, signaling data and/or payload data.
  • the signaling data may include configuration information.
  • the TX 310 may transmit, and the UE 120 may receive, the configuration information at a beginning of and/or during the data communication.
  • the UE 120 may receive the configuration information from a device other than TX 310 (e.g., from another base station or yet another UE) .
  • the UE 120 may receive the configuration information via, for example, a control channel (e.g., a PDCCH or a PSCCH) established between the UE 120 and the TX 310.
  • the UE 120 may utilize the control channel as a medium to receive downlink control information including wake-up signals, paging messages, and/or the like.
  • the configuration information may be communicated via radio resource control (RRC) signaling, medium access control (MAC) signaling, downlink control information (DCI) or a combination thereof (e.g., RRC configuration of a set of values for a parameter and DCI indication of a selected value of the parameter) .
  • RRC radio resource control
  • MAC medium access control
  • DCI downlink control information
  • the configuration information may include an indication of, for example, one or more configuration parameters for the UE 120 to use to configure the UE 120 for the data communication.
  • the configuration information may include configuration information associated with a non-periodic wake-up signal (NPWUS) .
  • the configuration information associated with the NPWUS may include information about an NPWUS occasion.
  • the NPWUS occasion may be indicated by a time interval (NPWUS time interval) after an end of which the UE 120 should expect to receive the NPWUS.
  • the UE 120 may receive the NPWUS during irregularly-occurring NPWUS occasions.
  • the information about the NPWUS occasion may indicate a time associated with a beginning of the NPWUS time interval, a time associated with a duration of time (e.g., 120 minutes, 200 minutes, 210 minutes, and/or the like) associated with the NPWUS time interval, and/or a time associated with an end of the NPWUS time interval.
  • the beginning of the NPWUS occasion may be a current time.
  • the configuration information may indicate a set of resources that define the NPWUS, such as a set of subframes, slots, mini-slots, or symbols.
  • the configuration information may indicate an active time or ON duration of a DRX cycle, and may indicate a WUS occasion associated with the active time or ON duration as an NPWUS occasion. In this case, the UE 120 may skip WUS occasions other than the WUS occasion that is indicated as an NPWUS occasion.
  • the indication of the NPWUS occasion is not limited to those implementations involving signaling of a time interval.
  • the NPWUS occasion may be indicated by one or more time intervals (sometimes referred to herein as NPWUS time intervals) .
  • the one or more time intervals may be of a same or of a different duration with respect to each other.
  • the NPWUS occasion may be indicated by three NPWUS time intervals having respective durations of, for example, 120 minutes, 200 minutes, and 210 minutes.
  • the UE may monitor a first NPWUS occasion 120 minutes from the current time, a second NPWUS occasion 200 minutes from the current time, and a third NPWUS occasion 210 minutes from the current time.
  • the configuration information may include information about a wake-up signal gap (WUS gap) , which represents a gap duration of time after a reception of the NPWUS.
  • WUS gap may be for a duration sufficient for the UE to exit a current mode (e.g., a sleep mode) and to enter another mode (e.g., a connected mode associated with a paging occasion) so that the UE 120 may be ready to actively monitor and decode the control channel and to actively transmit and/or receive data.
  • the WUS gap may be of any time duration such as, for example, 30 milliseconds, 30 seconds, and/or the like.
  • the WUS gap may cause the UE to skip one or more paging occasions. For example, the WUS gap may cause the UE to monitor a paging occasion that is non-consecutive with the WUS occasion (e.g., with one or more paging occasions between the monitored paging occasion and the WUS occasion) .
  • the NPWUS time interval and the WUS gap, included in the received configuration information may override a previous default configuration (e.g., a periodic DRX scheme) of the UE 120 associated with reception of a wake-up signal.
  • the UE 120 may receive updated configuration information, from the TX 310, to modify previously received configuration information. Under such conditions, the UE 120 may update a configuration of the UE 120 based at least in part on the updated configuration information.
  • the UE 120 may configure the UE 120 to monitor for a reception of the non-periodic wake-up signal based at least in part on the configuration information associated with the non-periodic wake-up signal.
  • the UE 120 may include one or more processors to process the received configuration information, and to configure the UE 120 based at least in part on the configuration information.
  • the one or more processors may include one or more processors discussed elsewhere herein, such as, for example, the processor components discussed above with respect to Fig. 2.
  • the one or more processors may configure the UE 120 to remain in the current mode (e.g., the sleep mode) until substantially the end of the NPWUS time interval. Based at least in part on substantially the end of the NPWUS time interval, the one or more processors may configure the UE 120 to monitor, for example, the control channel to determine whether a non-periodic wake-up signal has been received from the TX 310. The situation where the non-periodic wake-up signal is received at substantially the end of the NPWUS time interval is described below in connection with reference number 350. In the situation where the non-periodic wake-up signal is not received at substantially the end of the NPWUS time interval, the UE 120 may resume the current mode (e.g., sleep mode) until substantially the end of the next NPWUS time interval.
  • the current mode e.g., the sleep mode
  • the TX 310 may transmit, and the UE 120 may receive, the non-periodic wake-up signal.
  • the UE 120 may receive the non-periodic wake-up signal after receiving the configuration information associated with the non-periodic wake-up signal, as shown by reference number 330, and/or after configuring the UE 120 to monitor for the reception of the non-periodic wake-up signal, as shown by reference number 340.
  • the UE 120 may receive the non-periodic wake-up signal to enable the UE 120 to be ready to decode the control channel.
  • a time associated with reception of the non-periodic wake-up signal may indicate a beginning of the WUS gap duration.
  • the non-periodic wake-up signal may include any wake-up signal, such as a physical-layer wake-up signal, a downlink control information based wake-up signal, or the like.
  • the non-periodic wake-up signal may be specifically directed to be received by the UE 120 or by a group of UEs including the UE 120.
  • the non-periodic wake-up signal may include a physical-layer signal carrying information about the UE 120 or the group of UEs to which the non-periodic wake-up signal is directed.
  • the non-periodic wake-up signal may be transmitted in a resource (e.g., a time/frequency resource, a control resource set, or the like) associated with the UE 120 or the group of UEs to which the non-periodic wake-up signal is directed.
  • a resource e.g., a time/frequency resource, a control resource set, or the like
  • the one or more processors may configure the UE 120 to monitor the control channel based at least in part on receiving the non-periodic wake-up signal. In some aspects, based at least in part on receiving the non-periodic wake-up signal, the one or more processors may configure the UE 120 to exit the current mode (e.g., the sleep mode) and to enter another mode (e.g., the connected mode) to be ready to actively monitor and decode the control channel.
  • the current mode e.g., the sleep mode
  • another mode e.g., the connected mode
  • the reception of the non-periodic wake-up signal may indicate a beginning of the NPWUS gap duration, and the one or more processors may configure the UE 120 to exit the current mode (e.g., the sleep mode) and enter the another mode (e.g., the connected mode) within the NPWUS gap duration.
  • the current mode e.g., the sleep mode
  • the another mode e.g., the connected mode
  • the UE 120 By monitoring for the reception of a potential non-periodic wake-up signal at substantially the end of the NPWUS time interval, the UE 120 is allowed to remain in the current mode (e.g., the sleep mode) during substantially an entirety of the NPWUS time interval. In this way, power consumption associated with periodically monitoring the control channel may be reduced, thereby extending a battery life associated with a battery responsible for supplying power to the UE 120. By limiting power consumption, the UE 120 may enable optimized use of the battery without frequently replacing the battery and/or enlarging a size of the battery.
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example 400 associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
  • events associated with the utilization of the non-periodic wake-up signal may be plotted along a timeline charted on an x-axis, which represents time.
  • the UE 120 (not shown in Fig. 4) may utilize the non-periodic wake-up signal.
  • the UE 120 may include one or more UEs discussed elsewhere herein, such as, for example, the UE 120 discussed with respect to Fig. 2 and/or the UE 120 discussed with respect to Fig. 3.
  • the UE 120 may include one or more processors to utilize the non-periodic wake-up signal.
  • the one or more processors may include one or more processors discussed elsewhere herein, such as, for example, the processor components discussed above with respect to Fig. 2.
  • the one or more processors may be coupled to transmission circuitry and reception circuitry included in the UE 120.
  • the transmission circuitry and the reception circuitry may be responsible for transmitting and receiving information (e.g., configuration information, wakeup signaling, and/or the like) associated with the utilization of the non-periodic wake-up signal.
  • the UE 120 may receive configuration information associated with utilizing the non-periodic wake-up signal.
  • the configuration information may indicate an NPWUS time interval.
  • the configuration information may indicate an NPWUS occasion (e.g., based at least in part on a resource allocation associated with the NPWUS occasion, an identifier associated with the NPWUS occasion, a corresponding active time or ON duration associated with the NPWUS occasion, and/or the like) .
  • the one or more processors may configure the UE 120 to remain in a current mode (e.g., a sleep mode) during substantially an entirety of the NPWUS time interval.
