WO2022067600A1 - 轻金属结构-功能双梯度复合材料制动盘(鼓) - Google Patents

轻金属结构-功能双梯度复合材料制动盘(鼓) Download PDF

Info

Publication number
WO2022067600A1
WO2022067600A1 PCT/CN2020/119158 CN2020119158W WO2022067600A1 WO 2022067600 A1 WO2022067600 A1 WO 2022067600A1 CN 2020119158 W CN2020119158 W CN 2020119158W WO 2022067600 A1 WO2022067600 A1 WO 2022067600A1
Authority
WO
WIPO (PCT)
Prior art keywords
light metal
brake disc
friction
function
drum
Prior art date
Application number
PCT/CN2020/119158
Other languages
English (en)
French (fr)
Inventor
房明
房殊
Original Assignee
房明
房殊
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 房明, 房殊 filed Critical 房明
Priority to JP2023520164A priority Critical patent/JP2023543615A/ja
Priority to CN202080105568.3A priority patent/CN116324207A/zh
Priority to PCT/CN2020/119158 priority patent/WO2022067600A1/zh
Priority to EP20955625.7A priority patent/EP4224031A4/en
Publication of WO2022067600A1 publication Critical patent/WO2022067600A1/zh
Priority to US18/193,120 priority patent/US20230235802A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • F16D69/028Compositions based on metals or inorganic oxides containing fibres
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/125Discs; Drums for disc brakes characterised by the material used for the disc body
    • F16D65/126Discs; Drums for disc brakes characterised by the material used for the disc body the material being of low mechanical strength, e.g. carbon, beryllium; Torque transmitting members therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/12Discs; Drums for disc brakes
    • F16D65/127Discs; Drums for disc brakes characterised by properties of the disc surface; Discs lined with friction material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/027Compositions based on metals or inorganic oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F5/10Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product of articles with cavities or holes, not otherwise provided for in the preceding subgroups
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/06Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds
    • C22C29/065Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbides, but not containing other metal compounds based on SiC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/1308Structure one-part
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D2065/13Parts or details of discs or drums
    • F16D2065/1304Structure
    • F16D2065/132Structure layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0008Ferro
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0004Materials; Production methods therefor metallic
    • F16D2200/0026Non-ferro
    • F16D2200/003Light metals, e.g. aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2200/00Materials; Production methods therefor
    • F16D2200/0034Materials; Production methods therefor non-metallic
    • F16D2200/0039Ceramics
    • F16D2200/0047Ceramic composite, e.g. C/C composite infiltrated with Si or B, or ceramic matrix infiltrated with metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0007Casting

