WO2022065187A1 - Welding control method - Google Patents

Welding control method Download PDF

Info

Publication number
WO2022065187A1
WO2022065187A1 PCT/JP2021/034075 JP2021034075W WO2022065187A1 WO 2022065187 A1 WO2022065187 A1 WO 2022065187A1 JP 2021034075 W JP2021034075 W JP 2021034075W WO 2022065187 A1 WO2022065187 A1 WO 2022065187A1
Authority
WO
WIPO (PCT)
Prior art keywords
peak
welding
peak period
current value
period
Prior art date
Application number
PCT/JP2021/034075
Other languages
French (fr)
Japanese (ja)
Inventor
潤司 藤原
祐太郎 新留
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2022065187A1 publication Critical patent/WO2022065187A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage

Definitions

  • the present invention relates to a welding control method.
  • Patent Document 1 when a short circuit between the welding wire and the welding base material is detected, a current with a slope smaller than the slope of the rising edge of the output waveform of the pulse current is output, and when a constriction phenomenon immediately before the short circuit is opened is detected, the welding current is calculated.
  • a pulse arc welding control method for sharply reducing the current is disclosed.
  • the rise of the output waveform is steep in order to output a high peak current, the arc will expand at once and the molten pool will grow excessively. As a result, the molten metal may be insufficient at the peripheral edge of the weld bead, and undercut may occur.
  • the present invention has been made in view of this point, and an object thereof is to stabilize the detachability of droplets and suppress the occurrence of undercut.
  • the first aspect is a welding control method in which pulse welding is performed by alternately and repeatedly supplying a peak period of a peak current and a base period of a base current between a welding wire and a base metal a plurality of times.
  • the peak period includes a first peak period and a second peak period after the first peak period, and during the first peak period, welding is performed with a predetermined output waveform so as to reach the first peak current value.
  • the welding current is applied with a predetermined output waveform so as to reach the second peak current value larger than the first peak current value. It is characterized by having a second step of flowing.
  • the welding current is flowed with a predetermined output waveform so as to reach the first peak current value during the first peak period. Further, during the second peak period, the welding current is flowed with a predetermined output waveform so as to reach the second peak current value.
  • the second peak current value is larger than the first peak current value.
  • the molten pool of the base metal can be made smaller and the occurrence of undercut can be suppressed.
  • the droplets grown at the tip of the welding wire are separated and transferred to the base metal side, and the molten pool is made into an appropriate size. It can be grown to ensure joint strength.
  • the first peak current value is a current value at which droplets do not separate from the tip of the welding wire
  • the second peak current value is from the tip of the welding wire. It is characterized by having a current value at which the droplet can be detached.
  • the first peak current value is set to a current value at which the droplet does not separate from the tip of the welding wire.
  • the second peak current value is set to a current value at which droplets can be separated from the tip of the welding wire.
  • the droplets do not separate and move to the base metal side, and the occurrence of undercut can be suppressed. Further, during the second peak period, the droplets can be reliably separated and the generation of spatter can be suppressed.
  • the third aspect is characterized in that, in the first or second aspect, the pulse rise in the first peak period is slower than the pulse rise in the second peak period.
  • the pulse rise in the first peak period is made gentler than the pulse rise in the second peak period.
  • the first peak current value is reached while the output waveform has an arcuate shape that rises while being convexly curved upward, and the pulse rise is caused.
  • the fourth aspect is characterized in that, in the first or second aspect, the pulse rise in the first peak period and the pulse rise in the second peak period are gradual, respectively.
  • the pulse rise in the first peak period and the pulse rise in the second peak period are moderated.
  • the pulse rise in the first peak period and the second peak period is made gentle, and the arc gradually spreads from the center, so that the molten pool can be formed small and the occurrence of undercut is suppressed. can do.
  • the first peak current value is reached while gradually changing with an arcuate output waveform that rises while curving upward in a convex shape, and further, in the second peak period.
  • the second peak current value is reached while gradually changing with an arc-shaped output waveform that rises while being convex and curved upward.
  • the pulse rise time in the first peak period is 800 ⁇ s or more
  • the pulse rise time in the second peak period is 600 ⁇ s or more. It is characterized by being.
  • the pulse rises in the first peak period and the second peak period are moderated, respectively.
  • the pulse rise time in the first peak period and the second peak period is lengthened, the pulse rise is made gentle, and the arc gradually spreads from the center to form a small molten pool. , The occurrence of undercut can be suppressed.
  • a sixth aspect is characterized in that, in any one of the first to fifth aspects, the base period is not provided between the first peak period and the second peak period. ..
  • the base period is not provided between the first peak period and the second peak period.
  • the arc directivity is weakened, which may cause instability of droplet detachment.
  • the melt grown at the tip of the weld wire is performed.
  • the droplets can be stably separated and transferred to the base metal side.
  • FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to this embodiment.
  • FIG. 2 is a graph showing an output waveform of a welding current during conventional pulse welding.
  • FIG. 3 is a side sectional view showing a state of an arc during conventional pulse welding.
  • FIG. 4 is a graph showing an output waveform of a welding current during pulse welding according to the present embodiment.
  • FIG. 5 is a side sectional view showing a state of an arc during pulse welding.
  • FIG. 6 is a diagram showing an unstable region and a stable region during the first peak period.
  • FIG. 7 is a diagram showing an unstable region and a stable region during the second peak period.
  • FIG. 8 is a graph showing the output waveform of the welding current during pulse welding according to the first modification.
  • FIG. 9 is a graph showing the output waveform of the welding current during pulse welding according to the second modification.
  • the welding apparatus 10 alternately and repeatedly supplies a peak current and a base current between the welding wire 18 which is a consumable electrode and the base metal 17, and performs pulse welding.
  • the welding wire 18 is held by a torch (not shown). Further, by moving the torch held by a moving means such as a robot (not shown) at a predetermined speed, the tip of the welding wire 18 also moves along the predetermined welding section at the same speed.
  • the welding device 10 includes a primary side rectifying unit 2, a switching unit 3, a main transformer 4, a secondary side rectifying unit 5, a DCL6 (DC reactor), a welding current detection unit 7, and a welding voltage detection unit 8. And an output control unit 11 and a wire feeding speed control unit 13.
  • the welding device 10 has a robot control unit that controls the operation of the robot that holds the torch.
  • the primary side rectifying unit 2 rectifies the input voltage input from the external input power supply 1 (three-phase AC power supply) of the welding device 10.
  • the switching unit 3 controls the output of the primary side rectifying unit 2 to an output suitable for welding.
  • the main transformer 4 converts the output of the switching unit 3 into an output suitable for welding.
  • the secondary side rectifying unit 5 rectifies the output of the main transformer 4.
  • the DCL 6 smoothes the output of the secondary side rectifying unit 5 to a current suitable for welding.
  • the welding current detection unit 7 detects the welding current.
  • the welding voltage detection unit 8 detects the welding voltage.
  • the output control unit 11 outputs a control signal to the switching unit 3 to control the welding output.
  • the wire feeding speed control unit 13 controls the wire feeding unit 21 to control the feeding speed of the welded wire 18.
  • the wire feeding speed control unit 13 includes a wire feeding speed detecting unit 14 and a calculation unit 15.
  • the wire feeding speed detection unit 14 detects the wire feeding speed.
  • the calculation unit 15 calculates the integrated amount of the feed amount of the welded wire 18 based on the signal from the wire feed rate detection unit 14, and controls the wire feed rate. Specifically, the difference is obtained by comparing the command value of the wire feeding speed with the detected value, and feedback control is performed so as to match the actual wire feeding speed with the command value based on the integrated amount of the difference. ..
  • the wire feeding unit 21 and the welding condition setting unit 22 are connected to the welding device 10.
  • the wire feeding unit 21 controls the feeding of the welded wire 18 based on the signal from the wire feeding speed control unit 13.
  • the welding condition setting unit 22 is used to set the welding conditions of the welding apparatus 10.
  • the torch switch (not shown) When the torch switch (not shown) is turned on, the welding output of the welding device 10 is supplied to the welding wire 18 via the welding tip 20 of the torch (not shown). Then, an arc 19 is generated between the welding wire 18 and the base metal 17 by the welding output of the welding device 10, and welding is performed.
  • the material of the welding wire 18 is mild steel
  • the wire diameter is 1.2 mm
  • the material of the base metal 17 is mild steel.
  • the welding device 10 performs MAG welding using a mixed gas of argon gas and carbon dioxide gas as a shield gas.
  • the set average value of the welding current (hereinafter, may be referred to as a set current) is set to 200 A.
  • the specific numerical values described in the following description are merely examples and are not limited to these.
  • the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the peak current value Ip during one peak period Tp.
  • the peak current value Ip is set to, for example, 470 A.
  • the output waveform of the welding current is set so as to reach the peak current value Ip after 600 ⁇ s has elapsed.
  • the peak current value Ip is reached with an output waveform that rises steeply while sloping upward. After reaching the peak current value Ip, the peak current value Ip is maintained until the end of the peak period Tp.
  • the molten pool grows excessively.
  • the molten metal on the vertical plate side of the base metal 17 hangs down, and the molten metal is insufficient at the peripheral edge of the weld bead, which may cause undercut.
  • the detachability of the droplets becomes unstable, and spatter may occur.
  • the detachability of the droplets can be stabilized and the occurrence of undercut can be suppressed.
  • FIG. 4 is a graph showing the output waveform of the welding current at the time of pulse welding according to the present embodiment.
  • pulse welding is performed by alternately and repeatedly supplying a peak current and a base current a plurality of times.
  • One pulse period includes a first peak period Tp1, a second peak period Tp2, and a base period Tb.
  • the second peak period Tp2 is the period after the first peak period Tp1 in the peak period Tp.
  • the second peak period Tp2 is the period after the first peak current value Ip1 of the first peak period Tp1 in the peak period Tp.
  • the base period Tb is not provided between the first peak period Tp1 and the second peak period Tp2. Specifically, if a current close to the base current Ib is supplied in the process of growing a droplet, the arc directivity is weakened, which may cause instability of droplet detachment.
  • the base period Tb is not provided between the first peak period Tp1 and the second peak period Tp2, and the first peak period Tp1 and the second peak period Tp2 are two. Pulse welding is performed while maintaining arc directivity at the stage. In other words, since pulse welding is performed while maintaining arc directivity in at least two stages of the first peak period Tp1 and the second peak period Tp2 that rise continuously, it grows to the tip of the welding wire 18. It is possible to stably separate the droplets and transfer them to the base metal 17 side.
  • the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so that the first peak current value Ip1 is reached during the first peak period Tp1.
  • the first peak current value Ip1 is set to a current value at which droplets do not separate from the tip of the welding wire 18.
  • the first peak current value Ip1 is set to, for example, 300A.
  • the output waveform of the welding current is set so as to reach the first peak current value Ip1 after 800 ⁇ s or more, preferably 1200 ⁇ s, in order to moderate the pulse rise.
  • the first peak current value Ip1 is reached while gradually changing with an arcuate output waveform that rises while being convex and curved upward.
  • the optimum amount of molten metal can be adjusted according to the difference in components that differ depending on the manufacturer of the welding wire.
  • it is effective for welding wires 18 having a low content of silicon (Si) and manganese (Mn) and low surface tension and viscosity.
  • the welding device 10 After the lapse of the first peak period Tp1, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the second peak current value Ip2 during the second peak period Tp2.
  • the second peak current value Ip2 is set to a current value at which droplets can be separated from the tip of the welding wire 18.
  • the second peak current value Ip2 is set to, for example, 550A.
  • the output waveform of the welding current is set so as to reach the second peak current value Ip2 after 600 ⁇ s or more, preferably 800 ⁇ s, in order to moderate the pulse rise.
  • the second peak current value Ip2 is reached while gradually changing with an arcuate output waveform that rises while being convex and curved upward.
  • the arc 19 spreads at once to form a large molten pool, which may cause undercut depending on the shape of the joint of the base metal 17.
  • the pulse rise in the first peak period Tp1 and the second peak period Tp2 is made gentle, and the arc 19 gradually expands from the center to form a small molten pool, resulting in undercut. The occurrence can be suppressed.
  • the first peak current value Ip1 is reached while gradually changing with an arcuate output waveform that rises while curving upward, and further, the second peak period.
  • the second peak current value Ip2 is reached while gradually changing with an arcuate output waveform that rises while being convex and curved upward.
  • the pulse rise time in the first peak period Tp1 is 800 ⁇ s or more
  • the pulse rise time in the second peak period Tp2 is 600 ⁇ s or more.
  • the arc 19 spreads at once to form a large molten pool, which may cause undercut depending on the shape of the joint of the base metal 17.
  • the pulse rise time in the first peak period Tp1 and the second peak period Tp2 is lengthened, the pulse rise is slowed down, and the arc 19 gradually spreads from the center to melt.
  • the pond can be formed small and the occurrence of undercut can be suppressed.
  • the welding device 10 supplies the base current Ib to the welding wire 18 during the base period Tb after the lapse of the peak period Tp.
  • the base current Ib is set to, for example, 80A.
  • the spread of the arc 19 is reduced by performing pulse welding at the first peak current value Ip1 by slowing the pulse rise during the first peak period Tp1.
  • the molten pool of the base metal 17 can be made smaller, and the occurrence of undercut can be suppressed.
  • the pulse rise time during the first peak period Tp1 is longer than the pulse rise time during the second peak period Tp2, and the pulse rise during the first peak period Tp1 becomes the pulse rise during the second peak period Tp2. It is more gradual than that.
  • the pulse rise reaches the first peak current value Ip1 while gradually changing with an arcuate output waveform that rises while curving upward in a convex shape, and the pulse rise is performed during the second peak period Tp2.
  • the molten pool can be formed smaller by gradually expanding the arc 19 from the center, and the occurrence of undercut can be suppressed.
  • pulse welding is performed at the second peak current value Ip2, which is larger than the first peak current value Ip1, to separate the droplets grown on the tip of the welding wire 18 and move them to the base metal side. It can be transferred and the molten pool can be grown to an appropriate size to ensure the joint strength.
  • whether or not the droplet is stably separated from the tip of the welding wire 18 is determined by the elapsed time until the peak current value is reached in the second peak period Tp2.
  • FIG. 6 is a diagram showing an unstable region and a stable region during the first peak period.
  • undercut as shown in FIG. 6, the “unstable region” represents a region where undercut is likely to occur.
  • the “stable region” represents a region where undercut does not occur.
  • Such an unstable region and a stable region can be obtained in advance by experiments or the like.
  • the elapsed time of the first peak period Tp1 is 1200 ⁇ s and the first peak current value Ip1 is 300 A, so that it can be seen that the first peak period Tp1 is located in the stable region as shown in FIG.
  • the time to reach the peak current value Ip is 600 ⁇ s and the peak current value Ip is 470 A, so that it can be seen that the welding device is located in the unstable region. Therefore, it can be seen that undercut is likely to occur in the output waveform of the welding current in the conventional welding apparatus.
  • FIG. 7 is a diagram showing an unstable region and a stable region during the second peak period after the output of the stable region during the first peak period.
  • the “unstable region” represents a region where the detachment of the droplet is unstable.
  • the “stable region” represents a region in which the detachment of droplets is stable. Such an unstable region and a stable region can be obtained in advance by experiments or the like.
  • the elapsed time of the second peak period Tp2 is 800 ⁇ s and the second peak current value Ip2 is 550 A, so that it can be seen that the second peak period Tp2 is located in the stable region as shown in FIG.
  • the second peak period following the first peak current value Ip1 of the first peak period is not provided in the peak period Tp.
  • the welding current is flowed with a predetermined output waveform so as to reach the first peak current value Ip1 during the first peak period Tp1. Further, during the second peak period Tp2, the welding current is flowed with a predetermined output waveform so as to reach the second peak current value Ip2.
  • the second peak current value Ip2 is larger than the first peak current value Ip1.
  • the molten pool of the base metal 17 can be made smaller and the occurrence of undercut can be suppressed.
  • the droplets grown at the tip of the welding wire 18 are separated and transferred to the base metal 17 side, and the molten pool is appropriately prepared. It is possible to secure the bonding strength by growing it to a large size. Further, by surely separating the droplets during the second peak period Tp2, the generation of spatter can be suppressed.
  • FIG. 8 is a graph showing the output waveform of the welding current during pulse welding according to the first modification.
  • the same parts as those in the above embodiment are designated by the same reference numerals, and only the differences will be described.
  • one pulse period includes a first peak period Tp1, a second peak period Tp2, and a base period Tb.
  • the second peak period Tp2 is the period after the first peak period Tp1 in the peak period Tp.
  • the second peak period Tp2 is the period after the first peak current value Ip1 of the first peak period Tp1 in the peak period Tp.
  • the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so that the first peak current value Ip1 is reached during the first peak period Tp1.
  • the first peak current value Ip1 is set to a current value at which droplets do not separate from the tip of the welding wire 18.
  • the first peak current value Ip1 is set to, for example, 300A.
  • the output waveform of the welding current is set so as to reach the first peak current value Ip1 after 1200 ⁇ s has elapsed.
  • the first peak current value Ip1 is reached while gradually changing with a linear output waveform that rises while inclining upward.
  • the welding device 10 After the lapse of the first peak period Tp1, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the second peak current value Ip2 during the second peak period Tp2.
  • the second peak current value Ip2 is set to a current value at which droplets can be separated from the tip of the welding wire 18.
  • the second peak current value Ip2 is set to, for example, 550A.
  • FIG. 9 is a graph showing the output waveform of the welding current during pulse welding according to the second modification.
  • one pulse period includes a first peak period Tp1, a second peak period Tp2, and a base period Tb.
  • the second peak period Tp2 is the period after the first peak period Tp1 in the peak period Tp.
  • the second peak period Tp2 is the period after the first peak current value Ip1 of the first peak period Tp1 in the peak period Tp.
  • the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so that the first peak current value Ip1 is reached during the first peak period Tp1.
  • the first peak current value Ip1 is set to a current value at which droplets do not separate from the tip of the welding wire 18.
  • the first peak current value Ip1 is set to, for example, 300A.
  • the output waveform of the welding current is set so as to reach the first peak current value Ip1 after 1200 ⁇ s has elapsed.
  • the linear output waveform that rises while tilting upward gradually changes, and then the arc-shaped output waveform that rises while further convexing and curving upward.
  • the first peak current value Ip1 is reached while gradually changing at.
  • the welding device 10 After the lapse of the first peak period Tp1, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the second peak current value Ip2 during the second peak period Tp2.
  • the second peak current value Ip2 is set to a current value at which droplets can be separated from the tip of the welding wire 18.
  • the second peak current value Ip2 is set to, for example, 550A.
  • the embodiment may have the following configuration.
  • the peak period is an output waveform divided into two stages of a first peak period Tp1 and a second peak period Tp2, but for example, an output waveform including three or more peak periods may be used.
  • the present invention is extremely useful and industrially applicable because it has a highly practical effect of stabilizing the detachability of droplets and suppressing the occurrence of undercut.
  • the sex is high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)
  • Arc Welding In General (AREA)

Abstract

During a first peak period Tp1, a welding current is applied with a prescribed output waveform so as to reach a first peak current value Ip1. During a second peak period Tp2 after the first peak period Tp1, the welding current is applied with a prescribed output waveform so as to reach a second peak current value Ip2. The second peak current value Ip2 is greater than the first peak current value Ip2.