  • the UE may perform some amount of power ramp up during the NPWUS time interval, such as from a sleep state to a state associated with detecting a WUS.
  • the UE 120 may receive the configuration information from a transmitter such as, for example, TX 310 discussed above with respect to Fig. 3.
  • the UE 120 may begin monitoring for a reception of the non-periodic wake-up signal.
  • the UE 120 may monitor a control channel to detect whether a non-periodic wake-up signal has been received from the transmitter.
  • the UE 120 may receive the non-periodic signal from the transmitter.
  • the non-periodic wake-up signal may enable the UE 120 to be ready to monitor and decode the control channel.
  • reception of the non-periodic wake-up signal may indicate a beginning of an NPWUS gap.
  • the UE 120 may exit the current mode (e.g., the sleep mode) and enter another mode (e.g., a connected mode) .
  • the UE 120 may exit the current mode (e.g., the sleep mode) and enter the other mode (e.g., the connected mode) to be ready to actively monitor and decode the control channel.
  • the UE 120 may be ready to actively transmit and/or receive data by substantially an end of the duration of the NPWUS gap.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • Fig. 5 is a diagram illustrating an example process 500 associated with utilization of a non-periodic wake-up signal and performed, for example, by a user equipment (UE) , in accordance with various aspects of the present disclosure.
  • Example process 500 is an example where the UE (e.g., UE 120) performs operations associated with utilization of a non-periodic wake-up signal.
  • the UE e.g., UE 120
  • process 500 may include receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal (block 510) .
  • the UE e.g., using reception component 702, depicted in Fig. 7 may receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal, as described above.
  • process 500 may include configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval (block 520) .
  • the UE e.g., using processing component 708, depicted in Fig. 7
  • the UE may monitor for the reception of the non-periodic wakeup signal without performing a configuration operation.
  • configuring the UE to monitor for the reception of the non-periodic wakeup signal may comprise monitoring for the reception of the non-periodic wakeup signal.
  • Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • process 500 includes monitoring for the reception of the non-periodic wake-up signal after configuring the UE.
  • process 500 includes receiving the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
  • the time interval is indicated by a duration of time after which the UE is configured to monitor for the non-periodic wake-up signal.
  • the time interval is of a different duration of time with respect to a previously-indicated time interval or a subsequently-indicated time interval.
  • the UE is configured to wake up, based at least in part on the end of the time interval, from a sleep mode to monitor for the reception of the non-periodic wake-up signal.
  • process 500 includes receiving an updated time interval to modify the time interval indicated by the configuration information.
  • the time interval is one of a plurality of time intervals indicated by the configuration information.
  • a duration of the time interval is different from a duration of at least one other one of the plurality of time intervals.
  • process 500 includes overriding a default wake-up signal cycle time with the time interval indicated by the configuration information.
  • process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
  • Fig. 6 is a diagram illustrating an example process 600 associated with utilization of a non-periodic wake-up signal and performed, for example, by a transmitter (e.g., a base station 110 or a UE 120) , in accordance with various aspects of the present disclosure.
  • Example process 600 is an example where the transmitter performs operations associated with utilization of a non-periodic wake-up signal.
  • process 600 may include transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal (block 610) .
  • the transmitter e.g., using transmission component 804, depicted in Fig. 8
  • process 600 may include transmitting the non-periodic wake-up signal based at least in part on an end of the time interval (block 620) .
  • the transmitter e.g., using transmission component 804, depicted in Fig. 8
  • Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the time interval is indicated by a duration of time after which the non-periodic wake-up signal may be transmitted.
  • the time interval is of a different duration of time with respect to a previously-indicated time interval or a subsequently-indicated time interval.
  • the time interval is one of a plurality of time intervals indicated by the configuration information.
  • a duration of the time interval is different from a duration of at least one other one of the plurality of time intervals.
  • the time interval indicated by the configuration information is to override a default wake-up signal cycle time.
  • process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
  • Fig. 7 is a diagram illustrating an example apparatus 700 associated with utilization of a non-periodic wake-up signal.
  • the apparatus 700 may be a UE, or a UE may include the apparatus 700.
  • the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704.
  • the apparatus 700 may include one or more of a processing component 708, among other examples.
  • the apparatus 700 may be configured to perform one or more operations described herein in connection with Figs. 3 and 4. Additionally or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5.
  • the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory.
  • a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706.
  • the reception component 702 may provide received communications to one or more other components of the apparatus 700.
  • the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 706.
  • the reception component 702 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706.
  • one or more other components of the apparatus 706 may generate communications and may provide the generated communications to the transmission component 704 for transmission to the apparatus 706.
  • the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706.
  • the transmission component 704 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 704 may be collocated with the reception component 702 in a transceiver.
  • the reception component 702 may receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal.
  • the processing component 708 may process the received configuration information and may configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  • the processing component 708 may also enable the UE to monitor for the reception of the non-periodic wake-up signal after configuring the UE.
  • the processing component 708 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
  • the reception component 702 may receive the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
  • the reception component 702 may receive an updated time interval to modify the time interval indicated by the configuration information.
  • the processing component 708 may override a default wake-up signal cycle time with the time interval indicated by the configuration information.
  • Fig. 7 The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
  • Fig. 8 is a diagram illustrating an example apparatus 800 associated with utilization of a non-periodic wake-up signal.
  • the apparatus 800 may be a transmitter (e.g., a base station 110 or a UE 120) , or a transmitter may include the apparatus 800.
  • the apparatus 800 includes a reception component 802 and a transmission component 804, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 800 may communicate with another apparatus 806 (such as a UE 120, a base station 110, or another wireless communication device) using the reception component 802 and the transmission component 804.
  • the apparatus 800 may include one or more of a configuration component 808, among other examples.
  • the apparatus 800 may be configured to perform one or more operations described herein in connection with Figs. 3 and 4. Additionally or alternatively, the apparatus 800 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6.
  • the apparatus 800 and/or one or more components shown in Fig. 8 may include one or more components of the transmitter described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 8 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory.
  • a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 802 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 806.
  • the reception component 802 may provide received communications to one or more other components of the apparatus 800.
  • the reception component 802 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 806.
  • the reception component 802 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2.
  • the transmission component 804 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 806.
  • one or more other components of the apparatus 806 may generate communications and may provide the generated communications to the transmission component 804 for transmission to the apparatus 806.
  • the transmission component 804 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 806.
  • the transmission component 804 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2. In some aspects, the transmission component 804 may be collocated with the reception component 802 in a transceiver.
  • the transmission component 804 may transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal.
  • the transmission component 804 may transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
  • Fig. 8 The number and arrangement of components shown in Fig. 8 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 8. Furthermore, two or more components shown in Fig. 8 may be implemented within a single component, or a single component shown in Fig. 8 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 8 may perform one or more functions described as being performed by another set of components shown in Fig. 8.
  • the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software.
  • a processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
  • the phrase “only one” or similar language is used.
  • the terms “has, ” “have, ” “having, ” and/or the like are intended to be open-ended terms.
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Various aspects of the present disclosure generally relate to wireless communication. In some aspects, a user equipment (UE) may receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal. The UE may configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval. Numerous other aspects are provided.