Definitions

  • the invention relates to a light metal structure-function dual gradient composite material brake disc (drum) made by integral composite casting of a metal/ceramic gradient composite material friction layer bearing friction and wear function and a light metal bearing connection and structural function. Including but not limited to the clutching and braking of rail traffic and road traffic vehicles.
  • the vast majority of brake discs are mainly made of integral ferrous metal materials.
  • the disadvantage is that the density is high, which is not conducive to reducing weight; the thermal conductivity is poor, which causes the temperature of the friction surface to rise too high during friction braking; the temperature difference is large, and it is easy to form hot spots in different areas of the friction surface, resulting in thermal cracks; Stress concentration and formation of internal cracks.
  • the existing metal-ceramic composite brake disc (drum) is often made of the same material as the friction layer and the base structure. Not only the production cost is high, but also thermal fatigue cracks are easily generated at the bonding interface between the metal and the ceramic, which affects its service life.
  • the carbon/carbon and carbon/ceramic composite brake discs (drums) are expensive. If they are mechanically connected to the metal structure, the temperature of the friction layer will be too high due to the problem of the contact interface between the two materials, which will affect the heat conduction. , all of which are unfavorable factors affecting its use.
  • the use of ceramic reinforced aluminum alloy to prepare a lightweight brake disc (drum) can not only significantly reduce the weight of the brake disc (drum), but also It can also greatly reduce the noise and temperature rise during friction braking, and improve the wear resistance and service life of clutch plates and brake discs (drums).
  • the elastic modulus of the ceramic particle reinforced aluminum alloy composite material brake disc drops sharply.
  • the bonding strength of the ceramic particle reinforced metal composite interface, the shape of the ceramic reinforcement, and the uniformity of the ceramic reinforcement in the reinforced metal directly affect the metal/ceramic. Many factors of composite performance put forward higher requirements.
  • the light metal structure-function double gradient composite material brake disc (drum) of the present invention Compared with the traditional ferrous metal and the existing aluminum alloy composite material brake disc (drum), the light metal structure-function double gradient composite material brake disc (drum) of the present invention, because the design idea is based on the brake disc (drum)
  • the friction layer of metal/ceramic gradient composite material with light weight and bearing friction and wear function has high specific compressive strength, specific stiffness, specific modulus, fatigue resistance, wear resistance and thermal shock resistance. , Good thermal stability, low thermal expansion coefficient, and composite casting with light metal for load-bearing connection and structural functions, which overcomes many shortcomings of other types of brake discs.
  • the light metal structure-function double gradient composite material brake disc (drum) of the present invention not only reduces the weight by about 60%, but also improves the heat dissipation performance (under the same braking conditions)
  • the temperature rise is reduced by 20%, the time to the same temperature is reduced by nearly 50%, the temperature difference between different areas of the friction surface is smaller), the friction and wear performance is optimized (the friction coefficient is more stable at the same cooling and so on), and it can be industrialized at low cost. . Therefore, it has shown good application prospects in the fields of rail transportation, highway transportation, machinery manufacturing, etc., especially in the field of friction brake materials.
  • the present invention is a light metal structure-function double gradient composite material brake disc (drum). Including but not limited to providing a brake disc (drum) with light weight, short production cycle, fast heat dissipation, good thermal stability and long service life for rail traffic and highway traffic vehicles.
  • This kind of brake disc (drum) not only has the structure-function dual gradient material characteristics formed between the metal/ceramic gradient composite friction layer with load-bearing friction and wear function and the light metal with load-bearing connection and structural function, but also has low cost, friction braking It has the advantages of stability, low noise, convenient disassembly and installation, and labor saving.
  • the present invention adopts the following technical solutions to realize:
  • Such a brake disc ( Figure 1, Figure 2) not only significantly improves the friction and wear performance of the metal/ceramic gradient composite friction layer, but also ensures seamless and rapid heat conduction in the light metal with good thermal conductivity, and is extremely easy to achieve Low-cost, large-scale production.
  • the continuous phase structure ceramic skeleton in the friction layer of the metal/ceramic gradient composite material carrying the friction and wear function is comprehensively considered from the aspects of thermal shock resistance, wear resistance, thermal conductivity, specific heat capacity, density, shrinkage deformation during sintering, and price.
  • silicon carbide ceramics including but not limited to three-dimensional network structure form and two-dimensional honeycomb structure form, preferably reaction sintered silicon carbide ceramics with lower cost.