Description

溶接制御方法Welding control method
 本発明は、溶接制御方法に関するものである。 The present invention relates to a welding control method.
 特許文献1には、溶接ワイヤと溶接母材との短絡を検出するとパルス電流の出力波形の立ち上がりの傾きよりも小なる傾きの電流を出力し、短絡開放直前のくびれ現象を検出すると溶接電流を急峻に低減するようにしたパルスアーク溶接制御方法が開示されている。 In Patent Document 1, when a short circuit between the welding wire and the welding base material is detected, a current with a slope smaller than the slope of the rising edge of the output waveform of the pulse current is output, and when a constriction phenomenon immediately before the short circuit is opened is detected, the welding current is calculated. A pulse arc welding control method for sharply reducing the current is disclosed.
特開2006-334601号公報Japanese Unexamined Patent Publication No. 2006-334601
 ところで、パルスアーク溶接において、溶滴の離脱性を安定させるためには、ピーク電流を高く設定する必要がある。 By the way, in pulse arc welding, it is necessary to set a high peak current in order to stabilize the detachability of droplets.
 しかしながら、ピーク電流を高く出力するために、出力波形の立ち上りを急峻にすると、アークが一気に拡がって溶融池が過剰に成長してしまう。その結果、溶接ビードの周縁部で溶融金属が不足して、アンダーカットが発生するおそれがある。 However, if the rise of the output waveform is steep in order to output a high peak current, the arc will expand at once and the molten pool will grow excessively. As a result, the molten metal may be insufficient at the peripheral edge of the weld bead, and undercut may occur.
 一方、アンダーカットの発生を抑制するために、ピーク電流を低く出力すると、溶滴の離脱性が不安定になるおそれがある。 On the other hand, if the peak current is output low in order to suppress the occurrence of undercut, the detachability of droplets may become unstable.
 本発明は、かかる点に鑑みてなされたものであり、その目的は、溶滴の離脱性を安定させるとともに、アンダーカットの発生を抑制することにある。 The present invention has been made in view of this point, and an object thereof is to stabilize the detachability of droplets and suppress the occurrence of undercut.
 第1の態様は、溶接ワイヤと母材との間に、ピーク電流のピーク期間とベース電流のベース期間とを交互に複数回繰り返し供給してパルス溶接を行う溶接制御方法であって、1つのピーク期間は、第1ピーク期間と、該第1ピーク期間の後の第2ピーク期間とを含み、前記第1ピーク期間中に、第1ピーク電流値に達するように、所定の出力波形で溶接電流を流す第1工程と、前記第1工程の後、前記第2ピーク期間中に、前記第1ピーク電流値よりも大きな第2ピーク電流値に達するように、所定の出力波形で溶接電流を流す第2工程とを備えたことを特徴とする。 The first aspect is a welding control method in which pulse welding is performed by alternately and repeatedly supplying a peak period of a peak current and a base period of a base current between a welding wire and a base metal a plurality of times. The peak period includes a first peak period and a second peak period after the first peak period, and during the first peak period, welding is performed with a predetermined output waveform so as to reach the first peak current value. After the first step of passing a current and the first step, during the second peak period, the welding current is applied with a predetermined output waveform so as to reach the second peak current value larger than the first peak current value. It is characterized by having a second step of flowing.
 第1の態様では、第1ピーク期間中に、第1ピーク電流値に達するように、所定の出力波形で溶接電流を流すようにしている。また、第2ピーク期間中に、第2ピーク電流値に達するように、所定の出力波形で溶接電流を流すようにしている。ここで、第2ピーク電流値は、第1ピーク電流値よりも大きい。 In the first aspect, the welding current is flowed with a predetermined output waveform so as to reach the first peak current value during the first peak period. Further, during the second peak period, the welding current is flowed with a predetermined output waveform so as to reach the second peak current value. Here, the second peak current value is larger than the first peak current value.
 これにより、溶滴の離脱性を安定させるとともに、アンダーカットの発生を抑制することができる。 This makes it possible to stabilize the detachability of the droplets and suppress the occurrence of undercut.
 具体的に、第1ピーク電流値でパルス溶接することで、母材の溶融池を小さくして、アンダーカットの発生を抑えることができる。その後、第1ピーク電流値よりも大きな第2ピーク電流値でパルス溶接することで、溶接ワイヤの先端に成長した溶滴を離脱させて母材側に移行させ、溶融池を適切な大きさに成長させて接合強度を確保することができる。 Specifically, by pulse welding at the first peak current value, the molten pool of the base metal can be made smaller and the occurrence of undercut can be suppressed. After that, by pulse welding with a second peak current value larger than the first peak current value, the droplets grown at the tip of the welding wire are separated and transferred to the base metal side, and the molten pool is made into an appropriate size. It can be grown to ensure joint strength.
 第2の態様は、第1の態様において、前記第1ピーク電流値は、前記溶接ワイヤの先端から溶滴が離脱しない電流値であり、前記第2ピーク電流値は、前記溶接ワイヤの先端から溶滴が離脱可能な電流値であることを特徴とする。 In the second aspect, in the first aspect, the first peak current value is a current value at which droplets do not separate from the tip of the welding wire, and the second peak current value is from the tip of the welding wire. It is characterized by having a current value at which the droplet can be detached.
 第2の態様では、第1ピーク電流値が、溶接ワイヤの先端から溶滴が離脱しない電流値に設定される。第2ピーク電流値が、溶接ワイヤの先端から溶滴が離脱可能な電流値に設定される。 In the second aspect, the first peak current value is set to a current value at which the droplet does not separate from the tip of the welding wire. The second peak current value is set to a current value at which droplets can be separated from the tip of the welding wire.
 これにより、第1ピーク期間中に、溶滴が離脱して母材側に移行することがなく、アンダーカットの発生を抑えることができる。また、第2ピーク期間中に、溶滴を確実に離脱させ、スパッタの発生を抑えることができる。 As a result, during the first peak period, the droplets do not separate and move to the base metal side, and the occurrence of undercut can be suppressed. Further, during the second peak period, the droplets can be reliably separated and the generation of spatter can be suppressed.
 第3の態様は、第1又は2の態様において、前記第1ピーク期間におけるパルス立ち上がりは、前記第2ピーク期間におけるパルス立ち上がりに比べて緩やかであることを特徴とする。 The third aspect is characterized in that, in the first or second aspect, the pulse rise in the first peak period is slower than the pulse rise in the second peak period.
 第3の態様では、第1ピーク期間におけるパルス立ち上がりを、第2ピーク期間におけるパルス立ち上がりに比べて緩やかにしている。 In the third aspect, the pulse rise in the first peak period is made gentler than the pulse rise in the second peak period.
 具体的に、パルス立ち上がりが急峻な場合、アークが一気に広がることで溶融池が大きく形成され、母材の継手形状によっては、アンダーカットが発生する要因になってしまう。 Specifically, when the pulse rise is steep, the arc spreads at once, forming a large molten pool, which may cause undercut depending on the shape of the base metal joint.
 これに対し、本開示の態様では、第1ピーク期間において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第1ピーク電流値に到達し、パルス立ち上がりを第2ピーク期間中のパルス立ち上がりに比べてより緩やかにして、アークが中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生を抑制することができる。 On the other hand, in the aspect of the present disclosure, in the first peak period, the first peak current value is reached while the output waveform has an arcuate shape that rises while being convexly curved upward, and the pulse rise is caused. By making the pulse more gradual than the pulse rise during the two peak periods and gradually expanding the arc from the center, the molten pool can be formed small and the occurrence of undercut can be suppressed.
 第4の態様は、第1又は2の態様において、前記第1ピーク期間におけるパルス立ち上がり、及び前記第2ピーク期間におけるパルス立ち上がりは、それぞれ緩やかであることを特徴とする。 The fourth aspect is characterized in that, in the first or second aspect, the pulse rise in the first peak period and the pulse rise in the second peak period are gradual, respectively.
 第4の態様では、第1ピーク期間におけるパルス立ち上がり、及び第2ピーク期間におけるパルス立ち上がりをそれぞれ緩やかにしている。 In the fourth aspect, the pulse rise in the first peak period and the pulse rise in the second peak period are moderated.
 具体的に、パルス立ち上がりが急峻な場合、アークが一気に広がることで溶融池が大きく形成され、母材の継手形状によっては、アンダーカットが発生する要因になってしまう。 Specifically, when the pulse rise is steep, the arc spreads at once, forming a large molten pool, which may cause undercut depending on the shape of the joint of the base metal.
 これに対し、本開示の態様では、第1ピーク期間及び第2ピーク期間におけるパルス立ち上がりをそれぞれ緩やかにして、アークが中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生を抑制することができる。 On the other hand, in the aspect of the present disclosure, the pulse rise in the first peak period and the second peak period is made gentle, and the arc gradually spreads from the center, so that the molten pool can be formed small and the occurrence of undercut is suppressed. can do.
 より具体的には、第1ピーク期間において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第1ピーク電流値に到達し、さらに、第2ピーク期間において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第2ピーク電流値に到達する。パルス立ち上がりを緩やかにして、アークが中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生をさらに抑制することができる。 More specifically, in the first peak period, the first peak current value is reached while gradually changing with an arcuate output waveform that rises while curving upward in a convex shape, and further, in the second peak period. The second peak current value is reached while gradually changing with an arc-shaped output waveform that rises while being convex and curved upward. By slowing the pulse rise and gradually expanding the arc from the center, the molten pool can be formed small and the occurrence of undercut can be further suppressed.