Description

UTILIZATION OF A NON-PERIODIC WAKE-UP SIGNAL
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses associated with utilization of a non-periodic wake-up signal.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, and/or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency-division multiple access (FDMA) systems, orthogonal frequency-division multiple access (OFDMA) systems, single-carrier frequency-division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include a number of base stations (BSs) that can support communication for a number of user equipment (UEs) . A user equipment (UE) may communicate with a base station (BS) via the downlink and uplink. The downlink (or forward link) refers to the communication link from the BS to the UE, and the uplink (or reverse link) refers to the communication link from the UE to the BS. As will be described in more detail herein, a BS may be referred to as a Node B, a gNB, an access point (AP) , a radio head, a transmit receive point (TRP) , a New Radio (NR) BS, a 5G Node B, and/or the like.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different user equipment to communicate on a municipal, national, regional, and even global level. New Radio (NR) , which may also be referred to as 5G, is a set of enhancements to the  LTE mobile standard promulgated by the Third Generation Partnership Project (3GPP) . NR is designed to better support mobile broadband Internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink (DL) , using CP-OFDM and/or SC-FDM (e.g., also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink (UL) , as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some aspects, a method of wireless communication performed by a user equipment (UE) includes receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, a method of wireless communication performed by a transmitter (e.g., base station or a UE) includes transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, a UE for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, a transmitter (e.g., base station or a UE) for wireless communication includes a memory; and one or more processors operatively coupled to the memory, the memory and the one or more processors configured to: transmit configuration information indicating a time interval associated with a transmission of a  non-periodic wake-up signal; and transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a transmitter (e.g., base station or a UE) , cause the transmitter to: transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, an apparatus for wireless communication includes means for receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and means for configuring the apparatus to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
In some aspects, an apparatus for wireless communication includes means for transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and means for transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, transmitter, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both  their organization and method of operation, together with associated advantages will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with various aspects of the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a UE in a wireless network, in accordance with various aspects of the present disclosure.
Fig. 3 is a diagram illustrating an example of data communication associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
Fig. 4 is a diagram illustrating an example associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
Figs. 5 and 6 are diagrams illustrating example processes associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
Figs. 7 and 8 are diagrams illustrating example apparatuses associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied  in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. Based on the teachings herein, one skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, and/or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
It should be noted that while aspects may be described herein using terminology commonly associated with a 5G or NR radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with various aspects of the present disclosure. The wireless network 100 may be or may include elements of a 5G (NR) network, an LTE network, and/or the like. The wireless network 100 may include a number of base stations 110 (shown as BS 110a, BS 110b, BS 110c, and BS 110d) and other network entities. A base station (BS) is an entity that communicates with user equipment (UEs) and may also be referred to as an NR BS, a Node B, a gNB, a 5G node B (NB) , an access point, a transmit receive point (TRP) , and/or the like. Each BS may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a  coverage area of a BS and/or a BS subsystem serving this coverage area, depending on the context in which the term is used.
A BS may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs with service subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs having association with the femto cell (e.g., UEs in a closed subscriber group (CSG) ) . A BS for a macro cell may be referred to as a macro BS. A BS for a pico cell may be referred to as a pico BS. A BS for a femto cell may be referred to as a femto BS or a home BS. In the example shown in Fig. 1, a BS 110a may be a macro BS for a macro cell 102a, a BS 110b may be a pico BS for a pico cell 102b, and a BS 110c may be a femto BS for a femto cell 102c. A BS may support one or multiple (e.g., three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some aspects, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a mobile BS. In some aspects, the BSs may be interconnected to one another and/or to one or more other BSs or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces such as a direct physical connection, a virtual network, and/or the like using any suitable transport network.
Wireless network 100 may also include relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a BS or a UE) and send a transmission of the data to a downstream station (e.g., a UE or a BS) . A relay station may also be a UE that can relay transmissions for other UEs. In the example shown in Fig. 1, a relay BS 110d may communicate with macro BS 110a and a UE 120d in order to facilitate communication between BS 110a and UE 120d. A relay BS may also be referred to as a relay station, a relay base station, a relay, and/or the like.
Wireless network 100 may be a heterogeneous network that includes BSs of different types, e.g., macro BSs, pico BSs, femto BSs, relay BSs, and/or the like. These different types of BSs may have different transmit power levels, different coverage areas, and different impacts on interference in wireless network 100. For example,  macro BSs may have a high transmit power level (e.g., 5 to 40 watts) whereas pico BSs, femto BSs, and relay BSs may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to a set of BSs and may provide coordination and control for these BSs. Network controller 130 may communicate with the BSs via a backhaul. The BSs may also communicate with one another, e.g., directly or indirectly via a wireless or wireline backhaul.
UEs 120 (e.g., 120a, 120b, 120c) may be dispersed throughout wireless network 100, and each UE may be stationary or mobile. A UE may also be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, and/or the like. A UE may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device or equipment, biometric sensors/devices, wearable devices (smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (e.g., smart ring, smart bracelet) ) , an entertainment device (e.g., a music or video device, or a satellite radio) , a vehicular component or sensor, smart meters/sensors, industrial manufacturing equipment, a global positioning system device, or any other suitable device that is configured to communicate via a wireless or wired medium.
Some UEs may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs or massive machine-type communication (mMTC) UEs. MTC and/or eMTC and/or mMTC UEs include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, and/or the like, that may communicate with a base station, another device (e.g., remote device) , or some other entity. A wireless node may provide, for example, connectivity for or to a network (e.g., a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some UEs may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband internet of things) devices. Some UEs may be considered a Customer Premises Equipment (CPE) . UE 120 may be included inside a housing that houses components of UE 120, such as processor components, memory components, and/or the like. In some aspects, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory  components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, electrically coupled, and/or the like.
In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support a particular RAT and may operate on one or more frequencies. A RAT may also be referred to as a radio technology, an air interface, and/or the like. A frequency may also be referred to as a carrier, a frequency channel, and/or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some aspects, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, and/or the like) , a mesh network, and/or the like. In this case, the UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided based on frequency or wavelength into various classes, bands, channels, and/or the like. For example, devices of wireless network 100 may communicate using an operating band having a first frequency range (FR1) , which may span from 410 MHz to 7.125 GHz, and/or may communicate using an operating band having a second frequency range (FR2) , which may span from 24.25 GHz to 52.6 GHz. The frequencies between FR1 and FR2 are sometimes referred to as mid-band frequencies. Although a portion of FR1 is greater than 6 GHz, FR1 is often referred to as a “sub-6 GHz” band. Similarly, FR2 is often referred to as a “millimeter wave” band despite being different from the extremely high frequency (EHF) band (30 GHz –300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band. Thus, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies less than 6 GHz, frequencies within FR1, and/or mid-band frequencies (e.g., greater than 7.125 GHz) . Similarly, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used  herein, may broadly represent frequencies within the EHF band, frequencies within FR2, and/or mid-band frequencies (e.g., less than 24.25 GHz) . It is contemplated that the frequencies included in FR1 and FR2 may be modified, and techniques described herein are applicable to those modified frequency ranges.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with various aspects of the present disclosure. Base station 110 may be equipped with T antennas 234a through 234t, and UE 120 may be equipped with R antennas 252a through 252r, where in general T ≥ 1 and R ≥ 1.
At base station 110, a transmit processor 220 may receive data from a data source 212 for one or more UEs, select one or more modulation and coding schemes (MCS) for each UE based at least in part on channel quality indicators (CQIs) received from the UE, process (e.g., encode and modulate) the data for each UE based at least in part on the MCS (s) selected for the UE, and provide data symbols for all UEs. Transmit processor 220 may also process system information (e.g., for semi-static resource partitioning information (SRPI) and/or the like) and control information (e.g., CQI requests, grants, upper layer signaling, and/or the like) and provide overhead symbols and control symbols. Transmit processor 220 may also generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) , a demodulation reference signal (DMRS) , and/or the like) and synchronization signals (e.g., the primary synchronization signal (PSS) and secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide T output symbol streams to T modulators (MODs) 232a through 232t. Each modulator 232 may process a respective output symbol stream (e.g., for OFDM and/or the like) to obtain an output sample stream. Each modulator 232 may further process (e.g., convert to analog, amplify, filter, and upconvert) the output sample stream to obtain a downlink signal. T downlink signals from modulators 232a through 232t may be transmitted via T antennas 234a through 234t, respectively.