  • the free silicon in the reactive sintered silicon carbide ceramic framework can not only significantly improve the wettability of light metals to the ceramic framework, but also increase the difficulty of the reaction between silicon carbide ceramics and aluminum alloy substrates during high-temperature composite casting:
  • the thermal stress of the light metal junction between the layer and the load-bearing connection and structural function, the continuous phase structure ceramic skeleton in the metal/ceramic gradient composite friction layer and the light metal junction of the load-bearing connection and structural function include but are not limited to slopes (Figure 3), Convex (FIG. 4), concave (FIG. 5), sawtooth (FIG. 6) and other shapes to form a functional gradient of the metal/ceramic composite friction layer.
  • the pore diameter of the continuous-phase structure ceramic skeleton in the friction layer of the metal/ceramic gradient composite material carrying the friction and wear function changes from small to large when it extends perpendicular to the friction surface into the disk body (Fig. 7), or from large to small. Gradient change.
  • the thickness of the composite material friction layer carrying the friction and wear function is to increase the thickness of 1-5mm on the basis of the wear limit of the brake disc (drum), so as to ensure that when the composite material friction layer wears to the limit position, the elastic modulus Under the action of braking pressure, there is no furrow on the friction surface, and the friction coefficient is stable and unchanged.
  • nanomaterials can be used to strengthen and toughen it.
  • the continuous structure phase ceramic framework can also be strengthened and toughened by nano-ceramic particles or ceramic fibers.
  • Figure 1 is a schematic cross-sectional view of a light metal structure-function dual-gradient composite brake disc (drum)
  • Figure 2 is a real photo of the light metal structure-function double gradient composite brake disc (drum)
  • Figure 3 is a schematic diagram of the slanted ceramic skeleton in the joint part of the composite friction layer and the light metal
  • Figure 4 is a schematic diagram of the convex ceramic skeleton in the joint part of the composite friction layer and the light metal
  • Figure 5 is a schematic diagram of the concave ceramic skeleton in the joint part of the composite friction layer and the light metal
  • Figure 6 is a schematic diagram of the serrated ceramic skeleton in the joint part between the friction surface of the composite material and the light metal
  • Figure 7 is a schematic diagram of the ceramic skeleton from small to large when the ceramic skeleton extends to the light metal substrate
  • Fig. 8 is the curve when the brake disc of the present invention is used for the subway 1:1 bench test
  • Figure 9 is a comparison of the braking time of the 1:1 bench test cycle using the brake disc of the present invention and the cast steel disc
  • Figure 10 is a comparison of the temperature rise when using the brake disc of the present invention and the cast steel disc to perform a 1:1 bench test
  • Figure 11 is the comparison of friction coefficient of 1:1 bench test using the brake disc of the present invention and the cast steel disc
  • Figure 12 is the temperature comparison of the six temperature measuring points when using the brake disc of the present invention and the cast steel disc 1:1 bench test
  • Figure 13 is the coefficient of friction when the brake disc of the present invention is used for a bench test at a speed of 400km/h and 1:1
  • Fig. 14 is the photo before, after running-in and after the bench test at a speed of 400km/h 1:1 using the brake disc of the present invention
  • Fig. 15 is the data of 1:1 bench test of passenger car using the brake disc of the present invention
  • Fig. 16 is a photo before and after a 1:1 bench test of a passenger car using the brake disc of the present invention
  • This example 1 uses the brake disc of the present invention, and the third party uses the BD2500/15000 brake power 1:1 test bench to make the subway vehicle bench according to CZJS/T 0012-2016 "Technical Specification for Synthetic Brake Pads for Urban Rail Transit Vehicles" Partial data curve of the experiment.
  • This example 2 uses the brake disc and cast steel brake disc of the present invention.
  • TB/T2980-2014 "Brake Disc for Locomotives and Vehicles”
  • BD2500/15000 braking power 1:1 test bench to make a speed of 250km/h Part of the data curve of the /h EMU bench test.
  • This example 3 is the use of the brake disc of the present invention.
  • the bench for a high-speed train with a speed of 400km/h is made by using the BD2500/15000 braking power 1:1 test bench in comparison with TB/T2980-2014 "Brake Disc for Locomotive and Rolling Stock" in a third party. Partial data curve of the experiment.
  • the light metal structure-function dual-gradient composite brake disc can not only meet the braking requirements of high-speed trains with a speed of 400km/h, but also maintain a stable friction coefficient under the temperature of the friction surface up to 520°C. .
  • the light metal structure-function dual gradient composite brake disc can not only meet the temperature requirement of up to 520 °C, but also because the continuous phase ceramic skeleton
  • the supporting function of the composite friction layer makes the friction surface not softened, deformed, or furrowed, and its various properties meet the requirements for use as a brake disc. It can indeed implement safe and effective clutching and braking for all kinds of rotating machinery, and has obvious weight reduction, energy saving and emission reduction effects.
  • Example 4 is a partial data curve of a 1:1 bench test of a passenger car carried out by a third party according to the AK MASTER test outline using the brake disc of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Braking Arrangements (AREA)