 第5の態様は、第1~4の態様のうち何れか1つにおいて、前記第1ピーク期間におけるパルス立ち上がり時間は、800μs以上であり、前記第2ピーク期間におけるパルス立ち上がり時間は、600μs以上であることを特徴とする。 In the fifth aspect, in any one of the first to fourth aspects, the pulse rise time in the first peak period is 800 μs or more, and the pulse rise time in the second peak period is 600 μs or more. It is characterized by being.
 第5の態様では、第1ピーク期間及び第2ピーク期間におけるパルス立ち上がりをそれぞれ緩やかにしている。 In the fifth aspect, the pulse rises in the first peak period and the second peak period are moderated, respectively.
 具体的に、パルス立ち上がりが急峻な場合、アークが一気に広がることで溶融池が大きく形成され、母材の継手形状によっては、アンダーカットが発生する要因になってしまう。 Specifically, when the pulse rise is steep, the arc spreads at once, forming a large molten pool, which may cause undercut depending on the shape of the joint of the base metal.
 これに対し、本開示の態様では、第1ピーク期間及び第2ピーク期間におけるパルス立ち上がり時間を長くし、パルス立ち上がりをそれぞれ緩やかにして、アークが中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生を抑制することができる。 On the other hand, in the aspect of the present disclosure, the pulse rise time in the first peak period and the second peak period is lengthened, the pulse rise is made gentle, and the arc gradually spreads from the center to form a small molten pool. , The occurrence of undercut can be suppressed.
 第6の態様は、第1~5の態様のうち何れか1つにおいて、前記第1ピーク期間と前記第2ピーク期間との間には、前記ベース期間が設けられていないことを特徴とする。 A sixth aspect is characterized in that, in any one of the first to fifth aspects, the base period is not provided between the first peak period and the second peak period. ..
 第6の態様では、第1ピーク期間と第2ピーク期間との間にベース期間を設けないようにしている。 In the sixth aspect, the base period is not provided between the first peak period and the second peak period.
 具体的に、溶滴を成長させる過程でベース電流に近い電流を供給すると、アーク指向性を弱めるため、溶滴離脱の不安定を引き起こす可能性がある。 Specifically, if a current close to the base current is supplied in the process of growing a droplet, the arc directivity is weakened, which may cause instability of droplet detachment.
 これに対し、本開示の態様では、第1ピーク期間と第2ピーク期間との2段階でアーク指向性を保持した状態でパルス溶接を行うようにしているため、溶接ワイヤの先端に成長した溶滴を安定して離脱させて母材側に移行させることができる。 On the other hand, in the aspect of the present disclosure, since pulse welding is performed in a state where the arc directivity is maintained in two stages of the first peak period and the second peak period, the melt grown at the tip of the weld wire is performed. The droplets can be stably separated and transferred to the base metal side.
 本開示の態様によれば、溶滴の離脱性を安定させるとともに、アンダーカットの発生を抑制することができる。 According to the aspect of the present disclosure, it is possible to stabilize the detachability of the droplet and suppress the occurrence of undercut.
図1は、本実施形態に係るアーク溶接装置の概略構成を示す図である。FIG. 1 is a diagram showing a schematic configuration of an arc welding apparatus according to this embodiment. 図2は、従来のパルス溶接時の溶接電流の出力波形を示すグラフ図である。FIG. 2 is a graph showing an output waveform of a welding current during conventional pulse welding. 図3は、従来のパルス溶接時のアークの状態を示す側面断面図である。FIG. 3 is a side sectional view showing a state of an arc during conventional pulse welding. 図4は、本実施形態に係るパルス溶接時の溶接電流の出力波形を示すグラフ図である。FIG. 4 is a graph showing an output waveform of a welding current during pulse welding according to the present embodiment. 図5は、パルス溶接時のアークの状態を示す側面断面図である。FIG. 5 is a side sectional view showing a state of an arc during pulse welding. 図6は、第1ピーク期間中の不安定領域と安定領域を示す図である。FIG. 6 is a diagram showing an unstable region and a stable region during the first peak period. 図7は、第2ピーク期間中の不安定領域と安定領域を示す図である。FIG. 7 is a diagram showing an unstable region and a stable region during the second peak period. 図8は、本変形例1に係るパルス溶接時の溶接電流の出力波形を示すグラフ図である。FIG. 8 is a graph showing the output waveform of the welding current during pulse welding according to the first modification. 図9は、本変形例2に係るパルス溶接時の溶接電流の出力波形を示すグラフ図である。FIG. 9 is a graph showing the output waveform of the welding current during pulse welding according to the second modification.
 以下、本発明の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. It should be noted that the following description of the preferred embodiment is essentially merely an example and is not intended to limit the present invention, its application or its use.
 《実施形態》
 図1に示すように、溶接装置10は、消耗電極である溶接ワイヤ18と、母材17との間に、ピーク電流とベース電流とを交互に繰り返し供給してパルス溶接を行う。
<< Embodiment >>
As shown in FIG. 1, the welding apparatus 10 alternately and repeatedly supplies a peak current and a base current between the welding wire 18 which is a consumable electrode and the base metal 17, and performs pulse welding.
 溶接ワイヤ18は、図示しないトーチに保持される。さらに、図示しないロボットなどの移動手段に保持させたトーチを所定の速度で移動させることで、溶接ワイヤ18の先端も同様に、同じ速度で所定の溶接区間に沿って移動する。 The welding wire 18 is held by a torch (not shown). Further, by moving the torch held by a moving means such as a robot (not shown) at a predetermined speed, the tip of the welding wire 18 also moves along the predetermined welding section at the same speed.
 溶接装置10は、一次側整流部2と、スイッチング部3と、主変圧器4と、二次側整流部5と、DCL6(DCリアクトル)と、溶接電流検出部7と、溶接電圧検出部8と、出力制御部11と、ワイヤ送給速度制御部13とを備える。 The welding device 10 includes a primary side rectifying unit 2, a switching unit 3, a main transformer 4, a secondary side rectifying unit 5, a DCL6 (DC reactor), a welding current detection unit 7, and a welding voltage detection unit 8. And an output control unit 11 and a wire feeding speed control unit 13.
 なお、図示は省略するが、溶接装置10は、トーチを保持するロボットの動作を制御するロボット制御部を有する。 Although not shown, the welding device 10 has a robot control unit that controls the operation of the robot that holds the torch.
 一次側整流部2は、溶接装置10の外部の入力電源1(三相交流電源)から入力された入力電圧を整流する。スイッチング部3は、一次側整流部2の出力を、溶接に適した出力に制御する。主変圧器4は、スイッチング部3の出力を、溶接に適した出力に変換する。 The primary side rectifying unit 2 rectifies the input voltage input from the external input power supply 1 (three-phase AC power supply) of the welding device 10. The switching unit 3 controls the output of the primary side rectifying unit 2 to an output suitable for welding. The main transformer 4 converts the output of the switching unit 3 into an output suitable for welding.
 二次側整流部5は、主変圧器4の出力を整流する。DCL6は、二次側整流部5の出力を、溶接に適した電流に平滑する。溶接電流検出部7は、溶接電流を検出する。溶接電圧検出部8は、溶接電圧を検出する。 The secondary side rectifying unit 5 rectifies the output of the main transformer 4. The DCL 6 smoothes the output of the secondary side rectifying unit 5 to a current suitable for welding. The welding current detection unit 7 detects the welding current. The welding voltage detection unit 8 detects the welding voltage.
 出力制御部11は、スイッチング部3に制御信号を出力して溶接出力を制御する。ワイヤ送給速度制御部13は、ワイヤ送給部21を制御して溶接ワイヤ18の送給速度を制御する。ワイヤ送給速度制御部13は、ワイヤ送給速度検出部14と、演算部15とを有する。 The output control unit 11 outputs a control signal to the switching unit 3 to control the welding output. The wire feeding speed control unit 13 controls the wire feeding unit 21 to control the feeding speed of the welded wire 18. The wire feeding speed control unit 13 includes a wire feeding speed detecting unit 14 and a calculation unit 15.
 ワイヤ送給速度検出部14は、ワイヤ送給速度を検出する。演算部15は、ワイヤ送給速度検出部14からの信号に基づいて、溶接ワイヤ18の送給量の積算量を演算し、ワイヤ送給速度を制御する。具体的には、ワイヤ送給速度の指令値と検出値とを比較して差分を求め、当該差分の積算量に基づいて、実際のワイヤ送給速度を指令値に合わせるようにフィードバック制御を行う。 The wire feeding speed detection unit 14 detects the wire feeding speed. The calculation unit 15 calculates the integrated amount of the feed amount of the welded wire 18 based on the signal from the wire feed rate detection unit 14, and controls the wire feed rate. Specifically, the difference is obtained by comparing the command value of the wire feeding speed with the detected value, and feedback control is performed so as to match the actual wire feeding speed with the command value based on the integrated amount of the difference. ..
 溶接装置10には、ワイヤ送給部21と、溶接条件設定部22とが接続される。ワイヤ送給部21は、ワイヤ送給速度制御部13からの信号に基づいて、溶接ワイヤ18の送給の制御を行う。溶接条件設定部22は、溶接装置10の溶接条件を設定するために用いられる。 The wire feeding unit 21 and the welding condition setting unit 22 are connected to the welding device 10. The wire feeding unit 21 controls the feeding of the welded wire 18 based on the signal from the wire feeding speed control unit 13. The welding condition setting unit 22 is used to set the welding conditions of the welding apparatus 10.
 溶接装置10の溶接出力は、図示しないトーチスイッチがONになると、図示しないトーチの溶接チップ20を介して溶接ワイヤ18に供給される。そして、溶接装置10の溶接出力により、溶接ワイヤ18と母材17との間にアーク19を発生させて溶接を行う。 When the torch switch (not shown) is turned on, the welding output of the welding device 10 is supplied to the welding wire 18 via the welding tip 20 of the torch (not shown). Then, an arc 19 is generated between the welding wire 18 and the base metal 17 by the welding output of the welding device 10, and welding is performed.
 〈パルス溶接の制御方法〉
 以下の説明では、溶接ワイヤ18の材質を軟鋼、ワイヤ径を1.2mmとし、母材17の材質を軟鋼としている。溶接装置10は、シールドガスとしてアルゴンガスと炭酸ガスの混合ガスを用いたマグ溶接を行う。溶接電流の設定平均値(以下、設定電流と呼ぶことがある)は、200Aに設定される。なお、以下の説明で記載した具体的な数値は、あくまでも一例であり、これに限定するものではない。
<Pulse welding control method>
In the following description, the material of the welding wire 18 is mild steel, the wire diameter is 1.2 mm, and the material of the base metal 17 is mild steel. The welding device 10 performs MAG welding using a mixed gas of argon gas and carbon dioxide gas as a shield gas. The set average value of the welding current (hereinafter, may be referred to as a set current) is set to 200 A. The specific numerical values described in the following description are merely examples and are not limited to these.
 まず、溶接装置10における従来のパルス溶接時の溶接電流の出力波形について説明する。 First, the output waveform of the welding current at the time of conventional pulse welding in the welding apparatus 10 will be described.
 図2に示すように、従来のパルス溶接時には、溶接装置10は、1つのピーク期間Tp中に、ピーク電流値Ipに達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。ピーク電流値Ipは、例えば、470Aに設定される。 As shown in FIG. 2, during conventional pulse welding, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the peak current value Ip during one peak period Tp. The peak current value Ip is set to, for example, 470 A.
 ピーク期間Tpでは、600μs経過後に、ピーク電流値Ipに達するように、溶接電流の出力波形が設定される。図2に示す例では、ピーク期間Tpにおいて、上方に向かって傾斜しながら急峻に立ち上がる出力波形で、ピーク電流値Ipに到達する。ピーク電流値Ipに到達した後、ピーク期間Tpが終了するまでの間、ピーク電流値Ipが維持される。 In the peak period Tp, the output waveform of the welding current is set so as to reach the peak current value Ip after 600 μs has elapsed. In the example shown in FIG. 2, in the peak period Tp, the peak current value Ip is reached with an output waveform that rises steeply while sloping upward. After reaching the peak current value Ip, the peak current value Ip is maintained until the end of the peak period Tp.
 以下、比較例として、図3に示すように、従来のパルス溶接にて、2枚の板材をT字状に組み合わせた母材17に対して、2枚の板材の隅部に沿って溶接する場合について説明する。 Hereinafter, as a comparative example, as shown in FIG. 3, by conventional pulse welding, two plates are welded to a base material 17 in which two plates are combined in a T shape along the corners of the two plates. The case will be described.
 ピーク期間Tpにおける溶接電流の立ち上がり時に、一気にピーク電流値Ipまで到達させると、図3に示すように、ピーク期間Tpの出力波形の立ち上がり時ではアーク19の拡がりが大きくなる。ピーク期間Tpの出力波形の立ち上がり後、ピーク電流値Ipを維持した状態で、パルス溶接を継続すると、溶融池が過剰に成長してしまう。その結果、図3の溶接結果に示すように、母材17の縦板側の溶融金属が垂れ下がり、溶接ビードの周縁部で溶融金属が不足して、アンダーカットが発生するおそれがある。また、溶滴の離脱性が不安定となって、スパッタが発生するおそれがある。 If the peak current value Ip is reached at once at the rising edge of the welding current during the peak period Tp, the spread of the arc 19 becomes large at the rising edge of the output waveform of the peak period Tp, as shown in FIG. If pulse welding is continued while the peak current value Ip is maintained after the rise of the output waveform of the peak period Tp, the molten pool grows excessively. As a result, as shown in the welding result of FIG. 3, the molten metal on the vertical plate side of the base metal 17 hangs down, and the molten metal is insufficient at the peripheral edge of the weld bead, which may cause undercut. In addition, the detachability of the droplets becomes unstable, and spatter may occur.
 そこで、本実施形態では、溶滴の離脱性を安定させるとともに、アンダーカットの発生を抑制することができるようにした。 Therefore, in the present embodiment, the detachability of the droplets can be stabilized and the occurrence of undercut can be suppressed.
 図4は、本実施形態に係るパルス溶接時の溶接電流の出力波形を示すグラフ図である。図4に示すように、溶接装置10では、ピーク電流とベース電流とを交互に複数回繰り返し供給することで、パルス溶接が行われる。 FIG. 4 is a graph showing the output waveform of the welding current at the time of pulse welding according to the present embodiment. As shown in FIG. 4, in the welding apparatus 10, pulse welding is performed by alternately and repeatedly supplying a peak current and a base current a plurality of times.
 1つのパルス期間は、第1ピーク期間Tp1と、第2ピーク期間Tp2と、ベース期間Tbとを含む。第2ピーク期間Tp2は、ピーク期間Tpにおいて、第1ピーク期間Tp1の後の期間である。言い換えると、第2ピーク期間Tp2は、ピーク期間Tpにおいて、第1ピーク期間Tp1の第1ピーク電流値Ip1に続く後の期間である。 One pulse period includes a first peak period Tp1, a second peak period Tp2, and a base period Tb. The second peak period Tp2 is the period after the first peak period Tp1 in the peak period Tp. In other words, the second peak period Tp2 is the period after the first peak current value Ip1 of the first peak period Tp1 in the peak period Tp.
 ここで、第1ピーク期間Tp1と第2ピーク期間Tp2との間には、ベース期間Tbが設けられていない。具体的には、溶滴を成長させる過程でベース電流Ibに近い電流を供給すると、アーク指向性を弱めるため、溶滴離脱の不安定を引き起こす可能性がある。 Here, the base period Tb is not provided between the first peak period Tp1 and the second peak period Tp2. Specifically, if a current close to the base current Ib is supplied in the process of growing a droplet, the arc directivity is weakened, which may cause instability of droplet detachment.
 これに対し、本開示の実施の形態では、第1ピーク期間Tp1と第2ピーク期間Tp2との間には、ベース期間Tbを設けず、第1ピーク期間Tp1と第2ピーク期間Tp2との2段階でアーク指向性を保持した状態でパルス溶接を行うようにしている。言い換えると、連続して上昇する第1ピーク期間Tp1と第2ピーク期間Tp2との少なくとも2段階でアーク指向性を保持した状態でパルス溶接を行うようにしているため、溶接ワイヤ18の先端に成長した溶滴を安定して離脱させて母材17側に移行させることができる。 On the other hand, in the embodiment of the present disclosure, the base period Tb is not provided between the first peak period Tp1 and the second peak period Tp2, and the first peak period Tp1 and the second peak period Tp2 are two. Pulse welding is performed while maintaining arc directivity at the stage. In other words, since pulse welding is performed while maintaining arc directivity in at least two stages of the first peak period Tp1 and the second peak period Tp2 that rise continuously, it grows to the tip of the welding wire 18. It is possible to stably separate the droplets and transfer them to the base metal 17 side.
 溶接装置10は、第1ピーク期間Tp1中に、第1ピーク電流値Ip1に達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。第1ピーク電流値Ip1は、溶接ワイヤ18の先端から溶滴が離脱しない電流値に設定される。第1ピーク電流値Ip1は、例えば、300Aに設定される。 The welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so that the first peak current value Ip1 is reached during the first peak period Tp1. The first peak current value Ip1 is set to a current value at which droplets do not separate from the tip of the welding wire 18. The first peak current value Ip1 is set to, for example, 300A.
 第1ピーク期間Tp1では、パルス立ち上がりを緩やかにするために、800μs以上、好ましくは、1200μs経過後に、第1ピーク電流値Ip1に達するように、溶接電流の出力波形が設定される。図4に示す例では、第1ピーク期間Tp1において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第1ピーク電流値Ip1に到達する。 In the first peak period Tp1, the output waveform of the welding current is set so as to reach the first peak current value Ip1 after 800 μs or more, preferably 1200 μs, in order to moderate the pulse rise. In the example shown in FIG. 4, in the first peak period Tp1, the first peak current value Ip1 is reached while gradually changing with an arcuate output waveform that rises while being convex and curved upward.
 このように、溶接電流の出力波形の立ち上がりを円弧状に変化させることで、溶接ワイヤの製造会社毎に異なる成分違いに応じて、最適な溶融金属量を調整することができる。特に、シリコン(Si)やマンガン(Mn)の含有量が少なく、表面張力や粘性の低い溶接ワイヤ18に対して有効となる。 In this way, by changing the rising edge of the output waveform of the welding current in an arc shape, the optimum amount of molten metal can be adjusted according to the difference in components that differ depending on the manufacturer of the welding wire. In particular, it is effective for welding wires 18 having a low content of silicon (Si) and manganese (Mn) and low surface tension and viscosity.
 溶接装置10は、第1ピーク期間Tp1の経過後、第2ピーク期間Tp2中に、第2ピーク電流値Ip2に達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。第2ピーク電流値Ip2は、溶接ワイヤ18の先端から溶滴が離脱可能な電流値に設定される。第2ピーク電流値Ip2は、例えば、550Aに設定される。 After the lapse of the first peak period Tp1, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the second peak current value Ip2 during the second peak period Tp2. The second peak current value Ip2 is set to a current value at which droplets can be separated from the tip of the welding wire 18. The second peak current value Ip2 is set to, for example, 550A.
