WO2022065188A1 - メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法 - Google Patents

メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法 Download PDF

Info

Publication number
WO2022065188A1
WO2022065188A1 PCT/JP2021/034080 JP2021034080W WO2022065188A1 WO 2022065188 A1 WO2022065188 A1 WO 2022065188A1 JP 2021034080 W JP2021034080 W JP 2021034080W WO 2022065188 A1 WO2022065188 A1 WO 2022065188A1
Authority
WO
WIPO (PCT)
Prior art keywords
methane oxidation
alumina
catalyst
methane
base material
Prior art date
Application number
PCT/JP2021/034080
Other languages
English (en)
French (fr)
Inventor
靖幸 伴野
大成 伊藤
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to JP2022551933A priority Critical patent/JPWO2022065188A1/ja
Publication of WO2022065188A1 publication Critical patent/WO2022065188A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/89Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust

Definitions

  • the present invention relates to a methane oxidation catalyst for oxidizing methane contained in gas, a methane oxidation laminated catalyst, an exhaust gas purification system using these, a method for producing a methane oxidation catalyst, and the like.
  • CNG compressed natural gas
  • LNG liquefied natural gas
  • city gas city gas
  • light oil kerosene, etc.
  • CO carbon monoxide
  • NO nitrogen monoxide
  • NOx nitrogen oxides
  • SOx sulfur oxides
  • HC unburned hydrocarbons
  • the exhaust gas emitted from a lean combustion gas engine such as a cogeneration system or a gas heat pump (GHP), and a bi-fuel engine (BF) or a dual fuel engine (BF) or a dual fuel engine in which CNG or LNG is used in combination with gasoline or light oil
  • a lean combustion gas engine such as a cogeneration system or a gas heat pump (GHP)
  • BF bi-fuel engine
  • BF dual fuel engine
  • a dual fuel engine in which CNG or LNG is used in combination with gasoline or light oil
  • the exhaust gas emitted from CNG-DFCI, LNG-DFCI, etc. may also contain a trace amount of methane.
  • platinum group elements such as platinum, palladium, and rhodium are supported on aluminum base material particles as catalytically active components, for example, Pd-supported alumina and Pt / Pd. Supported alumina and the like are known (see, for example, Patent Documents 1 to 3).
  • the catalysts described in Patent Documents 1 to 3 have a problem that they act in a high temperature region of, for example, 500 ° C. or higher and have low catalytic activity in a low temperature region of less than 500 ° C., and the oxidative activity of methane in such a low temperature region is high. Improvement is required.
  • the catalyst described in Patent Document 4 is found to have improved methane oxidation activity in the low temperature region as compared with the catalysts of Patent Documents 1 to 3, but the degree of improvement is not sufficient and there is still room for improvement. Further, since the catalyst described in Patent Document 5 uses tin, which can be a biological poison due to chemical action with organic compounds, ash, etc., from the viewpoint of safety during manufacturing and use, impact on the environment, etc. Therefore, the development of alternative products is required.
  • the present invention has been made in view of the above problems.
  • the purpose is to provide a novel methane oxidation catalyst, a methane oxidation laminated catalyst, an exhaust gas purification system using these, a method for producing a methane oxidation catalyst, etc., in which the methane catalyst activity is enhanced in a low temperature region of less than 500 ° C. To do.
  • the present inventors have diligently studied to solve the above problems. As a result, they have found that the above problems can be solved by using a composite catalyst in which Pd and Ni are supported on alumina-based base material particles, and have completed the present invention.
  • a methane oxidation catalyst for oxidizing methane contained in a gas which comprises alumina-based base material particles and composite particles containing Pd and Ni supported on the alumina-based base material particles.
  • Methane oxidation catalyst for oxidizing methane contained in a gas, which comprises alumina-based base material particles and composite particles containing Pd and Ni supported on the alumina-based base material particles.
  • alumina-based base metal particles include at least one selected from the group consisting of alkali metal elements, alkaline earth metal elements, transition elements, and rare earth elements.
  • a methane oxidation laminated catalyst for oxidizing methane contained in a gas comprising a catalyst carrier and a catalyst layer supported on the catalyst carrier, wherein the catalyst layer is an alumina-based base metal particle.
  • a methane oxidation laminated catalyst comprising a methane oxidation catalyst containing composite particles containing Pd and Ni supported on the alumina-based base metal particles.
  • the methane oxidation laminated catalyst further has the technical features described in any one of the above [1] to [10].
  • a methane oxidation catalyst containing alumina-based base material particles and composite particles containing Pd and Ni supported on the alumina-based base material particles is arranged in the exhaust gas flow path of the exhaust gas discharged from the internal combustion engine.
  • an exhaust gas purification system is arranged in the exhaust gas flow path of the exhaust gas discharged from the internal combustion engine.
  • this exhaust gas purification system it is preferable that this exhaust gas purification system further has the technical features described in any one of the above [1] to [14].
  • Alumina-based base material particles are immersed in a solution containing Pd salt and Ni salt, Pd and Ni are co-supported on the alumina-based base material particles, and Pd and Ni are placed on the alumina-based base material particles.
  • a method for producing a methane oxidation catalyst which forms composite particles on which the particles are supported.
  • the method for producing the methane oxidation catalyst further has the technical features described in any one of the above [1] to [10].
  • a novel methane oxidation catalyst having enhanced methane catalytic activity in a low temperature region of less than 500 ° C., a methane oxidation laminated catalyst, an exhaust gas purification system using these, a method for producing a methane oxidation catalyst, etc. can be realized.
  • Example 6 is a graph showing the particle diameters of Pd particles on the aluminum-based base material particles of Examples 2, 6 and 7, and Comparative Example 1. It is a graph which shows the methane oxidation removal performance of Examples 10-11. It is a graph which shows the methane oxidation removal performance of Examples 7, 12 to 16.
  • the methane oxidation catalyst 100 of the present embodiment is an oxidation catalyst for oxidizing methane contained in the gas, and is a Pd supported on the alumina-based base material particles 11 and the surface 11a of the alumina-based base material particles 11. It is characterized by containing composite particles 21 containing Ni and Ni.
  • the alumina-based base material particles 11 are particles containing alumina as a constituent component, and are carrier particles that support Pd and Ni on the surface 11a thereof.
  • alumina means aluminum oxide such as ⁇ -alumina, ⁇ -alumina, ⁇ -alumina, and ⁇ -alumina, as well as boehmite [ ⁇ -AlO (OH)] and diaspoa [ ⁇ -AlO ( ⁇ -AlO). OH)] and the like are aluminum oxide hydroxides or alumina hydrates Al 2 O 3 ⁇ n (H 2 O)) and the like.
  • alumina one type can be used alone, or two or more types can be used in any combination and ratio.
  • alumina ⁇ -alumina, ⁇ -alumina, and boehmite are preferable.
  • alkali metal elements such as potassium and sodium, alkaline earth metal elements such as barium and magnesium, transition elements such as iron, cobalt and titanium, cerium, lanthanum, neodymium and zirconium, It may contain other components such as rare earth elements such as praseodymium. However, these contents are preferably 30% by mass or less from the viewpoint of maintaining a high BET specific surface area of the alumina-based base material particles 11.
  • one kind may be used alone, or two or more kinds may be used in any combination and ratio.
  • the particle shape of the alumina-based base material particles 11 is not particularly limited, and may be, for example, spherical, ellipsoidal, crushed, flat, indefinite, or the like.
  • the average particle diameter (D50) of the alumina-based base material particles 11 can be appropriately set according to the desired performance, and is not particularly limited, but maintains a large specific surface area and enhances heat resistance to increase the number of its own catalytically active sites. From the viewpoint of allowing the particles to grow, the thickness is preferably 5 to 200 ⁇ m, more preferably 10 to 150 ⁇ m, and even more preferably 15 to 100 ⁇ m.
  • the average particle size D50 means a median diameter measured by a laser diffraction type particle size distribution measuring device (for example, a laser diffraction type particle size distribution measuring device SALD-7100 manufactured by Shimadzu Corporation).
  • the pore diameter of the alumina-based base material particles 11 used here can be appropriately set according to the desired performance and is not particularly limited, but is 5 nm or more and 30 nm or less from the viewpoint of improving the catalytic activity of methane in a low temperature region of less than 500 ° C. Is more preferable, and more preferably 7 nm or more and 29 nm or less, and further preferably 10 nm or more and 28 nm or less.
  • the pore diameter of the alumina-based base material particles 11 means a value calculated by the mercury intrusion method.
  • the pore volume is measured under the conditions described in Examples described later, and the value of the peak top position in the pore distribution curve of the pore diameter-differential pore volume obtained at this time is set as the alumina-based base material particles.
  • the pore diameter is 11.
  • the pore volume of the alumina-based base material particles 11 can be appropriately set according to the desired performance and is not particularly limited, but is preferably 1.0 cc / g or more and 3.0 cc / g or less, and more preferably 1.2 cc / g. It is g or more and 2.8 cc / g or less, more preferably 1.5 cc / g or more and 2.5 cc / g or less.
  • the pore volume of the alumina-based base material particles 11 means a value calculated by the mercury intrusion method. Here, the pore volume is measured under the conditions described in Examples described later.
  • Pd and Ni are supported as catalytically active components on the surface 11a of the above-mentioned alumina-based base material particles 11.
  • the Pd and Ni on the surface 11a of the alumina-based base material particles 11 can change to a simple substance of a metal, an oxide, or the like depending on the external environment. Therefore, the oxidation state of Pd and Ni is not particularly limited, but it is preferably particles in a reducing atmosphere.
  • the molar ratio (Pd / Ni) of Pd and Ni contained in the composite particle 21 can be appropriately set according to the desired performance and is not particularly limited, but is preferably 0.25/1 to 1/5, more preferably 0. .5 / 1 to 1/4, more preferably 1/1 to 1/3.
  • the content of Pd and Ni supported on the alumina-based base material particles 11 can be appropriately determined according to the desired performance and is not particularly limited, but is not particularly limited, but is a composite particle from the viewpoint of improving the low temperature catalytic activity below 500 ° C.
  • the metal equivalent amount with respect to the total amount of 21 is preferably 3 to 20% by mass, more preferably 4 to 17% by mass, and further preferably 5 to 15% by mass, respectively.
  • the average particle diameter (D50) of Pd on the surface 11a of the alumina-based base material particles 11 is preferably 0.5 nm or more and 3.0 nm or less, more preferably 0.7 nm or more and 2.5 nm or less, and further preferably 0.9 nm. It is 2.0 nm or less.
  • the composite particles 21 do not substantially contain mercury, lead, tin, zinc, and oxides thereof. These can be biotoxic due to chemical action with organic compounds, ash and the like. Therefore, the content ratio of mercury, lead, tin, zinc, and their oxides is preferably less than 10% by mass, more preferably less than 3% by mass, still more preferably 1 in terms of metal equivalent to the total amount of the composite particles 21. It is less than mass%, particularly preferably less than 0.5% by mass, and most preferably less than 0.1% by mass.
  • the methane oxidation catalyst 100 of the present embodiment may contain other components as long as it contains the above-mentioned composite particles 21.
  • the other components include catalytically active components other than Pd and Ni (hereinafter, may be simply referred to as “other catalytically active components”), and base material particles other than the above-mentioned alumina-based base material particles 11. In the above, it may be simply referred to as "other base material particles”) and the like.
  • Examples of other catalytically active components include platinum group elements other than Pd, specifically platinum (Pt), rhodium (Rh), iridium (Ir), ruthenium (Ru), and osmium (Os).
  • platinum group elements one type may be used alone, or two or more types may be used in any combination and ratio.
  • Other base material particles include alumina-based particles in which Pd and / or Ni are not supported, metal oxides such as ceria and zirconia; zirconia and ceria-zirconia doped with rare earth elements and / or transition elements, and the like.
  • the proportion of these other catalytically active components and other base metal particles used is not particularly limited, but is preferably 0.01 to 30% by mass in total, and more preferably in total, with respect to the total amount of the methane oxidation catalyst 100. It is 0.01 to 15% by mass, more preferably 0.01 to 5% by mass in total.
  • the methane oxidation catalyst 100 of the present embodiment may contain additives known in the art in addition to the above-mentioned composite particles 21 and other components.
  • the additive include, but are not limited to, various binders, dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, viscosity adjusters and the like.
  • the proportion of these additives used is not particularly limited, but is preferably 0.01 to 10% by mass in total, more preferably 0.05 to 8% by mass in total, and total to the total amount of the methane oxidation catalyst 100. It is more preferably 0.1 to 5% by mass.
  • the above-mentioned composite particles 21 can be produced according to a conventional method, and the production method thereof is not particularly limited. From the viewpoint of reproducibility, simplicity, and low cost, the evaporation-drying method (impregnation method, spray-drying method, etc.) is preferable.
  • the alumina-based base material particles 11 (hereinafter, may be referred to as “raw material alumina powder”) is immersed in a solution containing a Pd salt, and Pd is supported on the surface 11a of the alumina-based base material particles 11. Then, the composite particles 21 can be obtained by further immersing the particles in a solution containing a Ni salt and supporting Ni on the surface 11a of the alumina-based base material particles 11.
  • Pd ions and / or Ni ions are adsorbed (adhered) to the surface 11a of the alumina-based base material particles 11 in a highly dispersed state.
  • the order in which Pd and Ni are supported can be reversed.
  • the alumina-based base material particles 11 are immersed in a solution containing a Pd salt and a Ni salt, and alumina is used. A method of co-supporting Pd and Ni on the surface 11a of the system base material particles 11 can be mentioned.
  • the BET specific surface area of the raw material alumina powder is not particularly limited, but can be appropriately set depending on the high dispersion support of Pd and Ni, gas diffusivity, etc., and is not particularly limited, but is preferably 10 to 400 m 2 / g, more preferably. Is 20 to 350 m 2 / g, more preferably 50 to 300 m 2 / g.
  • As the alumina powder many grades are commercially available from domestic and overseas manufacturers, and the commercially available products of various grades can be used as the alumina-based base material particles 11 (raw material alumina powder) of the present embodiment. can. Further, the above-mentioned alumina-based base material particles 11 (raw material alumina powder) can also be produced by a method known in the art.
  • the solution containing the Pd salt and / or the Ni salt is not particularly limited, but the Pd salt and / or the Ni salt and other components and additives to be blended as necessary are mixed with water, and the Pd salt and / or A Ni salt-containing aqueous solution is preferably used.
  • the form of the salt used here may be selected according to a conventional method and is not particularly limited, but is generally limited to hydrochloride, oxyhydrochloride, nitrate, oxynitrate, carbonate, phosphate, acetate and shu. Acidates, citrates, ammine complex salts and the like are preferred.
  • the content ratio of Pd ion and / or Ni ion in the aqueous solution can be appropriately adjusted so that the content ratio of Pd and Ni in the obtained methane oxidation catalyst 100 is a desired content ratio, and is not particularly limited.
  • the above-mentioned alumina-based base material particles 11 (raw material alumina powder) are impregnated or immersed in such a solution to remove the solvent (for example, water), and if necessary, a drying treatment and / or about 200 to 600 ° C.
  • the heat treatment (firing treatment) of the above the composite particles 21 containing Pd and Ni supported on the surface 11a of the alumina-based base material particles 11 can be obtained with good productivity.
  • the firing conditions may be in accordance with a conventional method and are not particularly limited.
  • the firing atmosphere may be any of an oxidizing atmosphere, a reducing atmosphere, and a neutral atmosphere. From the viewpoint of productivity and the like, generally, it is preferably 0.1 to 12 hours at 150 ° C to 1300 ° C, and more preferably 0.1 to 4 hours at 350 ° C to 600 ° C.
  • vacuum drying may be performed using a vacuum dryer or the like, and drying treatment may be performed at about 50 ° C. to 200 ° C. for about 1 to 48 hours.
  • the obtained composite particle 21 has a composite structure in which Pd and Ni are co-supported on the surface 11a of the alumina-based base particle 11, and these Pd and Ni function as main catalytically active sites.
  • the particle size of the composite particles 21 may be adjusted according to the required performance.
  • the particle size of the composite particle 21 can be adjusted according to a conventional method, and is not particularly limited.
  • the composite particles 21 are preferably wet-milled to have an average particle diameter (D90) of 3 to 50 ⁇ m, more preferably 5 to 40 ⁇ m, and even more preferably 10 to 30 ⁇ m. ..
  • the methane oxidation catalyst 100 of the present embodiment exhibits a catalytic ability to oxidize (oxidize and remove) methane by exposing the composite particles 21 to a gas containing methane.
  • the form of use of the methane oxidation catalyst 100 is not particularly limited. For example, it can be used as it is in the form of the catalyst powder which is an aggregate of the composite particles 21 described above. Further, for example, the composite particles 21 can be molded into an arbitrary shape to obtain a granular or pellet-shaped molding catalyst.
  • various known dispersion devices, kneading devices, and molding devices can be used.
  • the methane oxidation catalyst 100 of the present embodiment can also be used in a form of being supported on a catalyst carrier such as a monolith carrier.
  • This form can be defined as a laminated catalyst comprising a catalyst carrier and a catalyst layer containing a methane oxidation catalyst 100 (composite particles 21) supported on the catalyst carrier.
  • the catalyst area of the laminated catalyst may be a single layer having only one catalyst layer or a laminated body composed of two or more catalyst layers, and is known in the art as one or more catalyst layers. It may be any of the laminated bodies in which one or more other layers are combined.
  • a catalyst carrier known in the art can be appropriately selected.
  • Typical examples thereof include ceramic monolith carriers made of cordierite, silicon carbide, silicon nitride and the like, metal honeycomb carriers made of stainless steel and the like, wire mesh carriers made of stainless steel and the like, but are not particularly limited thereto. It should be noted that these can be used alone or in any combination and ratio of two or more.
  • the method for forming the catalyst layer may be performed according to a conventional method, and is not particularly limited. Various known coating methods, wash coat methods, and zone coat methods can be applied.
  • the methane oxidation catalyst 100 of the present embodiment of the present embodiment an aqueous medium, and optionally a binder known in the art, other catalysts, co-catalyst particles, OSC material, base material particles, addition.
  • a slurry-like mixture can be prepared by mixing the agent and the like in a desired blending ratio, and the obtained slurry-like mixture can be applied to the surface of the catalyst carrier, dried and fired.
  • an acid or a base can be blended for pH adjustment, or a surfactant, a dispersion resin, or the like for adjusting the viscosity or improving the slurry dispersibility can be blended.
  • a surfactant, a dispersion resin, or the like for adjusting the viscosity or improving the slurry dispersibility can be blended.
  • pulverization and mixing using a ball mill or the like can be applied, but other pulverization or mixing methods can also be applied.
  • the catalyst layer containing the methane oxidation catalyst 100 of the present embodiment is provided on the catalyst carrier by drying and firing according to a conventional method (methane oxidation laminated catalyst). ) Can be obtained.
  • the coating amount of the methane oxidation catalyst 100 can be appropriately set according to the desired performance and is not particularly limited, but is 100 g / L or more with respect to 1 L of the catalyst carrier as a base material from the viewpoint of the coating amount and pressure loss. It is preferably 200 g / L or less, more preferably 100 g / L or more and 180 g / L or less, and further preferably 110 g / L or more and 150 g / L or less.
  • the coating amount of Pd can be appropriately set according to the desired performance and is not particularly limited, but is preferably 4.5 g / L or more and 16.0 g / L or less with respect to 1 L of the catalyst carrier as a base material. It is more preferably 5.0 g / L or more and 14.0 g / L or less, and further preferably 6.0 g / L or more and 12.0 g / L or less.
  • the amount of Ni coated can be appropriately set according to the desired performance and is not particularly limited, but is preferably 1.0 g / L or more and 11.0 g / L or less with respect to 1 L of the catalyst carrier as a base material. It is more preferably 2.0 g / L or more and 9.5 g / L or less, and further preferably 5.0 g / L or more and 8.0 / L or less.
  • the methane oxidation catalyst 100 of the present embodiment is useful as an oxidation catalyst for oxidizing methane contained in the gas.
  • oxidation catalyst for oxidizing methane contained in the gas.
  • the oxidation catalyst of methane contained in the gas discharged from the gas such as, the methane oxidation catalyst 100 of the present embodiment can be used.
  • the methane oxidation catalyst 100 of the present embodiment is exhaust gas discharged from a compressed ignition internal combustion engine such as a diesel engine, a bi-fuel engine (BF) or a dual fuel engine (CNG-DFCI, LNG-DFCI, etc.) using the compressed ignition internal combustion engine. It is particularly useful as an oxidation catalyst for methane contained in.
  • a compressed ignition internal combustion engine such as a diesel engine, a bi-fuel engine (BF) or a dual fuel engine (CNG-DFCI, LNG-DFCI, etc.
  • DOC diesel oxidation catalyst
  • DOC particulate substance such as soot contained in the exhaust gas
  • Diesel Particulate Filler for collecting PM: Particulate matter, Catalyzed Particulate Filler (CPF) or Catalyzed Soot Filter (CSF); Lean condition A lean NOx particulate filter (LNT, Lean NOx Trap) that absorbs NOx underneath and releases NOx under rich conditions to oxidize CO and HC to CO 2 and H 2 O and reduce NOx to N 2 . It can be carried out by appropriately providing a catalytic reduction (SCR: Selective Catalytic Reduction catalyst); an ammonia oxidation catalyst (AMOX: Ammonia Oxidation catalyst) or the like. The arrangement order and the number of these arrangements can be appropriately changed according to the required performance, and are not limited to the above example.
  • SCR Selective Catalytic Reduction catalyst
  • AMOX ammonia oxidation catalyst
  • the present invention is not limited to the following examples as long as the gist of the present invention is not exceeded. That is, the materials, amounts used, ratios, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention.
  • the values of various production conditions and evaluation results in the following examples have meanings as preferable values of the upper limit or the lower limit in the embodiment of the present invention, and the preferable range is the preferable value of the upper limit or the lower limit described above.
  • the preferred range may be a range defined by a combination of the above-mentioned upper limit or lower limit value and the value of the following examples or the values of the examples.
  • the pore distribution of the alumina-based base material particles 11 is determined by the mercury intrusion method.
  • 110.2 g of alumina-based base material particles are used as a sample, and a mercury porosimeter (manufactured by Thermo Fisher Scientific, trade names: PASCAL140 and PASCAL440) is used under the conditions of a mercury contact angle of 130 ° and a surface tension of 484 dyn / cm.
  • the pore volume is measured below, and the value (mode diameter) of the peak top position in the pore distribution curve of the pore diameter-differential pore volume obtained at this time is taken as the pore diameter of the alumina-based base material particles 11.
  • Average particle diameter D50 of alumina-based base material particles 11 The particle size distribution is measured using a laser diffraction type particle size distribution measuring device (for example, a laser diffraction type particle size distribution measuring device SALD-7100 manufactured by Shimadzu Corporation), and the median diameter thereof is the average particle size of the alumina-based base material particles 11. Let it be D50.
  • a laser diffraction type particle size distribution measuring device for example, a laser diffraction type particle size distribution measuring device SALD-7100 manufactured by Shimadzu Corporation
  • BET specific surface area For the BET specific surface area, use a specific surface area / pore distribution measuring device (trade name: BELSORP-mini II, manufactured by Microtrac Bell Co., Ltd.) and analysis software (trade name: BEL_Master, manufactured by Microtrac Bell Co., Ltd.). Then, the BET specific surface area is obtained by the BET one-point method.
  • BELSORP-mini II manufactured by Microtrac Bell Co., Ltd.
  • analysis software trade name: BEL_Master, manufactured by Microtrac Bell Co., Ltd.
  • Example 1 Alumina-based base particle (manufactured by Sasol, trade name: TH100 / 150, BET specific surface area: 150 m 2 / g, average particle diameter D50: 32 ⁇ m, pore diameter (peak value): 17.2 nm, pore volume: 1.82 cc / G) was used.
  • An aqueous solution of Pd nitrate and an aqueous solution of nickel (II) nitrate hexahydrate were mixed to prepare an aqueous solution containing a Pd salt and a Ni salt (containing 3.6% by mass in terms of Pd and 1.6% by mass in terms of Ni). ..
  • the aqueous solution containing the Pd salt and the Ni salt is impregnated with the above alumina-based base material particles to co-support Pd and Ni on the alumina-based base material particles, and then fired at 500 ° C. for 1 hour.
  • the particles are kneaded by a wet milling method until the average particle diameter D90 is within the range of 14 to 18 ⁇ m, and the methane oxidation of Example 1 is carried out.
  • a catalyst (containing 3.0% by mass in terms of Pd and 1.6% by mass in terms of Ni) was obtained.
  • Comparative Example 1 The same procedure as in Example 1 was carried out except that the use of the Nitric acid Nitric acid aqueous solution was omitted, to obtain the methane oxidation catalyst of Comparative Example 1 (containing 3.0% by mass in terms of Pd).
  • Example 2 The same procedure as in Example 1 was carried out except that an aqueous solution of tetraammine platinum (II) nitrate was used instead of the aqueous solution of Ni nitric acid. (Containing 0% by mass) was obtained.
  • II tetraammine platinum
  • Example 3 The same procedure as in Example 1 was carried out except that an aqueous solution of cerium (IV) nitrate hexahydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 3 (containing 3.0% by weight in Pd conversion, converted to Ce). (Containing 10.0% by mass) was obtained.
  • Example 4 The same procedure as in Example 1 was carried out except that an aqueous solution of magnesium (II) nitrate hexahydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 4 (containing 3.0% by mass in terms of Pd, converted to Mg). (Containing 0.7% by mass) was obtained.
  • an aqueous solution of magnesium (II) nitrate hexahydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 4 (containing 3.0% by mass in terms of Pd, converted to Mg). (Containing 0.7% by mass) was obtained.
  • Example 5 The same procedure as in Example 1 was carried out except that an aqueous solution of cobalt (II) nitrate hexahydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 5 (containing 3.0% by mass in terms of Pd, converted to Co). (Containing 1.7% by mass) was obtained.
  • an aqueous solution of cobalt (II) nitrate hexahydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 5 (containing 3.0% by mass in terms of Pd, converted to Co). (Containing 1.7% by mass) was obtained.
  • Example 6 The same procedure as in Example 1 was carried out except that an aqueous solution of barium (II) acetate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 6 (containing 3.0% by mass in terms of Pd and 3.9 in terms of Ba). (Containing% by mass) was obtained.
  • Example 7 The same procedure as in Example 1 was carried out except that an aqueous solution of copper (II) nitrate trihydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 7 (containing 3.0% by mass in terms of Pd, converted to Cu). (Containing 1.8% by mass) was obtained.
  • Example 8 The same procedure as in Example 1 was carried out except that an aqueous solution of iron (III) nitrate hydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 8 (containing 3.0% by mass in terms of Pd, converted to Fe). (Containing 1.6% by mass) was obtained.
  • Example 9 The same procedure as in Example 1 was carried out except that an aqueous solution of yttrium (III) nitrate hexahydrate was used instead of the aqueous solution of Ni nitric acid, and the methane oxidation catalyst of Comparative Example 9 (containing 3.0% by mass in Pd conversion, converted to Y). (Containing 2.5% by mass) was obtained. Used as.
  • Example 10 The same procedure as in Example 1 was carried out except that an aqueous solution of cerium (IV) nitrate hexahydrate was used instead of the aqueous solution of Ni nitrate, and the methane oxidation catalyst of Comparative Example 10 (containing 3.0% by mass in terms of Pd, converted to Ce). (Containing 3.9% by mass) was obtained.
  • Comparative Example 11 The same procedure as in Example 1 was carried out except that a praseodymium nitrate (III) hexahydrate aqueous solution was used instead of the Nitric acid Nitric acid aqueous solution, and the methane oxidation catalyst of Comparative Example 11 (containing 3.0% by mass in Pd conversion, Pr conversion). (Containing 4.0% by mass) was obtained.
  • a praseodymium nitrate (III) hexahydrate aqueous solution was used instead of the Nitric acid Nitric acid aqueous solution, and the methane oxidation catalyst of Comparative Example 11 (containing 3.0% by mass in Pd conversion, Pr conversion). (Containing 4.0% by mass) was obtained.
  • Comparative Example 12 The same procedure as in Example 1 was carried out except that an aqueous solution of neodymium (III) nitrate hexahydrate was used instead of the aqueous solution of Ni nitric acid, and the methane oxidation catalyst of Comparative Example 12 (containing 3.0% by mass in Pd conversion, converted to Nd). (Containing 4.1% by mass) was obtained.
  • Example 2 An aqueous solution containing a Pd salt and a Ni salt obtained by mixing an aqueous solution of Pd nitrate and an aqueous solution of nickel (II) nitrate hexahydrate (containing 3.6% by mass in terms of Pd and 2.0% by mass in terms of Ni).
  • Alumina-based base particle (manufactured by Sasol, trade name: TH100 / 150, BET specific surface area: 150 m 2 / g, average particle diameter D50: 32 ⁇ m, pore diameter (peak value): 17.2 nm, pore volume: 1 .82cc / g) was impregnated to co-support Pd and Ni on the alumina-based base material particles, and then fired at 450 ° C. for 0.5 hours to cause Pd and Ni on the alumina-based base material particles.
  • the particles were kneaded by a wet milling method until the average particle diameter D90 was within the range of 14 to 18 ⁇ m, and the methane oxidation catalyst of Example 2 (containing 3.6% by mass in terms of Pd) was kneaded. , 2.0% by mass in terms of Ni) was obtained.
  • the obtained methane oxidation catalyst of Example 2 was wet-coated on a cordierite carrier (manufactured by NGK, ⁇ 25.4 x 50 mm) (coating amount: 125 g / L, Pd equivalent coating amount: 4.5 g / L,
  • the methane oxidation laminated catalyst of Example 2 was obtained by firing treatment at 450 ° C. for 30 minutes at a Ni equivalent coating amount: 2.5 g / L).
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Sasol, trade name: Silarox 1.5 / 100, BET specific surface area: 100 m 2 / g, average particle diameter D50: 37 ⁇ m, pore diameter (peak value) :.
  • the same procedure as in Example 2 was carried out except that the particle volume was changed to 11.6 nm and the pore volume: 0.46 cc / g) to obtain the methane oxide laminated catalyst of Example 3.
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Solvay, trade name: MI386, BET specific surface area: 200 m 2 / g, average particle diameter D50: 22 ⁇ m, pore diameter (peak value): 10.4 nm, The same procedure as in Example 2 was carried out except that the pore volume was changed to 1.00 cc / g) to obtain the methane oxide lamination catalyst of Example 4.
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Sasol, trade name: TH130 / 130, BET specific surface area: 130 m 2 / g, average particle diameter D50: 22 ⁇ m, pore diameter (peak value): 26.
  • the same procedure as in Example 2 was carried out except that the particle volume was changed to 2 nm and the pore volume: 2.29 cc / g) to obtain the methane oxide lamination catalyst of Example 5.
  • Example 6 The same procedure as in Example 2 was carried out except that the amount of supported Ni was changed to 3 times the amount of supported Pd, and the methane oxidation catalyst of Example 6 (containing 3.6% by mass in Pd conversion, 6.0 in Ni conversion) was carried out. (Containing% by mass) was obtained.
  • the obtained methane oxidation catalyst of Example 6 was wet-coated on a cordierite carrier ( ⁇ 25.4 x 50 mm) (coating amount: 125 g / L, Pd equivalent coating amount: 4.5 g / L, Ni equivalent coating). Amount: 7.4 g / L) and firing treatment at 450 ° C. for 30 minutes to obtain the methane oxidation laminated catalyst of Example 6.
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Sasol, trade name: TH130 / 130, BET specific surface area: 130 m 2 / g, average particle diameter D50: 22 ⁇ m, pore diameter (peak value): 26.
  • the same procedure as in Example 6 was carried out except that the particle volume was changed to 2 nm and the pore volume: 2.29 cc / g) to obtain the methane oxide lamination catalyst of Example 7.
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Sasol, trade name: TH100 / 100, BET specific surface area: 100 m 2 / g, average particle diameter D50: 29 ⁇ m, pore diameter (peak value): 26.
  • the same procedure as in Example 6 was carried out except that the particle volume was changed to 7 nm and the pore volume: 1.78 cc / g) to obtain the methane oxide lamination catalyst of Example 8.
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Sasol, trade name: TM100 / 150, BET specific surface area: 150 m 2 / g, average particle diameter D50: 27 ⁇ m, pore diameter (peak value): 24.
  • the same procedure as in Example 6 was carried out except that the particle volume was changed to 8 nm and the pore volume: 1.60 cc / g) to obtain the methane oxide lamination catalyst of Example 9.
  • Example 10 Alumina-based base material particles (manufactured by Sasol, trade name) in an aqueous solution containing a Pd salt and a Ni salt obtained by mixing an aqueous solution of tetraammine palladium (II) chloride hydrate and an aqueous solution of nickel (II) nitrate hexahydrate. : TH100 / 150, BET specific surface area: 150 m 2 / g, average particle diameter D50: 32 ⁇ m, pore diameter (peak value): 17.2 nm, pore volume: 1.82 cc / g) to impregnate the alumina-based mother.
  • Pd and Ni are co-supported on the material particles and then fired at 450 ° C. for 0.5 hours to form composite particles in which Pd and Ni are supported on the alumina-based base material particles, and then wet milling.
  • the particles are kneaded until the average particle size D90 is within the range of 14 to 18 ⁇ m to obtain the methane oxidation catalyst of Example 10 (containing 3.6% by mass in terms of Pd and 6.0% by mass in terms of Ni). rice field.
  • the obtained methane oxidation catalyst of Example 10 was wet-coated on a cordierite carrier (manufactured by NGK, ⁇ 25.4 x 50 mm) (coating amount: 125 g / L, Pd equivalent coating amount: 4.5 g / L, Ni-equivalent coating amount: 7.4 g / L))) was fired at 450 ° C. for 30 minutes to obtain the methane oxidation lamination catalyst of Example 10.
  • the alumina-based base particle to be used is an alumina-based base particle (manufactured by Sasol, trade name: TH130 / 130, BET specific surface area: 130 m 2 / g, average particle diameter D50: 22 ⁇ m, pore diameter (peak value): 26.
  • the same procedure as in Example 10 was carried out except that the particle volume was changed to 2 nm and the pore volume: 2.29 cc / g) to obtain the methane oxide lamination catalyst of Example 11.
  • Example 12 to 16 The same procedure as in Example 7 was carried out except that the amount of coating applied during wet coating was changed as shown in Table 2, to obtain methane oxidation laminated catalysts of Examples 12 to 16.
  • the methane oxidation catalyst, the methane oxidation laminated catalyst, and the like of the present invention have enhanced catalytic activity of methane contained in the gas in a low temperature region of less than 500 ° C., compressed natural gas (CNG), liquefied natural gas, etc.
  • CNG compressed natural gas
  • oxidation catalyst for methane contained in gas discharged from (LNG) city gas, light oil, kerosene and other boilers, heating furnaces, gas engines, gas turbines, dilute combustion gas engines, and other internal combustion engines.
  • oxidation catalyst for methane contained in exhaust gas discharged from compression ignition internal combustion engines such as diesel engines, bifuel engines (BF) and dual fuel engines (CNG-DFCI, LNG-DFCI, etc.) using the same. It can be effectively used.
  • compression ignition internal combustion engines such as diesel engines, bifuel engines (BF) and dual fuel engines (CNG-DFCI, LNG-DFCI, etc.) using the same. It can be effectively used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Biomedical Technology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Toxicology (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

500℃未満の低温領域でのメタン触媒活性が高められた、新規なメタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法等を提供する。ガス中に含まれるメタンを酸化するためのメタン酸化触媒であり、アルミナ系母材粒子、及び前記アルミナ系母材粒子上に担持されたPdとNiとを含有する複合粒子を含む、メタン酸化触媒。

Description

メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法
 本発明は、ガス中に含まれるメタンを酸化するためのメタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法等に関する。
 圧縮天然ガス(CNG)、液化天然ガス(LNG)、都市ガス、軽油、灯油等を燃料として用いるボイラー、加熱炉、ガスエンジン、ガスタービン等から排出される排ガスは、一酸化炭素(CO)、一酸化窒素(NO)、窒素酸化物(NOx)、硫黄酸化物(SOx)等の他に、少量の未燃焼の炭化水素(HC)を含み得る。また、コージェネレーションシステムやガスヒートポンプ(GHP)等の希薄燃焼ガスエンジンから排出される排ガスについても同様であり、CNG又はLNGとガソリン又は軽油とを併用するバイフューエルエンジン(BF)やデュアルフューエルエンジン(CNG-DFCI、LNG-DFCI等)から排出される排ガスにおいても同様である。また、軽油等を燃料とする内燃機関、例えばディーゼルエンジン等から排出される排ガスについても微量のメタンを含む場合がある。
 これらの各成分は、環境汚染の原因となるため、浄化処理して排出する必要がある。しかしながら、排ガス中に含まれ得る炭化水素の中でも、とりわけメタンは、化学的安定性が比較的に高いため、十分な浄化率(メタン除去率)が得られ難いという側面がある。この傾向は、希薄燃焼ガスエンジンのような希薄燃焼方式の場合に、その排ガス中に過剰の酸素が存在するため、さらには、多量のNOxや水蒸気が共存するため、より顕在化する。
 従来、炭化水素の酸化触媒としては、触媒活性成分として白金、パラジウム、ロジウム等の白金族元素(PGM:Platinum Group Metal)をアルミア系母材粒子上に担持した、例えばPd担持アルミナやPt/Pd担持アルミナ等が知られている(例えば、特許文献1~3参照)。
 また、低温域でのメタン酸化活性や高湿耐久性等を高めるために、これらのPd担持アルミナやPt/Pd担持アルミナ等とともに、SiO、TiO、MgO,CaO,ZrO超等の高疎水性酸化物やMgO、MgAl、CeO、Y、Nd、ZrO等の固体塩基性が高い酸化物を併用する試み(例えば、特許文献4参照)、SnOを併用する試み(例えば、特許文献5参照)がなされている。
米国特許第5131224号 米国特許第5216875号 米国特許第5384300号 特開2003-071288号公報 特表2006-521203号公報
 しかしながら、特許文献1~3に記載の触媒は、例えば500℃以上の高温領域において作用し、500℃未満の低温領域での触媒活性が低いという問題があり、かかる低温領域におけるメタンの酸化活性の向上が求められている。
 一方、特許文献4に記載の触媒は、特許文献1~3の触媒に対して低温領域におけるメタンの酸化活性の向上は認められるもの、その向上程度は十分ではなく、未だ改善余地がある。また、特許文献5に記載の触媒は、有機化合物やアッシュ等との化学的作用により生体毒となり得るスズを使用しているため、製造時や使用時の安全性や環境への影響等の観点から、代替品の開発が求められる。
 本発明は、上記課題に鑑みてなされたものである。その目的は、500℃未満の低温領域でのメタン触媒活性が高められた、新規なメタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法等を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討した。その結果、アルミナ系母材粒子上にPd及びNiが担持された複合触媒を用いることで、上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は、以下に示す種々の具体的態様を提供する。
[1]ガス中に含まれるメタンを酸化するためのメタン酸化触媒であり、アルミナ系母材粒子、及び前記アルミナ系母材粒子上に担持されたPdとNiとを含有する複合粒子を含む、メタン酸化触媒。
[2]前記アルミナ系母材粒子が、5nm以上30nm以下の細孔径を有する[1]に記載のメタン酸化触媒。
[3]前記アルミナ系母材粒子が、5μm以上200μm以下の平均粒子径D50を有する[1]又は[2]に記載のメタン酸化触媒。
[4]PdとNiの含有モル比(Pd/Ni)が、1/1~1/3である[1]~[3]のいずれか一項に記載のメタン酸化触媒。
[5]Pd及びNiの含有量が、前記複合粒子の総量に対する金属換算量で、それぞれ3~20質量%である[1]~[4]のいずれか一項に記載のメタン酸化触媒。
[6]前記アルミナ系母材粒子が、α-アルミナ、γ-アルミナ、及びベーマイトよりなる群から選択される1種以上を含む[1]~[5]のいずれか一項に記載のメタン酸化触媒。
[7]前記アルミナ系母材粒子が、アルカリ金属元素、アルカリ土類金属元素、遷移元素、及び希土類元素よりなる群から選択される1種以上を含む[1]~[6]のいずれか一項に記載のメタン酸化触媒。
[8]前記アルミナ系母材粒子が、1.5cc/g以上2.5cc/g以下の細孔容積を有する[1]~[7]のいずれか一項に記載のメタン酸化触媒。
[9]前記ガスが、内燃機関から排出される排ガスであ[1]~[8]のいずれか一項に記載のメタン酸化触媒。
[10]前記ガスが、メタンを燃料として使用する内燃機関から排出される排ガスである[1]~[9]のいずれか一項に記載のメタン酸化触媒。
[11]ガス中に含まれるメタンを酸化するためのメタン酸化積層触媒であり、触媒担体、並びに、前記触媒担体上に支持された触媒層を備え、前記触媒層は、アルミナ系母材粒子、及び前記アルミナ系母材粒子に担持されたPdとNiとを含有する複合粒子を含むメタン酸化触媒を有する、メタン酸化積層触媒。ここで、このメタン酸化積層触媒は、上記[1]~[10]のいずれか一項に記載の技術的特徴をさらに有することが好ましい。
[12]前記触媒層の塗工量が、前記触媒担体1Lに対して、100g/L以上200g/L以下である[11]に記載のメタン酸化積層触媒。
[13]Pdの塗工量が、前記触媒担体1Lに対して、4.5g/L以上16.0g/L以下である[11]又は[12]に記載のメタン酸化積層触媒。
[14]Niの塗工量が、前記触媒担体1Lに対して、1.0g/L以上11.0g/L以下である[11]~[13]のいずれか一項に記載のメタン酸化積層触媒。
[15]内燃機関から排出される排ガスの排ガス流路に、アルミナ系母材粒子、及び前記アルミナ系母材粒子に担持されたPdとNiとを含有する複合粒子を含むメタン酸化触媒が配置された、排ガス浄化システム。ここで、この排ガス浄化システムは、上記[1]~[14]のいずれか一項に記載の技術的特徴をさらに有することが好ましい。
[16]アルミナ系母材粒子を、Pd塩及びNi塩を含む溶液に浸漬し、前記アルミナ系母材粒子上にPdとNiとを共担持させ、前記アルミナ系母材粒子上にPd及びNiが担持された複合粒子を形成する、メタン酸化触媒の製造方法。ここで、このメタン酸化触媒の製造方法は、上記[1]~[10]のいずれか一項に記載の技術的特徴をさらに有することが好ましい。
 本発明によれば、500℃未満の低温領域でのメタン触媒活性が高められた、新規なメタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法等を実現することができる。
一実施形態のメタン酸化触媒の概略構成を示す模式図である。 実施例1及び比較例1~3のメタン酸化除去性能の温度依存性を示すグラフである。 実施例1及び比較例4~8のメタン酸化除去性能を示すグラフである。 実施例1及び比較例9~12のメタン酸化除去性能を示すグラフである。 実施例2~5のメタン酸化除去性能を示すグラフである。 実施例2~5のメタン酸化除去性能を示すグラフである。 実施例6~9のメタン酸化除去性能を示すグラフである。 実施例6~9のメタン酸化除去性能を示すグラフである。 実施例2,6及び7、並びに比較例1のアルミニウム系母材粒子上のPd粒子の粒子径を示すグラフである。 実施例10~11のメタン酸化除去性能を示すグラフである。 実施例7,12~16のメタン酸化除去性能を示すグラフである。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その下限値「1」及び上限値「100」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
 本実施形態のメタン酸化触媒100は、ガス中に含まれるメタンを酸化するための酸化触媒であり、アルミナ系母材粒子11、及びこのアルミナ系母材粒子11の表面11a上に担持されたPdとNiとを含有する複合粒子21を含むことを特徴とする。
 アルミナ系母材粒子11は、アルミナを構成成分とする粒子であり、その表面11a上にPdやNiを担持させる担体粒子である。ここで、本明細書において、アルミナとは、α-アルミナ、γ-アルミナ、δ-アルミナ、θ-アルミナ等の酸化アルミニウムの他、ベーマイト[α-AlO(OH)]やダイアスポア[β-AlO(OH)]等の水酸化酸化アルミニウム又はアルミナ水和物Al・n(HO))等を包含する概念である。なお、アルミナは、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。これらの中でも、アルミナとしては、α-アルミナ、γ-アルミナ、ベーマイトが好ましい。また、耐久性を向上させる等の観点から、カリウム、ナトリウム等のアルカリ金属元素、バリウム、マグネシウム等のアルカリ土類金属元素、鉄、コバルト、チタン等の遷移元素、セリウム、ランタン、ネオジム、ジルコニウム、プラセオジム等の希土類元素等の他の成分を含有していてもよい。ただし、これらの含有量は、アルミナ系母材粒子11の高いBET比表面積を維持する観点から30質量%以下が好ましい。なお、アルミナ中に含まれてもよい他の成分は、1種を単独で、又は2種以上を任意の組み合わせ及び比率で用いることができる。また、アルミナ系母材粒子11の粒子形状は、特に限定されず、例えば球状、楕円体状、破砕状、扁平形状、不定形状等いずれであっても構わない。
 アルミナ系母材粒子11の平均粒子径(D50)は、所望性能に応じて適宜設定でき、特に限定されないが、大きな比表面積を保持させるとともに耐熱性を高めて自身の触媒活性サイトの数を増大させる等の観点から、5~200μmであることが好ましく、より好ましくは10~150μm、さらに好ましくは15~100μmである。なお、本明細書において、平均粒子径D50は、レーザ回折式粒度分布測定装置(例えば、島津製作所社製、レーザ回折式粒度分布測定装置SALD-7100等)で測定されるメディアン径を意味する。
 ここで用いるアルミナ系母材粒子11の細孔径は、所望性能に応じて適宜設定でき、特に限定されないが、500℃未満の低温領域でのメタンの触媒活性を向上させる観点から、5nm以上30nm以下が好ましく、より好ましくは7nm以上29nm以下、さらに好ましくは10nm以上28nm以下である。なお、アルミナ系母材粒子11の細孔径は、水銀圧入法により算出される値を意味する。ここでは、後述する実施例に記載の条件下にて細孔容積を測定し、このとき得られる細孔径-微分細孔容量の細孔分布曲線におけるピークトップ位置の値を、アルミナ系母材粒子11の細孔径とする。
 なお、アルミナ系母材粒子11の細孔容積が大きいほど、一般的にはメタンの触媒活性が高くなる傾向にある。そのため、アルミナ系母材粒子11の細孔容積は、所望性能に応じて適宜設定でき、特に限定されないが、1.0cc/g以上3.0cc/g以下が好ましく、より好ましくは1.2cc/g以上2.8cc/g以下、さらに好ましくは1.5cc/g以上2.5cc/g以下である。なお、アルミナ系母材粒子11の細孔容積は、水銀圧入法により算出される値を意味する。ここでは、後述する実施例に記載の条件下にて細孔容積を測定する。
 上述したアルミナ系母材粒子11の表面11aには、触媒活性成分としてPd及びNiが担持されている。このようにPdのみならずNiを表面11aに担持させることで、500℃未満の低温領域でのメタンの触媒活性を飛躍的に向上させることができる。なお、アルミナ系母材粒子11の表面11a上のPd及びNiは、外部環境に応じて、金属単体や酸化物等に変化し得るものである。したがって、PdやNiの酸化状態は特に限定されないが、還元性雰囲気下において、粒子であることが好ましい。
 複合粒子21に含まれるPd及びNiの含有モル比(Pd/Ni)は、所望性能に応じて適宜設定でき、特に限定されないが、0.25/1~1/5が好ましく、より好ましくは0.5/1~1/4、さらに好ましくは1/1~1/3である。Niの含有割合が高いほど、アルミナ系母材粒子11の表面11aに担持されるPdの平均粒子径(D50)が小さくなる傾向にあり、500℃未満の低温領域でのメタンの触媒活性が高くなる傾向にある。
 アルミナ系母材粒子11上に担持されるPdやNiの含有量は、所望性能に応じて適宜決定でき、特に限定されないが、500℃未満の低温触媒活性を向上させる等の観点から、複合粒子21の総量に対する金属換算量で、それぞれ3~20質量%が好ましく、より好ましくはそれぞれ4~17質量%であり、さらに好ましくはそれぞれ5~15質量%である。
 アルミナ系母材粒子11の表面11a上のPdの平均粒子径(D50)は、0.5nm以上3.0nm以下が好ましく、より好ましくは0.7nm以上2.5nm以下、さらに好ましくは0.9nm以上2.0nm以下である。このように微細なPdが表面11a上に高分散に担持された複合粒子21とすることで、500℃未満の低温領域でのメタンの触媒活性が高くなる傾向にある。
 ここで、触媒性能の低下ないし劣化を避ける観点から、複合粒子21は、水銀、鉛、スズ、亜鉛、及びこれらの酸化物を実質的に含有しないことが好ましい。これらは、有機化合物やアッシュ等との化学的作用により生体毒となり得る。そのため、水銀、鉛、スズ、亜鉛、及びこれらの酸化物の含有割合は、複合粒子21の総量に対する金属換算量で、10質量%未満が好ましく、より好ましくは3質量%未満、さらに好ましくは1質量%未満、特に好ましくは0.5質量%未満、最も好ましくは0.1質量%未満である。
 なお、本実施形態のメタン酸化触媒100は、上述した複合粒子21を含むものである限り、他の成分を含有していてもよい。他の成分としては、例えば、Pd及びNi以外の触媒活性成分(以降において、単に「他の触媒活性成分」という場合がある。)、上述したアルミナ系母材粒子11以外の母材粒子(以降において、単に「他の母材粒子」という場合がある。)等が挙げられる。他の触媒活性成分としては、Pd以外の白金族元素、具体的にはプラチナ(Pt)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)が挙げられる。なお、白金族元素は、それぞれ1種を単独で、又は2種以上の任意の組み合わせ及び割合で用いることができる。また、他の母材粒子としては、Pd及び/又はNiが担持されていないアルミナ系粒子、セリアやジルコニア等の金属酸化物;希土類元素及び/又は遷移元素がドープされたジルコニアやセリア-ジルコニア等の複合酸化物;ペロブスカイト型酸化物;ゼオライト;シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア等のアルミナを含む複合酸化物;等が挙げられる。これらの他の触媒活性成分や他の母材粒子の使用割合は、特に限定されないが、メタン酸化触媒100の総量に対して、合計で0.01~30質量%が好ましく、より好ましくは合計で0.01~15質量%、さらに好ましく合計で0.01~5質量%である。
 また、本実施形態のメタン酸化触媒100は、上述した複合粒子21や他の成分の他に、当業界で公知の添加剤を含んでいてもよい。添加剤としては、各種バインダー、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。これらの添加剤の使用割合は、特に限定されないが、メタン酸化触媒100の総量に対して、合計で0.01~10質量%が好ましく、合計で0.05~8質量%がより好ましく、合計で0.1~5質量%がさらに好ましい。
 上述した複合粒子21は、常法にしたがって製造することができ、その製造方法は、特に限定されない。再現性よく簡易且つ低コストで製造する観点からは、蒸発乾固法(含浸法、スプレードライ法等)等が好ましい。例えば、アルミナ系母材粒子11(以降において、「原料アルミナ粉体」と称する場合がある。)を、Pd塩を含む溶液に浸漬し、アルミナ系母材粒子11の表面11a上にPdを担持させ、その後さらにNi塩を含む溶液に浸漬し、アルミナ系母材粒子11の表面11a上にNiを担持させることで、複合粒子21を得ることができる。この含浸処理により、Pdイオン及び/又はNiイオンが、アルミナ系母材粒子11の表面11aに高分散状態で吸着(付着)される。このとき、PdとNiの担持する順序を逆にすることもできる。好ましい一態様としては、アルミナ系母材粒子11の表面11a上に微細なPdを高分散に担持させる観点から、アルミナ系母材粒子11を、Pd塩及びNi塩を含む溶液に浸漬し、アルミナ系母材粒子11の表面11a上にPdとNiとを共担持させる方法が挙げられる。
 原料アルミナ粉体のBET比表面積は、特に限定されないが、PdやNiの高分散担持やガス拡散性等に応じて適宜設定でき、特に限定されないが、10~400m/gが好ましく、より好ましくは20~350m/g、さらに好ましくは50~300m/gである。なお、アルミナ粉体として、各種グレードのものが国内外のメーカから数多く市販されており、各種グレードの市販品を、本実施形態のアルミナ系母材粒子11(原料アルミナ粉体)として用いることができる。また、上述したアルミナ系母材粒子11(原料アルミナ粉体)は、当業界で公知の方法で製造することもできる。
 Pd塩及び/又はNi塩を含む溶液は、特に限定されないが、Pd塩及び/又はNi塩、並びに必要に応じて配合する他の成分や添加剤等を水と混合した、Pd塩及び/又はNi塩含有水溶液が好適に用いられる。ここで用いる塩の形態は、常法にしたがって選択すればよく、特に限定されないが、一般的には、塩酸塩、オキシ塩酸塩、硝酸塩、オキシ硝酸塩、炭酸塩、リン酸塩、酢酸塩、シュウ酸塩、クエン酸塩、アンミン錯塩等が好ましい。また、水溶液中のPdイオン及び/又はNiイオンの含有割合は、得られるメタン酸化触媒100においてPd及びNiが所望の含有割合となるように適宜調整することができ、特に限定されない。このような溶液に、例えば上述したアルミナ系母材粒子11(原料アルミナ粉体)を含浸ないしは浸漬させ、溶媒(例えば水)を除去し、必要に応じて乾燥処理及び/又は200~600℃程度の熱処理(焼成処理)を施すことで、アルミナ系母材粒子11の表面11a上に担持されたPdとNiとを含有する複合粒子21を生産性よく得ることができる。
 なお、焼成条件は、常法にしたがえばよく、特に限定されない。焼成雰囲気は、酸化性雰囲気、還元性雰囲気、中性雰囲気のいずれの雰囲気でもよい。生産性等の観点からは、一般的には、150℃~1300℃で0.1~12時間が好ましく、より好ましくは350℃~600℃で0.1~4時間である。ここで、高温焼成に先立って、真空乾燥機等を用いて減圧乾燥を行い、約50℃~200℃で約1~48時間程度の乾燥処理を行ってもよい。
 得られる複合粒子21は、アルミナ系母材粒子11の表面11a上にPdとNiが共担持された複合構造を有し、これらPd及びNiは、主たる触媒活性サイトとして機能する。なお、要求性能に応じて、複合粒子21の粒度調整を行ってもよい。複合粒子21の粒度調整は、常法にしたがって行うことができ、特に限定されない。好ましい一態様では、例えば複合粒子21を湿式ミリング処理等することにより、例えば平均粒子径(D90)を3~50μmとすることが好ましく、より好ましくは5~40μm、さらに好ましくは10~30μmである。
 本実施形態のメタン酸化触媒100は、メタンを含むガスに複合粒子21を曝すことでメタンを酸化(酸化除去)する触媒能を呈する。メタン酸化触媒100の使用形態は、特に限定されない。例えば、上述した複合粒子21の集合体である触媒粉末の形態で、そのまま用いることができる。また、例えば、複合粒子21を任意の形状に成形して、粒状やペレット状の成形触媒とすることができる。なお、成形触媒の作製時には、各種公知の分散装置、混練装置、成形装置を用いることができる。
 さらに、本実施形態のメタン酸化触媒100は、モノリス担体等の触媒担体上に担持させた形態でも用いることができる。この形態は、触媒担体と、この触媒担体上に支持された、メタン酸化触媒100(複合粒子21)を含有する触媒層とを備える、積層触媒として定義できる。ここで、積層触媒の触媒エリアは、触媒層が1つのみの単層であっても、2以上の触媒層からなる積層体であってもよく、1以上の触媒層と当業界で公知の1以上の他の層とを組み合わせた積層体のいずれでもよい。なお、ここで用いる触媒担体としては、当業界で公知のものを適宜選択することができる。代表的には、コージェライト製、シリコンカーバイド製、窒化珪素製等のセラミックモノリス担体、ステンレス製等のメタルハニカム担体、ステンレス製等のワイヤメッシュ担体等が挙げられるが、これらに特に限定されない。なお、これらは、1種のみを単独で、又は2種以上の任意の組み合わせ及び割合で用いることができる。
 触媒層の形成方法は、常法にしたがって行えばよく、特に限定されない。各種公知のコーティング法、ウォッシュコート法、ゾーンコート法を適用することができる。一例を挙げると、本実施形態の本実施形態のメタン酸化触媒100と、水系媒体と、必要に応じて当業界で公知のバインダー、他の触媒、助触媒粒子、OSC材、母材粒子、添加剤等とを所望の配合割合で混合してスラリー状混合物を調製し、得られたスラリー状混合物を触媒担体の表面に付与し、乾燥、焼成することができる。この際、必要に応じてpH調整のために酸や塩基を配合したり、粘性の調整やスラリー分散性向上のための界面活性剤や分散用樹脂等を配合したりすることができる。なお、スラリーの混合方法としては、ボールミル等による粉砕混合が適用可能であるが、他の粉砕、或いは混合方法を適用することもできる。そして、スラリー状混合物の付与後においては、常法にしたがい乾燥や焼成を行うことにより、本実施形態のメタン酸化触媒100を含有する触媒層を触媒担体上に備える、積層触媒(メタン酸化積層触媒)を得ることができる。
 メタン酸化触媒100の塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、塗工量や圧力損失等の観点から、基材となる触媒担体1Lに対して、100g/L以上200g/L以下であることが好ましく、より好ましくは100g/L以上180g/L以下、さらに好ましくは110g/L以上150g/L以下である。
 Pdの塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、基材となる触媒担体1Lに対して、4.5g/L以上16.0g/L以下であることが好ましく、より好ましくは5.0g/L以上14.0g/L以下、さらに好ましくは6.0g/L以上12.0g/L以下である。
 Niの塗工量は、所望性能に応じて適宜設定でき、特に限定されないが、基材となる触媒担体1Lに対して、1.0g/L以上11.0g/L以下であることが好ましく、より好ましくは2.0g/L以上9.5g/L以下、さらに好ましくは5.0g/L以上8.0/L以下である。
 以上詳述したとおり、本実施形態のメタン酸化触媒100は、ガス中に含まれるメタンを酸化するための酸化触媒として有用である。具体的には、圧縮天然ガス(CNG)、液化天然ガス(LNG)、都市ガス、軽油、灯油等を燃料として用いるボイラー、加熱炉、ガスエンジン、ガスタービン、希薄燃焼ガスエンジン、その他の内燃機関等から排出されるガスに含まれるメタンの酸化触媒として、本実施形態のメタン酸化触媒100を用いることができる。
 また、本実施形態のメタン酸化触媒100は、ディーゼルエンジン等の圧縮点火内燃機関、これを用いるバイフューエルエンジン(BF)やデュアルフューエルエンジン(CNG-DFCI、LNG-DFCI等)等から排出される排ガスに含まれるメタンの酸化触媒として殊に有用である。この場合、例えばディーゼルエンジンの排ガス流路中に本実施形態のメタン酸化触媒100を配置し、その後に、ディーゼル酸化触媒(DOC:Diesel Oxidation Catalyst);排ガス中に含まれる煤等の粒子状物質(PM:Particulate matter)を捕集するためのディーゼル微粒子捕集フィルター(DPF:Diesel Particulate Filler)、触媒塗工PF(CPF:Catalyzed Particulate Filler)或いは触媒化燃焼フィルター(CSF:Catalyzed Soot Filter);リーン条件下でNOxを吸蔵しリッチ条件下でNOxを放出してCOやHCをCOやHOに酸化するとともにNOxをNに還元するリーンNOx吸蔵触媒(LNT、Lean NOx Trap);選択的触媒還元(SCR:Selective Catalytic Reduction触媒);アンモニア酸化触媒(AMOX:Ammonia Oxidation catalyst)等を適宜設けた形で実施可能である。なお、これらの配置順序や設置個数は、要求性能に応じて適宜変更でき、上記の例に限定されない。
 以下、実施例を用いて本発明の内容をさらに具体的に説明するが、本発明はその要旨を超えない限り、以下の実施例によって何ら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。なお、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における上限又は下限の好ましい値としての意味を持つものであり、好ましい範囲は前記した上限又は下限の好ましい値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
[アルミナ系母材粒子11の細孔径及び細孔容量]
 アルミナ系母材粒子11の細孔分布は、水銀圧入法により求める。ここでは、アルミナ系母材粒子110.2gをサンプルとして用い、水銀ポロシメーター(Thermo Fisher Scientific社製、商品名:PASCAL140及びPASCAL440)を用いて、水銀の接触角130°及び表面張力484dyn/cmの条件下にて細孔容積を測定し、このとき得られる細孔径-微分細孔容量の細孔分布曲線におけるピークトップ位置の値(モード径)を、アルミナ系母材粒子11の細孔径とする。
[アルミナ系母材粒子11の平均粒子径D50]
 レーザ回折式粒度分布測定装置(例えば、島津製作所社製、レーザ回折式粒度分布測定装置SALD-7100等)を用いて粒度分布を測定し、そのメディアン径をアルミナ系母材粒子11の平均粒子径D50とする。
[BET比表面積の測定]
 BET比表面積は、比表面積/細孔分布測定装置(商品名:BELSORP-mini II、マイクロトラック・ベル株式会社製)及び解析用ソフトウェア(商品名:BEL_Master、マイクロトラック・ベル株式会社製)を用いて、BET一点法により、BET比表面積を求める。
(実施例1)
 アルミナ系母材粒子(Sasol製、商品名:TH100/150、BET比表面積:150m/g、平均粒子径D50:32μm、細孔径(ピーク値):17.2nm、細孔容積:1.82cc/g)を用いた。硝酸Pd水溶液及び硝酸ニッケル(II)六水和物水溶液を混合し、Pd塩及びNi塩を含む水溶液(Pd換算で3.6質量%含有、Ni換算で1.6質量%含有)を調製した。このPd塩及びNi塩を含む水溶液に、上記のアルミナ系母材粒子を含浸させて、アルミナ系母材粒子上にPdとNiとを共担持させ、その後、500℃で1時間焼成することにより、アルミナ系母材粒子上にPd及びNiが担持された複合粒子を形成した後、湿式ミリング法により平均粒子径D90が14~18μmの範囲内になるまで混錬し、実施例1のメタン酸化触媒(Pd換算で3.0質量%含有、Ni換算で1.6質量%含有)を得た。
(比較例1)
 硝酸Ni水溶液の使用を省略する以外は、実施例1と同様に行い、比較例1のメタン酸化触媒(Pd換算で3.0質量%含有)を得た。
(比較例2)
 硝酸Ni水溶液に代えて、硝酸テトラアンミン白金(II)水溶液を用いる以外は、実施例1と同様に行い、比較例2のメタン酸化触媒(Pt換算で0.6質量%含有、Pd換算で3.0質量%含有)を得た。
(比較例3)
 硝酸Ni水溶液に代えて、硝酸セリウム(IV)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例3のメタン酸化触媒(Pd換算で3.0量%含有、Ce換算で10.0質量%含有)を得た。
〔性能評価〕
 得られた実施例1及び比較例1~3のメタン酸化触媒をそれぞれ50mg分取し、以下の条件でメタン酸化除去性能を評価した。結果を、図2に示す。
〔測定条件〕
 ・ガス組成  :1000ppm-CH4, 8%-O2, 2%-H2O He balance
 ・Total流量 :300cc/min
 ・ガス分析  :FT-IR 
 ・評価温度 :600℃→200℃降温/100℃毎
 ・触媒    :50mg
(比較例4)
 硝酸Ni水溶液に代えて、硝酸マグネシウム(II)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例4のメタン酸化触媒(Pd換算で3.0質量%含有、Mg換算で0.7質量%含有)を得た。
(比較例5)
 硝酸Ni水溶液に代えて、硝酸コバルト(II)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例5のメタン酸化触媒(Pd換算で3.0質量%含有、Co換算で1.7質量%含有)を得た。
(比較例6)
 硝酸Ni水溶液に代えて、酢酸バリウム(II)水溶液を用いる以外は、実施例1と同様に行い、比較例6のメタン酸化触媒(Pd換算で3.0質量%含有、Ba換算で3.9質量%含有)を得た。
(比較例7)
 硝酸Ni水溶液に代えて、硝酸銅(II)三水和物水溶液を用いる以外は、実施例1と同様に行い、比較例7のメタン酸化触媒(Pd換算で3.0質量%含有、Cu換算で1.8質量%含有)を得た。
(比較例8)
 硝酸Ni水溶液に代えて、硝酸鉄(III)九水和物水溶液を用いる以外は、実施例1と同様に行い、比較例8のメタン酸化触媒(Pd換算で3.0質量%含有、Fe換算で1.6質量%含有)を得た。
〔性能評価〕
 得られた実施例1及び比較例4~8のメタン酸化触媒をそれぞれ50mg分取し、以下の条件でメタン酸化除去性能を評価した。結果を、図3に示す。
〔測定条件〕
 ・ガス組成  :1000ppm-CH4, 8%-O2, 2%-H2O He balance
 ・Total流量 :300cc/min
 ・ガス分析  :FT-IR 
 ・評価温度 :600℃→200℃降温/100℃毎
 ・触媒    :50mg
(比較例9)
 硝酸Ni水溶液に代えて、硝酸イットリウム(III)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例9のメタン酸化触媒(Pd換算で3.0質量%含有、Y換算で2.5質量%含有)を得た。
として用いた。
(比較例10)
 硝酸Ni水溶液に代えて、硝酸セリウム(IV)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例10のメタン酸化触媒(Pd換算で3.0質量%含有、Ce換算で3.9質量%含有)を得た。
(比較例11)
 硝酸Ni水溶液に代えて、硝酸プラセオジム(III)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例11のメタン酸化触媒(Pd換算で3.0質量%含有、Pr換算で4.0質量%含有)を得た。
(比較例12)
 硝酸Ni水溶液に代えて、硝酸ネオジム(III)六水和物水溶液を用いる以外は、実施例1と同様に行い、比較例12のメタン酸化触媒(Pd換算で3.0質量%含有、Nd換算で4.1質量%含有)を得た。
〔性能評価〕
 得られた実施例1及び比較例9~12のメタン酸化触媒をそれぞれ50mg分取し、以下の条件でメタン酸化除去性能を評価した。結果を、図4に示す。
 ・ガス組成  :1000ppm-CH4, 8%-O2, 2%-H2O He balance
 ・Total流量 :300cc/min
 ・ガス分析  :FT-IR 
 ・評価温度 :600℃→200℃降温/100℃毎
 ・触媒    :50mg
(実施例2)
 硝酸Pd水溶液及び硝酸ニッケル(II)六水和物水溶液を混合して得た、Pd塩及びNi塩を含む水溶液(Pd換算で3.6質量%含有、Ni換算で2.0質量%含有)に、アルミナ系母材粒子(Sasol製、商品名:TH100/150、BET比表面積:150m/g、平均粒子径D50:32μm、細孔径(ピーク値):17.2nm、細孔容積:1.82cc/g)を含浸させて、アルミナ系母材粒子上にPdとNiとを共担持させ、その後、450℃で0.5時間焼成することにより、アルミナ系母材粒子上にPd及びNiが担持された複合粒子を形成した後、湿式ミリング法により平均粒子径D90が14~18μmの範囲内になるまで混錬し、実施例2のメタン酸化触媒(Pd換算で3.6質量%含有、Ni換算で2.0質量%含有)を得た。
 得られた実施例2のメタン酸化触媒を、コージェライト担体(NGK社製、φ25.4x50mm)上にウェットコーティングし(塗工量:125g/L、Pd換算塗工量:4.5g/L、Ni換算塗工量:2.5g/L)、450℃で30分間焼成処理することで、実施例2のメタン酸化積層触媒を得た。
(実施例3)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Sasol製、商品名:Siralox1.5/100、BET比表面積:100m/g、平均粒子径D50:37μm、細孔径(ピーク値):11.6nm、細孔容積:0.46cc/g)に変更する以外は、実施例2と同様に行って、実施例3のメタン酸化積層触媒を得た。
(実施例4)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Solvay製、商品名:MI386、BET比表面積:200m/g、平均粒子径D50:22μm、細孔径(ピーク値):10.4nm、細孔容積:1.00cc/g)に変更する以外は、実施例2と同様に行って、実施例4のメタン酸化積層触媒を得た。
(実施例5)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Sasol製、商品名:TH130/130、BET比表面積:130m/g、平均粒子径D50:22μm、細孔径(ピーク値):26.2nm、細孔容積:2.29cc/g)に変更する以外は、実施例2と同様に行って、実施例5のメタン酸化積層触媒を得た。
〔性能評価〕
 得られた実施例2~5のメタン酸化積層触媒について、モデルガスを用いて以下の条件でメタン浄化率の測定を行った。この測定では、ガス分析計(商品名:MEXA-7100・HORIBA製)を用いた。また、このとき用いたモデルガス組成を表1に示し、結果を図5及び図6に示す。
Figure JPOXMLDOC01-appb-T000001
(実施例6)
 Niの担持量をPdの担持量の3倍に変更する以外は、実施例2と同様に行い、実施例6のメタン酸化触媒(Pd換算で3.6質量%含有、Ni換算で6.0質量%含有)を得た。
 得られた実施例6のメタン酸化触媒を、コージェライト担体(φ25.4x50mm)上にウェットコーティングし(塗工量:125g/L、Pd換算塗工量:4.5g/L、Ni換算塗工量:7.4g/L)、450℃で30分間焼成処理することで、実施例6のメタン酸化積層触媒を得た。
(実施例7)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Sasol製、商品名:TH130/130、BET比表面積:130m/g、平均粒子径D50:22μm、細孔径(ピーク値):26.2nm、細孔容積:2.29cc/g)に変更する以外は、実施例6と同様に行って、実施例7のメタン酸化積層触媒を得た。
(実施例8)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Sasol製、商品名:TH100/100、BET比表面積:100m/g、平均粒子径D50:29μm、細孔径(ピーク値):26.7nm、細孔容積:1.78cc/g)に変更する以外は、実施例6と同様に行って、実施例8のメタン酸化積層触媒を得た。
(実施例9)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Sasol製、商品名:TM100/150、BET比表面積:150m/g、平均粒子径D50:27μm、細孔径(ピーク値):24.8nm、細孔容積:1.60cc/g)に変更する以外は、実施例6と同様に行って、実施例9のメタン酸化積層触媒を得た。
〔性能評価〕
 得られた実施例6~9のメタン酸化積層触媒について、上記と同様に、モデルガスを用いてメタン浄化率の測定を行った。結果を図7及び図8に示す。
〔Pd粒子径〕
 実施例2、6及び7、並びに比較例1のメタン酸化積層触媒を、日立ハイテクノロジーズ社製HD-2000の走査透過型電子顕微鏡(STEM)を用いて倍率100万倍でそれぞれ観察し、アルミニウム系母材粒子上のPd粒子の粒子径を測定した。なお、Pd粒子の粒子径は、得られた撮影像から無作為に選択した20個のPd粒子の粒径の相加平均値として示す。結果を図9に示す。
(実施例10)
 テトラアンミンパラジウム(II)塩化物水和物水溶液及び硝酸ニッケル(II)六水和物水溶液を混合して得た、Pd塩及びNi塩を含む水溶液に、アルミナ系母材粒子(Sasol製、商品名:TH100/150、BET比表面積:150m/g、平均粒子径D50:32μm、細孔径(ピーク値):17.2nm、細孔容積:1.82cc/g)を含浸させて、アルミナ系母材粒子上にPdとNiとを共担持させ、その後、450℃で0.5時間焼成することにより、アルミナ系母材粒子上にPd及びNiが担持された複合粒子を形成した後、湿式ミリング法により平均粒子径D90が14~18μmの範囲内になるまで混錬し、実施例10のメタン酸化触媒(Pd換算で3.6質量%含有、Ni換算で6.0質量%含有)を得た。
 得られた実施例10のメタン酸化触媒を、コージェライト担体(NGK社製、φ25.4x50mm)上にウェットコーティングし(塗工量:125g/L、Pd換算塗工量:4.5g/L、Ni換算塗工量:7.4g/L))、450℃で30分間焼成処理することで、実施例10のメタン酸化積層触媒を得た。
(実施例11)
 使用するアルミナ系母材粒子を、アルミナ系母材粒子(Sasol製、商品名:TH130/130、BET比表面積:130m/g、平均粒子径D50:22μm、細孔径(ピーク値):26.2nm、細孔容積:2.29cc/g)に変更する以外は、実施例10と同様に行って、実施例11のメタン酸化積層触媒を得た。
〔性能評価〕
 得られた実施例10~11のメタン酸化積層触媒について、上記と同様に、モデルガスを用いてメタン浄化率の測定を行った。結果を図10に示す。
(実施例12~16)
 ウェットコーティング時の塗工量を表2に示すとおりに変更する以外は、実施例7と同様に行い、実施例12~16のメタン酸化積層触媒を得た。
Figure JPOXMLDOC01-appb-T000002
〔性能評価〕
 得られた実施例7,12~16のメタン酸化積層触媒について、上記と同様に、モデルガスを用いてメタン浄化率の測定を行った。測定結果を図11に示す。
 本発明のメタン酸化触媒及びメタン酸化積層触媒等は、ガス中に含まれるメタンの500℃未満の低温領域での触媒活性が高められたものであるため、圧縮天然ガス(CNG)、液化天然ガス(LNG)、都市ガス、軽油、灯油等を燃料として用いるボイラー、加熱炉、ガスエンジン、ガスタービン、希薄燃焼ガスエンジン、その他の内燃機関等から排出されるガスに含まれるメタンの酸化触媒として、さらには、ディーゼルエンジン等の圧縮点火内燃機関、これを用いるバイフューエルエンジン(BF)やデュアルフューエルエンジン(CNG-DFCI、LNG-DFCI等)等から排出される排ガスに含まれるメタンの酸化触媒として殊に有効に利用可能である。
  100 ・・・メタン酸化触媒
   11 ・・・アルミナ系母材粒子
   11a・・・表面
   21 ・・・複合粒子
   Pd ・・・パラジウム
   Ni ・・・ニッケル

Claims (16)

  1.  ガス中に含まれるメタンを酸化するためのメタン酸化触媒であり、
     アルミナ系母材粒子、及び前記アルミナ系母材粒子上に担持されたPdとNiとを含有する複合粒子を含む、
    メタン酸化触媒。
  2.  前記アルミナ系母材粒子が、5nm以上30nm以下の細孔径を有する
    請求項1に記載のメタン酸化触媒。
  3.  前記アルミナ系母材粒子が、5μm以上200μm以下の平均粒子径D50を有する
    請求項1又は2に記載のメタン酸化触媒。
  4.  PdとNiの含有モル比(Pd/Ni)が、1/1~1/3である
    請求項1~3のいずれか一項に記載のメタン酸化触媒。
  5.  Pd及びNiの含有量が、前記複合粒子の総量に対する金属換算量で、それぞれ3~20質量%である
    請求項1~4のいずれか一項に記載のメタン酸化触媒。
  6.  前記アルミナ系母材粒子が、α-アルミナ、γ-アルミナ、及びベーマイトよりなる群から選択される1種以上を含む
    請求項1~5のいずれか一項に記載のメタン酸化触媒。
  7.  前記アルミナ系母材粒子が、アルカリ金属元素、アルカリ土類金属元素、遷移元素、及び希土類元素よりなる群から選択される1種以上を含む
    請求項1~6のいずれか一項に記載のメタン酸化触媒。
  8.  前記アルミナ系母材粒子が、1.5cc/g以上2.5cc/g以下の細孔容積を有する
    請求項1~7のいずれか一項に記載のメタン酸化触媒。
  9.  前記ガスが、内燃機関から排出される排ガスである
    請求項1~8のいずれか一項に記載のメタン酸化触媒。
  10.  前記ガスが、メタンを燃料として使用する内燃機関から排出される排ガスである
    請求項1~9のいずれか一項に記載のメタン酸化触媒。
  11.  ガス中に含まれるメタンを酸化するためのメタン酸化積層触媒であり、
     触媒担体、並びに、前記触媒担体上に支持された触媒層を備え、
     前記触媒層は、アルミナ系母材粒子、及び前記アルミナ系母材粒子に担持されたPdとNiとを含有する複合粒子を含むメタン酸化触媒を有する、
    メタン酸化積層触媒。
  12.  前記触媒層の塗工量が、前記触媒担体1Lに対して、100g/L以上200g/L以下である
    請求項11に記載のメタン酸化積層触媒。
  13.  Pdの塗工量が、前記触媒担体1Lに対して、4.5g/L以上16.0g/L以下である
    請求項11又は12に記載のメタン酸化積層触媒。
  14.  Niの塗工量が、前記触媒担体1Lに対して、1.0g/L以上11.0g/L以下である
    請求項11~13のいずれか一項に記載のメタン酸化積層触媒。
  15.  内燃機関から排出される排ガスの排ガス流路に、アルミナ系母材粒子、及び前記アルミナ系母材粒子に担持されたPdとNiとを含有する複合粒子を含むメタン酸化触媒が配置された、
    排ガス浄化システム。
  16.  アルミナ系母材粒子をPd塩及びNi塩を含む溶液に浸漬し、前記アルミナ系母材粒子上にPdとNiとを共担持させ、前記アルミナ系母材粒子上にPd及びNiが担持された複合粒子を形成する、
    メタン酸化触媒の製造方法。
     
PCT/JP2021/034080 2020-09-25 2021-09-16 メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法 WO2022065188A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551933A JPWO2022065188A1 (ja) 2020-09-25 2021-09-16

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020161182 2020-09-25
JP2020-161182 2020-09-25

Publications (1)

Publication Number Publication Date
WO2022065188A1 true WO2022065188A1 (ja) 2022-03-31

Family

ID=80846450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034080 WO2022065188A1 (ja) 2020-09-25 2021-09-16 メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法

Country Status (2)

Country Link
JP (1) JPWO2022065188A1 (ja)
WO (1) WO2022065188A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106059A (ja) * 1991-03-27 1994-04-19 Mitsubishi Heavy Ind Ltd 酸化触媒
JP2002113367A (ja) * 2000-10-10 2002-04-16 Toyota Central Res & Dev Lab Inc 飽和炭化水素酸化用触媒
JP2003071288A (ja) * 2001-08-30 2003-03-11 Toyota Central Res & Dev Lab Inc 飽和炭化水素酸化触媒
WO2014141903A1 (ja) * 2013-03-15 2014-09-18 エヌ・イーケムキャット株式会社 酸化触媒及びそれを用いた排気ガス浄化装置
JP2016504182A (ja) * 2012-11-29 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se パラジウム、金およびセリアを含むディーゼル酸化触媒
JP2016215091A (ja) * 2015-05-15 2016-12-22 株式会社 Acr 二元燃料酸化触媒、二元燃料scr排ガス処理機構、二元燃料ディーゼル内燃機関、および、その制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06106059A (ja) * 1991-03-27 1994-04-19 Mitsubishi Heavy Ind Ltd 酸化触媒
JP2002113367A (ja) * 2000-10-10 2002-04-16 Toyota Central Res & Dev Lab Inc 飽和炭化水素酸化用触媒
JP2003071288A (ja) * 2001-08-30 2003-03-11 Toyota Central Res & Dev Lab Inc 飽和炭化水素酸化触媒
JP2016504182A (ja) * 2012-11-29 2016-02-12 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se パラジウム、金およびセリアを含むディーゼル酸化触媒
WO2014141903A1 (ja) * 2013-03-15 2014-09-18 エヌ・イーケムキャット株式会社 酸化触媒及びそれを用いた排気ガス浄化装置
JP2016215091A (ja) * 2015-05-15 2016-12-22 株式会社 Acr 二元燃料酸化触媒、二元燃料scr排ガス処理機構、二元燃料ディーゼル内燃機関、および、その制御方法

Also Published As

Publication number Publication date
JPWO2022065188A1 (ja) 2022-03-31

Similar Documents

Publication Publication Date Title
JP5147687B2 (ja) 排ガス浄化触媒及びその製造方法
KR101588484B1 (ko) 배기가스 정화용 촉매 및 이것을 이용한 배기가스 정화방법
KR100993975B1 (ko) 배기 가스 정화용 촉매 및 그 제조 방법
JP6087362B2 (ja) 白金系酸化触媒、及びそれを用いた排気ガス浄化方法
JP5526502B2 (ja) 排気ガス浄化用触媒及びその製造方法
JP6482986B2 (ja) 排気ガス浄化用触媒の製造方法
RU2621679C2 (ru) Катализатор для очистки выхлопного газа и способ очистки выхлопного газа с применением указанного катализатора
JP6748590B2 (ja) 排ガス浄化用触媒
JP7187654B2 (ja) 排ガス用浄化触媒組成物、及び自動車用排ガス浄化触媒
JP2021133334A (ja) ガソリンリーンバーンエンジン用lnt積層触媒、及びこれを用いた排ガス浄化装置
JP6438384B2 (ja) 排ガス浄化触媒用担体及び排ガス浄化触媒
JP6272303B2 (ja) 硫酸バリウムを含むアルミナ材料とその製造方法、それを用いた排気ガス浄化用触媒
JP7173707B2 (ja) 排ガス浄化用触媒
WO2022065188A1 (ja) メタン酸化触媒、メタン酸化積層触媒、及びこれらを用いた排ガス浄化システム、並びにメタン酸化触媒の製造方法
JP2019171277A (ja) ディーゼル酸化触媒粉末及びその製造方法、並びに一体構造型排ガス浄化用触媒
JP6889012B2 (ja) 軽油燃焼用ディーゼル酸化触媒、及びこれを用いたディーゼルエンジンの排ガス浄化装置
JP5217116B2 (ja) 排ガス浄化用触媒
WO2023047185A1 (ja) 排ガス浄化触媒、及びこれを用いた車両用排ガス浄化触媒装置
JP7111929B2 (ja) Ce-Zr複合酸化物およびその製造方法ならびにこれを用いた排気ガス浄化用触媒
WO2022209154A1 (ja) 排ガス浄化用触媒及び排ガス浄化システム
JP5606191B2 (ja) 排気ガス浄化用触媒およびその製造方法ならびに排気ガス浄化方法
JP4805031B2 (ja) 排ガス浄化触媒、その製造方法及び使用方法
CN116764623A (zh) 排气净化用催化剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872318

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551933

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872318

Country of ref document: EP

Kind code of ref document: A1