At UE 120, antennas 252a through 252r may receive the downlink signals from base station 110 and/or other base stations and may provide received signals to  demodulators (DEMODs) 254a through 254r, respectively. Each demodulator 254 may condition (e.g., filter, amplify, downconvert, and digitize) a received signal to obtain input samples. Each demodulator 254 may further process the input samples (e.g., for OFDM and/or the like) to obtain received symbols. A MIMO detector 256 may obtain received symbols from all R demodulators 254a through 254r, perform MIMO detection on the received symbols if applicable, and provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, provide decoded data for UE 120 to a data sink 260, and provide decoded control information and system information to a controller/processor 280. The term "controller/processor" may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine reference signal received power (RSRP) , received signal strength indicator (RSSI) , reference signal received quality (RSRQ) , channel quality indicator (CQI) , and/or the like. In some aspects, one or more components of UE 120 may be included in a housing 284.
Network controller 130 may include communication unit 294, controller/processor 290, and memory 292. Network controller 130 may include, for example, one or more devices in a core network. Network controller 130 may communicate with base station 110 via communication unit 294.
On the uplink, at UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, CQI, and/or the like) from controller/processor 280. Transmit processor 264 may also generate reference symbols for one or more reference signals. The symbols from transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by modulators 254a through 254r (e.g., for DFT-s-OFDM, CP-OFDM, and/or the like) , and transmitted to base station 110. In some aspects, the UE 120 includes a transceiver. The transceiver may include any combination of antenna (s) 252, modulators and/or demodulators 254, MIMO detector 256, receive processor 258, transmit processor 264, and/or TX MIMO processor 266. The transceiver may be used by a processor (e.g., controller/processor 280) and memory 282 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
At base station 110, the uplink signals from UE 120 and other UEs may be received by antennas 234, processed by demodulators 232, detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain  decoded data and control information sent by UE 120. Receive processor 238 may provide the decoded data to a data sink 239 and the decoded control information to controller/processor 240. Base station 110 may include communication unit 244 and communicate to network controller 130 via communication unit 244. Base station 110 may include a scheduler 246 to schedule UEs 120 for downlink and/or uplink communications. In some aspects, the base station 110 includes a transceiver. The transceiver may include any combination of antenna (s) 234, modulators and/or demodulators 232, MIMO detector 236, receive processor 238, transmit processor 220, and/or TX MIMO processor 230. The transceiver may be used by a processor (e.g., controller/processor 240) and memory 242 to perform aspects of any of the methods described herein, for example, as described with reference to Figs. 3-8.
Controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with utilizing a non-periodic wake-up signal, as described in more detail elsewhere herein. For example, controller/processor 240 of base station 110, controller/processor 280 of UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein.  Memories  242 and 282 may store data and program codes for base station 110 and UE 120, respectively. In some aspects, memory 242 and/or memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code, program code, and/or the like) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, interpreting, and/or the like) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 500 of Fig. 5, process 600 of Fig. 6, and/or other processes as described herein. In some aspects, executing instructions may include running the instructions, converting the instructions, compiling the instructions, interpreting the instructions, and/or the like.
In some aspects, a UE includes means for receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and/or means for configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval. The means for the UE to perform operations described herein may include, for example, antenna 252,  demodulator 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, modulator 254, controller/processor 280, and/or memory 282.
In some aspects, the UE includes means for monitoring for the reception of the non-periodic wake-up signal after configuring the UE.
In some aspects, the UE includes means for receiving the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
In some aspects, the UE includes means for receiving an updated time interval to modify the time interval indicated by the configuration information.
In some aspects, the UE includes means for overriding a default wake-up signal cycle time with the time interval indicated by the configuration information.
In some aspects, a transmitter (e.g., base station or a UE) includes means for transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and/or means for transmitting the non-periodic wake-up signal based at least in part on an end of the time interval. The means for the transmitter to perform operations described herein may include, for example, transmit  processor  220 or 258,  TX MIMO processor  230 or 266, modulator 232 or 254, antenna 234 or 252, demodulator 232 or 254,  MIMO detector  236 or 256, receive  processor  238 or 258, controller/ processor  240 or 280,  memory  242 or 282, and/or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
A UE may conduct data communication with a wireless network device, such as a BS or another UE, in an LTE or a 5G/NR network. While conducting the data communication, the UE may function in a connected mode, an idle mode, a sleep mode, or the like. In the connected mode, the UE may actively transmit and/or receive data, for example, by actively monitoring and decoding a physical downlink control channel  (PDCCH) for paging messages. The active monitoring and decoding of the PDCCH during the connected mode may consume a connected-mode amount of power.
To conserve power, the UE may function in the idle mode when the UE may not be actively transmitting and/or receiving data. To maintain a connection with the network device while in the idle mode, the UE may periodically monitor and decode the PDCCH for potential paging messages received by the UE. A paging message may include information encrypted by a paging radio network temporary identifier (P-RNTI) . Upon receiving a paging message that is directed to the UE, the UE may resume a connected mode. The periodic monitoring and decoding of the PDCCH may consume an idle-mode amount of power.
To conserve power while in the idle mode, the UE may utilize a discontinuous reception (DRX) scheme, which may allow the UE to enter the sleep mode (also referred to as a low-power mode) . In the DRX scheme, the UE may monitor for the PDCCH during periodic active times or On durations of a DRX cycle, which may be less frequent than the periodic monitoring and decoding in the idle mode. As such, utilization of the DRX scheme may assist in lowering a power consumption from the idle-mode amount of power to a sleep-mode amount of power.
To conserve power while in the sleep mode, the UE may utilize a wake-up signal, which may enable the UE to avoid monitoring and decoding the PDCCH during each active time or On duration. For example, the UE may monitor for a wakeup signal, such as a physical-layer signal or a PDCCH, during periodic wake-up signal occasions (PWUS occasions) . If the UE receives a wake-up signal in a PWUS occasion, the UE may awaken in a corresponding paging occasion to monitor for paging directed to the UE. If the UE does not receive a wake-up signal in a PWUS occasion, the UE may remain in the sleep mode through the paging occasion. As such, utilization of the periodic wake-up signal may assist in lowering the power consumption from the sleep-mode amount of power to a periodic wake-up signal amount of power (PWUS amount of power) because the monitoring for the wake-up signal may use a reduced reception configuration (e.g., fewer antennas, a reduced processor power state, a separate wake-up signal receive processor, or the like) relative to paging monitoring.
Some UEs may be designed for reduced power consumption relative to a baseline UE, such as for long deployment in the field, infrequent or simple communication (e.g., machine-type communication) , or the like. Examples include a machine-type communication UE (e.g., an enhanced machine-type communication  (eMTC) UE and/or a massive machine-type communication (mMTC) UE) and a narrowband Internet-of-Things (NB-IoT) UE. For such UEs, monitoring for and decoding the PDCCH during each PWUS occasion may use some amount of power. This is because monitoring and decoding the PDCCH during each PWUS occasion may be unnecessary during (i) an off-time (e.g., nighttime) when there is low activity in the network and the machine-type communication UE may receive fewer communications, (ii) a downtime when an operation associated with the machine-type communication UE may be suspended due to a stoppage or an interruption, and/or (iii) times when no communication is expected for the machine-type communication UE for a long period of time.
Various aspects of techniques and apparatuses described herein may allow a UE to utilize a non-periodic wake-up signal. In some aspects, utilizing the non-periodic wake-up signal may include the UE monitoring and decoding a PDCCH based at least in part on a non-periodic wake-up signal occasion (NPWUS occasion) . In some aspects, an NPWUS occasion may represent, for example, a time interval after substantially an end of which the UE should expect to receive a non-periodic wake-up signal. In some aspects, the UE may receive configuration information indicating the time interval associated with a reception of the non-periodic wake-up signal, and may configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
In this way, by monitoring and decoding the PDCCH based at least in part on the NPWUS occasion, when the UE should expect to receive the non-periodic wake-up signal, the utilization of the non-periodic wake-up signal, described herein, may provide the UE with an ability to limit unnecessary power consumption. As a result, a battery life associated with a battery, responsible for supplying power to the UE, may be extended.
Fig. 3 is a diagram illustrating an example 300 of data communication associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure. Fig. 3 shows a UE 120 and a transmitter (TX) 310 (e.g., BS 110 or another UE 120) conducting data communication in, for example, an LTE network or a 5G/NR network. The data communication may include a downlink communication from the TX 310 to the UE 120 and/or an uplink communication from the UE 120 to the TX 310. The uplink and downlink communications may include, for  example, signaling data and/or payload data. The signaling data may include configuration information.
As shown by reference number 320, the TX 310 may transmit, and the UE 120 may receive, the configuration information at a beginning of and/or during the data communication. In some aspects, the UE 120 may receive the configuration information from a device other than TX 310 (e.g., from another base station or yet another UE) . In some aspects, the UE 120 may receive the configuration information via, for example, a control channel (e.g., a PDCCH or a PSCCH) established between the UE 120 and the TX 310. In some aspects, the UE 120 may utilize the control channel as a medium to receive downlink control information including wake-up signals, paging messages, and/or the like. The configuration information may be communicated via radio resource control (RRC) signaling, medium access control (MAC) signaling, downlink control information (DCI) or a combination thereof (e.g., RRC configuration of a set of values for a parameter and DCI indication of a selected value of the parameter) .
In some aspects, the configuration information may include an indication of, for example, one or more configuration parameters for the UE 120 to use to configure the UE 120 for the data communication. For instance, as shown by reference number 330, the configuration information may include configuration information associated with a non-periodic wake-up signal (NPWUS) . In some aspects, the configuration information associated with the NPWUS may include information about an NPWUS occasion. The NPWUS occasion may be indicated by a time interval (NPWUS time interval) after an end of which the UE 120 should expect to receive the NPWUS. In some aspects, the UE 120 may receive the NPWUS during irregularly-occurring NPWUS occasions. For instance, the information about the NPWUS occasion may indicate a time associated with a beginning of the NPWUS time interval, a time associated with a duration of time (e.g., 120 minutes, 200 minutes, 210 minutes, and/or the like) associated with the NPWUS time interval, and/or a time associated with an end of the NPWUS time interval. In some aspects, the beginning of the NPWUS occasion may be a current time.
In some aspects, the configuration information may indicate a set of resources that define the NPWUS, such as a set of subframes, slots, mini-slots, or symbols. In some aspects, the configuration information may indicate an active time or ON duration of a DRX cycle, and may indicate a WUS occasion associated with the active time or  ON duration as an NPWUS occasion. In this case, the UE 120 may skip WUS occasions other than the WUS occasion that is indicated as an NPWUS occasion. Thus, the indication of the NPWUS occasion is not limited to those implementations involving signaling of a time interval.
In some aspects, the NPWUS occasion may be indicated by one or more time intervals (sometimes referred to herein as NPWUS time intervals) . The one or more time intervals may be of a same or of a different duration with respect to each other. For instance, the NPWUS occasion may be indicated by three NPWUS time intervals having respective durations of, for example, 120 minutes, 200 minutes, and 210 minutes. In this case, the UE may monitor a first NPWUS occasion 120 minutes from the current time, a second NPWUS occasion 200 minutes from the current time, and a third NPWUS occasion 210 minutes from the current time.
In some aspects, the configuration information may include information about a wake-up signal gap (WUS gap) , which represents a gap duration of time after a reception of the NPWUS. In some aspects, the WUS gap may be for a duration sufficient for the UE to exit a current mode (e.g., a sleep mode) and to enter another mode (e.g., a connected mode associated with a paging occasion) so that the UE 120 may be ready to actively monitor and decode the control channel and to actively transmit and/or receive data. In some aspects, the WUS gap may be of any time duration such as, for example, 30 milliseconds, 30 seconds, and/or the like. In some aspects, the WUS gap may cause the UE to skip one or more paging occasions. For example, the WUS gap may cause the UE to monitor a paging occasion that is non-consecutive with the WUS occasion (e.g., with one or more paging occasions between the monitored paging occasion and the WUS occasion) .
In some aspects, the NPWUS time interval and the WUS gap, included in the received configuration information, may override a previous default configuration (e.g., a periodic DRX scheme) of the UE 120 associated with reception of a wake-up signal. In some aspects, the UE 120 may receive updated configuration information, from the TX 310, to modify previously received configuration information. Under such conditions, the UE 120 may update a configuration of the UE 120 based at least in part on the updated configuration information.
As shown by reference number 340, the UE 120 may configure the UE 120 to monitor for a reception of the non-periodic wake-up signal based at least in part on the configuration information associated with the non-periodic wake-up signal. In some  aspects, the UE 120 may include one or more processors to process the received configuration information, and to configure the UE 120 based at least in part on the configuration information. The one or more processors may include one or more processors discussed elsewhere herein, such as, for example, the processor components discussed above with respect to Fig. 2.
In some aspects, the one or more processors may configure the UE 120 to remain in the current mode (e.g., the sleep mode) until substantially the end of the NPWUS time interval. Based at least in part on substantially the end of the NPWUS time interval, the one or more processors may configure the UE 120 to monitor, for example, the control channel to determine whether a non-periodic wake-up signal has been received from the TX 310. The situation where the non-periodic wake-up signal is received at substantially the end of the NPWUS time interval is described below in connection with reference number 350. In the situation where the non-periodic wake-up signal is not received at substantially the end of the NPWUS time interval, the UE 120 may resume the current mode (e.g., sleep mode) until substantially the end of the next NPWUS time interval.
As shown by reference number 350, the TX 310 may transmit, and the UE 120 may receive, the non-periodic wake-up signal. In some aspects, the UE 120 may receive the non-periodic wake-up signal after receiving the configuration information associated with the non-periodic wake-up signal, as shown by reference number 330, and/or after configuring the UE 120 to monitor for the reception of the non-periodic wake-up signal, as shown by reference number 340. In some aspects, the UE 120 may receive the non-periodic wake-up signal to enable the UE 120 to be ready to decode the control channel. In some aspects, as discussed in further detail with respect to Fig. 4, a time associated with reception of the non-periodic wake-up signal may indicate a beginning of the WUS gap duration.
The non-periodic wake-up signal may include any wake-up signal, such as a physical-layer wake-up signal, a downlink control information based wake-up signal, or the like. In some aspects, the non-periodic wake-up signal may be specifically directed to be received by the UE 120 or by a group of UEs including the UE 120. For example, the non-periodic wake-up signal may include a physical-layer signal carrying information about the UE 120 or the group of UEs to which the non-periodic wake-up signal is directed. As another example, the non-periodic wake-up signal may be transmitted in a resource (e.g., a time/frequency resource, a control resource set, or the  like) associated with the UE 120 or the group of UEs to which the non-periodic wake-up signal is directed.
As shown by reference number 360, the one or more processors may configure the UE 120 to monitor the control channel based at least in part on receiving the non-periodic wake-up signal. In some aspects, based at least in part on receiving the non-periodic wake-up signal, the one or more processors may configure the UE 120 to exit the current mode (e.g., the sleep mode) and to enter another mode (e.g., the connected mode) to be ready to actively monitor and decode the control channel. In some aspects, the reception of the non-periodic wake-up signal may indicate a beginning of the NPWUS gap duration, and the one or more processors may configure the UE 120 to exit the current mode (e.g., the sleep mode) and enter the another mode (e.g., the connected mode) within the NPWUS gap duration.
By monitoring for the reception of a potential non-periodic wake-up signal at substantially the end of the NPWUS time interval, the UE 120 is allowed to remain in the current mode (e.g., the sleep mode) during substantially an entirety of the NPWUS time interval. In this way, power consumption associated with periodically monitoring the control channel may be reduced, thereby extending a battery life associated with a battery responsible for supplying power to the UE 120. By limiting power consumption, the UE 120 may enable optimized use of the battery without frequently replacing the battery and/or enlarging a size of the battery.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example 400 associated with utilization of a non-periodic wake-up signal, in accordance with various aspects of the present disclosure. As shown in Fig. 4, events associated with the utilization of the non-periodic wake-up signal may be plotted along a timeline charted on an x-axis, which represents time. The UE 120 (not shown in Fig. 4) may utilize the non-periodic wake-up signal. The UE 120 may include one or more UEs discussed elsewhere herein, such as, for example, the UE 120 discussed with respect to Fig. 2 and/or the UE 120 discussed with respect to Fig. 3.
The UE 120 may include one or more processors to utilize the non-periodic wake-up signal. The one or more processors may include one or more processors discussed elsewhere herein, such as, for example, the processor components discussed above with respect to Fig. 2. The one or more processors may be coupled to  transmission circuitry and reception circuitry included in the UE 120. In some aspects, the transmission circuitry and the reception circuitry may be responsible for transmitting and receiving information (e.g., configuration information, wakeup signaling, and/or the like) associated with the utilization of the non-periodic wake-up signal.
As shown by reference number 410, at time T 1, the UE 120 may receive configuration information associated with utilizing the non-periodic wake-up signal. The configuration information may indicate an NPWUS time interval. In some aspects, the configuration information may indicate an NPWUS occasion (e.g., based at least in part on a resource allocation associated with the NPWUS occasion, an identifier associated with the NPWUS occasion, a corresponding active time or ON duration associated with the NPWUS occasion, and/or the like) . Based at least in part on the indicated NPWUS time interval (or the indicated NPWUS occasion) , the one or more processors may configure the UE 120 to remain in a current mode (e.g., a sleep mode) during substantially an entirety of the NPWUS time interval. In some aspects, the UE may perform some amount of power ramp up during the NPWUS time interval, such as from a sleep state to a state associated with detecting a WUS. In some aspects, the UE 120 may receive the configuration information from a transmitter such as, for example, TX 310 discussed above with respect to Fig. 3.
As shown by reference number 420, at substantially the end of the NPWUS time interval at time T 2, the UE 120 may begin monitoring for a reception of the non-periodic wake-up signal. In some aspects, as discussed above with respect to Fig. 3, the UE 120 may monitor a control channel to detect whether a non-periodic wake-up signal has been received from the transmitter.
As shown by reference number 430, after the end of the NPWUS time interval, at time T 3, the UE 120 may receive the non-periodic signal from the transmitter. In some aspects, as discussed above with respect to Fig. 3, the non-periodic wake-up signal may enable the UE 120 to be ready to monitor and decode the control channel. In some aspects, reception of the non-periodic wake-up signal may indicate a beginning of an NPWUS gap.
As discussed above with respect to Fig. 3, within a duration of the NPWUS gap, the UE 120 may exit the current mode (e.g., the sleep mode) and enter another mode (e.g., a connected mode) . As shown by reference number 440, at time T 4, the UE 120 may exit the current mode (e.g., the sleep mode) and enter the other mode (e.g., the connected mode) to be ready to actively monitor and decode the control channel. As a  result, the UE 120 may be ready to actively transmit and/or receive data by substantially an end of the duration of the NPWUS gap.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
Fig. 5 is a diagram illustrating an example process 500 associated with utilization of a non-periodic wake-up signal and performed, for example, by a user equipment (UE) , in accordance with various aspects of the present disclosure. Example process 500 is an example where the UE (e.g., UE 120) performs operations associated with utilization of a non-periodic wake-up signal.
As shown in Fig. 5, in some aspects, process 500 may include receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal (block 510) . For example, the UE (e.g., using reception component 702, depicted in Fig. 7) may receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal, as described above.
As further shown in Fig. 5, in some aspects, process 500 may include configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval (block 520) . For example, the UE (e.g., using processing component 708, depicted in Fig. 7) may process received configuration information and may configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval, as described above. In some aspects, the UE may monitor for the reception of the non-periodic wakeup signal without performing a configuration operation. In some aspects, configuring the UE to monitor for the reception of the non-periodic wakeup signal may comprise monitoring for the reception of the non-periodic wakeup signal.
Process 500 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, process 500 includes monitoring for the reception of the non-periodic wake-up signal after configuring the UE.
In a second aspect, alone or in combination with the first aspect, process 500 includes receiving the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
In a third aspect, alone or in combination with one or more of the first and second aspects, the time interval is indicated by a duration of time after which the UE is configured to monitor for the non-periodic wake-up signal.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the time interval is of a different duration of time with respect to a previously-indicated time interval or a subsequently-indicated time interval.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the UE is configured to wake up, based at least in part on the end of the time interval, from a sleep mode to monitor for the reception of the non-periodic wake-up signal.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, process 500 includes receiving an updated time interval to modify the time interval indicated by the configuration information.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, the time interval is one of a plurality of time intervals indicated by the configuration information.
In an eighth aspect, alone or in combination with one or more of the first through seventh aspects, a duration of the time interval is different from a duration of at least one other one of the plurality of time intervals.
In a ninth aspect, alone or in combination with one or more of the first through eighth aspects, process 500 includes overriding a default wake-up signal cycle time with the time interval indicated by the configuration information.
Although Fig. 5 shows example blocks of process 500, in some aspects, process 500 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 5. Additionally, or alternatively, two or more of the blocks of process 500 may be performed in parallel.
Fig. 6 is a diagram illustrating an example process 600 associated with utilization of a non-periodic wake-up signal and performed, for example, by a transmitter (e.g., a base station 110 or a UE 120) , in accordance with various aspects of the present disclosure. Example process 600 is an example where the transmitter performs operations associated with utilization of a non-periodic wake-up signal.
As shown in Fig. 6, in some aspects, process 600 may include transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal (block 610) . For example, the transmitter (e.g., using  transmission component 804, depicted in Fig. 8) may transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal, as described above.
As further shown in Fig. 6, in some aspects, process 600 may include transmitting the non-periodic wake-up signal based at least in part on an end of the time interval (block 620) . For example, the transmitter (e.g., using transmission component 804, depicted in Fig. 8) may transmit the non-periodic wake-up signal based at least in part on an end of the time interval, as described above.
Process 600 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the time interval is indicated by a duration of time after which the non-periodic wake-up signal may be transmitted.
In a second aspect, alone or in combination with the first aspect, the time interval is of a different duration of time with respect to a previously-indicated time interval or a subsequently-indicated time interval.
In a third aspect, alone or in combination with one or more of the first and second aspects, the time interval is one of a plurality of time intervals indicated by the configuration information.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, a duration of the time interval is different from a duration of at least one other one of the plurality of time intervals.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the time interval indicated by the configuration information is to override a default wake-up signal cycle time.
Although Fig. 6 shows example blocks of process 600, in some aspects, process 600 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 6. Additionally, or alternatively, two or more of the blocks of process 600 may be performed in parallel.
Fig. 7 is a diagram illustrating an example apparatus 700 associated with utilization of a non-periodic wake-up signal. The apparatus 700 may be a UE, or a UE may include the apparatus 700. In some aspects, the apparatus 700 includes a reception component 702 and a transmission component 704, which may be in communication with one another (for example, via one or more buses and/or one or more other  components) . As shown, the apparatus 700 may communicate with another apparatus 706 (such as a UE, a base station, or another wireless communication device) using the reception component 702 and the transmission component 704. As further shown, the apparatus 700 may include one or more of a processing component 708, among other examples.
In some aspects, the apparatus 700 may be configured to perform one or more operations described herein in connection with Figs. 3 and 4. Additionally or alternatively, the apparatus 700 may be configured to perform one or more processes described herein, such as process 500 of Fig. 5. In some aspects, the apparatus 700 and/or one or more components shown in Fig. 7 may include one or more components of the UE described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 7 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 702 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 706. The reception component 702 may provide received communications to one or more other components of the apparatus 700. In some aspects, the reception component 702 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 706. In some aspects, the reception component 702 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2.
The transmission component 704 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 706. In some aspects, one or more other components of the apparatus 706 may generate communications and may provide the generated communications to  the transmission component 704 for transmission to the apparatus 706. In some aspects, the transmission component 704 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 706. In some aspects, the transmission component 704 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. In some aspects, the transmission component 704 may be collocated with the reception component 702 in a transceiver.
The reception component 702 may receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal. The processing component 708 may process the received configuration information and may configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval. The processing component 708 may also enable the UE to monitor for the reception of the non-periodic wake-up signal after configuring the UE. In some aspects, the processing component 708 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described above in connection with Fig. 2. The reception component 702 may receive the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
The reception component 702 may receive an updated time interval to modify the time interval indicated by the configuration information.
The processing component 708 may override a default wake-up signal cycle time with the time interval indicated by the configuration information.
The number and arrangement of components shown in Fig. 7 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 7. Furthermore, two or more components shown in Fig. 7 may be implemented within a single component, or a single component shown in Fig. 7 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 7 may perform one or more functions described as being performed by another set of components shown in Fig. 7.
Fig. 8 is a diagram illustrating an example apparatus 800 associated with utilization of a non-periodic wake-up signal. The apparatus 800 may be a transmitter (e.g., a base station 110 or a UE 120) , or a transmitter may include the apparatus 800. In some aspects, the apparatus 800 includes a reception component 802 and a transmission component 804, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 800 may communicate with another apparatus 806 (such as a UE 120, a base station 110, or another wireless communication device) using the reception component 802 and the transmission component 804. As further shown, the apparatus 800 may include one or more of a configuration component 808, among other examples.
In some aspects, the apparatus 800 may be configured to perform one or more operations described herein in connection with Figs. 3 and 4. Additionally or alternatively, the apparatus 800 may be configured to perform one or more processes described herein, such as process 600 of Fig. 6. In some aspects, the apparatus 800 and/or one or more components shown in Fig. 8 may include one or more components of the transmitter described above in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 8 may be implemented within one or more components described above in connection with Fig. 2. Additionally or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 802 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 806. The reception component 802 may provide received communications to one or more other components of the apparatus 800. In some aspects, the reception component 802 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 806. In some aspects, the reception component 802 may include one or more antennas, a demodulator, a MIMO detector, a receive processor, a  controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2.
The transmission component 804 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 806. In some aspects, one or more other components of the apparatus 806 may generate communications and may provide the generated communications to the transmission component 804 for transmission to the apparatus 806. In some aspects, the transmission component 804 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 806. In some aspects, the transmission component 804 may include one or more antennas, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the transmitter described above in connection with Fig. 2. In some aspects, the transmission component 804 may be collocated with the reception component 802 in a transceiver.
The transmission component 804 may transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal. The transmission component 804 may transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
The number and arrangement of components shown in Fig. 8 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 8. Furthermore, two or more components shown in Fig. 8 may be implemented within a single component, or a single component shown in Fig. 8 may be implemented as multiple, distributed components. Additionally or alternatively, a set of (one or more) components shown in Fig. 8 may perform one or more functions described as being performed by another set of components shown in Fig. 8.
The foregoing disclosure provides illustration and description, but is not intended to be exhaustive or to limit the aspects to the precise form disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware, firmware, and/or a combination of hardware and software. As used herein, a  processor is implemented in hardware, firmware, and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware, firmware, and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods were described herein without reference to specific software code-it being understood that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, and/or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. In fact, many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. Although each dependent claim listed below may directly depend on only one claim, the disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. A phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a-b, a-c, b-c, and a-b-c, as well as any combination with multiples of the same element (e.g., a-a, a-a-a, a-a-b, a-a-c, a-b-b, a-c-c, b-b, b-b-b, b-b-c, c-c, and c-c-c or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items (e.g., related items, unrelated items, a combination of related and unrelated items, and/or the like) , and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ”  “having, ” and/or the like are intended to be open-ended terms. Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (22)

