WO2022065048A1 - Pattern formation method, electronic device production method, and pattern exposure device - Google Patents

Pattern formation method, electronic device production method, and pattern exposure device Download PDF

Info

Publication number
WO2022065048A1
WO2022065048A1 PCT/JP2021/033128 JP2021033128W WO2022065048A1 WO 2022065048 A1 WO2022065048 A1 WO 2022065048A1 JP 2021033128 W JP2021033128 W JP 2021033128W WO 2022065048 A1 WO2022065048 A1 WO 2022065048A1
Authority
WO
WIPO (PCT)
Prior art keywords
pattern
thickness
substrate
exposure
forming method
Prior art date
Application number
PCT/JP2021/033128
Other languages
French (fr)
Japanese (ja)
Inventor
川端誠司
堀正和
内藤一夫
鬼頭義昭
奥井公太郎
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2022065048A1 publication Critical patent/WO2022065048A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/24Curved surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a pattern forming method for forming a fine pattern for an electronic device on a substrate by using a photolithography method, a method for manufacturing an electronic device, and a pattern exposure apparatus.
  • a photoresist is applied to the surface of an underlying layer (metal layer such as aluminum, copper, gold, insulating layer made of organic or inorganic substances, semiconductor layer, etc.) formed on the substrate.
  • a coating step of applying a photosensitive solution as a layer an exposure step of carrying the substrate into an exposure apparatus and irradiating the photoresist layer with an exposure beam (light beam, electron beam, etc.) corresponding to the pattern of an electronic device.
  • the developing process in which the exposed substrate is carried into the developing apparatus to make a pattern appear by the residual film portion and the removing portion of the photoresist layer, and the underlayer layer exposed to the removing portion of the resist layer on the developed substrate.
  • a die coating method as disclosed in Japanese Patent Application Laid-Open No. 2010-192401 is suitable. ..
  • Japanese Unexamined Patent Publication No. 2010-192401 in order to apply the film of the superconducting material front body solution on the substrate drawn from the unwinding roller with a uniform thickness, the downstream side of the die (slit die head) of the die coater to which the solution is applied.
  • the thickness of the applied solution is measured by the film thickness detector placed in the die, and based on the measurement result, the syringe pump as a solution supply means for supplying the superconducting material front body solution to the die is driven to drive the solution.
  • the thickness is controlled to be a predetermined value (for example, 5 ⁇ m).
  • the absolute value of the thickness of the resist layer applied by the photolithography method varies depending on the process and also depends on the minimum line width of the formed pattern, but is about submicron to a dozen microns. Further, it is desirable that the unevenness of the thickness is several% or less.
  • the die coating method as in JP-A-2010-192401 is suitable for coating a resist layer by a roll-to-roll method, but the coating portion (die head) and the film thickness detector move in the transport direction of the substrate. Due to the distance, it is difficult to keep the uneven thickness of the applied resist layer within the allowable range required for all the portions in the coated region.
  • the first aspect of the present invention is on the substrate by a photolithography process for developing the substrate after irradiating the photosensitive layer on the substrate with an exposure beam whose intensity is modulated based on drawing data corresponding to a predetermined pattern.
  • a pattern forming method for forming the pattern by the photosensitive layer wherein the photosensitive solution is applied to a two-dimensional coating region set on the surface of the substrate to form the photosensitive layer, and the coating step.
  • a thickness measurement step of measuring the thickness of the photosensitive layer formed in the coating region on the substrate and creating thickness map information of the photosensitive layer, and projecting the exposure beam onto the photosensitive layer to expose the pattern.
  • a data correction step of modifying the drawing data based on the thickness map information is included.
  • the second aspect of the present invention is a method for manufacturing an electronic device, which comprises a step of forming a pattern by the pattern forming method of the first aspect.
  • a third aspect of the present invention is a pattern exposure apparatus that projects an exposure beam whose intensity is modulated based on drawing data corresponding to a predetermined pattern onto a photosensitive layer on a substrate, wherein the photosensitive layer on the substrate is projected. It includes a data correction unit that corrects the drawing data based on the thickness map information and generates the correction drawing data, and an exposure unit unit that projects the exposure beam based on the correction drawing data.
  • FIG. 1 It is a figure which shows schematic the whole structure of the roll-to-roll (Roll-to-Roll) type pattern formation system by 1st Embodiment. It is a figure which shows typically the structure of the coating apparatus which can adjust the coating thickness of the coating liquid by the die head part 10 provided in the processing apparatus PU1 shown in FIG. 1. It is a figure which shows the partial cross section which the part of the die head part 10 shown in FIG. 2 on the substrate P side was broken in the plane perpendicular to the rotation axis of a rotary drum DR1. It is a perspective view which shows the specific schematic structure of the processing apparatus (film thickness measuring apparatus) PU2 shown in FIG.
  • FIG. 12 is a diagram schematically showing the state of exposure of the resist layer RE by the peripheral exposure unit 100 shown in FIG. 12 in the XY plane. It is a figure which shows the arrangement example of two drawing regions SA1 and SA2 and margin region SSA which are arranged on a sheet substrate P along a long direction.
  • FIG. 1 is a diagram showing a schematic overall configuration of a pattern forming system (device manufacturing system) according to the first embodiment.
  • a flexible long sheet substrate P (hereinafter, also simply referred to as a substrate P) carried out from a supply roll FR is used as a series of processing devices PU1, PU2, PU3, and PU4.
  • a pattern for an electronic device (display device, wiring device, sensor device, etc.) is formed on the substrate P by a roll-to-roll method in which the substrate P is wound up by a recovery roll RR after being passed through the substrate P.
  • Such a device manufacturing system is disclosed in, for example, International Publication No. 2016/035842 and International Publication No. 2017/057427.
  • the processing apparatus PU1 of the present embodiment installed on the floor surface of the installation location (factory or the like) resists the coating region on the surface of the sheet substrate P drawn out from the supply roll FR by a die coating method. It is a coating device (die coater device, coating device) that coats (executes a coating process) a solution (also called a coating liquid).
  • the processing device PU1 includes a rotary drum (board support mechanism) DR1 for stably supporting the sheet substrate P and transporting the sheet substrate P at a constant speed, a die head portion 10 for applying a resist solution in a slit shape, and a rotary drum DR1.
  • control unit 12 that controls rotation drive and controls the supply of a resist solution to the die head portion 10, and a heating / drying unit 14 that dries (pre-bakes) the coating liquid applied to the sheet substrate P.
  • the rotary drum DR1 is provided with a motor for driving rotation and an encoder measuring instrument for measuring the rotation angle position, and the control unit 12 controls the motor based on the encoder measurement information DS1. Servo control. Further, the control unit 12 outputs the target thickness information SS1 of the resist layer (coating liquid film, photosensitive layer) set as a target at the time of coating.
  • the base material of the sheet substrate P is a resin material such as PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, and polyimide film.
  • a resin material such as PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, and polyimide film.
  • an ultrathin sheet having a thickness of 100 ⁇ m or less. It may be a glass material formed into a flexible material, a metal material such as stainless steel formed into a thin sheet by rolling or the like, or a paper material containing cellulose nanofibers.
  • the processing apparatus PU2 arranged on the downstream side of the processing apparatus PU1 has an average value of the thickness of the resist layer formed on the surface of the sheet substrate P and the width direction of the sheet substrate P (FIG. It is a film thickness measuring device that measures (executes a thickness measuring step) the thickness distribution and the like (in the direction perpendicular to the paper surface in 1).
  • the processing device PU2 is a rotating drum (board support mechanism) DR2 for stably supporting the sheet substrate P and transporting it at a constant speed, and a measuring unit that measures the thickness of the resist layer on the surface of the substrate P by a spectral interference method or the like.
  • a marking unit 22 for engraving a marker (see MPa, MPb, MPc in FIG. 4) indicating a specific position (coating start position or coating end position, etc.) of the resist layer on the substrate P, and a rotating drum.
  • It includes a control unit 24 that controls the rotation drive of the DR 2, collects measurement data from the measurement unit 20, and controls the operation of the marking unit 22.
  • the rotary drum DR2 is provided with a motor for driving rotation and an encoder measuring instrument for measuring the rotation angle position, and the control unit 24 is located at a position from the encoder measuring instrument.
  • the motor is servo-controlled based on the information DS2, and the two-dimensional thickness map information (map information) of the resist layer on the sheet substrate P is based on the position information DS2 and the thickness measurement data measured by the measurement unit 20.
  • the thickness map information SS2 is temporarily stored in the storage unit in the control unit 24. The details will be described later.
  • the sheet substrate P that has passed through the processing device PU2 is sent to the processing device PU3 arranged on the downstream side.
  • the processing device PU3 uses a sheet substrate for an exposure beam (see IL in FIG. 7A) corresponding to various patterns of electronic devices (wiring part, thin film transistor electrode part and semiconductor part, via hole, sensor part, resistance part, capacitor part, etc.). It is an exposure device (pattern drawing device) that projects onto the resist layer on P.
  • the processing apparatus PU3 in the present embodiment has a rotating drum (board support mechanism) DR3 for stably supporting the sheet substrate P and transporting the sheet substrate P at a constant speed, and an exposure beam corresponding to a pattern on the resist layer on the substrate P. It includes an exposure unit EXU for projecting, an alignment system ALG for detecting the position of an alignment mark formed in advance on the substrate P or a marker engraved by the processing device PU2, and a main control unit 30.
  • the rotary drum DR3 of the processing device PU3 is also provided with a motor for driving rotation and an encoder measuring instrument for measuring the rotation angle position, and the main control unit 30 is from the encoder measuring instrument.
  • the motor is servo-controlled based on the position information DS3, and the pattern exposure position (drawing position) by the exposure unit EXU is based on the position information DS3 and the position detection result of the alignment mark or marker detected by the alignment system ALG.
  • the partial shape of the pattern to be drawn is controlled to be sequentially corrected (execution of the data correction step).
  • the thickness map information SS2 shown in FIG. 1 is stored in the storage unit of the control unit 24, it may be stored in the storage unit of the main control unit 30, and the drawing is connected offline or online. It may be stored in a computer for creating data.
  • the processing apparatus PU3 of the present embodiment is disclosed in, for example, International Publication No. 2015/152218, International Publication No. 2015/166910, International Publication No. 2016/152758, International Publication No. 2017/191777, and the like.
  • a laser beam in the ultraviolet wavelength range whose intensity is modulated according to the drawing data of the pattern (bitmap data of "0" and "1" for each pixel) is transmitted to the substrate P by a rotating polygon mirror and an f- ⁇ lens system.
  • the exposure device is a direct drawing type that scans the spot light at high speed in a direction parallel to the rotation axis of the rotating drum DR3 while converging the spot light on the above.
  • the exposure unit EXU has a configuration in which a plurality of drawing modules equipped with a rotating polygon mirror, an f ⁇ lens system, and the like are arranged in a direction in which the rotation axis of the rotating drum DR3 extends. Further, a plurality of alignment system ALGs are also arranged in the direction in which the rotation axis of the rotation drum DR3 extends.
  • the main control unit 30 of the processing device PU3 is sent from the measured thickness map information SS2 of the resist layer sent from the control unit 24 of the processing device PU2 and from the control unit 12 of the processing device PU1. Based on the target thickness information SS1 that comes, it is determined whether or not partial drawing correction (data correction step) is necessary in the drawing area (exposure area) of the pattern on the sheet substrate P, and the part that requires drawing correction. When there is, the coordinate position on the sheet substrate P is specified, and the correction mode is set when drawing correction is required before the pattern exposure by the exposure unit EXU.
  • the correction mode is selected depending on how much the partial thickness of the resist layer fluctuates with respect to the target value (specified value), and in the first correction mode, each of the plurality of drawing modules of the exposure unit EXU is spotlighted.
  • the illuminance of the spot light when scanning is adjusted, and the second correction mode is to finely correct the desired pattern shape set on the drawing data.
  • a function to adjust the illuminance of the spot light at high speed is required. Therefore, for example, as disclosed in International Publication No. 2017/057415 and International Publication No. 2018/150996, in order to distribute the drawing beam from the laser light source to each of a plurality of drawing modules in a time-division manner.
  • the illuminance of the spot light can be easily and quickly adjusted (corrected).
  • the second correction mode is finally obtained by a development process (photolithography process) after an exposure process by the processing device PU3, and a chemical process (wet process) such as an etching process and a deposition (deposition or plating) process.
  • a development process photolithography process
  • a chemical process such as an etching process and a deposition (deposition or plating) process.
  • the shape of the pattern on the drawing data is partially modified from the design value according to the thickness of the resist layer.
  • the sheet substrate P continues to be transported at a constant speed, so that the sheet substrate P is transported in the long direction (transport direction) and in the long direction. It is difficult to partially adjust the development conditions and chemical treatment conditions with respect to the orthogonal width directions.
  • the processing device PU4 comprises a developing tank 40 in which the conveyed sheet substrate P is immersed in a developing solution for a predetermined time, a cleaning tank 42 in which the developing solution adhering to the sheet substrate P is washed away with pure water, and the sheet substrate P after cleaning. It is provided with a drying unit 44 for drying.
  • the sheet substrate P dried by the processing apparatus PU4 is once wound up on the recovery roll RR.
  • the recovery roll RR on which the sheet substrate P is wound over a predetermined length is mounted on an etching device, a deposition device (deposition device, a plating device), or the like, and the sheet substrate P is subjected to subsequent chemical treatment. Is given.
  • the sheet substrate P carried out from the processing apparatus PU4 may be directly conveyed to a subsequent etching apparatus, resist stripping apparatus, depositing apparatus, or the like without being wound up by the recovery roll RR.
  • the sheet substrate P is transported or processed between the processing device (thickness measuring device) PU2 and the processing device (exposure device) PU3.
  • a buffer device (accumulator) capable of storing the sheet substrate P over a predetermined length is provided in the transport path of the sheet substrate P between the apparatus (exposure apparatus) PU3 and the processing apparatus (developer) PU4. Is also good.
  • the processing device PU3 is a direct drawing type exposure device that scans spot light at high speed with a rotating polygon mirror, but is a DMD (digital mirror device) or SLM in which a large number of movable micromirrors are arranged in a matrix.
  • variable mask type exposure apparatus that reduces and projects an exposure beam patterned by (spatial light modulator) onto a resist layer of a sheet substrate P. Also in the case of the variable mask type exposure apparatus, since each movable micromirror of DMD or SLM is driven based on the drawing data, it is possible to carry out the second correction mode in which the drawing data is partially corrected. Further, the processing device (exposure device) PU3 can similarly implement the second correction mode even in an exposure device that modulates an electron beam or a charged particle beam based on drawing data and draws a pattern.
  • FIG. 2 is a diagram schematically showing a configuration of a coating device capable of adjusting the coating thickness of the coating liquid Lq by the die head portion 10 provided in the processing device PU1 shown in FIG. 1.
  • the die head portion 10 has a pair of lip piece members HA and HB formed elongated in the width direction of the sheet substrate P and bonded in the elongated direction of the sheet substrate P.
  • a sheet is hollowed out in a substantially semicircular cross-sectional shape in order to temporarily store the coating liquid (resist solution) Lq stored in the tank 12A.
  • a manifold (reservoir) MH extending in the width direction of the substrate P and a slot portion SLT extending from the lower end of the manifold MH and passing the coating liquid Lq are formed.
  • the slot portion SLT is formed in a portion where the pair of lip piece members HA and HB are joined, and the width of the slot portion SLT (the width of the most advanced slit-shaped opening SO) in the long direction of the sheet substrate P is the coating liquid. It is set to several ⁇ m to several tens of ⁇ m depending on the viscosity of Lq and the set coating thickness. The length of the slot portion SLT is set to be smaller than the dimension in the width direction of the seat substrate P.
  • the coating liquid Lq is discharged toward the sheet substrate P at a uniform flow rate from the slit-shaped opening SO at the most advanced portion of the slot portion SLT.
  • the coating liquid Lq in the tank 12A was pressurized into the manifold MH in the die head portion 10 via the pump 12B, the pressure gauge 12C, and the supply tube ST connected to the side surface portion of the lip piece member HB. Supplied in state. As a result, the coating liquid Lq is filled in the manifold MH with a predetermined pressure, passes through the slot portion SLT, and is discharged toward the sheet substrate P.
  • the width of the slit-shaped opening SO (width in the transport direction of the sheet substrate P) is partially set at a position close to the slit-shaped opening SO at the tip of the slot portion SLT on the outer surface portion of the lip piece member HB of the die head portion 10.
  • a finely adjustable drive unit ACD is provided at each of the plurality of positions in the width direction of the seat substrate P. The plurality of drive units ACD are driven so as to change the width of the slit-shaped opening SO in response to the drive signal created by the drive control unit 12D based on the command value from the control unit 12.
  • FIG. 3 is a diagram showing a partial cross section in which a portion of the die head portion 10 on the substrate P side is broken on a plane perpendicular to the rotation axis of the rotary drum DR1.
  • the inner wall surface HB1 on the lip piece member HB side that defines the slot portion SLT is formed of a thin metal plate TP
  • the drive unit ACD is composed of a piezo element whose overall length is extended according to the applied voltage. ..
  • the drive unit ACD is provided at each of a plurality of discrete positions along the direction in which the rotation axis of the rotary drum DR1 extends so that the expansion / contraction direction is about 45 ° with respect to the inner wall surface HB1 of the slot portion SLT.
  • a hinge portion Hgs having a reduced thickness in the transport direction of the sheet substrate P is extended in the direction in which the slit-shaped opening SO extends.
  • An acting portion HBp that receives a thrust (pushing pressure) when the drive unit ACD is extended is formed on the lower side (slit-shaped opening SO side) of the hinge portion Hgs, which is a part of the lip piece member HB.
  • a metal backup member BU that supports the drive unit ACD is fixed to the outer wall surface HB5 of the lip piece member HB.
  • the drive signal (voltage) from the drive control unit 12D is applied to the drive unit ACD (piezo element)
  • the drive unit ACD expands in the 45 ° direction by an amount corresponding to the magnitude of the applied voltage, but the extension force is increased.
  • the acting portion HBp and the tip portion of the thin plate TP are elastically deformed (bent) counterclockwise at the hinge portion Hgs.
  • the tip HB4 of the lip piece member HB is displaced so as to approach the tip HA4 on the inner wall surface HA1 side of the lip piece member HA, and the width (interval) of the slit-shaped opening SO at the tip of the slot portion SLT is micron. Decrease on order.
  • the thickness of the coating liquid Lq (resist solution) applied onto the substrate P from the slit-shaped opening SO can be increased to that of the slit-shaped opening SO.
  • the initial adjustment can be made so as to be uniform in the longitudinal direction (width direction of the sheet substrate P).
  • the drive unit ACD is not limited to the piezo element, and may be an air piston using pneumatic pressure, an oil piston using hydraulic pressure, a heat bolt using thermal expansion, or the like.
  • control unit 12 also inputs the thickness map information SS2 from the processing device (film thickness measuring device) PU2 shown in FIG. 1, and averages the film (resist layer) of the applied coating liquid Lq after drying. It is determined whether or not the target thickness is within a predetermined allowable range with respect to the target value. As a result, when the thickness of the film (resist layer) tends to be significantly out of the allowable range, the width of the most advanced slit-shaped opening SO of the slot portion SLT may be changed by a plurality of drive units ACD, or the pump 12B may be used. It is also possible to perform feedback control to adjust the discharge amount of the coating liquid Lq by changing the supply amount of the coating liquid Lq.
  • the thickness map information SS2 from the processing device (film thickness measuring device) PU2 is located at a position considerably downstream from the coating position of the coating liquid Lq by the die head portion 10, or the drying time in the heat drying unit 14. Since the information is acquired after the lapse of time, it is difficult to precisely suppress the partial thickness unevenness on the sheet substrate P by such feedback-based film thickness control.
  • FIG. 4 is a perspective view showing a specific schematic configuration of the processing device (film thickness measuring device) PU2 shown in FIG.
  • the rotation axis AX2 of the rotation drum DR2 is set parallel to the Y axis of the Cartesian coordinate system XYZ whose Z axis is the direction of gravity.
  • scale disks EDa and EDb for encoder measurement are coaxially fixed to a shaft Sft that is coaxial with the rotation axis AX2 of the rotation drum DR2 and protrudes from both ends of the rotation drum DR2 in the Y direction.
  • a grid scale is engraved on the outer peripheral surface of the scale disks EDa and EDb at a constant pitch in the circumferential direction, and the encoder heads 21A and 21B (21B is not shown) for reading the grid scale are arranged in parallel with the rotation axis AX2. It is fixed to both ends of the support frame 20A in the Y direction.
  • the scale disks EDa and EDb and the encoder head 21A (21B) constitute a position measurement unit (movement measurement unit) for measuring the movement position or movement amount of the sheet substrate P in the long direction.
  • the measurement unit 20 is fixed to the support frame 20A, and has an illumination system 20B that illuminates an illumination region extending in a line in the width direction (Y direction) on the sheet substrate P, and reflection from the illumination region on the seat substrate P.
  • the film thickness of the resist layer in the illumination region is imaged by receiving the reflected light from the illumination region that has passed through the second optical system 20D and the second optical system 20D that incident the reflected light condensed in. It is equipped with an image pickup element (CCD camera) 20E for measuring by analysis.
  • CCD camera image pickup element
  • the illumination light projected from the illumination system 20B to the illumination region on the sheet substrate P is set to a wavelength band that does not expose the resist layer (for example, a wavelength band longer than 460 nm).
  • a wavelength band that does not expose the resist layer for example, a wavelength band longer than 460 nm.
  • the principle configuration of such a film thickness measuring device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-189406, and the second optical system 20D of FIG. 4 is described in Japanese Patent Application Laid-Open No. 2012-189406. It corresponds to the optical system part (slit, collimating lens, transmission type diffraction grating, imaging lens, etc.) of the image spectroscopy unit.
  • the image pickup element 20E of FIG. 4 captures only an illumination region extending in a line in the Y direction on the sheet substrate P, and a spectral waveform of a one-dimensional film thickness distribution of the resist layer in the illumination region in the Y direction.
  • position information DS2 in FIG. 1 since the information on the moving position of the sheet substrate P in the long direction (position information DS2 in FIG. 1) is sequentially measured by the encoder head 21A (21B) for encoder measurement, it is measured.
  • the two-dimensional film thickness distribution of the resist layer on the sheet substrate P is measured.
  • spectroscopic measurement using an optical interferometry method as disclosed in Japanese Patent Application Laid-Open No. 2019-200185 may be used.
  • the marking unit 22 described with reference to FIG. 1 has marking portions 23A fixed to each of three locations separated in the Y direction on the support frame 22A arranged in parallel with the rotation axis AX2. , 23B, 23C.
  • the marking portion 23A can engrave a marker MPa near the end in the ⁇ Y direction (one side in the Y direction) with respect to the width direction of the sheet substrate P
  • the marking portion 23C can engrave the marker MPa in the + Y direction with respect to the width direction of the sheet substrate P.
  • a marker MPc can be engraved near the end (on the opposite side in the ⁇ Y direction).
  • the marking portion 23B can engrave the marker MPb near the center in the width direction of the sheet substrate P.
  • Each of the marking portions 23A, 23B, and 23C is formed by molding a laser beam that emits a pulse with high brightness into a line shape that extends in the Y direction with a length of several hundred ⁇ m and a line width of several ⁇ m to several tens of ⁇ m. , Projected onto the surface of the sheet substrate P. As a result, fine line-shaped patterns are engraved on the surface of the sheet substrate P as markers MPa, MPb, and MPc.
  • Each of the engraved markers MPa, MPb, and MPc is arranged at a position observable within the detection field of view of the alignment system ALG of the processing device (exposure device) PU3 in the subsequent stage, and the alignment mark on the sheet substrate P is arranged by the alignment system ALG. It has a contrast that can be detected by the same image analysis algorithm as.
  • the marking portions 23 are provided on the upstream side of the measurement unit 20 with respect to the transport direction of the sheet substrate P, but may be provided on the downstream side.
  • the distance between the measurement position by the measurement unit 20 and the marking position by the marking unit 23 in the long direction (movement direction of the sheet substrate P) of the sheet substrate P is set in advance as the baseline length (constant value). It is good if it is grasped by.
  • FIG. 5 shows a resist layer RE, markers MPa, MPb, MPc, alignment marks AM1 to AM7, and detection visual field regions Vw1 to Vw7 of the alignment system ALG (hereinafter, also simply referred to as detection regions Vw1 to Vw7) formed on the sheet substrate P. ), It is a figure which shows an example of the arrangement relation of each of the drawing lines SL1 to SL6 of the spot light by the exposure unit EXU, and the drawing area SA of the pattern of an electronic device.
  • FIG. 5 shows a resist layer RE, markers MPa, MPb, MPc, alignment marks AM1 to AM7, and detection visual field regions Vw1 to Vw7 of the alignment system ALG (hereinafter, also simply referred to as detection regions Vw1 to Vw7) formed on the sheet substrate P. ).
  • the sheet substrate P is developed and represented in a plane parallel to the X'Y plane of the coordinate system X'Y, the long direction (conveyance direction) of the sheet substrate P is the X'direction, and the width of the sheet substrate P is wide.
  • the direction is the Y direction.
  • the width dimension LYe in the Y direction of the coating region of the resist layer RE by the processing device (coating device) PU1 is set to LYe ⁇ LYp.
  • the exposure unit EXU has, for example, six drawing modules arranged in the Y direction, as disclosed in International Publication No. 2017/057415.
  • Each of the drawing modules has a resist layer RE on the sheet substrate P within the maximum exposure width dimension YE (YE ⁇ LYe) defined by the drawing lines SL1 to SL6, which are the loci of one-dimensional scanning of the spot light in the Y direction.
  • a pattern for an electronic device is drawn (exposed) in a drawing area SA set at a predetermined position. Further, at the time of the first layer exposure (first exposure), the alignment marks AM1 to AM7 are drawn (exposed) together with the pattern in the drawing area SA by the drawing lines SL1 to SL6.
  • the midpoint position CPo in the direction is the drawing center position of the pattern by the exposure unit EXU with respect to the transport direction of the sheet substrate P.
  • the alignment system ALG has seven alignment microscopes (with a CCD camera) arranged at predetermined intervals in the Y direction, and the respective detection regions Vw1 to Vw7 of the alignment microscope are arranged in a row in the Y direction.
  • the positions of the detection regions Vw1 to Vw7 in the Y direction are set so as to correspond to the scanning start position and the scanning end position of each spot light of the drawing lines SL1 to SL6.
  • the distance BLx with respect to the transport direction (X'direction) of the sheet substrate P between the drawing center position CPo and the center of the detection areas Vw1 to Vw7 is grasped as the baseline length precisely measured in advance by calibration.
  • the detection region Vw1 arranged on the most ⁇ Y direction side of the alignment system ALG can capture the marker MPa engraved by the marking portion 23A and the alignment mark AM1 formed at regular intervals in the X ′ direction.
  • the detection region Vw7 arranged on the most + Y direction side of the alignment system ALG can capture the marker MPc engraved by the marking portion 23C and the alignment mark AM7 formed at regular intervals in the X'direction. be.
  • the detection region Vw4 arranged in the center of the alignment system ALG in the Y direction can capture the marker MPb engraved by the marking portion 23B and the alignment mark AM4 formed near the center of the sheet substrate P in the Y direction. Is.
  • the resist layer RE and the markers MPa, MPb, and MPc are formed on the sheet substrate P after passing through the processing device (film thickness measuring device) PU2.
  • the processing device PU2 as shown in FIG. 4, the rotation angle position of the rotary drum DR2, that is, the movement amount of the seat substrate P is measured by the encoder head 21A (21B), so that the marker is as shown in FIG.
  • the relationship between the marking position XP1 in the X'direction (conveyance direction) of MPa, MPb, and MPc and the coating start position XPe of the resist layer RE can be grasped on the order of millimeters or less.
  • the markers MPa, MPb, and MPc at the marking position XP1 are located downstream of the coating start position XPe of the resist layer RE, and are stamped on the surface itself of the sheet substrate P.
  • the markers MPa, MPb, and MPc serve as a reference in the X'direction for measuring the thickness of the resist layer RE, and define a reference position when creating the thickness map information SS2 (see FIG. 1).
  • the markers MPa, MPb, and MPc are also used to define the head positions XP3 (and the head positions of the drawing area SA) of the alignment marks AM1 to AM7 drawn at the time of the first exposure by the subsequent processing device (exposure device) PU3. Available.
  • the marking positions XP1 of the markers MPa, MPb, and MPc are measured by the alignment system ALG and the encoder measurement system of the rotary drum DR3.
  • the head position XP3 of the alignment marks AM1 to AM7 is set at a distance LX1 upstream from the marking positions XP1 of the markers MPa, MPb, and MPc.
  • the coating start position XPe of the resist layer RE is located on the upstream side (-X'direction side) of the engraved position XP1, and the resist to be applied is applied from the coating start position XPe to the further upstream distance LXa. It represents a range in which the thickness of the layer RE is not stable. Therefore, the head position XP3 (and the head position of the drawing area SA) of the alignment marks AM1 to AM7 is set at a position separated from the coating start position XPe on the upstream side (-X'direction side) by a distance of LXa or more.
  • the markers MPa, MPb, and MPc are on the upstream side (-X'direction side) of the application start position XPe of the resist layer RE, and are located on the head position XP3 of the alignment marks AM1 to AM7. It may be stamped on the downstream side (+ X'direction side). Further, only one marking portion 23A, 23B, 23C may be used, and at least one of the markers MPa, MPb, and MPc may be stamped. Further, the marking portions 23A, 23B, and 23C may be imprint type stampers that mechanically form fine dents on the surface of the sheet substrate P (or resist layer RE) by pressing.
  • the processing device (film thickness measuring device) PU2 has the marking position XP1 in the X'direction when the markers MPa, MPb, and MPc as shown in FIG. 5 are stamped by the marking portions 23A, 23B, and 23C, and the sheet substrate thereafter.
  • the movement position of P in the X'direction is measured by the encoder measurement system (encoder heads 21A and 21B) of the rotating drum DR2.
  • the measuring unit 20 repeatedly measures the thickness distribution of the resist layer RE in the Y direction each time the sheet substrate P moves in the X'direction by a unit movement amount (for example, 10 mm).
  • the measurement resolution of the thickness distribution in the Y direction is also set to, for example, 10 mm, which is the same as the unit movement amount.
  • the measurement resolution in the X'direction and the Y direction of the thickness distribution can be made as fine as 5 mm pitch or 2 mm pitch if the measurement resolution of the measurement unit 20 is high.
  • FIG. 6 is a diagram schematically showing an example of the thickness map information SS2 of the resist layer RE measured by the encoder measurement system (encoder heads 21A and 21B) of the measurement unit 20 and the rotary drum DR2.
  • the X'axis and Y axis in FIG. 6 are set to be the same as the X'axis and Y axis of the coordinate system in FIG. 5, and the Z axis orthogonal to the X'Y plane represents the thickness ( ⁇ m) of the resist layer RE. ..
  • the thickness map information SS2 is, for example, a two-dimensional matrix in which the thickness measurement values for each local region of 1 cm ⁇ 1 cm are arranged on the sheet substrate P.
  • the target reference thickness (specified thickness) of the resist layer RE is set to 1.5 ⁇ m as an example, and the error range (specified range) with respect to the reference thickness is ⁇ ⁇ Te.
  • the error range ⁇ ⁇ Te varies depending on the material type of the resist layer RE, the exposure amount (dose amount) set at the time of exposure, the development conditions at the time of development, the minimum line width of the pattern, etc., but as an example, it is about ⁇ 10%. be. Therefore, in the case of FIG. 6, the thickness map information SS2 transmitted from the control unit 24 shown in FIG. 1 includes a partition region in which the thickness (error information) of the resist layer RE is in the range of 1.35 to 1.65 ⁇ m.
  • flag information FLG Is given "0" as the flag information FLG, and "-1" is given as the flag information FLG to the partition region (local region) where the thickness of the resist layer RE is thinner than 1.35 ⁇ m, and the thickness of the resist layer RE is given. "+1” is given as flag information FLG to the partition region (local region) thicker than 1.65 ⁇ m.
  • the section area where the flag information FLG is "-1" or "+1” is specified as a correction section.
  • the flag information FLG is also included as the thickness map information SS2.
  • the coating liquid (photosensitive solution) Lq is applied onto the sheet substrate P supported by the rotary drum DR1 by the die coater type coating device (PU1), as shown in FIG. 5, in the Y direction of the resist layer RE.
  • the width dimension LYe of is set so as not to protrude from the width dimension LYp of the sheet substrate P. Further, the width dimension LYe of the resist layer RE is set so as to surely cover the positions of the alignment marks AM1 and AM7 formed near both ends in the width direction (Y direction) of the sheet substrate P.
  • the slit-shaped opening SO of the die head portion 10 is near the end in the Y direction, and uneven thickness of the resist layer RE occurs. easy.
  • the alignment marks AM1 and AM7 shown in FIG. 5 are formed on the sheet substrate P at regular intervals (for example, 5 mm or 10 mm) in the X'direction, and are subjected to a post-development etching step, a resist peeling step, or a deposition step. After that, it is formed of an inorganic material (copper, aluminum, gold, nickel, etc.) or an organic material.
  • overlay exposure second exposure
  • alignment with an inorganic material or an organic material is performed in order to precisely overlay a new pattern on the pattern (base pattern) in the drawing area SA on the sheet substrate P formed by the first exposure.
  • One of the causes is the thickness error of the resist layer RE in the portion on the sheet substrate P where the alignment marks AM1 to AM7 were exposed during the first exposure.
  • the processing device exposure device
  • each part on the sheet substrate P has the same conditions. It is also difficult to compensate for the influence of the partial thickness error of the resist layer RE (deformation of the pattern line width and shape).
  • FIGS. 7A to 8C are schematic views illustrating the influence of the difference in the thickness of the resist layer RE, and FIGS. 7A to 7C show the case where the resist layer RE is a positive resist layer RE1 and are shown in FIGS. 8A to 8C.
  • 8C represents a case where the resist layer RE is a negative type resist layer RE2 (or a layer made of an ultraviolet curable resin).
  • an exposure beam for a line & space pattern line width and space width are, for example, 10 ⁇ m to 20 ⁇ m) having a constant pitch (for example, 20 ⁇ m to 40 ⁇ m) in the left-right direction in the paper surface. It is assumed that the IL is projected with a constant illuminance.
  • a copper foil layer LC as a base layer is vapor-deposited on the entire surface of the sheet substrate P with a predetermined thickness (for example, 500 nm), and the resist layers RE1 and RE2 are coated on the surface of the copper foil layer LC. It is assumed that there is.
  • FIG. 7A shows a state in which the thickness of the positive resist layer RE1 is set to be appropriate for the exposure amount of the exposure beam IL and applied
  • FIG. 7B shows a substrate exposed in the state of FIG. 7A.
  • the portion irradiated with the exposure beam IL is dissolved and removed during development. Since the exposure amount of the exposure beam IL is set in an appropriate range with respect to the thickness of the positive resist layer RE1 of FIGS. 7A and 7B, the line width of the removed portion of the resist layer RE1 is set to the target value. On the other hand, it is within the permissible range. Therefore, when the substrate P in the state of FIG. 7B is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, a line & space pattern almost as targeted is formed on the copper foil layer LC. To.
  • FIG. 7C exaggerates the state after development when the thickness of the positive resist layer RE1 is thinner than that of FIGS. 7A and 7B.
  • the line width of the removed portion of the resist layer RE1 is , It is out of the permissible range with respect to the target value, and it becomes greatly expanded. Therefore, when the substrate P in the state of FIG. 7C is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, the line width LDe remaining as the copper foil layer LC is removed.
  • a line and space pattern is formed that is significantly thinner than Ler.
  • FIG. 8A shows a state in which the thickness of the negative resist layer RE2 is set to be appropriate for the exposure amount of the exposure beam IL and applied
  • FIG. 8B shows a substrate exposed in the state of FIG. 8A.
  • the portion not irradiated with the exposure beam IL is dissolved and removed during development. Since the exposure amount of the exposure beam IL is set in an appropriate range with respect to the thickness of the negative resist layer RE2 of FIGS. 8A and 8B, the line width of the removed portion of the resist layer RE2 is set to the target value. On the other hand, it is within the permissible range. Therefore, when the substrate P in the state of FIG. 8B is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, a line & space pattern almost as targeted is formed on the copper foil layer LC. To.
  • FIG. 8C exaggerates the state after development when the thickness of the negative resist layer RE2 is thinner than that of FIGS. 8A and 8B.
  • the line width of the afterimage portion of the resist layer RE2 is It is out of the permissible range for the target value, and it is greatly expanded. Therefore, when the substrate P in the state of FIG. 8C is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, the line width LDe remaining as the copper foil layer LC is removed.
  • a line and space pattern is formed that is significantly thicker than the Ler.
  • the line width of the pattern formed after the etching step or the deposition step, or the shape of the pattern changes from the allowable range.
  • the alignment marks AM1 and AM7 are formed shown in FIG. 5
  • unevenness in the thickness of the resist layer RE is likely to occur. Therefore, for example, the alignment marks AM1 to the copper foil layer LC as shown in FIGS. 7A to 8C.
  • the position detection of the alignment marks AM1 to AM7 at the time of the second exposure may result in an error, or an error may occur in the detected position result.
  • the shapes of the alignment marks AM1 to AM7 drawn at the time of the first exposure by the processing device (exposure device) PU3 are displayed at each position on the sheet substrate P on which the alignment marks AM1 to AM7 are formed. Deformation is corrected according to the thickness of the resist layer RE in. Of course, with respect to the pattern exposed in the drawing area SA (FIG. 5) other than the alignment marks AM1 to AM7, the deformation of the pattern shape due to the uneven thickness of the resist layer RE can be similarly corrected. In the pattern forming system of FIG. 1, the thickness map information SS2 (FIG.
  • the main control unit 30 of the processing device (exposure device) PU3 or the offline computer gives the flag information FLG (“0”, “0”, “correction necessity” assigned to each section area of the thickness map information SS2. Based on "-1" and "+1"), the drawing data for each of the alignment marks AM1 to AM7 in the pattern drawing data for the first exposure is sequentially corrected (corrected).
  • the actual shapes of the alignment marks AM1 to AM7 finally formed on the sheet substrate P for example, the copper foil layer LC. If the shape formed by) is deformed with a tendency to be smaller overall than the shape at the time of design defined by the initial drawing data, the mark edge portion in the initial drawing data is partially or wholly formed. Correct to make it fat.
  • the coordinate system X'Y in FIG. 9 is set to be the same as the coordinate system X'Y in FIG. 5, and the rectangular (square) region subdivided into a matrix at equal intervals in the X'direction and the Y direction is Represents a single pixel Pis (1 bit) specified by design.
  • the pixel Pis is set on the sheet substrate P so as to correspond to a 2 ⁇ m square as an example.
  • the coordinate system X'Y in FIG. 9 is set to be the same as the coordinate system X'Y in FIG. 5, and the rectangular (square) region subdivided into a matrix at equal intervals in the X'direction and the Y direction is Represents a single pixel Pi
  • the length of the linear pattern extending in the X'direction and the Y direction of the alignment mark Amn is 52 pixels (104 ⁇ m), and the width of the linear pattern is 10 pixels (20 ⁇ m).
  • the drawing data Dam is set to a logical value "1" so that all the pixels Pis located inside are On pixels.
  • the pixel Pis outside the alignment mark Amn is set to the logical value "0" so as to be an Off pixel.
  • all the pixels Pis inside the alignment mark Amn are set in the Off pixels, and the outside is set in the On pixels.
  • the edge portion defining the width of the linear pattern extending in four directions of the cross-shaped alignment mark Amn. Is thickened by one pixel, and a correction pixel CBp that lengthens the tip portion by two pixels in the extending direction of the linear pattern is added.
  • the correction pixel CBp is similarly modified to On pixels, and all the pixels inside the alignment mark Amn are all inside. If the pixel Pis is an Off pixel (logical value "0") in the initial design, it is similarly modified to an Off pixel.
  • an edge defining the width of the linear pattern extending in four directions of the cross-shaped alignment mark Amn.
  • the correction pixel CBp' is set so that the portion is cut by one pixel at a time, and the right-angled edge portion at the portion where the streak patterns intersect is cut by two pixels on average.
  • the correction pixel CBp' is corrected to the opposite Off pixel (logical value "0") when all the pixels Pis inside the alignment mark Amn are On pixels (logical value "1") in the original design. If all the pixels Pis inside the alignment mark Amn are Off pixels (logical value "0") in the original design, they are corrected to the opposite On pixels (logical value "1").
  • the drawing data Dam of the alignment mark Amn is corrected to be thick as shown in FIG. 9, thinly corrected as shown in FIG. 10, or not to be corrected is the thickness obtained by the processing device (film thickness measuring device) PU2. It is determined by the flag information FLG of the map information SS2. For example, when the flag information FLG in the partition area (1 cm square area in FIG. 6) of the resist layer RE including the position on the sheet substrate P on which the alignment mark AM1 is to be formed is "-1", the partition area is "-1". The thickness of the resist layer RE is thinner than the allowable range ⁇ ⁇ Te. When the resist layer RE is of the positive type, as described with reference to FIG.
  • the space width Ler exposed by the underlying copper foil layer LC becomes thick, and as a result, the line width LDe of the copper foil layer LC remaining after etching becomes thin. turn into. Therefore, in the case of the positive resist layer RE1, the line width of the exposure beam IL shown in FIG. 7A may be narrowed, and the drawing data Dam of the alignment mark AM1 is corrected as shown in FIG.
  • the space width Ler exposed by the underlying copper foil layer LC becomes narrower, resulting in etching.
  • the line width LDe of the copper foil layer LC that remains behind becomes thicker. Therefore, even in the case of the negative type resist layer RE2, the line width of the exposure beam IL shown in FIG. 8A may be narrowed, and the drawing data Dam of the alignment mark AM1 is corrected as shown in FIG. Further, in FIGS. 7A to 8C, other material materials are deposited (plated or deposited) on the copper foil layer LC (a layer other than the copper foil layer LC or the substrate P itself may be used) exposed after development for alignment. In the case of marking, the drawing data Dam is corrected by paying attention to the line width of the resist layer RE removed after development.
  • the processing device (exposure device) PU3 performs pattern drawing by spot light scanning based on the drawing data Dam of the alignment marks AM1 to AM7 corrected as described above.
  • Scanning with spotlight is a fiber that pulsed laser light in the ultraviolet wavelength range at frequencies above 100 MHz, preferably 400 MHz, as disclosed in WO 2017/057415 or WO 2018/150996.
  • An amplifier laser light source is used.
  • one of the ones shown in FIGS. 9 and 10 is set by setting the rotation speed of the rotating polygon mirror provided in each drawing module in the exposure unit EXU of the processing device PU3 (exposure device) and the transfer speed of the sheet substrate P.
  • the pixel (unit pixel) Pis is set to be drawn with two pulses of spot light in each of the X direction and the Y direction.
  • the oscillation frequency of the pulse emission of the laser light source is 400 MHz (period ⁇ Tf is 2.5 nS), and the intensity of the spot light is high level on-pulse and low level (including zero) for each pulse in the laser light source. ) Off-pulse and intensity-modulated.
  • the spot light at the time of on-pulse is SPz, and the spot light at the time of off-pulse is SPe.
  • the On pixels in the drawing data Dam are shown by diagonal lines, and the Off pixels are shown by white.
  • the spot light SPz, the drawing lines SLa, SLb, SLc, SLd ... Scanned for each reflection surface of the rotating polygon mirror are arranged at intervals ⁇ XS in the transport direction (X'direction) of the sheet substrate P.
  • the interval ⁇ XS is set to approximately half (1/2) of the dimension XPx in the X'direction of the pixel Pis.
  • the change during formation of the alignment marks AM1 to AM7 that may occur due to the uneven thickness of the resist layer RE is reduced. Therefore, the formed alignment marks AM1 to AM7 are detected and the second exposure is performed. Deterioration of the position measurement accuracy of the sheet substrate P when performing superposition drawing) is suppressed, and accurate patterning can be continued with substantially the same accuracy over the long direction of the sheet substrate P. Further, in the present embodiment, the uneven thickness of the resist layer RE can be measured even in the drawing region SA (see FIG. 5) where the pattern for the electronic device is formed. Therefore, if there is a pattern exposed in the section area where the thickness of the resist layer RE is significantly changed in the drawing area SA, the pattern is also corrected in the same manner from the shape at the time of initial design. It is possible.
  • a test process is executed to change the thickness of the resist layer RE and deform (thinning or thickening) the alignment mark Amn.
  • the degree of shape correction (the portion to be thinned or thickened and the number of pixels) on the drawing data Dam can be optimally set.
  • the thickness of the resist layer RE is changed by a preliminary test process, and the actual pattern obtained after the etching treatment or the deposition treatment is obtained. It is possible to modify the shape at the time of initial design in the same manner based on the relationship with the deformation.
  • the transfer speed of the sheet substrate P fluctuates due to the uneven rotation speed of the rotary drum DR1, and the thickness of the resist layer RE changes even if the speed is controlled to be precise and constant.
  • the actual pattern (alignment mark, etc.) finally formed on the sheet substrate P through the etching process and the deposition process is formed into a design shape.
  • Faithful patterning is possible without significantly impairing the dimensions and dimensions. Therefore, it is not necessary to extremely improve the accuracy of speed control when the rotary drum DR1 of the processing device (coating device) PU1 is driven to rotate, and the increase in the device price can be suppressed.
  • the resist layer RE photosensitive layer formed with a predetermined thickness
  • the resist layer RE photosensitive layer
  • a film thickness measuring device processing device PU2 as shown in FIG. 4
  • the sheet substrate P substrate
  • the thickness map information SS2 distributed information regarding the fluctuation of the film thickness of the layer
  • the film thickness of the resist layer RE (photosensitive layer) on the sheet substrate P (substrate) is within the specified range (for example, ⁇ ⁇ Te in FIG. 6).
  • Information on the line width or shape (bitmap data) in the design drawing data according to the pattern drawn on the part outside the range) for example, the pattern of the alignment mark Amn
  • the thickness map information SS2 distributed information.
  • Is corrected based on for example, drawing data in which the correction pixel (bit) CBp is added as shown in FIG. 9, or drawing data in which the correction pixel CBp'is deleted as shown in FIG. 10).
  • the thickness of the data correction unit (for example, the main control unit 30 in FIG. 1 or the offline computer) and the resist layer RE (photosensitive layer) on the sheet substrate P (substrate) are within the specified range ( ⁇ ⁇ Te range).
  • the exposure beam is projected in response to the design drawing data, and the film thickness of the resist layer RE (photosensitive layer) on the sheet substrate P (substrate) is within the specified range ( ⁇ ⁇ Te).
  • the exposure beam is projected in response to the corrected drawing data (for example, the drawing data in which the correction pixel CBp or CBp'is added or deleted as shown in FIGS. 9 and 10).
  • a pattern exposure apparatus including an exposure unit unit for example, the exposure unit EXU in FIG. 1) is obtained.
  • the resist layer RE is coated by a die coater method. Therefore, with respect to the width direction (Y direction) of the sheet substrate P, uniform coating is possible over the length of the slot portion SLT of the die head portion 10 in the Y direction, but one die head It is difficult to apply the resist layer RE to each of the different partial regions of the sheet substrate P in the Y direction depending on the portion 10. Therefore, as the processing device (coating device) PU1, a gravure printing machine using a plate, a letterpress printing machine, an offset printing machine, a screen printing machine, or the like, or an inkjet printing machine that does not use a plate is used on the sheet substrate P.
  • the resist layer RE can be formed only in the selected partial region.
  • the processing device (exposure device) PU3 shown in FIG. 1 may be a pattern drawing device capable of pattern exposure on demand by drawing data, it is a digital mirror device (DMD) in which a large number of movable micromirrors are arranged. And the spatial light modulator (SLM) is used as a reflection type exposure beam generation member, and the reflected light (exposure beam) from the movable micromirror that is selectively driven at high speed according to the drawing data is used as the resist layer RE of the sheet substrate P.
  • a maskless type exposure device for projection exposure may also be used.
  • An exposure device using a digital mirror device (DMD) or a spatial light modulator (SLM) has a two-dimensional shape (rectangular or trapezoidal) corresponding to a part of the pattern to be drawn by the exposure beam.
  • the in-plane light intensity distribution of the shape is sequentially modulated in response to the drawing data.
  • the measuring unit 20 of the processing device (thickness measuring device) PU2 shown in FIG. 1 is a reflection type spectroscopic interference type film thickness measuring device as an optical film thickness measuring device, but the resist layer on the sheet substrate P.
  • the measurement range in the Y direction is narrower than the width dimension LYe in the Y direction of RE, two or more measurement units 20 may be arranged in the Y direction.
  • the measurement unit 20 measures the amount of change in the polarization of the incident light and the reflected light for each wavelength, creates an optical model based on the obtained measurement data, and performs fitting calculation to obtain the thickness of the thin film.
  • a spectroscopic ellipsometer may be used to measure. Alternatively, as disclosed in US Pat. No.
  • the developing time is set by the length of the sheet substrate P immersed in the developer in the developing tank 40 and the transport speed of the sheet substrate P, but the developing processing time is long. Then, the developer deteriorates. Therefore, it is preferable to provide the developing tank 40 with a refreshing mechanism for collecting the old developing solution while periodically supplying the new developing solution. Further, since the developer is also deteriorated by oxygen (O 2 ) in the atmosphere, it is advisable to purge the space on the liquid surface of the developer in the developing tank 40 with an inert nitrogen gas.
  • O 2 oxygen
  • the processing device (developer) PU4 may be of a type in which a developer is sprayed onto a sheet substrate P that is horizontally conveyed.
  • the exposure beam IL supplied to the exposure unit EXU is a laser beam from a fiber amplifier laser light source that emits a pulse at a high frequency (a frequency in the range of 100 MHz to 400 MHz), it is a spot light.
  • the repetition period of SPz is any of 10 nS to 2.5 nS, and it is difficult to adjust the intensity of the spot light SPz for each pulse.
  • a plurality of beams for distributing an exposure beam from a laser light source to each of a plurality of drawing modules in a time-divided manner a plurality of beams for distributing an exposure beam from a laser light source to each of a plurality of drawing modules in a time-divided manner.
  • the amplitude of the high-frequency drive signal applied to each acoustic-optical modulation element is measured by the spot light SP along the drawing line SL1 (the same applies to the other drawing lines SL2 to SL6). It is made to change dynamically within the scanning time from the scanning start position to the scanning end position.
  • the alignment on the drawing line SL1 (the same applies to the other drawing lines SL2 to SL6) during the drawing period of the alignment mark to which the first correction mode is applied.
  • the amplitude of the high-frequency drive signal applied to the acoustic-optical modulation element may be changed from the reference value at the portion where the mark is located, and may be returned to the reference value at other portions.
  • a processing device PU1 which is a coating device and a film are used. It is desirable to install the processing device PU2 which is a thickness measuring device and the processing device PU3 which is an exposure device in-line.
  • the film thickness measuring device is located in the processing device PU3, which is an exposure device, at a position upstream of the exposure position by the exposure unit EXU, and the thickness map information SS2 of the film thickness of the resist layer RE on the sheet substrate P. It may be installed so as to acquire.
  • the thickness map information is obtained by the film thickness measuring device in the first rotation of the rotary drum DR3.
  • FIG. 12 is a diagram showing a schematic configuration of the processing apparatus (exposure apparatus) PU3'according to the second embodiment, and the rotary drum DR3, the exposure unit EXU, and the alignment system ALG are shown in FIG. It is the same as that of the processing device (exposure device) PU3.
  • the processing device (exposure device) PU3'of the present embodiment includes a prealignment unit EPC that adjusts the position of the sheet substrate P hung on the rotary drum DR3 in the width direction (Y direction), and the width of the sheet substrate P.
  • a peripheral exposure unit 100 for removing unnecessary resist layer RE near both ends in the direction is provided.
  • the prealignment unit EPC is a guide roller GR1 that comes into contact with the upper surface side (resist layer RE surface) of the sheet substrate P and bends the sheet substrate P in the + Z direction (one of the Z directions), and a sheet substrate from the guide roller GR1.
  • the guide roller GR2 that comes into contact with the back surface of P and bends the sheet substrate P in the ⁇ Z direction (opposite direction in the + Z direction), and the edge that measures the misalignment of the edge ends on both sides in the width direction of the sheet substrate P in the Y direction. It has a sensor Ess and.
  • one of the guide rollers GR1 and GR2 is set in the width direction of the sheet substrate P so that the amount of misalignment of the edge ends on both sides of the sheet substrate P detected by the edge sensor Ess is within an allowable range.
  • a drive mechanism for moving in the (Y direction) is provided. Due to the position correction (pre-alignment) of the seat substrate P in the width direction by the drive mechanism, each of the alignment marks AM1 to AM7 on the seat substrate P is within the detection region Vw1 to Vw7 (see FIG. 5) of the alignment system ALG. Be captured.
  • the peripheral exposure unit 100 is exposed from the floodlight 100A and the floodlight 100A arranged near the end in the ⁇ Y direction of the sheet substrate P within the circumferential range supported in close contact with the outer peripheral surface of the rotary drum DR3.
  • the illumination field diaphragm 102A that sets the illumination range of the light (ultraviolet rays) on the sheet substrate P, the floodlight 100B arranged near the end in the + Y direction of the sheet substrate P, and the exposure light (ultraviolet rays) from the floodlight 100B. It has an illumination field diaphragm 102B for setting an illumination range on the sheet substrate P. As described with reference to FIG.
  • the resist layer RE since the width dimension LYe of the resist layer RE is set wider than the maximum exposure width dimension YE in the width direction (Y direction) defined by the entire drawing lines SL1 to SL6, the resist layer is set.
  • RE is a positive type
  • the portion of the resist layer RE coated on the outside in the Y direction from the maximum exposure width dimension YE is unexposed, and even after the development process, the original thickness is maintained together with the underlying layer in the long direction. The film remains continuously.
  • an insulating film LK such as silicon oxide (SiO 2 ) formed as a base layer on the entire surface of the sheet substrate P with a predetermined thickness is etched after the development treatment to remove the residual resist layer RE. It is sectional drawing which exaggerated the sectional view of the state.
  • a resin material such as a polyethylene terephthalate (PET) film, a polyethylene naphthalate (PEN) film, or a polyimide film is used as the sheet substrate P.
  • the insulating film LK is formed over the entire width dimension LYp in the Y direction of the sheet substrate P by the vacuum vapor deposition process, and the thickness thereof depends on the type of the electronic device to be manufactured and the electric function as the insulating film. There are various.
  • the width dimension LYe of the resist layer RE coated on the insulating film LK is narrower than the width dimension LYp in the Y direction of the sheet substrate P. Therefore, of the insulating film LK on the sheet substrate P, the portion outside the width dimension LYe of the resist layer RE in the ⁇ Y direction is removed at the time of etching because there is no resist layer RE. Further, within the range of the maximum exposure width dimension YE defined by the drawing lines SL1 to SL6, the insulating layer LKp remains so as to be selectively scattered according to the pattern to be formed.
  • the portion of the resist layer RE existing outside each of the ⁇ Y directions from the maximum exposure width dimension YE is irradiated with exposure light (ultraviolet rays) over the entire area in the X'direction (the transport direction of the sheet substrate P). Not done. Therefore, when the resist layer RE is of the positive type, the insulating layers LKa and LKb connected in a band shape in the X'direction remain on the sheet substrate P after the development treatment and the etching treatment.
  • the film stress is strong, so that the sheet substrate P may be greatly distorted.
  • the distortion becomes a three-dimensional distortion due to the deformation of the sheet substrate P in the plane and the deformation (unevenness) in the direction perpendicular to the plane. Therefore, when a new pattern is superimposed and formed on the sheet substrate P deformed in this way, the correction on the processing device (exposure device) PU3 or the processing device PU3'side corresponding to the deformation (distortion) of the sheet substrate P.
  • Sufficient overlay accuracy may not be obtained due to the limit of the amount of correction by the mechanism, the limit of the responsiveness of the correction mechanism, and the like.
  • FIG. 14 is a diagram schematically showing the state of exposure of the resist layer RE by the peripheral exposure unit 100 in the XY plane, and the same members and dimensions as those shown in FIG. 5 are designated by the same reference numerals. It has been done.
  • FIG. 14 is a diagram schematically showing the state of exposure of the resist layer RE by the peripheral exposure unit 100 in the XY plane, and the same members and dimensions as those shown in FIG. 5 are designated by the same reference numerals. It has been done.
  • Alignment marks AM1 and AM7 are formed near both sides in the Y direction within the maximum exposure width dimension YE, respectively.
  • the floodlight 100A and the illumination field diaphragm 102A of the peripheral exposure unit 100 expose a portion REa of the outer width YEa in the ⁇ Y direction from the maximum exposure width dimension YE of the resist layer RE (positive type) in a rectangular shape.
  • the region 102A' is irradiated with ultraviolet rays with a uniform illuminance.
  • the floodlight 100B and the illumination field diaphragm 102B of the peripheral exposure unit 100 have a rectangular shape that exposes a portion REb of the outer width YEb in the + Y direction from the maximum exposure width dimension YE of the resist layer RE (positive type).
  • the illumination area 102B'of the above is irradiated with ultraviolet rays with a uniform illuminance. It is desirable that the edge position on the + Y direction side of the illumination area 102A'is as close as possible to the position of the line Exa, and the edge position on the ⁇ Y direction side of the illumination area 102B'is as close as possible to the position of the line Exb.
  • each of the illumination field diaphragms 102A and 102B is arranged with a constant gap (for example, several mm) from the surface of the sheet substrate P (resist layer RE), the edge portions of the illumination regions 102A'and 102B' are arranged. Since there is a residual position deviation error in the Y direction of the sheet substrate P determined by the adjustment accuracy by the prealignment unit EPC at the time of the first exposure, the degree of the penumbra blur and the residual position are present. The positions of the illumination regions 102A'and 102B' in the Y direction are set in consideration of the deviation error.
  • the dimensions ELa and ELb in the X'direction (transport direction of the substrate P) of the illumination regions 102A'and 102B' are determined by the illuminance per unit area of ultraviolet light, the transport speed of the substrate P, and the exposure of the resist layer RE. Determined by the required target dose amount. Further, the target dose amount also changes depending on the thickness of the resist layer RE. Also in this embodiment, as in the first embodiment, the resist layer RE is obtained because the thickness map information SS2 as shown in FIG. 6 is obtained by the processing device (film thickness measuring device) PU2. The target dose amount is changed based on the thickness of each of the portions REa and REb near the end in the Y direction.
  • Changing the target dose amount is a mechanism for adjusting the emission intensity of ultraviolet rays from each of the floodlights 100A and 100B, or changing the size of each aperture opening of the illumination field diaphragms 102A and 102B so as to change the dimensions ELa and ELb. Is possible.
  • the alignment marks AM1 to AM7 are already formed on the sheet substrate P. Therefore, the position of each of the aperture openings of the illumination field diaphragms 102A and 102B in the Y direction may be finely moved according to the position of the sheet substrate P measured by the alignment system ALG in the Y direction.
  • the target dose amount to be given to each of the parts REa and REb to be removed of the resist layer RE can be appropriately set, resulting in overdose (excessive exposure amount). Or underdose (underexposure) is prevented, and the portions REa and REb are removed by a predetermined width after development.
  • the sheet substrate P is not limited to the insulating film LK made of silicon oxide (SiO 2 ), but the sheet substrate P is deformed or distorted to the extent that it exceeds the range that can be dealt with by the correction mechanism of the processing device (exposure device) PU3 or the processing device PU3'. Even when the underlayer is formed of a material that generates film stress, peripheral exposure as in the present embodiment can be applied.
  • the portions REa and REb of the resist layer RE remaining in the widths YEa and YEb on both ends in the width direction (Y direction) of the sheet substrate P are the maximum exposure width dimensions by the drawing lines SL1 to SL6.
  • the peripheral exposure unit 100 performs a flat exposure.
  • a plurality of drawing areas SA set on the sheet substrate P shown in FIG. 5 are repeatedly arranged in the long direction and a blank area having a constant length is formed between the long directions of each drawing area SA.
  • a film layer having a large film stress may remain in the margin region as in the insulating layers LKa and LKb described with reference to FIG.
  • FIG. 15 is a diagram showing an arrangement example on the sheet substrate P when two drawing regions SA1 and SA2 are formed with the margin region SSA interposed therebetween along the long direction.
  • the long direction (transport direction) of the sheet substrate P is the X'direction
  • the width direction is the Y direction
  • the same reference numerals are given to the same members, portions, regions, dimensions, etc. shown in FIG. Is attached.
  • the dimension in the Y direction is the maximum exposure width dimension YE including the alignment marks AM1 to AM7
  • the spacing length in the X'direction of the margin region SSA is Xsp.
  • the pre-alignment mark PM1 that can be detected in the detection region Vw1 of the alignment system ALG1 and the pre-alignment mark PM7 that can be detected in the detection region Vw7 of the alignment system ALG7 are formed in the margin region SSA. It shall be.
  • the pre-alignment marks PM1 and PM7 are aligned with each of the first alignment marks AM1 to AM7 of the next drawing area SA2 after the detection of the last alignment marks AM1 to AM7 in the X'direction of the drawing area SA1 is completed. It is provided to set the timing to be detected by ALG7. Since the distance dimension ⁇ PX'in the X'direction between the pre-alignment marks PM1 and PM7 and the first alignment marks AM1 to AM7 in the drawing area SA2 is predetermined, the moving speed of the sheet substrate P and the distance dimension ⁇ PX'are set. Based on this, the time interval from the detection time of the pre-alignment marks PM1 and PM7 to the detection time of the first alignment marks AM1 to AM7 in the drawing area SA2 is also determined.
  • the alignment systems ALG1 to ALG7 are detected in the detection area based on the moving position of the sheet substrate P (measurement position of the encoder measurement system for the rotating drum DR3). It operates in a trigger mode for storing images in Vw1 to Vw7.
  • the sheet substrate P is a fixed distance in the X'direction (1/2 of the dimension of the detection regions Vw1 to Vw7 in the X'direction.
  • the margin area SSA is not normally exposed by the drawing lines SL1 to SL6 by the exposure beam, but in this modification, drawing data is prepared so that all pixels Pis are On pixels even in the margin area SSA. Then, the exposure unit EXU is set so that the resist layer RE can be exposed. As a result, even in the margin region SSA, the film layer having a large film stress is removed, so that the deformation and distortion of the sheet substrate P are suppressed.
  • the alignment marks AM1 to AM7 and the pre-alignment marks PM1 and PM7 are formed as the base layer during the second exposure, they are formed.
  • the drawing data is drawn so that the resist layer RE on those marks is exposed by each of the drawing lines SL1 to SL6 by the exposure beam. You may set it.
  • the film stress of the film layer removes the film layer (for example, the insulating film of silicon oxide) formed in the peripheral regions on both ends in the width direction (Y direction) of the sheet substrate P and the margin region SSA.
  • the high factor was a factor, but for other reasons, unnecessary film layers in the peripheral region and the margin region SSA may be removed.
  • the sheet substrate P may be transported to a vacuum processing apparatus or the like in order to form a thin film of a material substance on the surface of the sheet substrate P partially or entirely by thin film deposition treatment, CVD treatment, sputtering treatment, or the like. be.
  • a vacuum processing apparatus in many cases, a high voltage is applied between a holder (one electrode member) that supports the sheet substrate P and a target made of a material (the other electrode member) in the vacuum chamber.
  • the resist layer RE is exposed by the peripheral exposure unit 100 and the resist layer on the margin region SSA by the exposure unit EXU (exposure beam) so that an unnecessary metal film does not remain in the peripheral region or the margin region SSA of the sheet substrate P. It is desirable to perform RE exposure.
  • the exposure beam (pulse light) is continuously emitted without pausing even during the movement time of the sheet substrate P over the interval length Xsp of the margin region SSA. It is also possible to obtain the effect of reducing the variation in pulse intensity (particularly the generation of giant pulses).
  • the peripheral exposure unit 100 For the portion in the margin region SSA where the intensity (illuminance) of the exposure beam from the exposure unit EXU is predicted to be insufficient, the peripheral exposure unit 100 is moved and the illumination regions 102A'and 102B'(FIG. 14, FIG. Additional exposure can be performed by switching on / off the ultraviolet rays projected on each of (see 15).
  • the peripheral exposure unit 100 is movable, flat exposure of the resist layer RE in the margin region SSA can be performed only by the peripheral exposure unit 100.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