 第2ピーク期間Tp2では、パルス立ち上がりを緩やかにするために、600μs以上、好ましくは、800μs経過後に、第2ピーク電流値Ip2に達するように、溶接電流の出力波形が設定される。図4に示す例では、第2ピーク期間Tp2において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第2ピーク電流値Ip2に到達する。 In the second peak period Tp2, the output waveform of the welding current is set so as to reach the second peak current value Ip2 after 600 μs or more, preferably 800 μs, in order to moderate the pulse rise. In the example shown in FIG. 4, in the second peak period Tp2, the second peak current value Ip2 is reached while gradually changing with an arcuate output waveform that rises while being convex and curved upward.
 このように、第1ピーク期間Tp1におけるパルス立ち上がり、及び第2ピーク期間Tp2におけるパルス立ち上がりをそれぞれ緩やかにしている。 In this way, the pulse rise in the first peak period Tp1 and the pulse rise in the second peak period Tp2 are moderated.
 具体的に、パルス立ち上がりが急峻な場合、アーク19が一気に広がることで溶融池が大きく形成され、母材17の継手形状によっては、アンダーカットが発生する要因になってしまう。 Specifically, when the pulse rise is steep, the arc 19 spreads at once to form a large molten pool, which may cause undercut depending on the shape of the joint of the base metal 17.
 これに対し、本実施の形態では、第1ピーク期間Tp1及び第2ピーク期間Tp2におけるパルス立ち上がりをそれぞれ緩やかにして、アーク19が中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生を抑制することができる。 On the other hand, in the present embodiment, the pulse rise in the first peak period Tp1 and the second peak period Tp2 is made gentle, and the arc 19 gradually expands from the center to form a small molten pool, resulting in undercut. The occurrence can be suppressed.
 より具体的には、第1ピーク期間Tp1において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第1ピーク電流値Ip1に到達し、さらに、第2ピーク期間Tp2において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第2ピーク電流値Ip2に到達する。パルス立ち上がりを緩やかにして、アーク19が中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生をさらに抑制することができる。 More specifically, in the first peak period Tp1, the first peak current value Ip1 is reached while gradually changing with an arcuate output waveform that rises while curving upward, and further, the second peak period. At Tp2, the second peak current value Ip2 is reached while gradually changing with an arcuate output waveform that rises while being convex and curved upward. By slowing the pulse rise and gradually expanding the arc 19 from the center, the molten pool can be formed small, and the occurrence of undercut can be further suppressed.
 また、このように、第1ピーク期間Tp1におけるパルス立ち上がり時間は、800μs以上であり、第2ピーク期間Tp2におけるパルス立ち上がり時間は、600μs以上とする。これにより、第1ピーク期間Tp1及び第2ピーク期間Tp2におけるパルス立ち上がり時間を長くし、パルス立ち上がりをそれぞれ緩やかにしている。 Further, as described above, the pulse rise time in the first peak period Tp1 is 800 μs or more, and the pulse rise time in the second peak period Tp2 is 600 μs or more. As a result, the pulse rise time in the first peak period Tp1 and the second peak period Tp2 is lengthened, and the pulse rise is moderated.
 具体的に、パルス立ち上がりが急峻な場合、アーク19が一気に広がることで溶融池が大きく形成され、母材17の継手形状によっては、アンダーカットが発生する要因になってしまう。 Specifically, when the pulse rise is steep, the arc 19 spreads at once to form a large molten pool, which may cause undercut depending on the shape of the joint of the base metal 17.
 これに対し、本開示の実施の形態では、第1ピーク期間Tp1及び第2ピーク期間Tp2におけるパルス立ち上がり時間を長くし、パルス立ち上がりをそれぞれ緩やかにして、アーク19が中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生を抑制することができる。 On the other hand, in the embodiment of the present disclosure, the pulse rise time in the first peak period Tp1 and the second peak period Tp2 is lengthened, the pulse rise is slowed down, and the arc 19 gradually spreads from the center to melt. The pond can be formed small and the occurrence of undercut can be suppressed.
 溶接装置10は、ピーク期間Tpの経過後、ベース期間Tb中に、溶接ワイヤ18にベース電流Ibを供給する。ベース電流Ibは、例えば、80Aに設定される。 The welding device 10 supplies the base current Ib to the welding wire 18 during the base period Tb after the lapse of the peak period Tp. The base current Ib is set to, for example, 80A.
 図4及び図5に示すように、第1ピーク期間Tp1中のパルス立ち上がりを緩やかにして、第1ピーク電流値Ip1でパルス溶接することで、アーク19の拡がりが小さくなる。これにより、母材17の溶融池を小さくして、アンダーカットの発生を抑えることができる。 As shown in FIGS. 4 and 5, the spread of the arc 19 is reduced by performing pulse welding at the first peak current value Ip1 by slowing the pulse rise during the first peak period Tp1. As a result, the molten pool of the base metal 17 can be made smaller, and the occurrence of undercut can be suppressed.
 ここで、第1ピーク期間Tp1中のパルス立ち上がり時間は、第2ピーク期間Tp2中のパルス立ち上がり時間よりも長く、第1ピーク期間Tp1中のパルス立ち上がりは、第2ピーク期間Tp2中のパルス立ち上がりに比べてより緩やかである。 Here, the pulse rise time during the first peak period Tp1 is longer than the pulse rise time during the second peak period Tp2, and the pulse rise during the first peak period Tp1 becomes the pulse rise during the second peak period Tp2. It is more gradual than that.
 第1ピーク期間Tp1において、上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第1ピーク電流値Ip1に到達し、パルス立ち上がりを第2ピーク期間Tp2中のパルス立ち上がりに比べてより緩やかにして、アーク19が中心から徐々に広がることで溶融池を小さく形成でき、アンダーカットの発生を抑制することができる。 In the first peak period Tp1, the pulse rise reaches the first peak current value Ip1 while gradually changing with an arcuate output waveform that rises while curving upward in a convex shape, and the pulse rise is performed during the second peak period Tp2. The molten pool can be formed smaller by gradually expanding the arc 19 from the center, and the occurrence of undercut can be suppressed.
 その後、第2ピーク期間Tp2中に、第1ピーク電流値Ip1よりも大きな第2ピーク電流値Ip2でパルス溶接することで、溶接ワイヤ18の先端に成長した溶滴を離脱させて母材側に移行させ、溶融池を適切な大きさに成長させて接合強度を確保することができる。 Then, during the second peak period Tp2, pulse welding is performed at the second peak current value Ip2, which is larger than the first peak current value Ip1, to separate the droplets grown on the tip of the welding wire 18 and move them to the base metal side. It can be transferred and the molten pool can be grown to an appropriate size to ensure the joint strength.
 ここで、溶接ワイヤ18の先端から溶滴が安定して離脱されるかは、第2ピーク期間Tp2において、ピーク電流値に達するまでの経過時間によって決定される。 Here, whether or not the droplet is stably separated from the tip of the welding wire 18 is determined by the elapsed time until the peak current value is reached in the second peak period Tp2.
 図6は、第1ピーク期間中の不安定領域と安定領域を示す図である。アンダーカットについては図6に示すように、「不安定領域」は、アンダーカットが発生しやすい領域を表す。一方、「安定領域」は、アンダーカットが発生しない領域を表す。このような不安定領域及び安定領域は、予め実験等により求められる。 FIG. 6 is a diagram showing an unstable region and a stable region during the first peak period. As for undercut, as shown in FIG. 6, the “unstable region” represents a region where undercut is likely to occur. On the other hand, the "stable region" represents a region where undercut does not occur. Such an unstable region and a stable region can be obtained in advance by experiments or the like.
 本実施形態では、第1ピーク期間Tp1の経過時間を1200μs、第1ピーク電流値Ip1を300Aとしているので、図6に示すように、安定領域内に位置していることが分かる。 In the present embodiment, the elapsed time of the first peak period Tp1 is 1200 μs and the first peak current value Ip1 is 300 A, so that it can be seen that the first peak period Tp1 is located in the stable region as shown in FIG.
 一方、従来の溶接装置では、ピーク電流値Ipに達する時間を600μs、ピーク電流値Ipを470Aとしているので、不安定領域内に位置していることが分かる。そのため、従来の溶接装置における溶接電流の出力波形では、アンダーカットが発生しやすいことが分かる。 On the other hand, in the conventional welding apparatus, the time to reach the peak current value Ip is 600 μs and the peak current value Ip is 470 A, so that it can be seen that the welding device is located in the unstable region. Therefore, it can be seen that undercut is likely to occur in the output waveform of the welding current in the conventional welding apparatus.
 図7は、第1ピーク期間中での安定領域の出力後、第2ピーク期間中の不安定領域と安定領域を示す図である。図7に示すように、「不安定領域」は、溶滴の離脱が不安定となる領域を表す。一方、「安定領域」は、溶滴の離脱が安定している領域を表す。このような不安定領域及び安定領域は、予め実験等により求められる。 FIG. 7 is a diagram showing an unstable region and a stable region during the second peak period after the output of the stable region during the first peak period. As shown in FIG. 7, the “unstable region” represents a region where the detachment of the droplet is unstable. On the other hand, the "stable region" represents a region in which the detachment of droplets is stable. Such an unstable region and a stable region can be obtained in advance by experiments or the like.