  1. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and
    configuring the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  2. The method of claim 1, further comprising:
    monitoring for the reception of the non-periodic wake-up signal after configuring the UE.
  3. The method of claim 2, further comprising:
    receiving the non-periodic wake-up signal based at least in part on the monitoring for the reception of the non-periodic wake-up signal.
  4. The method of claim 1, wherein the time interval is indicated by a duration of time after which the UE is configured to monitor for the non-periodic wake-up signal.
  5. The method of claim 1, wherein the time interval is of a different duration of time with respect to a previously-indicated time interval or a subsequently-indicated time interval.
  6. The method of claim 1, wherein the UE is configured to wake up, based at least in part on the end of the time interval, from a sleep mode to monitor for the reception of the non-periodic wake-up signal.
  7. The method of claim 1, further comprising:
    receiving an updated time interval to modify the time interval indicated by the configuration information.
  8. The method of claim 1, wherein the time interval is one of a plurality of time intervals indicated by the configuration information.
  9. The method of claim 8, wherein a duration of the time interval is different from a duration of at least one other one of the plurality of time intervals.
  10. The method of claim 1, further comprising:
    overriding a default wake-up signal cycle time with the time interval indicated by the configuration information.
  11. A method of wireless communication performed by a transmitter, comprising:
    transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and
    transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
  12. The method of claim 11, wherein the time interval is indicated by a duration of time after which the non-periodic wake-up signal may be transmitted.
  13. The method of claim 11, wherein the time interval is of a different duration of time with respect to a previously-indicated time interval or a subsequently-indicated time interval.
  14. The method of claim 11, wherein the time interval is one of a plurality of time intervals indicated by the configuration information.
  15. The method of claim 14, wherein a duration of the time interval is different from a duration of at least one other one of the plurality of time intervals.
  16. The method of claim 11, wherein the time interval indicated by the configuration information is to override a default wake-up signal cycle time.
  17. A user equipment (UE) for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and
    configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  18. A transmitter for wireless communication, comprising:
    a memory; and
    one or more processors operatively coupled to the memory, the memory and the one or more processors configured to:
    transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and
    transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
  19. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a user equipment (UE) , cause the UE to:
    receive configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and
    configure the UE to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  20. A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising:
    one or more instructions that, when executed by one or more processors of a transmitter, cause the transmitter to:
    transmit configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and
    transmit the non-periodic wake-up signal based at least in part on an end of the time interval.
  21. An apparatus for wireless communication, comprising:
    means for receiving configuration information indicating a time interval associated with a reception of a non-periodic wake-up signal; and
    means for configuring the apparatus to monitor for the reception of the non-periodic wake-up signal based at least in part on an end of the time interval.
  22. An apparatus for wireless communication, comprising:
    means for transmitting configuration information indicating a time interval associated with a transmission of a non-periodic wake-up signal; and
    means for transmitting the non-periodic wake-up signal based at least in part on an end of the time interval.
PCT/CN2020/119389 2020-09-30 2020-09-30 Utilization of a non-periodic wake-up signal WO2022067659A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119389 WO2022067659A1 (en) 2020-09-30 2020-09-30 Utilization of a non-periodic wake-up signal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119389 WO2022067659A1 (en) 2020-09-30 2020-09-30 Utilization of a non-periodic wake-up signal

Publications (1)

Publication Number Publication Date
WO2022067659A1 true WO2022067659A1 (en) 2022-04-07

Family

ID=80949305

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119389 WO2022067659A1 (en) 2020-09-30 2020-09-30 Utilization of a non-periodic wake-up signal

Country Status (1)

Country Link
WO (1) WO2022067659A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110557812A (en) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 signal transmission method and device
US20200029302A1 (en) * 2017-03-24 2020-01-23 Intel Corporation And Intel Ip Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices
CN110831120A (en) * 2018-08-10 2020-02-21 华为技术有限公司 Method for transmitting physical downlink control channel, terminal equipment and network equipment
CN110876181A (en) * 2018-08-31 2020-03-10 华为技术有限公司 Communication method and communication device
WO2020130930A1 (en) * 2018-12-21 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Conditional wake-up signal configuration for new radio

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200029302A1 (en) * 2017-03-24 2020-01-23 Intel Corporation And Intel Ip Corporation Wake up signal for machine type communication and narrowband-internet-of-things devices
CN110557812A (en) * 2018-06-04 2019-12-10 电信科学技术研究院有限公司 signal transmission method and device
CN110831120A (en) * 2018-08-10 2020-02-21 华为技术有限公司 Method for transmitting physical downlink control channel, terminal equipment and network equipment
CN110876181A (en) * 2018-08-31 2020-03-10 华为技术有限公司 Communication method and communication device
WO2020130930A1 (en) * 2018-12-21 2020-06-25 Telefonaktiebolaget Lm Ericsson (Publ) Conditional wake-up signal configuration for new radio

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "PDCCH-based power saving channel design", 3GPP DRAFT; R1-1911129 PDCCH-BASED POWER SAVING CHANNEL DESIGN, vol. RAN WG1, 5 October 2019 (2019-10-05), Chongqing, China, pages 1 - 9, XP051789905 *

Similar Documents

Publication Publication Date Title
US20220225237A1 (en) Power saving enhancements for paging reception
EP3881608A1 (en) Power saving signal configuration and adaptation
US11729717B2 (en) Wakeup signal monitoring window
EP3827620B1 (en) Selective extension of an active period of a drx cycle for reselection
WO2021062859A1 (en) Using a dormancy timer for switching to a dormant bandwidth part
EP4278721A1 (en) Power saving enhancements for paging reception
US11627598B2 (en) Mask-based configuration for discontinuous reception
EP4094396B1 (en) Power-efficient sidelink synchronization signal transmission
WO2021258388A1 (en) Broadcast or multicast wakeup signals and discontinuous reception
WO2021195669A1 (en) Cross-discontinuous reception group channel state information reporting
US20240015650A1 (en) Configuration of reference signals for an idle mode or inactive state user equipment
US11589303B2 (en) Power-saving mode indication
WO2022041121A1 (en) Beam indication for multicast wakeup signals
WO2022067659A1 (en) Utilization of a non-periodic wake-up signal
WO2022056705A1 (en) User equipment requested single beam wake up signal
US11849500B2 (en) Flexible discontinuous reception configuration
WO2022067845A1 (en) Wake up signal for sidelink device-to-device communications
US20220377668A1 (en) Signal monitoring during discontinuous reception
WO2023035657A1 (en) Techniques for conditional wake-up signal monitoring
US20240080830A1 (en) Dynamic bandwidth part switching for control message monitoring
EP4309465A1 (en) Sidelink go-to-sleep indication
WO2022198203A1 (en) Sidelink go-to-sleep indication
EP4338482A1 (en) Techniques for voice call packet grouping
CN116762428A (en) Power saving enhancements for paging reception

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955684

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955684

Country of ref document: EP

Kind code of ref document: A1