Abstract

一种轻金属结构一功能双梯度复合材料制动盘或制动鼓,是由承载摩擦磨损功能的、具有功(性)能梯度特点的轻金属/梯度陶瓷骨架复合材料摩擦层,与承载连接及结构功能的、与轻金属/梯度陶瓷骨架复合材料摩擦层之间具有结构梯度特点的轻金属一体复合铸造而成。这样的双梯度制动盘或制动鼓,不但可以充分发挥轻金属热容大、散热快、对裂纹不敏感,及梯度陶瓷骨架高硬度、高抗剪切、高弹性模量、抗热震性好的优点,而且轻金属/梯度陶瓷骨架复合材料摩擦层能够耐受更高的温度而不软化、不变形,使得摩擦制动过程中的温度更加均匀,摩擦系数也更加稳定。

Description

轻金属结构-功能双梯度复合材料制动盘(鼓) 技术领域
本发明涉及一种由承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层与承载连接及结构功能的轻金属一体复合铸造制成的轻金属结构-功能双梯度复合材料制动盘(鼓),其应用包括但不限于轨道交通、公路交通车辆的离合、制动。
背景技术
目前,绝大多数包括但不限于轨道交通、公路交通车辆的制动盘(鼓),主要采用的是整体黑色金属材料制成。其缺点是密度大,不利于减轻重量;导热性差,造成摩擦制动时摩擦表面温升过高;温差大,容易在摩擦表面不同区域形成热斑,产生热裂纹;也容易造成盘体内部热应力集中、形成内裂纹。
即使是已有的金属陶瓷复合材料制动盘(鼓),也往往是摩擦层与基体结构部分是同种材料制成。不但制作成本高,而且金属与陶瓷的结合界面容易产生热疲劳裂纹,影响其使用寿命。而碳/碳、碳/陶复合材料制动盘(鼓)又价格昂贵,如使用机械方法与金属结构部分连接,又会由于两种材料的接触界面问题,影响热传导而使得摩擦层温度过高,凡此种种均为影响其使用的不利因素。
随着减重、节能减排及降低成本为目的的轻量化技术的推广应用,用陶瓷增强铝合金制备成轻量化制动盘(鼓),不但可以显著降低制动盘(鼓)的重量,还可以大幅减少摩擦制动时的噪音和温升,提高离合器片、制动盘(鼓)的耐磨性和使用寿命。但由于陶瓷颗粒增强铝合金复合材料的弹性模量较低,特别是随着铝合金基体的高温软化,陶瓷颗粒增强铝合金复合材料制动盘的弹性模量急剧下降。再加上各种车辆不断向高速、重载方向发展,对陶瓷颗粒增强金属复合材料界面的结合强度、陶瓷增强体的形状、陶瓷增强体在被增强金属中的均匀性等直接影响金属/陶瓷复合材料性能的诸多因素提出了更高的要求。
与传统的黑色金属及已有的铝合金复合材料制动盘(鼓)相比,本发明轻金属结构-功能双梯度复合材料制动盘(鼓),因设计思想是依据制动盘(鼓)的结构及不同部位的功能而定,质量轻且承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层具有高比压强度、比刚度、比模量,耐疲劳、耐磨损,抗热震性、热稳定性好,以及热膨胀系数低,并且与承载连接及结构功能的轻金属一体复合铸造而成,克服了其它种 类制动盘的诸多缺点。
本发明轻金属结构-功能双梯度复合材料制动盘(鼓)相比目前在役的同尺寸黑色金属制动鼓(盘)不但减重60%左右,而且提高了散热性能(相同制动条件下温升降低20%,降至同样温度时间少用近50%,摩擦表面不同区域的温差更小),优化了摩擦磨损性能(相同冷却等时摩擦系数更加平稳),而且可以低成本产业化生产。因而在轨道交通、公路交通、机械制造等领域,特别是在摩擦制动材料领域展现了良好的应用前景。
发明内容
本发明为一种轻金属结构-功能双梯度复合材料制动盘(鼓)。包括但不限于为轨道交通、公路交通车辆提供一种质量轻、生产周期短、散热快、热稳定性好、服役寿命长的制动盘(鼓)。这种制动盘(鼓)不但具有承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层与承载连接及结构功能的轻金属之间形成的结构-功能双梯度材料特性,而且造价低、摩擦制动平稳、噪音低,以及拆卸、安装方便、省力等优点。
为达到上述目的,本发明采用以下技术方案予以实现:
首先筛选高温性能满足使用要求,铸造性能好,与增强体陶瓷骨架不发生剧烈反应的轻金属材料。以价格低、热容大、导热快、综合性能好、生产工艺成熟的铝合金为优选。然后将制备好的连续相陶瓷骨架放入铸造模具的型腔中,与轻金属一体复合铸造成为由承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层与承载连接及结构功能的轻金属组成的轻金属结构-功能双梯度复合材料制动盘(鼓)。这样的制动盘(图1、图2),不但显著提高了金属/陶瓷梯度复合材料摩擦层的摩擦磨损性能,保证了热量在导热性能好的轻金属中无缝、快速传导,而且极易实现低成本、规模化生产。
承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层中的连续相结构陶瓷骨架,从抗热震性能、耐磨损性能、导热性能、比热容性能、密度、烧结时收缩变形、价格等方面综合考虑,采用包括但不限于三维网络结构形式、二维蜂窝结构形式的碳化硅陶瓷,优选成本更低的反应烧结碳化硅陶瓷。
因为反应烧结碳化硅陶瓷骨架中的游离硅不但可以明显改善轻金属对陶瓷骨架的浸润性,而且还提高了高温复合铸造过程中碳化硅陶瓷与铝合金基体发生反应的难度:
3SiC+4Al=Al 4C 3+3Si
进而避免了因形成Al 4C 3而使SiC与铝合金基体的界面受到损伤,以及其遇水发生电化学腐蚀而导致的复合材料机械性能降低,改善了复合材料的各项性能。
为使摩擦制动过程中的热量能被制动盘整体快速、均匀的吸收,减少承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层不同区域间的表面温差,降低金属/陶瓷梯度复合材料摩擦层与承载连接及结构功能的轻金属结合部位的热应力,金属/陶瓷梯度复合材料摩擦层中的连续相结构陶瓷骨架与承载连接及结构功能的轻金属结合面包括但不限于斜面(图3)、凸面(图4)、凹面(图5)、锯齿状(图6)等形状,以形成金属/陶瓷复合材料摩擦层的功能梯度变化。
承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层中的连续相结构陶瓷骨架的孔洞直径,由垂直于摩擦表面向盘体内延伸时由小变大(图7),或是由大变小呈梯度变化。
承载摩擦磨损功能的复合材料摩擦层的厚度,为在制动盘(鼓)的磨耗到限尺寸基础上加厚1~5mm,以保证复合材料摩擦层磨损到磨耗到限位置时,弹性模量在制动压力作用下不变,摩擦表面不出现犁沟,摩擦系数还平稳不变。
为提高轻金属结构-功能双梯度复合材料制动盘(鼓)中基体轻金属的高温性能,可用纳米材料对其进行强化和韧化。连续结构相陶瓷骨架也可采用纳米陶瓷颗粒或是陶瓷纤维对其进行强化和韧化。
为保证轻金属结构-功能双梯度复合材料制动盘(鼓)的基体轻金属在较大的制动压力情况下既不开裂也不破碎,并且在摩擦制动温度较高的情况下,也不会因轻金属基体自身的热膨胀系数较大,加大制动蹄片的制动行程,滞后制动效果,本发明轻金属结构-功能双梯度复合材料制动盘(鼓)还可一体复合铸有即不影响散热效果、又能增强轻金属基体强度、限制轻金属结构-功能双梯度复合材料制动盘(鼓)基体轻金属产生热膨胀或变形的黑色金属网、网孔状黑色金属板。
附图说明
图1是轻金属结构-功能双梯度复合材料制动盘(鼓)剖面示意图
图2是轻金属结构-功能双梯度复合材料制动盘(鼓)实物照片
图3是复合材料摩擦层与轻金属结合部位中的斜面陶瓷骨架示意图
图4是复合材料摩擦层与轻金属结合部位中的凸面陶瓷骨架示意图
图5是复合材料摩擦层与轻金属结合部位中的凹面陶瓷骨架示意图
图6是复合材料摩擦表面与轻金属结合部位中的锯齿面陶瓷骨架示意图
图7是陶瓷骨架向轻金属基体延伸时陶瓷骨架孔洞由小到大示意图
图8是使用本发明制动盘进行地铁1:1台架试验时曲线
图9是使用本发明制动盘与铸钢盘进行1:1台架试验循环制动时间比较
图10是使用本发明制动盘与铸钢盘进行1:1台架试验时温升比较
图11是使用本发明制动盘与铸钢盘进行1:1台架试验摩擦系数比较
图12是使用本发明制动盘与铸钢盘1:1台架试验时六个测温点的温度比较
图13是使用本发明制动盘进行时速400km/h 1:1台架试验时摩擦系数
图14是使用本发明制动盘进行时速400km/h 1:1台架试验前、磨合后及试验后照片
图15是使用本发明制动盘进行乘用车1:1台架试验数据
图16是使用本发明制动盘进行乘用车1:1台架试验前及试验后照片
示例1
本示例1为使用本发明制动盘,在第三方依据CZJS/T 0012-2016《城市轨道交通车辆合成闸片技术规范》,使用BD2500/15000制动动力1:1试验台所做地铁车辆台架试验的部分数据曲线。
由图8中全部试验数据曲线(a)、不同速度情况下摩擦系数曲线(b)以及模拟工况试验数据曲线(c)、(d)可见,摩擦系数不但非常均匀稳定,而且温升还低。
示例2:
本示例2为使用本发明制动盘及铸钢制动盘,在第三方依据TB/T2980-2014《机车车辆用制动盘》,使用BD2500/15000制动动力1:1试验台所做时速250km/h动车组台架试验的部分数据曲线。
由图9可见,相同制动条件下,本发明制动盘(左)相比铸钢制动盘(右)冷却时间少用近50%。
由图10可见,相同制动条件下,本发明制动盘(左)相比铸钢制动盘(右)的温升低20%。
由图11可见,相同制动条件下,本发明制动盘(左)的摩擦系数相比铸钢制动盘(右)更加平滑。
由图12可见,相同制动条件下,本发明制动盘(左)相比铸钢制动盘(右) 的6个测温点的温度不但更低,而且也更均匀,更有规律。
示例3:
本示例3为使用本发明制动盘,在第三方比照TB/T2980-2014《机车车辆用制动盘》,使用BD2500/15000制动动力1:1试验台所做时速400km/h高速列车台架试验的部分数据曲线。
由图13试验数据可知,轻金属结构-功能双梯度复合材料制动盘不但可以满足时速400km/h高速列车制动要求,而且可以在摩擦表面最高520℃的温度的情况下,保持稳定的摩擦系数。
从时速400km/h试验前、磨合后及试验后摩擦表面的照片(图14)可见,轻金属结构-功能双梯度复合材料制动盘不但可以满足最高520℃温度要求,而且由于连续相陶瓷骨架对复合材料摩擦层的支撑作用,使得摩擦表面不软化、不变形、无犁沟,各项性能满足作为制动盘的使用要求。确实能对各类旋转机械实行安全、有效的离合、制动,而且有明显的减重及节能、减排效果。
示例4:
示例4为使用本发明制动盘,在第三方按AK MASTER试验大纲,进行的乘用车1:1台架试验的部分数据曲线。
由图15试验数据可见,本发明制动盘完全可以满足乘用车使用要求。
从试验完成后的照片可见,本发明制动盘摩擦表面完好,无划痕(图16)

Claims (7)

  1. 一种轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    所述的轻金属结构-功能双梯度复合材料制动盘(鼓):是由承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层与承载连接及结构功能的轻金属一体复合铸造而成。
  2. 所述的轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层中的陶瓷,是由抗热震性能好、耐磨损、导热系数高的陶瓷制成的连续结构相骨架;
  3. 所述的轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层中的连续结构相陶瓷骨架的孔洞直径,由垂直于摩擦表面向盘体内延伸时呈梯度变化;
  4. 所述的轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层中的连续结构相陶瓷骨架与承载连接及结构功能的轻金属的结合面与摩擦表面为非垂直关系;
  5. 所述的轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层的厚度,为在制动盘(鼓)的磨耗到限尺寸基础上加厚1~5mm;
  6. 所述的轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    承载连接及结构功能的轻金属可用纳米材料对其进行强化和韧化。承载摩擦磨损功能的金属/陶瓷梯度复合材料摩擦层中的连续结构相陶瓷骨架也可采用纳米陶瓷颗粒或陶瓷纤维对其进行强化和韧化;
  7. 所述的轻金属结构-功能双梯度复合材料制动盘(鼓),其特征在于:
    轻金属结构-功能双梯度复合材料制动盘(鼓)还可一体复合铸有能增强轻金属基体强度、限制轻金属结构-功能双梯度复合材料制动盘(鼓)中的轻金属基体膨胀、变形的黑色金属网。
PCT/CN2020/119158 2020-09-30 2020-09-30 轻金属结构-功能双梯度复合材料制动盘(鼓) WO2022067600A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2023520164A JP2023543615A (ja) 2020-09-30 2020-09-30 軽金属構造-機能性二重勾配複合材料ブレーキディスク(ブレーキドラム)
CN202080105568.3A CN116324207A (zh) 2020-09-30 2020-09-30 轻金属结构-功能双梯度复合材料制动盘(鼓)
PCT/CN2020/119158 WO2022067600A1 (zh) 2020-09-30 2020-09-30 轻金属结构-功能双梯度复合材料制动盘(鼓)
EP20955625.7A EP4224031A4 (en) 2020-09-30 2020-09-30 BRAKE DISC (DRUM) IN COMPOSITE MATERIAL WITH LIGHTWEIGHT METAL STRUCTURE-DOUBLE FUNCTIONAL GRADIENT
US18/193,120 US20230235802A1 (en) 2020-09-30 2023-03-30 Light metal structure-function dual-gradient composite brake disc (brake drum)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119158 WO2022067600A1 (zh) 2020-09-30 2020-09-30 轻金属结构-功能双梯度复合材料制动盘(鼓)

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/193,120 Continuation US20230235802A1 (en) 2020-09-30 2023-03-30 Light metal structure-function dual-gradient composite brake disc (brake drum)

Publications (1)

Publication Number Publication Date
WO2022067600A1 true WO2022067600A1 (zh) 2022-04-07

Family

ID=80951039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119158 WO2022067600A1 (zh) 2020-09-30 2020-09-30 轻金属结构-功能双梯度复合材料制动盘(鼓)

Country Status (5)

Country Link
US (1) US20230235802A1 (zh)
EP (1) EP4224031A4 (zh)
JP (1) JP2023543615A (zh)
CN (1) CN116324207A (zh)
WO (1) WO2022067600A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115507703B (zh) * 2022-10-14 2024-03-15 盐城工学院 一种连续功能梯度陶瓷/金属仿生复合装甲及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137192A (ja) * 1997-07-23 1999-02-09 Honda Motor Co Ltd ブレーキディスクの製造方法
CN201944156U (zh) * 2011-01-18 2011-08-24 南车株洲电力机车有限公司 一种制动盘
CN106499756A (zh) * 2015-09-06 2017-03-15 房殊 二维结构无序排列的陶瓷骨架增强轻金属复合材料制动盘
CN106499741A (zh) * 2015-09-06 2017-03-15 房殊 泡沫陶瓷增强轻金属复合材料摩擦离合片、制动盘
CN106499755A (zh) * 2015-09-06 2017-03-15 房殊 柱状陶瓷增强轻金属复合材料制动盘
CN106499754A (zh) * 2015-09-06 2017-03-15 房殊 周期桁架结构陶瓷骨架增强轻金属复合材料制动盘
CN110962501A (zh) * 2018-09-29 2020-04-07 中车戚墅堰机车车辆工艺研究所有限公司 轨道车辆用弹性车轮、弹性车轮组件及轨道车辆

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205047705U (zh) * 2015-09-06 2016-02-24 房殊 柱状陶瓷增强轻金属复合材料制动盘
CN107100949B (zh) * 2017-04-17 2019-01-29 湖南世鑫新材料有限公司 一种组合式复合材料制动盘及制备方法和应用
CN106838065B (zh) * 2017-04-17 2019-02-05 湖南世鑫新材料有限公司 一种高速列车制动盘及制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1137192A (ja) * 1997-07-23 1999-02-09 Honda Motor Co Ltd ブレーキディスクの製造方法
CN201944156U (zh) * 2011-01-18 2011-08-24 南车株洲电力机车有限公司 一种制动盘
CN106499756A (zh) * 2015-09-06 2017-03-15 房殊 二维结构无序排列的陶瓷骨架增强轻金属复合材料制动盘
CN106499741A (zh) * 2015-09-06 2017-03-15 房殊 泡沫陶瓷增强轻金属复合材料摩擦离合片、制动盘
CN106499755A (zh) * 2015-09-06 2017-03-15 房殊 柱状陶瓷增强轻金属复合材料制动盘
CN106499754A (zh) * 2015-09-06 2017-03-15 房殊 周期桁架结构陶瓷骨架增强轻金属复合材料制动盘
CN110962501A (zh) * 2018-09-29 2020-04-07 中车戚墅堰机车车辆工艺研究所有限公司 轨道车辆用弹性车轮、弹性车轮组件及轨道车辆

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4224031A4 *

Also Published As

Publication number Publication date
US20230235802A1 (en) 2023-07-27
JP2023543615A (ja) 2023-10-17
CN116324207A (zh) 2023-06-23
EP4224031A1 (en) 2023-08-09
EP4224031A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
CN107917160B (zh) 一种制动盘及其制备方法
CN103939509B (zh) 一种用于轨道车辆的Al/Sic和Cu/Sic复合材料摩擦副及其制备方法
CN103104638B (zh) 一种用于高速列车的金属/陶瓷复合材料制动盘
WO2015169024A1 (zh) 一种金属/连续结构相陶瓷复合材料摩擦盘及其制作方法
CN102102720B (zh) 一种陶瓷/金属双连续相复合材料闸片及其制备方法
CN105525153A (zh) 一种碳化硅颗粒增强铝基复合材料制动盘
Zeuner et al. Developing trends in disc bralke technology for rail application
US20230235802A1 (en) Light metal structure-function dual-gradient composite brake disc (brake drum)
CN105016758B (zh) 耐磨陶瓷材料、陶瓷局部增强铝基复合材料及制备方法
JPH09511564A (ja) ブレーキロータ類およびクラッチ板類などの部品とその製造方法
CN110205530B (zh) 一种高速重载列车用铝基钛面制动盘及其成型方法
CN205260682U (zh) 合成闸瓦
CN201554802U (zh) 高速列车轴装式制动盘
CN105673739A (zh) 一种高热容SiCp/Al复合材料轮装制动盘盘体
CN114110061B (zh) 一种耐磨降噪的仿生双层陶瓷刹车片及其制备方法
Kavorkijan Engineering wear-resistant surfaces in automotive aluminum
CN201944152U (zh) 表面强化的球墨铸铁刹车盘
CN202707876U (zh) 一种分层制动盘
CN207569117U (zh) 一种摩擦结构及制动件
CN204852099U (zh) 一种汽车制动盘
CN214367407U (zh) 一种汽车用铝基复合材料实心制动盘
CN221401452U (zh) 嵌入式铝质制动盘
CN207049233U (zh) 一种高速列车制动盘
CN216666304U (zh) 一种高铁制动闸片
CN213039717U (zh) 一种高强度耐磨耐热刹车片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955625

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023520164

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020955625

Country of ref document: EP

Effective date: 20230502