 本実施形態では、第2ピーク期間Tp2の経過時間を800μs、第2ピーク電流値Ip2を550Aとしているので、図7に示すように、安定領域内に位置していることが分かる。なお、比較例としての従来の溶接装置では、ピーク期間Tpにおいて、第1ピーク期間の第1ピーク電流値Ip1に続く、第2ピーク期間は設けられていない。 In the present embodiment, the elapsed time of the second peak period Tp2 is 800 μs and the second peak current value Ip2 is 550 A, so that it can be seen that the second peak period Tp2 is located in the stable region as shown in FIG. In the conventional welding apparatus as a comparative example, the second peak period following the first peak current value Ip1 of the first peak period is not provided in the peak period Tp.
 以上のように、本実施形態に係る溶接装置10では、第1ピーク期間Tp1中に、第1ピーク電流値Ip1に達するように、所定の出力波形で溶接電流を流すようにしている。また、第2ピーク期間Tp2中に、第2ピーク電流値Ip2に達するように、所定の出力波形で溶接電流を流すようにしている。ここで、第2ピーク電流値Ip2は、第1ピーク電流値Ip1よりも大きい。 As described above, in the welding apparatus 10 according to the present embodiment, the welding current is flowed with a predetermined output waveform so as to reach the first peak current value Ip1 during the first peak period Tp1. Further, during the second peak period Tp2, the welding current is flowed with a predetermined output waveform so as to reach the second peak current value Ip2. Here, the second peak current value Ip2 is larger than the first peak current value Ip1.
 このように、第1ピーク電流値Ip1でパルス溶接することで、母材17の溶融池を小さくして、アンダーカットが発生するのを抑えることができる。その後、第1ピーク電流値Ip1よりも大きな第2ピーク電流値Ip2でパルス溶接することで、溶接ワイヤ18の先端に成長した溶滴を離脱させて母材17側に移行させ、溶融池を適切な大きさに成長させて接合強度を確保することができる。また、第2ピーク期間Tp2中に、溶滴を確実に離脱させることで、スパッタの発生を抑えることができる。 In this way, by pulse welding with the first peak current value Ip1, the molten pool of the base metal 17 can be made smaller and the occurrence of undercut can be suppressed. After that, by pulse welding with a second peak current value Ip2 larger than the first peak current value Ip1, the droplets grown at the tip of the welding wire 18 are separated and transferred to the base metal 17 side, and the molten pool is appropriately prepared. It is possible to secure the bonding strength by growing it to a large size. Further, by surely separating the droplets during the second peak period Tp2, the generation of spatter can be suppressed.
 《変形例1》
 図8は、本変形例1に係るパルス溶接時の溶接電流の出力波形を示すグラフ図である。以下、前記実施形態と同じ部分については同じ符号を付し、相違点についてのみ説明する。
<< Modification 1 >>
FIG. 8 is a graph showing the output waveform of the welding current during pulse welding according to the first modification. Hereinafter, the same parts as those in the above embodiment are designated by the same reference numerals, and only the differences will be described.
 図8に示すように、1つのパルス期間は、第1ピーク期間Tp1と、第2ピーク期間Tp2と、ベース期間Tbとを含む。第2ピーク期間Tp2は、ピーク期間Tpにおいて、第1ピーク期間Tp1の後の期間である。言い換えると、第2ピーク期間Tp2は、ピーク期間Tpにおいて、第1ピーク期間Tp1の第1ピーク電流値Ip1に続く後の期間である。 As shown in FIG. 8, one pulse period includes a first peak period Tp1, a second peak period Tp2, and a base period Tb. The second peak period Tp2 is the period after the first peak period Tp1 in the peak period Tp. In other words, the second peak period Tp2 is the period after the first peak current value Ip1 of the first peak period Tp1 in the peak period Tp.
 溶接装置10は、第1ピーク期間Tp1中に、第1ピーク電流値Ip1に達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。第1ピーク電流値Ip1は、溶接ワイヤ18の先端から溶滴が離脱しない電流値に設定される。第1ピーク電流値Ip1は、例えば、300Aに設定される。 The welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so that the first peak current value Ip1 is reached during the first peak period Tp1. The first peak current value Ip1 is set to a current value at which droplets do not separate from the tip of the welding wire 18. The first peak current value Ip1 is set to, for example, 300A.
 第1ピーク期間Tp1では、1200μs経過後に、第1ピーク電流値Ip1に達するように、溶接電流の出力波形が設定される。図8に示す例では、第1ピーク期間Tp1において、上方に向かって傾斜しながら立ち上がる直線状の出力波形で緩やかに変化しながら、第1ピーク電流値Ip1に到達する。 In the first peak period Tp1, the output waveform of the welding current is set so as to reach the first peak current value Ip1 after 1200 μs has elapsed. In the example shown in FIG. 8, in the first peak period Tp1, the first peak current value Ip1 is reached while gradually changing with a linear output waveform that rises while inclining upward.
 溶接装置10は、第1ピーク期間Tp1の経過後、第2ピーク期間Tp2中に、第2ピーク電流値Ip2に達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。第2ピーク電流値Ip2は、溶接ワイヤ18の先端から溶滴が離脱可能な電流値に設定される。第2ピーク電流値Ip2は、例えば、550Aに設定される。 After the lapse of the first peak period Tp1, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the second peak current value Ip2 during the second peak period Tp2. The second peak current value Ip2 is set to a current value at which droplets can be separated from the tip of the welding wire 18. The second peak current value Ip2 is set to, for example, 550A.
 なお、第2ピーク期間Tp2における溶接電流の出力波形は、前記実施形態と同じであるため、説明を省略する。 Since the output waveform of the welding current in the second peak period Tp2 is the same as that of the above embodiment, the description thereof will be omitted.
 《変形例2》
 図9は、本変形例2に係るパルス溶接時の溶接電流の出力波形を示すグラフ図である。図9に示すように、1つのパルス期間は、第1ピーク期間Tp1と、第2ピーク期間Tp2と、ベース期間Tbとを含む。第2ピーク期間Tp2は、ピーク期間Tpにおいて、第1ピーク期間Tp1の後の期間である。言い換えると、第2ピーク期間Tp2は、ピーク期間Tpにおいて、第1ピーク期間Tp1の第1ピーク電流値Ip1に続く後の期間である。
<< Modification 2 >>
FIG. 9 is a graph showing the output waveform of the welding current during pulse welding according to the second modification. As shown in FIG. 9, one pulse period includes a first peak period Tp1, a second peak period Tp2, and a base period Tb. The second peak period Tp2 is the period after the first peak period Tp1 in the peak period Tp. In other words, the second peak period Tp2 is the period after the first peak current value Ip1 of the first peak period Tp1 in the peak period Tp.
 溶接装置10は、第1ピーク期間Tp1中に、第1ピーク電流値Ip1に達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。第1ピーク電流値Ip1は、溶接ワイヤ18の先端から溶滴が離脱しない電流値に設定される。第1ピーク電流値Ip1は、例えば、300Aに設定される。 The welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so that the first peak current value Ip1 is reached during the first peak period Tp1. The first peak current value Ip1 is set to a current value at which droplets do not separate from the tip of the welding wire 18. The first peak current value Ip1 is set to, for example, 300A.
 第1ピーク期間Tp1では、1200μs経過後に、第1ピーク電流値Ip1に達するように、溶接電流の出力波形が設定される。図9に示す例では、第1ピーク期間Tp1において、上方に向かって傾斜しながら立ち上がる直線状の出力波形で緩やかに変化した後で、さらに上方に凸状で湾曲しながら立ち上がる円弧状の出力波形で緩やかに変化しながら、第1ピーク電流値Ip1に到達する。 In the first peak period Tp1, the output waveform of the welding current is set so as to reach the first peak current value Ip1 after 1200 μs has elapsed. In the example shown in FIG. 9, in the first peak period Tp1, the linear output waveform that rises while tilting upward gradually changes, and then the arc-shaped output waveform that rises while further convexing and curving upward. The first peak current value Ip1 is reached while gradually changing at.
 溶接装置10は、第1ピーク期間Tp1の経過後、第2ピーク期間Tp2中に、第2ピーク電流値Ip2に達するように、所定の出力波形で溶接ワイヤ18に溶接電流を流す。第2ピーク電流値Ip2は、溶接ワイヤ18の先端から溶滴が離脱可能な電流値に設定される。第2ピーク電流値Ip2は、例えば、550Aに設定される。 After the lapse of the first peak period Tp1, the welding device 10 causes a welding current to flow through the welding wire 18 with a predetermined output waveform so as to reach the second peak current value Ip2 during the second peak period Tp2. The second peak current value Ip2 is set to a current value at which droplets can be separated from the tip of the welding wire 18. The second peak current value Ip2 is set to, for example, 550A.
 なお、第2ピーク期間Tp2における溶接電流の出力波形は、前記実施形態と同じであるため、説明を省略する。 Since the output waveform of the welding current in the second peak period Tp2 is the same as that of the above embodiment, the description thereof will be omitted.
 《その他の実施形態》
 前記実施形態については、以下のような構成としてもよい。
<< Other Embodiments >>
The embodiment may have the following configuration.
 本実施形態では、ピーク期間を、第1ピーク期間Tp1と、第2ピーク期間Tp2との2段階に分けた出力波形としたが、例えば、3つ以上のピーク期間を含む出力波形としてもよい。 In the present embodiment, the peak period is an output waveform divided into two stages of a first peak period Tp1 and a second peak period Tp2, but for example, an output waveform including three or more peak periods may be used.
 以上説明したように、本発明は、溶滴の離脱性を安定させるとともに、アンダーカットの発生を抑制することができるという実用性の高い効果が得られることから、きわめて有用で産業上の利用可能性は高い。 As described above, the present invention is extremely useful and industrially applicable because it has a highly practical effect of stabilizing the detachability of droplets and suppressing the occurrence of undercut. The sex is high.
  10  溶接装置
  17  母材
  18  溶接ワイヤ
 Tp1  第1ピーク期間
 Tp2  第2ピーク期間
 Ip1  第1ピーク電流値
 Ip2  第2ピーク電流値
10 Welding equipment 17 Base metal 18 Welding wire Tp1 1st peak period Tp2 2nd peak period Ip1 1st peak current value Ip2 2nd peak current value