The present invention provides a pattern formation method with which it is possible to achieve a pattern dimension or shape within a permissible range for a target value, even if the thickness of an applied resist layer is irregular. The pattern formation method is for forming a pattern based on a photosensitive layer on a substrate (P) by means of a photolithography process, and includes: an application step for forming a photosensitive layer by applying a photosensitive solution to a two-dimensional application region set on the surface of the base (P); a thickness measurement step for measuring the thickness of the photosensitive layer formed on the application region on the base (P) and producing thickness map information (SS2) for the photosensitive layer; and a data amendment step for amending drawing data on the basis of the thickness map information (SS2), before projecting an exposure beam onto the photosensitive layer to expose the pattern.

Description

パターン形成方法、電子デバイスの製造方法、及びパターン露光装置Pattern formation method, electronic device manufacturing method, and pattern exposure equipment
 本発明は、フォトリソグラフィ法を利用して、基板上に電子デバイス用の微細なパターンを形成するパターン形成方法、電子デバイスの製造方法、及びパターン露光装置に関する。 The present invention relates to a pattern forming method for forming a fine pattern for an electronic device on a substrate by using a photolithography method, a method for manufacturing an electronic device, and a pattern exposure apparatus.
 従来、基板上に微細な電子デバイスを製造する過程では、基板上に形成された下地層(アルミニウム、銅、金等の金属層、有機物や無機物による絶縁層や半導体層等)の表面にフォトレジスト層となる感光性溶液を塗工する塗布工程、その基板を露光装置に搬入して、フォトレジスト層に電子デバイスのパターンに対応した露光ビーム(光ビームや電子ビーム等)を照射する露光工程、露光後の基板を現像装置に搬入して、フォトレジスト層の残膜部と除去部とによるパターンを出現させる現像工程、並びに、現像後の基板上のレジスト層の除去部に露呈した下地層をエッチングで除去するエッチング工程、又は露呈した下地層上に新たな材料を薄膜として堆積される堆積工程(デポジション)が行われている。 Conventionally, in the process of manufacturing fine electronic devices on a substrate, a photoresist is applied to the surface of an underlying layer (metal layer such as aluminum, copper, gold, insulating layer made of organic or inorganic substances, semiconductor layer, etc.) formed on the substrate. A coating step of applying a photosensitive solution as a layer, an exposure step of carrying the substrate into an exposure apparatus and irradiating the photoresist layer with an exposure beam (light beam, electron beam, etc.) corresponding to the pattern of an electronic device. The developing process in which the exposed substrate is carried into the developing apparatus to make a pattern appear by the residual film portion and the removing portion of the photoresist layer, and the underlayer layer exposed to the removing portion of the resist layer on the developed substrate. An etching step of removing by etching or a deposition step (deposition) of depositing a new material as a thin film on the exposed underlying layer is performed.
 基板として、長尺でフレキシブルなシート基板に対してフォトレジスト層となる感光性溶液を塗工する場合、特開2010-192401号公報に開示されているようなダイコート法(方式)が適している。特開2010-192401号公報では、巻出しローラから引き出された基板上に超電導材前躯体溶液の膜を均一な厚みで塗布する為に、溶液を塗布するダイコータのダイ(スリットダイヘッド)の下流側に配置された膜厚み検出器によって、塗布された溶液の厚みを計測し、その計測結果に基づいて、ダイに超電導材前躯体溶液を供給する溶液供給手段としてのシリンジポンプを駆動し、溶液の厚みが所定の値(例えば、5μm)になるように制御している。 When a photosensitive solution to be a photoresist layer is applied to a long and flexible sheet substrate as a substrate, a die coating method (method) as disclosed in Japanese Patent Application Laid-Open No. 2010-192401 is suitable. .. In Japanese Unexamined Patent Publication No. 2010-192401, in order to apply the film of the superconducting material front body solution on the substrate drawn from the unwinding roller with a uniform thickness, the downstream side of the die (slit die head) of the die coater to which the solution is applied. The thickness of the applied solution is measured by the film thickness detector placed in the die, and based on the measurement result, the syringe pump as a solution supply means for supplying the superconducting material front body solution to the die is driven to drive the solution. The thickness is controlled to be a predetermined value (for example, 5 μm).
 フォトリソグラフィ法で塗布されるレジスト層の厚みの絶対値は、プロセスによって様々であり、また、形成されるパターンの最小線幅によっても異なるが、サブミクロン~十数ミクロン程度である。さらに、その厚みのムラは数%以下にすることが望ましい。特開2010-192401号公報のようなダイコート法は、ロール・ツー・ロール方式でのレジスト層の塗工に適しているが、塗布部(ダイヘッド)と膜厚み検出器とが基板の搬送方向に離れていることから、塗布されたレジスト層の厚みムラを塗布領域内の全ての部分で必要とされる許容範囲内に収めることは難しい。 The absolute value of the thickness of the resist layer applied by the photolithography method varies depending on the process and also depends on the minimum line width of the formed pattern, but is about submicron to a dozen microns. Further, it is desirable that the unevenness of the thickness is several% or less. The die coating method as in JP-A-2010-192401 is suitable for coating a resist layer by a roll-to-roll method, but the coating portion (die head) and the film thickness detector move in the transport direction of the substrate. Due to the distance, it is difficult to keep the uneven thickness of the applied resist layer within the allowable range required for all the portions in the coated region.
 本発明の第1の態様は、所定のパターンに対応した描画データに基づいて強度変調される露光ビームを、基板上の感光層に照射した後に前記基板を現像するフォトリソグラフィ処理により、前記基板上に前記感光層による前記パターンを形成するパターン形成方法であって、前記基板の表面上に設定される2次元の塗布領域に感光性溶液を塗布して前記感光層を形成する塗布工程と、前記基板上の前記塗布領域に形成された前記感光層の厚みを計測し、前記感光層の厚みマップ情報を作成する厚み計測工程と、前記露光ビームを前記感光層に投射して前記パターンを露光する前に、前記厚みマップ情報に基づいて、前記描画データを修正するデータ修正工程と、を含む。 The first aspect of the present invention is on the substrate by a photolithography process for developing the substrate after irradiating the photosensitive layer on the substrate with an exposure beam whose intensity is modulated based on drawing data corresponding to a predetermined pattern. A pattern forming method for forming the pattern by the photosensitive layer, wherein the photosensitive solution is applied to a two-dimensional coating region set on the surface of the substrate to form the photosensitive layer, and the coating step. A thickness measurement step of measuring the thickness of the photosensitive layer formed in the coating region on the substrate and creating thickness map information of the photosensitive layer, and projecting the exposure beam onto the photosensitive layer to expose the pattern. Previously, a data correction step of modifying the drawing data based on the thickness map information is included.
 本発明の第2の態様は、第1の態様のパターン形成方法によりパターンを形成する工程を含む、電子デバイスの製造方法である。 The second aspect of the present invention is a method for manufacturing an electronic device, which comprises a step of forming a pattern by the pattern forming method of the first aspect.
 本発明の第3の態様は、所定のパターンに応じた描画データに基づいて強度変調される露光ビームを基板上の感光層に投射するパターン露光装置であって、前記基板上の前記感光層の厚みマップ情報に基づいて前記描画データを補正し、補正描画データを生成するデータ補正部と、前記補正描画データに基づいて前記露光ビームを投射する露光ユニット部と、を備える。 A third aspect of the present invention is a pattern exposure apparatus that projects an exposure beam whose intensity is modulated based on drawing data corresponding to a predetermined pattern onto a photosensitive layer on a substrate, wherein the photosensitive layer on the substrate is projected. It includes a data correction unit that corrects the drawing data based on the thickness map information and generates the correction drawing data, and an exposure unit unit that projects the exposure beam based on the correction drawing data.
第1の実施の形態によるロール・ツー・ロール(Roll to Roll)方式のパターン形成システムの全体構成を概略的に示す図である。It is a figure which shows schematic the whole structure of the roll-to-roll (Roll-to-Roll) type pattern formation system by 1st Embodiment. 図1に示した処理装置PU1内に設けられたダイ・ヘッド部10による塗工液の塗布厚を調整可能な塗布装置の構成を模式的に示した図である。It is a figure which shows typically the structure of the coating apparatus which can adjust the coating thickness of the coating liquid by the die head part 10 provided in the processing apparatus PU1 shown in FIG. 1. 図2に示したダイ・ヘッド部10の基板P側の部分を、回転ドラムDR1の回転軸と垂直な面で破断した部分断面を示す図である。It is a figure which shows the partial cross section which the part of the die head part 10 shown in FIG. 2 on the substrate P side was broken in the plane perpendicular to the rotation axis of a rotary drum DR1. 図1に示した処理装置(膜厚測定装置)PU2の具体的な概略構成を示す斜視図である。It is a perspective view which shows the specific schematic structure of the processing apparatus (film thickness measuring apparatus) PU2 shown in FIG. シート基板P上に形成されるレジスト層、マーカー、アライメントマーク、アライメント系ALGの検出視野領域、露光ユニットEXUによるスポット光の描画ライン、及び電子デバイスのパターンの描画領域の各々の配置関係の一例を示す図である。An example of the arrangement relationship of each of the resist layer formed on the sheet substrate P, the marker, the alignment mark, the detection visual field area of the alignment system ALG, the drawing line of the spot light by the exposure unit EXU, and the drawing area of the pattern of the electronic device. It is a figure which shows. 処理装置(膜厚測定装置)PU2によって計測されるレジスト層の厚みマップ情報SS2の一例を示す図である。It is a figure which shows an example of the thickness map information SS2 of a resist layer measured by a processing apparatus (film thickness measuring apparatus) PU2. 図7A~図7Cはポジ型のレジスト層RE1の厚みの違いによるパターン形状の変化を説明する概略図である。7A to 7C are schematic views illustrating changes in the pattern shape due to differences in the thickness of the positive resist layer RE1. 図8A~図8Cはネガ型のレジスト層RE2の厚みの違いによるパターン形状の変化を説明する概略図である。8A to 8C are schematic views illustrating changes in the pattern shape due to differences in the thickness of the negative resist layer RE2. アライメントマークAMn(n=1~7)の一部又は全体を太らせる為の描画データの修正例をビットマップ形式で表した図である。It is a figure which showed the modification example of the drawing data for thickening a part or the whole of the alignment mark Amn (n = 1-7) in a bitmap format. アライメントマークAMn(n=1~7)の一部又は全体を細らせる為の描画データの修正例をビットマップ形式で表した図である。It is a figure which showed the modification example of the drawing data for making a part or the whole of the alignment mark Amn (n = 1 to 7) thin in a bitmap format. 描画データに基づいてスポット光でパターン(画素)を描画する様子を模式的に表した図である。It is a figure which schematically represented the state of drawing a pattern (pixel) with spot light based on drawing data. 第2の実施の形態による処理装置(露光装置)PU3’の概略的な構成を示す図である。It is a figure which shows the schematic structure of the processing apparatus (exposure apparatus) PU3'according to the 2nd Embodiment. シート基板P上に成膜された絶縁膜LKのエッチング処理後の残膜状態を誇張して表した断面図である。It is sectional drawing which exaggerated the state of the residual film after the etching process of the insulating film LK which was formed on the sheet substrate P. 図12で示した周辺露光部100によるレジスト層REの露光の様子を、X’Y面内で模式的に表した図である。FIG. 12 is a diagram schematically showing the state of exposure of the resist layer RE by the peripheral exposure unit 100 shown in FIG. 12 in the XY plane. シート基板P上に長尺方向に沿って配置される2つの描画領域SA1、SA2と余白領域SSAとの配置例を示す図である。It is a figure which shows the arrangement example of two drawing regions SA1 and SA2 and margin region SSA which are arranged on a sheet substrate P along a long direction.
 本発明の態様に係るパターン形成方法と、電子デバイスの製造方法と、パターン露光装置とについて、好適な実施の形態を掲げ、添付の図面を参照しながら以下で詳細に説明する。なお、本発明の態様は、これらの実施の形態に限定されるものではなく、多様な変更または改良を加えたものも含まれる。つまり、以下に記載した構成要素には、当業者が容易に想定できるもの、実質的に同一のものが含まれ、以下に記載した構成要素は適宜組み合わせることが可能である。また、本発明の要旨を逸脱しない範囲で構成要素の種々の省略、置換または変更を行うことができる。 The pattern forming method, the manufacturing method of the electronic device, and the pattern exposure apparatus according to the aspect of the present invention will be described in detail below with reference to the attached drawings, with reference to suitable embodiments. It should be noted that the aspects of the present invention are not limited to these embodiments, but include those with various changes or improvements. That is, the components described below include those that can be easily assumed by those skilled in the art and those that are substantially the same, and the components described below can be appropriately combined. In addition, various omissions, substitutions or changes of components can be made without departing from the gist of the present invention.
[第1の実施の形態]
 図1は、第1の実施の形態によるパターン形成システム(デバイス製造システム)の概略的な全体構成を示す図である。本実施の形態では、図1に示すように、供給ロールFRから搬出されるフレキシブルな長尺のシート基板P(以下、単に基板Pとも言う)を、一連の処理装置PU1、PU2、PU3、PU4に通した後に回収ロールRRで巻き取るロール・ツー・ロール(Roll to Roll)方式によって、基板P上に電子デバイス(表示デバイス、配線デバイス、センサーデバイス等)用のパターンが形成される。このようなデバイス製造システムは、例えば、国際公開第2016/035842号、国際公開第2017/057427号に開示されている。
[First Embodiment]
FIG. 1 is a diagram showing a schematic overall configuration of a pattern forming system (device manufacturing system) according to the first embodiment. In the present embodiment, as shown in FIG. 1, a flexible long sheet substrate P (hereinafter, also simply referred to as a substrate P) carried out from a supply roll FR is used as a series of processing devices PU1, PU2, PU3, and PU4. A pattern for an electronic device (display device, wiring device, sensor device, etc.) is formed on the substrate P by a roll-to-roll method in which the substrate P is wound up by a recovery roll RR after being passed through the substrate P. Such a device manufacturing system is disclosed in, for example, International Publication No. 2016/035842 and International Publication No. 2017/057427.
 図1に示すように、設置場所(工場等)の床面に設置される本実施の形態の処理装置PU1は、供給ロールFRから引き出されたシート基板Pの表面の塗布領域にダイコート方式でレジスト溶液(塗布液とも呼ぶ)を塗工(塗布工程を実行)する塗布装置(ダイ・コータ装置、塗工装置)である。処理装置PU1は、シート基板Pを安定に支持して一定速度で搬送する為の回転ドラム(基板支持機構)DR1と、レジスト溶液をスリット状に塗布するダイ・ヘッド部10と、回転ドラムDR1の回転駆動の制御とダイ・ヘッド部10へのレジスト溶液の供給制御とを担う制御ユニット12と、シート基板Pに塗布された塗布液を乾燥(プリ・ベーク)させる加熱乾燥ユニット14とを備える。不図示ではあるが、回転ドラムDR1には、回転駆動の為のモータと、回転角度位置を計測する為のエンコーダ計測器とが設けられ、制御ユニット12は、エンコーダ計測情報DS1に基づいてモータをサーボ制御する。さらに制御ユニット12は、塗工時に目標として設定されるレジスト層(塗工液膜、感光層)の目標厚み情報SS1を出力する。 As shown in FIG. 1, the processing apparatus PU1 of the present embodiment installed on the floor surface of the installation location (factory or the like) resists the coating region on the surface of the sheet substrate P drawn out from the supply roll FR by a die coating method. It is a coating device (die coater device, coating device) that coats (executes a coating process) a solution (also called a coating liquid). The processing device PU1 includes a rotary drum (board support mechanism) DR1 for stably supporting the sheet substrate P and transporting the sheet substrate P at a constant speed, a die head portion 10 for applying a resist solution in a slit shape, and a rotary drum DR1. It includes a control unit 12 that controls rotation drive and controls the supply of a resist solution to the die head portion 10, and a heating / drying unit 14 that dries (pre-bakes) the coating liquid applied to the sheet substrate P. Although not shown, the rotary drum DR1 is provided with a motor for driving rotation and an encoder measuring instrument for measuring the rotation angle position, and the control unit 12 controls the motor based on the encoder measurement information DS1. Servo control. Further, the control unit 12 outputs the target thickness information SS1 of the resist layer (coating liquid film, photosensitive layer) set as a target at the time of coating.
 なお、シート基板Pの母材は、PET(ポリエチレン・テレフタレート)フィルム、PEN(ポリエチレン・ナフタレート)フィルム、ポリイミドフィルム等の樹脂材とするが、その他に、例えば厚さ100μm以下の極薄のシート状に形成して可撓性を持たせたガラス材、圧延等で薄くシート状に形成したステンレス等の金属材、或いはセルロースナノファイバーを含有する紙材等であっても良い。 The base material of the sheet substrate P is a resin material such as PET (polyethylene terephthalate) film, PEN (polyethylene naphthalate) film, and polyimide film. In addition, for example, an ultrathin sheet having a thickness of 100 μm or less. It may be a glass material formed into a flexible material, a metal material such as stainless steel formed into a thin sheet by rolling or the like, or a paper material containing cellulose nanofibers.
 本実施の形態のパターン形成システムにおいて、処理装置PU1の下流側に配置される処理装置PU2は、シート基板Pの表面に形成されたレジスト層の厚みの平均値やシート基板Pの幅方向(図1中の紙面と垂直な方向)の厚み分布等を計測(厚み計測工程を実行)する膜厚測定装置である。処理装置PU2は、シート基板Pを安定に支持して一定速度で搬送する為の回転ドラム(基板支持機構)DR2と、基板Pの表面のレジスト層の厚みを分光干渉方式等で計測する計測ユニット20と、基板P上のレジスト層の特定位置(塗工開始位置又は塗工終了位置等)を表わすマーカー(図4のMPa、MPb、MPc参照)を刻印する為のマーキングユニット22と、回転ドラムDR2の回転駆動の制御、計測ユニット20からの計測データの収集、及びマーキングユニット22の作動制御等を担う制御ユニット24とを備える。 In the pattern forming system of the present embodiment, the processing apparatus PU2 arranged on the downstream side of the processing apparatus PU1 has an average value of the thickness of the resist layer formed on the surface of the sheet substrate P and the width direction of the sheet substrate P (FIG. It is a film thickness measuring device that measures (executes a thickness measuring step) the thickness distribution and the like (in the direction perpendicular to the paper surface in 1). The processing device PU2 is a rotating drum (board support mechanism) DR2 for stably supporting the sheet substrate P and transporting it at a constant speed, and a measuring unit that measures the thickness of the resist layer on the surface of the substrate P by a spectral interference method or the like. 20 and a marking unit 22 for engraving a marker (see MPa, MPb, MPc in FIG. 4) indicating a specific position (coating start position or coating end position, etc.) of the resist layer on the substrate P, and a rotating drum. It includes a control unit 24 that controls the rotation drive of the DR 2, collects measurement data from the measurement unit 20, and controls the operation of the marking unit 22.
 図1では不図示であるが、回転ドラムDR2には、回転駆動の為のモータと、回転角度位置を計測する為のエンコーダ計測器とが設けられ、制御ユニット24は、エンコーダ計測器からの位置情報DS2に基づいてモータをサーボ制御すると共に、位置情報DS2と計測ユニット20で計測された厚みの計測データとに基づいて、シート基板P上のレジスト層の2次元の厚みマップ情報(マップ情報)SS2を作成する。厚みマップ情報SS2は、一時的に制御ユニット24内の記憶部に記憶される。その詳細は後述する。 Although not shown in FIG. 1, the rotary drum DR2 is provided with a motor for driving rotation and an encoder measuring instrument for measuring the rotation angle position, and the control unit 24 is located at a position from the encoder measuring instrument. The motor is servo-controlled based on the information DS2, and the two-dimensional thickness map information (map information) of the resist layer on the sheet substrate P is based on the position information DS2 and the thickness measurement data measured by the measurement unit 20. Create SS2. The thickness map information SS2 is temporarily stored in the storage unit in the control unit 24. The details will be described later.
 処理装置PU2を通ったシート基板Pは、下流側に配置される処理装置PU3に送られる。処理装置PU3は、電子デバイスの各種のパターン(配線部、薄膜トランジスタの電極部や半導体部、ビアホール、センサー部、抵抗部、コンデンサー部等)に対応した露光ビーム(図7AのIL参照)をシート基板P上のレジスト層に投射する露光装置(パターン描画装置)である。本実施の形態における処理装置PU3は、シート基板Pを安定に支持して一定速度で搬送する為の回転ドラム(基板支持機構)DR3と、基板P上のレジスト層にパターンに応じた露光ビームを投射する露光ユニットEXUと、基板P上に予め形成されたアライメントマーク、又は処理装置PU2で刻印されたマーカー等の位置を検出するアライメント系ALGと、主制御ユニット30とを備えている。 The sheet substrate P that has passed through the processing device PU2 is sent to the processing device PU3 arranged on the downstream side. The processing device PU3 uses a sheet substrate for an exposure beam (see IL in FIG. 7A) corresponding to various patterns of electronic devices (wiring part, thin film transistor electrode part and semiconductor part, via hole, sensor part, resistance part, capacitor part, etc.). It is an exposure device (pattern drawing device) that projects onto the resist layer on P. The processing apparatus PU3 in the present embodiment has a rotating drum (board support mechanism) DR3 for stably supporting the sheet substrate P and transporting the sheet substrate P at a constant speed, and an exposure beam corresponding to a pattern on the resist layer on the substrate P. It includes an exposure unit EXU for projecting, an alignment system ALG for detecting the position of an alignment mark formed in advance on the substrate P or a marker engraved by the processing device PU2, and a main control unit 30.
 不図示ではあるが、処理装置PU3の回転ドラムDR3にも、回転駆動の為のモータと、回転角度位置を計測する為のエンコーダ計測器とが設けられ、主制御ユニット30は、エンコーダ計測器からの位置情報DS3に基づいてモータをサーボ制御すると共に、位置情報DS3とアライメント系ALGで検出されたアライメントマーク又はマーカーの位置検出結果とに基づいて、露光ユニットEXUによるパターンの露光位置(描画位置)、或いは描画すべきパターンの部分的な形状を、逐次補正(データ修正工程を実行)するように制御する。なお、図1に示した厚みマップ情報SS2は、制御ユニット24の記憶部に記憶されるとしたが、主制御ユニット30の記憶部に記憶させても良いし、オフライン又はオンラインで接続される描画データ作成用のコンピュータに記憶させても良い。 Although not shown, the rotary drum DR3 of the processing device PU3 is also provided with a motor for driving rotation and an encoder measuring instrument for measuring the rotation angle position, and the main control unit 30 is from the encoder measuring instrument. The motor is servo-controlled based on the position information DS3, and the pattern exposure position (drawing position) by the exposure unit EXU is based on the position information DS3 and the position detection result of the alignment mark or marker detected by the alignment system ALG. Alternatively, the partial shape of the pattern to be drawn is controlled to be sequentially corrected (execution of the data correction step). Although the thickness map information SS2 shown in FIG. 1 is stored in the storage unit of the control unit 24, it may be stored in the storage unit of the main control unit 30, and the drawing is connected offline or online. It may be stored in a computer for creating data.
 本実施の形態の処理装置PU3は、例えば、国際公開第2015/152218号、国際公開第2015/166910号、国際公開第2016/152758号、国際公開第2017/191777号等に開示されているように、パターンの描画データ(画素毎の「0」、「1」のビットマップデータ)に応じて強度変調される紫外波長域のレーザビームを、回転ポリゴンミラーとf-θレンズ系とによって基板P上でスポット光に収斂させつつ、そのスポット光を回転ドラムDR3の回転軸と平行な方向に高速走査する直描方式の露光装置とする。従って、露光ユニットEXUは、回転ポリゴンミラーとf-θレンズ系等を搭載した描画モジュールを、回転ドラムDR3の回転軸が延びる方向に複数配置した構成とされる。また、アライメント系ALGも回転ドラムDR3の回転軸が延びる方向に複数配置される。 The processing apparatus PU3 of the present embodiment is disclosed in, for example, International Publication No. 2015/152218, International Publication No. 2015/166910, International Publication No. 2016/152758, International Publication No. 2017/191777, and the like. In addition, a laser beam in the ultraviolet wavelength range whose intensity is modulated according to the drawing data of the pattern (bitmap data of "0" and "1" for each pixel) is transmitted to the substrate P by a rotating polygon mirror and an f-θ lens system. The exposure device is a direct drawing type that scans the spot light at high speed in a direction parallel to the rotation axis of the rotating drum DR3 while converging the spot light on the above. Therefore, the exposure unit EXU has a configuration in which a plurality of drawing modules equipped with a rotating polygon mirror, an f−θ lens system, and the like are arranged in a direction in which the rotation axis of the rotating drum DR3 extends. Further, a plurality of alignment system ALGs are also arranged in the direction in which the rotation axis of the rotation drum DR3 extends.
 本実施の形態において、処理装置PU3の主制御ユニット30は、処理装置PU2の制御ユニット24から送られてくるレジスト層の計測された厚みマップ情報SS2と、処理装置PU1の制御ユニット12から送られてくる目標厚み情報SS1とに基づいて、シート基板P上のパターンの描画領域(露光領域)内で部分的な描画補正(データ修正工程)が必要か否かの判定、描画補正が必要な部分がある場合のシート基板P上の座標位置の特定、並びに描画補正が必要な場合の補正モードの設定を、露光ユニットEXUによるパターン露光の前に実行する。補正モードは、レジスト層の部分的な厚みが目標値(規定値)に対してどれくらい変動しているかによって選択され、第1の補正モードは、露光ユニットEXUの複数の描画モジュールの各々がスポット光を走査する際のスポット光の照度を調整するものであり、第2の補正モードは、描画データ上で設定されている所期のパターン形状を微修正するものである。 In the present embodiment, the main control unit 30 of the processing device PU3 is sent from the measured thickness map information SS2 of the resist layer sent from the control unit 24 of the processing device PU2 and from the control unit 12 of the processing device PU1. Based on the target thickness information SS1 that comes, it is determined whether or not partial drawing correction (data correction step) is necessary in the drawing area (exposure area) of the pattern on the sheet substrate P, and the part that requires drawing correction. When there is, the coordinate position on the sheet substrate P is specified, and the correction mode is set when drawing correction is required before the pattern exposure by the exposure unit EXU. The correction mode is selected depending on how much the partial thickness of the resist layer fluctuates with respect to the target value (specified value), and in the first correction mode, each of the plurality of drawing modules of the exposure unit EXU is spotlighted. The illuminance of the spot light when scanning is adjusted, and the second correction mode is to finely correct the desired pattern shape set on the drawing data.
 第1の補正モードでは、スポット光の照度を高速調整する機能が必要となる。そこで、例えば、国際公開第2017/057415号や国際公開第2018/150996号等に開示されているように、レーザ光源からの描画用のビームを複数の描画モジュールの各々に時分割で分配する為の音響光学変調素子に印加される高周波駆動信号の振幅を電気的に調整する機能を利用することで、容易に、且つ高速にスポット光の照度を調整(補正)することができる。 In the first correction mode, a function to adjust the illuminance of the spot light at high speed is required. Therefore, for example, as disclosed in International Publication No. 2017/057415 and International Publication No. 2018/150996, in order to distribute the drawing beam from the laser light source to each of a plurality of drawing modules in a time-division manner. By utilizing the function of electrically adjusting the amplitude of the high-frequency drive signal applied to the acoustic-optical modulation element, the illuminance of the spot light can be easily and quickly adjusted (corrected).
 第2の補正モードは、処理装置PU3による露光処理の後の現像処理(フォトリソグラフィ処理)、エッチング処理や堆積(デポジションやメッキ)処理等の化学的処理(湿式処理)によって最終的に得られる実パターンの形成状態も勘案して、描画データ上のパターンの形状をレジスト層の厚みに応じて部分的に設計値から修正する。ロール・ツー・ロール方式の現像処理や化学的処理(湿式処理)では、シート基板Pが一定の速度で搬送され続ける為、シート基板P上の長尺方向(搬送方向)、並びに長尺方向と直交した幅方向に関して、現像条件や化学的処理の条件を部分的に調整することが難しい。そこで、露光処理の段階で、レジスト層の厚みムラに起因して起こり得るパターン形状の最終的な変化(化学的処理後の変化)を予測し、パターン形状を事前に補正(修正)するのが第2の補正モードである。第2の補正モードの詳しい運用については後述する。 The second correction mode is finally obtained by a development process (photolithography process) after an exposure process by the processing device PU3, and a chemical process (wet process) such as an etching process and a deposition (deposition or plating) process. Taking into consideration the formation state of the actual pattern, the shape of the pattern on the drawing data is partially modified from the design value according to the thickness of the resist layer. In the roll-to-roll development process and chemical process (wet process), the sheet substrate P continues to be transported at a constant speed, so that the sheet substrate P is transported in the long direction (transport direction) and in the long direction. It is difficult to partially adjust the development conditions and chemical treatment conditions with respect to the orthogonal width directions. Therefore, at the stage of the exposure process, it is necessary to predict the final change in the pattern shape (change after the chemical treatment) that may occur due to the uneven thickness of the resist layer, and correct (correct) the pattern shape in advance. This is the second correction mode. The detailed operation of the second correction mode will be described later.
 さて、処理装置PU3によって露光処理が施されたシート基板Pは、下流側の処理装置(現像装置)PU4に搬入される。処理装置PU4は、搬送されてくるシート基板Pを所定時間だけ現像液に浸す現像槽40と、シート基板Pに付着した現像液を純水で洗い流す洗浄槽42と、洗浄後のシート基板Pを乾燥させる乾燥ユニット44とを備えている。処理装置PU4で乾燥されたシート基板Pは、一度、回収ロールRRに巻き取られる。その後、所定の長さに亘ってシート基板Pが巻き上げられた回収ロールRRは、エッチング装置や堆積装置(デポジション装置やメッキ装置)等に装着されて、シート基板Pにはその後の化学的処理が施される。なお、処理装置PU4から搬出されるシート基板Pは、回収ロールRRで巻き取ることなく、後続のエッチング装置やレジスト剥離装置、又は堆積装置等に直接搬送しても良い。 By the way, the sheet substrate P exposed by the processing device PU3 is carried into the processing device (developer) PU4 on the downstream side. The processing device PU4 comprises a developing tank 40 in which the conveyed sheet substrate P is immersed in a developing solution for a predetermined time, a cleaning tank 42 in which the developing solution adhering to the sheet substrate P is washed away with pure water, and the sheet substrate P after cleaning. It is provided with a drying unit 44 for drying. The sheet substrate P dried by the processing apparatus PU4 is once wound up on the recovery roll RR. After that, the recovery roll RR on which the sheet substrate P is wound over a predetermined length is mounted on an etching device, a deposition device (deposition device, a plating device), or the like, and the sheet substrate P is subjected to subsequent chemical treatment. Is given. The sheet substrate P carried out from the processing apparatus PU4 may be directly conveyed to a subsequent etching apparatus, resist stripping apparatus, depositing apparatus, or the like without being wound up by the recovery roll RR.
 以上の図1に示したパターン形成システムでは、図示を省略したが、処理装置(膜厚測定装置)PU2と処理装置(露光装置)PU3との間のシート基板Pの搬送路中、又は、処理装置(露光装置)PU3と処理装置(現像装置)PU4の間のシート基板Pの搬送路中に、シート基板Pを所定の長さに亘って蓄えることができるバッファ装置(アキュムレーター)を設けても良い。また、処理装置PU3は、スポット光を回転ポリゴンミラーで高速に走査する直描方式の露光装置としたが、多数の可動マイクロミラーをマトリックス状に配列したDMD(デジタル・ミラー・デバイス)、或いはSLM(空間光変調器)によってパターン化された露光ビームをシート基板Pのレジスト層に縮小投影する可変マスク方式の露光装置であっても良い。その可変マスク方式の露光装置の場合も、DMDやSLMの各可動マイクロミラーが描画データに基づいて駆動されるので、描画データを部分的に修正する第2の補正モードを実施することができる。さらに、処理装置(露光装置)PU3は、電子ビームや荷電粒子ビームを描画データに基づいて変調してパターン描画する露光装置であっても、同様に第2の補正モードを実施することができる。 In the pattern forming system shown in FIG. 1 above, although not shown, the sheet substrate P is transported or processed between the processing device (thickness measuring device) PU2 and the processing device (exposure device) PU3. A buffer device (accumulator) capable of storing the sheet substrate P over a predetermined length is provided in the transport path of the sheet substrate P between the apparatus (exposure apparatus) PU3 and the processing apparatus (developer) PU4. Is also good. Further, the processing device PU3 is a direct drawing type exposure device that scans spot light at high speed with a rotating polygon mirror, but is a DMD (digital mirror device) or SLM in which a large number of movable micromirrors are arranged in a matrix. It may be a variable mask type exposure apparatus that reduces and projects an exposure beam patterned by (spatial light modulator) onto a resist layer of a sheet substrate P. Also in the case of the variable mask type exposure apparatus, since each movable micromirror of DMD or SLM is driven based on the drawing data, it is possible to carry out the second correction mode in which the drawing data is partially corrected. Further, the processing device (exposure device) PU3 can similarly implement the second correction mode even in an exposure device that modulates an electron beam or a charged particle beam based on drawing data and draws a pattern.
 次に、図2を参照して、図1中の処理装置(塗布装置)PU1の具体的な構成を、図2を参照して説明する。図2は、図1に示した処理装置PU1内に設けられたダイ・ヘッド部10による塗工液Lqの塗布厚を調整可能な塗布装置の構成を模式的に示した図である。図2に示すように、ダイ・ヘッド部10は、シート基板Pの幅方向に細長く形成されて、シート基板Pの長尺方向に貼り合された一対のリップ片部材HA、HBを有する。一対のリップ片部材HA、HBが対向する部分には、タンク12Aに保管される塗工液(レジスト溶液)Lqを一時的に貯留する為に、ほぼ半円形の断面形状でくり貫かれてシート基板Pの幅方向に延設されたマニホールド(貯留部)MHと、マニホールドMHの下端部から延設されて、塗工液Lqを通すスロット部SLTと、が形成されている。 Next, with reference to FIG. 2, a specific configuration of the processing device (coating device) PU1 in FIG. 1 will be described with reference to FIG. FIG. 2 is a diagram schematically showing a configuration of a coating device capable of adjusting the coating thickness of the coating liquid Lq by the die head portion 10 provided in the processing device PU1 shown in FIG. 1. As shown in FIG. 2, the die head portion 10 has a pair of lip piece members HA and HB formed elongated in the width direction of the sheet substrate P and bonded in the elongated direction of the sheet substrate P. In the portion where the pair of lip piece members HA and HB face each other, a sheet is hollowed out in a substantially semicircular cross-sectional shape in order to temporarily store the coating liquid (resist solution) Lq stored in the tank 12A. A manifold (reservoir) MH extending in the width direction of the substrate P and a slot portion SLT extending from the lower end of the manifold MH and passing the coating liquid Lq are formed.
 スロット部SLTは一対のリップ片部材HA、HBが結合される部分に形成され、シート基板Pの長尺方向に関するスロット部SLTの幅(最先端のスリット状開口SOの幅)は、塗工液Lqの粘性や設定される塗布厚に応じて、数μm~数十μmに設定される。スロット部SLTの長さは、シート基板Pの幅方向の寸法よりも小さく設定されている。スロット部SLTの最先端部のスリット状開口SOからは、塗工液Lqが一様な流量でシート基板Pに向けて吐出される。タンク12A内の塗工液Lqは、ポンプ12B、圧力計12C、リップ片部材HBの側面部に接続される供給チューブSTを介して、ダイ・ヘッド部10内のマニホールドMH内に加圧された状態で供給される。これにより、塗工液LqはマニホールドMH内に所定の圧力で満たされ、スロット部SLT内を通ってシート基板Pに向けて吐出される。 The slot portion SLT is formed in a portion where the pair of lip piece members HA and HB are joined, and the width of the slot portion SLT (the width of the most advanced slit-shaped opening SO) in the long direction of the sheet substrate P is the coating liquid. It is set to several μm to several tens of μm depending on the viscosity of Lq and the set coating thickness. The length of the slot portion SLT is set to be smaller than the dimension in the width direction of the seat substrate P. The coating liquid Lq is discharged toward the sheet substrate P at a uniform flow rate from the slit-shaped opening SO at the most advanced portion of the slot portion SLT. The coating liquid Lq in the tank 12A was pressurized into the manifold MH in the die head portion 10 via the pump 12B, the pressure gauge 12C, and the supply tube ST connected to the side surface portion of the lip piece member HB. Supplied in state. As a result, the coating liquid Lq is filled in the manifold MH with a predetermined pressure, passes through the slot portion SLT, and is discharged toward the sheet substrate P.
 ダイ・ヘッド部10のリップ片部材HBの外側面部でスロット部SLTの先端のスリット状開口SOに近い位置には、スリット状開口SOの幅(シート基板Pの搬送方向の幅)を部分的に微調整可能な駆動ユニットACDが、シート基板Pの幅方向の複数の位置の各々に設けられている。複数の駆動ユニットACDは、制御ユニット12からの指令値に基づいて駆動制御部12Dで作成される駆動信号に応答して、スリット状開口SOの幅を変化させるように駆動される。 The width of the slit-shaped opening SO (width in the transport direction of the sheet substrate P) is partially set at a position close to the slit-shaped opening SO at the tip of the slot portion SLT on the outer surface portion of the lip piece member HB of the die head portion 10. A finely adjustable drive unit ACD is provided at each of the plurality of positions in the width direction of the seat substrate P. The plurality of drive units ACD are driven so as to change the width of the slit-shaped opening SO in response to the drive signal created by the drive control unit 12D based on the command value from the control unit 12.
 図3は、ダイ・ヘッド部10の基板P側の部分を、回転ドラムDR1の回転軸と垂直な面で破断した部分断面を示す図である。図3のように、スロット部SLTを規定するリップ片部材HB側の内壁面HB1は金属製の薄板TPで形成され、駆動ユニットACDは、印加電圧に応じて全長が伸びるピエゾ素子で構成される。駆動ユニットACDは、回転ドラムDR1の回転軸が延びる方向に沿った離散的な複数の位置の各々に、伸縮方向がスロット部SLTの内壁面HB1に対して約45°になるように設けられる。そしてリップ片部材HBのスリット状開口SO側の先端部には、シート基板Pの搬送方向に関する厚みを小さくしたヒンジ部Hgsが、スリット状開口SOが延びる方向に延設される。リップ片部材HBの一部であってヒンジ部Hgsの下側(スリット状開口SO側)には、駆動ユニットACDが伸びたときの推力(押圧力)を受ける作用部分HBpが形成されている。 FIG. 3 is a diagram showing a partial cross section in which a portion of the die head portion 10 on the substrate P side is broken on a plane perpendicular to the rotation axis of the rotary drum DR1. As shown in FIG. 3, the inner wall surface HB1 on the lip piece member HB side that defines the slot portion SLT is formed of a thin metal plate TP, and the drive unit ACD is composed of a piezo element whose overall length is extended according to the applied voltage. .. The drive unit ACD is provided at each of a plurality of discrete positions along the direction in which the rotation axis of the rotary drum DR1 extends so that the expansion / contraction direction is about 45 ° with respect to the inner wall surface HB1 of the slot portion SLT. At the tip of the lip piece member HB on the slit-shaped opening SO side, a hinge portion Hgs having a reduced thickness in the transport direction of the sheet substrate P is extended in the direction in which the slit-shaped opening SO extends. An acting portion HBp that receives a thrust (pushing pressure) when the drive unit ACD is extended is formed on the lower side (slit-shaped opening SO side) of the hinge portion Hgs, which is a part of the lip piece member HB.
 また、駆動ユニットACDの作用部分HBpと反対側には、駆動ユニットACDを支持する金属製のバックアップ部材BUが、リップ片部材HBの外壁面HB5に固定されている。駆動制御部12Dからの駆動信号(電圧)が駆動ユニットACD(ピエゾ素子)に印加されると、駆動ユニットACDは印加電圧の大きさに応じた量で45°方向に伸びるが、その伸張力を受けて、作用部分HBpと薄板TPの先端部とはヒンジ部Hgsの部分で反時計回りに弾性変形(屈曲)する。これによって、リップ片部材HBの先端部HB4がリップ片部材HAの内壁面HA1側の先端部HA4に接近するように変位し、スロット部SLTの先端のスリット状開口SOの幅(間隔)がミクロンオーダーで減少する。 Further, on the side opposite to the working portion HBp of the drive unit ACD, a metal backup member BU that supports the drive unit ACD is fixed to the outer wall surface HB5 of the lip piece member HB. When the drive signal (voltage) from the drive control unit 12D is applied to the drive unit ACD (piezo element), the drive unit ACD expands in the 45 ° direction by an amount corresponding to the magnitude of the applied voltage, but the extension force is increased. In response, the acting portion HBp and the tip portion of the thin plate TP are elastically deformed (bent) counterclockwise at the hinge portion Hgs. As a result, the tip HB4 of the lip piece member HB is displaced so as to approach the tip HA4 on the inner wall surface HA1 side of the lip piece member HA, and the width (interval) of the slit-shaped opening SO at the tip of the slot portion SLT is micron. Decrease on order.
 以上のような構成により、複数の駆動ユニットACDの各々を適宜制御することにより、スリット状開口SOから基板P上に塗布される塗工液Lq(レジスト溶液)の厚みが、スリット状開口SOの長手方向(シート基板Pの幅方向)に関して一様になるように、初期調整することが可能となる。なお、駆動ユニットACDはピエゾ素子に限られるものではなく、空圧を利用したエアピストン、油圧を利用したオイルピストン、熱膨張を利用したヒートボルト等であっても良い。 With the above configuration, by appropriately controlling each of the plurality of drive units ACD, the thickness of the coating liquid Lq (resist solution) applied onto the substrate P from the slit-shaped opening SO can be increased to that of the slit-shaped opening SO. The initial adjustment can be made so as to be uniform in the longitudinal direction (width direction of the sheet substrate P). The drive unit ACD is not limited to the piezo element, and may be an air piston using pneumatic pressure, an oil piston using hydraulic pressure, a heat bolt using thermal expansion, or the like.
 ところで、制御ユニット12は、図1に示した処理装置(膜厚測定装置)PU2からの厚みマップ情報SS2も入力して、塗布された塗工液Lqの乾燥後の膜(レジスト層)の平均的な厚みが、目標値に対して所定の許容範囲内か否かを判定する。その結果、膜(レジスト層)の厚みが許容範囲から大きく外れる傾向を示したときは、複数の駆動ユニットACDにより、スロット部SLTの最先端のスリット状開口SOの幅を変化させたり、ポンプ12Bによる供給量を変化させたりして、塗工液Lqの吐出量を調整するフィードバック的な制御も可能である。但し、処理装置(膜厚測定装置)PU2からの厚みマップ情報SS2は、ダイ・ヘッド部10による塗工液Lqの塗布位置から相当に下流側の位置、或いは加熱乾燥ユニット14での乾燥時間の経過後の時点で取得される情報なので、そのようなフィードバック的な膜厚制御では、シート基板P上の部分的な厚みムラを精密に抑制することは難しい。 By the way, the control unit 12 also inputs the thickness map information SS2 from the processing device (film thickness measuring device) PU2 shown in FIG. 1, and averages the film (resist layer) of the applied coating liquid Lq after drying. It is determined whether or not the target thickness is within a predetermined allowable range with respect to the target value. As a result, when the thickness of the film (resist layer) tends to be significantly out of the allowable range, the width of the most advanced slit-shaped opening SO of the slot portion SLT may be changed by a plurality of drive units ACD, or the pump 12B may be used. It is also possible to perform feedback control to adjust the discharge amount of the coating liquid Lq by changing the supply amount of the coating liquid Lq. However, the thickness map information SS2 from the processing device (film thickness measuring device) PU2 is located at a position considerably downstream from the coating position of the coating liquid Lq by the die head portion 10, or the drying time in the heat drying unit 14. Since the information is acquired after the lapse of time, it is difficult to precisely suppress the partial thickness unevenness on the sheet substrate P by such feedback-based film thickness control.
 図4は、図1で示した処理装置(膜厚測定装置)PU2の具体的な概略構成を示す斜視図である。図4において、回転ドラムDR2の回転軸AX2は、重力方向をZ軸とする直交座標系XYZのY軸と平行に設定されるものとする。図4に示すように、回転ドラムDR2の回転軸AX2と同軸で回転ドラムDR2のY方向の両端から突出したシャフトSftには、エンコーダ計測用のスケール円盤EDa、EDbが同軸に固定されている。スケール円盤EDa、EDbの外周面には格子目盛が周方向に一定ピッチで刻設され、その格子目盛を読み取るエンコーダヘッド21A、21B(21Bは不図示)は、回転軸AX2と平行に配置された支持フレーム20AのY方向の両端側に固定されている。スケール円盤EDa、EDbとエンコーダヘッド21A(21B)によって、シート基板Pの長尺方向の移動位置又は移動量を計測する位置計測部(移動計測部)が構成される。 FIG. 4 is a perspective view showing a specific schematic configuration of the processing device (film thickness measuring device) PU2 shown in FIG. In FIG. 4, it is assumed that the rotation axis AX2 of the rotation drum DR2 is set parallel to the Y axis of the Cartesian coordinate system XYZ whose Z axis is the direction of gravity. As shown in FIG. 4, scale disks EDa and EDb for encoder measurement are coaxially fixed to a shaft Sft that is coaxial with the rotation axis AX2 of the rotation drum DR2 and protrudes from both ends of the rotation drum DR2 in the Y direction. A grid scale is engraved on the outer peripheral surface of the scale disks EDa and EDb at a constant pitch in the circumferential direction, and the encoder heads 21A and 21B (21B is not shown) for reading the grid scale are arranged in parallel with the rotation axis AX2. It is fixed to both ends of the support frame 20A in the Y direction. The scale disks EDa and EDb and the encoder head 21A (21B) constitute a position measurement unit (movement measurement unit) for measuring the movement position or movement amount of the sheet substrate P in the long direction.
 計測ユニット20は、支持フレーム20Aに固定されて、シート基板P上の幅方向(Y方向)にライン状に延びた照明領域を照明する照明系20Bと、シート基板P上の照明領域からの反射光を集光すると共に、その照明領域の像をY方向に圧縮するシリンドリカルレンズ等を含む第1の光学系20Cと、照明領域におけるレジスト層の膜厚を計測する為に第1の光学系20Cで集光された反射光を入射する第2の光学系20Dと、第2の光学系20Dを通った照明領域からの反射光を受光して、照明領域内でのレジスト層の膜厚を画像解析で計測する為の撮像素子(CCDカメラ)20Eと、を備えている。照明系20Bからシート基板P上の照明領域に投射される照明光は、レジスト層を感光させない波長帯域(例えば、460nmよりも長い波長帯域)に設定される。このような膜厚測定装置の原理的な構成は、例えば、特開2012-189406号公報に開示されており、図4の第2の光学系20Dは、特開2012-189406号公報で説明されているイメージ分光ユニットの光学系部分(スリット、コリメートレンズ、透過型回折格子、結像レンズ等)に対応している。 The measurement unit 20 is fixed to the support frame 20A, and has an illumination system 20B that illuminates an illumination region extending in a line in the width direction (Y direction) on the sheet substrate P, and reflection from the illumination region on the seat substrate P. A first optical system 20C including a cylindrical lens or the like that collects light and compresses an image in the illumination region in the Y direction, and a first optical system 20C for measuring the film thickness of the resist layer in the illumination region. The film thickness of the resist layer in the illumination region is imaged by receiving the reflected light from the illumination region that has passed through the second optical system 20D and the second optical system 20D that incident the reflected light condensed in. It is equipped with an image pickup element (CCD camera) 20E for measuring by analysis. The illumination light projected from the illumination system 20B to the illumination region on the sheet substrate P is set to a wavelength band that does not expose the resist layer (for example, a wavelength band longer than 460 nm). The principle configuration of such a film thickness measuring device is disclosed in, for example, Japanese Patent Application Laid-Open No. 2012-189406, and the second optical system 20D of FIG. 4 is described in Japanese Patent Application Laid-Open No. 2012-189406. It corresponds to the optical system part (slit, collimating lens, transmission type diffraction grating, imaging lens, etc.) of the image spectroscopy unit.
 図4の撮像素子20Eは、シート基板P上のY方向にライン状に延びた照明領域のみを撮像して、その照明領域内でのレジスト層のY方向の1次元の膜厚分布を分光波形の特徴から計測しているが、シート基板Pの長尺方向の移動位置の情報(図1中の位置情報DS2)は、エンコーダ計測用のエンコーダヘッド21A(21B)によって逐次計測されている為、結果的に、シート基板P上のレジスト層の2次元の膜厚分布が計測される。なお、レジスト層の膜厚分布の計測手法としては、例えば、特開2019-200185号公報に開示されているような光干渉法を用いた分光計測を用いても良い。 The image pickup element 20E of FIG. 4 captures only an illumination region extending in a line in the Y direction on the sheet substrate P, and a spectral waveform of a one-dimensional film thickness distribution of the resist layer in the illumination region in the Y direction. However, since the information on the moving position of the sheet substrate P in the long direction (position information DS2 in FIG. 1) is sequentially measured by the encoder head 21A (21B) for encoder measurement, it is measured. As a result, the two-dimensional film thickness distribution of the resist layer on the sheet substrate P is measured. As a method for measuring the film thickness distribution of the resist layer, for example, spectroscopic measurement using an optical interferometry method as disclosed in Japanese Patent Application Laid-Open No. 2019-200185 may be used.
 さらに、図1で説明したマーキングユニット22は、図4に示すように、回転軸AX2と平行に配置された支持フレーム22A上で、Y方向に離れた3ヶ所の各々に固定されたマーキング部23A、23B、23Cを有する。マーキング部23Aは、シート基板Pの幅方向に関して-Y方向(Y方向の一方側)の端部付近にマーカーMPaを刻印することができ、マーキング部23Cは、シート基板Pの幅方向に関して+Y方向(-Y方向の反対側)の端部付近にマーカーMPcを刻印することができる。また、マーキング部23Bは、シート基板Pの幅方向に関する中央付近にマーカーMPbを刻印することができる。 Further, as shown in FIG. 4, the marking unit 22 described with reference to FIG. 1 has marking portions 23A fixed to each of three locations separated in the Y direction on the support frame 22A arranged in parallel with the rotation axis AX2. , 23B, 23C. The marking portion 23A can engrave a marker MPa near the end in the −Y direction (one side in the Y direction) with respect to the width direction of the sheet substrate P, and the marking portion 23C can engrave the marker MPa in the + Y direction with respect to the width direction of the sheet substrate P. A marker MPc can be engraved near the end (on the opposite side in the −Y direction). Further, the marking portion 23B can engrave the marker MPb near the center in the width direction of the sheet substrate P.
 マーキング部23A、23B、23Cの各々は、高輝度でパルス発光するレーザビームを、Y方向に数百μm長で伸びると共に線幅として数μm~数十μmとなるようなライン状に成型して、シート基板Pの表面に投射する。それによって、シート基板Pの表面に微細なライン状パターンをマーカーMPa、MPb、MPcとして刻印する。刻印されたマーカーMPa、MPb、MPcの各々は、後段の処理装置(露光装置)PU3のアライメント系ALGの検出視野内で観察可能な位置に配置され、アライメント系ALGによってシート基板P上のアライメントマークと同様の画像解析アルゴリズムによって位置検出できるようなコントラストを有する。なお、マーキング部23(23A、23B、23C)は、シート基板Pの搬送方向に関して、計測ユニット20の上流側に設けたが、下流側に設けても良い。いずれの場合であっても、計測ユニット20による計測位置とマーキング部23による刻印位置とのシート基板Pの長尺方向(シート基板Pの移動方向)に関する距離がベースライン長(一定値)として事前に把握されていれば良い。 Each of the marking portions 23A, 23B, and 23C is formed by molding a laser beam that emits a pulse with high brightness into a line shape that extends in the Y direction with a length of several hundred μm and a line width of several μm to several tens of μm. , Projected onto the surface of the sheet substrate P. As a result, fine line-shaped patterns are engraved on the surface of the sheet substrate P as markers MPa, MPb, and MPc. Each of the engraved markers MPa, MPb, and MPc is arranged at a position observable within the detection field of view of the alignment system ALG of the processing device (exposure device) PU3 in the subsequent stage, and the alignment mark on the sheet substrate P is arranged by the alignment system ALG. It has a contrast that can be detected by the same image analysis algorithm as. The marking portions 23 (23A, 23B, 23C) are provided on the upstream side of the measurement unit 20 with respect to the transport direction of the sheet substrate P, but may be provided on the downstream side. In any case, the distance between the measurement position by the measurement unit 20 and the marking position by the marking unit 23 in the long direction (movement direction of the sheet substrate P) of the sheet substrate P is set in advance as the baseline length (constant value). It is good if it is grasped by.
 図5は、シート基板P上に形成されるレジスト層RE、マーカーMPa、MPb、MPc、アライメントマークAM1~AM7、アライメント系ALGの検出視野領域Vw1~Vw7(以下、単に検出領域Vw1~Vw7とも呼ぶ)、露光ユニットEXUによるスポット光の描画ラインSL1~SL6、及び電子デバイスのパターンの描画領域SAの各々の配置関係の一例を示す図である。図5では、シート基板Pを座標系X’YのX’Y面と平行な平面状に展開して表し、シート基板Pの長尺方向(搬送方向)をX’方向、シート基板Pの幅方向をY方向とする。シート基板Pの幅方向の寸法をLYpとすると、処理装置(塗布装置)PU1によるレジスト層REの塗工領域のY方向の幅寸法LYeは、LYe<LYpに設定される。 FIG. 5 shows a resist layer RE, markers MPa, MPb, MPc, alignment marks AM1 to AM7, and detection visual field regions Vw1 to Vw7 of the alignment system ALG (hereinafter, also simply referred to as detection regions Vw1 to Vw7) formed on the sheet substrate P. ), It is a figure which shows an example of the arrangement relation of each of the drawing lines SL1 to SL6 of the spot light by the exposure unit EXU, and the drawing area SA of the pattern of an electronic device. In FIG. 5, the sheet substrate P is developed and represented in a plane parallel to the X'Y plane of the coordinate system X'Y, the long direction (conveyance direction) of the sheet substrate P is the X'direction, and the width of the sheet substrate P is wide. The direction is the Y direction. Assuming that the width dimension of the sheet substrate P is LYp, the width dimension LYe in the Y direction of the coating region of the resist layer RE by the processing device (coating device) PU1 is set to LYe <LYp.
 図5において、露光ユニットEXUは、例えば、国際公開第2017/057415号に開示されているように、Y方向に並べた6つの描画モジュールを有する。描画モジュールの各々は、スポット光のY方向の一次元走査の軌跡である描画ラインSL1~SL6で規定される最大露光幅寸法YE(YE<LYe)内で、シート基板P上のレジスト層REの所定位置に設定される描画領域SAに電子デバイス用のパターンを描画(露光)する。さらに第1層露光(ファースト露光)時には、描画ラインSL1~SL6により、描画領域SA内のパターンと共にアライメントマークAM1~AM7が描画(露光)される。シート基板Pの搬送方向(+X’方向)に関して、上流側に配置される奇数番の描画ラインSL1、SL3、SL5と下流側に配置される偶数番の描画ラインSL2、SL4、SL6とのX’方向の中点の位置CPoは、シート基板Pの搬送方向に関して、露光ユニットEXUによるパターンの描画中心位置である。 In FIG. 5, the exposure unit EXU has, for example, six drawing modules arranged in the Y direction, as disclosed in International Publication No. 2017/057415. Each of the drawing modules has a resist layer RE on the sheet substrate P within the maximum exposure width dimension YE (YE <LYe) defined by the drawing lines SL1 to SL6, which are the loci of one-dimensional scanning of the spot light in the Y direction. A pattern for an electronic device is drawn (exposed) in a drawing area SA set at a predetermined position. Further, at the time of the first layer exposure (first exposure), the alignment marks AM1 to AM7 are drawn (exposed) together with the pattern in the drawing area SA by the drawing lines SL1 to SL6. Regarding the transport direction (+ X'direction) of the sheet substrate P, X'with the odd-numbered drawing lines SL1, SL3, SL5 arranged on the upstream side and the even-numbered drawing lines SL2, SL4, SL6 arranged on the downstream side. The midpoint position CPo in the direction is the drawing center position of the pattern by the exposure unit EXU with respect to the transport direction of the sheet substrate P.
 アライメント系ALGは、Y方向に所定の間隔で並べられた7つのアライメント顕微鏡(CCDカメラ付き)を有し、アライメント顕微鏡の各々の検出領域Vw1~Vw7は、Y方向に一列に並べられる。検出領域Vw1~Vw7の各々のY方向の位置は、描画ラインSL1~SL6の各々のスポット光の走査開始位置と走査終了位置の各々に対応するように設定される。また、描画中心位置CPoと検出領域Vw1~Vw7の中心とのシート基板Pの搬送方向(X’方向)に関する距離BLxは、予めキャリブレーションによって精密に計測されたベースライン長として把握されている。 The alignment system ALG has seven alignment microscopes (with a CCD camera) arranged at predetermined intervals in the Y direction, and the respective detection regions Vw1 to Vw7 of the alignment microscope are arranged in a row in the Y direction. The positions of the detection regions Vw1 to Vw7 in the Y direction are set so as to correspond to the scanning start position and the scanning end position of each spot light of the drawing lines SL1 to SL6. Further, the distance BLx with respect to the transport direction (X'direction) of the sheet substrate P between the drawing center position CPo and the center of the detection areas Vw1 to Vw7 is grasped as the baseline length precisely measured in advance by calibration.
 アライメント系ALGの最も-Y方向側に配置される検出領域Vw1は、マーキング部23Aによって刻印されたマーカーMPaと、X’方向に一定の間隔で形成されるアライメントマークAM1とを捕捉可能である。同様に、アライメント系ALGの最も+Y方向側に配置される検出領域Vw7は、マーキング部23Cによって刻印されたマーカーMPcと、X’方向に一定の間隔で形成されるアライメントマークAM7とを捕捉可能である。また、アライメント系ALGのY方向の中央に配置される検出領域Vw4は、マーキング部23Bによって刻印されたマーカーMPbと、シート基板PのY方向の中央付近に形成されるアライメントマークAM4とを捕捉可能である。 The detection region Vw1 arranged on the most −Y direction side of the alignment system ALG can capture the marker MPa engraved by the marking portion 23A and the alignment mark AM1 formed at regular intervals in the X ′ direction. Similarly, the detection region Vw7 arranged on the most + Y direction side of the alignment system ALG can capture the marker MPc engraved by the marking portion 23C and the alignment mark AM7 formed at regular intervals in the X'direction. be. Further, the detection region Vw4 arranged in the center of the alignment system ALG in the Y direction can capture the marker MPb engraved by the marking portion 23B and the alignment mark AM4 formed near the center of the sheet substrate P in the Y direction. Is.
 なお、図5において、処理装置(膜厚測定装置)PU2を通った後のシート基板P上には、レジスト層REとマーカーMPa、MPb、MPcとが形成されている。処理装置PU2では、図4に示したように、回転ドラムDR2の回転角度位置、即ち、シート基板Pの移動量をエンコーダヘッド21A(21B)により計測しているので、図5のように、マーカーMPa、MPb、MPcのX’方向(搬送方向)の刻印位置XP1と、レジスト層REの塗布開始位置XPeとの関係をミリメートル以下のオーダーで把握することができる。ここで、刻印位置XP1のマーカーMPa、MPb、MPcは、レジスト層REの塗布開始位置XPeよりも下流側に位置し、シート基板Pの表面自体に刻印される。マーカーMPa、MPb、MPcは、レジスト層REの厚み計測のX’方向の基準となり、厚みマップ情報SS2(図1参照)を作成する際の基準位置を規定する。 In FIG. 5, the resist layer RE and the markers MPa, MPb, and MPc are formed on the sheet substrate P after passing through the processing device (film thickness measuring device) PU2. In the processing device PU2, as shown in FIG. 4, the rotation angle position of the rotary drum DR2, that is, the movement amount of the seat substrate P is measured by the encoder head 21A (21B), so that the marker is as shown in FIG. The relationship between the marking position XP1 in the X'direction (conveyance direction) of MPa, MPb, and MPc and the coating start position XPe of the resist layer RE can be grasped on the order of millimeters or less. Here, the markers MPa, MPb, and MPc at the marking position XP1 are located downstream of the coating start position XPe of the resist layer RE, and are stamped on the surface itself of the sheet substrate P. The markers MPa, MPb, and MPc serve as a reference in the X'direction for measuring the thickness of the resist layer RE, and define a reference position when creating the thickness map information SS2 (see FIG. 1).
 さらに、マーカーMPa、MPb、MPcは、後続の処理装置(露光装置)PU3によってファースト露光時に描画されるアライメントマークAM1~AM7の先頭位置XP3(並びに描画領域SAの先頭位置)を規定する為にも利用できる。処理装置(露光装置)PU3では、アライメント系ALGと回転ドラムDR3のエンコーダ計測システムとにより、マーカーMPa、MPb、MPcの刻印位置XP1が計測される。アライメントマークAM1~AM7の先頭位置XP3は、マーカーMPa、MPb、MPcの刻印位置XP1から上流側に距離LX1で設定される。また、レジスト層REの塗布開始位置XPeは、刻印位置XP1よりも上流側(-X’方向側)に位置し、塗布開始位置XPeから更に上流側の距離LXaまでの間は、塗布されるレジスト層REの厚みが安定しない範囲を表す。従って、アライメントマークAM1~AM7の先頭位置XP3(並びに描画領域SAの先頭位置)は、塗布開始位置XPeから上流側(-X’方向側)に距離LXa以上離れた位置に設定される。 Further, the markers MPa, MPb, and MPc are also used to define the head positions XP3 (and the head positions of the drawing area SA) of the alignment marks AM1 to AM7 drawn at the time of the first exposure by the subsequent processing device (exposure device) PU3. Available. In the processing device (exposure device) PU3, the marking positions XP1 of the markers MPa, MPb, and MPc are measured by the alignment system ALG and the encoder measurement system of the rotary drum DR3. The head position XP3 of the alignment marks AM1 to AM7 is set at a distance LX1 upstream from the marking positions XP1 of the markers MPa, MPb, and MPc. Further, the coating start position XPe of the resist layer RE is located on the upstream side (-X'direction side) of the engraved position XP1, and the resist to be applied is applied from the coating start position XPe to the further upstream distance LXa. It represents a range in which the thickness of the layer RE is not stable. Therefore, the head position XP3 (and the head position of the drawing area SA) of the alignment marks AM1 to AM7 is set at a position separated from the coating start position XPe on the upstream side (-X'direction side) by a distance of LXa or more.
 以上の図5の形態において、マーカーMPa、MPb、MPcは、レジスト層REの塗布開始位置XPeよりも上流側(-X’方向側)であって、アライメントマークAM1~AM7の先頭位置XP3よりも下流側(+X’方向側)に刻印しても良い。さらに、マーキング部23A、23B、23Cは、少なくとも1つだけでも良く、マーカーMPa、MPb、MPcのうちの少なくとも1つが刻印される態様であっても良い。また、マーキング部23A、23B、23Cは、機械的にシート基板P(或いはレジスト層RE)の表面に押圧による微細な凹みを形成するインプリント方式のスタンパーであっても良い。 In the above embodiment of FIG. 5, the markers MPa, MPb, and MPc are on the upstream side (-X'direction side) of the application start position XPe of the resist layer RE, and are located on the head position XP3 of the alignment marks AM1 to AM7. It may be stamped on the downstream side (+ X'direction side). Further, only one marking portion 23A, 23B, 23C may be used, and at least one of the markers MPa, MPb, and MPc may be stamped. Further, the marking portions 23A, 23B, and 23C may be imprint type stampers that mechanically form fine dents on the surface of the sheet substrate P (or resist layer RE) by pressing.
 処理装置(膜厚測定装置)PU2は、マーキング部23A、23B、23Cによって、図5のようなマーカーMPa、MPb、MPcを刻印したときのX’方向の刻印位置XP1と、それ以降のシート基板PのX’方向の移動位置とを、回転ドラムDR2のエンコーダ計測システム(エンコーダヘッド21A、21B)で計測する。計測ユニット20は、シート基板PがX’方向に単位移動量(例えば、10mm)移動する度に、レジスト層REのY方向の厚み分布を繰り返し計測する。Y方向の厚み分布の計測分解能も、例えば、単位移動量と同じ10mmに設定される。厚み分布のX’方向、Y方向の計測分解能は、計測ユニット20の計測分解能が高ければ、5mmピッチ、或いは2mmピッチのように細かくすることもできる。 The processing device (film thickness measuring device) PU2 has the marking position XP1 in the X'direction when the markers MPa, MPb, and MPc as shown in FIG. 5 are stamped by the marking portions 23A, 23B, and 23C, and the sheet substrate thereafter. The movement position of P in the X'direction is measured by the encoder measurement system (encoder heads 21A and 21B) of the rotating drum DR2. The measuring unit 20 repeatedly measures the thickness distribution of the resist layer RE in the Y direction each time the sheet substrate P moves in the X'direction by a unit movement amount (for example, 10 mm). The measurement resolution of the thickness distribution in the Y direction is also set to, for example, 10 mm, which is the same as the unit movement amount. The measurement resolution in the X'direction and the Y direction of the thickness distribution can be made as fine as 5 mm pitch or 2 mm pitch if the measurement resolution of the measurement unit 20 is high.
 図6は、計測ユニット20と回転ドラムDR2のエンコーダ計測システム(エンコーダヘッド21A、21B)によって計測されるレジスト層REの厚みマップ情報SS2の一例を模式的に示す図である。図6におけるX’軸とY軸は、図5中の座標系のX’軸、Y軸と同じに設定され、X’Y面と直交するZ軸はレジスト層REの厚み(μm)を表す。図6のX’軸方向の位置X1、X2、X3・・・は、例えば10mm(1cm)毎に区画された局所領域の座標位置であり、マーカーMPa、MPb、MPcの刻印位置XP1を基準にして設定される。図6の場合、位置X1は、アライメントマークAM1~AM7の先頭位置XP3を含むように対応付けられているものとする。また、Y方向については、一例として計測ユニット20で計測可能な範囲を20cmとし、例えば1cm毎に区画された局所領域ごとに厚みの平均値が計測されるものとする。従って、厚みマップ情報SS2は、例えば、シート基板P上で1cm×1cmの局所領域毎の厚み計測値を2次元のマトリックス状に並べたものとなる。 FIG. 6 is a diagram schematically showing an example of the thickness map information SS2 of the resist layer RE measured by the encoder measurement system (encoder heads 21A and 21B) of the measurement unit 20 and the rotary drum DR2. The X'axis and Y axis in FIG. 6 are set to be the same as the X'axis and Y axis of the coordinate system in FIG. 5, and the Z axis orthogonal to the X'Y plane represents the thickness (μm) of the resist layer RE. .. The positions X1, X2, X3 ... In the X'axis direction of FIG. 6 are the coordinate positions of the local region divided by, for example, 10 mm (1 cm), and are based on the marking positions XP1 of the markers MPa, MPb, MPc. Is set. In the case of FIG. 6, it is assumed that the positions X1 are associated with each other so as to include the head positions XP3 of the alignment marks AM1 to AM7. Further, in the Y direction, as an example, the range that can be measured by the measuring unit 20 is set to 20 cm, and the average value of the thickness is measured for each local region divided by, for example, 1 cm. Therefore, the thickness map information SS2 is, for example, a two-dimensional matrix in which the thickness measurement values for each local region of 1 cm × 1 cm are arranged on the sheet substrate P.
 図6の場合、レジスト層REの目標とされた基準の厚み(規定厚み)は、一例として1.5μmに設定され、基準の厚みに対する誤差範囲(規定範囲)は±ΔTeとする。誤差範囲±ΔTeは、レジスト層REの材料品種、露光時に設定される露光量(ドーズ量)、現像時の現像条件、パターンの最小線幅等によって変わるが、一例としては、±10%程度である。従って、図6の場合、図1に示した制御ユニット24から送出される厚みマップ情報SS2には、レジスト層REの厚み(誤差情報)が1.35~1.65μmの範囲にある区画領域にはフラグ情報FLGとして「0」が付与され、レジスト層REの厚みが1.35μmよりも薄い区画領域(局所領域)にはフラグ情報FLGとして「-1」が付与され、そしてレジスト層REの厚みが1.65μmよりも厚い区画領域(局所領域)にはフラグ情報FLGとして「+1」が付与される。フラグ情報FLGが「-1」、「+1」となった区画領域は補正区画として特定される。ここでは、フラグ情報FLGも厚みマップ情報SS2として含まれるものとする。 In the case of FIG. 6, the target reference thickness (specified thickness) of the resist layer RE is set to 1.5 μm as an example, and the error range (specified range) with respect to the reference thickness is ± ΔTe. The error range ± ΔTe varies depending on the material type of the resist layer RE, the exposure amount (dose amount) set at the time of exposure, the development conditions at the time of development, the minimum line width of the pattern, etc., but as an example, it is about ± 10%. be. Therefore, in the case of FIG. 6, the thickness map information SS2 transmitted from the control unit 24 shown in FIG. 1 includes a partition region in which the thickness (error information) of the resist layer RE is in the range of 1.35 to 1.65 μm. Is given "0" as the flag information FLG, and "-1" is given as the flag information FLG to the partition region (local region) where the thickness of the resist layer RE is thinner than 1.35 μm, and the thickness of the resist layer RE is given. "+1" is given as flag information FLG to the partition region (local region) thicker than 1.65 μm. The section area where the flag information FLG is "-1" or "+1" is specified as a correction section. Here, it is assumed that the flag information FLG is also included as the thickness map information SS2.
 ダイコータ方式の塗布装置(PU1)によって、回転ドラムDR1で支持されたシート基板P上に塗工液(感光性溶液)Lqを塗布する場合、図5で示したように、レジスト層REのY方向の幅寸法LYeは、シート基板Pの幅寸法LYpからはみ出さないように設定される。更に、レジスト層REの幅寸法LYeは、シート基板Pの幅方向(Y方向)の両端付近に形成されるアライメントマークAM1、AM7の位置を確実にカバーするように設定される。その為、アライメントマークAM1、AM7が形成されるシート基板PのY方向の周辺付近では、ダイ・ヘッド部10のスリット状開口SOのY方向の終端付近となり、レジスト層REの厚みムラが発生し易い。 When the coating liquid (photosensitive solution) Lq is applied onto the sheet substrate P supported by the rotary drum DR1 by the die coater type coating device (PU1), as shown in FIG. 5, in the Y direction of the resist layer RE. The width dimension LYe of is set so as not to protrude from the width dimension LYp of the sheet substrate P. Further, the width dimension LYe of the resist layer RE is set so as to surely cover the positions of the alignment marks AM1 and AM7 formed near both ends in the width direction (Y direction) of the sheet substrate P. Therefore, in the vicinity of the periphery of the sheet substrate P on which the alignment marks AM1 and AM7 are formed in the Y direction, the slit-shaped opening SO of the die head portion 10 is near the end in the Y direction, and uneven thickness of the resist layer RE occurs. easy.
 図5に示したアライメントマークAM1、AM7は、シート基板P上でX’方向に一定の間隔(例えば、5mm、或いは10mm)で形成され、現像後のエッチング工程やレジスト剥離工程、又は堆積工程を経て、無機材料(銅、アルミニウム、金、ニッケル等)や有機材料で形成される。重ね合わせ露光(セカンド露光)時には、ファースト露光で形成されたシート基板P上の描画領域SA内のパターン(下地パターン)上に新たなパターンを精密に重ね合わせる為に、無機材料や有機材料によるアライメントマークAM1、AM7を、アライメント系ALG(検出領域Vw1、Vw7)で順次検出する必要がある。その際、アライメントマークAM1、AM7の形状が変形していると、検出位置に誤差が生じたり、検出不能になったりすることがある。 The alignment marks AM1 and AM7 shown in FIG. 5 are formed on the sheet substrate P at regular intervals (for example, 5 mm or 10 mm) in the X'direction, and are subjected to a post-development etching step, a resist peeling step, or a deposition step. After that, it is formed of an inorganic material (copper, aluminum, gold, nickel, etc.) or an organic material. At the time of overlay exposure (second exposure), alignment with an inorganic material or an organic material is performed in order to precisely overlay a new pattern on the pattern (base pattern) in the drawing area SA on the sheet substrate P formed by the first exposure. It is necessary to sequentially detect the marks AM1 and AM7 in the alignment system ALG (detection regions Vw1 and Vw7). At that time, if the shapes of the alignment marks AM1 and AM7 are deformed, an error may occur in the detection position or the detection may not be possible.
 その1つの原因は、ファースト露光時にアライメントマークAM1~AM7が露光されたシート基板P上の部分でのレジスト層REの厚み誤差である。レジスト層REの厚み誤差に応じて、処理装置(露光装置)PU3での露光条件として露光量を調整することは可能であるが、露光量を増大させる調整が難しい場合もある。さらにロール・ツー・ロール方式の場合、シート基板Pのレジスト層REの現像工程、その後の化学的処理工程(エッチング処理やレジスト剥離処理、又は堆積処理)では、シート基板P上の各部が同じ条件で処理される為、レジスト層REの部分的な厚み誤差による影響(パターン線幅や形状の変形)を補償することも難しい。 One of the causes is the thickness error of the resist layer RE in the portion on the sheet substrate P where the alignment marks AM1 to AM7 were exposed during the first exposure. Although it is possible to adjust the exposure amount as an exposure condition in the processing device (exposure device) PU3 according to the thickness error of the resist layer RE, it may be difficult to make adjustments to increase the exposure amount. Further, in the case of the roll-to-roll method, in the development step of the resist layer RE of the sheet substrate P and the subsequent chemical treatment step (etching treatment, resist peeling treatment, or deposition treatment), each part on the sheet substrate P has the same conditions. It is also difficult to compensate for the influence of the partial thickness error of the resist layer RE (deformation of the pattern line width and shape).
 図7A~図8Cは、レジスト層REの厚みの違いによる影響を説明する概略図であり、図7A~図7Cはレジスト層REをポジ型のレジスト層RE1にした場合を表し、図8A~図8Cはレジスト層REをネガ型のレジスト層RE2(或いは、紫外線硬化樹脂による層)にした場合を表す。また、図7A~図8Cでは、紙面内の左右方向に一定のピッチ(例えば、20μm~40μm)を有するライン&スペース・パターン(ライン幅とスペース幅が、例えば10μm~20μm)の為の露光ビームILが一定の照度で投射されるものとする。さらに、シート基板Pの表面には、下地層としての銅箔層LCが所定の厚み(例えば、500nm)で全面に蒸着され、その銅箔層LCの表面にレジスト層RE1、RE2が塗布されているものとする。 7A to 8C are schematic views illustrating the influence of the difference in the thickness of the resist layer RE, and FIGS. 7A to 7C show the case where the resist layer RE is a positive resist layer RE1 and are shown in FIGS. 8A to 8C. 8C represents a case where the resist layer RE is a negative type resist layer RE2 (or a layer made of an ultraviolet curable resin). Further, in FIGS. 7A to 8C, an exposure beam for a line & space pattern (line width and space width are, for example, 10 μm to 20 μm) having a constant pitch (for example, 20 μm to 40 μm) in the left-right direction in the paper surface. It is assumed that the IL is projected with a constant illuminance. Further, a copper foil layer LC as a base layer is vapor-deposited on the entire surface of the sheet substrate P with a predetermined thickness (for example, 500 nm), and the resist layers RE1 and RE2 are coated on the surface of the copper foil layer LC. It is assumed that there is.
 図7Aは、ポジ型のレジスト層RE1の厚みを、露光ビームILの露光量に対して適正となるように設定して塗布した状態を表し、図7Bは、図7Aの状態で露光された基板Pの現像後の状態を表す。ポジ型のレジスト層RE1の場合、露光ビームILの照射を受けた部分が現像時に溶解されて除去される。図7A、図7Bのポジ型のレジスト層RE1の厚みに対して、露光ビームILの露光量が適正範囲に設定されているので、レジスト層RE1の除去された部分の線幅は、目標値に対して許容範囲に収まっている。従って、図7Bの状態の基板Pを一定の時間だけエッチング液に浸漬させて、銅箔層LCの露呈した部分を除去すると、銅箔層LCにほぼ目標通りのライン&スペース・パターンが形成される。 FIG. 7A shows a state in which the thickness of the positive resist layer RE1 is set to be appropriate for the exposure amount of the exposure beam IL and applied, and FIG. 7B shows a substrate exposed in the state of FIG. 7A. Represents the state of P after development. In the case of the positive resist layer RE1, the portion irradiated with the exposure beam IL is dissolved and removed during development. Since the exposure amount of the exposure beam IL is set in an appropriate range with respect to the thickness of the positive resist layer RE1 of FIGS. 7A and 7B, the line width of the removed portion of the resist layer RE1 is set to the target value. On the other hand, it is within the permissible range. Therefore, when the substrate P in the state of FIG. 7B is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, a line & space pattern almost as targeted is formed on the copper foil layer LC. To.
 図7Cは、図7A、図7Bに比べて、ポジ型のレジスト層RE1の厚みが薄くなった場合の現像後の状態を誇張して表したものである。図7Cでは、ポジ型のレジスト層RE1の厚みに対して、露光ビームILの露光量がオーバー・ドーズ状態(露光量過多)になっている為、レジスト層RE1の除去された部分の線幅は、目標値に対して許容範囲から外れて、大幅に広がったものになる。従って、図7Cの状態の基板Pを一定の時間だけエッチング液に浸漬させて、銅箔層LCの露呈した部分を除去すると、銅箔層LCとして残存するライン幅LDeが、除去されるスペース幅Lerに対して大幅に細くなるようなライン&スペース・パターンが形成される。 FIG. 7C exaggerates the state after development when the thickness of the positive resist layer RE1 is thinner than that of FIGS. 7A and 7B. In FIG. 7C, since the exposure amount of the exposure beam IL is in an overdose state (excessive exposure amount) with respect to the thickness of the positive resist layer RE1, the line width of the removed portion of the resist layer RE1 is , It is out of the permissible range with respect to the target value, and it becomes greatly expanded. Therefore, when the substrate P in the state of FIG. 7C is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, the line width LDe remaining as the copper foil layer LC is removed. A line and space pattern is formed that is significantly thinner than Ler.
 図8Aは、ネガ型のレジスト層RE2の厚みを、露光ビームILの露光量に対して適正となるように設定して塗布した状態を表し、図8Bは、図8Aの状態で露光された基板Pの現像後の状態を表す。ネガ型のレジスト層RE2の場合、露光ビームILの照射を受けなかった部分が現像時に溶解されて除去される。図8A、図8Bのネガ型のレジスト層RE2の厚みに対して、露光ビームILの露光量が適正範囲に設定されているので、レジスト層RE2の除去された部分の線幅は、目標値に対して許容範囲に収まっている。従って、図8Bの状態の基板Pを一定の時間だけエッチング液に浸漬させて、銅箔層LCの露呈した部分を除去すると、銅箔層LCにほぼ目標通りのライン&スペース・パターンが形成される。 FIG. 8A shows a state in which the thickness of the negative resist layer RE2 is set to be appropriate for the exposure amount of the exposure beam IL and applied, and FIG. 8B shows a substrate exposed in the state of FIG. 8A. Represents the state of P after development. In the case of the negative type resist layer RE2, the portion not irradiated with the exposure beam IL is dissolved and removed during development. Since the exposure amount of the exposure beam IL is set in an appropriate range with respect to the thickness of the negative resist layer RE2 of FIGS. 8A and 8B, the line width of the removed portion of the resist layer RE2 is set to the target value. On the other hand, it is within the permissible range. Therefore, when the substrate P in the state of FIG. 8B is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, a line & space pattern almost as targeted is formed on the copper foil layer LC. To.
 図8Cは、図8A、図8Bに比べて、ネガ型のレジスト層RE2の厚みが薄くなった場合の現像後の状態を誇張して表したものである。図8Cでは、ネガ型のレジスト層RE2の厚みに対して、露光ビームILの露光量がオーバー・ドーズ状態(露光量過多)になっている為、レジスト層RE2の残像した部分の線幅は、目標値に対して許容範囲から外れて、大幅に広がったものになる。従って、図8Cの状態の基板Pを一定の時間だけエッチング液に浸漬させて、銅箔層LCの露呈した部分を除去すると、銅箔層LCとして残存するライン幅LDeが、除去されるスペース幅Lerに対して大幅に太くなるようなライン&スペース・パターンが形成される。 FIG. 8C exaggerates the state after development when the thickness of the negative resist layer RE2 is thinner than that of FIGS. 8A and 8B. In FIG. 8C, since the exposure amount of the exposure beam IL is in an overdose state (excessive exposure amount) with respect to the thickness of the negative resist layer RE2, the line width of the afterimage portion of the resist layer RE2 is It is out of the permissible range for the target value, and it is greatly expanded. Therefore, when the substrate P in the state of FIG. 8C is immersed in the etching solution for a certain period of time to remove the exposed portion of the copper foil layer LC, the line width LDe remaining as the copper foil layer LC is removed. A line and space pattern is formed that is significantly thicker than the Ler.
 このように、レジスト層REの厚みが変わった部分では、エッチング工程又は堆積工程の後に形成されるパターンの線幅、或いはパターンの形状が、許容範囲から変化する。先の図5に示したアライメントマークAM1、AM7の形成位置では、レジスト層REの厚みムラが発生し易い為、例えば、図7A~図8Cに示したような銅箔層LCによるアライメントマークAM1~AM7が形成されたとしても、その形状が変化する可能性が有る。その結果、セカンド露光時のアライメントマークAM1~AM7の位置検出がエラーになったり、検出位置結果に誤差が生じたりする。 In this way, in the portion where the thickness of the resist layer RE has changed, the line width of the pattern formed after the etching step or the deposition step, or the shape of the pattern changes from the allowable range. At the positions where the alignment marks AM1 and AM7 are formed shown in FIG. 5, unevenness in the thickness of the resist layer RE is likely to occur. Therefore, for example, the alignment marks AM1 to the copper foil layer LC as shown in FIGS. 7A to 8C. Even if AM7 is formed, its shape may change. As a result, the position detection of the alignment marks AM1 to AM7 at the time of the second exposure may result in an error, or an error may occur in the detected position result.
 そこで、本実施の形態では、処理装置(露光装置)PU3によるファースト露光の際に描画するアライメントマークAM1~AM7の形状を、それらのアライメントマークAM1~AM7が形成されるシート基板P上の各位置でのレジスト層REの厚みに応じて変形補正する。勿論、アライメントマークAM1~AM7以外の描画領域SA(図5)内に露光されるパターンに関しても、レジスト層REの厚みムラによるパターン形状の変形補正を同様に行うことができる。図1のパターン形成システムでは、処理装置(膜厚測定装置)PU2から処理装置(露光装置)PU3までシート基板Pがインラインで搬送される時間を利用して、厚みマップ情報SS2(図6)が生成され始めた時点から、処理装置(露光装置)PU3の主制御ユニット30又はオフラインのコンピュータが、厚みマップ情報SS2の区画領域毎に付与された補正要否のフラグ情報FLG(「0」、「-1」、「+1」)に基づいて、ファースト露光用のパターン描画データ中のアライメントマークAM1~AM7の各々に関する描画データを逐次補正(修正)する。 Therefore, in the present embodiment, the shapes of the alignment marks AM1 to AM7 drawn at the time of the first exposure by the processing device (exposure device) PU3 are displayed at each position on the sheet substrate P on which the alignment marks AM1 to AM7 are formed. Deformation is corrected according to the thickness of the resist layer RE in. Of course, with respect to the pattern exposed in the drawing area SA (FIG. 5) other than the alignment marks AM1 to AM7, the deformation of the pattern shape due to the uneven thickness of the resist layer RE can be similarly corrected. In the pattern forming system of FIG. 1, the thickness map information SS2 (FIG. 6) is generated by utilizing the time when the sheet substrate P is conveyed in-line from the processing device (film thickness measuring device) PU2 to the processing device (exposure device) PU3. From the time when the data starts to be generated, the main control unit 30 of the processing device (exposure device) PU3 or the offline computer gives the flag information FLG (“0”, “0”, “correction necessity” assigned to each section area of the thickness map information SS2. Based on "-1" and "+1"), the drawing data for each of the alignment marks AM1 to AM7 in the pattern drawing data for the first exposure is sequentially corrected (corrected).
 具体的には、レジスト層REの種類(ポジ型かネガ型か)によっても異なるが、最終的にシート基板P上に形成される実際のアライメントマークAM1~AM7の形状(例えば、銅箔層LCで形成される形状)が、当初の描画データで規定される設計時の形状に対して、全体的に小さくなる傾向で変形する場合は、当初の描画データ中のマークエッジ部を部分的又は全体的に太らせるように修正する。 Specifically, although it depends on the type of the resist layer RE (positive type or negative type), the actual shapes of the alignment marks AM1 to AM7 finally formed on the sheet substrate P (for example, the copper foil layer LC). If the shape formed by) is deformed with a tendency to be smaller overall than the shape at the time of design defined by the initial drawing data, the mark edge portion in the initial drawing data is partially or wholly formed. Correct to make it fat.
 図9は、十字状のアライメントマークAMn(n=1~7)の描画データDamをビットマップ形式で表した図である。図9における座標系X’Yは、先の図5における座標系X’Yと同じに設定され、X’方向とY方向に等間隔でマトリックス状に細分化された矩形(正方形)領域は、設計上で規定される単一の画素Pis(1ビット)を表わす。この画素Pisは、シート基板P上で、一例として2μm角に相当するように設定される。図9において、アライメントマークAMnのX’方向、及びY方向に延びる線条パターンの長さは52画素分(104μm)とし、その線条パターンの幅は10画素分(20μm)とする。描画データDamは、十字状のアライメントマークAMnの内側に露光ビーム(スポット光)を投射する場合は、内側に位置する全ての画素PisをOn画素とするように論理値「1」にセットされ、アライメントマークAMnの外側の画素PisはOff画素とするように論理値「0」にセットされている。なお、レジスト層REの種類によっては、アライメントマークAMnの内側の全ての画素PisがOff画素にセットされ、外側がOn画素にセットされる。 FIG. 9 is a diagram showing the drawing data Dam of the cross-shaped alignment mark Amn (n = 1 to 7) in a bitmap format. The coordinate system X'Y in FIG. 9 is set to be the same as the coordinate system X'Y in FIG. 5, and the rectangular (square) region subdivided into a matrix at equal intervals in the X'direction and the Y direction is Represents a single pixel Pis (1 bit) specified by design. The pixel Pis is set on the sheet substrate P so as to correspond to a 2 μm square as an example. In FIG. 9, the length of the linear pattern extending in the X'direction and the Y direction of the alignment mark Amn is 52 pixels (104 μm), and the width of the linear pattern is 10 pixels (20 μm). When the exposure beam (spot light) is projected inside the cross-shaped alignment mark Amn, the drawing data Dam is set to a logical value "1" so that all the pixels Pis located inside are On pixels. The pixel Pis outside the alignment mark Amn is set to the logical value "0" so as to be an Off pixel. Depending on the type of the resist layer RE, all the pixels Pis inside the alignment mark Amn are set in the Off pixels, and the outside is set in the On pixels.
 図9では、当初の描画データDam中のマークエッジ部を部分的又は全体的に太らせる修正の一例として、十字状のアライメントマークAMnの4方向に延びた線条パターンの幅を規定するエッジ部を1画素分ずつ太らせ、線条パターンの延びる方向について先端部を2画素分だけ長くする補正画素CBpを付加する。補正画素CBpは、アライメントマークAMnの内側の全ての画素Pisが当初の設計上でOn画素(論理値「1」)の場合は、同様にOn画素に修正され、アライメントマークAMnの内側の全ての画素Pisが当初の設計上でOff画素(論理値「0」)の場合は、同様にOff画素に修正される。 In FIG. 9, as an example of a modification for partially or wholly thickening the mark edge portion in the initial drawing data Dam, the edge portion defining the width of the linear pattern extending in four directions of the cross-shaped alignment mark Amn. Is thickened by one pixel, and a correction pixel CBp that lengthens the tip portion by two pixels in the extending direction of the linear pattern is added. When all the pixels Pis inside the alignment mark Amn are On pixels (logical value "1") in the original design, the correction pixel CBp is similarly modified to On pixels, and all the pixels inside the alignment mark Amn are all inside. If the pixel Pis is an Off pixel (logical value "0") in the initial design, it is similarly modified to an Off pixel.
 図10は、図9と同じ十字状のアライメントマークAMn(n=1~7)の描画データDamをビットマップ形式で表した図である。図10では、当初の描画データDam中のマークエッジ部を部分的又は全体的に細らせる修正の一例として、十字状のアライメントマークAMnの4方向に延びた線条パターンの幅を規定するエッジ部を1画素分ずつ削り、線条パターンが交差する部分での直角なエッジ部については平均的に2画素分だけ削るような補正画素CBp’が設定される。補正画素CBp’は、アライメントマークAMnの内側の全ての画素Pisが当初の設計上でOn画素(論理値「1」)の場合は、反対のOff画素(論理値「0」)に修正され、アライメントマークAMnの内側の全ての画素Pisが当初の設計上でOff画素(論理値「0」)の場合は、反対のOn画素(論理値「1」)に修正される。 FIG. 10 is a diagram showing drawing data Dam of the same cross-shaped alignment mark Amn (n = 1 to 7) as in FIG. 9 in a bitmap format. In FIG. 10, as an example of a modification for partially or wholly thinning the mark edge portion in the initial drawing data Dam, an edge defining the width of the linear pattern extending in four directions of the cross-shaped alignment mark Amn. The correction pixel CBp'is set so that the portion is cut by one pixel at a time, and the right-angled edge portion at the portion where the streak patterns intersect is cut by two pixels on average. The correction pixel CBp'is corrected to the opposite Off pixel (logical value "0") when all the pixels Pis inside the alignment mark Amn are On pixels (logical value "1") in the original design. If all the pixels Pis inside the alignment mark Amn are Off pixels (logical value "0") in the original design, they are corrected to the opposite On pixels (logical value "1").
 アライメントマークAMnの描画データDamを、図9のように太く修正するか、図10のように細く修正するか、或いは修正不要とするかは、処理装置(膜厚測定装置)PU2によって得られる厚みマップ情報SS2のフラグ情報FLGにより決定される。例えば、アライメントマークAM1を形成すべきシート基板P上の位置を含むレジスト層REの区画領域(図6中の1cm角の領域)におけるフラグ情報FLGが「-1」であった場合、その区画領域ではレジスト層REの厚みが許容範囲±ΔTeよりも薄くなっている。レジスト層REがポジ型であるとき、図7Cで説明したように、下地の銅箔層LCが露呈するスペース幅Lerが太くなり、結果的にエッチング後に残る銅箔層LCのライン幅LDeが細くなってしまう。従って、ポジ型のレジスト層RE1の場合、図7Aに示した露光ビームILの線幅を細くすれば良く、先の図10のようにアライメントマークAM1の描画データDamが修正される。 Whether the drawing data Dam of the alignment mark Amn is corrected to be thick as shown in FIG. 9, thinly corrected as shown in FIG. 10, or not to be corrected is the thickness obtained by the processing device (film thickness measuring device) PU2. It is determined by the flag information FLG of the map information SS2. For example, when the flag information FLG in the partition area (1 cm square area in FIG. 6) of the resist layer RE including the position on the sheet substrate P on which the alignment mark AM1 is to be formed is "-1", the partition area is "-1". The thickness of the resist layer RE is thinner than the allowable range ± ΔTe. When the resist layer RE is of the positive type, as described with reference to FIG. 7C, the space width Ler exposed by the underlying copper foil layer LC becomes thick, and as a result, the line width LDe of the copper foil layer LC remaining after etching becomes thin. turn into. Therefore, in the case of the positive resist layer RE1, the line width of the exposure beam IL shown in FIG. 7A may be narrowed, and the drawing data Dam of the alignment mark AM1 is corrected as shown in FIG.
 ネガ型のレジスト層RE2の場合で、フラグ情報FLGが「-1」であるとき、図8Cで説明したように、下地の銅箔層LCが露呈するスペース幅Lerが細くなり、結果的にエッチング後に残る銅箔層LCのライン幅LDeが太くなってしまう。従って、ネガ型のレジスト層RE2の場合も、図8Aに示した露光ビームILの線幅を細くすれば良く、先の図10のようにアライメントマークAM1の描画データDamが修正される。また、図7A~図8Cにおいて、現像後に露呈した銅箔層LC(銅箔層LC以外の層や基板P自体でも良い)上に、他の材料物質を堆積(メッキやデポジション)してアライメントマークとする場合は、現像後に除去されるレジスト層REの線幅に注目して、描画データDamの修正が行われる。 In the case of the negative type resist layer RE2, when the flag information FLG is "-1", as described with reference to FIG. 8C, the space width Ler exposed by the underlying copper foil layer LC becomes narrower, resulting in etching. The line width LDe of the copper foil layer LC that remains behind becomes thicker. Therefore, even in the case of the negative type resist layer RE2, the line width of the exposure beam IL shown in FIG. 8A may be narrowed, and the drawing data Dam of the alignment mark AM1 is corrected as shown in FIG. Further, in FIGS. 7A to 8C, other material materials are deposited (plated or deposited) on the copper foil layer LC (a layer other than the copper foil layer LC or the substrate P itself may be used) exposed after development for alignment. In the case of marking, the drawing data Dam is corrected by paying attention to the line width of the resist layer RE removed after development.
 本実施の形態では、以上のように修正されたアライメントマークAM1~AM7の描画データDamに基づいて、処理装置(露光装置)PU3によってスポット光走査によるパターン描画が行われる。スポット光による走査は、国際公開第2017/057415号、又は国際公開第2018/150996号に開示されているように、周波数が100MHz以上、望ましくは400MHzで紫外波長域のレーザ光をパルス発光するファイバーアンプレーザ光源が用いられる。そして、処理装置PU3(露光装置)の露光ユニットEXU内の各描画モジュールに設けられる回転ポリゴンミラーの回転速度と、シート基板Pの搬送速度との設定により、図9、図10に示した1つの画素(単位画素)Pisが、X方向とY方向の各々について2パルスのスポット光で描画されるように設定される。 In the present embodiment, the processing device (exposure device) PU3 performs pattern drawing by spot light scanning based on the drawing data Dam of the alignment marks AM1 to AM7 corrected as described above. Scanning with spotlight is a fiber that pulsed laser light in the ultraviolet wavelength range at frequencies above 100 MHz, preferably 400 MHz, as disclosed in WO 2017/057415 or WO 2018/150996. An amplifier laser light source is used. Then, one of the ones shown in FIGS. 9 and 10 is set by setting the rotation speed of the rotating polygon mirror provided in each drawing module in the exposure unit EXU of the processing device PU3 (exposure device) and the transfer speed of the sheet substrate P. The pixel (unit pixel) Pis is set to be drawn with two pulses of spot light in each of the X direction and the Y direction.
 そこで、描画データDamに基づいた画素Pisのスポット光による描画の一例を、図11により模式的に説明する。ここで、レーザ光源のパルス発光の発振周波数は400MHz(周期ΔTfが2.5nS)とし、スポット光の強度は、レーザ光源内で1パルス毎に高レベルのオン・パルスと低レベル(ゼロも含む)のオフ・パルスとに強度変調されるものとする。さらに、スポット光のシート基板P上の実効的な直径φsは、図11に示すように、画素PisのX’方向の寸法XPx、Y方向の寸法XPyとほぼ同じに設定され(XPy=XPx)、オン・パルス時のスポット光をSPz、オフ・パルス時のスポット光をSPeとする。 Therefore, an example of drawing the pixel Pis by the spot light based on the drawing data Dam will be schematically described with reference to FIG. Here, the oscillation frequency of the pulse emission of the laser light source is 400 MHz (period ΔTf is 2.5 nS), and the intensity of the spot light is high level on-pulse and low level (including zero) for each pulse in the laser light source. ) Off-pulse and intensity-modulated. Further, as shown in FIG. 11, the effective diameter φs of the spot light on the sheet substrate P is set to be substantially the same as the dimension XPx in the X'direction and the dimension XPy in the Y direction of the pixel Pis (XPy = XPx). , The spot light at the time of on-pulse is SPz, and the spot light at the time of off-pulse is SPe.
 図11において、描画データDam中のOn画素は斜線で示し、Off画素は白抜きで示す。回転ポリゴンミラーの反射面毎に走査されるスポット光SPz、SPeによる描画ラインSLa、SLb、SLc、SLd・・・は、シート基板Pの搬送方向(X’方向)に間隔ΔXSで並ぶ。間隔ΔXSは、画素PisのX’方向の寸法XPxのほぼ半分(1/2)に設定される。さらに、描画ラインSLa、SLb、SLc、SLd・・・の各々に沿って打たれるスポット光SPz、SPeのY方向の間隔ΔYSは、画素PisのY方向の寸法XPyのほぼ半分(1/2)に設定される。画素Pisの寸法XPx、XPyを2μmとし、スポット光SPz、SPeの実効的な直径φsも2μmとすると、間隔ΔYSは約1μmとなり、スポット光SPz、SPeのシート基板P上でのY方向の走査速度Vspは、Vsp=ΔYS/ΔTf〔1μm/2.5nS=400m/S〕に設定される。 In FIG. 11, the On pixels in the drawing data Dam are shown by diagonal lines, and the Off pixels are shown by white. The spot light SPz, the drawing lines SLa, SLb, SLc, SLd ... Scanned for each reflection surface of the rotating polygon mirror are arranged at intervals ΔXS in the transport direction (X'direction) of the sheet substrate P. The interval ΔXS is set to approximately half (1/2) of the dimension XPx in the X'direction of the pixel Pis. Further, the distance ΔYS in the Y direction of the spot light SPz and SPe struck along each of the drawing lines SLa, SLb, SLc, SLd ... Is approximately half (1/2) of the dimension XPy in the Y direction of the pixel Pis. ) Is set. Assuming that the dimensions XPx and XPy of the pixel Pis are 2 μm and the effective diameters φs of the spot light SPz and SPe are also 2 μm, the interval ΔYS is about 1 μm, and the spot light SPz and SPe are scanned in the Y direction on the sheet substrate P. The velocity Vsp is set to Vsp = ΔYS / ΔTf [1 μm / 2.5 nS = 400 m / S].
 処理装置(露光装置)PU3の露光ユニットEXU内の描画モジュールのf-θレンズ系を介したスポット光の最大走査範囲(描画ラインの長さ)LGを50mmとし、回転ポリゴンミラーの反射面が8面で、反射面毎の走査効率αを1/3とすると、描画ラインに沿った1回のスポット走査の時間Tspは、Tsp=LG/Vspとなる。また、回転ポリゴンミラーの1秒間の回転数をNPとすると、時間TspはTsp=α/(8・NP)で決まるので、回転数NP(/秒)は、NP=(α・Vsp)/(8・LG)の関係を満たすように設定される。 Processing device (exposure device) The maximum scanning range (length of drawing line) of spot light through the f-θ lens system of the drawing module in the exposure unit EXU of PU3 is set to 50 mm, and the reflecting surface of the rotating polygon mirror is 8. Assuming that the scanning efficiency α for each reflective surface is 1/3 on the surface, the time Tsp of one spot scan along the drawing line is Tsp = LG / Vsp. Further, assuming that the rotation speed of the rotating polygon mirror per second is NP, the time Tsp is determined by Tsp = α / (8 ・ NP), so the rotation speed NP (/ second) is NP = (α ・ Vsp) / (. 8. It is set to satisfy the relationship of LG).
 以上、本実施の形態によれば、レジスト層REの厚みムラによって生じ得るアライメントマークAM1~AM7の形成時の変化が低減されるので、形成されたアライメントマークAM1~AM7を検出してセカンド露光(重ね合わせ描画)を行う際のシート基板Pの位置計測精度の劣化が抑制され、シート基板Pの長尺方向に亘って、ほぼ同じ精度で正確なパターニングが継続できる。また、本実施の形態では、レジスト層REの厚みムラを、電子デバイス用のパターンが形成される描画領域SA(図5参照)内でも計測することができる。その為、描画領域SA内でレジスト層REの厚みが大きく変化している区画領域に露光されるパターンが存在している場合は、そのパターンについても、初期の設計時の形状から同様に修正することが可能である。 As described above, according to the present embodiment, the change during formation of the alignment marks AM1 to AM7 that may occur due to the uneven thickness of the resist layer RE is reduced. Therefore, the formed alignment marks AM1 to AM7 are detected and the second exposure is performed. Deterioration of the position measurement accuracy of the sheet substrate P when performing superposition drawing) is suppressed, and accurate patterning can be continued with substantially the same accuracy over the long direction of the sheet substrate P. Further, in the present embodiment, the uneven thickness of the resist layer RE can be measured even in the drawing region SA (see FIG. 5) where the pattern for the electronic device is formed. Therefore, if there is a pattern exposed in the section area where the thickness of the resist layer RE is significantly changed in the drawing area SA, the pattern is also corrected in the same manner from the shape at the time of initial design. It is possible.
 なお、本実施の形態の図9、図10に示したような描画データDamの修正では、テスト・プロセスを実行して、レジスト層REの厚みの変化とアライメントマークAMnの変形(細りや太り)の度合いとの相関関係を予め実験的に求めておくことで、描画データDam上での形状修正の程度(細らせたり太らせたりする部分や画素数)を最適に設定することができる。また、アライメントマークAMn以外の描画領域SA内に露光される各種のパターンの描画データについても、事前のテスト・プロセスによってレジスト層REの厚み変化と、エッチング処理又は堆積処理の後に得られる実パターンの変形との関係に基づいて、初期設計時の形状を同様に修正することが可能である。 In the modification of the drawing data Dam as shown in FIGS. 9 and 10 of the present embodiment, a test process is executed to change the thickness of the resist layer RE and deform (thinning or thickening) the alignment mark Amn. By experimentally obtaining the correlation with the degree of the above, the degree of shape correction (the portion to be thinned or thickened and the number of pixels) on the drawing data Dam can be optimally set. Further, regarding the drawing data of various patterns exposed in the drawing area SA other than the alignment mark Amn, the thickness of the resist layer RE is changed by a preliminary test process, and the actual pattern obtained after the etching treatment or the deposition treatment is obtained. It is possible to modify the shape at the time of initial design in the same manner based on the relationship with the deformation.
 また、図1(並びに図2)に示した処理装置(塗布装置)PU1のダイ・ヘッド部10のスリット状開口SOから吐出される塗工液(感光性溶液)Lqの単位時間当たりの吐出量を精密に一定に制御したとしても、回転ドラムDR1の回転速度ムラによってシート基板Pの搬送速度が変動して、レジスト層REの厚みが変化する。そのような場合であっても、本実施の形態によれば、エッチング処理や堆積処理の工程を経てシート基板P上に最終的に形成される実パターン(アライメントマーク等)を、設計上の形状や寸法から大きく損なわせることなく、忠実なパターニングが可能となる。その為、処理装置(塗布装置)PU1の回転ドラムDR1の回転駆動時の速度制御の精度を極端に高める必要もなくなり、装置価格の上昇が抑えられる。 Further, the amount of the coating liquid (photosensitive solution) Lq discharged from the slit-shaped opening SO of the die head portion 10 of the processing device (coating device) PU1 shown in FIG. 1 (and FIG. 2) per unit time. The transfer speed of the sheet substrate P fluctuates due to the uneven rotation speed of the rotary drum DR1, and the thickness of the resist layer RE changes even if the speed is controlled to be precise and constant. Even in such a case, according to the present embodiment, the actual pattern (alignment mark, etc.) finally formed on the sheet substrate P through the etching process and the deposition process is formed into a design shape. Faithful patterning is possible without significantly impairing the dimensions and dimensions. Therefore, it is not necessary to extremely improve the accuracy of speed control when the rotary drum DR1 of the processing device (coating device) PU1 is driven to rotate, and the increase in the device price can be suppressed.
 以上の本実施の形態によれば、所定の厚みで形成されたレジスト層RE(感光層)を有し、膜厚測定装置(図4に示したような処理装置PU2)によってレジスト層RE(感光層)の膜厚の変動に関する厚みマップ情報SS2(分布情報)が取得されたシート基板P(基板)を搬入し、所定のパターンに応じた描画データに応答して強度変調される露光ビームをシート基板P(基板)上のレジスト層RE(感光層)に投射する際、シート基板P(基板)上のレジスト層RE(感光層)の膜厚が規定範囲(例えば、図6中の±ΔTeの範囲)外になる部分に描画されるパターン(例えば、アライメントマークAMnのパターン)に応じた設計上の描画データ中の線幅又は形状に関する情報(ビットマップデータ)を、厚みマップ情報SS2(分布情報)に基づいて補正した補正描画データ(例えば、図9のように補正画素(ビット)CBpが追加された描画データ、又は図10のように補正画素CBp’が削除された描画データ)として生成するデータ補正部(例えば、図1中の主制御ユニット30、又はオフラインのコンピュータ)と、シート基板P(基板)上のレジスト層RE(感光層)の膜厚が規定範囲(±ΔTeの範囲)内の部分に描画されるパターンについては設計上の描画データに応答して露光ビームを投射し、シート基板P(基板)上のレジスト層RE(感光層)の膜厚が規定範囲(±ΔTeの範囲)外になる部分に描画されるパターンについては、補正描画データ(例えば、図9、図10のように補正画素CBp又はCBp’が追加又は削除された描画データ)に応答して露光ビームを投射する露光ユニット部(例えば、図1中の露光ユニットEXU)と、を備えたパターン露光装置が得られる。 According to the above embodiment, the resist layer RE (photosensitive layer) formed with a predetermined thickness is provided, and the resist layer RE (photosensitive layer) is provided by a film thickness measuring device (processing device PU2 as shown in FIG. 4). The sheet substrate P (substrate) from which the thickness map information SS2 (distribution information) regarding the fluctuation of the film thickness of the layer) is acquired is carried in, and the exposure beam whose intensity is modulated in response to the drawing data corresponding to the predetermined pattern is sheeted. When projecting onto the resist layer RE (photosensitive layer) on the substrate P (substrate), the film thickness of the resist layer RE (photosensitive layer) on the sheet substrate P (substrate) is within the specified range (for example, ± ΔTe in FIG. 6). Information on the line width or shape (bitmap data) in the design drawing data according to the pattern drawn on the part outside the range) (for example, the pattern of the alignment mark Amn), the thickness map information SS2 (distribution information). ) Is corrected based on (for example, drawing data in which the correction pixel (bit) CBp is added as shown in FIG. 9, or drawing data in which the correction pixel CBp'is deleted as shown in FIG. 10). The thickness of the data correction unit (for example, the main control unit 30 in FIG. 1 or the offline computer) and the resist layer RE (photosensitive layer) on the sheet substrate P (substrate) are within the specified range (± ΔTe range). For the pattern drawn in the part, the exposure beam is projected in response to the design drawing data, and the film thickness of the resist layer RE (photosensitive layer) on the sheet substrate P (substrate) is within the specified range (± ΔTe). ) For the pattern drawn on the outside part, the exposure beam is projected in response to the corrected drawing data (for example, the drawing data in which the correction pixel CBp or CBp'is added or deleted as shown in FIGS. 9 and 10). A pattern exposure apparatus including an exposure unit unit (for example, the exposure unit EXU in FIG. 1) is obtained.
〔変形例1〕
 図1に示した処理装置(塗布装置)PU1は、ダイコータ方式でレジスト層REを塗工するものとした。その為、シート基板Pの幅方向(Y方向)に関しては、ダイ・ヘッド部10のスロット部SLTのY方向の長さに亘って一様な塗工が可能であるが、1つのダイ・ヘッド部10によってシート基板PのY方向の異なる部分領域毎にレジスト層REを塗工することは難しい。そこで、処理装置(塗布装置)PU1として、版を用いたグラビア印刷機、凸版印刷機、オフセット印刷機、スクリーン印刷機等や、版を用いないインクジェット印刷機を用いることにより、シート基板P上の選択された部分領域だけに、レジスト層REを形成することができる。
[Modification 1]
In the processing device (coating device) PU1 shown in FIG. 1, the resist layer RE is coated by a die coater method. Therefore, with respect to the width direction (Y direction) of the sheet substrate P, uniform coating is possible over the length of the slot portion SLT of the die head portion 10 in the Y direction, but one die head It is difficult to apply the resist layer RE to each of the different partial regions of the sheet substrate P in the Y direction depending on the portion 10. Therefore, as the processing device (coating device) PU1, a gravure printing machine using a plate, a letterpress printing machine, an offset printing machine, a screen printing machine, or the like, or an inkjet printing machine that does not use a plate is used on the sheet substrate P. The resist layer RE can be formed only in the selected partial region.
 また、図1に示した処理装置(露光装置)PU3は、描画データによってオンデマンドでパターン露光できるパターン描画装置であれば良いので、多数の可動マイクロミラーを配置したデジタル・ミラー・デバイス(DMD)や空間光変調器(SLM)を反射型の露光ビームの生成部材とし、描画データに応じて高速に選択駆動される可動マイクロミラーからの反射光(露光ビーム)をシート基板Pのレジスト層REに投影露光するマスクレス方式の露光装置でも良い。デジタル・ミラー・デバイス(DMD)や空間光変調器(SLM)を用いる露光装置では、露光ビームが描画すべきパターンの一部分に対応した2次元的な形状(矩形状や台形状)を有し、その形状の面内での光強度分布が描画データに応答して逐次変調される。 Further, since the processing device (exposure device) PU3 shown in FIG. 1 may be a pattern drawing device capable of pattern exposure on demand by drawing data, it is a digital mirror device (DMD) in which a large number of movable micromirrors are arranged. And the spatial light modulator (SLM) is used as a reflection type exposure beam generation member, and the reflected light (exposure beam) from the movable micromirror that is selectively driven at high speed according to the drawing data is used as the resist layer RE of the sheet substrate P. A maskless type exposure device for projection exposure may also be used. An exposure device using a digital mirror device (DMD) or a spatial light modulator (SLM) has a two-dimensional shape (rectangular or trapezoidal) corresponding to a part of the pattern to be drawn by the exposure beam. The in-plane light intensity distribution of the shape is sequentially modulated in response to the drawing data.
〔変形例2〕
 図1に示した処理装置(膜厚測定装置)PU2の計測ユニット20は、光学的な膜厚測定装置として、反射型の分光干渉式膜厚測定器としたが、シート基板P上のレジスト層REのY方向の幅寸法LYeに対してY方向の計測範囲が狭い場合は、2以上の複数の計測ユニット20をY方向に並べれば良い。また、計測ユニット20は、入射光と反射光の偏光の変化量を波長ごとに計測し、得られた測定データをもとに光学モデルを作成して、フィッティング計算をすることにより薄膜の膜厚を計測する分光エリプソメーターを用いても良い。或いは、米国特許第9797709号明細書に開示されているように、レーザ光(非感光性の波長)をレジスト層REに投射した時点から、レジスト層の表面での輻射熱(赤外線)の発生時点までの時間差によりレジスト層の厚みを計測する方式の測定器を用いても良い。いずれの方式でも、シート基板Pの表面と非接触な光学的な膜厚計測方式が望ましい。
[Modification 2]
The measuring unit 20 of the processing device (thickness measuring device) PU2 shown in FIG. 1 is a reflection type spectroscopic interference type film thickness measuring device as an optical film thickness measuring device, but the resist layer on the sheet substrate P. When the measurement range in the Y direction is narrower than the width dimension LYe in the Y direction of RE, two or more measurement units 20 may be arranged in the Y direction. Further, the measurement unit 20 measures the amount of change in the polarization of the incident light and the reflected light for each wavelength, creates an optical model based on the obtained measurement data, and performs fitting calculation to obtain the thickness of the thin film. A spectroscopic ellipsometer may be used to measure. Alternatively, as disclosed in US Pat. No. 9,979,709, from the time when the laser beam (non-photosensitive wavelength) is projected onto the resist layer RE to the time when radiant heat (infrared rays) is generated on the surface of the resist layer. A measuring instrument of a method of measuring the thickness of the resist layer by the time difference of the above may be used. In either method, an optical film thickness measurement method that does not contact the surface of the sheet substrate P is desirable.
〔変形例3〕
 図1に示した処理装置(現像装置)PU4は、現像槽40内の現像液に浸るシート基板Pの長さとシート基板Pの搬送速度により現像時間が設定されるが、現像処理の時間が長くなると現像液が劣化する。その為、現像槽40には、定期的に新しい現像液を供給しつつ古い現像液を回収するリフレッシュ機構を設けると良い。また、現像液は大気中の酸素(O2)によっても劣化するので、現像槽40内の現像液の液面上の空間を不活性な窒素ガスでパージしておくと良い。さらに、現像液の劣化によって、レジスト層REのエッチングレートが変化(低下)する為、その変化を補うように現像液に浸るシート基板Pの長さを調整しても良い。また、処理装置(現像装置)PU4は、水平に搬送されるシート基板P上に現像液をスプレー状に吹き付ける方式のものであっても良い。
[Modification 3]
In the processing apparatus (developer) PU4 shown in FIG. 1, the developing time is set by the length of the sheet substrate P immersed in the developer in the developing tank 40 and the transport speed of the sheet substrate P, but the developing processing time is long. Then, the developer deteriorates. Therefore, it is preferable to provide the developing tank 40 with a refreshing mechanism for collecting the old developing solution while periodically supplying the new developing solution. Further, since the developer is also deteriorated by oxygen (O 2 ) in the atmosphere, it is advisable to purge the space on the liquid surface of the developer in the developing tank 40 with an inert nitrogen gas. Further, since the etching rate of the resist layer RE changes (decreases) due to the deterioration of the developing solution, the length of the sheet substrate P immersed in the developing solution may be adjusted so as to compensate for the change. Further, the processing device (developer) PU4 may be of a type in which a developer is sprayed onto a sheet substrate P that is horizontally conveyed.
〔変形例4〕
 先の図9、図10に示したように、レジスト層REの膜厚に応じた描画データの修正は、画素Pis(例えば、2×2μm角)の単位でデジタル的に行われる。しかしながら、アライメントマークAM1~AM7の各々の形状や線幅、或いは、電子デバイスのパターンの描画領域SA内に露光されるパターンの形状や線幅を、更に精密に調整(補正)する必要がある場合は、描画データを修正する第2の補正モードと、On画素に投射されるオン状態のスポット光SPz(図11参照)の強度を調整する第1の補正モードとを併用することができる。本実施の形態の場合、露光ユニットEXUに供給される露光ビームILが高い周波数(100MHz~400MHzの範囲のいずれかの周波数)でパルス発光するファイバーアンプレーザ光源からのレーザ光である為、スポット光SPzの繰り返し周期は、10nS~2.5nSのいずれかとなり、スポット光SPzの強度を1パルス毎に調整することは難しい。
[Modification 4]
As shown in FIGS. 9 and 10, the correction of the drawing data according to the film thickness of the resist layer RE is performed digitally in units of pixels Pis (for example, 2 × 2 μm square). However, when it is necessary to more precisely adjust (correct) the shape and line width of each of the alignment marks AM1 to AM7, or the shape and line width of the pattern exposed in the drawing area SA of the pattern of the electronic device. Can be used in combination with the second correction mode for correcting the drawing data and the first correction mode for adjusting the intensity of the spot light SPz (see FIG. 11) in the on state projected on the On pixel. In the case of the present embodiment, since the exposure beam IL supplied to the exposure unit EXU is a laser beam from a fiber amplifier laser light source that emits a pulse at a high frequency (a frequency in the range of 100 MHz to 400 MHz), it is a spot light. The repetition period of SPz is any of 10 nS to 2.5 nS, and it is difficult to adjust the intensity of the spot light SPz for each pulse.
 しかしながら、国際公開第2017/057415号や国際公開第2018/150996号等に開示されているように、レーザ光源からの露光用のビームを複数の描画モジュールの各々に時分割で分配する為の複数の音響光学変調素子が設けられている場合は、各音響光学変調素子に印加される高周波駆動信号の振幅を、描画ラインSL1(他の描画ラインSL2~SL6も同様)に沿ったスポット光SPの走査開始位置から走査終了位置までの走査時間内に動的に変化させるようにする。従って、例えば、アライメントマークAM1~AM7の各々の描画の際、第1の補正モードが適用されるアライメントマークの描画期間中は、描画ラインSL1(他の描画ラインSL2~SL6も同様)上のアライメントマークが位置する部分で、音響光学変調素子に印加される高周波駆動信号の振幅を基準値から変化させ、それ以外の部分では基準値に戻す、というように制御すれば良い。 However, as disclosed in International Publication No. 2017/057415, International Publication No. 2018/150996, etc., a plurality of beams for distributing an exposure beam from a laser light source to each of a plurality of drawing modules in a time-divided manner. When the acoustic-optical modulation element of the above is provided, the amplitude of the high-frequency drive signal applied to each acoustic-optical modulation element is measured by the spot light SP along the drawing line SL1 (the same applies to the other drawing lines SL2 to SL6). It is made to change dynamically within the scanning time from the scanning start position to the scanning end position. Therefore, for example, at the time of drawing each of the alignment marks AM1 to AM7, the alignment on the drawing line SL1 (the same applies to the other drawing lines SL2 to SL6) during the drawing period of the alignment mark to which the first correction mode is applied. The amplitude of the high-frequency drive signal applied to the acoustic-optical modulation element may be changed from the reference value at the portion where the mark is located, and may be returned to the reference value at other portions.
〔変形例5〕
 先の図1に示したように、ロール・ツー・ロール(Roll to Roll)方式で長尺のシート基板P上に連続してパターンを形成する製造システムでは、塗布装置である処理装置PU1、膜厚測定装置である処理装置PU2、及び露光装置である処理装置PU3をインラインに設置するのが望ましい。しかしながら、膜厚測定装置は、露光装置である処理装置PU3内であって、露光ユニットEXUによる露光位置よりも上流側の位置で、シート基板P上のレジスト層REの膜厚の厚みマップ情報SS2を取得するように設置しても良い。その場合、枚葉のシート基板(例えば、A3、B3サイズ)を処理装置PU3内の回転ドラムDR3の外周面に巻き付けた状態で、回転ドラムDR3の1回転目では膜厚測定装置によって厚みマップ情報SS2を取得し、回転ドラムDR3の2回転目以降に、設計上の描画データ(初期描画データ)と補正描画データとに基づいて強度変調される露光ビームを露光ユニットEXUからシート基板に投射することができる。
[Modification 5]
As shown in FIG. 1, in a manufacturing system in which a pattern is continuously formed on a long sheet substrate P by a roll-to-roll method, a processing device PU1 which is a coating device and a film are used. It is desirable to install the processing device PU2 which is a thickness measuring device and the processing device PU3 which is an exposure device in-line. However, the film thickness measuring device is located in the processing device PU3, which is an exposure device, at a position upstream of the exposure position by the exposure unit EXU, and the thickness map information SS2 of the film thickness of the resist layer RE on the sheet substrate P. It may be installed so as to acquire. In that case, with the sheet substrate (for example, A3, B3 size) wound around the outer peripheral surface of the rotary drum DR3 in the processing device PU3, the thickness map information is obtained by the film thickness measuring device in the first rotation of the rotary drum DR3. To acquire SS2 and project an exposure beam whose intensity is modulated based on the design drawing data (initial drawing data) and correction drawing data from the exposure unit EXU onto the sheet substrate after the second rotation of the rotary drum DR3. Can be done.
[第2の実施の形態]
 図12は、第2の実施の形態による処理装置(露光装置)PU3’の概略的な構成を示す図であり、回転ドラムDR3、露光ユニットEXU、アライメント系ALGは、先の図1に示した処理装置(露光装置)PU3のものと同じである。本実施の形態の処理装置(露光装置)PU3’には、回転ドラムDR3に掛け回されるシート基板Pの幅方向(Y方向)の位置を調整するプリアライメントユニットEPCと、シート基板Pの幅方向の両端付近の不要なレジスト層REを除去する為の周辺露光部100とが設けられる。
[Second Embodiment]
FIG. 12 is a diagram showing a schematic configuration of the processing apparatus (exposure apparatus) PU3'according to the second embodiment, and the rotary drum DR3, the exposure unit EXU, and the alignment system ALG are shown in FIG. It is the same as that of the processing device (exposure device) PU3. The processing device (exposure device) PU3'of the present embodiment includes a prealignment unit EPC that adjusts the position of the sheet substrate P hung on the rotary drum DR3 in the width direction (Y direction), and the width of the sheet substrate P. A peripheral exposure unit 100 for removing unnecessary resist layer RE near both ends in the direction is provided.
 プリアライメントユニットEPCは、シート基板Pの上面側(レジスト層REの面)と接触してシート基板Pを+Z方向(Z方向の一方)側に折り曲げる案内ローラGR1と、案内ローラGR1からのシート基板Pの裏面と接触してシート基板Pを-Z方向(+Z方向の反対方向)側に折り曲げる案内ローラGR2と、シート基板Pの幅方向の両側のエッジ端のY方向の位置ずれを計測するエッジセンサーEssと、を有する。プリアライメントユニットEPCは、さらにエッジセンサーEssで検出されるシート基板Pの両側のエッジ端の位置ずれ量が許容範囲になるように、案内ローラGR1、GR2のいずれか一方をシート基板Pの幅方向(Y方向)に移動させる駆動機構を備える。その駆動機構によるシート基板Pの幅方向への位置補正(プリアライメント)によって、シート基板P上のアライメントマークAM1~AM7の各々は、アライメント系ALGの検出領域Vw1~Vw7(図5参照)内で捕捉される。 The prealignment unit EPC is a guide roller GR1 that comes into contact with the upper surface side (resist layer RE surface) of the sheet substrate P and bends the sheet substrate P in the + Z direction (one of the Z directions), and a sheet substrate from the guide roller GR1. The guide roller GR2 that comes into contact with the back surface of P and bends the sheet substrate P in the −Z direction (opposite direction in the + Z direction), and the edge that measures the misalignment of the edge ends on both sides in the width direction of the sheet substrate P in the Y direction. It has a sensor Ess and. In the prealignment unit EPC, one of the guide rollers GR1 and GR2 is set in the width direction of the sheet substrate P so that the amount of misalignment of the edge ends on both sides of the sheet substrate P detected by the edge sensor Ess is within an allowable range. A drive mechanism for moving in the (Y direction) is provided. Due to the position correction (pre-alignment) of the seat substrate P in the width direction by the drive mechanism, each of the alignment marks AM1 to AM7 on the seat substrate P is within the detection region Vw1 to Vw7 (see FIG. 5) of the alignment system ALG. Be captured.
 周辺露光部100は、回転ドラムDR3の外周面に密着して支持される周方向の範囲内で、シート基板Pの-Y方向の端部付近に配置される投光器100Aと、投光器100Aからの露光光(紫外線)のシート基板P上での照明範囲を設定する照明視野絞り102Aと、シート基板Pの+Y方向の端部付近に配置される投光器100Bと、投光器100Bからの露光光(紫外線)のシート基板P上での照明範囲を設定する照明視野絞り102Bと、を有する。図5で説明したように、レジスト層REの幅寸法LYeは、描画ラインSL1~SL6の全体で規定される幅方向(Y方向)の最大露光幅寸法YEよりも広く設定される為、レジスト層REがポジ型の場合、その最大露光幅寸法YEよりもY方向の外側に塗工されたレジスト層REの部分は未露光となり、現像処理後も下地の層と共に当初の厚みのまま長尺方向に連続して残膜する。 The peripheral exposure unit 100 is exposed from the floodlight 100A and the floodlight 100A arranged near the end in the −Y direction of the sheet substrate P within the circumferential range supported in close contact with the outer peripheral surface of the rotary drum DR3. The illumination field diaphragm 102A that sets the illumination range of the light (ultraviolet rays) on the sheet substrate P, the floodlight 100B arranged near the end in the + Y direction of the sheet substrate P, and the exposure light (ultraviolet rays) from the floodlight 100B. It has an illumination field diaphragm 102B for setting an illumination range on the sheet substrate P. As described with reference to FIG. 5, since the width dimension LYe of the resist layer RE is set wider than the maximum exposure width dimension YE in the width direction (Y direction) defined by the entire drawing lines SL1 to SL6, the resist layer is set. When RE is a positive type, the portion of the resist layer RE coated on the outside in the Y direction from the maximum exposure width dimension YE is unexposed, and even after the development process, the original thickness is maintained together with the underlying layer in the long direction. The film remains continuously.
 図13は、シート基板Pの表面全体に所定の厚みで下地層として成膜された酸化シリコン(SiO2)等の絶縁膜LKを現像処理後にエッチングして、残膜したレジスト層REを除した状態の断面を誇張して表した断面図である。図13では、シート基板Pとして、ポリエチレン・テレフタレート(PET)フィルム、ポリエチレン・ナフタレート(PEN)フィルム、或いはポリイミドフィルム等の樹脂材料が用いられる。絶縁膜LKは、真空蒸着工程によってシート基板PのY方向の幅寸法LYpの全体に亘って成膜されるが、その厚みは、作製する電子デバイスの種類や絶縁膜としての電気的な機能によって様々である。 In FIG. 13, an insulating film LK such as silicon oxide (SiO 2 ) formed as a base layer on the entire surface of the sheet substrate P with a predetermined thickness is etched after the development treatment to remove the residual resist layer RE. It is sectional drawing which exaggerated the sectional view of the state. In FIG. 13, as the sheet substrate P, a resin material such as a polyethylene terephthalate (PET) film, a polyethylene naphthalate (PEN) film, or a polyimide film is used. The insulating film LK is formed over the entire width dimension LYp in the Y direction of the sheet substrate P by the vacuum vapor deposition process, and the thickness thereof depends on the type of the electronic device to be manufactured and the electric function as the insulating film. There are various.
 先の図5でも説明したように、図13においても、絶縁膜LK上に塗工されるレジスト層REの幅寸法LYeはシート基板PのY方向の幅寸法LYpよりも狭い。その為、シート基板P上の絶縁膜LKのうち、レジスト層REの幅寸法LYeよりも±Y方向の外側の部分は、レジスト層REが無い為にエッチング時に除去される。また、描画ラインSL1~SL6で規定される最大露光幅寸法YEの範囲内では、形成すべきパターンに応じて選択的に点在するように絶縁層LKpが残膜している。一方、最大露光幅寸法YEよりも±Y方向の各々の外側に存在するレジスト層REの部分には、X’方向(シート基板Pの搬送方向)の全域に亘って露光光(紫外線)が照射されない。従って、レジスト層REがポジ型の場合、現像処理とエッチング処理の後のシート基板P上には、X’方向に帯状につながった絶縁層LKa、LKbが残膜する。 As described in FIG. 5 above, also in FIG. 13, the width dimension LYe of the resist layer RE coated on the insulating film LK is narrower than the width dimension LYp in the Y direction of the sheet substrate P. Therefore, of the insulating film LK on the sheet substrate P, the portion outside the width dimension LYe of the resist layer RE in the ± Y direction is removed at the time of etching because there is no resist layer RE. Further, within the range of the maximum exposure width dimension YE defined by the drawing lines SL1 to SL6, the insulating layer LKp remains so as to be selectively scattered according to the pattern to be formed. On the other hand, the portion of the resist layer RE existing outside each of the ± Y directions from the maximum exposure width dimension YE is irradiated with exposure light (ultraviolet rays) over the entire area in the X'direction (the transport direction of the sheet substrate P). Not done. Therefore, when the resist layer RE is of the positive type, the insulating layers LKa and LKb connected in a band shape in the X'direction remain on the sheet substrate P after the development treatment and the etching treatment.
 絶縁膜LKを酸化シリコン(SiO2)とした場合、その膜応力が強い為に、シート基板Pに大きな歪みを発生させるおそれがある。その歪みは、シート基板Pの面内での変形と、面と垂直な方向の変形(凹凸)とにより3次元的な歪みとなる。その為、そのように変形したシート基板P上に新たなパターンを重ね合わせて形成する際、シート基板Pの変形(歪み)に対応する処理装置(露光装置)PU3又は処理装置PU3’側の補正機構による補正量の限界や補正機構の応答性の限界等によって、重ね合わせ精度が充分に得られないことがある。 When the insulating film LK is silicon oxide (SiO 2 ), the film stress is strong, so that the sheet substrate P may be greatly distorted. The distortion becomes a three-dimensional distortion due to the deformation of the sheet substrate P in the plane and the deformation (unevenness) in the direction perpendicular to the plane. Therefore, when a new pattern is superimposed and formed on the sheet substrate P deformed in this way, the correction on the processing device (exposure device) PU3 or the processing device PU3'side corresponding to the deformation (distortion) of the sheet substrate P. Sufficient overlay accuracy may not be obtained due to the limit of the amount of correction by the mechanism, the limit of the responsiveness of the correction mechanism, and the like.
 そこで、レジスト層REがポジ型の場合は、図12に示した周辺露光部100によって、シート基板PのY方向の両端側に帯状の絶縁層LKa、LKbに対応する部分のレジスト層REが残膜しないように、最大露光幅寸法YEの±Y方向の各々の外側のレジスト層REに、感光性の紫外線を一様な照度で照射する。図14は、周辺露光部100によるレジスト層REの露光の様子を、X’Y面内で模式的に表した図であり、図5で示した部材や寸法と同じものには同じ符号を付してある。図14では、シート基板P上の最も-Y方向側に位置する描画ラインSL1と、最も+Y方向側に位置する描画ラインSL6のみを示し、描画ラインSL1の最も-Y方向側の描画終了位置をX’方向に通る線をExaとし、描画ラインSL6の最も+Y方向側の描画終了位置をX’方向に通る線をExbとしたとき、線Exaと線ExbのY方向の間が最大露光幅寸法YEである。 Therefore, when the resist layer RE is of the positive type, the peripheral exposed portion 100 shown in FIG. 12 leaves the resist layer RE of the portion corresponding to the strip-shaped insulating layers LKa and LKb on both ends of the sheet substrate P in the Y direction. Photosensitive ultraviolet rays are irradiated to each outer resist layer RE in the ± Y direction of the maximum exposure width dimension YE with a uniform illuminance so as not to form a film. FIG. 14 is a diagram schematically showing the state of exposure of the resist layer RE by the peripheral exposure unit 100 in the XY plane, and the same members and dimensions as those shown in FIG. 5 are designated by the same reference numerals. It has been done. FIG. 14 shows only the drawing line SL1 located on the most −Y direction side on the sheet substrate P and the drawing line SL6 located on the most + Y direction side, and the drawing end position on the most −Y direction side of the drawing line SL1 is shown. When the line passing in the X'direction is Exa and the drawing end position on the most + Y direction side of the drawing line SL6 is Exb, the maximum exposure width dimension is between the line Exa and the line Exb in the Y direction. It is YE.
 アライメントマークAM1、AM7はそれぞれ最大露光幅寸法YE内のY方向の両側付近に形成される。周辺露光部100の投光器100Aと照明視野絞り102Aは、レジスト層RE(ポジ型)のうちの最大露光幅寸法YEから-Y方向の外側の幅YEaの部分REaを露光するような矩形状の照明領域102A’に紫外線を一様な照度で照射する。同様に、周辺露光部100の投光器100Bと照明視野絞り102Bは、レジスト層RE(ポジ型)のうちの最大露光幅寸法YEから+Y方向の外側の幅YEbの部分REbを露光するような矩形状の照明領域102B’に紫外線を一様な照度で照射する。照明領域102A’の+Y方向側のエッジ位置は線Exaの位置に成るべく一致させ、照明領域102B’の-Y方向側のエッジ位置は線Exbの位置に成るべく一致させることが望ましい。 Alignment marks AM1 and AM7 are formed near both sides in the Y direction within the maximum exposure width dimension YE, respectively. The floodlight 100A and the illumination field diaphragm 102A of the peripheral exposure unit 100 expose a portion REa of the outer width YEa in the −Y direction from the maximum exposure width dimension YE of the resist layer RE (positive type) in a rectangular shape. The region 102A'is irradiated with ultraviolet rays with a uniform illuminance. Similarly, the floodlight 100B and the illumination field diaphragm 102B of the peripheral exposure unit 100 have a rectangular shape that exposes a portion REb of the outer width YEb in the + Y direction from the maximum exposure width dimension YE of the resist layer RE (positive type). The illumination area 102B'of the above is irradiated with ultraviolet rays with a uniform illuminance. It is desirable that the edge position on the + Y direction side of the illumination area 102A'is as close as possible to the position of the line Exa, and the edge position on the −Y direction side of the illumination area 102B'is as close as possible to the position of the line Exb.
 しかしながら、照明視野絞り102A、102Bの各々は、シート基板P(レジスト層RE)の表面から一定のギャップ(例えば、数mm)を保って配置される為、照明領域102A’、102B’のエッジ部には半影ボケが生じること、また、ファースト露光時は、プリアライメントユニットEPCによる調整精度で決まるシート基板PのY方向の残留位置ずれ誤差があることから、その半影ボケの程度と残留位置ずれ誤差とを考慮して、照明領域102A’、102B’の各々のY方向の位置が設定される。 However, since each of the illumination field diaphragms 102A and 102B is arranged with a constant gap (for example, several mm) from the surface of the sheet substrate P (resist layer RE), the edge portions of the illumination regions 102A'and 102B' are arranged. Since there is a residual position deviation error in the Y direction of the sheet substrate P determined by the adjustment accuracy by the prealignment unit EPC at the time of the first exposure, the degree of the penumbra blur and the residual position are present. The positions of the illumination regions 102A'and 102B' in the Y direction are set in consideration of the deviation error.
 また、照明領域102A’、102B’の各々のX’方向(基板Pの搬送方向)に関する寸法ELa、ELbは、紫外線光の単位面積当りの照度と基板Pの搬送速度とレジスト層REの感光に必要とされる目標ドーズ量とによって決められる。さらに、目標ドーズ量は、レジスト層REの厚みによっても変わる。本実施の形態でも、先の第1の実施の形態のように、処理装置(膜厚計測装置)PU2によって、図6に示したような厚みマップ情報SS2が得られているので、レジスト層REのY方向の端付近の部分REa、REbの各々の厚みに基づいて目標ドーズ量が変更される。目標ドーズ量の変更は、投光器100A、100Bの各々からの紫外線の発光強度の調整、又は、寸法ELa、ELbを変えるように照明視野絞り102A、102Bの各々の絞り開口の大きさを変化させる機構によって可能である。 Further, the dimensions ELa and ELb in the X'direction (transport direction of the substrate P) of the illumination regions 102A'and 102B' are determined by the illuminance per unit area of ultraviolet light, the transport speed of the substrate P, and the exposure of the resist layer RE. Determined by the required target dose amount. Further, the target dose amount also changes depending on the thickness of the resist layer RE. Also in this embodiment, as in the first embodiment, the resist layer RE is obtained because the thickness map information SS2 as shown in FIG. 6 is obtained by the processing device (film thickness measuring device) PU2. The target dose amount is changed based on the thickness of each of the portions REa and REb near the end in the Y direction. Changing the target dose amount is a mechanism for adjusting the emission intensity of ultraviolet rays from each of the floodlights 100A and 100B, or changing the size of each aperture opening of the illumination field diaphragms 102A and 102B so as to change the dimensions ELa and ELb. Is possible.
 セカンド露光(重ね合わせ露光)の際に、レジスト層REの部分REa、REbの各々を照明領域102A’、102B’で露光する場合は、シート基板P上に既にアライメントマークAM1~AM7が形成されているので、アライメント系ALGによって計測されるシート基板PのY方向の位置に応じて、照明視野絞り102A、102Bの各々の絞り開口のY方向の位置を微動させれば良い。 When the partials REa and REb of the resist layer RE are exposed in the illumination regions 102A'and 102B' during the second exposure (superimposed exposure), the alignment marks AM1 to AM7 are already formed on the sheet substrate P. Therefore, the position of each of the aperture openings of the illumination field diaphragms 102A and 102B in the Y direction may be finely moved according to the position of the sheet substrate P measured by the alignment system ALG in the Y direction.
 以上、本実施の形態によれば、シート基板Pの幅方向(Y方向)の両端付近のレジスト層REを周辺露光部100で露光する際、先の第1の実施の形態で説明したようなレジスト層REの厚みマップ情報SS2に基づいて、レジスト層REの除去すべき部分REa、REbの各々に与えるべき目標ドーズ量が適正に設定可能となる為、オーバー・ドーズ(露光量過多)になったり、アンダー・ドーズ(露光量過少)になったりすることが防止され、現像後に部分REa、REbが所定の幅で除去される。なお、酸化シリコン(SiO2)による絶縁膜LKに限られず、処理装置(露光装置)PU3又は処理装置PU3’の補正機構で対処可能な範囲を超えるほどにシート基板Pを変形又は歪ませるような膜応力が発生する材料で下地層を形成する場合でも、本実施の形態のような周辺露光を適用することができる。 As described above, according to the present embodiment, when the resist layer RE near both ends in the width direction (Y direction) of the sheet substrate P is exposed by the peripheral exposure unit 100, as described in the first embodiment above. Based on the thickness map information SS2 of the resist layer RE, the target dose amount to be given to each of the parts REa and REb to be removed of the resist layer RE can be appropriately set, resulting in overdose (excessive exposure amount). Or underdose (underexposure) is prevented, and the portions REa and REb are removed by a predetermined width after development. The sheet substrate P is not limited to the insulating film LK made of silicon oxide (SiO 2 ), but the sheet substrate P is deformed or distorted to the extent that it exceeds the range that can be dealt with by the correction mechanism of the processing device (exposure device) PU3 or the processing device PU3'. Even when the underlayer is formed of a material that generates film stress, peripheral exposure as in the present embodiment can be applied.
〔変形例6〕
 先の図14で説明したように、シート基板Pの幅方向(Y方向)の両端側に幅YEa、YEbで残るレジスト層REの部分REa、REbは、描画ラインSL1~SL6による最大露光幅寸法YE内でのパターン露光の直後に、周辺露光部100によってフラット露光される。しかしながら、図5に示したシート基板P上に設定される描画領域SAが長尺方向に繰り返し複数配列され、各描画領域SAの長尺方向の間に一定長の余白領域が形成される場合、通常は、その余白領域には露光ビームが投射されない為、先の図13で説明した絶縁層LKa、LKbのように、余白領域にも膜応力が大きい膜層が残留することがある。
[Modification 6]
As described with reference to FIG. 14, the portions REa and REb of the resist layer RE remaining in the widths YEa and YEb on both ends in the width direction (Y direction) of the sheet substrate P are the maximum exposure width dimensions by the drawing lines SL1 to SL6. Immediately after the pattern exposure in the YE, the peripheral exposure unit 100 performs a flat exposure. However, when a plurality of drawing areas SA set on the sheet substrate P shown in FIG. 5 are repeatedly arranged in the long direction and a blank area having a constant length is formed between the long directions of each drawing area SA. Normally, since the exposure beam is not projected on the margin region, a film layer having a large film stress may remain in the margin region as in the insulating layers LKa and LKb described with reference to FIG.
 図15は、長尺方向に沿って2つの描画領域SA1、SA2が余白領域SSAを挟んで形成される場合のシート基板P上の配置例を示す図である。図15において、シート基板Pの長尺方向(搬送方向)をX’方向、幅方向をY方向とし、先の図14中に示した部材、部分、領域、寸法等と同じものには同じ符号を付してある。また、図15における描画領域SA1、SA2は、Y方向の寸法をアライメントマークAM1~AM7も包含する最大露光幅寸法YEとし、余白領域SSAのX’方向の間隔長はXspとする。さらに、本変形例では、アライメント系ALG1の検出領域Vw1で検出可能なプリアライメントマークPM1と、アライメント系ALG7の検出領域Vw7で検出可能なプリアライメントマークPM7とが、余白領域SSAに形成されているものとする。 FIG. 15 is a diagram showing an arrangement example on the sheet substrate P when two drawing regions SA1 and SA2 are formed with the margin region SSA interposed therebetween along the long direction. In FIG. 15, the long direction (transport direction) of the sheet substrate P is the X'direction, the width direction is the Y direction, and the same reference numerals are given to the same members, portions, regions, dimensions, etc. shown in FIG. Is attached. Further, in the drawing regions SA1 and SA2 in FIG. 15, the dimension in the Y direction is the maximum exposure width dimension YE including the alignment marks AM1 to AM7, and the spacing length in the X'direction of the margin region SSA is Xsp. Further, in this modification, the pre-alignment mark PM1 that can be detected in the detection region Vw1 of the alignment system ALG1 and the pre-alignment mark PM7 that can be detected in the detection region Vw7 of the alignment system ALG7 are formed in the margin region SSA. It shall be.
 プリアライメントマークPM1、PM7は、描画領域SA1のX’方向の最後のアライメントマークAM1~AM7の検出が完了した後で、次の描画領域SA2の最初のアライメントマークAM1~AM7の各々をアライメント系ALG1~ALG7が検出するタイミングを設定する為に設けられる。プリアライメントマークPM1、PM7と、描画領域SA2の最初のアライメントマークAM1~AM7とのX’方向の間隔寸法ΔPX’は予め決められているので、シート基板Pの移動速度と間隔寸法ΔPX’とに基づき、プリアライメントマークPM1、PM7の検出時点から描画領域SA2の最初のアライメントマークAM1~AM7の検出時点までの時間間隔も決まる。 The pre-alignment marks PM1 and PM7 are aligned with each of the first alignment marks AM1 to AM7 of the next drawing area SA2 after the detection of the last alignment marks AM1 to AM7 in the X'direction of the drawing area SA1 is completed. It is provided to set the timing to be detected by ALG7. Since the distance dimension ΔPX'in the X'direction between the pre-alignment marks PM1 and PM7 and the first alignment marks AM1 to AM7 in the drawing area SA2 is predetermined, the moving speed of the sheet substrate P and the distance dimension ΔPX'are set. Based on this, the time interval from the detection time of the pre-alignment marks PM1 and PM7 to the detection time of the first alignment marks AM1 to AM7 in the drawing area SA2 is also determined.
 アライメント系ALG1~ALG7は、描画領域SA1、SA2内のアライメントマークAM1~AM7を検出する際は、シート基板Pの移動位置(回転ドラムDR3用のエンコーダ計測システムの計測位置)に基づいて、検出領域Vw1~Vw7内の画像を記憶するトリガモードで動作する。一方、アライメント系ALG1~ALG7の検出領域Vw1~Vw7が余白領域SSA内に位置する間は、シート基板PがX’方向に一定距離(検出領域Vw1~Vw7のX’方向の寸法の1/2以下)だけ移動する度に、検出領域Vw1~Vw7内の画像を逐次記憶するサンプリングモードで動作する。なお、余白領域SSAにも、アライメントマークAM1、AM7がX’方向に同じ間隔で形成されている場合は、プリアライメントマークPM1、PM7を省略して、アライメント系ALG1~ALG7をトリガモードだけで動作させても良い。 When detecting the alignment marks AM1 to AM7 in the drawing areas SA1 and SA2, the alignment systems ALG1 to ALG7 are detected in the detection area based on the moving position of the sheet substrate P (measurement position of the encoder measurement system for the rotating drum DR3). It operates in a trigger mode for storing images in Vw1 to Vw7. On the other hand, while the detection regions Vw1 to Vw7 of the alignment systems ALG1 to ALG7 are located in the margin region SSA, the sheet substrate P is a fixed distance in the X'direction (1/2 of the dimension of the detection regions Vw1 to Vw7 in the X'direction. Each time it moves by the following), it operates in a sampling mode in which images in the detection areas Vw1 to Vw7 are sequentially stored. If the alignment marks AM1 and AM7 are also formed in the margin region SSA at the same interval in the X'direction, the pre-alignment marks PM1 and PM7 are omitted, and the alignment systems ALG1 to ALG7 are operated only in the trigger mode. You may let me.
 図15において、余白領域SSAは、通常は露光ビームによる描画ラインSL1~SL6で露光されないが、本変形例では、余白領域SSA内についても、全画素PisがOn画素となるような描画データを用意して、露光ユニットEXUによってレジスト層REを露光できるように設定される。これによって、余白領域SSAでも、膜応力が大きい膜層が除去されるので、シート基板Pの変形や歪みが抑制される。なお、本変形例に限らず、先の第2の実施の形態においても、セカンド露光の際は、下地層としてアライメントマークAM1~AM7、プリアライメントマークPM1、PM7が形成されている為、それらのマークを以降の重ね合わせ層の形成のときに必要、或いは不要とする場合は、露光ビームによる描画ラインSL1~SL6の各々によって、それらのマーク上のレジスト層REが露光されるように描画データを設定しても良い。 In FIG. 15, the margin area SSA is not normally exposed by the drawing lines SL1 to SL6 by the exposure beam, but in this modification, drawing data is prepared so that all pixels Pis are On pixels even in the margin area SSA. Then, the exposure unit EXU is set so that the resist layer RE can be exposed. As a result, even in the margin region SSA, the film layer having a large film stress is removed, so that the deformation and distortion of the sheet substrate P are suppressed. Not only in this modification, but also in the second embodiment described above, since the alignment marks AM1 to AM7 and the pre-alignment marks PM1 and PM7 are formed as the base layer during the second exposure, they are formed. When the marks are necessary or unnecessary when forming the subsequent overlapping layers, the drawing data is drawn so that the resist layer RE on those marks is exposed by each of the drawing lines SL1 to SL6 by the exposure beam. You may set it.
 なお、シート基板Pの幅方向(Y方向)の両端側の周辺領域や余白領域SSAに形成された膜層(例えば、酸化シリコンの絶縁膜)を除去するのは、その膜層の膜応力が高いことが要因であったが、その他の理由で周辺領域や余白領域SSAの不要な膜層を除去することもある。後続のプロセスにおいて、シート基板Pの表面に部分的又は全面に材料物質による薄膜を蒸着処理、CVD処理、スパッタ処理等で成膜する為に、シート基板Pを真空処理装置等に搬送する場合がある。真空処理装置では、多くの場合、真空チャンバー内でシート基板Pを支持する保持具(一方の電極部材)と材料物質によるターゲット(他方の電極部材)との間に高電圧が印加される。 It should be noted that the film stress of the film layer removes the film layer (for example, the insulating film of silicon oxide) formed in the peripheral regions on both ends in the width direction (Y direction) of the sheet substrate P and the margin region SSA. The high factor was a factor, but for other reasons, unnecessary film layers in the peripheral region and the margin region SSA may be removed. In the subsequent process, the sheet substrate P may be transported to a vacuum processing apparatus or the like in order to form a thin film of a material substance on the surface of the sheet substrate P partially or entirely by thin film deposition treatment, CVD treatment, sputtering treatment, or the like. be. In a vacuum processing apparatus, in many cases, a high voltage is applied between a holder (one electrode member) that supports the sheet substrate P and a target made of a material (the other electrode member) in the vacuum chamber.
 その際、シート基板P上の幅方向の周辺領域や余白領域SSAの部分に比較的に大きい面積で金属層が残っていると、その金属層の部分と真空処理装置の保持具との間で異常放電が発生し易くなり、シート基板Pの想定以上の温度上昇や損傷等によって歪みや変形が発生することがある。従って、シート基板Pの周辺領域や余白領域SSAに不要な金属膜が残らないように、周辺露光部100によるレジスト層REの露光と、露光ユニットEXU(露光ビーム)による余白領域SSA上のレジスト層REの露光とを行うのが望ましい。露光ビームの光源がファイバーアンプレーザ光源の場合、余白領域SSAの間隔長Xspに亘るシート基板Pの移動時間の間も一時休止をすることなく露光ビーム(パルス光)を射出し続けるので、露光ビームのパルス強度のばらつき(特にジャイアント・パルスの発生)が低減できるといった効果も得られる。 At that time, if a metal layer remains in a relatively large area in the peripheral region in the width direction or the margin region SSA on the sheet substrate P, between the metal layer portion and the holder of the vacuum processing apparatus. Abnormal discharge is likely to occur, and distortion or deformation may occur due to an unexpected temperature rise or damage of the sheet substrate P. Therefore, the resist layer RE is exposed by the peripheral exposure unit 100 and the resist layer on the margin region SSA by the exposure unit EXU (exposure beam) so that an unnecessary metal film does not remain in the peripheral region or the margin region SSA of the sheet substrate P. It is desirable to perform RE exposure. When the light source of the exposure beam is a fiber amplifier laser light source, the exposure beam (pulse light) is continuously emitted without pausing even during the movement time of the sheet substrate P over the interval length Xsp of the margin region SSA. It is also possible to obtain the effect of reducing the variation in pulse intensity (particularly the generation of giant pulses).
〔変形例7〕
 以上の変形例6の構成では、シート基板P上の余白領域SSAの全体を露光ユニットEXUでフラット露光するとした。しかしながら、余白領域SSA内でレジスト層REの厚みが規定値(設計値)よりも大きくなっている部分では、露光ユニットEXUからの露光ビームの強度(照度)が十分に高められないこともある。そこで、本変形例では、図12で示した周辺露光部100をシート基板Pの幅方向(Y方向)に移動可能とするリニアガイド部材と駆動モータ(リニアモータ等)を設ける。そして、先の第1の実施の形態(並びに変形例1~変形例5)で説明した膜厚測定装置によって、余白領域SSAのレジスト層REの厚み分布の変動に関する厚みマップ情報SS2を取得し、露光ユニットEXUからの露光ビームの強度(照度)では不十分と予測される余白領域SSA内の部分に対しては、周辺露光部100の移動と、照明領域102A’、102B’(図14、図15参照)の各々に投射される紫外線のオン/オフの切換とによって、追加露光を行うことができる。なお、周辺露光部100を移動可能とした場合、余白領域SSA内のレジスト層REのフラット露光を周辺露光部100のみで実施することもできる。
[Modification 7]
In the configuration of the above modification 6, the entire margin region SSA on the sheet substrate P is exposed flat by the exposure unit EXU. However, the intensity (illuminance) of the exposure beam from the exposure unit EXU may not be sufficiently increased in the margin region SSA where the thickness of the resist layer RE is larger than the specified value (design value). Therefore, in this modification, a linear guide member and a drive motor (linear motor or the like) are provided so that the peripheral exposed portion 100 shown in FIG. 12 can be moved in the width direction (Y direction) of the sheet substrate P. Then, the film thickness measuring apparatus described in the first embodiment (and the modified examples 1 to 5) is used to acquire the thickness map information SS2 regarding the fluctuation of the thickness distribution of the resist layer RE in the margin region SSA. For the portion in the margin region SSA where the intensity (illuminance) of the exposure beam from the exposure unit EXU is predicted to be insufficient, the peripheral exposure unit 100 is moved and the illumination regions 102A'and 102B'(FIG. 14, FIG. Additional exposure can be performed by switching on / off the ultraviolet rays projected on each of (see 15). When the peripheral exposure unit 100 is movable, flat exposure of the resist layer RE in the margin region SSA can be performed only by the peripheral exposure unit 100.
10…ダイ・ヘッド部         12…制御ユニット
14…加熱乾燥ユニット        20…計測ユニット
22…マーキングユニット       24…制御ユニット
30…主制御ユニット         40…現像槽
42…洗浄槽             44…乾燥ユニット
100…周辺露光部          100A、100B…投光器
102A、102B…照明視野絞り   
102A’、102B’…照明領域
ALG1~ALG7…アライメント系  
AM1~AM7、AMn…アライメントマーク
CBp、CBp’…補正画素      Dam…描画データ
DR1、DR2、DR3…回転ドラム  DS1…エンコーダ計測情報
DS2、DS3…位置情報       EDa、EDb…スケール円盤
EPC…プリアライメントユニット   EXU…露光ユニット
FR…供給ロール           LC…銅箔層(下地層)
LK…絶縁膜(SiO2)        Lq…塗工液
LYe…塗工領域の幅寸法       LYp…シート基板の幅寸法
MPa、MPb、MPc…マーカー   P…シート基板
Pis…画素             PU1…処理装置(塗布装置)
PU2…処理装置(膜厚測定装置)   
PU3、PU3’…処理装置(露光装置)
PU4…処理装置(現像装置)     RE…レジスト層(感光層)
RE1…ポジ型のレジスト層      RE2…ネガ型のレジスト層
RR…回収ロール           SA…描画領域
SL1~SL6…描画ライン      SO…スリット状開口
SPe…オフ・パルス時のスポット光  
SPz…オン・パルス時のスポット光
SS1…目標厚み情報         
SS2…厚みマップ情報(マップ情報)
Vw1~Vw7…検出視野領域     
YE…塗工領域のY方向の幅寸法
10 ... Die head unit 12 ... Control unit 14 ... Heating and drying unit 20 ... Measuring unit 22 ... Marking unit 24 ... Control unit 30 ... Main control unit 40 ... Developing tank 42 ... Cleaning tank 44 ... Drying unit 100 ... Peripheral exposure unit 100A , 100B ... Floodlight 102A, 102B ... Illumination field diaphragm
102A', 102B' ... Illumination area ALG1 to ALG7 ... Alignment system
AM1 to AM7, Amn ... Alignment mark CBp, CBp'... Correction pixel Dam ... Drawing data DR1, DR2, DR3 ... Rotating drum DS1 ... Encoder measurement information DS2, DS3 ... Position information EDa, EDb ... Scale disk EPC ... Prealignment unit EXU ... Exposure unit FR ... Supply roll LC ... Copper foil layer (base layer)
LK ... Insulation film (SiO 2 ) Lq ... Coating liquid LYe ... Width dimension of coating area LYp ... Sheet substrate width dimension MPa, MPb, MPc ... Marker P ... Sheet substrate Pis ... Pixel PU1 ... Processing device (coating device)
PU2 ... Processing device (film thickness measuring device)
PU3, PU3'... Processing device (exposure device)
PU4 ... Processing device (developer) RE ... Resist layer (photosensitive layer)
RE1 ... Positive resist layer RE2 ... Negative resist layer RR ... Recovery roll SA ... Drawing area SL1 to SL6 ... Drawing line SO ... Slit-shaped opening SPe ... Spot light during off-pulse
SPz ... Spot light at the time of on-pulse SS1 ... Target thickness information
SS2 ... Thickness map information (map information)
Vw1 to Vw7 ... Detection field of view area
YE: Width dimension of the coating area in the Y direction

Claims (22)

  1.  所定のパターンに対応した描画データに基づいて強度変調される露光ビームを、基板上の感光層に照射した後に前記基板を現像するフォトリソグラフィ処理により、前記基板上に前記感光層による前記パターンを形成するパターン形成方法であって、
     前記基板の表面上に設定される2次元の塗布領域に感光性溶液を塗布して前記感光層を形成する塗布工程と、
     前記基板上の前記塗布領域に形成された前記感光層の厚みを計測し、前記感光層の厚みマップ情報を作成する厚み計測工程と、
     前記露光ビームを前記感光層に投射して前記パターンを露光する前に、前記厚みマップ情報に基づいて、前記描画データを修正するデータ修正工程と、
     を含むパターン形成方法。
    The pattern by the photosensitive layer is formed on the substrate by a photolithography process for developing the substrate after irradiating the photosensitive layer on the substrate with an exposure beam whose intensity is modulated based on drawing data corresponding to a predetermined pattern. It is a pattern forming method
    A coating step of applying a photosensitive solution to a two-dimensional coating region set on the surface of the substrate to form the photosensitive layer, and a coating step of forming the photosensitive layer.
    A thickness measurement step of measuring the thickness of the photosensitive layer formed in the coating region on the substrate and creating thickness map information of the photosensitive layer.
    A data correction step of modifying the drawing data based on the thickness map information before projecting the exposure beam onto the photosensitive layer to expose the pattern.
    Pattern forming method including.
  2.  請求項1に記載のパターン形成方法であって、
     前記厚みマップ情報は、前記感光層の規定厚みからの変化の分布に応じたマップ情報であり、
     前記データ修正工程において、前記感光層が前記規定厚みから変化した部分に露光されるパターンに対応した前記描画データを修正する、パターン形成方法。
    The pattern forming method according to claim 1.
    The thickness map information is map information according to the distribution of changes from the specified thickness of the photosensitive layer.
    A pattern forming method for modifying the drawing data corresponding to a pattern in which the photosensitive layer is exposed to a portion changed from the specified thickness in the data correction step.
  3.  請求項2に記載のパターン形成方法であって、
     前記厚みマップ情報は、前記塗布領域をマトリックス状に2次元に分割した多数の区画領域毎に、前記感光層の前記規定厚みからの誤差情報を前記区画領域の各位置情報と対応付けて記憶部に記憶される、パターン形成方法。
    The pattern forming method according to claim 2.
    The thickness map information is stored in a storage unit in which error information from the specified thickness of the photosensitive layer is associated with each position information of the partition region for each of a large number of compartment regions in which the coating region is divided into two dimensions in a matrix. The pattern formation method that is stored in.
  4.  請求項3に記載のパターン形成方法であって、
     前記データ修正工程は、前記厚みマップ情報中から前記誤差情報が前記規定厚みに対して許容範囲以上になっている前記区画領域を補正区画として特定し、該補正区画の前記位置情報に基づいて前記補正区画内に描画される前記パターンの描画データを選定し、描画すべき前記パターンの形状又は寸法を設計時の状態から修正する、パターン形成方法。
    The pattern forming method according to claim 3.
    In the data correction step, the section area in which the error information is equal to or greater than the allowable range with respect to the specified thickness is specified as the correction section from the thickness map information, and the section area is based on the position information of the correction section. A pattern forming method in which drawing data of the pattern to be drawn in the correction section is selected, and the shape or dimension of the pattern to be drawn is corrected from the state at the time of design.
  5.  請求項1~4のいずれか1項に記載のパターン形成方法であって、
     前記データ修正工程で修正される前記描画データは、前記基板上の所定の位置に描画されるアライメントマークに対応したビットマップ形式のデータである、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 4.
    The pattern forming method, wherein the drawing data corrected in the data correction step is bitmap format data corresponding to an alignment mark drawn at a predetermined position on the substrate.
  6.  請求項1~5のいずれか1項に記載のパターン形成方法であって、
     前記厚み計測工程中に移動する前記基板の移動位置又は移動量を計測する移動計測工程を有し、
     前記厚み計測工程では、前記移動計測工程で計測される前記基板の前記移動位置又は前記移動量に基づいて前記厚みマップ情報を作成する、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 5.
    It has a movement measurement step of measuring the movement position or the movement amount of the substrate that moves during the thickness measurement step.
    In the thickness measurement step, a pattern forming method for creating the thickness map information based on the movement position or the movement amount of the substrate measured in the movement measurement step.
  7.  請求項6に記載のパターン形成方法であって、
     前記基板の移動方向に関して、前記感光層の厚みの計測位置の上流側又は下流側の位置で、前記基板にマーカーを刻印するマーキング工程を有し、
     前記厚み計測工程では、前記マーキング工程で刻印される前記マーカーの位置と、前記移動計測工程で計測される前記基板の前記移動位置又は前記移動量に基づいて前記厚みマップ情報を作成する、パターン形成方法。
    The pattern forming method according to claim 6.
    It has a marking step of engraving a marker on the substrate at a position on the upstream side or the downstream side of the measurement position of the thickness of the photosensitive layer with respect to the moving direction of the substrate.
    In the thickness measurement step, pattern formation is created based on the position of the marker stamped in the marking step and the movement position or movement amount of the substrate measured in the movement measurement step. Method.
  8.  請求項1~7のいずれか1項に記載のパターン形成方法であって、
     前記厚み計測工程では、前記感光性溶液が塗布された前記基板の乾燥後に前記感光層の厚みを計測する、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 7.
    In the thickness measuring step, a pattern forming method in which the thickness of the photosensitive layer is measured after the substrate coated with the photosensitive solution is dried.
  9.  請求項1~8のいずれか1項に記載のパターン形成方法であって、
     前記厚み計測工程では、光学的な膜厚測定装置によって前記感光層の厚みを計測する、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 8.
    In the thickness measuring step, a pattern forming method in which the thickness of the photosensitive layer is measured by an optical film thickness measuring device.
  10.  請求項1~9のいずれか1項に記載のパターン形成方法であって、
     前記塗布工程では、ダイコート方式の塗工装置によって、前記基板上の前記塗布領域に前記感光性溶液を塗布する、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 9.
    In the coating step, a pattern forming method in which the photosensitive solution is applied to the coating region on the substrate by a die coat type coating device.
  11.  請求項1~10のいずれか1項に記載のパターン形成方法であって、
     前記基板は可撓性を有する長尺のシート基板である、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 10.
    A pattern forming method, wherein the substrate is a long sheet substrate having flexibility.
  12.  請求項11に記載のパターン形成方法であって、
     前記シート基板は、前記塗布工程から前記厚み計測工程まで連続して搬送される、パターン形成方法。
    The pattern forming method according to claim 11.
    A pattern forming method in which the sheet substrate is continuously conveyed from the coating step to the thickness measuring step.
  13.  請求項11又は12に記載のパターン形成方法であって、
     前記フォトリソグラフィ処理の際に前記感光層に前記露光ビームを照射する露光装置は、前記シート基板の長尺方向と直交した方向を幅方向としたとき、前記感光層の前記幅方向における両端部を一様な照度の照明光で露光する周辺露光部を備え、
     前記周辺露光部は、前記厚みマップ情報に基づいて、前記両端部に照射する前記照明光の照度を調整する、パターン形成方法。
    The pattern forming method according to claim 11 or 12.
    An exposure apparatus that irradiates the photosensitive layer with the exposure beam during the photolithography process has both ends of the photosensitive layer in the width direction when the direction orthogonal to the elongated direction of the sheet substrate is the width direction. Equipped with a peripheral exposure section that exposes with illumination light of uniform illuminance,
    The peripheral exposure unit is a pattern forming method for adjusting the illuminance of the illumination light irradiating both ends thereof based on the thickness map information.
  14.  請求項1~13のいずれか1項に記載のパターン形成方法であって、
     前記基板の表面には、前記基板を歪ませる膜応力を発生する下地層が形成され、
     前記塗布工程では、前記下地層の表面に前記感光性溶液が塗布される、パターン形成方法。
    The pattern forming method according to any one of claims 1 to 13.
    An underlayer that generates a film stress that distorts the substrate is formed on the surface of the substrate.
    In the coating step, a pattern forming method in which the photosensitive solution is coated on the surface of the base layer.
  15.  請求項1~14のいずれか1項に記載のパターン形成方法によりパターンを形成する工程を含む、電子デバイスの製造方法。 A method for manufacturing an electronic device, which comprises a step of forming a pattern by the pattern forming method according to any one of claims 1 to 14.
  16.  所定のパターンに応じた描画データに基づいて強度変調される露光ビームを基板上の感光層に投射するパターン露光装置であって、
     前記基板上の前記感光層の厚みマップ情報に基づいて前記描画データを補正し、補正描画データを生成するデータ補正部と、
     前記補正描画データに基づいて前記露光ビームを投射する露光ユニット部と、
     を備えるパターン露光装置。
    A pattern exposure device that projects an exposure beam whose intensity is modulated based on drawing data corresponding to a predetermined pattern onto a photosensitive layer on a substrate.
    A data correction unit that corrects the drawing data based on the thickness map information of the photosensitive layer on the substrate and generates corrected drawing data.
    An exposure unit unit that projects the exposure beam based on the corrected drawing data,
    A pattern exposure apparatus comprising.
  17.  請求項16に記載のパターン露光装置であって、
     前記厚みマップ情報は、前記感光層の規定厚みからの変化の分布に応じたマップ情報であり、
     前記データ補正部は、前記感光層が前記規定厚みから変化した部分に露光されるパターンに対応した前記描画データを補正する、パターン露光装置。
    The pattern exposure apparatus according to claim 16.
    The thickness map information is map information according to the distribution of changes from the specified thickness of the photosensitive layer.
    The data correction unit is a pattern exposure device that corrects the drawing data corresponding to a pattern in which the photosensitive layer is exposed to a portion changed from the specified thickness.
  18.  請求項17に記載のパターン露光装置であって、
     前記厚みマップ情報は、前記基板の表面を2次元のマトリックス状に分割した複数の局所領域の各々の位置に関する情報と、前記局所領域の各々における前記感光層の膜厚が前記規定厚みの範囲内か前記規定厚みの範囲外かを表わすフラグ情報とを含む、パターン露光装置。
    The pattern exposure apparatus according to claim 17.
    The thickness map information includes information on the positions of each of a plurality of local regions obtained by dividing the surface of the substrate into a two-dimensional matrix, and the film thickness of the photosensitive layer in each of the local regions is within the specified thickness range. A pattern exposure apparatus including flag information indicating whether the thickness is out of the specified thickness range.
  19.  請求項18に記載のパターン露光装置であって、
     前記データ補正部は、前記厚みマップ情報に含まれる前記フラグ情報に基づいて、前記感光層の膜厚が前記規定厚みの範囲外になっている前記局所領域を特定し、特定された前記局所領域に露光されるパターンの前記描画データ中の線幅又は形状に関する情報を補正する、パターン露光装置。
    The pattern exposure apparatus according to claim 18.
    The data correction unit identifies the local region in which the film thickness of the photosensitive layer is outside the specified thickness range based on the flag information included in the thickness map information, and the specified local region. A pattern exposure apparatus that corrects information regarding a line width or shape in the drawing data of a pattern exposed to.
  20.  請求項16~19のいずれか1項に記載のパターン露光装置であって、
     前記データ補正部によって補正される前記描画データは、前記基板上に電子デバイス用のパターンが形成される描画領域の周辺付近にアライメントマークとして露光されるパターンに対応している、パターン露光装置。
    The pattern exposure apparatus according to any one of claims 16 to 19.
    The drawing data corrected by the data correction unit corresponds to a pattern exposed as an alignment mark in the vicinity of a drawing area in which a pattern for an electronic device is formed on the substrate.
  21.  請求項16~20のいずれか1項に記載のパターン露光装置であって、
     前記データ補正部によって補正される前記描画データは、前記基板上に露光される電子デバイス用のパターンの少なくとも一部に対応している、パターン露光装置。
    The pattern exposure apparatus according to any one of claims 16 to 20.
    The drawing data corrected by the data correction unit corresponds to at least a part of a pattern for an electronic device exposed on the substrate.
  22.  請求項16~21のいずれか1項に記載のパターン露光装置であって、
     前記露光ユニット部は、前記補正描画データに基づいて前記露光ビームを投射する際、前記露光ビームの強度を調整する機構を有する、パターン露光装置。
    The pattern exposure apparatus according to any one of claims 16 to 21.
    The exposure unit unit is a pattern exposure apparatus having a mechanism for adjusting the intensity of the exposure beam when projecting the exposure beam based on the correction drawing data.
PCT/JP2021/033128 2020-09-24 2021-09-09 Pattern formation method, electronic device production method, and pattern exposure device WO2022065048A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-159978 2020-09-24
JP2020159978 2020-09-24
JP2020-175165 2020-10-19
JP2020175165 2020-10-19

Publications (1)

Publication Number Publication Date
WO2022065048A1 true WO2022065048A1 (en) 2022-03-31

Family

ID=80845249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/033128 WO2022065048A1 (en) 2020-09-24 2021-09-09 Pattern formation method, electronic device production method, and pattern exposure device

Country Status (1)

Country Link
WO (1) WO2022065048A1 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378238A (en) * 1989-08-22 1991-04-03 Ushio Inc Film exposure apparatus
JP2000056466A (en) * 1998-08-11 2000-02-25 Dainippon Screen Mfg Co Ltd Machine plate forming apparatus
JP2001092107A (en) * 1999-09-27 2001-04-06 Toshiba Corp Method for correcting mask pattern and mask for exposure using the same
JP2001201862A (en) * 2000-01-19 2001-07-27 Nikon Corp Peripheral aligner
JP2003177505A (en) * 2001-12-11 2003-06-27 Sony Corp Forming method for exposure pattern
JP2005292271A (en) * 2004-03-31 2005-10-20 Hoya Corp Laser drawing apparatus, laser drawing method and method for manufacturing photomask
JP2008250140A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Exposure method of exposure device, and exposure device
JP2014229802A (en) * 2013-05-23 2014-12-08 キヤノン株式会社 Lithography apparatus, lithography method, lithography system, and method of manufacturing article
JP2015065360A (en) * 2013-09-26 2015-04-09 株式会社Screenホールディングス Gui device for exposure device, exposure system, exposure condition setting method, and program
WO2016035842A1 (en) * 2014-09-04 2016-03-10 株式会社ニコン Processing system and device manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0378238A (en) * 1989-08-22 1991-04-03 Ushio Inc Film exposure apparatus
JP2000056466A (en) * 1998-08-11 2000-02-25 Dainippon Screen Mfg Co Ltd Machine plate forming apparatus
JP2001092107A (en) * 1999-09-27 2001-04-06 Toshiba Corp Method for correcting mask pattern and mask for exposure using the same
JP2001201862A (en) * 2000-01-19 2001-07-27 Nikon Corp Peripheral aligner
JP2003177505A (en) * 2001-12-11 2003-06-27 Sony Corp Forming method for exposure pattern
JP2005292271A (en) * 2004-03-31 2005-10-20 Hoya Corp Laser drawing apparatus, laser drawing method and method for manufacturing photomask
JP2008250140A (en) * 2007-03-30 2008-10-16 Fujifilm Corp Exposure method of exposure device, and exposure device
JP2014229802A (en) * 2013-05-23 2014-12-08 キヤノン株式会社 Lithography apparatus, lithography method, lithography system, and method of manufacturing article
JP2015065360A (en) * 2013-09-26 2015-04-09 株式会社Screenホールディングス Gui device for exposure device, exposure system, exposure condition setting method, and program
WO2016035842A1 (en) * 2014-09-04 2016-03-10 株式会社ニコン Processing system and device manufacturing method

Similar Documents

Publication Publication Date Title
JP5753320B2 (en) Lithographic apparatus
JP5731063B2 (en) Lithographic apparatus, programmable patterning device, and lithographic method
TWI695235B (en) Pattern drawing device and element manufacturing method
JPWO2018030357A1 (en) Substrate processing apparatus and substrate processing method
KR20010101570A (en) System for production of large area display panels with improved precision
US20100112220A1 (en) Dispense system set-up and characterization
JP2010060990A (en) Exposure device, exposure method, and method for manufacturing display panel substrate
WO2013035696A1 (en) Substrate transfer apparatus and substrate processing apparatus
WO2022065048A1 (en) Pattern formation method, electronic device production method, and pattern exposure device
JP5349093B2 (en) Proximity exposure apparatus, substrate positioning method for proximity exposure apparatus, and display panel substrate manufacturing method
JP5473880B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2013195778A (en) Exposure device, exposure method, and method of manufacturing display panel substrate
JP5305967B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2010276901A (en) Exposure device, chuck position detection method of exposure device, and manufacturing method of panel substrate for display
JP4025049B2 (en) Gap adjustment device
JP5456607B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2014066870A (en) Pattern formation method and apparatus, exposure apparatus, and method for manufacturing panel for display
JP5467975B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2012088464A (en) Exposure device, exposure method, and method for manufacturing display panel substrate
JP2013197568A (en) Exposure apparatus and exposure method
JP2011237684A (en) Exposure device, exposing method, and method of manufacturing display panel substrate
JP5349163B2 (en) Exposure apparatus, exposure method, and manufacturing method of display panel substrate
JP2023532530A (en) Apparatus and method for controlling the focus of a laser beam
JP2011107569A (en) Exposure apparatus, exposure method, and method for manufacturing display panel substrate
JP2013054262A (en) Exposure apparatus, exposure method, and method of manufacturing panel substrate for display

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP