WO2022067576A1 - Indication of data transmission configuration - Google Patents

Indication of data transmission configuration Download PDF

Info

Publication number
WO2022067576A1
WO2022067576A1 PCT/CN2020/119051 CN2020119051W WO2022067576A1 WO 2022067576 A1 WO2022067576 A1 WO 2022067576A1 CN 2020119051 W CN2020119051 W CN 2020119051W WO 2022067576 A1 WO2022067576 A1 WO 2022067576A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
indication
configuration
cell
determining
Prior art date
Application number
PCT/CN2020/119051
Other languages
French (fr)
Inventor
Samuli Turtinen
Jussi-Pekka Koskinen
Chunli Wu
Original Assignee
Nokia Shanghai Bell Co., Ltd.
Nokia Solutions And Networks Oy
Nokia Technologies Oy
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nokia Shanghai Bell Co., Ltd., Nokia Solutions And Networks Oy, Nokia Technologies Oy filed Critical Nokia Shanghai Bell Co., Ltd.
Priority to CN202080017733.XA priority Critical patent/CN114586426B/en
Priority to PCT/CN2020/119051 priority patent/WO2022067576A1/en
Publication of WO2022067576A1 publication Critical patent/WO2022067576A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to a method, device and computer readable storage medium of communication for indicating a configuration used for data transmission.
  • a terminal device in an inactive state may still have small and infrequent data traffic to be transmitted.
  • 3GPP Release 16 the inactive state cannot support data transmission, and the terminal device has to resume connection (i.e., move to a connected state) for any downlink and uplink data. This will result in unnecessary power consumption and signaling overhead.
  • 3GPP Release 17 has approved small data transmission (SDT) based on random access channel (RACH) and configured grant (CG) schemes. Further, it has been agreed that stored configuration in a context of a terminal device is used for a radio link control (RLC) bearer configuration for any SDT scheme.
  • RACH random access channel
  • CG configured grant
  • a network device cannot decode a data packet of the SDT until it has requested the context of the terminal device from an anchor network device (also referred to as the last serving network device herein) . This will notably increase a latency of SDT procedure.
  • example embodiments of the present disclosure provide an improved solution of communication.
  • a first device comprising: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to: in response to determining that data is to be transmitted, generate a first indication indicating at least a part of a configuration to be used for the transmission of the data; and transmit the data and the first indication to a second device.
  • a first device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to: in response to determining that data is to be transmitted, determine whether the first device is to transmit the data to a first cell of a second device in which the first device enters into an inactive state; in response to determining that the first device is to transmit the data to the first cell, transmit the data to the second device based on a first configuration configured by the first cell to the first device; and in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmit the data to the second device based on a second configuration known for the second cell.
  • a second device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to: receive data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and determine the data from the data packets based on the first indication.
  • a second device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to: receive data packets associated with data transmitted by a first device; in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determine the data from the data packets based on a first configuration configured by the first cell to the first device; and in response to determining that the first device is to transmit the data to a second cell different from the first cell, determine the data from the data packets based on a second configuration known for the second cell.
  • a method of communication comprises: in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and transmitting the data and the first indication to a second device.
  • a method of communication comprises: in response to determining that data is to be transmitted, determining, at a first device, whether the first device is served by a first cell of a second device in which the first device enters into an inactive state; in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first device and configured by the first cell; and in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
  • a method of communication comprises: receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and determining the data from the data packets based on the first indication.
  • a method of communication comprises: receiving, at a second device, data packets associated with data transmitted by a first device; in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and in response to determining that the first device is to transmit the data to the first cell, determining the data from the data packets based on a second configuration predefined for the first device.
  • an apparatus of communication comprises: means for in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for transmitting the data and the first indication to a second device.
  • an apparatus of communication comprises: means for in response to determining that data is to be transmitted, determining, at a first device, whether the first device is to transmit the data to a first cell of a second device in which the first device enters into an inactive state; means for in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first device and configured by the first cell; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
  • an apparatus of communication comprises: means for receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for determining the data from the data packets based on the first indication.
  • an apparatus of communication comprises: means for receiving, at a second device, data packets associated with data transmitted by a first device; means for in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, determining the data from the data packets based on a second configuration known for the second cell.
  • non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the fifth aspect.
  • non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the sixth aspect.
  • non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the seventh aspect.
  • non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the eighth aspect.
  • Fig. 1 illustrates an example communication network in which example embodiments of the present disclosure may be implemented
  • Fig. 2 illustrates a schematic diagram illustrating a process of communication according to a conventional solution
  • Fig. 3 illustrates a schematic diagram illustrating a process of communication according to some embodiments of the present disclosure
  • Fig. 4 illustrates a schematic diagram illustrating a radio link control (RLC) control protocol data unit (C-PDU) according to embodiments of the present disclosure.
  • RLC radio link control
  • C-PDU control protocol data unit
  • Fig. 5 illustrates a schematic diagram illustrating example process of communication according to some embodiments of the present disclosure
  • Fig. 6 illustrates a schematic diagram illustrating another process of communication according to some embodiments of the present disclosure
  • Fig. 7 illustrates a flowchart of a method of communication implemented at a first device according to example embodiments of the present disclosure
  • Fig. 8 illustrates a flowchart of another method of communication implemented at a first device according to example embodiments of the present disclosure
  • Fig. 9 illustrates a flowchart of a method of communication implemented at a second device according to example embodiments of the present disclosure
  • Fig. 10 illustrates a flowchart of another method of communication implemented at a second device according to example embodiments of the present disclosure
  • Fig. 11 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure.
  • Fig. 12 illustrates a block diagram of an example computer readable medium in accordance with example embodiments of the present disclosure.
  • references in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
  • first and second etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments.
  • the term “and/or” includes any and all combinations of one or more of the listed terms.
  • circuitry may refer to one or more or all of the following:
  • circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware.
  • circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
  • the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on.
  • 5G fifth generation
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • HSPA High-Speed Packet Access
  • NB-IoT Narrow Band Internet of Things
  • the communications between a terminal device and a network device in the communication network may be performed according to any suitable generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • suitable generation communication protocols including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future.
  • Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of
  • the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom.
  • the network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated Access and Backhaul (IAB) node, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology.
  • BS base station
  • AP access point
  • NodeB or NB node B
  • eNodeB or eNB evolved NodeB
  • NR NB also referred to as a gNB
  • a RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) .
  • a relay node may correspond to DU part of the IAB node.
  • terminal device refers to any end device that may be capable of wireless communication.
  • a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) .
  • UE user equipment
  • SS Subscriber Station
  • MS Mobile Station
  • AT Access Terminal
  • the terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/
  • the terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a. k. a. a relay node) .
  • MT Mobile Termination
  • IAB integrated access and backhaul
  • the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
  • SDT may include traffic from Instant Messaging (IM) services, heart-beat or keep-alive traffic, for example, from IM or email clients and other services, push notifications in various applications, traffic from wearables (including, for example, periodic positioning information) , and/or the like.
  • IM Instant Messaging
  • SDT may include sensor data (e.g., temperature, pressure readings transmitted periodically or in an event-triggered manner in an IoT network) , metering and alerting information sent from smart meters, and/or the like.
  • 3GPP Release 17 has approved SDT based on RACH and configured grant schemes in an inactive state, and also has agreed that the stored configuration in the context of the terminal device is used for the RLC for any SDT scheme.
  • the network device cannot decode the data packet of the SDT until it has requested the context of the terminal device from the anchor network device. This will notably increase the latency of SDT procedure.
  • embodiments of the present disclosure provide a solution for indicating a configuration used for data transmission.
  • the solution can allow the network device to immediately decode the data packet received from the terminal device.
  • the latency of communication procedure can be decreased.
  • SDT procedure its latency also can be decreased, and the stored configuration can be applied for the SDT and thus quality of service (QoS) enforcement for a data radio bearer (DRB) can be improved.
  • QoS quality of service
  • FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented.
  • the communication network 100 may include a first device 110, a second device 120 and a third device 130.
  • the first device 110 may be a terminal device
  • each of the second and third devices 120 and 130 may be a network device.
  • the first device 110 is a terminal device and the second and third devices 120 and 130 each are network devices. It is to be understood that, in other embodiments, the first device 110 may be a network device and the second and/or third devices 120 and 130 may be terminal devices. In other words, the principles and spirits of the present disclosure can be applied to both uplink and downlink transmissions.
  • the second device 120 may provide serving cells 121 and 122 for the first device 110.
  • the third device 130 may provide serving cells 131 and 132 for the first device 110.
  • each of the second and third devices 120 and 130 may employ central unit (CU) /distributed unit (DU) deployment architecture.
  • the CU and DU may be located in a single entity. Of course, the CU and DU may be separate entities.
  • the network 100 may include any suitable number and type of first, second and third devices and that of serving cells adapted for implementing embodiments of the present disclosure.
  • the first device 110 may communicate with the second device 120 via a channel such as a wireless communication channel.
  • the first device 110 may communicate with the third device 130 via a channel such as a wireless communication channel.
  • the second and third devices 120 and 130 may communicate with each other via a special interface such as a user plane (UP) interface and a control plane (CP) interface.
  • UP user plane
  • CP control plane
  • the communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like.
  • GSM Global System for Mobile Communications
  • LTE Long Term Evolution
  • LTE-Evolution LTE-Advanced
  • WCDMA Wideband Code Division Multiple Access
  • CDMA Code Division Multiple Access
  • GERAN GSM EDGE Radio Access Network
  • MTC Machine Type Communication
  • the communications may be performed according to any generation communication protocols either currently known or to be developed in the future.
  • Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, and the fifth generation (5G) communication protocols.
  • the first device 110 is served by the third device 130 in a connected state, and the third device 130 maintains a context for the first device 110.
  • the third device 130 may instruct the first device 110 to enter into an inactive state, and then the first device 110 may enter into the inactive state.
  • the first device 120 is switched to be served by the second device 120.
  • the third device 130 may be the last serving network device maintaining the context for the first device 110. In this event, assuming the first device 110 has data to be transmitted, such as small and infrequent data traffic. The following description will be given under this assumption.
  • Fig. 2 illustrates a schematic diagram illustrating a process 200 of communication according to the conventional solution.
  • the first device 110 may perform SDT with common control channel (CCCH) service data unit (SDU) and dedicated transmission channel (DTCH) SDU.
  • CCCH common control channel
  • SDU service data unit
  • DTCH dedicated transmission channel
  • the first device 110 may transmit 201 the data to the DU of the second device 120.
  • the DU of the second device 120 may identify 202 the SDT and store a RLC protocol data unit (PDU) of a DRB.
  • PDU RLC protocol data unit
  • the DU of the second device 120 may transmit 203 the CCCH SDU to the CU of the second device 120 over a F1-C interface.
  • the CU of the second device 120 may transmit 204 a UE context fetch request with indication of SDT to the third device 130.
  • the third device 130 is an anchor maintaining the context of the first device 110.
  • the third device 130 may be the last serving network device for the first device 110.
  • the third device 130 may transmit 205 the context of the first device 110 to the CU of the second device 120.
  • the CU of the second device 120 may transmit 206 to the DU of the second device 120 a FI-U setup request for the SDT with a RLC configuration in the context, and then the DU of the second device 120 may decode 207 the RLC PDU based on the received RLC configuration.
  • the DU of the second device 120 may transmit 208 the resulting packet data convergence protocol (PDCP) PDU of the SDT to the CU of the second device 120. Subsequently, the PDCP PDU processing may be done 209 by the CU of the second device 120 based on the received context or by the third device 130.
  • PDCP packet data convergence protocol
  • the second device 120 when stored configuration for the RLC is used by the first device 110 for SDT, the second device 120 cannot decode a data packet of the SDT until it has requested the context from the third device 130. Upon getting the context, the second device 120 still needs to configure the DU with it so that the data packet can be decoded. Only after that, the data packet can be sent forward by the DU to the CU and possibly still to the third device 130. This will notably increase the latency of getting the data packet out from the radio access network (RAN) .
  • RAN radio access network
  • embodiments of the present application provide improve solutions for communication.
  • at least a part of a configuration used for transmission of the data is indicated by the first device 110 to the second device 120 upon transmission of the data.
  • an indication indicating the at least a part of the configuration is generated by the first device 110 and transmitted to the second device 120.
  • the second device 120 is allowed to immediately decode the data packet associated with the data upon reception, and thus the latency of communication is reduced.
  • the stored configuration can be allowed to be used for the RLC entity, and thus QoS enforcement for the DRB can be improved.
  • the first device 110 if the first device 110 is to transmit the data to the same cell (also referred to as a first cell herein) of the second device 120 where the first device 110 enters into the inactive state, i.e., if the first device 110 is on the last serving cell, the first device 110 transmits the data based on a configuration (also referred to as a first configuration) configured by the first cell to the first device 110.
  • the first configuration can be considered as a stored configuration. In this case, the first configuration is also known for the second device 120.
  • the first device 110 If the first device 110 is not to transmit the data to the first cell, i.e., if the first device 110 is to transmit the data to a second cell different from the first cell, that is, if the first device 110 is on the second cell, the first device 110 transmits the data based on a configuration (also referred to as a second configuration) known for the second cell.
  • the second configuration can be considered as a default configuration or a predefined configuration. In this case, the second configuration is also known for the second device 120.
  • the second device 120 can also be allowed to immediately decode the data packet associated with the data upon reception, and thus the latency of communication is reduced.
  • Fig. 3 illustrates a schematic diagram illustrating a process 300 for communication according to embodiments of the present disclosure.
  • the process 300 will be described with reference to FIG. 1.
  • the process 300 may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the first device 110 when the first device 110 has data to be transmitted, the first device 110 generates 301 an indication (also referred to as a first indication for convenience) indicating at least a part of a configuration to be used for the transmission of the data.
  • the configuration may be RLC configuration. It should be noted that the present applicant is not limited to this, and the configuration may be any stored configuration necessary for the second device 120 to communicate with the first device 110 before context fetch from the third device 130 can be echoed from the first device 110 to the second device 120 due to the transmission of the data.
  • the configuration may be associated with uplink transmission. Of course, the configuration may be associated with downlink transmission.
  • the configuration may be PDCP configuration, SDAP configuration, MAC configuration, or RRC configuration.
  • the configuration may comprise at least one of a RLC mode (for example, acknowledgement mode (AM) , un-acknowledgement mode (UM) , or transparent mode (TM) ) , a serial number (SN) length, a t-Reassembly timer length, an unidirectional or bidirectional RLC mode.
  • a RLC mode for example, acknowledgement mode (AM) , un-acknowledgement mode (UM) , or transparent mode (TM)
  • SN serial number
  • t-Reassembly timer length a t-Reassembly timer length
  • the unidirectional or bidirectional RLC mode may be indicated only in case of RLC operating in un-acknowledgement mode (UM) .
  • the first device 110 may generate the first indication by generating a RLC C-PDU.
  • the RLC C-PDU indicates the at least a part of the configuration.
  • the first device 110 may multiplex the RLC C-PDU for each logic channel (LCH) or DRB from which a data packet is to be multiplexed into a MAC PDU.
  • Fig. 4 illustrates a schematic diagram 400 illustrating a RLC C-PDU according to embodiments of the present disclosure.
  • the RLC C-PDU for a given LCH or DRB is multiplexed only once in the SDT procedure, for example, upon the first SDT transmission.
  • the first indication is not provided for the subsequent SDT transmissions within the same SDT procedure.
  • the RLC C-PDU is multiplexed in each SDT transmission.
  • D/C field 401 may indicate whether the RLC PDU is Control or Data PDU
  • CPT field 402 may indicate Control PDU Type.
  • the CPT field 402 may indicate Control PDU for the SDT.
  • RM field 403 may indicate the RLC mode applied by the first device 110 (for example, UM or AM) for the given DRB.
  • SN field 404 may indicate the SN length, for example, either 12 or 18 bits in case RM indicates AM mode or 6 or 12 bits in case RM indicates UM mode.
  • any other suitable forms of RLC C-PDU for the SDT are also feasible.
  • the first device 110 may generate the first indication by generating a radio resource control (RRC) message.
  • the RRC message indicates the at least a part of the configuration.
  • the first device 110 may reuse an existing RRC message to indicate the at least a part of the configuration.
  • the RRC request or resume message embedded along with SDT may be used to indicate the at least a part of the configuration.
  • the first device 110 may use a new RRC message to indicate the at least a part of the configuration.
  • a SDT request or UE Assistance Information message may be used to indicate the at least a part of the configuration.
  • the first device 110 may generate the first indication by generating a medium access control control element (MAC CE) .
  • the MAC CE indicates the at least a part of the configuration.
  • a separate MAC CE is indicated for each DRB or LCH with data multiplexed in a MAC PDU.
  • one MAC CE indicates the first indication for each DRB or LCH with data multiplexed in a MAC PDU.
  • the first device 110 may receive information concerning the configuration from the second device 120. That is, the second device 120 may transmit the information concerning the configuration to the first device 110. In some embodiments, the second device 120 may transmit the information as a dedicated configuration in a dedicated signaling. Alternatively, the second device 120 may transmit the information as a common configuration in system information.
  • the second device 120 may indicate what parts of the stored configuration the first device 110 should apply and what parts it should apply as the default configuration.
  • the first device 110 may determine the configuration based on the received information and generate the first indication based on the determined configuration.
  • it also may be predefined that only a subset of the stored configuration applies.
  • the first device 110 may determine whether the data is to be transmitted to a first cell of the second device 120 in which the first device 110 enters into the inactive state, and if determining that the data is not to be transmitted to the first cell, the first device 110 may determine to transmit the first indication. In some examples, if the first device 110 determines that the data is to be transmitted to the first cell, the first device 110 may determine not to transmit the first indication. In this way, unnecessary transmission resource can be saved.
  • the first device 110 may receive, from the second device 120, an indication (also referred to as a second indication herein) as to whether the configuration is used for the transmission of the data. That is, the second device 120 may transmit the second indication to the first device. For example, the second device 120 may indicate whether the first device 110 should use the stored configuration or the default configuration. In some embodiments, the second device 120 may transmit the second indication via a dedicated signaling. Alternatively, the second device 120 may transmit the second indication via system information. If the second indication indicates that the configuration is used for the transmission of the data, the first device 110 may generate the first indication.
  • an indication also referred to as a second indication herein
  • the first device 110 may receive, from the second device 120, an indication (also referred to as a third indication herein) as to whether the first indication is to be generated. That is, the second device 120 may transmit the third indication to the first device 110.
  • the second device 120 may provide in the third indication at least one of a set of cells, a set of RAN area IDs, a set of RAN area codes, and RAN area to the first device 110.
  • the at least one of a set of cells, a set of RAN area IDs, a set of RAN area codes, and RAN area may be served by the second device 120.
  • the first device 110 may determine if the first indication is to be generated.
  • the first device 110 may determine the first indication is unnecessary to be transmitted. For example, since the second device 120 knows the configuration.
  • the set above may comprise only one of at least one of a cell, a RAN area ID, a RAN area code, and a RAN area. In this way, unnecessary transmission resource can also be saved.
  • the first device 110 transmits 302 the data and the first indication to the second device 120.
  • the first device 110 may generate data packets for the data based on the configuration.
  • the second device 120 can determine 303 the data from the data packets based on the first indication.
  • the second device 120 can decode the data from the data packets based on the configuration indicated by the first indication.
  • Fig. 5 illustrates a schematic diagram illustrating example process 500 of communication according to some embodiments of the present disclosure.
  • the process 500 may involve the first device 110, the second device 120 and the third device 130 as illustrated in FIG. 1.
  • This process is described in connection with the second device 120 having a CU/DU split deployment architecture.
  • this process also can be applied for a second device without CU/DU split deployment architecture.
  • the first device 110 may transmit 501, to the DU of the second device 120, the CCCH SDU (for example, a RRC message for a SDT request) and DTCH SDU (for example, data packets associated with the data) as well as an indication indicating the used configuration of the DRB of DTCH SDU.
  • the configuration may be at least one of the following: a RLC mode, a SN length, a t-Reassembly timer length, an unidirectional or bidirectional RLC mode in case of UM.
  • the RLD mode may be an acknowledgement mode (AM) or UM.
  • the SN length may be SN with 6 bits or 12 bits for UM, SN with 12 bits or 18 bits for AM, etc. This is merely an example, and the present application is not limited to this.
  • the DU of the second device 120 may immediately decode 502 a RLC PDU corresponding to the DTCH SDU based on the indication. Then the DU of the second device 120 may transmit 503 the CCCH SDU to the CU of the second device 120 over a F1-C interface. The CU of the second device 120 may initiate 504 a F1-U setup message to the first device 110 for the SDT. The DU of the second device 120 may respond 505 with F1-U setup ACK and provides the resulting PDCP PDU of the SDT.
  • the CU of the second device 120 may transmit 506, to the third device 130, a UE context fetch request with CCCH SDU and PDCP PDU embedded.
  • the third device 130 is an anchor maintaining the context of the first device 110.
  • the third device 130 may be the last serving network device for the first device 110.
  • the PDCP PDU processing may be done 507 by the CU of the second device 120 based on the received context or by the third device 130.
  • the above process of Fig. 5 is merely an example, and any other suitable processes are also feasible.
  • the UE context fetch request may also happen without PDCP PDU and can be initiated immediately by the CU of the second device 120 after receiving the CCCH SDU from the DU of the second device 120.
  • the configuration used for the transmission of the data can be explicitly indicated by the first device 110 to the second device 120.
  • the second device 120 is allowed to immediately decode the received RLC PDU, and the latency of communication is reduced.
  • the stored configuration can be applied for the SDT, and thus QoS enforcement for the DRB can be improved.
  • Embodiments of the present disclosure also provide another solution for indicating the configuration, the mechanism of which is illustrated in Fig. 6.
  • Fig. 6 illustrates a schematic diagram illustrating another process 600 of communication according to some embodiments of the present disclosure. For convenience, Fig. 6 will be described in connection with the example of Fig. 1.
  • the process 600 may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
  • the first device 110 determines 601 whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state. In other words, the first device 110 may determine whether the first device 110 is located on the first cell or whether the first device 110 is served by the first cell.
  • the first cell can be considered as an anchor maintaining the context of the first device 110. In some embodiments, the first cell may be the last serving cell for the first device 110.
  • the first device 110 determines that the first device 110 is to transmit the data to the first cell, the first device 110 transmits 602 the data to the second device 120 based on a configuration (also referred to as a first configuration herein) configured by the first cell to the first device.
  • the first configuration can be considered as a stored configuration.
  • the first device 110 may generate data packets for the data based on the first configuration.
  • the first device 110 determines that the first device 110 is not to transmit the data to the first cell, that is, if the first device 110 determines that the first device 110 is to transmit the data to a second cell different from the first cell, the first device 110 transmits 602’ the data to the second device 120 based on a configuration (also referred to as a second configuration herein) known for the second cell.
  • the second configuration can be considered as a default configuration.
  • the second configuration may be configured by the second cell in system information.
  • the second configuration may be predefined for the first device 110.
  • the first device 110 may generate data packets for the data based on the second configuration.
  • the second device 120 Upon receipt of the data packets, the second device 120 determines 603 whether the first device 110 is to transmit the data to the first cell of the second device 120, i.e., whether the first device 110 is served by the first cell. If the second device 120 determines that the first device 110 is served by the first cell, the second device 120 determines 604 the data from the data packets based on the first configuration.
  • the first configuration is known for the second device 120 as the first configuration is configured by the second device 120 to the first device 110.
  • the second device 120 determines 605 the data from the data packets based on the second configuration.
  • the second configuration also is known for the second device 120 as the second configuration is a default configuration for the first and second devices 110 and 120.
  • the configuration used for the transmission of the data can be implicitly indicated by the first device 110 to the second device 120.
  • the second device 120 is also allowed to immediately decode the received RLC PDU, and the latency of communication also can be reduced.
  • Fig. 7 illustrates a flowchart of a method 700 of communication implemented at a first device according to example embodiments of the present disclosure.
  • the method 700 can be implemented at the first device 110 shown in Fig. 1.
  • the method 700 will be described with reference to Fig. 1. It is to be understood that method 700 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the first device 110 determines whether data is to be transmitted. In response to determining that the data is to be transmitted, at block 720, the first device 110 generates a first indication indicating at least a part of a configuration to be used for the transmission of the data.
  • the first device 110 may generate the first indication by generating at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration.
  • a RLC C-PDU indicating the at least a part of the configuration
  • a RRC message indicating the at least a part of the configuration
  • a MAC CE indicating the at least a part of the configuration.
  • any other suitable forms are also feasible to carry the first indication.
  • the first device 110 may generate the first indication by receiving, from the second device 120, information concerning the configuration; determining the configuration based on the received information, and generating the first indication based on the determined configuration. In this way, the first device 100 can determine the content of the configuration applied for the transmission of the data.
  • the first device 110 may generate the first indication by determining whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state, and in response to determining that the first device 110 is not to transmit the data to the first cell, determining the first indication. In this case, only if the first device 110 performs cell reselection, that is, the second device 120 cannot know the configuration for the transmission of the data, the first indication is generated and transmitted. In this way, unnecessary transmission resource can be saved.
  • the first device 110 may generate the first indication by receiving, from the second device 120, a second indication as to whether the configuration is used for the transmission of the data, and generating the first indication based on the second indication indicating that the configuration is used for the transmission of the data.
  • the first device 100 can determine the type of the configuration applied for the transmission of the data. For example, the first device 100 can determine whether the stored configuration or the default configuration is used for the transmission of the data.
  • the first device 110 may generate the first indication by receiving, from the second device 120, a third indication as to whether the first indication is to be generated, and generating the first indication based on the third indication indicating that the first indication is to be generated. In this way, only if the first device 110 is indicated to generate the first indication, the first device 110 generates the first indication. Thus, unnecessary transmission resource can be saved.
  • the first device 110 upon generation of the first indication, at block 730, transmits the data and the first indication to the second device 120.
  • the operations in the method of Fig. 7 correspond to that in the processes described in Figs. 3-5, and thus other details are omitted here for concise.
  • the configuration used for the transmission of the data can be explicitly indicated by the first device 110 to the second device 120.
  • the second device 120 is allowed to immediately decode the received RLC PDU, and the latency of communication is reduced.
  • the stored configuration can be applied for the SDT, and thus QoS enforcement for the DRB can be improved.
  • Fig. 8 illustrates a flowchart of another method 800 of communication implemented at a first device according to example embodiments of the present disclosure.
  • the method 800 can be implemented at the first device 110 shown in Fig. 1.
  • the method 800 will be described with reference to Fig. 1. It is to be understood that method 800 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the first device 110 determines whether data is to be transmitted. In response to determining that the data is to be transmitted, at block 820, the first device 110 determines whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state.
  • the process proceeds to block 830.
  • the first device 110 transmits the data to the second device 120 based on a first configuration configured by the first cell to the first device 110. If determining that the first device 110 is not to transmit the data to the first cell, that is, the first device 110 is to transmit the data to a second cell different from the first cell, the process proceeds to block 840. At block 840, the first device 110 transmits the data to the second device 120 based on a second configuration known for the second cell.
  • the operations in the method of Fig. 8 correspond to that in the process described in Fig. 6, and thus other details are omitted here for concise.
  • the configuration used for the transmission of the data can be implicitly indicated by the first device 110 to the second device 120.
  • the second device 120 is also allowed to immediately decode the received RLC PDU, and the latency of communication also can be reduced.
  • Fig. 9 illustrates a flowchart of a method 900 of communication implemented at a second device according to example embodiments of the present disclosure.
  • the method 900 can be implemented at the second device 120 shown in Fig. 1.
  • the method 900 will be described with reference to Fig. 1. It is to be understood that method 900 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the second device 120 receives data packets associated with data transmitted by the first device 110 and a first indication indicating at least a part of a configuration to be used for the transmission of the data.
  • the second device 120 may receive the first indication by receiving at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration.
  • a RLC C-PDU indicating the at least a part of the configuration
  • a RRC message indicating the at least a part of the configuration
  • a MAC CE indicating the at least a part of the configuration.
  • any other suitable forms are also feasible to carry the first indication.
  • the second device 120 may further transmit information concerning the configuration to the first device 110. In some embodiments, the second device 120 may further transmit, to the first device 110, a second indication as to whether the configuration is used for the transmission of the data. In some embodiments, the second device 120 may further transmit, to the first device 110, a third indication as to whether the first indication is to be generated.
  • the second device 120 may transmit the third indication by determining whether the first device 110 is served by a cell of the second device 120, and in response to determining that the first device 110 is served by the cell of the second device 120, transmitting the third indication indicating that the first indication is not to be generated.
  • the second device 120 determines the data from the data packets based on the first indication.
  • the second device 120 can explicitly know the configuration used for the transmission of the data, and immediately decode the received RLC PDU, and the latency of communication is reduced.
  • the stored configuration can be applied for the SDT, and thus QoS enforcement for the DRB can be improved.
  • Fig. 10 illustrates a flowchart of a method 1000 of communication implemented at a second device according to example embodiments of the present disclosure.
  • the method 1000 can be implemented at the second device 120 shown in Fig. 1.
  • the method 1000 will be described with reference to Fig. 1. It is to be understood that method 1000 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
  • the second device 120 receives data packets associated with data transmitted by the first device 110. Upon receipt of the data packets, at block 1020, the second device 120 determines whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state.
  • the process proceeds to block 1030.
  • the second device 120 determines the data from the data packets based on a first configuration configured by the first cell to the first device 110. If determining that the first device 110 is not to transmit the data to the first cell, that is, the first device 110 is to transmit the data to a second cell different from the first cell, the process proceeds to block 1040.
  • the second device 120 determines the data from the data packets based on a second configuration known for the second cell.
  • the second device 120 can implicitly know the configuration used for the transmission of the data, and immediately decode the received RLC PDU, and the latency of communication is reduced.
  • an apparatus capable of performing the method 700 may comprise means for performing the respective steps of the method 700.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may comprise: means for in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for transmitting the data and the first indication to a second device.
  • the means for generating the first indication may comprise means for generating at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration.
  • the means for generating the first indication may comprise means for receiving, from the second device, information concerning the configuration; means for determining the configuration based on the received information; and means for generating the first indication based on the determined configuration.
  • the means for generating the first indication may comprise means for determining whether the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state; and means for in response to determining that the first device is not to transmit the data to the first cell, generating the first indication.
  • the means for generating the first indication may comprise means for receiving, from the second device, a second indication as to whether the configuration is used for the transmission of the data; and means for generating the first indication based on the second indication indicating that the configuration is used for the transmission of the data.
  • the means for generating the first indication may comprise means for receiving, from the second device, a third indication as to whether the first indication is to be generated; and means for generating the first indication based on the third indication indicating that the first indication is to be generated.
  • an apparatus capable of performing the method 800 may comprise means for performing the respective steps of the method 800.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may comprise: means for in response to determining that data is to be transmitted, determining, at a first device, whether the first device is served by a first cell of a second device in which the first device enters into an inactive state; means for in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first device and configured by the first cell; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
  • an apparatus capable of performing the method 900 may comprise means for performing the respective steps of the method 900.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may comprise: means for receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for determining the data from the data packets based on the first indication.
  • the means for receiving the first indication may comprise: means for receiving at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration.
  • the apparatus may further comprise: means for transmitting, to the first device, information concerning the configuration.
  • the apparatus may further comprise: means for transmitting, to the first device, a second indication as to whether the configuration is used for the transmission of the data.
  • the apparatus may further comprise: means for transmitting, to the first device, a third indication as to whether the first indication is to be generated.
  • the means for transmitting the third indication may comprise: means for determining whether the first device is served by a cell of the second device; and means for in response to determining that the first device is served by the cell of the second device, transmitting the third indication indicating that the first indication is not to be generated.
  • an apparatus capable of performing the method 1000 may comprise means for performing the respective steps of the method 1900.
  • the means may be implemented in any suitable form.
  • the means may be implemented in a circuitry or software module.
  • the apparatus may comprise: means for receiving, at a second device, data packets associated with data transmitted by a first device; means for in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, determining the data from the data packets based on a second configuration known for the second cell.
  • FIG. 11 is a simplified block diagram of a device 1100 that is suitable for implementing embodiments of the present disclosure.
  • the device 1100 may be provided to implement the first device or the second device, for example the first device 110 or the second device 120 as shown in Fig. 1.
  • the device 1100 includes one or more processors 1110, one or more memories 1120 coupled to the processor 1110, and one or more communication modules 1140 (such as, transmitters and/or receivers) coupled to the processor 1110.
  • the communication module 1140 is for bidirectional communications.
  • the communication module 1140 has at least one antenna to facilitate communication.
  • the communication interface may represent any interface that is necessary for communication with other network elements.
  • the processor 1110 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples.
  • the device 1100 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
  • the memory 1120 may include one or more non-volatile memories and one or more volatile memories.
  • the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1124, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage.
  • the volatile memories include, but are not limited to, a random access memory (RAM) 1122 and other volatile memories that will not last in the power-down duration.
  • a computer program 1130 includes computer executable instructions that are executed by the associated processor 1110.
  • the program 1130 may be stored in the ROM 1124.
  • the processor 1110 may perform any suitable actions and processing by loading the program 1130 into the RAM 1122.
  • the embodiments of the present disclosure may be implemented by means of the program 1130 so that the device 1100 may perform any process of the disclosure as discussed with reference to Figs. 3-6.
  • the embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
  • the program 1130 may be tangibly contained in a computer readable medium which may be included in the device 1100 (such as in the memory 1120) or other storage devices that are accessible by the device 1100.
  • the device 1100 may load the program 1130 from the computer readable medium to the RAM 1122 for execution.
  • the computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like.
  • FIG. 12 shows an example of the computer readable medium 1200 in form of CD or DVD.
  • the computer readable medium has the program 1130 stored thereon.
  • various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
  • the present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium.
  • the computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 700-1000 as described above with reference to Figs. 7-10.
  • program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types.
  • the functionality of the program modules may be combined or split between program modules as desired in various embodiments.
  • Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
  • Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented.
  • the program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above.
  • Examples of the carrier include a signal, computer readable medium, and the like.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Embodiments of the present disclosure relate to indication of data transmission configuration. A method comprises in response to determining that data is to be transmitted, a first device generates a first indication indicating at least a part of a configuration to be used for the transmission of the data and transmits the data and the first indication to a second device. The second device determines the data from the data packets based on the first indication. In this way, the configuration used for the transmission of the data can be indicated by the first device to the second device, and the second device is allowed to immediately decode the received data packets, and the latency of communication is reduced.

Description

INDICATION OF DATA TRANSMISSION CONFIGURATION FIELD
Embodiments of the present disclosure generally relate to the field of telecommunication and in particular, to a method, device and computer readable storage medium of communication for indicating a configuration used for data transmission.
BACKGROUND
Typically, a terminal device in an inactive state may still have small and infrequent data traffic to be transmitted. Until the third generation partnership project (3GPP) Release 16, the inactive state cannot support data transmission, and the terminal device has to resume connection (i.e., move to a connected state) for any downlink and uplink data. This will result in unnecessary power consumption and signaling overhead. In this event, 3GPP Release 17 has approved small data transmission (SDT) based on random access channel (RACH) and configured grant (CG) schemes. Further, it has been agreed that stored configuration in a context of a terminal device is used for a radio link control (RLC) bearer configuration for any SDT scheme.
Traditionally, when the stored configuration for the RLC is used by the terminal device for SDT, a network device cannot decode a data packet of the SDT until it has requested the context of the terminal device from an anchor network device (also referred to as the last serving network device herein) . This will notably increase a latency of SDT procedure.
SUMMARY
In general, example embodiments of the present disclosure provide an improved solution of communication.
In a first aspect, there is provided a first device. The first device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to: in response to determining that data is to be transmitted, generate a first indication indicating at least a part of a configuration to be used for the transmission of the data; and transmit the data and the first indication to a second device.
In a second aspect, there is provided a first device. The first device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the first device to: in response to determining that data is to be transmitted, determine whether the first device is to transmit the data to a first cell of a second device in which the first device enters into an inactive state; in response to determining that the first device is to transmit the data to the first cell, transmit the data to the second device based on a first configuration configured by the first cell to the first device; and in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmit the data to the second device based on a second configuration known for the second cell.
In a third aspect, there is provided a second device. The second device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to: receive data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and determine the data from the data packets based on the first indication.
In a fourth aspect, there is provided a second device. The second device comprises: at least one processor; and at least one memory including computer program code; the at least one memory and the computer program code are configured to, with the at least one processor, cause the second device to: receive data packets associated with data transmitted by a first device; in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determine the data from the data packets based on a first configuration configured by the first cell to the first device; and in response to determining that the first device is to transmit the data to a second cell different from the first cell, determine the data from the data packets based on a second configuration known for the second cell.
In a fifth aspect, there is provided a method of communication. The method comprises: in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and transmitting the data and the first indication to a second device.
In a sixth aspect, there is provided a method of communication. The method comprises: in response to determining that data is to be transmitted, determining, at a first device, whether the first device is served by a first cell of a second device in which the first device enters into an inactive state; in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first device and configured by the first cell; and in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
In a seventh aspect, there is provided a method of communication. The method comprises: receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and determining the data from the data packets based on the first indication.
In an eighth aspect, there is provided a method of communication. The method comprises: receiving, at a second device, data packets associated with data transmitted by a first device; in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and in response to determining that the first device is to transmit the data to the first cell, determining the data from the data packets based on a second configuration predefined for the first device.
In a ninth aspect, there is provided an apparatus of communication. The apparatus comprises: means for in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for transmitting the data and the first indication to a second device.
In a tenth aspect, there is provided an apparatus of communication. The apparatus comprises: means for in response to determining that data is to be transmitted, determining, at a first device, whether the first device is to transmit the data to a first cell of a second device in which the first device enters into an inactive state; means for in response to determining that the first device is to transmit the data to the first cell, transmitting the  data to the second device based on a first configuration stored in the first device and configured by the first cell; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
In an eleventh aspect, there is provided an apparatus of communication. The apparatus comprises: means for receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for determining the data from the data packets based on the first indication.
In a twelfth aspect, there is provided an apparatus of communication. The apparatus comprises: means for receiving, at a second device, data packets associated with data transmitted by a first device; means for in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, determining the data from the data packets based on a second configuration known for the second cell.
In a thirteenth aspect, there is provided a non-transitory computer readable medium. The non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the fifth aspect.
In a fourteenth aspect, there is provided a non-transitory computer readable medium. The non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the sixth aspect.
In a fifteenth aspect, there is provided a non-transitory computer readable medium. The non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the seventh aspect.
In a sixteenth aspect, there is provided a non-transitory computer readable medium. The non-transitory computer readable medium comprises program instructions for causing an apparatus to perform the method according to the eighth aspect.
It is to be understood that the summary section is not intended to identify key or essential features of embodiments of the present disclosure, nor is it intended to be used to  limit the scope of the present disclosure. Other features of the present disclosure will become easily comprehensible through the following description.
BRIEF DESCRIPTION OF THE DRAWINGS
Some example embodiments will now be described with reference to the accompanying drawings, where:
Fig. 1 illustrates an example communication network in which example embodiments of the present disclosure may be implemented;
Fig. 2 illustrates a schematic diagram illustrating a process of communication according to a conventional solution;
Fig. 3 illustrates a schematic diagram illustrating a process of communication according to some embodiments of the present disclosure;
Fig. 4 illustrates a schematic diagram illustrating a radio link control (RLC) control protocol data unit (C-PDU) according to embodiments of the present disclosure.
Fig. 5 illustrates a schematic diagram illustrating example process of communication according to some embodiments of the present disclosure;
Fig. 6 illustrates a schematic diagram illustrating another process of communication according to some embodiments of the present disclosure;
Fig. 7 illustrates a flowchart of a method of communication implemented at a first device according to example embodiments of the present disclosure;
Fig. 8 illustrates a flowchart of another method of communication implemented at a first device according to example embodiments of the present disclosure;
Fig. 9 illustrates a flowchart of a method of communication implemented at a second device according to example embodiments of the present disclosure;
Fig. 10 illustrates a flowchart of another method of communication implemented at a second device according to example embodiments of the present disclosure;
Fig. 11 illustrates a simplified block diagram of an apparatus that is suitable for implementing example embodiments of the present disclosure; and
Fig. 12 illustrates a block diagram of an example computer readable medium in accordance with example embodiments of the present disclosure.
Throughout the drawings, the same or similar reference numerals represent the same or similar element.
DETAILED DESCRIPTION
Principle of the present disclosure will now be described with reference to some example embodiments. It is to be understood that these embodiments are described only for the purpose of illustration and help those skilled in the art to understand and implement the present disclosure, without suggesting any limitation as to the scope of the disclosure. The disclosure described herein can be implemented in various manners other than the ones described below.
In the following description and claims, unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skills in the art to which this disclosure belongs.
References in the present disclosure to “one embodiment, ” “an embodiment, ” “an example embodiment, ” and the like indicate that the embodiment described may include a particular feature, structure, or characteristic, but it is not necessary that every embodiment includes the particular feature, structure, or characteristic. Moreover, such phrases are not necessarily referring to the same embodiment. Further, when a particular feature, structure, or characteristic is described in connection with an embodiment, it is submitted that it is within the knowledge of one skilled in the art to affect such feature, structure, or characteristic in connection with other embodiments whether or not explicitly described.
It shall be understood that although the terms “first” and “second” etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and similarly, a second element could be termed a first element, without departing from the scope of example embodiments. As used herein, the term “and/or” includes any and all combinations of one or more of the listed terms.
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of example embodiments. As used herein, the singular forms “a” , “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the  terms “comprises” , “comprising” , “has” , “having” , “includes” and/or “including” , when used herein, specify the presence of stated features, elements, and/or components etc., but do not preclude the presence or addition of one or more other features, elements, components and/or combinations thereof.
As used in this application, the term “circuitry” may refer to one or more or all of the following:
(a) hardware-only circuit implementations (such as implementations in only analog and/or digital circuitry) and
(b) combinations of hardware circuits and software, such as (as applicable) :
(i) a combination of analog and/or digital hardware circuit (s) with software/firmware and
(ii) any portions of hardware processor (s) with software (including digital signal processor (s) ) , software, and memory (ies) that work together to cause an apparatus, such as a mobile phone or server, to perform various functions) and
(c) hardware circuit (s) and or processor (s) , such as a microprocessor (s) or a portion of a microprocessor (s) , that requires software (e.g., firmware) for operation, but the software may not be present when it is not needed for operation.
This definition of circuitry applies to all uses of this term in this application, including in any claims. As a further example, as used in this application, the term circuitry also covers an implementation of merely a hardware circuit or processor (or multiple processors) or portion of a hardware circuit or processor and its (or their) accompanying software and/or firmware. The term circuitry also covers, for example and if applicable to the particular claim element, a baseband integrated circuit or processor integrated circuit for a mobile device or a similar integrated circuit in server, a cellular network device, or other computing or network device.
As used herein, the term “communication network” refers to a network following any suitable communication standards, such as fifth generation (5G) systems, Long Term Evolution (LTE) , LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , High-Speed Packet Access (HSPA) , Narrow Band Internet of Things (NB-IoT) and so on. Furthermore, the communications between a terminal device and a network device in the communication network may be performed according to any suitable  generation communication protocols, including, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, the fifth generation (5G) new radio (NR) communication protocols, and/or any other protocols either currently known or to be developed in the future. Embodiments of the present disclosure may be applied in various communication systems. Given the rapid development in communications, there will of course also be future type communication technologies and systems with which the present disclosure may be embodied. It should not be seen as limiting the scope of the present disclosure to only the aforementioned system.
As used herein, the term “network device” refers to a node in a communication network via which a terminal device accesses the network and receives services therefrom. The network device may refer to a base station (BS) or an access point (AP) , for example, a node B (NodeB or NB) , an evolved NodeB (eNodeB or eNB) , a NR NB (also referred to as a gNB) , a Remote Radio Unit (RRU) , a radio header (RH) , a remote radio head (RRH) , a relay, an Integrated Access and Backhaul (IAB) node, a low power node such as a femto, a pico, and so forth, depending on the applied terminology and technology. A RAN split architecture comprises a gNB-CU (Centralized unit, hosting RRC, SDAP and PDCP) controlling a plurality of gNB-DUs (Distributed unit, hosting RLC, MAC and PHY) . A relay node may correspond to DU part of the IAB node.
The term “terminal device” refers to any end device that may be capable of wireless communication. By way of example rather than limitation, a terminal device may also be referred to as a communication device, user equipment (UE) , a Subscriber Station (SS) , a Portable Subscriber Station, a Mobile Station (MS) , or an Access Terminal (AT) . The terminal device may include, but not limited to, a mobile phone, a cellular phone, a smart phone, voice over IP (VoIP) phones, wireless local loop phones, a tablet, a wearable terminal device, a personal digital assistant (PDA) , portable computers, desktop computer, image capture terminal devices such as digital cameras, gaming terminal devices, music storage and playback appliances, vehicle-mounted wireless terminal devices, wireless endpoints, mobile stations, laptop-embedded equipment (LEE) , laptop-mounted equipment (LME) , USB dongles, smart devices, wireless customer-premises equipment (CPE) , an Internet of Things (loT) device, a watch or other wearable, a head-mounted display (HMD) , a vehicle, a drone, a medical device and applications (e.g., remote surgery) , an industrial device and applications (e.g., a robot and/or other wireless devices operating in an  industrial and/or an automated processing chain contexts) , a consumer electronics device, a device operating on commercial and/or industrial wireless networks, and the like. The terminal device may also correspond to Mobile Termination (MT) part of the integrated access and backhaul (IAB) node (a. k. a. a relay node) . In the following description, the terms “terminal device” , “communication device” , “terminal” , “user equipment” and “UE” may be used interchangeably.
Currently, there are various applications that involve exchange of small and infrequency data. For example, in some applications of mobile devices, SDT may include traffic from Instant Messaging (IM) services, heart-beat or keep-alive traffic, for example, from IM or email clients and other services, push notifications in various applications, traffic from wearables (including, for example, periodic positioning information) , and/or the like. In some applications of non-mobile devices, SDT may include sensor data (e.g., temperature, pressure readings transmitted periodically or in an event-triggered manner in an IoT network) , metering and alerting information sent from smart meters, and/or the like.
As mentioned above, 3GPP Release 17 has approved SDT based on RACH and configured grant schemes in an inactive state, and also has agreed that the stored configuration in the context of the terminal device is used for the RLC for any SDT scheme. However, according to conventional solution, when the stored configuration for the RLC is used by the terminal device for SDT, the network device cannot decode the data packet of the SDT until it has requested the context of the terminal device from the anchor network device. This will notably increase the latency of SDT procedure.
In view of this, embodiments of the present disclosure provide a solution for indicating a configuration used for data transmission. The solution can allow the network device to immediately decode the data packet received from the terminal device. In this way, the latency of communication procedure can be decreased. For SDT procedure, its latency also can be decreased, and the stored configuration can be applied for the SDT and thus quality of service (QoS) enforcement for a data radio bearer (DRB) can be improved. Principles and implementations of the present disclosure will be described in detail below with reference to the figures.
EXAMPLE OF COMMUNICATION NETWORK
FIG. 1 illustrates a schematic diagram of an example communication network 100 in which some embodiments of the present disclosure can be implemented. As shown in  FIG. 1, the communication network 100 may include a first device 110, a second device 120 and a third device 130. In some embodiments, the first device 110 may be a terminal device, and each of the second and  third devices  120 and 130 may be a network device.
Merely for illustration purpose and without suggesting any limitations as to the scope of the present disclosure, some embodiments will be described in the context where the first device 110 is a terminal device and the second and  third devices  120 and 130 each are network devices. It is to be understood that, in other embodiments, the first device 110 may be a network device and the second and/or  third devices  120 and 130 may be terminal devices. In other words, the principles and spirits of the present disclosure can be applied to both uplink and downlink transmissions.
The second device 120 may provide serving  cells  121 and 122 for the first device 110. Similarly, the third device 130 may provide serving  cells  131 and 132 for the first device 110. In some embodiments, each of the second and  third devices  120 and 130 may employ central unit (CU) /distributed unit (DU) deployment architecture. The CU and DU may be located in a single entity. Of course, the CU and DU may be separate entities.
It is to be understood that the number and type of first, second and third devices and that of serving cells as shown in Fig. 1 are only for the purpose of illustration without suggesting any limitations. The network 100 may include any suitable number and type of first, second and third devices and that of serving cells adapted for implementing embodiments of the present disclosure.
As shown in Fig. 1, the first device 110 may communicate with the second device 120 via a channel such as a wireless communication channel. Similarly, the first device 110 may communicate with the third device 130 via a channel such as a wireless communication channel. The second and  third devices  120 and 130 may communicate with each other via a special interface such as a user plane (UP) interface and a control plane (CP) interface.
The communications in the communication network 100 may conform to any suitable standards including, but not limited to, Global System for Mobile Communications (GSM) , Long Term Evolution (LTE) , LTE-Evolution, LTE-Advanced (LTE-A) , Wideband Code Division Multiple Access (WCDMA) , Code Division Multiple Access (CDMA) , GSM EDGE Radio Access Network (GERAN) , Machine Type Communication (MTC) and the like. Furthermore, the communications may be performed according to any generation  communication protocols either currently known or to be developed in the future. Examples of the communication protocols include, but not limited to, the first generation (1G) , the second generation (2G) , 2.5G, 2.75G, the third generation (3G) , the fourth generation (4G) , 4.5G, and the fifth generation (5G) communication protocols.
In some scenarios, in an earlier stage, the first device 110 is served by the third device 130 in a connected state, and the third device 130 maintains a context for the first device 110. In some cases, the third device 130 may instruct the first device 110 to enter into an inactive state, and then the first device 110 may enter into the inactive state. During the first device 110 is moving toward the second device 120, the first device 120 is switched to be served by the second device 120. In this case, the third device 130 may be the last serving network device maintaining the context for the first device 110. In this event, assuming the first device 110 has data to be transmitted, such as small and infrequent data traffic. The following description will be given under this assumption.
CONVENTIONAL PROCESS
Fig. 2 illustrates a schematic diagram illustrating a process 200 of communication according to the conventional solution. For convenience, Fig. 2 will be described in connection with the example of Fig. 1. When the first device 110 has the data to be transmitted, as shown in Fig. 2, the first device 110 may perform SDT with common control channel (CCCH) service data unit (SDU) and dedicated transmission channel (DTCH) SDU. In this way, the first device 110 may transmit 201 the data to the DU of the second device 120. The DU of the second device 120 may identify 202 the SDT and store a RLC protocol data unit (PDU) of a DRB. Then the DU of the second device 120 may transmit 203 the CCCH SDU to the CU of the second device 120 over a F1-C interface.
The CU of the second device 120 may transmit 204 a UE context fetch request with indication of SDT to the third device 130. In this example, the third device 130 is an anchor maintaining the context of the first device 110. In some embodiments, the third device 130 may be the last serving network device for the first device 110. The third device 130 may transmit 205 the context of the first device 110 to the CU of the second device 120. The CU of the second device 120 may transmit 206 to the DU of the second device 120 a FI-U setup request for the SDT with a RLC configuration in the context, and then the DU of the second device 120 may decode 207 the RLC PDU based on the received RLC configuration. Accordingly, the DU of the second device 120 may transmit 208 the  resulting packet data convergence protocol (PDCP) PDU of the SDT to the CU of the second device 120. Subsequently, the PDCP PDU processing may be done 209 by the CU of the second device 120 based on the received context or by the third device 130.
It can be seen that as the RLC entity is located in the DU of the second device 120, when stored configuration for the RLC is used by the first device 110 for SDT, the second device 120 cannot decode a data packet of the SDT until it has requested the context from the third device 130. Upon getting the context, the second device 120 still needs to configure the DU with it so that the data packet can be decoded. Only after that, the data packet can be sent forward by the DU to the CU and possibly still to the third device 130. This will notably increase the latency of getting the data packet out from the radio access network (RAN) .
EXAMPLES OF IMPROVED PROCESSES
In view of this, embodiments of the present application provide improve solutions for communication. In the present solution, at least a part of a configuration used for transmission of the data is indicated by the first device 110 to the second device 120 upon transmission of the data. In one aspect of embodiments of the present disclosure, an indication indicating the at least a part of the configuration is generated by the first device 110 and transmitted to the second device 120. In this way, the second device 120 is allowed to immediately decode the data packet associated with the data upon reception, and thus the latency of communication is reduced. For SDT procedure, the stored configuration can be allowed to be used for the RLC entity, and thus QoS enforcement for the DRB can be improved.
In another aspect of embodiments of the present disclosure, if the first device 110 is to transmit the data to the same cell (also referred to as a first cell herein) of the second device 120 where the first device 110 enters into the inactive state, i.e., if the first device 110 is on the last serving cell, the first device 110 transmits the data based on a configuration (also referred to as a first configuration) configured by the first cell to the first device 110. The first configuration can be considered as a stored configuration. In this case, the first configuration is also known for the second device 120.
If the first device 110 is not to transmit the data to the first cell, i.e., if the first device 110 is to transmit the data to a second cell different from the first cell, that is, if the first device 110 is on the second cell, the first device 110 transmits the data based on a  configuration (also referred to as a second configuration) known for the second cell. The second configuration can be considered as a default configuration or a predefined configuration. In this case, the second configuration is also known for the second device 120. Thus, the second device 120 can also be allowed to immediately decode the data packet associated with the data upon reception, and thus the latency of communication is reduced. The above aspects will be described in detail with reference to Figs. 3-6.
EXAMPLE IMPLEMENTATION PROCESS 1
Fig. 3 illustrates a schematic diagram illustrating a process 300 for communication according to embodiments of the present disclosure. For the purpose of discussion, the process 300 will be described with reference to FIG. 1. The process 300 may involve the first device 110 and the second device 120 as illustrated in FIG. 1.
As shown in Fig. 3, when the first device 110 has data to be transmitted, the first device 110 generates 301 an indication (also referred to as a first indication for convenience) indicating at least a part of a configuration to be used for the transmission of the data. In some embodiments, the configuration may be RLC configuration. It should be noted that the present applicant is not limited to this, and the configuration may be any stored configuration necessary for the second device 120 to communicate with the first device 110 before context fetch from the third device 130 can be echoed from the first device 110 to the second device 120 due to the transmission of the data. In some embodiments, the configuration may be associated with uplink transmission. Of course, the configuration may be associated with downlink transmission. In some embodiments, the configuration may be PDCP configuration, SDAP configuration, MAC configuration, or RRC configuration.
In some embodiments, the configuration may comprise at least one of a RLC mode (for example, acknowledgement mode (AM) , un-acknowledgement mode (UM) , or transparent mode (TM) ) , a serial number (SN) length, a t-Reassembly timer length, an unidirectional or bidirectional RLC mode. In some examples, the unidirectional or bidirectional RLC mode may be indicated only in case of RLC operating in un-acknowledgement mode (UM) . These are merely examples, and any other configurations are also feasible.
In some embodiments, the first device 110 may generate the first indication by generating a RLC C-PDU. The RLC C-PDU indicates the at least a part of the  configuration. For example, the first device 110 may multiplex the RLC C-PDU for each logic channel (LCH) or DRB from which a data packet is to be multiplexed into a MAC PDU. Fig. 4 illustrates a schematic diagram 400 illustrating a RLC C-PDU according to embodiments of the present disclosure. In some embodiments, the RLC C-PDU for a given LCH or DRB is multiplexed only once in the SDT procedure, for example, upon the first SDT transmission. Hence, in some examples, the first indication is not provided for the subsequent SDT transmissions within the same SDT procedure. In some embodiments, the RLC C-PDU is multiplexed in each SDT transmission.
As shown in Fig. 4, D/C field 401 may indicate whether the RLC PDU is Control or Data PDU, and CPT field 402 may indicate Control PDU Type. In this example, the CPT field 402 may indicate Control PDU for the SDT. RM field 403 may indicate the RLC mode applied by the first device 110 (for example, UM or AM) for the given DRB. SN field 404 may indicate the SN length, for example, either 12 or 18 bits in case RM indicates AM mode or 6 or 12 bits in case RM indicates UM mode. Of course, any other suitable forms of RLC C-PDU for the SDT are also feasible.
In some embodiments, the first device 110 may generate the first indication by generating a radio resource control (RRC) message. The RRC message indicates the at least a part of the configuration. In some embodiments, the first device 110 may reuse an existing RRC message to indicate the at least a part of the configuration. For example, the RRC request or resume message embedded along with SDT may be used to indicate the at least a part of the configuration. Alternatively, the first device 110 may use a new RRC message to indicate the at least a part of the configuration. For example, a SDT request or UE Assistance Information message may be used to indicate the at least a part of the configuration.
In some embodiments, the first device 110 may generate the first indication by generating a medium access control control element (MAC CE) . The MAC CE indicates the at least a part of the configuration. In some examples, a separate MAC CE is indicated for each DRB or LCH with data multiplexed in a MAC PDU. Alternatively, in some examples, one MAC CE indicates the first indication for each DRB or LCH with data multiplexed in a MAC PDU.
In some embodiments, the first device 110 may receive information concerning the configuration from the second device 120. That is, the second device 120 may transmit  the information concerning the configuration to the first device 110. In some embodiments, the second device 120 may transmit the information as a dedicated configuration in a dedicated signaling. Alternatively, the second device 120 may transmit the information as a common configuration in system information.
In some embodiments, the second device 120 may indicate what parts of the stored configuration the first device 110 should apply and what parts it should apply as the default configuration. Upon receiving the information concerning the configuration, the first device 110 may determine the configuration based on the received information and generate the first indication based on the determined configuration. Of course, it also may be predefined that only a subset of the stored configuration applies.
In some embodiments, the first device 110 may determine whether the data is to be transmitted to a first cell of the second device 120 in which the first device 110 enters into the inactive state, and if determining that the data is not to be transmitted to the first cell, the first device 110 may determine to transmit the first indication. In some examples, if the first device 110 determines that the data is to be transmitted to the first cell, the first device 110 may determine not to transmit the first indication. In this way, unnecessary transmission resource can be saved.
In some embodiments, the first device 110 may receive, from the second device 120, an indication (also referred to as a second indication herein) as to whether the configuration is used for the transmission of the data. That is, the second device 120 may transmit the second indication to the first device. For example, the second device 120 may indicate whether the first device 110 should use the stored configuration or the default configuration. In some embodiments, the second device 120 may transmit the second indication via a dedicated signaling. Alternatively, the second device 120 may transmit the second indication via system information. If the second indication indicates that the configuration is used for the transmission of the data, the first device 110 may generate the first indication.
In some embodiments, the first device 110 may receive, from the second device 120, an indication (also referred to as a third indication herein) as to whether the first indication is to be generated. That is, the second device 120 may transmit the third indication to the first device 110. For example, the second device 120 may provide in the third indication at least one of a set of cells, a set of RAN area IDs, a set of RAN area codes,  and RAN area to the first device 110. For example, the at least one of a set of cells, a set of RAN area IDs, a set of RAN area codes, and RAN area may be served by the second device 120. Based on the third indication, the first device 110 may determine if the first indication is to be generated. For example, if the first device 110 initiates a SDT procedure in a cell that is part of the at least one of a set of cells, a set of RAN area IDs, a set of RAN area codes, and RAN area, the first device 110 may determine the first indication is unnecessary to be transmitted. For example, since the second device 120 knows the configuration. In some examples the set above may comprise only one of at least one of a cell, a RAN area ID, a RAN area code, and a RAN area. In this way, unnecessary transmission resource can also be saved.
Return to Fig. 3, upon generation of the first indication, the first device 110 transmits 302 the data and the first indication to the second device 120. In some embodiments, the first device 110 may generate data packets for the data based on the configuration. Accordingly, upon receipt of the data packets and the first indication the second device 120 can determine 303 the data from the data packets based on the first indication. For example, the second device 120 can decode the data from the data packets based on the configuration indicated by the first indication.
For illustration, the following description will be made in more detail with reference to Fig. 5. Fig. 5 illustrates a schematic diagram illustrating example process 500 of communication according to some embodiments of the present disclosure. For the purpose of discussion, the process 500 will be described with reference to FIG. 1. The process 500 may involve the first device 110, the second device 120 and the third device 130 as illustrated in FIG. 1. This process is described in connection with the second device 120 having a CU/DU split deployment architecture. However, it is to be understood that this process also can be applied for a second device without CU/DU split deployment architecture.
As shown in Fig. 5, when the first device 110 has data to be transmitted, the first device 110 may transmit 501, to the DU of the second device 120, the CCCH SDU (for example, a RRC message for a SDT request) and DTCH SDU (for example, data packets associated with the data) as well as an indication indicating the used configuration of the DRB of DTCH SDU. In some embodiments, the configuration may be at least one of the following: a RLC mode, a SN length, a t-Reassembly timer length, an unidirectional or bidirectional RLC mode in case of UM. For example, the RLD mode may be an  acknowledgement mode (AM) or UM. The SN length may be SN with 6 bits or 12 bits for UM, SN with 12 bits or 18 bits for AM, etc. This is merely an example, and the present application is not limited to this.
Upon receipt of the SDT request, the DU of the second device 120 may immediately decode 502 a RLC PDU corresponding to the DTCH SDU based on the indication. Then the DU of the second device 120 may transmit 503 the CCCH SDU to the CU of the second device 120 over a F1-C interface. The CU of the second device 120 may initiate 504 a F1-U setup message to the first device 110 for the SDT. The DU of the second device 120 may respond 505 with F1-U setup ACK and provides the resulting PDCP PDU of the SDT.
Then the CU of the second device 120 may transmit 506, to the third device 130, a UE context fetch request with CCCH SDU and PDCP PDU embedded. In this example, the third device 130 is an anchor maintaining the context of the first device 110. In some embodiments, the third device 130 may be the last serving network device for the first device 110. Subsequently, the PDCP PDU processing may be done 507 by the CU of the second device 120 based on the received context or by the third device 130.
It should be noted that the above process of Fig. 5 is merely an example, and any other suitable processes are also feasible. For example, the UE context fetch request may also happen without PDCP PDU and can be initiated immediately by the CU of the second device 120 after receiving the CCCH SDU from the DU of the second device 120.
With the above processes of Fig. 3 and 5, the configuration used for the transmission of the data can be explicitly indicated by the first device 110 to the second device 120. In this way, the second device 120 is allowed to immediately decode the received RLC PDU, and the latency of communication is reduced. For SDT procedure, the stored configuration can be applied for the SDT, and thus QoS enforcement for the DRB can be improved.
EXAMPLE IMPLEMENTATION PROCESS 2
Embodiments of the present disclosure also provide another solution for indicating the configuration, the mechanism of which is illustrated in Fig. 6. Fig. 6 illustrates a schematic diagram illustrating another process 600 of communication according to some embodiments of the present disclosure. For convenience, Fig. 6 will be described in connection with the example of Fig. 1. The process 600 may involve the first device 110  and the second device 120 as illustrated in FIG. 1.
As shown in Fig. 6, when the first device 110 has data to be transmitted, the first device 110 determines 601 whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state. In other words, the first device 110 may determine whether the first device 110 is located on the first cell or whether the first device 110 is served by the first cell. The first cell can be considered as an anchor maintaining the context of the first device 110. In some embodiments, the first cell may be the last serving cell for the first device 110.
If the first device 110 determines that the first device 110 is to transmit the data to the first cell, the first device 110 transmits 602 the data to the second device 120 based on a configuration (also referred to as a first configuration herein) configured by the first cell to the first device. The first configuration can be considered as a stored configuration. In some embodiments, the first device 110 may generate data packets for the data based on the first configuration.
If the first device 110 determines that the first device 110 is not to transmit the data to the first cell, that is, if the first device 110 determines that the first device 110 is to transmit the data to a second cell different from the first cell, the first device 110 transmits 602’ the data to the second device 120 based on a configuration (also referred to as a second configuration herein) known for the second cell. The second configuration can be considered as a default configuration. In some embodiments, the second configuration may be configured by the second cell in system information. In some embodiments, the second configuration may be predefined for the first device 110. In some embodiments, the first device 110 may generate data packets for the data based on the second configuration.
Upon receipt of the data packets, the second device 120 determines 603 whether the first device 110 is to transmit the data to the first cell of the second device 120, i.e., whether the first device 110 is served by the first cell. If the second device 120 determines that the first device 110 is served by the first cell, the second device 120 determines 604 the data from the data packets based on the first configuration. The first configuration is known for the second device 120 as the first configuration is configured by the second device 120 to the first device 110.
If the second device 120 determines that the first device 110 is not served by the  first cell, the second device 120 determines 605 the data from the data packets based on the second configuration. The second configuration also is known for the second device 120 as the second configuration is a default configuration for the first and  second devices  110 and 120.
With the process described in Fig. 6, the configuration used for the transmission of the data can be implicitly indicated by the first device 110 to the second device 120. In this way, the second device 120 is also allowed to immediately decode the received RLC PDU, and the latency of communication also can be reduced.
EXAMPLE IMPLEMENTATION OF METHODS
Some example methods according to embodiments of the present disclosure will now be described in detail with reference to Figs. 7-10. However, those skilled in the art would readily appreciate that the detailed description given herein with respect to these figures is for explanatory purpose as the present disclosure extends beyond theses limited embodiments.
Fig. 7 illustrates a flowchart of a method 700 of communication implemented at a first device according to example embodiments of the present disclosure. The method 700 can be implemented at the first device 110 shown in Fig. 1. For the purpose of discussion, the method 700 will be described with reference to Fig. 1. It is to be understood that method 700 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
As shown in Fig. 7, at block 710, the first device 110 determines whether data is to be transmitted. In response to determining that the data is to be transmitted, at block 720, the first device 110 generates a first indication indicating at least a part of a configuration to be used for the transmission of the data.
In some embodiments, the first device 110 may generate the first indication by generating at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration. Of course, any other suitable forms are also feasible to carry the first indication.
In some embodiments, the first device 110 may generate the first indication by receiving, from the second device 120, information concerning the configuration; determining the configuration based on the received information, and generating the first  indication based on the determined configuration. In this way, the first device 100 can determine the content of the configuration applied for the transmission of the data.
In some embodiments, the first device 110 may generate the first indication by determining whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state, and in response to determining that the first device 110 is not to transmit the data to the first cell, determining the first indication. In this case, only if the first device 110 performs cell reselection, that is, the second device 120 cannot know the configuration for the transmission of the data, the first indication is generated and transmitted. In this way, unnecessary transmission resource can be saved.
In some embodiments, the first device 110 may generate the first indication by receiving, from the second device 120, a second indication as to whether the configuration is used for the transmission of the data, and generating the first indication based on the second indication indicating that the configuration is used for the transmission of the data. In this way, the first device 100 can determine the type of the configuration applied for the transmission of the data. For example, the first device 100 can determine whether the stored configuration or the default configuration is used for the transmission of the data.
In some embodiments, the first device 110 may generate the first indication by receiving, from the second device 120, a third indication as to whether the first indication is to be generated, and generating the first indication based on the third indication indicating that the first indication is to be generated. In this way, only if the first device 110 is indicated to generate the first indication, the first device 110 generates the first indication. Thus, unnecessary transmission resource can be saved.
With reference to Fig. 7, upon generation of the first indication, at block 730, the first device 110 transmits the data and the first indication to the second device 120.
The operations in the method of Fig. 7 correspond to that in the processes described in Figs. 3-5, and thus other details are omitted here for concise. With the method of Fig. 7, the configuration used for the transmission of the data can be explicitly indicated by the first device 110 to the second device 120. In this way, the second device 120 is allowed to immediately decode the received RLC PDU, and the latency of communication is reduced. For SDT procedure, the stored configuration can be applied for the SDT, and thus QoS enforcement for the DRB can be improved.
Fig. 8 illustrates a flowchart of another method 800 of communication implemented at a first device according to example embodiments of the present disclosure. The method 800 can be implemented at the first device 110 shown in Fig. 1. For the purpose of discussion, the method 800 will be described with reference to Fig. 1. It is to be understood that method 800 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
As shown in Fig. 8, at block 810, the first device 110 determines whether data is to be transmitted. In response to determining that the data is to be transmitted, at block 820, the first device 110 determines whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state.
If determining that the first device 110 is to transmit the data to the first cell, the process proceeds to block 830. At block 830, the first device 110 transmits the data to the second device 120 based on a first configuration configured by the first cell to the first device 110. If determining that the first device 110 is not to transmit the data to the first cell, that is, the first device 110 is to transmit the data to a second cell different from the first cell, the process proceeds to block 840. At block 840, the first device 110 transmits the data to the second device 120 based on a second configuration known for the second cell.
The operations in the method of Fig. 8 correspond to that in the process described in Fig. 6, and thus other details are omitted here for concise. With the method of Fig. 8, the configuration used for the transmission of the data can be implicitly indicated by the first device 110 to the second device 120. In this way, the second device 120 is also allowed to immediately decode the received RLC PDU, and the latency of communication also can be reduced.
Correspondingly, embodiments of the present disclosure also provide a method of communication implemented at a second device. Fig. 9 illustrates a flowchart of a method 900 of communication implemented at a second device according to example embodiments of the present disclosure. The method 900 can be implemented at the second device 120 shown in Fig. 1. For the purpose of discussion, the method 900 will be described with reference to Fig. 1. It is to be understood that method 900 may further include additional blocks not shown and/or omit some shown blocks, and the scope of the present disclosure is  not limited in this regard.
As shown in Fig. 9, at block 910, the second device 120 receives data packets associated with data transmitted by the first device 110 and a first indication indicating at least a part of a configuration to be used for the transmission of the data.
In some embodiments, the second device 120 may receive the first indication by receiving at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration. Of course, any other suitable forms are also feasible to carry the first indication.
In some embodiments, the second device 120 may further transmit information concerning the configuration to the first device 110. In some embodiments, the second device 120 may further transmit, to the first device 110, a second indication as to whether the configuration is used for the transmission of the data. In some embodiments, the second device 120 may further transmit, to the first device 110, a third indication as to whether the first indication is to be generated.
In some embodiments, the second device 120 may transmit the third indication by determining whether the first device 110 is served by a cell of the second device 120, and in response to determining that the first device 110 is served by the cell of the second device 120, transmitting the third indication indicating that the first indication is not to be generated.
At block 920, the second device 120 determines the data from the data packets based on the first indication.
With the method of Fig. 9, the second device 120 can explicitly know the configuration used for the transmission of the data, and immediately decode the received RLC PDU, and the latency of communication is reduced. For SDT procedure, the stored configuration can be applied for the SDT, and thus QoS enforcement for the DRB can be improved.
Fig. 10 illustrates a flowchart of a method 1000 of communication implemented at a second device according to example embodiments of the present disclosure. The method 1000 can be implemented at the second device 120 shown in Fig. 1. For the purpose of discussion, the method 1000 will be described with reference to Fig. 1. It is to be understood that method 1000 may further include additional blocks not shown and/or  omit some shown blocks, and the scope of the present disclosure is not limited in this regard.
As shown in Fig. 10, at block 1010, the second device 120 receives data packets associated with data transmitted by the first device 110. Upon receipt of the data packets, at block 1020, the second device 120 determines whether the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state.
If determining that the first device 110 is to transmit the data to a first cell of the second device 120 in which the first device 110 enters into an inactive state, the process proceeds to block 1030. At block 1030, the second device 120 determines the data from the data packets based on a first configuration configured by the first cell to the first device 110. If determining that the first device 110 is not to transmit the data to the first cell, that is, the first device 110 is to transmit the data to a second cell different from the first cell, the process proceeds to block 1040. At block 1040, the second device 120 determines the data from the data packets based on a second configuration known for the second cell.
With the method of Fig. 10, the second device 120 can implicitly know the configuration used for the transmission of the data, and immediately decode the received RLC PDU, and the latency of communication is reduced.
EXAMPLE IMPLEMENTATION OF DEVICES
In some embodiments, an apparatus (for example, the first device 110) capable of performing the method 700 may comprise means for performing the respective steps of the method 700. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may comprise: means for in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for transmitting the data and the first indication to a second device.
In some embodiments, the means for generating the first indication may comprise means for generating at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration.
In some embodiments, the means for generating the first indication may comprise means for receiving, from the second device, information concerning the configuration; means for determining the configuration based on the received information; and means for generating the first indication based on the determined configuration.
In some embodiments, the means for generating the first indication may comprise means for determining whether the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state; and means for in response to determining that the first device is not to transmit the data to the first cell, generating the first indication.
In some embodiments, the means for generating the first indication may comprise means for receiving, from the second device, a second indication as to whether the configuration is used for the transmission of the data; and means for generating the first indication based on the second indication indicating that the configuration is used for the transmission of the data.
In some embodiments, the means for generating the first indication may comprise means for receiving, from the second device, a third indication as to whether the first indication is to be generated; and means for generating the first indication based on the third indication indicating that the first indication is to be generated.
In some embodiments, an apparatus (for example, the first device 110) capable of performing the method 800 may comprise means for performing the respective steps of the method 800. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may comprise: means for in response to determining that data is to be transmitted, determining, at a first device, whether the first device is served by a first cell of a second device in which the first device enters into an inactive state; means for in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first device and configured by the first cell; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
In some embodiments, an apparatus (for example, the second device 120) capable  of performing the method 900 may comprise means for performing the respective steps of the method 900. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may comprise: means for receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and means for determining the data from the data packets based on the first indication.
In some embodiments, the means for receiving the first indication may comprise: means for receiving at least one of the following: a RLC C-PDU indicating the at least a part of the configuration; a RRC message indicating the at least a part of the configuration; or a MAC CE indicating the at least a part of the configuration.
In some embodiments, the apparatus may further comprise: means for transmitting, to the first device, information concerning the configuration.
In some embodiments, the apparatus may further comprise: means for transmitting, to the first device, a second indication as to whether the configuration is used for the transmission of the data.
In some embodiments, the apparatus may further comprise: means for transmitting, to the first device, a third indication as to whether the first indication is to be generated.
In some embodiments, the means for transmitting the third indication may comprise: means for determining whether the first device is served by a cell of the second device; and means for in response to determining that the first device is served by the cell of the second device, transmitting the third indication indicating that the first indication is not to be generated.
In some embodiments, an apparatus (for example, the second device 120) capable of performing the method 1000 may comprise means for performing the respective steps of the method 1900. The means may be implemented in any suitable form. For example, the means may be implemented in a circuitry or software module.
In some embodiments, the apparatus may comprise: means for receiving, at a second device, data packets associated with data transmitted by a first device; means for in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data  from the data packets based on a first configuration configured by the first cell to the first device; and means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, determining the data from the data packets based on a second configuration known for the second cell.
FIG. 11 is a simplified block diagram of a device 1100 that is suitable for implementing embodiments of the present disclosure. The device 1100 may be provided to implement the first device or the second device, for example the first device 110 or the second device 120 as shown in Fig. 1. As shown, the device 1100 includes one or more processors 1110, one or more memories 1120 coupled to the processor 1110, and one or more communication modules 1140 (such as, transmitters and/or receivers) coupled to the processor 1110.
The communication module 1140 is for bidirectional communications. The communication module 1140 has at least one antenna to facilitate communication. The communication interface may represent any interface that is necessary for communication with other network elements.
The processor 1110 may be of any type suitable to the local technical network and may include one or more of the following: general purpose computers, special purpose computers, microprocessors, digital signal processors (DSPs) and processors based on multicore processor architecture, as non-limiting examples. The device 1100 may have multiple processors, such as an application specific integrated circuit chip that is slaved in time to a clock which synchronizes the main processor.
The memory 1120 may include one or more non-volatile memories and one or more volatile memories. Examples of the non-volatile memories include, but are not limited to, a Read Only Memory (ROM) 1124, an electrically programmable read only memory (EPROM) , a flash memory, a hard disk, a compact disc (CD) , a digital video disk (DVD) , and other magnetic storage and/or optical storage. Examples of the volatile memories include, but are not limited to, a random access memory (RAM) 1122 and other volatile memories that will not last in the power-down duration.
computer program 1130 includes computer executable instructions that are executed by the associated processor 1110. The program 1130 may be stored in the ROM 1124. The processor 1110 may perform any suitable actions and processing by loading the program 1130 into the RAM 1122.
The embodiments of the present disclosure may be implemented by means of the program 1130 so that the device 1100 may perform any process of the disclosure as discussed with reference to Figs. 3-6. The embodiments of the present disclosure may also be implemented by hardware or by a combination of software and hardware.
In some embodiments, the program 1130 may be tangibly contained in a computer readable medium which may be included in the device 1100 (such as in the memory 1120) or other storage devices that are accessible by the device 1100. The device 1100 may load the program 1130 from the computer readable medium to the RAM 1122 for execution. The computer readable medium may include any types of tangible non-volatile storage, such as ROM, EPROM, a flash memory, a hard disk, CD, DVD, and the like. FIG. 12 shows an example of the computer readable medium 1200 in form of CD or DVD. The computer readable medium has the program 1130 stored thereon.
Generally, various embodiments of the present disclosure may be implemented in hardware or special purpose circuits, software, logic or any combination thereof. Some aspects may be implemented in hardware, while other aspects may be implemented in firmware or software which may be executed by a controller, microprocessor or other computing device. While various aspects of embodiments of the present disclosure are illustrated and described as block diagrams, flowcharts, or using some other pictorial representations, it is to be understood that the block, apparatus, system, technique or method described herein may be implemented in, as non-limiting examples, hardware, software, firmware, special purpose circuits or logic, general purpose hardware or controller or other computing devices, or some combination thereof.
The present disclosure also provides at least one computer program product tangibly stored on a non-transitory computer readable storage medium. The computer program product includes computer-executable instructions, such as those included in program modules, being executed in a device on a target real or virtual processor, to carry out the methods 700-1000 as described above with reference to Figs. 7-10. Generally, program modules include routines, programs, libraries, objects, classes, components, data structures, or the like that perform particular tasks or implement particular abstract data types. The functionality of the program modules may be combined or split between program modules as desired in various embodiments. Machine-executable instructions for program modules may be executed within a local or distributed device. In a distributed device, program modules may be located in both local and remote storage media.
Program code for carrying out methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general purpose computer, special purpose computer, or other programmable data processing apparatus, such that the program codes, when executed by the processor or controller, cause the functions/operations specified in the flowcharts and/or block diagrams to be implemented. The program code may execute entirely on a machine, partly on the machine, as a stand-alone software package, partly on the machine and partly on a remote machine or entirely on the remote machine or server.
In the context of the present disclosure, the computer program codes or related data may be carried by any suitable carrier to enable the device, apparatus or processor to perform various processes and operations as described above. Examples of the carrier include a signal, computer readable medium, and the like.
The computer readable medium may be a computer readable signal medium or a computer readable storage medium. A computer readable medium may include but not limited to an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples of the computer readable storage medium would include an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM) , a read-only memory (ROM) , an erasable programmable read-only memory (EPROM or Flash memory) , an optical fiber, a portable compact disc read-only memory (CD-ROM) , an optical storage device, a magnetic storage device, or any suitable combination of the foregoing.
Further, while operations are depicted in a particular order, this should not be understood as requiring that such operations be performed in the particular order shown or in sequential order, or that all illustrated operations be performed, to achieve desirable results. In certain circumstances, multitasking and parallel processing may be advantageous. Likewise, while several specific implementation details are contained in the above discussions, these should not be construed as limitations on the scope of the present disclosure, but rather as descriptions of features that may be specific to particular embodiments. Certain features that are described in the context of separate embodiments may also be implemented in combination in a single embodiment. Conversely, various features that are described in the context of a single embodiment may also be implemented in multiple embodiments separately or in any suitable sub-combination.
Although the present disclosure has been described in languages specific to structural features and/or methodological acts, it is to be understood that the present disclosure defined in the appended claims is not necessarily limited to the specific features or acts described above. Rather, the specific features and acts described above are disclosed as example forms of implementing the claims.

Claims (44)

  1. A first device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the first device to:
    in response to determining that data is to be transmitted, generate a first indication indicating at least a part of a configuration to be used for the transmission of the data; and
    transmit the data and the first indication to a second device.
  2. The first device of claim 1, wherein the first device is caused to generate the first indication by generating at least one of the following:
    a radio link control control protocol data unit, RLC C-PDU, the RLC C-PDU indicating the at least a part of the configuration,
    a radio resource control message, the radio resource control message indicating the at least a part of the configuration, or
    a medium access control control element, MAC CE, the MAC CE indicating the at least a part of the configuration.
  3. The first device of claim 1, wherein the first device is caused to generate the first indication by:
    receiving, from the second device, information concerning the configuration;
    determining the configuration based on the received information; and
    generating the first indication based on the determined configuration.
  4. The first device of claim 1, wherein the first device is caused to generate the first indication by:
    determining whether the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state; and
    in response to determining that the first device is not to transmit the data to the first cell, determining the first indication.
  5. The first device of claim 1, wherein the first device is caused to generate the first indication by:
    receiving, from the second device, a second indication as to whether the configuration is used for the transmission of the data; and
    generating the first indication based on the second indication indicating that the configuration is used for the transmission of the data.
  6. The first device of claim 1, wherein the first device is caused to generate the first indication by:
    receiving, from the second device, a third indication as to whether the first indication is to be generated; and
    generating the first indication based on the third indication indicating that the first indication is to be generated.
  7. A first device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the first device to:
    in response to determining that data is to be transmitted, determine whether the first device is to transmit the data to a first cell of a second device in which the first device enters into an inactive state;
    in response to determining that the first device is to transmit the data to the first cell, transmit the data to the second device based on a first configuration configured by the first cell to the first device; and
    in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmit the data to the second device based on a second configuration known for the second cell.
  8. The first device of any of claims 1-7, wherein the first device is a terminal device, and the second device is a network device.
  9. The first device of any of claims 1-7, wherein the first device is in an inactive state.
  10. A second device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the second device to:
    receive data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and
    determine the data from the data packets based on the first indication.
  11. The second device of claim 10, wherein the second device is caused to receive the first indication by receiving at least one of the following:
    a radio link control control protocol data unit, RLC C-PDU, the RLC C-PDU indicating the at least part of the configuration,
    a radio resource control message, the radio resource control message indicating the at least part of the configuration, or
    a medium access control control element, MAC CE, the MAC CE indicating the at least part of the configuration.
  12. The second device of claim 10, wherein the second device is further caused to:
    transmit, to the first device, information concerning the configuration.
  13. The second device of claim 10, wherein the second device is further caused to:
    transmit, to the first device, a second indication as to whether the configuration is used for the transmission of the data.
  14. The second device of claim 10, wherein the second device is further caused to:
    transmit, to the first device, a third indication as to whether the first indication is to be generated.
  15. The second device of claim 14, wherein the second device is caused to transmit the third indication by:
    determining whether the first device is served by a cell of the second device; and
    in response to determining that the first device is served by the cell of the second device, transmitting the third indication indicating that the first indication is not to be generated.
  16. A second device comprising:
    at least one processor; and
    at least one memory including computer program code;
    the at least one memory and the computer program code configured to, with the at least one processor, cause the second device to:
    receive data packets associated with data transmitted by a first device;
    in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determine the data from the data packets based on a first configuration configured by the first cell to the first device; and
    in response to determining that the first device is to transmit the data to a second cell different from the first cell, determine the data from the data packets based on a second configuration known for the second cell.
  17. The second device of any of claims 10-16, wherein the first device is a terminal device, and the second device is a network device.
  18. The second device of any of claims 10-16, wherein the first device is in an inactive state.
  19. A method of communication, comprising:
    in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and
    transmitting the data and the first indication to a second device.
  20. The method of claim 19, wherein generating the first indication comprises generating at least one of the following:
    a radio link control control protocol data unit, RLC C-PDU, the RLC C-PDU indicating the at least part of the configuration,
    a radio resource control message, the radio resource control message indicating the at least part of the configuration, or
    a medium access control control element, MAC CE, the MAC CE indicating the at least part of the configuration.
  21. The method of claim 19, wherein generating the first indication comprises:
    receiving, from the second device, information concerning the configuration;
    determining the configuration based on the received information; and
    generating the first indication based on the determined configuration.
  22. The method of claim 19, wherein generating the first indication comprises:
    determining whether the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state; and
    in response to determining that the first device is not to transmit the data to the first cell, generating the first indication.
  23. The method of claim 19, wherein generating the first indication comprises:
    receiving, from the second device, a second indication as to whether the configuration is used for the transmission of the data; and
    generating the first indication based on the second indication indicating that the configuration is used for the transmission of the data.
  24. The method of claim 19, wherein generating the first indication comprises:
    receiving, from the second device, a third indication as to whether the first indication is to be generated; and
    generating the first indication based on the third indication indicating that the first indication is to be generated.
  25. A method of communication, comprising:
    in response to determining that data is to be transmitted, determining, at a first device, whether the first device is served by a first cell of a second device in which the first device enters into an inactive state;
    in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first  device and configured by the first cell; and
    in response to determining that the first device is to transmit the data to a second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
  26. A method of communication, comprising:
    receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and
    determining the data from the data packets based on the first indication.
  27. The method of claim 26, wherein receiving the first indication comprises receiving at least one of the following:
    a radio link control control protocol data unit, RLC C-PDU, the RLC C-PDU indicating the at least part of the configuration,
    a radio resource control message, the radio resource control message indicating the at least part of the configuration, or
    a medium access control control element, MAC CE, the MAC CE indicating the at least part of the configuration.
  28. The method of claim 26, further comprising:
    transmitting, to the first device, information concerning the configuration.
  29. The method of claim 26, further comprising:
    transmitting, to the first device, a second indication as to whether the configuration is used for the transmission of the data.
  30. The method of claim 26, further comprising:
    transmitting, to the first device, a third indication as to whether the first indication is to be generated.
  31. The method of claim 30, wherein transmitting the third indication comprises:
    determining whether the first device is served by a cell of the second device; and
    in response to determining that the first device is served by the cell of the second  device, transmitting the third indication indicating that the first indication is not to be generated.
  32. A method of communication, comprising:
    receiving, at a second device, data packets associated with data transmitted by a first device;
    in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and
    in response to determining that the first device is to transmit the data to a second cell different from the first cell, determining the data from the data packets based on a second configuration known for the second cell.
  33. The method of any of claims 19-32, wherein the first device is a terminal device, and the second device is a network device.
  34. The method of any of claims 19-32, wherein the first device is in an inactive state.
  35. An apparatus of communication, comprising:
    means for in response to determining that data is to be transmitted, generating, at a first device, a first indication indicating at least a part of a configuration to be used for the transmission of the data; and
    means for transmitting the data and the first indication to a second device.
  36. An apparatus of communication, comprising:
    means for in response to determining that data is to be transmitted, determining, at a first device, whether the first device is to transmit the data to a first cell of a second device in which the first device enters into an inactive state;
    means for in response to determining that the first device is to transmit the data to the first cell, transmitting the data to the second device based on a first configuration stored in the first device and configured by the first cell; and
    means for in response to determining that the first device is to transmit the data to a  second cell different from the first cell, transmitting the data to the second device based on a second configuration known for the second cell.
  37. An apparatus of communication, comprising:
    means for receiving, at a second device, data packets associated with data transmitted by a first device and a first indication indicating at least a part of a configuration to be used for the transmission of the data; and
    means for determining the data from the data packets based on the first indication.
  38. An apparatus of communication, comprising:
    means for receiving, at a second device, data packets associated with data transmitted by a first device;
    means for in response to determining that the first device is to transmit the data to a first cell of the second device in which the first device enters into an inactive state, determining the data from the data packets based on a first configuration configured by the first cell to the first device; and
    means for in response to determining that the first device is to transmit the data to a second cell different from the first cell, determining the data from the data packets based on a second configuration known for the second cell.
  39. The apparatus of any of claims 35-38, wherein the first device is a terminal device, and the second device is a network device.
  40. The apparatus of any of claims 35-38, wherein the first device is in an inactive state.
  41. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform the method according to any of claims 19 to 24.
  42. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform the method according to claim 25.
  43. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform the method according to any of claims 26 to 31.
  44. A non-transitory computer readable medium comprising program instructions for causing an apparatus to perform the method according to claims 32-34.
PCT/CN2020/119051 2020-09-29 2020-09-29 Indication of data transmission configuration WO2022067576A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080017733.XA CN114586426B (en) 2020-09-29 2020-09-29 Indication of data transmission configuration
PCT/CN2020/119051 WO2022067576A1 (en) 2020-09-29 2020-09-29 Indication of data transmission configuration

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/119051 WO2022067576A1 (en) 2020-09-29 2020-09-29 Indication of data transmission configuration

Publications (1)

Publication Number Publication Date
WO2022067576A1 true WO2022067576A1 (en) 2022-04-07

Family

ID=80949362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/119051 WO2022067576A1 (en) 2020-09-29 2020-09-29 Indication of data transmission configuration

Country Status (2)

Country Link
CN (1) CN114586426B (en)
WO (1) WO2022067576A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115102875B (en) * 2022-07-15 2024-04-09 深信服科技股份有限公司 Data packet processing method, device, equipment and medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107786562A (en) * 2017-11-01 2018-03-09 北京知道创宇信息技术有限公司 Data ciphering method, decryption method and device
WO2018170516A2 (en) * 2017-03-17 2018-09-20 Ofinno Technologies, Llc Radio access network notification area update failure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3718368A4 (en) * 2017-11-28 2021-07-21 Nokia Technologies Oy Early data transmission

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018170516A2 (en) * 2017-03-17 2018-09-20 Ofinno Technologies, Llc Radio access network notification area update failure
CN107786562A (en) * 2017-11-01 2018-03-09 北京知道创宇信息技术有限公司 Data ciphering method, decryption method and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "Radio bearer configuration for SDT considering UE context relocation and CU/DU split", 3GPP DRAFT; R2-2006714, vol. RAN WG2, 7 August 2020 (2020-08-07), pages 1 - 6, XP051911622 *

Also Published As

Publication number Publication date
CN114586426A (en) 2022-06-03
CN114586426B (en) 2023-09-15

Similar Documents

Publication Publication Date Title
US20240114582A1 (en) Transmission in small data transmission mode
US20230284315A1 (en) Method, device and computer storage medium of communication
WO2022067558A1 (en) Method, device and computer storage medium of communication
WO2022067576A1 (en) Indication of data transmission configuration
WO2022109864A1 (en) Transmission of periodic data in inactive state
WO2022151036A1 (en) Methods, devices, and medium for communication
US20230319890A1 (en) Method, device and computer storage medium of communication
WO2023155117A1 (en) Access resource selection for small data transmission
WO2023023934A1 (en) Communication for small data transmission
US11849497B2 (en) Methods, devices, and medium for handling of non-SDT data
WO2024092665A1 (en) Small data transmission control
US20240196358A1 (en) Positioning enhancement mechanism
WO2023050434A1 (en) Enhanced uplink synchronization scheme
WO2024103420A1 (en) Devices, methods and apparatuses for data transmission
WO2023155119A1 (en) Procedure selection for small data transmission
WO2021203322A1 (en) Beam reporting triggered by data transmission
WO2024031298A1 (en) Mobility with pre-configuration of candidate cells at ue
US20240090063A1 (en) Data transmission with security configurations
WO2024026847A1 (en) Optimized uplink transmission with ue assisted information
WO2024031299A1 (en) Mobility with pre-configuration of handover preparation information at dus
WO2022266848A1 (en) Data handling during sdt
WO2023077511A1 (en) Contention resolution for non-terrestrial network
WO2022241709A1 (en) Enhancements on small data transmission
US20240205871A1 (en) Positioning
WO2023216264A1 (en) Reporting of relaxation status of signal measurement

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955601

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955601

Country of ref document: EP

Kind code of ref document: A1