Claims (6)

  1.  溶接ワイヤと母材との間に、ピーク電流のピーク期間とベース電流のベース期間とを交互に複数回繰り返し供給してパルス溶接を行う溶接制御方法であって、
     1つのピーク期間は、第1ピーク期間と、該第1ピーク期間の後の第2ピーク期間とを含み、
     前記第1ピーク期間中に、第1ピーク電流値に達するように、所定の出力波形で溶接電流を流す第1工程と、
     前記第1工程の後、前記第2ピーク期間中に、前記第1ピーク電流値よりも大きな第2ピーク電流値に達するように、所定の出力波形で溶接電流を流す第2工程とを備えた
    ことを特徴とする溶接制御方法。
    It is a welding control method in which pulse welding is performed by alternately and repeatedly supplying the peak period of the peak current and the base period of the base current between the welding wire and the base metal a plurality of times.
    One peak period includes a first peak period and a second peak period after the first peak period.
    During the first peak period, the first step of flowing a welding current with a predetermined output waveform so as to reach the first peak current value, and
    After the first step, a second step of flowing a welding current with a predetermined output waveform so as to reach a second peak current value larger than the first peak current value during the second peak period is provided. A welding control method characterized by this.
  2.  請求項1において、
     前記第1ピーク電流値は、前記溶接ワイヤの先端から溶滴が離脱しない電流値であり、
     前記第2ピーク電流値は、前記溶接ワイヤの先端から溶滴が離脱可能な電流値である
    ことを特徴とする溶接制御方法。
    In claim 1,
    The first peak current value is a current value at which droplets do not separate from the tip of the welding wire.
    The welding control method, wherein the second peak current value is a current value at which droplets can be separated from the tip of the welding wire.
  3.  請求項1又は2において、
     前記第1ピーク期間におけるパルス立ち上がりは、前記第2ピーク期間におけるパルス立ち上がりに比べて緩やかである
    ことを特徴とする溶接制御方法。
    In claim 1 or 2,
    A welding control method characterized in that the pulse rise in the first peak period is gentler than the pulse rise in the second peak period.
  4.  請求項1又は2において、
     前記第1ピーク期間におけるパルス立ち上がり、及び前記第2ピーク期間におけるパルス立ち上がりは、それぞれ緩やかである
    ことを特徴とする溶接制御方法。
    In claim 1 or 2,
    A welding control method characterized in that the pulse rise in the first peak period and the pulse rise in the second peak period are gradual, respectively.
  5.  請求項1~4のうち何れか1つにおいて、
     前記第1ピーク期間におけるパルス立ち上がり時間は、800μs以上であり、
     前記第2ピーク期間におけるパルス立ち上がり時間は、600μs以上である
    ことを特徴とする溶接制御方法。
    In any one of claims 1 to 4,
    The pulse rise time in the first peak period is 800 μs or more, and is
    A welding control method characterized in that the pulse rise time in the second peak period is 600 μs or more.
  6.  請求項1~5のうち何れか1つにおいて、
     前記第1ピーク期間と前記第2ピーク期間との間には、前記ベース期間が設けられていない
    ことを特徴とする溶接制御方法。
    In any one of claims 1 to 5,
    A welding control method, characterized in that the base period is not provided between the first peak period and the second peak period.
PCT/JP2021/034075 2020-09-28 2021-09-16 Welding control method WO2022065187A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-162421 2020-09-28
JP2020162421 2020-09-28

