WO2022067469A1 - New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion - Google Patents

New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion Download PDF

Info

Publication number
WO2022067469A1
WO2022067469A1 PCT/CN2020/118708 CN2020118708W WO2022067469A1 WO 2022067469 A1 WO2022067469 A1 WO 2022067469A1 CN 2020118708 W CN2020118708 W CN 2020118708W WO 2022067469 A1 WO2022067469 A1 WO 2022067469A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
target cell
wireless device
processor
base station
Prior art date
Application number
PCT/CN2020/118708
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/118708 priority Critical patent/WO2022067469A1/en
Publication of WO2022067469A1 publication Critical patent/WO2022067469A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection

Definitions

  • 5G New Radio (NR) user equipment implemented cell selection/reselection methods and policies are almost the same as those implemented for prior Long Term Evolution (LTE) communications.
  • User equipment searches different bands and uses signal quality, physical layer reference signal receive power (L1-RSRP) , based criterion to find suitable cells.
  • High space density networks having high space density of base stations and/or user equipment, can cause high random access channel (RACH) congesting on some cells, such as cells with better signal quality.
  • RACH random access channel
  • a high percentage of the high space density user equipment can attempt to connect to the same cell based on the same criterion.
  • a network of such a cell can only schedule or handover user equipment to other cells during a radio resource control (RRC) connected state of the user equipment.
  • RRC radio resource control
  • Various aspects include systems and methods performed by base stations for cell selection scheduling for a network. Some aspects may include generating a cell selection message having a target cell identifier (ID) in which the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and in which the target cell is different from the cell, and transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell.
  • ID target cell identifier
  • RRC radio resource control
  • Some aspects may further include determining whether the cell is experiencing RACH congestion, in which generating the cell selection message may include generating the cell selection message in response to determining that the cell is experiencing RACH congestion.
  • Some aspects may further include selecting the wireless device from a plurality of wireless devices in the high space density network and connected to the cell.
  • Some aspects may further include determining the target cell from a plurality of cells in the high space density network.
  • determining the target cell may include determining whether a radio access network (RAN) loading value of a first cell of the plurality of cells exceeds a cell selection threshold, and selecting the first cell is the target cell in response to the RAN loading value exceeding the cell selection threshold.
  • RAN radio access network
  • determining the target cell may include determining whether a device space distribution value of a first cell of the plurality of cells exceeds a cell selection threshold, and determining the first cell is the target cell in response to the device space distribution value exceeding the cell selection threshold.
  • the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  • Various aspects include systems and methods performed by wireless devices for cell selection scheduling for a high space density network to reduce RACH congestion. Some aspects may include receiving a cell selection message having a target cell identifier (ID) in which the cell selection message is configured to indicate to the wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and in which the target cell is different from the cell, and camping on the target cell while the wireless device is in an RRC idle or inactive state with the cell.
  • ID target cell identifier
  • RRC radio resource control
  • Some aspects may further include determining whether the wireless device is in an RRC idle or inactive state with the cell, in which camping on the target cell may include camping on the target cell in response to determining that the wireless device is in an RRC idle or inactive state with the cell.
  • Some aspects may further include determining whether the wireless device can camp on the target cell, in which camping on the target cell may include camping on the target cell in response to determining that the wireless device can camp on the target cell.
  • determining whether the wireless device can camp on the target cell may include determining whether a signal quality of the target cell exceeds a target cell connect threshold, and camping on the target cell may include camping on the target cell in response to determining that the signal quality of the target cell exceeds the target cell connect threshold.
  • the target cell is part of the high space density network.
  • the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  • Further aspects include a base station or a wireless device having a processor configured with processor-executable instructions to perform one or more operations of any of the methods summarized above. Further aspects include a base station or a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a base station or a wireless device to perform operations of any of the methods summarized above.
  • FIGS. 1A and 1B are system block diagrams illustrating an example communications system suitable for implementing any of the various embodiments.
  • FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
  • FIG. 4A is a component block diagram illustrating components and processing modules of a base station suitable for use with various embodiments.
  • FIG. 4B is a component block diagram illustrating components and processing modules of a wireless device suitable for use with various embodiments.
  • FIGS. 5A and 5B are process flow diagrams illustrating methods performed by a processor of a base station for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments.
  • FIG. 6 is a process flow diagram illustrating a method performed by a processor of a wireless device for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments.
  • FIG. 7 is a component block diagram of a base station computing device suitable for use with various embodiments.
  • FIG. 9 is a component block diagram of an IoT device suitable for use in accordance with various embodiments.
  • a network may signal to a wireless device to camp on/RACH a target cell different from the cell to which the wireless device is connected.
  • the network may signal to the connected wireless device during a radio resource control (RRC) connected state of the wireless device, and the signal may indicate to the connected wireless device to camp on/RACH the target cell during an RRC idle or inactive state of the wireless device.
  • RRC radio resource control
  • the network may signal to the connected wireless device in response to experiencing RACH congestion.
  • the wireless device may attempt to camp on/RACH the target cell during an RRC idle or inactive state of the wireless device.
  • mMTC massive machine type communication
  • wireless device is used herein to refer to any one or all of wireless router devices, wireless appliances, cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart rings and smart bracelets) , entertainment devices (for example, wireless gaming controllers, music and video players, satellite radios, etc.
  • wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
  • IoT Internet of Things
  • SOC system on chip
  • a single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions.
  • a single SOC also may include any number of general purpose or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (such as ROM, RAM, Flash, etc. ) , and resources (such as timers, voltage regulators, oscillators, etc. ) .
  • SOCs also may include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
  • SIP system in a package
  • a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration.
  • the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate.
  • MCMs multi-chip modules
  • a SIP also may include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
  • the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device and/or subscription on a wireless device.
  • the techniques described herein may be used for various wireless communication networks, such as Code Division Multiple Access (CDMA) , time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks.
  • CDMA Code Division Multiple Access
  • TDMA time division multiple access
  • FDMA frequency division multiple access
  • OFDMA orthogonal FDMA
  • SC-FDMA single carrier FDMA
  • any number of wireless networks may be deployed in a given geographic area.
  • Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies.
  • a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc.
  • UTRA Universal Terrestrial Radio Access
  • CDMA2000 including IS-2000, IS-95 and/or IS-856 standards
  • a TDMA network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) .
  • EDGE GSM Enhanced Data rates for GSM Evolution
  • an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash- etc.
  • E-UTRA Evolved UTRA
  • Current Fifth Generation (5G) New Radio (NR) wireless device implemented cell selection/reselection methods and policies search different bands and uses cell signal quality, physical layer reference signal receive power (L1-RSRP) , based criterion to find suitable cells.
  • High space density networks having high space density of base stations and/or wireless devices, can cause RACH congesting on some cells, such as cells with better signal quality.
  • a high percentage of the high space density wireless devices can attempt to connect to the same cell based on the same criterion.
  • a network having such a cell can only schedule or handover wireless devices to other cells during an RRC connected state of the wireless devices.
  • wireless devices will follow current 5G NR wireless device implemented cell selection/reselection methods and policies.
  • high space density wireless device RACH congesting cannot be avoided. Therefore, cell signal quality is a problematic cell selection criterion.
  • Embodiments described herein address the foregoing problems by implementing network load balancing using dynamic scheduling of wireless devices in RRC idle or inactive states to different cells.
  • the dynamic scheduling of wireless devices may be based on a current network radio access network (RAN) loading, wireless device space distributions, and/or other factors.
  • RAN network radio access network
  • Such dynamic scheduling of wireless devices may be particularly useful in high space density networks implementing mMTC in which RACH congestion on a cell may otherwise frequently occur due to the number of wireless devices attempting to connect to the cell.
  • the dynamic scheduling of wireless devices may be referred to herein as cell selection scheduling for a high space density network.
  • a network may be configured to implement cell selection scheduling in high space density networks.
  • the network implementing cell selection scheduling for a high space density network may be any number and combination of component of a core network and/or the high space density network.
  • the network may send a non-access stratum (NAS) message configured to indicate to a wireless device to camp on/RACH to target cell that is different from a cell to which the wireless device is connected.
  • the NAS message may be referred to herein as a cell selection message.
  • the network may send the cell selection message to the wireless device while the wireless device is in an RRC connected state with the cell.
  • the cell selection message may indicate to that the wireless device should camp on/RACH the target cell during an RRC idle or inactive state of the wireless device with the cell.
  • the cell selection message may contain target cell related information.
  • the cell selection message may contain a target cell identifier (ID) for the target cell.
  • ID target cell identifier
  • the network may send the cell selection message in response to determining that the cell to which the wireless device is connected is experiencing RACH congestion.
  • the network may determine the cell is experiencing RACH congestion based on any number and combination of criterion, such as RAN loading or number of connected wireless devices, transmission speed, transmission latency, dropped packets, etc.
  • the network may send the cell selection message in response to selecting the wireless device from among other wireless devices connected to the cell.
  • the network may select the wireless device to which to send the cell selection message based on any number and combination of criterion, such as wireless device space distribution, distance and/or direction of a wireless device and/or a target cell, signal quality, transmission speed, transmission latency, dropped packets, etc.
  • the network may send the cell selection message in response to selecting a target cell for the wireless device to connect to.
  • the network may select the target cell based on any number and combination of criterion, such as wireless device space distribution, distance and/or direction of a wireless device and/or a target cell, RAN loading or number of connected wireless devices, signal quality, transmission speed, transmission latency, dropped packets, etc.
  • the wireless device may receive the cell selection message during an RRC connected state with a cell. Upon transitioning to an RRC idle or inactive state, the wireless device may attempt to camp on/RACH the target cell specified by the cell selection message. In some embodiments, the wireless device may camp on/RACH the target cell in response to the target cell meeting a criterion, such as signal quality, L1-RSRP, based criterion to find suitable cells. In some embodiments, the wireless device may fallback to current 5G NR wireless device implemented cell selection/reselection methods and policies in response to the target cell failing to meet the criterion.
  • a criterion such as signal quality, L1-RSRP
  • FIGS. 1A and 1B are system block diagrams illustrating an example communications system 100, 150.
  • the communications systems 100, 150 may be a 5G New Radio (NR) network, or any other suitable network such as a Long Term Evolution (LTE) network. While FIGS. 1A and 1B illustrate 5G networks, later generation networks may include the same or similar elements. Therefore, the reference to a 5G network and 5G network elements in the following descriptions is for illustrative purposes and is not intended to be limiting.
  • NR 5G New Radio
  • LTE Long Term Evolution
  • the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as wireless devices 120a-120e) .
  • the communications system 100 also may include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities.
  • a base station is an entity that communicates with wireless devices, and also may be referred to as a Node B, an LTE Evolved nodeB (eNodeB or eNB) , an access point (AP) , a Radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNodeB or gNB) , or the like.
  • Each base station may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used.
  • the core network 140 may be any type core network, such as an LTE core network (e.g., an EPC network) , 5G core network, etc.
  • a base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof.
  • a macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service subscription.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription.
  • a femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) .
  • a base station for a macro cell may be referred to as a macro BS.
  • a base station for a pico cell may be referred to as a pico BS.
  • a base station for a femto cell may be referred to as a femto BS or a home BS.
  • a base station 110a may be a macro BS for a macro cell 102a
  • a base station 110b may be a pico BS for a pico cell 102b
  • a base station 110c may be a femto BS for a femto cell 102c.
  • a base station 110a-110d may support one or multiple (for example, three) cells.
  • eNB base station
  • NR BS NR BS
  • gNB gNode B
  • AP AP
  • node B node B
  • 5G NB 5G NB
  • cell may be used interchangeably herein.
  • a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station.
  • the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
  • the base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126.
  • the wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
  • the communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
  • a network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations.
  • the network controller 130 may communicate with the base stations via a backhaul.
  • the base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
  • the wireless devices 120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.
  • a wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, user equipment (UE) , etc.
  • a macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126.
  • the wireless devices 120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
  • Certain wireless networks utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink.
  • OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc.
  • K orthogonal subcarriers
  • Each subcarrier may be modulated with data.
  • modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM.
  • the spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth.
  • the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) . Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively.
  • the system bandwidth also may be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
  • Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched.
  • Each subframe may include DL/UL data as well as DL/UL control data.
  • Beamforming may be supported and beam direction may be dynamically configured.
  • Multiple Input Multiple Output (MIMO) transmissions with precoding also may be supported.
  • MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported.
  • NR may support a different air interface, other than an OFDM-based air interface.
  • Some wireless devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) wireless devices.
  • MTC and eMTC wireless devices include, for example, robots, drones, remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity.
  • a wireless computing platform may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link.
  • Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices.
  • the wireless device 120a-120e may be included inside a housing that houses components of the wireless device 120a-120e, such as processor components, memory components, similar components, or a combination thereof.
  • any number of communications systems and any number of wireless networks may be deployed in a given geographic area.
  • Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies.
  • RAT also may be referred to as a radio technology, an air interface, etc.
  • a frequency also may be referred to as a carrier, a frequency channel, etc.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs.
  • 4G/LTE and/or 5G/NR RAT networks may be deployed.
  • two or more wireless devices may communicate directly using one or more sidelink channels (for example, without using a base station 110a-d as an intermediary to communicate with one another) .
  • the wireless devices 120a-e may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof.
  • V2X vehicle-to-everything
  • the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a-110d.
  • a communications system 150 may include any number and combination of the components of communications system 100 described herein with reference to FIG. 1A.
  • the communication system 150 may particularly be an example of a high space density network implemented in a manner in which any number and combination of cells 152a, 152b, 152c (e.g., cell 102a, 102b, 102c) may have overlapping range.
  • Any number and combination of wireless devices 156a, 156b e.g., wireless devices 120a, 120b, 120c
  • any number and combination of wireless devices 156a, 156b may attempt to connect to any base station 154a, 154b, 154c (e.g., base station110a, 110b, BS 110c, 110d) of an associated cell 152a, 152b, 152c in which the wireless devices 156a, 156b are located.
  • the communication system 150 may be a high space density network based on a number of wireless devices 156a, 156b and/or base station 154a, 154b, 154c implemented within a relatively small area.
  • a relatively small area may be a building, a facility, a campus, etc.
  • the number of wireless devices 156a, 156b may be at least a number of wireless devices 156a, 156b within the relatively small area that may cause RACH congestion at a base station 154a, 154b, 154c when the wireless devices 156a, 156b attempt to connect to the base station 154a, 154b, 154c.
  • a number of wireless devices 156a, 156b maybe more than one thousand, more than ten thousand, more than one hundred thousand, more than a million, etc.
  • the communications system 150 may be a high space density network configured for mMTC, in which large numbers of wireless devices 156a, 156b may attempt to connect to one of various base stations 154a, 154b, 154c.
  • the communications system 150 configured for mMTC may be implemented in a relatively small area in which a high number of wireless devices 156a, 156b per area may attempt to connect to a base station 154a, 154b, 154c.
  • the communications system 150 configured for mMTC may be implemented for an industrial, commercial, educational, research, etc. building, facility, campus, etc.
  • the communications system 150 may implement cell selection scheduling for a high space density network to reduce RACH congestion as described further herein.
  • the high space density network including any combination of a base station 154a, 154b, 154c and/or a network controller (e.g., network controller 130) of the communications system 150, may implement cell selection scheduling for the high space density network to reduce RACH congestion.
  • a core network e.g., core network 140
  • the communications system 150 may send a wireless device 156a, 156b in an RRC connected state with a cells 152a, 152b, 152c a cell selection message configured to indicate to the wireless device 156a, 156b to camp on/RACH to a target cells 152a, 152b, 152c different from the cell 152a, 152b, 152c to which the wireless device 156a, 156b is connected during an RRC idle or inactive state with the cell 152a, 152b, 152c.
  • the wireless device 156a, 156b may attempt to camp on/RACH the target cell 152a, 152b, 152c during an RRC idle or inactive state in response to receiving the cell selection message from the communications system 150.
  • FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments.
  • Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
  • SOC system-on-chip
  • SIP system in a package
  • the first or second SOCs 202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208.
  • resources external to the SOC such as clock 206, voltage regulator 208 may be shared by two or more of the internal SOC processors/cores.
  • implementations may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
  • the software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304.
  • the NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (such as SIM (s) 204) and its core network 140.
  • the AS 304 may include functions and protocols that support communication between a SIM (s) (such as SIM (s) 204) and entities of supported access networks (such as a base station) .
  • the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
  • Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission or reception over the air interface via a wireless transceiver (e.g., 266) .
  • PHY physical layer
  • Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc.
  • the physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3.
  • RRC radio resource control
  • the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3.
  • the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
  • the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression.
  • the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
  • MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations.
  • the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
  • the software architecture 300 may provide functions to transmit data through physical media
  • the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320.
  • application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
  • the base station 402 and the wireless device 404 may include one or more processors 428, 432 coupled to electronic storage 426, 430 and a wireless transceiver (e.g., 266) .
  • the wireless transceiver 266 may be configured to receive messages sent in transmissions and pass such message to the processor (s) 428, 432 for processing.
  • the processor 428, 432 may be configured to send messages for transmission to the wireless transceiver 266 for transmission.
  • Machine-readable instructions 406 may include one or more instruction modules.
  • the instruction modules may include computer program modules.
  • the instruction modules may include one or more of a RACH congestion module 408, a target cell selection module 410, a wireless device selection module 412, a cell selection message module 414, a transmit/receive (TX/RX) module 416, or other instruction modules.
  • the RACH congestion module 408 may be configured to determine whether a cell (e.g., cell 102a-102c, 152a-152c) is experiencing RACH congestion.
  • the RACH congestion module 408 may determine whether the cell subject to the determination is experiencing RACH congestion based on any number and combination of criterion.
  • criterion may include RAN loading or a number of wireless devices 404 connect to the cell subject to the determination, transmission speed of the cell subject to the determination, transmission latency of the cell subject to the determination, dropped packets of the cell subject to the determination, etc.
  • the RACH congestion module 408 may measure the criterion for the cell subject to the determination.
  • the RACH congestion module 408 may receive the criterion for the cell subject to the determination.
  • the base station 402 making the determination may be the base station 402 associated with the cell subject to the determination.
  • the base station 402 making the determination may be part of a high space density network (e.g., communication system 150) and may be communicatively connected to another base station 402 associated with the cell subject to the determination that may also be a part of the high space density network.
  • the base station 402 making the determination may be part of a core network (e.g., core network 140) and may be communicatively connected to another base station 402 associated with the cell subject to the determination that may be part of a high space density network.
  • the target cell selection module 410 may be configured to determine a target cell (e.g., cell 102a-102c, 152a-152c) to instruct a wireless device 404 to connect to during an RRC idle or inactive state in response to determining that a cell is experiencing RACH congestion.
  • the target cell may be a different cell associated with a different base station 402 from the cell determined to be experiencing RACH congestion.
  • the target cell selection module 410 may determine the target cell based on a preconfigured target cell selection.
  • the target cell and the wireless device 404 may be associated in a data structure, such as a table, list, etc.
  • the target cell selection module 410 may determine the target cell based on a pattern algorithm.
  • the pattern algorithm may be a pseudo random pattern algorithm, a linear pattern algorithm, a nonlinear pattern algorithm, etc.
  • the target cell selection module 410 may determine the target cell based on any number and combination of criterion.
  • criterion may include wireless signal quality of the target cell, such as measured target cell receive (RX) level value (RSRP) , measured target cell quality value (RSRQ) , minimum required RX level in the target cell (dBm) , and/or minimum required quality level in the target cell (dB) , an offset applied to the target cell, an offset applied to the minimum required RX level in the target cell, an offset applied to the minimum required quality level in the target cell, maximum TX power levels of the wireless device 404 for using the target cell, a power compensation factor for the maximum TX power levels of the wireless device 404 for using the target cell, a maximum RF output power of the wireless device 404 (dBm) according to a wireless device power class, wireless device space distribution, distance and/or direction of
  • RX
  • the wireless device selection module 412 may measure the criterion for the wireless device 404 and/or the target cell. In some embodiments, the wireless device selection module 412 may receive the criterion for the wireless device 404 and/or the target cell.
  • the cell selection message module 414 may be configured to generate and to transmit (e.g., via the wireless transceiver 266) the cell selection message to the wireless device 404.
  • the cell selection message may be a NAS message having information of the target cell and configured to indicate to the wireless device 404 to camp on/RACH to the target cell during an RRC idle or inactive state.
  • Such information of the target cell may include a target cell ID and/or base station security algorithm identifiers for the selected security algorithms.
  • such information may include a set of dedicated RACH resources, an association between RACH resources and synchronization signal block (s) (SSB (s) ) , an association between RACH resources common RACH resources, system information of the target cell, etc.
  • SSB synchronization signal block
  • the cell selection message module 414 may be configured to generate and to transmit the cell selection message during an RRC connected state of the wireless device 404 with the cell subject to the determination by the RACH congestion module 408. In some embodiments, the selection message module 414 may be configured to determine the RRC state of the wireless device 404 with the cell. In some embodiments, the selection message module 414 may be configured to receive the RRC state of the wireless device 404 with the cell.
  • the transmit/receive (TX/RX) module 416 may be configured to control the transmission and reception of wireless communications with the base station 402, e.g., via the wireless transceiver 266.
  • the TX/RX module 416 may control transmission of the cell selection message to the wireless device 404 by the cell selection message module 414.
  • the TX/RX module 416 may control transmission and/or reception of the various criteria used by the RACH congestion module 408, the target cell selection module 410, and/or the wireless device selection module 412.
  • the processor (s) 432 may be configured by machine-readable instructions 434.
  • Machine-readable instructions 406 may include one or more instruction modules.
  • the instruction modules may include computer program modules.
  • the instruction modules may include one or more of a cell selection message module 436, an RRC state module 438, a camp/RACH criterion module 440, a cell connection module 442, a TX/RX module 444, or other instruction modules.
  • the cell selection message module 436 may be configured to interpret a received cell selection message.
  • the cell selection message module 436 may interpret that the wireless device 404 is instructed to connect to a target cell (e.g., cell 102a-102c, 152a-152c) during an RRC idle or inactive state of the wireless device 404 with a currently RRC connected cell.
  • the cell selection message module 436 may interpret information for connecting to the target cell. Such information may include the information included in the cell selection message by the selection message module 414.
  • the RRC state module 438 may be configured to determine an RRC state of the wireless device 404 with a cell (e.g., cell 102a-102c, 152a-152c) .
  • the RRC state module 438 may be configured to determine whether the RRC state of the wireless device 404 with the cell is an RRC idle or inactive state (i.e., determine whether the wireless device 404 is in an RRC idle or inactive state) .
  • the RRC state module 438 may determine whether the RRC state of the wireless device 404 with the cell is an RRC idle or inactive state by interpreting a stored value, such as an RRC state register value configured to indicate to the wireless device 404 a current RRC state with a cell.
  • the RRC state module 438 may determine whether the RRC state of the wireless device 404 with the cell is an RRC idle or inactive state by interpreting types of signals transmitted and/or received between the wireless device 404 and the cell.
  • the camp/RACH criterion module 440 may be configured to determine whether the wireless device 404 can camp on/RACH a cell.
  • the camp/RACH criterion module 440 may be configured to determine whether the wireless device 404 can camp on/RACH the target cell interpreted by the cell selection message module 436 from the received cell selection message module.
  • the camp/RACH criterion module 440 may be configured to determine whether the wireless device 404 can camp on/RACH any cell in response to not having a target cell specified and/or determining that the wireless device cannot camp on/RACH the target cell.
  • the camp/RACH criterion module 440 may determine whether the wireless device 404 can camp on/RACH the target cell based on any number and combination of criterion.
  • Such criterion may include signal quality of the target cell.
  • the criterion for determining whether the wireless device 404 can camp on/RACH the target cell may be the same as the criterion for determining whether the wireless device 404 can camp on/RACH another cell.
  • the criterion may be the same in type of criterion and/or measure of the criterion.
  • the criterion for determining whether the wireless device 404 can camp on/RACH the target cell may be different as the criterion for determining whether the wireless device 404 can camp on/RACH another cell.
  • the criterion may be different in type of criterion and/or measure of the criterion.
  • the criterion for the determining whether the wireless device 404 can camp on/RACH any cell may be based on signal quality of the cell.
  • the criterion for the determining whether the wireless device 404 can camp on/RACH the target cell may be a lower measure of signal quality than the criterion for the determining whether the wireless device 404 can camp on/RACH another cell.
  • the camp/RACH criterion module 440 may measure the criterion for the target cell.
  • the camp/RACH criterion module 440 may receive the criterion for the target cell.
  • the cell connection module 442 may be configured to implement procedures for connecting to a cell.
  • the cell connection module 442 may implement procedures for connecting to the target cell in response to the camp/RACH criterion module 440 determining that the wireless device 404 can connect to the target cell.
  • the cell connection module 442 may implement procedures for connecting to another cell in response to not having a target cell specified.
  • the cell connection module 442 may implement procedures for connecting to another cell in response to the camp/RACH criterion module 440 determining that the wireless device 404 cannot camp on/RACH the target cell and/or determining that the wireless device can camp on/RACH another cell.
  • the base station 402 and the wireless device 404 may be operatively linked via one or more electronic communication links (e.g., wireless communication link 122, 124, 126) . It will be appreciated that this is not intended to be limiting, and that the scope of this disclosure includes embodiments in which the base station 402 and the wireless device 404 may be operatively linked via some other communication medium.
  • the electronic storage 426, 430 may include non-transitory storage media that electronically stores information.
  • the electronic storage media of electronic storage 426, 430 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with the base station 402 and the wireless device 404 and/or removable storage that is removably connectable to the base station 402 and the wireless device 404 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .
  • Electronic storage 426, 430 may include one or more of optically readable storage media (e.g., optical disks, etc.
  • Electronic storage 426, 430 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .
  • Electronic storage 426, 430 may store software algorithms, information determined by processor (s) 428, 432, information received from the base station 402 and the wireless device 404, or other information that enables the base station 402 and the wireless device 404 to function as described herein.
  • Processor (s) 428, 432 may be configured to provide information processing capabilities in the base station 402 and the wireless device 404.
  • the processor (s) 428, 432 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information.
  • the processor (s) 428, 432 are illustrated as single entities, this is for illustrative purposes only.
  • the processor (s) 428, 432 may include a plurality of processing units and/or processor cores. The processing units may be physically located within the same device, or processor (s) 428, 432 may represent processing functionality of a plurality of devices operating in coordination.
  • the processor (s) 428, 432 may be configured to execute modules 408–414 and modules 436–446 and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor (s) 428, 432.
  • the term “module” may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
  • modules 408–414 and modules 436–446 may provide more or less functionality than is described.
  • one or more of the modules 408–414 and modules 436–446 may be eliminated, and some or all of its functionality may be provided by other modules 408–414 and modules 436–446.
  • the processor (s) 428, 432 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–414 and modules 436–446.
  • FIGs. 5A and 5B are process flow diagrams illustrating methods 500a, 500b performed by a processor of a base station device for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments.
  • the operations of the methods 500a, 500b may be performed by a processor (e.g., processor 210, 212, 214, 216, 218, 252, 260, 428) of a base station device (e.g., base station 110a-110d, 154a-154c, 200, 350, 402) .
  • the processor may determine whether a cell (e.g., cell 102a-102c, 152a-152c) is experiencing RACH congestion.
  • the processor may determine whether a cell of a high space density network (e.g., communication system 150) subject to the determination is experiencing RACH congestion based on any number and combination of criterion.
  • criterion may include RAN loading or a number of wireless devices (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) connected to the cell subject to the determination, transmission speed of the cell subject to the determination, transmission latency of the cell subject to the determination, dropped packets of the cell subject to the determination, etc.
  • the processor may measure the criterion for the cell subject to the determination. In some embodiments, the processor may receive the criterion for the cell subject to the determination. In some embodiments, the processor may measure and/or receive the criterion via a wireless transceiver (e.g., wireless transceiver 266) .
  • the processor may compare a measurement of the criterion to a RACH congestion threshold to determine whether the cell is experiencing RACH congestion. For example, the measurement of the criterion exceeding the RACH congestion threshold may indicate to the processor that the cell is experiencing RACH congestion.
  • the processor executing a RACH congestion module (e.g., RACH congestion module 408) may determine whether the cell is experiencing RACH congestion in determination block 502.
  • the processor may select a wireless device to which to send a cell selection message in block 504.
  • the cell selection message may be configured to indicate to the wireless device to camp on/RACH to a target cell (e.g., cell 102a-102c, 152a-152c) during an RRC idle or inactive state with the cell determined to be experiencing RACH congestion.
  • the target cell may be a different cell of the high space density network associated with a different base station from the cell determined to be experiencing RACH congestion.
  • the wireless device to which to send a cell selection message may be a wireless device in the high space density network determined from a plurality of wireless devices in the high space density network that are connected to the cell.
  • the processor may select the wireless device to which to send the cell selection message based on any number and combination of criterion.
  • criterion may include wireless device space distribution, distance and/or direction of the wireless device and/or the target cell, signal quality of the wireless device, transmission speed of the wireless device, transmission latency of the wireless device, dropped packets of the wireless device, etc.
  • the processor may measure the criterion for the wireless device and/or the target cell.
  • the wireless device processor may receive the criterion for the wireless device and/or the target cell.
  • the processor may measure and/or receive the criterion via the wireless transceiver.
  • the processor may compare a measurement of the criterion to a wireless device selection threshold to determine whether to send the wireless device a cell selection message. For example, the measurement of the criterion exceeding the wireless device selection threshold may indicate to the processor to send the wireless device a cell selection message.
  • the processor executing a wireless device selection module e.g., wireless device selection module 412 may select the wireless device to which to send a cell selection message in block 504.
  • the processor may determine a target cell to instruct the wireless device to connect to during an RRC idle or inactive state.
  • the target cell may be a cell in the high space density network determined from a plurality of cells in the high space density network.
  • the processor may determine the target cell based on a preconfigured target cell selection.
  • the target cell and the wireless device may be associated in a data structure, such as a table, list, etc.
  • the processor may determine the target cell based on a pattern algorithm.
  • the pattern algorithm may be a pseudo random pattern algorithm, a linear pattern algorithm, a nonlinear pattern algorithm, etc.
  • the processor may determine the target cell based on any number and combination of criterion.
  • Such criterion may include wireless signal quality of the target cell, such as measured target cell RX level value (RSRP) , measured target cell quality value (RSRQ) , minimum required RX level in the target cell (dBm) , and/or minimum required quality level in the target cell (dB) , an offset applied to the target cell, an offset applied to the minimum required RX level in the target cell, an offset applied to the minimum required quality level in the target cell, maximum TX power levels of the wireless device for using the target cell, a power compensation factor for the maximum TX power levels of the wireless device for using the target cell, a maximum RF output power of the wireless device (dBm) according to a wireless device power class, device space distribution, distance and/or direction of the wireless device and/or the target cell, RAN loading or a number of wireless devices connected to the target cell, transmission speed of the target cell, transmission latency of the target cell, dropped packets of the target cell, etc.
  • RSRP measured target cell RX level value
  • RSRQ measured target
  • the processor may measure the criterion for the target cell and/or the wireless device. In some embodiments, the processor may receive the criterion for the target cell and/or the wireless device. In some embodiments, the processor may measure and/or receive the criterion via the wireless transceiver.
  • the processor may compare a measurement of the criterion to a cell selection threshold to determine a cell as the target cell to instruct the wireless device to connect to during an RRC idle or inactive state. For example, the measurement of the criterion exceeding the cell selection threshold may indicate to the processor that the cell is a suitable target cell.
  • the processor executing a target cell selection module e.g., target cell selection module 410) may determine the target cell to instruct the wireless device to connect to during an RRC idle or inactive state in block 506.
  • the criterion may include measurements of various inputs to a cell selection RX level value (dB) and a cell selection quality value (dB) .
  • the cell selection threshold may include threshold values for the cell selection RX level value and the cell selection quality value.
  • the cell selection RX level value (Srxlev) may be a function of a measured target cell RX level value (Qrxlevmeas) , a minimum required RX level in the target cell (Qrxlevmin) , an offset applied to the minimum required RX level in the target cell (Qrxlevminoffset) , a power compensation factor for the maximum TX power levels of the wireless device for using the target cell (Pcompensation) , and an offset applied to the target cell (Qoffsettemp) :
  • the cell selection quality value may be a function of a measured target cell quality value (Qqualmeas) , a minimum required quality level in the target cell (Qqualmin) , an offset applied to the minimum required quality level in the target cell (Qqualminoffset) , and an offset applied to the target cell (Qoffsettemp) :
  • the processor may generate a cell selection message.
  • the cell selection message may be a NAS message having information of the target cell and configured to indicate to the wireless device to camp on/RACH to the target cell during an RRC idle or inactive state.
  • Such information of the cell device may include a target cell ID and/or base station security algorithm identifiers for the selected security algorithms.
  • such information may include a set of dedicated RACH resources, an association between RACH resources and SSB (s) , an association between RACH resources common RACH resources, system information of the target cell, etc.
  • the processor executing a cell selection message module (e.g., cell selection message module 414) may generate the cell selection message in block 508.
  • the processor may transmit the cell selection message to the wireless device.
  • the processor may transmit the cell selection message during an RRC connected state of the wireless device with the cell subject to RACH congestion as determined in block 502.
  • the processor may be configured to determine the RRC state of the wireless device with the cell.
  • the processor may be configured to receive the RRC state of the wireless device with the cell.
  • the processor may determine and/or receive the RRC state of the wireless device with the cell via the wireless transceiver.
  • the processor executing the cell selection message module and the wireless transceiver may transmit the cell selection message in block 510.
  • the base station processor may identify a target cell to which selected wireless devices will be directed to connect, and then selected wireless devices that will be sent the cell selection message.
  • the processor implementing the method 500a, 500b may be of a network controller (e.g., network controller 130) that may be communicatively connected to a base station associated with the cell subject to the determination and that may be part of a high space density network.
  • a network controller e.g., network controller 130
  • FIG. 6 is a process flow diagram illustrating a method 600 performed by a processor of a wireless device for enhancing coverage for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments.
  • the operations of the method 600 may be performed by a processor (e.g., processor 210, 212, 214, 216, 218, 252, 260, 432) of a wireless device (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) .
  • a processor e.g., processor 210, 212, 214, 216, 218, 252, 260, 432
  • a wireless device e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404 .
  • the processor may receive a cell selection message.
  • the cell selection message may be a NAS message having information of a target cell (e.g., cells 102a-102c, 152a-152c) and configured to indicate to the wireless device to camp on/RACH to the target cell during an RRC idle or inactive state.
  • the processor may receive the cell selection message from a base station (e.g., base station 110a-110d, 154a-154c, 200, 350, 402) during an RRC connected state of the wireless device with a cell (e.g., cells 102a-102c, 152a-152c) associated with the base station.
  • the processor executing a cell selection message module (e.g., cell selection message module 436) and a wireless transceiver (e.g., wireless transceiver 266) may receive the cell selection message in block 602.
  • the processor may interpret the cell selection message.
  • the processor may interpret that the wireless device is instructed to connect to the target cell during an RRC idle or inactive state of the wireless device with the currently RRC connected cell.
  • the processor may interpret information for connecting to the target cell.
  • Such information may include a target cell ID and/or base station security algorithm identifiers for the selected security algorithms.
  • such information may include a set of dedicated RACH resources, an association between RACH resources and SSB (s) , an association between RACH resources common RACH resources, system information of the target cell, etc.
  • the processor executing a cell selection message module may interpret the cell selection message in block 604.
  • the processor may determine whether the wireless device is in an RRC idle or inactive state.
  • the processor may be configured to determine whether the RRC state of the wireless device with the cell is an RRC idle or inactive state. In some embodiments, the processor may determine whether the RRC state of the wireless device with the cell is an RRC idle or inactive state by interpreting a stored value, such as an RRC state register value configured to indicate to the wireless device a current RRC state with a cell. In some embodiments, the processor may determine whether the RRC state of the wireless device with the cell is an RRC idle or inactive state by interpreting types of signals transmitted and/or received between the wireless device and the cell. In some embodiments, the processor executing an RRC state module (e.g., RRC state module 438) may determine whether the wireless device is in an RRC idle or inactive state in block 606.
  • an RRC state module e.g., RRC state module 438, may determine whether the wireless device is in an RRC idle or inactive state in block 606.
  • the processor may determine whether the wireless device can camp on/RACH the target cell in determination block 608.
  • the processor may determine whether the wireless device can camp on/RACH the target cell based on any number and combination of criterion.
  • Such criterion may include signal quality of the target cell.
  • the criterion for determining whether the wireless device can camp on/RACH the target cell may be the same as the criterion for determining whether the wireless device can camp on/RACH another cell.
  • the criterion may be the same in type of criterion and/or measure of the criterion.
  • the criterion for determining whether the wireless device can camp on/RACH the target cell may be different from the criterion for determining whether the wireless device can camp on/RACH another cell.
  • the criterion may be different in type of criterion and/or measure of the criterion.
  • the criterion for the determining whether the wireless device can camp on/RACH any cell may be based on signal quality of the cell.
  • the criterion for the determining whether the wireless device 404 can camp on/RACH the target cell may be a lower measure of signal quality than the criterion for the determining whether the wireless device can camp on/RACH another cell.
  • the processing device may implement traditional cell selection in block 612.
  • the processor executing a cell connection module and a wireless transceiver may implement traditional cell selection in block 612.
  • FIG. 7 is a component block diagram of a base station computing device suitable for use with various embodiments.
  • Such base station computing devices may include at least the components illustrated in FIG. 7.
  • the base station computing device 700 may typically include a processor 701 coupled to volatile memory 702 and a large capacity nonvolatile memory, such as a disk drive 708.
  • the base station computing device 700 also may include a peripheral memory access device 706 such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive coupled to the processor 701.
  • a peripheral memory access device 706 such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive coupled to the processor 701.
  • FIG. 8 is a component block diagram of a wireless device 800 suitable for use with various embodiments.
  • various embodiments may be implemented on a variety of wireless devices 800 (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) , an example of which is illustrated in FIG. 8 in the form of a smartphone.
  • the wireless device 800 may include a first SOC 202 (for example, a SOC-CPU) coupled to a second SOC 204 (for example, a 5G capable SOC) .
  • the first and second SOCs 202, 204 may be coupled to internal memory 816, a display 812, and to a speaker 814.
  • the wireless device 800 may include an antenna 804 for sending and receiving electromagnetic radiation that may be connected to a wireless transceiver 266 coupled to one or more processors in the first and/or second SOCs 202, 204.
  • Wireless device 800 may include menu selection buttons or rocker switches 820 for receiving user inputs.
  • the wireless device 800 wireless device 800 may include a sound encoding/decoding (CODEC) circuit 810, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound.
  • CODEC sound encoding/decoding
  • One or more of the processors in the first and second SOCs 202, 204, wireless transceiver 266 and CODEC 810 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • an IoT device 900 may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) and a sensor 905.
  • a first SOC 202 e.g., a SOC-CPU
  • a second SOC 204 e.g., a 5G capable SOC
  • the senor may be any number and combination of a temperature sensor, a light sensor, a vibration sensor, a sound sensor, a particulate sensor, a fluid sensor, a gas sensor, a pH sensor, a humidity sensor, an ion sensor, a radiation sensor, a pressure sensor, a flow sensor, a speed sensor, a position sensor, a level sensor, an electrical current sensor, a voltage sensor, an electrical resistance sensor, an impedance sensor, an inductance sensor, a radar sensor, a LiDAR sensor, etc.
  • the first and second SOCs 202, 204 may be coupled to internal memory 906.
  • the IoT device 900 may include or be coupled to an antenna 904 for sending and receiving wireless signals from a cellular telephone transceiver 908 or within the second SOC 204.
  • the antenna 904 and transceiver 908 and/or second SOC 204 may support communications using various RATs, including Cat. -M1, NB-IoT, CIoT, GSM, and/or VoLTE.
  • An IoT device 900 may also include a sound encoding/decoding (CODEC) circuit 910, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to a speaker to generate sound in support of voice or VoLTE calls.
  • CODEC sound encoding/decoding
  • one or more of the processors in the first and second SOCs 202, 204, wireless transceiver 908 and CODEC 910 may include a digital signal processor (DSP) circuit (not shown separately) .
  • DSP digital signal processor
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer.
  • an application running on a wireless device and the wireless device may be referred to as a component.
  • One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, or process related communication methodologies.
  • Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) as well as later generation 3GPP technology, global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
  • the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium.
  • the operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium.
  • Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor.
  • non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer.
  • Disk and disc includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media.
  • the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium and/or computer-readable storage medium, which may be incorporated into a computer program product.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Security & Cryptography (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In embodiments of systems and methods for cell selection scheduling for a network. Some embodiments may include a cell selection message having a target cell ID, wherein the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in an RRC idle or inactive state with a cell, and the target cell is different from the cell. In some embodiments, a base station device may generate the cell selection message, and transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell. In some embodiments, a wireless device may receive the cell selection message and camp on the target cell while the wireless device is in an RRC idle or inactive state with the cell.

Description

New Cell Selection Scheduling Method For mMTC High Space Density UE And Network To Reduce RACH Congestion BACKGROUND
Current Fifth Generation (5G) New Radio (NR) user equipment implemented cell selection/reselection methods and policies are almost the same as those implemented for prior Long Term Evolution (LTE) communications. User equipment searches different bands and uses signal quality, physical layer reference signal receive power (L1-RSRP) , based criterion to find suitable cells. High space density networks, having high space density of base stations and/or user equipment, can cause high random access channel (RACH) congesting on some cells, such as cells with better signal quality. A high percentage of the high space density user equipment can attempt to connect to the same cell based on the same criterion. A network of such a cell can only schedule or handover user equipment to other cells during a radio resource control (RRC) connected state of the user equipment. As such, following current 5G NR user equipment implemented cell selection/reselection methods and policies, high space density user equipment RACH congesting cannot be avoided.
SUMMARY
Various aspects include systems and methods performed by base stations for cell selection scheduling for a network. Some aspects may include generating a cell selection message having a target cell identifier (ID) in which the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and in which the target cell is different from the cell, and transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell.
Some aspects may further include determining whether the cell is experiencing RACH congestion, in which generating the cell selection message may include generating the cell selection message in response to determining that the cell is experiencing RACH congestion.
Some aspects may further include selecting the wireless device from a plurality of wireless devices in the high space density network and connected to the cell.
Some aspects may further include determining the target cell from a plurality of cells in the high space density network.
In some aspects, determining the target cell may include determining whether a radio access network (RAN) loading value of a first cell of the plurality of cells exceeds a cell selection threshold, and selecting the first cell is the target cell in response to the RAN loading value exceeding the cell selection threshold.
In some aspects, determining the target cell may include determining whether a device space distribution value of a first cell of the plurality of cells exceeds a cell selection threshold, and determining the first cell is the target cell in response to the device space distribution value exceeding the cell selection threshold.
In some aspects the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
Various aspects include systems and methods performed by wireless devices for cell selection scheduling for a high space density network to reduce RACH congestion. Some aspects may include receiving a cell selection message having a target cell identifier (ID) in which the cell selection message is configured to indicate to the wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and in which the target  cell is different from the cell, and camping on the target cell while the wireless device is in an RRC idle or inactive state with the cell.
Some aspects may further include determining whether the wireless device is in an RRC idle or inactive state with the cell, in which camping on the target cell may include camping on the target cell in response to determining that the wireless device is in an RRC idle or inactive state with the cell.
Some aspects may further include determining whether the wireless device can camp on the target cell, in which camping on the target cell may include camping on the target cell in response to determining that the wireless device can camp on the target cell. In some aspects, determining whether the wireless device can camp on the target cell may include determining whether a signal quality of the target cell exceeds a target cell connect threshold, and camping on the target cell may include camping on the target cell in response to determining that the signal quality of the target cell exceeds the target cell connect threshold.
In some aspects, the target cell is part of the high space density network.
In some aspects, the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
Further aspects include a base station or a wireless device having a processor configured with processor-executable instructions to perform one or more operations of any of the methods summarized above. Further aspects include a base station or a wireless device having means for performing functions of any of the methods summarized above. Further aspects include a non-transitory processor-readable storage medium having stored thereon processor-executable instructions configured to cause a processor of a base station or a wireless device to perform operations of any of the methods summarized above.
BRIEF DESCRIPTION OF THE DRAWINGS
FIGS. 1A and 1B are system block diagrams illustrating an example communications system suitable for implementing any of the various embodiments.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system suitable for implementing any of the various embodiments.
FIG. 3 is a component block diagram illustrating a software architecture including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments.
FIG. 4A is a component block diagram illustrating components and processing modules of a base station suitable for use with various embodiments.
FIG. 4B is a component block diagram illustrating components and processing modules of a wireless device suitable for use with various embodiments.
FIGS. 5A and 5B are process flow diagrams illustrating methods performed by a processor of a base station for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments.
FIG. 6 is a process flow diagram illustrating a method performed by a processor of a wireless device for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments.
FIG. 7 is a component block diagram of a base station computing device suitable for use with various embodiments.
FIG. 8 is a component block diagram of a wireless device suitable for use with various embodiments.
FIG. 9 is a component block diagram of an IoT device suitable for use in accordance with various embodiments.
DETAILED DESCRIPTION
Various embodiments will be described in detail with reference to the accompanying drawings. Wherever possible, the same reference numbers will be used throughout the drawings to refer to the same or like parts. References made to particular examples and implementations are for illustrative purposes, and are not intended to limit the scope of the claims.
Various embodiments include systems and methods for cell selection scheduling for a high space density network to reduce random access channel (RACH) congestion. In various embodiments, a network may signal to a wireless device to camp on/RACH a target cell different from the cell to which the wireless device is connected. In some embodiments, the network may signal to the connected wireless device during a radio resource control (RRC) connected state of the wireless device, and the signal may indicate to the connected wireless device to camp on/RACH the target cell during an RRC idle or inactive state of the wireless device. In some embodiments, the network may signal to the connected wireless device in response to experiencing RACH congestion. In some embodiments, the wireless device may attempt to camp on/RACH the target cell during an RRC idle or inactive state of the wireless device. Various embodiments may be particularly useful in massive machine type communication (mMTC) networks.
The term “wireless device” is used herein to refer to any one or all of wireless router devices, wireless appliances, cellular telephones, smartphones, portable computing devices, personal or mobile multi-media players, laptop computers, tablet computers, smartbooks, ultrabooks, palmtop computers, wireless electronic mail receivers, multimedia Internet-enabled cellular telephones, medical devices and equipment, biometric sensors/devices, wearable devices including smart watches, smart clothing, smart glasses, smart wrist bands, smart jewelry (for example, smart rings and smart bracelets) , entertainment devices (for example, wireless gaming controllers, music and video players, satellite radios, etc. ) , wireless-network enabled Internet of Things (IoT) devices including smart meters/sensors, industrial  manufacturing equipment, large and small machinery and appliances for home or enterprise use, wireless communication elements within autonomous and semiautonomous vehicles, wireless devices affixed to or incorporated into various mobile platforms, global positioning system devices, and similar electronic devices that include a memory, wireless communication components and a programmable processor.
The term “system on chip” (SOC) is used herein to refer to a single integrated circuit (IC) chip that contains multiple resources or processors integrated on a single substrate. A single SOC may contain circuitry for digital, analog, mixed-signal, and radio-frequency functions. A single SOC also may include any number of general purpose or specialized processors (digital signal processors, modem processors, video processors, etc. ) , memory blocks (such as ROM, RAM, Flash, etc. ) , and resources (such as timers, voltage regulators, oscillators, etc. ) . SOCs also may include software for controlling the integrated resources and processors, as well as for controlling peripheral devices.
The term “system in a package” (SIP) may be used herein to refer to a single module or package that contains multiple resources, computational units, cores or processors on two or more IC chips, substrates, or SOCs. For example, a SIP may include a single substrate on which multiple IC chips or semiconductor dies are stacked in a vertical configuration. Similarly, the SIP may include one or more multi-chip modules (MCMs) on which multiple ICs or semiconductor dies are packaged into a unifying substrate. A SIP also may include multiple independent SOCs coupled together via high speed communication circuitry and packaged in close proximity, such as on a single motherboard or in a single wireless device. The proximity of the SOCs facilitates high speed communications and the sharing of memory and resources.
As used herein, the terms “network, ” “system, ” “wireless network, ” “cellular network, ” and “wireless communication network” may interchangeably refer to a portion or all of a wireless network of a carrier associated with a wireless device  and/or subscription on a wireless device. The techniques described herein may be used for various wireless communication networks, such as Code Division Multiple Access (CDMA) , time division multiple access (TDMA) , FDMA, orthogonal FDMA (OFDMA) , single carrier FDMA (SC-FDMA) and other networks. In general, any number of wireless networks may be deployed in a given geographic area. Each wireless network may support at least one radio access technology, which may operate on one or more frequency or range of frequencies. For example, a CDMA network may implement Universal Terrestrial Radio Access (UTRA) (including Wideband Code Division Multiple Access (WCDMA) standards) , CDMA2000 (including IS-2000, IS-95 and/or IS-856 standards) , etc. In another example, a TDMA network may implement GSM Enhanced Data rates for GSM Evolution (EDGE) . In another example, an OFDMA network may implement Evolved UTRA (E-UTRA) (including LTE standards) , IEEE 802.11 (WiFi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-
Figure PCTCN2020118708-appb-000001
etc. Reference may be made to wireless networks that use LTE standards, and therefore the terms “Evolved Universal Terrestrial Radio Access, ” “E-UTRAN” and “eNodeB” may also be used interchangeably herein to refer to a wireless network. However, such references are provided merely as examples, and are not intended to exclude wireless networks that use other communication standards. For example, while various Third Generation (3G) systems, Fourth Generation (4G) systems, and Fifth Generation (5G) systems are discussed herein, those systems are referenced merely as examples and future generation systems (e.g., sixth generation (6G) or higher systems) may be substituted in the various examples.
Current Fifth Generation (5G) New Radio (NR) wireless device implemented cell selection/reselection methods and policies search different bands and uses cell signal quality, physical layer reference signal receive power (L1-RSRP) , based criterion to find suitable cells. High space density networks, having high space density of base stations and/or wireless devices, can cause RACH congesting on some cells, such as cells with better signal quality. A high percentage of the high space density wireless devices can attempt to connect to the same cell based on the same  criterion. A network having such a cell can only schedule or handover wireless devices to other cells during an RRC connected state of the wireless devices. During an RRC idle or inactive state, wireless devices will follow current 5G NR wireless device implemented cell selection/reselection methods and policies. As such, following current 5G NR wireless device implemented cell selection/reselection methods and policies, high space density wireless device RACH congesting cannot be avoided. Therefore, cell signal quality is a problematic cell selection criterion.
Embodiments described herein address the foregoing problems by implementing network load balancing using dynamic scheduling of wireless devices in RRC idle or inactive states to different cells. In various embodiments, the dynamic scheduling of wireless devices may be based on a current network radio access network (RAN) loading, wireless device space distributions, and/or other factors. Such dynamic scheduling of wireless devices may be particularly useful in high space density networks implementing mMTC in which RACH congestion on a cell may otherwise frequently occur due to the number of wireless devices attempting to connect to the cell. The dynamic scheduling of wireless devices may be referred to herein as cell selection scheduling for a high space density network.
In some embodiments, a network may be configured to implement cell selection scheduling in high space density networks. The network implementing cell selection scheduling for a high space density network may be any number and combination of component of a core network and/or the high space density network. The network may send a non-access stratum (NAS) message configured to indicate to a wireless device to camp on/RACH to target cell that is different from a cell to which the wireless device is connected. The NAS message may be referred to herein as a cell selection message. The network may send the cell selection message to the wireless device while the wireless device is in an RRC connected state with the cell. The cell selection message may indicate to that the wireless device should camp on/RACH the target cell during an RRC idle or inactive state of the wireless device with the cell. In some embodiments, the cell selection message may contain target  cell related information. For example, the cell selection message may contain a target cell identifier (ID) for the target cell.
In some embodiments, the network may send the cell selection message in response to determining that the cell to which the wireless device is connected is experiencing RACH congestion. The network may determine the cell is experiencing RACH congestion based on any number and combination of criterion, such as RAN loading or number of connected wireless devices, transmission speed, transmission latency, dropped packets, etc. In some embodiments, the network may send the cell selection message in response to selecting the wireless device from among other wireless devices connected to the cell. The network may select the wireless device to which to send the cell selection message based on any number and combination of criterion, such as wireless device space distribution, distance and/or direction of a wireless device and/or a target cell, signal quality, transmission speed, transmission latency, dropped packets, etc. In some embodiments, the network may send the cell selection message in response to selecting a target cell for the wireless device to connect to. The network may select the target cell based on any number and combination of criterion, such as wireless device space distribution, distance and/or direction of a wireless device and/or a target cell, RAN loading or number of connected wireless devices, signal quality, transmission speed, transmission latency, dropped packets, etc.
In some embodiments, the wireless device may receive the cell selection message during an RRC connected state with a cell. Upon transitioning to an RRC idle or inactive state, the wireless device may attempt to camp on/RACH the target cell specified by the cell selection message. In some embodiments, the wireless device may camp on/RACH the target cell in response to the target cell meeting a criterion, such as signal quality, L1-RSRP, based criterion to find suitable cells. In some embodiments, the wireless device may fallback to current 5G NR wireless device implemented cell selection/reselection methods and policies in response to the target cell failing to meet the criterion.
By extension of the relationship between a base station and an associated cell, the terms “base station” and “cell” are used interchangeably herein for the purposes of cell selection scheduling for a high space density network to reduce RACH congestion described herein.
FIGS. 1A and 1B are system block diagrams illustrating an  example communications system  100, 150. The  communications systems  100, 150 may be a 5G New Radio (NR) network, or any other suitable network such as a Long Term Evolution (LTE) network. While FIGS. 1A and 1B illustrate 5G networks, later generation networks may include the same or similar elements. Therefore, the reference to a 5G network and 5G network elements in the following descriptions is for illustrative purposes and is not intended to be limiting.
In FIG. 1A the communications system 100 may include a heterogeneous network architecture that includes a core network 140 and a variety of wireless devices (illustrated as wireless devices 120a-120e) . The communications system 100 also may include a number of base stations (illustrated as the BS 110a, the BS 110b, the BS 110c, and the BS 110d) and other network entities. A base station is an entity that communicates with wireless devices, and also may be referred to as a Node B, an LTE Evolved nodeB (eNodeB or eNB) , an access point (AP) , a Radio head, a transmit receive point (TRP) , a New Radio base station (NR BS) , a 5G NodeB (NB) , a Next Generation NodeB (gNodeB or gNB) , or the like. Each base station may provide communication coverage for a particular geographic area. In 3GPP, the term “cell” can refer to a coverage area of a base station, a base station subsystem serving this coverage area, or a combination thereof, depending on the context in which the term is used. The core network 140 may be any type core network, such as an LTE core network (e.g., an EPC network) , 5G core network, etc.
base station 110a-110d may provide communication coverage for a macro cell, a pico cell, a femto cell, another type of cell, or a combination thereof. A macro cell may cover a relatively large geographic area (for example, several kilometers in radius) and may allow unrestricted access by wireless devices with service  subscription. A pico cell may cover a relatively small geographic area and may allow unrestricted access by wireless devices with service subscription. A femto cell may cover a relatively small geographic area (for example, a home) and may allow restricted access by wireless devices having association with the femto cell (for example, wireless devices in a closed subscriber group (CSG) ) . A base station for a macro cell may be referred to as a macro BS. A base station for a pico cell may be referred to as a pico BS. A base station for a femto cell may be referred to as a femto BS or a home BS. In the example illustrated in FIG. 1A, a base station 110a may be a macro BS for a macro cell 102a, a base station 110b may be a pico BS for a pico cell 102b, and a base station 110c may be a femto BS for a femto cell 102c. A base station 110a-110d may support one or multiple (for example, three) cells. The terms “eNB” , “base station” , “NR BS” , “gNB” , “TRP” , “AP” , “node B” , “5G NB” , and “cell” may be used interchangeably herein.
In some examples, a cell may not be stationary, and the geographic area of the cell may move according to the location of a mobile base station. In some examples, the base stations 110a-110d may be interconnected to one another as well as to one or more other base stations or network nodes (not illustrated) in the communications system 100 through various types of backhaul interfaces, such as a direct physical connection, a virtual network, or a combination thereof using any suitable transport network
The base station 110a-110d may communicate with the core network 140 over a wired or wireless communication link 126. The wireless device 120a-120e may communicate with the base station 110a-110d over a wireless communication link 122.
The wired communication link 126 may use a variety of wired networks (such as Ethernet, TV cable, telephony, fiber optic and other forms of physical network connections) that may use one or more wired communication protocols, such as Ethernet, Point-To-Point protocol, High-Level Data Link Control (HDLC) , Advanced  Data Communication Control Protocol (ADCCP) , and Transmission Control Protocol/Internet Protocol (TCP/IP) .
The communications system 100 also may include relay stations (such as relay BS 110d) . A relay station is an entity that can receive a transmission of data from an upstream station (for example, a base station or a wireless device) and send a transmission of the data to a downstream station (for example, a wireless device or a base station) . A relay station also may be a wireless device that can relay transmissions for other wireless devices. In the example illustrated in FIG. 1A, a relay station 110d may communicate with macro the base station 110a and the wireless device 120d in order to facilitate communication between the base station 110a and the wireless device 120d. A relay station also may be referred to as a relay base station, a relay base station, a relay, etc.
The communications system 100 may be a heterogeneous network that includes base stations of different types, for example, macro base stations, pico base stations, femto base stations, relay base stations, etc. These different types of base stations may have different transmit power levels, different coverage areas, and different impacts on interference in communications system 100. For example, macro base stations may have a high transmit power level (for example, 5 to 40 Watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (for example, 0.1 to 2 Watts) .
network controller 130 may couple to a set of base stations and may provide coordination and control for these base stations. The network controller 130 may communicate with the base stations via a backhaul. The base stations also may communicate with one another, for example, directly or indirectly via a wireless or wireline backhaul.
The  wireless devices  120a, 120b, 120c may be dispersed throughout communications system 100, and each wireless device may be stationary or mobile.  A wireless device also may be referred to as an access terminal, a terminal, a mobile station, a subscriber unit, a station, user equipment (UE) , etc.
macro base station 110a may communicate with the communication network 140 over a wired or wireless communication link 126. The  wireless devices  120a, 120b, 120c may communicate with a base station 110a-110d over a wireless communication link 122.
The  wireless communication links  122 and 124 may include a plurality of carrier signals, frequencies, or frequency bands, each of which may include a plurality of logical channels. The  wireless communication links  122 and 124 may utilize one or more radio access technologies (RATs) . Examples of RATs that may be used in a wireless communication link include 3GPP LTE, 3G, 4G, 5G (such as NR) , GSM, Code Division Multiple Access (CDMA) , Wideband Code Division Multiple Access (WCDMA) , Worldwide Interoperability for Microwave Access (WiMAX) , Time Division Multiple Access (TDMA) , and other mobile telephony communication technologies cellular RATs. Further examples of RATs that may be used in one or more of the various wireless communication links within the communication system 100 include medium range protocols such as Wi-Fi, LTE-U, LTE-Direct, LAA, MuLTEfire, and relatively short range RATs such as ZigBee, Bluetooth, and Bluetooth Low Energy (LE) .
Certain wireless networks (e.g., LTE) utilize orthogonal frequency division multiplexing (OFDM) on the downlink and single-carrier frequency division multiplexing (SC-FDM) on the uplink. OFDM and SC-FDM partition the system bandwidth into multiple (K) orthogonal subcarriers, which are also commonly referred to as tones, bins, etc. Each subcarrier may be modulated with data. In general, modulation symbols are sent in the frequency domain with OFDM and in the time domain with SC-FDM. The spacing between adjacent subcarriers may be fixed, and the total number of subcarriers (K) may be dependent on the system bandwidth. For example, the spacing of the subcarriers may be 15 kHz and the minimum resource allocation (called a “resource block” ) may be 12 subcarriers (or 180 kHz) .  Consequently, the nominal Fast File Transfer (FFT) size may be equal to 128, 256, 512, 1024 or 2048 for system bandwidth of 1.25, 2.5, 5, 10 or 20 megahertz (MHz) , respectively. The system bandwidth also may be partitioned into subbands. For example, a subband may cover 1.08 MHz (i.e., 6 resource blocks) , and there may be 1, 2, 4, 8 or 16 subbands for system bandwidth of 1.25, 2.5, 5, 10 or 20 MHz, respectively.
While descriptions of some implementations may use terminology and examples associated with LTE technologies, some implementations may be applicable to other wireless communications systems, such as a new radio (NR) or 5G network. NR may utilize OFDM with a cyclic prefix (CP) on the uplink (UL) and downlink (DL) and include support for half-duplex operation using time division duplex (TDD) . A single component carrier bandwidth of 100 MHz may be supported. NR resource blocks may span 12 sub-carriers with a sub-carrier bandwidth of 75 kHz over a 0.1 millisecond (ms) duration. Each radio frame may consist of 50 subframes with a length of 10 ms. Consequently, each subframe may have a length of 0.2 ms. Each subframe may indicate a link direction (i.e., DL or UL) for data transmission and the link direction for each subframe may be dynamically switched. Each subframe may include DL/UL data as well as DL/UL control data. Beamforming may be supported and beam direction may be dynamically configured. Multiple Input Multiple Output (MIMO) transmissions with precoding also may be supported. MIMO configurations in the DL may support up to eight transmit antennas with multi-layer DL transmissions up to eight streams and up to two streams per wireless device. Multi-layer transmissions with up to 2 streams per wireless device may be supported.
Aggregation of multiple cells may be supported with up to eight serving cells. Alternatively, NR may support a different air interface, other than an OFDM-based air interface.
Some wireless devices may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) wireless devices. MTC and eMTC wireless devices include, for example, robots, drones,  remote devices, sensors, meters, monitors, location tags, etc., that may communicate with a base station, another device (for example, remote device) , or some other entity. A wireless computing platform may provide, for example, connectivity for or to a network (for example, a wide area network such as Internet or a cellular network) via a wired or wireless communication link. Some wireless devices may be considered Internet-of-Things (IoT) devices or may be implemented as NB-IoT (narrowband internet of things) devices. The wireless device 120a-120e may be included inside a housing that houses components of the wireless device 120a-120e, such as processor components, memory components, similar components, or a combination thereof.
In general, any number of communications systems and any number of wireless networks may be deployed in a given geographic area. Each communications system and wireless network may support a particular radio access technology (RAT) and may operate on one or more frequencies. A RAT also may be referred to as a radio technology, an air interface, etc. A frequency also may be referred to as a carrier, a frequency channel, etc. Each frequency may support a single RAT in a given geographic area in order to avoid interference between communications systems of different RATs. In some cases, 4G/LTE and/or 5G/NR RAT networks may be deployed. For example, a 5G non-standalone (NSA) network may utilize both 4G/LTE RAT in the 4G/LTE RAN side of the 5G NSA network and 5G/NR RAT in the 5G/NR RAN side of the 5G NSA network. The 4G/LTE RAN and the 5G/NR RAN may both connect to one another and a 4G/LTE core network (e.g., an evolved packet core (EPC) network) in a 5G NSA network. Other example network configurations may include a 5G standalone (SA) network in which a 5G/NR RAN connects to a 5G core network.
In some implementations, two or more wireless devices (for example, illustrated as the wireless device 120a and the wireless device 120e) may communicate directly using one or more sidelink channels (for example, without using a base station 110a-d as an intermediary to communicate with one another) . For example, the wireless devices 120a-e may communicate using peer-to-peer (P2P)  communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or similar protocol) , a mesh network, or similar networks, or combinations thereof. In this case, the wireless device 120a-120e may perform scheduling operations, resource selection operations, as well as other operations described elsewhere herein as being performed by the base station 110a-110d.
In FIG. 1B, a communications system 150 may include any number and combination of the components of communications system 100 described herein with reference to FIG. 1A. The communication system 150 may particularly be an example of a high space density network implemented in a manner in which any number and combination of  cells  152a, 152b, 152c (e.g.,  cell  102a, 102b, 102c) may have overlapping range. Any number and combination of  wireless devices  156a, 156b (e.g.,  wireless devices  120a, 120b, 120c) may be located within any number and combination of  cells  152a, 152b, 152c. Further, any number and combination of  wireless devices  156a, 156b may attempt to connect to any  base station  154a, 154b, 154c (e.g., base station110a, 110b,  BS  110c, 110d) of an associated  cell  152a, 152b, 152c in which the  wireless devices  156a, 156b are located. In some embodiments, the communication system 150 may be a high space density network based on a number of  wireless devices  156a, 156b and/or  base station  154a, 154b, 154c implemented within a relatively small area. In some embodiments, a relatively small area may be a building, a facility, a campus, etc. In some embodiments, the number of  wireless devices  156a, 156b may be at least a number of  wireless devices  156a, 156b within the relatively small area that may cause RACH congestion at a  base station  154a, 154b, 154c when the  wireless devices  156a, 156b attempt to connect to the  base station  154a, 154b, 154c. In some embodiments, a number of  wireless devices  156a, 156b maybe more than one thousand, more than ten thousand, more than one hundred thousand, more than a million, etc. In some embodiments, the number of  base stations  154a, 154b, 154c may be a number of  base stations  154a, 154b, 154c within the  relatively small area for which the associated  cells  152a, 152b, 152c may overlap with at least another  cell  152a, 152b, 152c.
In some embodiments, the communications system 150 may be a high space density network configured for mMTC, in which large numbers of  wireless devices  156a, 156b may attempt to connect to one of  various base stations  154a, 154b, 154c. The communications system 150 configured for mMTC may be implemented in a relatively small area in which a high number of  wireless devices  156a, 156b per area may attempt to connect to a  base station  154a, 154b, 154c. For example, the communications system 150 configured for mMTC may be implemented for an industrial, commercial, educational, research, etc. building, facility, campus, etc. in which thousands or  more wireless devices  156a, 156b, such as sensors, may attempt to connect to a  base station  154a, 154b, 154c. The high number of  wireless devices  156a, 156b connecting to the  base station  154a, 154b, 154c may cause RACH congestion at the  base station  154a, 154b, 154c.
The communications system 150 may implement cell selection scheduling for a high space density network to reduce RACH congestion as described further herein. In various embodiments, the high space density network, including any combination of a  base station  154a, 154b, 154c and/or a network controller (e.g., network controller 130) of the communications system 150, may implement cell selection scheduling for the high space density network to reduce RACH congestion. In various embodiments, a core network (e.g., core network 140) , communicatively connected to the communications system 150, may implement cell selection scheduling for the high space density network to reduce RACH congestion. The communications system 150 may send a  wireless device  156a, 156b in an RRC connected state with a  cells  152a, 152b, 152c a cell selection message configured to indicate to the  wireless device  156a, 156b to camp on/RACH to a  target cells  152a, 152b, 152c different from the  cell  152a, 152b, 152c to which the  wireless device  156a, 156b is connected during an RRC idle or inactive state with the  cell  152a, 152b, 152c. In various embodiments, the  wireless device  156a, 156b may attempt to camp on/RACH the  target cell  152a, 152b, 152c  during an RRC idle or inactive state in response to receiving the cell selection message from the communications system 150.
FIG. 2 is a component block diagram illustrating an example computing and wireless modem system 200 suitable for implementing any of the various embodiments. Various embodiments may be implemented on a number of single processor and multiprocessor computer systems, including a system-on-chip (SOC) or system in a package (SIP) .
With reference to FIGS. 1A-2, the illustrated example computing system 200 (which may be a SIP in some embodiments) includes a two  SOCs  202, 204 coupled to a clock 206, a voltage regulator 208, and a wireless transceiver 266 configured to send and receive wireless communications via an antenna (not shown) to/from wireless devices, such as a base station station110a-110d, 156a-156c. In some implementations, the first SOC 202 may operate as central processing unit (CPU) of the wireless device that carries out the instructions of software application programs by performing the arithmetic, logical, control and input/output (I/O) operations specified by the instructions. In some implementations, the second SOC 204 may operate as a specialized processing unit. For example, the second SOC 204 may operate as a specialized 5G processing unit responsible for managing high volume, high speed (such as 5 Gbps, etc. ) , or very high frequency short wave length (such as 28 GHz mmWave spectrum, etc. ) communications.
The first SOC 202 may include a digital signal processor (DSP) 210, a modem processor 212, a graphics processor 214, an application processor 216, one or more coprocessors 218 (such as vector co-processor) connected to one or more of the processors, memory 220, custom circuity 222, system components and resources 224, an interconnection/bus module 226, one or more temperature sensors 230, a thermal management unit 232, and a thermal power envelope (TPE) component 234. The second SOC 204 may include a 5G modem processor 252, a power management unit 254, an interconnection/bus module 264, a plurality of mmWave transceivers 256,  memory 258, and various additional processors 260, such as an applications processor, packet processor, etc.
Each  processor  210, 212, 214, 216, 218, 252, 260 may include one or more cores, and each processor/core may perform operations independent of the other processors/cores. For example, the first SOC 202 may include a processor that executes a first type of operating system (such as FreeBSD, LINUX, OS X, etc. ) and a processor that executes a second type of operating system (such as MICROSOFT WINDOWS 10) . In addition, any or all of the  processors  210, 212, 214, 216, 218, 252, 260 may be included as part of a processor cluster architecture (such as a synchronous processor cluster architecture, an asynchronous or heterogeneous processor cluster architecture, etc. ) .
The first and  second SOC  202, 204 may include various system components, resources and custom circuitry for managing sensor data, analog-to-digital conversions, wireless data transmissions, and for performing other specialized operations, such as decoding data packets and processing encoded audio and video signals for rendering in a web browser. For example, the system components and resources 224 of the first SOC 202 may include power amplifiers, voltage regulators, oscillators, phase-locked loops, peripheral bridges, data controllers, memory controllers, system controllers, access ports, timers, and other similar components used to support the processors and software clients running on a wireless device. The system components and resources 224 or custom circuitry 222 also may include circuitry to interface with peripheral devices, such as cameras, electronic displays, wireless communication devices, external memory chips, etc.
The first and  second SOC  202, 204 may communicate via interconnection/bus module 250. The  various processors  210, 212, 214, 216, 218, may be interconnected to one or more memory elements 220, system components and resources 224, and custom circuitry 222, and a thermal management unit 232 via an interconnection/bus module 226. Similarly, the processor 252 may be interconnected to the power management unit 254, the mmWave transceivers 256, memory 258, and various  additional processors 260 via the interconnection/bus module 264. The interconnection/ bus module  226, 250, 264 may include an array of reconfigurable logic gates or implement a bus architecture (such as CoreConnect, AMBA, etc. ) . Communications may be provided by advanced interconnects, such as high-performance networks-on chip (NoCs) .
The first or  second SOCs  202, 204 may further include an input/output module (not illustrated) for communicating with resources external to the SOC, such as a clock 206 and a voltage regulator 208. Resources external to the SOC (such as clock 206, voltage regulator 208) may be shared by two or more of the internal SOC processors/cores.
In addition to the example SIP 200 discussed above, some implementations may be implemented in a wide variety of computing systems, which may include a single processor, multiple processors, multicore processors, or any combination thereof.
FIG. 3 is a component block diagram illustrating a software architecture 300 including a radio protocol stack for the user and control planes in wireless communications suitable for implementing any of the various embodiments. With reference to FIGS. 1A–3, the wireless device 320 may implement the software architecture 300 to facilitate communication between a wireless device 320 (e.g., the wireless device 120a-120e, 156a, 156b, 200) and the base station 350 (e.g., the base station 110a-110d, 154a-154c) of a communication system (e.g., 100, 150) . In various embodiments, layers in software architecture 300 may form logical connections with corresponding layers in software of the base station 350. The software architecture 300 may be distributed among one or more processors (e.g., the  processors  212, 214, 216, 218, 252, 260) . While illustrated with respect to one radio protocol stack, in a multi-SIM (subscriber identity module) wireless device, the software architecture 300 may include multiple protocol stacks, each of which may be associated with a different SIM (e.g., two protocol stacks associated with two SIMs, respectively, in a dual-SIM wireless communication device) . While described below with reference to  LTE communication layers, the software architecture 300 may support any of variety of standards and protocols for wireless communications, and/or may include additional protocol stacks that support any of variety of standards and protocols wireless communications.
The software architecture 300 may include a Non-Access Stratum (NAS) 302 and an Access Stratum (AS) 304. The NAS 302 may include functions and protocols to support packet filtering, security management, mobility control, session management, and traffic and signaling between a SIM (s) of the wireless device (such as SIM (s) 204) and its core network 140. The AS 304 may include functions and protocols that support communication between a SIM (s) (such as SIM (s) 204) and entities of supported access networks (such as a base station) . In particular, the AS 304 may include at least three layers (Layer 1, Layer 2, and Layer 3) , each of which may contain various sub-layers.
In the user and control planes, Layer 1 (L1) of the AS 304 may be a physical layer (PHY) 306, which may oversee functions that enable transmission or reception over the air interface via a wireless transceiver (e.g., 266) . Examples of such physical layer 306 functions may include cyclic redundancy check (CRC) attachment, coding blocks, scrambling and descrambling, modulation and demodulation, signal measurements, MIMO, etc. The physical layer may include various logical channels, including the Physical Downlink Control Channel (PDCCH) and the Physical Downlink Shared Channel (PDSCH) .
In the user and control planes, Layer 2 (L2) of the AS 304 may be responsible for the link between the wireless device 320 and the base station 350 over the physical layer 306. In some implementations, Layer 2 may include a media access control (MAC) sublayer 308, a radio link control (RLC) sublayer 310, and a packet data convergence protocol (PDCP) 312 sublayer, each of which form logical connections terminating at the base station 350.
In the control plane, Layer 3 (L3) of the AS 304 may include a radio resource control (RRC) sublayer 3. While not shown, the software architecture 300 may include additional Layer 3 sublayers, as well as various upper layers above Layer 3. In some implementations, the RRC sublayer 313 may provide functions including broadcasting system information, paging, and establishing and releasing an RRC signaling connection between the wireless device 320 and the base station 350.
In some implementations, the PDCP sublayer 312 may provide uplink functions including multiplexing between different radio bearers and logical channels, sequence number addition, handover data handling, integrity protection, ciphering, and header compression. In the downlink, the PDCP sublayer 312 may provide functions that include in-sequence delivery of data packets, duplicate data packet detection, integrity validation, deciphering, and header decompression.
In the uplink, the RLC sublayer 310 may provide segmentation and concatenation of upper layer data packets, retransmission of lost data packets, and Automatic Repeat Request (ARQ) . In the downlink, while the RLC sublayer 310 functions may include reordering of data packets to compensate for out-of-order reception, reassembly of upper layer data packets, and ARQ.
In the uplink, MAC sublayer 308 may provide functions including multiplexing between logical and transport channels, random access procedure, logical channel priority, and hybrid-ARQ (HARQ) operations. In the downlink, the MAC layer functions may include channel mapping within a cell, de-multiplexing, discontinuous reception (DRX) , and HARQ operations.
While the software architecture 300 may provide functions to transmit data through physical media, the software architecture 300 may further include at least one host layer 314 to provide data transfer services to various applications in the wireless device 320. In some implementations, application-specific functions provided by the at least one host layer 314 may provide an interface between the software architecture and the general purpose processor 206.
In other implementations, the software architecture 300 may include one or more higher logical layer (such as transport, session, presentation, application, etc. ) that provide host layer functions. For example, in some implementations, the software architecture 300 may include a network layer (such as Internet protocol (IP) layer) in which a logical connection terminates at a packet data network (PDN) gateway (PGW) . In some implementations, the software architecture 300 may include an application layer in which a logical connection terminates at another device (such as end user device, server, etc. ) . In some implementations, the software architecture 300 may further include in the AS 304 a hardware interface 316 between the physical layer 306 and the communication hardware (such as one or more radio frequency (RF) transceivers) .
FIGS. 4A and 4B are component block diagrams illustrating a system 400 configured for cell selection scheduling for a high space density network to reduce RACH congestion accordance with various embodiments. With reference to FIGS. 1A–4B, system 400 may include a base station 402 and a wireless device 404 (e.g., 110a-110d, 120a-120e, 154a-154c, 156a, 156b, 200, 320, 350) . The base station 402 and the wireless device 404 exchange wireless communications in order to establish a  wireless communication link  122, 124, 126.
The base station 402 and the wireless device 404 may include one or  more processors  428, 432 coupled to  electronic storage  426, 430 and a wireless transceiver (e.g., 266) . In the base station 402 and the wireless device 404, the wireless transceiver 266 may be configured to receive messages sent in transmissions and pass such message to the processor (s) 428, 432 for processing. Similarly, the  processor  428, 432 may be configured to send messages for transmission to the wireless transceiver 266 for transmission.
Referring to the base station 402, the processor (s) 428 may be configured by machine-readable instructions 406. Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of a RACH  congestion module 408, a target cell selection module 410, a wireless device selection module 412, a cell selection message module 414, a transmit/receive (TX/RX) module 416, or other instruction modules.
The RACH congestion module 408 may be configured to determine whether a cell (e.g., cell 102a-102c, 152a-152c) is experiencing RACH congestion. The RACH congestion module 408 may determine whether the cell subject to the determination is experiencing RACH congestion based on any number and combination of criterion. Such criterion may include RAN loading or a number of wireless devices 404 connect to the cell subject to the determination, transmission speed of the cell subject to the determination, transmission latency of the cell subject to the determination, dropped packets of the cell subject to the determination, etc. In some embodiments, the RACH congestion module 408 may measure the criterion for the cell subject to the determination. In some embodiments, the RACH congestion module 408 may receive the criterion for the cell subject to the determination. In some embodiments, the base station 402 making the determination may be the base station 402 associated with the cell subject to the determination. In some embodiments, the base station 402 making the determination may be part of a high space density network (e.g., communication system 150) and may be communicatively connected to another base station 402 associated with the cell subject to the determination that may also be a part of the high space density network. In some embodiments, the base station 402 making the determination may be part of a core network (e.g., core network 140) and may be communicatively connected to another base station 402 associated with the cell subject to the determination that may be part of a high space density network.
The target cell selection module 410 may be configured to determine a target cell (e.g., cell 102a-102c, 152a-152c) to instruct a wireless device 404 to connect to during an RRC idle or inactive state in response to determining that a cell is experiencing RACH congestion. The target cell may be a different cell associated with a different base station 402 from the cell determined to be experiencing RACH congestion. In some embodiments, the target cell selection module 410 may  determine the target cell based on a preconfigured target cell selection. For example, the target cell and the wireless device 404 may be associated in a data structure, such as a table, list, etc. In some embodiments, the target cell selection module 410 may determine the target cell based on a pattern algorithm. For example, the pattern algorithm may be a pseudo random pattern algorithm, a linear pattern algorithm, a nonlinear pattern algorithm, etc. In some embodiments, the target cell selection module 410 may determine the target cell based on any number and combination of criterion. Such criterion may include wireless signal quality of the target cell, such as measured target cell receive (RX) level value (RSRP) , measured target cell quality value (RSRQ) , minimum required RX level in the target cell (dBm) , and/or minimum required quality level in the target cell (dB) , an offset applied to the target cell, an offset applied to the minimum required RX level in the target cell, an offset applied to the minimum required quality level in the target cell, maximum TX power levels of the wireless device 404 for using the target cell, a power compensation factor for the maximum TX power levels of the wireless device 404 for using the target cell, a maximum RF output power of the wireless device 404 (dBm) according to a wireless device power class, wireless device space distribution, distance and/or direction of the wireless device 404 and/or the target cell, RAN loading or a number of wireless devices 404 connected to the target cell, transmission speed of the target cell, transmission latency of the target cell, dropped packets of the target cell, etc. In some embodiments, the target cell selection module 410 may measure the criterion for the target cell and/or the wireless device 404. In some embodiments, the target cell selection module 410 may receive the criterion for the target cell and/or the wireless device 404.
The wireless device selection module 412 may be configured to select a wireless device 404 to which to send a cell selection message configured to indicate to the wireless device 404 to camp on/RACH to the target cell during an RRC idle or inactive state. The wireless device selection module 412 may select the wireless device 404 to which to send the cell selection message based on any number and  combination of criterion. Such criterion may include wireless device space distribution, distance and/or direction of the wireless device 404 and/or the target cell, signal quality of the wireless device 404, transmission speed of the wireless device 404, transmission latency of the wireless device 404, dropped packets of the wireless device 404, etc. In some embodiments, the wireless device selection module 412 may measure the criterion for the wireless device 404 and/or the target cell. In some embodiments, the wireless device selection module 412 may receive the criterion for the wireless device 404 and/or the target cell.
The cell selection message module 414 may be configured to generate and to transmit (e.g., via the wireless transceiver 266) the cell selection message to the wireless device 404. The cell selection message may be a NAS message having information of the target cell and configured to indicate to the wireless device 404 to camp on/RACH to the target cell during an RRC idle or inactive state. Such information of the target cell may include a target cell ID and/or base station security algorithm identifiers for the selected security algorithms. In some embodiments, such information may include a set of dedicated RACH resources, an association between RACH resources and synchronization signal block (s) (SSB (s) ) , an association between RACH resources common RACH resources, system information of the target cell, etc. The cell selection message module 414 may be configured to generate and to transmit the cell selection message during an RRC connected state of the wireless device 404 with the cell subject to the determination by the RACH congestion module 408. In some embodiments, the selection message module 414 may be configured to determine the RRC state of the wireless device 404 with the cell. In some embodiments, the selection message module 414 may be configured to receive the RRC state of the wireless device 404 with the cell.
The transmit/receive (TX/RX) module 416 may be configured to control the transmission and reception of wireless communications with the base station 402, e.g., via the wireless transceiver 266. For example, the TX/RX module 416 may control transmission of the cell selection message to the wireless device 404 by the cell  selection message module 414. For another example, the TX/RX module 416 may control transmission and/or reception of the various criteria used by the RACH congestion module 408, the target cell selection module 410, and/or the wireless device selection module 412.
Referring to the wireless device 404, the processor (s) 432 may be configured by machine-readable instructions 434. Machine-readable instructions 406 may include one or more instruction modules. The instruction modules may include computer program modules. The instruction modules may include one or more of a cell selection message module 436, an RRC state module 438, a camp/RACH criterion module 440, a cell connection module 442, a TX/RX module 444, or other instruction modules.
The cell selection message module 436 may be configured to interpret a received cell selection message. The cell selection message module 436 may interpret that the wireless device 404 is instructed to connect to a target cell (e.g., cell 102a-102c, 152a-152c) during an RRC idle or inactive state of the wireless device 404 with a currently RRC connected cell. The cell selection message module 436 may interpret information for connecting to the target cell. Such information may include the information included in the cell selection message by the selection message module 414.
The RRC state module 438 may be configured to determine an RRC state of the wireless device 404 with a cell (e.g., cell 102a-102c, 152a-152c) . The RRC state module 438 may be configured to determine whether the RRC state of the wireless device 404 with the cell is an RRC idle or inactive state (i.e., determine whether the wireless device 404 is in an RRC idle or inactive state) . In some embodiments, the RRC state module 438 may determine whether the RRC state of the wireless device 404 with the cell is an RRC idle or inactive state by interpreting a stored value, such as an RRC state register value configured to indicate to the wireless device 404 a current RRC state with a cell. In some embodiments, the RRC state module 438 may determine whether the RRC state of the wireless device 404 with the cell is an RRC  idle or inactive state by interpreting types of signals transmitted and/or received between the wireless device 404 and the cell.
The camp/RACH criterion module 440 may be configured to determine whether the wireless device 404 can camp on/RACH a cell. The camp/RACH criterion module 440 may be configured to determine whether the wireless device 404 can camp on/RACH the target cell interpreted by the cell selection message module 436 from the received cell selection message module. The camp/RACH criterion module 440 may be configured to determine whether the wireless device 404 can camp on/RACH any cell in response to not having a target cell specified and/or determining that the wireless device cannot camp on/RACH the target cell. The camp/RACH criterion module 440 may determine whether the wireless device 404 can camp on/RACH the target cell based on any number and combination of criterion. Such criterion may include signal quality of the target cell. In some embodiments, the criterion for determining whether the wireless device 404 can camp on/RACH the target cell may be the same as the criterion for determining whether the wireless device 404 can camp on/RACH another cell. For example, the criterion may be the same in type of criterion and/or measure of the criterion. In some embodiments, the criterion for determining whether the wireless device 404 can camp on/RACH the target cell may be different as the criterion for determining whether the wireless device 404 can camp on/RACH another cell. For example, the criterion may be different in type of criterion and/or measure of the criterion. For a more specific example, the criterion for the determining whether the wireless device 404 can camp on/RACH any cell may be based on signal quality of the cell. However, the criterion for the determining whether the wireless device 404 can camp on/RACH the target cell may be a lower measure of signal quality than the criterion for the determining whether the wireless device 404 can camp on/RACH another cell. In some embodiments, the camp/RACH criterion module 440 may measure the criterion for the target cell. In some embodiments, the camp/RACH criterion module 440 may receive the criterion for the target cell.
The cell connection module 442 may be configured to implement procedures for connecting to a cell. The cell connection module 442 may implement procedures for connecting to the target cell in response to the camp/RACH criterion module 440 determining that the wireless device 404 can connect to the target cell. The cell connection module 442 may implement procedures for connecting to another cell in response to not having a target cell specified. The cell connection module 442 may implement procedures for connecting to another cell in response to the camp/RACH criterion module 440 determining that the wireless device 404 cannot camp on/RACH the target cell and/or determining that the wireless device can camp on/RACH another cell.
The TX/RX module 444 may be configured to enable communications with the base station 402, e.g., via the wireless transceiver 266. For example, the TX/RX module 444 may control reception of the cell selection message from the base station 402 by the cell selection message module 436. For another example, the TX/RX module 444 may control transmission and/or reception of signaling for determining an RRC state of the wireless device 404 with a cell by the RRC state module 438. For another example, the TX/RX module 444 may control transmission and/or reception of the various criteria used by the camp/RACH criterion module 440. For another example, the TX/RX module 444 may control transmission and/or reception of signaling for implementing procedures for connecting to a cell by the cell connection module 442.
In some embodiments, the base station 402 and the wireless device 404 may be operatively linked via one or more electronic communication links (e.g.,  wireless communication link  122, 124, 126) . It will be appreciated that this is not intended to be limiting, and that the scope of this disclosure includes embodiments in which the base station 402 and the wireless device 404 may be operatively linked via some other communication medium.
The  electronic storage  426, 430 may include non-transitory storage media that electronically stores information. The electronic storage media of  electronic storage   426, 430 may include one or both of system storage that is provided integrally (i.e., substantially non-removable) with the base station 402 and the wireless device 404 and/or removable storage that is removably connectable to the base station 402 and the wireless device 404 via, for example, a port (e.g., a universal serial bus (USB) port, a firewire port, etc. ) or a drive (e.g., a disk drive, etc. ) .  Electronic storage  426, 430 may include one or more of optically readable storage media (e.g., optical disks, etc. ) , magnetically readable storage media (e.g., magnetic tape, magnetic hard drive, floppy drive, etc. ) , electrical charge-based storage media (e.g., EEPROM, RAM, etc. ) , solid-state storage media (e.g., flash drive, etc. ) , and/or other electronically readable storage media.  Electronic storage  426, 430 may include one or more virtual storage resources (e.g., cloud storage, a virtual private network, and/or other virtual storage resources) .  Electronic storage  426, 430 may store software algorithms, information determined by processor (s) 428, 432, information received from the base station 402 and the wireless device 404, or other information that enables the base station 402 and the wireless device 404 to function as described herein.
Processor (s) 428, 432 may be configured to provide information processing capabilities in the base station 402 and the wireless device 404. As such, the processor (s) 428, 432 may include one or more of a digital processor, an analog processor, a digital circuit designed to process information, an analog circuit designed to process information, a state machine, and/or other mechanisms for electronically processing information. Although the processor (s) 428, 432 are illustrated as single entities, this is for illustrative purposes only. In some embodiments, the processor (s) 428, 432 may include a plurality of processing units and/or processor cores. The processing units may be physically located within the same device, or processor (s) 428, 432 may represent processing functionality of a plurality of devices operating in coordination. The processor (s) 428, 432 may be configured to execute modules 408–414 and modules 436–446 and/or other modules by software; hardware; firmware; some combination of software, hardware, and/or firmware; and/or other mechanisms for configuring processing capabilities on processor (s) 428, 432. As used herein, the  term “module” may refer to any component or set of components that perform the functionality attributed to the module. This may include one or more physical processors during execution of processor readable instructions, the processor readable instructions, circuitry, hardware, storage media, or any other components.
The description of the functionality provided by the different modules 408–414 and modules 436–446 described below is for illustrative purposes, and is not intended to be limiting, as any of modules 408–414 and modules 436–446 may provide more or less functionality than is described. For example, one or more of the modules 408–414 and modules 436–446 may be eliminated, and some or all of its functionality may be provided by other modules 408–414 and modules 436–446. As another example, the processor (s) 428, 432 may be configured to execute one or more additional modules that may perform some or all of the functionality attributed below to one of the modules 408–414 and modules 436–446.
FIGs. 5A and 5B are process flow  diagrams illustrating methods  500a, 500b performed by a processor of a base station device for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments. With reference to FIGS. 1A–5B, the operations of the  methods  500a, 500b may be performed by a processor (e.g.,  processor  210, 212, 214, 216, 218, 252, 260, 428) of a base station device (e.g., base station 110a-110d, 154a-154c, 200, 350, 402) .
Referring to FIG. 5A, in determination block 502, the processor may determine whether a cell (e.g., cell 102a-102c, 152a-152c) is experiencing RACH congestion. The processor may determine whether a cell of a high space density network (e.g., communication system 150) subject to the determination is experiencing RACH congestion based on any number and combination of criterion. Such criterion may include RAN loading or a number of wireless devices (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) connected to the cell subject to the determination, transmission speed of the cell subject to the determination, transmission latency of the cell subject to the determination, dropped packets of the  cell subject to the determination, etc. In some embodiments, the processor may measure the criterion for the cell subject to the determination. In some embodiments, the processor may receive the criterion for the cell subject to the determination. In some embodiments, the processor may measure and/or receive the criterion via a wireless transceiver (e.g., wireless transceiver 266) . The processor may compare a measurement of the criterion to a RACH congestion threshold to determine whether the cell is experiencing RACH congestion. For example, the measurement of the criterion exceeding the RACH congestion threshold may indicate to the processor that the cell is experiencing RACH congestion. In some embodiments, the processor executing a RACH congestion module (e.g., RACH congestion module 408) may determine whether the cell is experiencing RACH congestion in determination block 502.
In response to determining that the cell is experiencing RACH congestion (i.e., determination block 502 = “Yes” ) , the processor may select a wireless device to which to send a cell selection message in block 504. As described herein, the cell selection message may be configured to indicate to the wireless device to camp on/RACH to a target cell (e.g., cell 102a-102c, 152a-152c) during an RRC idle or inactive state with the cell determined to be experiencing RACH congestion. The target cell may be a different cell of the high space density network associated with a different base station from the cell determined to be experiencing RACH congestion. The wireless device to which to send a cell selection message may be a wireless device in the high space density network determined from a plurality of wireless devices in the high space density network that are connected to the cell. The processor may select the wireless device to which to send the cell selection message based on any number and combination of criterion. Such criterion may include wireless device space distribution, distance and/or direction of the wireless device and/or the target cell, signal quality of the wireless device, transmission speed of the wireless device, transmission latency of the wireless device, dropped packets of the wireless device, etc. In some embodiments, the processor may measure the criterion for the wireless  device and/or the target cell. In some embodiments, the wireless device processor may receive the criterion for the wireless device and/or the target cell. In some embodiments, the processor may measure and/or receive the criterion via the wireless transceiver. The processor may compare a measurement of the criterion to a wireless device selection threshold to determine whether to send the wireless device a cell selection message. For example, the measurement of the criterion exceeding the wireless device selection threshold may indicate to the processor to send the wireless device a cell selection message. In some embodiments, the processor executing a wireless device selection module (e.g., wireless device selection module 412) may select the wireless device to which to send a cell selection message in block 504.
In block 506, the processor may determine a target cell to instruct the wireless device to connect to during an RRC idle or inactive state. The target cell may be a cell in the high space density network determined from a plurality of cells in the high space density network. In some embodiments, the processor may determine the target cell based on a preconfigured target cell selection. For example, the target cell and the wireless device may be associated in a data structure, such as a table, list, etc. In some embodiments, the processor may determine the target cell based on a pattern algorithm. For example, the pattern algorithm may be a pseudo random pattern algorithm, a linear pattern algorithm, a nonlinear pattern algorithm, etc. In some embodiments, the processor may determine the target cell based on any number and combination of criterion. Such criterion may include wireless signal quality of the target cell, such as measured target cell RX level value (RSRP) , measured target cell quality value (RSRQ) , minimum required RX level in the target cell (dBm) , and/or minimum required quality level in the target cell (dB) , an offset applied to the target cell, an offset applied to the minimum required RX level in the target cell, an offset applied to the minimum required quality level in the target cell, maximum TX power levels of the wireless device for using the target cell, a power compensation factor for the maximum TX power levels of the wireless device for using the target cell, a maximum RF output power of the wireless device (dBm) according to a wireless  device power class, device space distribution, distance and/or direction of the wireless device and/or the target cell, RAN loading or a number of wireless devices connected to the target cell, transmission speed of the target cell, transmission latency of the target cell, dropped packets of the target cell, etc. In some embodiments, the processor may measure the criterion for the target cell and/or the wireless device. In some embodiments, the processor may receive the criterion for the target cell and/or the wireless device. In some embodiments, the processor may measure and/or receive the criterion via the wireless transceiver.
The processor may compare a measurement of the criterion to a cell selection threshold to determine a cell as the target cell to instruct the wireless device to connect to during an RRC idle or inactive state. For example, the measurement of the criterion exceeding the cell selection threshold may indicate to the processor that the cell is a suitable target cell. In some embodiments, the processor executing a target cell selection module (e.g., target cell selection module 410) may determine the target cell to instruct the wireless device to connect to during an RRC idle or inactive state in block 506.
For a specific and nonlimiting example, the criterion may include measurements of various inputs to a cell selection RX level value (dB) and a cell selection quality value (dB) . In this example, the cell selection threshold may include threshold values for the cell selection RX level value and the cell selection quality value. The cell selection RX level value (Srxlev) may be a function of a measured target cell RX level value (Qrxlevmeas) , a minimum required RX level in the target cell (Qrxlevmin) , an offset applied to the minimum required RX level in the target cell (Qrxlevminoffset) , a power compensation factor for the maximum TX power levels of the wireless device for using the target cell (Pcompensation) , and an offset applied to the target cell (Qoffsettemp) :
Srxlev = Qrxlevmeas – (Qrxlevmin + Qrxlevminoffset) –Pcompensation –Qoffsettemp.
The cell selection quality value (Squal) may be a function of a measured target cell quality value (Qqualmeas) , a minimum required quality level in the target cell (Qqualmin) , an offset applied to the minimum required quality level in the target cell (Qqualminoffset) , and an offset applied to the target cell (Qoffsettemp) :
Squal = Qqualmeas – (Qqualmin + Qqualminoffset) –Qoffsettemp.
In block 508, the processor may generate a cell selection message. The cell selection message may be a NAS message having information of the target cell and configured to indicate to the wireless device to camp on/RACH to the target cell during an RRC idle or inactive state. Such information of the cell device may include a target cell ID and/or base station security algorithm identifiers for the selected security algorithms. In some embodiments, such information may include a set of dedicated RACH resources, an association between RACH resources and SSB (s) , an association between RACH resources common RACH resources, system information of the target cell, etc. In some embodiments, the processor executing a cell selection message module (e.g., cell selection message module 414) may generate the cell selection message in block 508.
In block 510, the processor may transmit the cell selection message to the wireless device. The processor may transmit the cell selection message during an RRC connected state of the wireless device with the cell subject to RACH congestion as determined in block 502. In some embodiments, the processor may be configured to determine the RRC state of the wireless device with the cell. In some embodiments, the processor may be configured to receive the RRC state of the wireless device with the cell. In some embodiments, the processor may determine and/or receive the RRC state of the wireless device with the cell via the wireless transceiver. In some embodiments the processor executing the cell selection message module and the wireless transceiver may transmit the cell selection message in block 510.
Following transmitting the cell selection message in block 510, or in response to determining that the cell is not experiencing RACH congestion (i.e., determination bloc 502 = “No” ) , the processor may determine whether the cell is experiencing RACH congestion in determination block 502. In some embodiments, the processor may continually, repeatedly, periodically, etc. determine whether the cell is experiencing RACH congestion.
Referring to FIG. 5B, in the method 500b, the operations performed in each of blocks 502-510 are the same or similar to the operations of the like numbered blocks in the method 500a as described above, the difference between the two methods being that the operations in block 506 are performed by the processor in response to determining that the cell is experiencing RACH congestion (i.e., determination block 502 = “Yes” ) , and the operations in block 504 are performed after the operations in block 504. In other words, the base station processor may identify a target cell to which selected wireless devices will be directed to connect, and then selected wireless devices that will be sent the cell selection message.
In some embodiments, the processor implementing the  method  500a, 500b may be of a base station associated with the cell subject to the determination of whether a cell is experiencing RACH congestion. In some embodiments, the processor implementing the  method  500a, 500b may be of a base station that may be part of the high space density network and may be communicatively connected to another base station associated with the cell subject to the determination and that may also be a part of the high space density network. In some embodiments, the implementing the  method  500a, 500b may be of a base station that may be part of a core network (e.g., core network 140) and may be communicatively connected to another base station associated with the cell subject to the determination and that may be part of a high space density network. In some embodiments, the processor implementing the  method  500a, 500b may be of a network controller (e.g., network controller 130) that may be communicatively connected to a base station associated  with the cell subject to the determination and that may be part of a high space density network.
FIG. 6 is a process flow diagram illustrating a method 600 performed by a processor of a wireless device for enhancing coverage for cell selection scheduling for a high space density network to reduce RACH congestion according to various embodiments. With reference to FIGS. 1A–6, the operations of the method 600 may be performed by a processor (e.g.,  processor  210, 212, 214, 216, 218, 252, 260, 432) of a wireless device (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) .
In block 602, the processor may receive a cell selection message. The cell selection message may be a NAS message having information of a target cell (e.g., cells 102a-102c, 152a-152c) and configured to indicate to the wireless device to camp on/RACH to the target cell during an RRC idle or inactive state. The processor may receive the cell selection message from a base station (e.g., base station 110a-110d, 154a-154c, 200, 350, 402) during an RRC connected state of the wireless device with a cell (e.g., cells 102a-102c, 152a-152c) associated with the base station. In some embodiments, the processor executing a cell selection message module (e.g., cell selection message module 436) and a wireless transceiver (e.g., wireless transceiver 266) may receive the cell selection message in block 602.
In block 604, the processor may interpret the cell selection message. The processor may interpret that the wireless device is instructed to connect to the target cell during an RRC idle or inactive state of the wireless device with the currently RRC connected cell. The processor may interpret information for connecting to the target cell. Such information may include a target cell ID and/or base station security algorithm identifiers for the selected security algorithms. In some embodiments, such information may include a set of dedicated RACH resources, an association between RACH resources and SSB (s) , an association between RACH resources common RACH resources, system information of the target cell, etc. In some embodiments, the processor executing a cell selection message module may interpret the cell selection message in block 604.
In determination block 606, the processor may determine whether the wireless device is in an RRC idle or inactive state. The processor may be configured to determine whether the RRC state of the wireless device with the cell is an RRC idle or inactive state. In some embodiments, the processor may determine whether the RRC state of the wireless device with the cell is an RRC idle or inactive state by interpreting a stored value, such as an RRC state register value configured to indicate to the wireless device a current RRC state with a cell. In some embodiments, the processor may determine whether the RRC state of the wireless device with the cell is an RRC idle or inactive state by interpreting types of signals transmitted and/or received between the wireless device and the cell. In some embodiments, the processor executing an RRC state module (e.g., RRC state module 438) may determine whether the wireless device is in an RRC idle or inactive state in block 606.
In response to determining that the wireless device is not in an RRC idle or inactive state (i.e., determination block 606 = “No” ) , the processor may determine whether the wireless device is in an RRC idle or inactive state in block 606. In some embodiments, the processor may continually, repeatedly, periodically, etc. determine whether the wireless device is in an RRC idle or inactive state.
In response to determining that the wireless device is in an RRC idle or inactive state (i.e., determination block 606 = “Yes” ) , the processor may determine whether the wireless device can camp on/RACH the target cell in determination block 608. The processor may determine whether the wireless device can camp on/RACH the target cell based on any number and combination of criterion. Such criterion may include signal quality of the target cell. In some embodiments, the criterion for determining whether the wireless device can camp on/RACH the target cell may be the same as the criterion for determining whether the wireless device can camp on/RACH another cell. For example, the criterion may be the same in type of criterion and/or measure of the criterion. In some embodiments, the criterion for determining whether the wireless device can camp on/RACH the target cell may be different from the criterion for determining whether the wireless device can camp  on/RACH another cell. For example, the criterion may be different in type of criterion and/or measure of the criterion. For a more specific example, the criterion for the determining whether the wireless device can camp on/RACH any cell may be based on signal quality of the cell. However, the criterion for the determining whether the wireless device 404 can camp on/RACH the target cell may be a lower measure of signal quality than the criterion for the determining whether the wireless device can camp on/RACH another cell. In some embodiments, the processor may measure the criterion for the target cell. In some embodiments, the processor may receive the criterion for the target cell. In some embodiments, the processor may measure and/or receive the criterion for the target cell via the wireless transceiver. The processor may compare a measurement of the criterion to a target cell connect threshold to determine whether the wireless device can camp on/RACH the target cell. For example, the measurement of the criterion exceeding the target cell connect threshold may indicate to the processor that the wireless device can camp on/RACH the target cell. In some embodiments, the processor executing a camp/RACH criterion module (e.g., camp/RACH criterion module 440) may determine whether the wireless device can camp on/RACH the target cell in determination block 608.
In response to determining that the wireless device can camp on/RACH the target cell (i.e., determination block 608 = “Yes” ) , the processing device may camp on/RACH the target cell in block 610. The processing device may implement procedures for connecting the wireless device to the target cell. In some embodiments, the processor executing a cell connection module (e.g., cell connection module 442) and a wireless transceiver may camp on/RACH the target cell in block 610.
In response to determining that the wireless device cannot camp on/RACH the target cell (i.e., determination block 608 = “Yes” ) , the processing device may implement traditional cell selection in block 612. In some embodiments, the processor executing a cell connection module and a wireless transceiver may implement traditional cell selection in block 612.
FIG. 7 is a component block diagram of a base station computing device suitable for use with various embodiments. Such base station computing devices (e.g., base station 110a-110d, 154a-154c, 350, 402) may include at least the components illustrated in FIG. 7. With reference to FIGS. 1A–7, the base station computing device 700 may typically include a processor 701 coupled to volatile memory 702 and a large capacity nonvolatile memory, such as a disk drive 708. The base station computing device 700 also may include a peripheral memory access device 706 such as a floppy disc drive, compact disc (CD) or digital video disc (DVD) drive coupled to the processor 701. The base station computing device 700 also may include network access ports 704 (or interfaces) coupled to the processor 701 for establishing data connections with a network, such as the Internet or a local area network coupled to other system computers and servers. The base station computing device 700 may include one or more antennas 707 for sending and receiving electromagnetic radiation that may be connected to a wireless communication link. The base station computing device 700 may include additional access ports, such as USB, Firewire, Thunderbolt, and the like for coupling to peripherals, external memory, or other devices.
FIG. 8 is a component block diagram of a wireless device 800 suitable for use with various embodiments. With reference to FIGS. 1A–8, various embodiments may be implemented on a variety of wireless devices 800 (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) , an example of which is illustrated in FIG. 8 in the form of a smartphone. The wireless device 800 may include a first SOC 202 (for example, a SOC-CPU) coupled to a second SOC 204 (for example, a 5G capable SOC) . The first and  second SOCs  202, 204 may be coupled to internal memory 816, a display 812, and to a speaker 814. Additionally, the wireless device 800 may include an antenna 804 for sending and receiving electromagnetic radiation that may be connected to a wireless transceiver 266 coupled to one or more processors in the first and/or  second SOCs  202, 204. Wireless device 800 may include menu selection buttons or rocker switches 820 for receiving user inputs.
The wireless device 800 wireless device 800 may include a sound encoding/decoding (CODEC) circuit 810, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to the speaker to generate sound. One or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 266 and CODEC 810 may include a digital signal processor (DSP) circuit (not shown separately) .
The processors of the base station computing device 700 and the wireless device 800 may be any programmable microprocessor, microcomputer or multiple processor chip or chips that can be configured by software instructions (applications) to perform a variety of functions, including the functions of some implementations described below. In some wireless devices, multiple processors may be provided, such as one processor within an SOC 204 dedicated to wireless communication functions and one processor within an SOC 202 dedicated to running other applications. Software applications may be stored in the  memory  702, 816 before they are accessed and loaded into the processor. The processors may include internal memory sufficient to store the application software instructions.
The various embodiments may be implemented on a variety of IoT devices, an example in the form of a circuit board for use in a device is illustrated in FIG. 9. With reference to FIGs. 1A-9, an IoT device 900 (e.g., wireless device 120a-120e, 156a, 156b, 200, 320, 404) may include a first SOC 202 (e.g., a SOC-CPU) coupled to a second SOC 204 (e.g., a 5G capable SOC) and a sensor 905. In some embodiments the sensor may be any number and combination of a temperature sensor, a light sensor, a vibration sensor, a sound sensor, a particulate sensor, a fluid sensor, a gas sensor, a pH sensor, a humidity sensor, an ion sensor, a radiation sensor, a pressure sensor, a flow sensor, a speed sensor, a position sensor, a level sensor, an electrical current sensor, a voltage sensor, an electrical resistance sensor, an impedance sensor, an inductance sensor, a radar sensor, a LiDAR sensor, etc. The first and  second SOCs  202, 204 may be coupled to internal memory 906. Additionally, the IoT device 900  may include or be coupled to an antenna 904 for sending and receiving wireless signals from a cellular telephone transceiver 908 or within the second SOC 204. The antenna 904 and transceiver 908 and/or second SOC 204 may support communications using various RATs, including Cat. -M1, NB-IoT, CIoT, GSM, and/or VoLTE.
An IoT device 900 may also include a sound encoding/decoding (CODEC) circuit 910, which digitizes sound received from a microphone into data packets suitable for wireless transmission and decodes received sound data packets to generate analog signals that are provided to a speaker to generate sound in support of voice or VoLTE calls. Also, one or more of the processors in the first and  second SOCs  202, 204, wireless transceiver 908 and CODEC 910 may include a digital signal processor (DSP) circuit (not shown separately) .
Some IoT devices may include an internal power source, such as a battery 912 configured to power the SOCs and transceiver (s) . Such IoT devices may include power management components 916 to manage charging of the battery 912.
As used in this application, the terms “component, ” “module, ” “system, ” and the like are intended to include a computer-related entity, such as, but not limited to, hardware, firmware, a combination of hardware and software, software, or software in execution, which are configured to perform particular operations or functions. For example, a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, or a computer. By way of illustration, both an application running on a wireless device and the wireless device may be referred to as a component. One or more components may reside within a process or thread of execution and a component may be localized on one processor or core or distributed between two or more processors or cores. In addition, these components may execute from various non-transitory computer readable media having various instructions or data structures stored thereon. Components may communicate by way of local or remote processes, function or  procedure calls, electronic signals, data packets, memory read/writes, and other known network, computer, processor, or process related communication methodologies.
A number of different cellular and mobile communication services and standards are available or contemplated in the future, all of which may implement and benefit from the various embodiments. Such services and standards include, e.g., third generation partnership project (3GPP) , long term evolution (LTE) systems, third generation wireless mobile communication technology (3G) , fourth generation wireless mobile communication technology (4G) , fifth generation wireless mobile communication technology (5G) as well as later generation 3GPP technology, global system for mobile communications (GSM) , universal mobile telecommunications system (UMTS) , 3GSM, general packet radio service (GPRS) , code division multiple access (CDMA) systems (e.g., cdmaOne, CDMA1020TM) , enhanced data rates for GSM evolution (EDGE) , advanced mobile phone system (AMPS) , digital AMPS (IS-136/TDMA) , evolution-data optimized (EV-DO) , digital enhanced cordless telecommunications (DECT) , Worldwide Interoperability for Microwave Access (WiMAX) , wireless local area network (WLAN) , Wi-Fi Protected Access I &II (WPA, WPA2) , and integrated digital enhanced network (iDEN) . Each of these technologies involves, for example, the transmission and reception of voice, data, signaling, and/or content messages. It should be understood that any references to terminology and/or technical details related to an individual telecommunication standard or technology are for illustrative purposes only, and are not intended to limit the scope of the claims to a particular communication system or technology unless specifically recited in the claim language.
Various embodiments illustrated and described are provided merely as examples to illustrate various features of the claims. However, features shown and described with respect to any given embodiment are not necessarily limited to the associated embodiment and may be used or combined with other embodiments that are shown and described. Further, the claims are not intended to be limited by any one example embodiment. For example, one or more of the methods and  operations   500a, 500b and 600 may be substituted for or combined with one or more operations of the methods and  operations  500a, 500b and 600.
The foregoing method descriptions and the process flow diagrams are provided merely as illustrative examples and are not intended to require or imply that the operations of various embodiments must be performed in the order presented. As will be appreciated by one of skill in the art the order of operations in the foregoing embodiments may be performed in any order. Words such as “thereafter, ” “then, ” “next, ” etc. are not intended to limit the order of the operations; these words are used to guide the reader through the description of the methods. Further, any reference to claim elements in the singular, for example, using the articles “a, ” “an, ” or “the” is not to be construed as limiting the element to the singular.
Various illustrative logical blocks, modules, components, circuits, and algorithm operations described in connection with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and operations have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system. Skilled artisans may implement the described functionality in varying ways for each particular application, but such embodiment decisions should not be interpreted as causing a departure from the scope of the claims.
The hardware used to implement various illustrative logics, logical blocks, modules, and circuits described in connection with the embodiments disclosed herein may be implemented or performed with a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a  microprocessor, but, in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of receiver smart objects, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration. Alternatively, some operations or methods may be performed by circuitry that is specific to a given function.
In one or more embodiments, the functions described may be implemented in hardware, software, firmware, or any combination thereof. If implemented in software, the functions may be stored as one or more instructions or code on a non-transitory computer-readable storage medium or non-transitory processor-readable storage medium. The operations of a method or algorithm disclosed herein may be embodied in a processor-executable software module or processor-executable instructions, which may reside on a non-transitory computer-readable or processor-readable storage medium. Non-transitory computer-readable or processor-readable storage media may be any storage media that may be accessed by a computer or a processor. By way of example but not limitation, such non-transitory computer-readable or processor-readable storage media may include RAM, ROM, EEPROM, FLASH memory, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage smart objects, or any other medium that may be used to store desired program code in the form of instructions or data structures and that may be accessed by a computer. Disk and disc, as used herein, includes compact disc (CD) , laser disc, optical disc, digital versatile disc (DVD) , floppy disk, and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of non-transitory computer-readable and processor-readable media. Additionally, the operations of a method or algorithm may reside as one or any combination or set of codes and/or instructions on a non-transitory processor-readable storage medium  and/or computer-readable storage medium, which may be incorporated into a computer program product.
The preceding description of the disclosed embodiments is provided to enable any person skilled in the art to make or use the claims. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the scope of the claims. Thus, the present disclosure is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the following claims and the principles and novel features disclosed herein.

Claims (52)

  1. A method performed by a processor of a base station device for cell selection scheduling for a network, comprising:
    generating a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell.
  2. The method of claim 1, further comprising determining whether the cell is experiencing random access channel (RACH) congestion,
    wherein generating the cell selection message comprises generating the cell selection message in response to determining that the cell is experiencing RACH congestion.
  3. The method of claim 1, further comprising selecting the wireless device from a plurality of wireless devices in the high space density network and connected to the cell.
  4. The method of claim 1, further comprising determining the target cell from a plurality of cells in the high space density network.
  5. The method of claim 4, wherein determining the target cell comprises:
    determining whether a radio access network (RAN) loading value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    selecting the first cell is the target cell in response to the RAN loading value exceeding the cell selection threshold.
  6. The method of claim 4, wherein determining the target cell comprises:
    determining whether a device space distribution value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    determining the first cell is the target cell in response to the device space distribution value exceeding the cell selection threshold.
  7. The method of claim 1, wherein the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  8. A base station device, comprising:
    a processor configured with processor-executable instructions to perform operations comprising:
    generating a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell.
  9. The base station device of claim 8, wherein the processor is configured with processor-executable instructions to perform operations further comprising determining whether the cell is experiencing random access channel (RACH) congestion,
    wherein the processor is configured with processor-executable instructions to perform operations such that generating the cell selection message comprises generating the cell selection message in response to determining that the cell is experiencing RACH congestion.
  10. The base station device of claim 8, wherein the processor is configured with processor-executable instructions to perform operations further comprising selecting the wireless device from a plurality of wireless devices in a high space density network and connected to the cell.
  11. The base station device of claim 8, wherein the processor is configured with processor-executable instructions to perform operations further comprising determining the target cell from a plurality of cells in a high space density network.
  12. The base station device of claim 11, wherein the processor is configured with processor-executable instructions to perform operations such that determining the target cell comprises:
    determining whether a radio access network (RAN) loading value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    selecting the first cell is the target cell in response to the RAN loading value exceeding the cell selection threshold.
  13. The base station device of claim 11, wherein the processor is configured with processor-executable instructions to perform operations such that determining the target cell comprises:
    determining whether a device space distribution value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    determining the first cell is the target cell in response to the device space distribution value exceeding the cell selection threshold.
  14. The base station device of claim 8, wherein the processor is configured with processor-executable instructions to perform operations such that the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  15. A base station device, comprising:
    means for generating a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    means for transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell.
  16. The base station device of claim 15, further comprising means for determining whether the cell is experiencing random access channel (RACH) congestion,
    wherein means for generating the cell selection message comprises means for generating the cell selection message in response to determining that the cell is experiencing RACH congestion.
  17. The base station device of claim 15, further comprising means for selecting the wireless device from a plurality of wireless devices in a high space density network and connected to the cell.
  18. The base station device of claim 15, further comprising means for determining the target cell from a plurality of cells in a high space density network.
  19. The base station device of claim 18, wherein means for determining the target cell comprises:
    means for determining whether a radio access network (RAN) loading value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    means for selecting the first cell is the target cell in response to the RAN loading value exceeding the cell selection threshold.
  20. The base station device of claim 18, wherein means for determining the target cell comprises:
    means for determining whether a device space distribution value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    means for determining the first cell is the target cell in response to the device space distribution value exceeding the cell selection threshold.
  21. The base station device of claim 15, wherein the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  22. A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a processor of a base station device to perform operations comprising:
    generating a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to a wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    transmitting the cell selection message to the wireless device while the wireless device is in the RRC connect state with the cell.
  23. The non-transitory processor-readable medium of claim 22, wherein the processor-executable instructions are configured to cause the processor of the base station device to perform operations further comprising determining whether the cell is experiencing random access channel (RACH) congestion,
    wherein generating the cell selection message comprises generating the cell selection message in response to determining that the cell is experiencing RACH congestion.
  24. The non-transitory processor-readable medium of claim 22, wherein the processor-executable instructions are configured to cause the processor of the base station device to perform operations further comprising selecting the wireless device from a plurality of wireless devices in a high space density network and connected to the cell.
  25. The non-transitory processor-readable medium of claim 22, wherein the processor-executable instructions are configured to cause the processor of the base station device to perform operations further comprising determining the target cell from a plurality of cells in a high space density network.
  26. The non-transitory processor-readable medium of claim 25, wherein the processor-executable instructions are configured to cause the processor of the base station device to perform operations such that determining the target cell comprises:
    determining whether a radio access network (RAN) loading value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    selecting the first cell is the target cell in response to the RAN loading value exceeding the cell selection threshold.
  27. The non-transitory processor-readable medium of claim 25, wherein the processor-executable instructions are configured to cause the processor of the base station device to perform operations such that determining the target cell comprises:
    determining whether a device space distribution value of a first cell of the plurality of cells exceeds a cell selection threshold; and
    determining the first cell is the target cell in response to the device space distribution value exceeding the cell selection threshold.
  28. The non-transitory processor-readable medium of claim 22, wherein the processor-executable instructions are configured to cause the processor of the base station device to perform operations such that the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  29. A method performed by a processor of a wireless device for cell selection scheduling for a network, comprising:
    receiving a cell selection message having a target cell identifier (ID) and configured to indicate to the wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, wherein the target cell is different from the cell; and
    camping on the target cell while the wireless device is in an RRC idle or inactive state with the cell.
  30. The method of claim 29, further comprising determining whether the wireless device is in an RRC idle or inactive state with the cell, wherein camping on the target cell comprises camping on the target cell in response to determining that the wireless device is in an RRC idle or inactive state with the cell.
  31. The method of claim 29, further comprising determining whether the wireless device can camp on the target cell, wherein camping on the target cell comprises camping on the target cell in response to determining that the wireless device can camp on the target cell.
  32. The method of claim 31, wherein:
    determining whether the wireless device can camp on the target cell comprises determining whether a signal quality of the target cell exceeds a target cell connect threshold; and
    camping on the target cell comprises camping on the target cell in response to determining that the signal quality of the target cell exceeds the target cell connect threshold.
  33. The method of claim 29, wherein the target cell is part of the high space density network.
  34. The method of claim 29, wherein the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  35. A wireless device, comprising:
    a processor configured with processor-executable instructions to perform operations comprising:
    receiving a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to the wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    camping on the target cell while the wireless device is in an RRC idle or inactive state with the cell.
  36. The wireless device of claim 35, wherein the processor is configured with processor-executable instructions to perform operations further comprising determining whether the wireless device is in an RRC idle or inactive state with the cell,
    wherein the processor is configured with processor-executable instructions to perform operations such that camping on the target cell comprises camping on the target cell in response to determining that the wireless device is in an RRC idle or inactive state with the cell.
  37. The wireless device of claim 35, wherein the processor is configured with processor-executable instructions to perform operations further comprising determining whether the wireless device can camp on the target cell, wherein camping on the target cell comprises camping on the target cell in response to determining that the wireless device can camp on the target cell.
  38. The wireless device of claim 37, wherein the processor is configured with processor-executable instructions to perform operations such that:
    determining whether the wireless device can camp on the target cell comprises determining whether a signal quality of the target cell exceeds a target cell connect threshold; and
    camping on the target cell comprises camping on the target cell in response to determining that the signal quality of the target cell exceeds the target cell connect threshold.
  39. The wireless device of claim 35, wherein the processor is configured with processor-executable instructions to perform operations such that the target cell is part of a high space density network.
  40. The wireless device of claim 35, wherein the processor is configured with processor-executable instructions to perform operations such that the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  41. A wireless device, comprising:
    means for receiving a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to the wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    camping on the target cell while the wireless device is in an RRC idle or inactive state with the cell.
  42. The wireless device of claim 41, further comprising means for determining whether the wireless device is in an RRC idle or inactive state with the cell, wherein means for camping on the target cell comprises means for camping on the target cell in response to determining that the wireless device is in an RRC idle or inactive state with the cell.
  43. The wireless device of claim 41, further comprising means for determining whether the wireless device can camp on the target cell, wherein means for camping on the target cell comprises means for camping on the target cell in response to determining that the wireless device can camp on the target cell.
  44. The wireless device of claim 43, wherein:
    means for determining whether the wireless device can camp on the target cell comprises means for determining whether a signal quality of the target cell exceeds a target cell connect threshold; and
    means for camping on the target cell comprises means for camping on the target cell in response to determining that the signal quality of the target cell exceeds the target cell connect threshold.
  45. The wireless device of claim 41, wherein the target cell is part of a high space density network.
  46. The wireless device of claim 41, wherein the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
  47. A non-transitory processor-readable medium having stored thereon processor-executable instructions configured to cause a processor of a wireless device to perform operations comprising a processor configured with processor-executable instructions to perform operations comprising:
    receiving a cell selection message having a target cell identifier (ID) , wherein the cell selection message is configured to indicate to the wireless device to camp on a target cell associated with the target cell ID while the wireless device is in a radio resource control (RRC) idle or inactive state with a cell with which the wireless device is in an RRC connect state, and wherein the target cell is different from the cell; and
    camping on the target cell while the wireless device is in an RRC idle or inactive state with the cell.
  48. The non-transitory processor-readable medium of claim 47, wherein the processor-executable instructions are configured to cause the processor of the wireless  device to perform operations further comprising determining whether the wireless device is in an RRC idle or inactive state with the cell, wherein camping on the target cell comprises camping on the target cell in response to determining that the wireless device is in an RRC idle or inactive state with the cell.
  49. The non-transitory processor-readable medium of claim 47, wherein the processor-executable instructions are configured to cause the processor of the wireless device to perform operations further comprising determining whether the wireless device can camp on the target cell, wherein camping on the target cell comprises camping on the target cell in response to determining that the wireless device can camp on the target cell.
  50. The non-transitory processor-readable medium of claim 49, wherein the processor-executable instructions are configured to cause the processor of the wireless device to perform operations such that:
    determining whether the wireless device can camp on the target cell comprises determining whether a signal quality of the target cell exceeds a target cell connect threshold; and
    camping on the target cell comprises camping on the target cell in response to determining that the signal quality of the target cell exceeds the target cell connect threshold.
  51. The non-transitory processor-readable medium of claim 47, wherein the processor-executable instructions are configured to cause the processor of the wireless device to perform operations such that the target cell is part of a high space density network.
  52. The non-transitory processor-readable medium of claim 47, wherein the processor-executable instructions are configured to cause the processor of the wireless  device to perform operations such that the cell selection message is a non-access stratum message and includes base station security algorithm identifiers for a base station associated with the target cell.
PCT/CN2020/118708 2020-09-29 2020-09-29 New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion WO2022067469A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118708 WO2022067469A1 (en) 2020-09-29 2020-09-29 New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118708 WO2022067469A1 (en) 2020-09-29 2020-09-29 New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion

Publications (1)

Publication Number Publication Date
WO2022067469A1 true WO2022067469A1 (en) 2022-04-07

Family

ID=80949266

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118708 WO2022067469A1 (en) 2020-09-29 2020-09-29 New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion

Country Status (1)

Country Link
WO (1) WO2022067469A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080280567A1 (en) * 2003-07-11 2008-11-13 Interdigital Technology Corporation Wireless transmit receive unit having a transition state for transitioning from monitoring to duplex connected states and method
CN102316418A (en) * 2010-07-02 2012-01-11 中兴通讯股份有限公司 Method and device for realizing continuity of multimedia broadcast multicast service
WO2013025235A1 (en) * 2011-08-15 2013-02-21 Research In Motion Limited Service continuity for multimedia broadcast multicast service (mbms) for user equipment (ue) in rrc connected mode
CN104025655A (en) * 2011-11-04 2014-09-03 Lg电子株式会社 Method of cell reselection by applying supreme priority in wireless communication system and apparatus for the same
CN105637779A (en) * 2013-09-27 2016-06-01 联发科技股份有限公司 UE enhancement in FDD-TDD joint operation networks

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080280567A1 (en) * 2003-07-11 2008-11-13 Interdigital Technology Corporation Wireless transmit receive unit having a transition state for transitioning from monitoring to duplex connected states and method
CN102316418A (en) * 2010-07-02 2012-01-11 中兴通讯股份有限公司 Method and device for realizing continuity of multimedia broadcast multicast service
WO2013025235A1 (en) * 2011-08-15 2013-02-21 Research In Motion Limited Service continuity for multimedia broadcast multicast service (mbms) for user equipment (ue) in rrc connected mode
CN104025655A (en) * 2011-11-04 2014-09-03 Lg电子株式会社 Method of cell reselection by applying supreme priority in wireless communication system and apparatus for the same
CN105637779A (en) * 2013-09-27 2016-06-01 联发科技股份有限公司 UE enhancement in FDD-TDD joint operation networks

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RESEARCH IN MOTION UK LIMITED: "Further assistance for MBMS service continuity", 3GPP DRAFT; R2-124480-FURTHER-ASSISTANCE-MBMS-SERVICE-CONTINUITY, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Bratislava, Slovakia; 20121008 - 20121012, 28 September 2012 (2012-09-28), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050666333 *
VIVO: "Consideration on IDLE Measurement across Cells", 3GPP DRAFT; R2-1802007_CONSIDERATION ON IDLE MEASUREMENT ACROSS CELLS, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Athens, Greece; 20180226 - 20180302, 14 February 2018 (2018-02-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051399082 *

Similar Documents

Publication Publication Date Title
US20210127359A1 (en) Bandwidth Part (BWP) For Unicast/Multicast and Resource Allocation For Multicast
US11671849B2 (en) Autonomous beam switching
WO2021258259A1 (en) Determining a channel state for wireless communication
US11589394B2 (en) Managing beam failure recovery random access
WO2021147690A1 (en) Systems and methods for responding to a maximum permissible exposure condition
US20220279399A1 (en) User equipment (ue) mobility history information management
US11751195B2 (en) Control signaling for multicast communications
WO2021163919A1 (en) Performing cell selection prioritizing non-standalone operation cells
WO2022067469A1 (en) New cell selection scheduling method for mmtc high space density ue and network to reduce rach congestion
US11778545B2 (en) Coverage enhancement for initial access with feedback via PRACH sequence
US11523404B2 (en) Radio link prioritization
WO2022051985A1 (en) Managing a communication link for transfer control protocol communications
US20230403732A1 (en) Managing Downlink Traffic Reception And Cross-Link Interference
US11690022B2 (en) Managing transmit power control
WO2021258392A1 (en) Dynamic srs configuration based on cqi in 5g network
WO2021253369A1 (en) Methods for managing network communication
WO2021174435A1 (en) Managing a downlink bit rate
US20210105612A1 (en) User plane integrity protection (up ip) capability signaling in 5g/4g systems
US20220346025A1 (en) Early Uplink Transmit Power Control
US20230132963A1 (en) Managing End-To-End Quality Of Service (QoS) In A Multi-Network Communication Path
US20240171965A1 (en) Modem System Selection Optimization in WLAN-Only Mode
WO2022165826A1 (en) Frames-per-second thermal management
WO2021207933A1 (en) A method to avoid irat ping-pong and save power
WO2021174514A1 (en) Apparatus and method to recover packet-switched (ps) service quickly after non-default data subscription (dds) call end
WO2021097692A1 (en) Managing control channel monitoring

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955497

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955497

Country of ref document: EP

Kind code of ref document: A1