Publications (1)

Publication Number Publication Date
WO2022065187A1 true WO2022065187A1 (en) 2022-03-31

Family

ID=80846635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/034075 WO2022065187A1 (en) 2020-09-28 2021-09-16 Welding control method

Country Status (1)

Country Link
WO (1) WO2022065187A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328837A (en) * 1997-03-31 1998-12-15 Daihen Corp Ac pulse mig welding method and welding equipment
JP2007237270A (en) * 2006-03-10 2007-09-20 Kobe Steel Ltd Pulse arc welding method
JP2019034333A (en) * 2017-08-22 2019-03-07 株式会社神戸製鋼所 Pulse arc welding method, method of manufacturing welding object, and welding power supply device
JP2020069536A (en) * 2018-10-30 2020-05-07 リンカーン グローバル,インコーポレイテッド Two-stage pulse ramp wave

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10328837A (en) * 1997-03-31 1998-12-15 Daihen Corp Ac pulse mig welding method and welding equipment
JP2007237270A (en) * 2006-03-10 2007-09-20 Kobe Steel Ltd Pulse arc welding method
JP2019034333A (en) * 2017-08-22 2019-03-07 株式会社神戸製鋼所 Pulse arc welding method, method of manufacturing welding object, and welding power supply device
JP2020069536A (en) * 2018-10-30 2020-05-07 リンカーン グローバル,インコーポレイテッド Two-stage pulse ramp wave

Similar Documents

Publication Publication Date Title
JP5557238B2 (en) AC pulse arc welding control method
JP5350641B2 (en) Pulse arc welding method
EP3530395B1 (en) Ac pulse arc welding control method
JP2010167426A (en) Pulse arc welding method
KR102327740B1 (en) Control method and control device of gas shielded arc welding
JP2007283393A (en) Method of controlling polarity change of consumable electrode ac pulsed arc welding
JP2012006020A (en) Arc welding control method
WO2019203162A1 (en) Arc welding control method
WO2017169899A1 (en) Arc welding control method
WO2020067074A1 (en) Welding power source, welding system, welding power source control method, and program
CN113165095B (en) Arc welding control method
WO2022065187A1 (en) Welding control method
WO2020075791A1 (en) Arc welding control method
JP5972109B2 (en) AC pulse arc welding control method
WO2018070364A1 (en) Arc welding method and arc welding device
JP7407398B2 (en) Arc welding control method
WO2021235210A1 (en) Direct current arc welding control method
JP2019188434A (en) Control method of ac arc-welding
KR102259226B1 (en) Arc welding method
JPS58224070A (en) Arc welding
JP2024090326A (en) Pulsed arc welding method for galvanized steel sheets
JP5773477B2 (en) Arc welding control method
JPS60106669A (en) Method for controlling output of power source for welding
JPS60177963A (en) Arc welding method
JP2012200735A (en) Arc welding control method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP