WO2022065022A1 - Polishing composition and use therefor - Google Patents

Polishing composition and use therefor Download PDF

Info

Publication number
WO2022065022A1
WO2022065022A1 PCT/JP2021/032805 JP2021032805W WO2022065022A1 WO 2022065022 A1 WO2022065022 A1 WO 2022065022A1 JP 2021032805 W JP2021032805 W JP 2021032805W WO 2022065022 A1 WO2022065022 A1 WO 2022065022A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
weight
less
polishing composition
polymer
Prior art date
Application number
PCT/JP2021/032805
Other languages
French (fr)
Japanese (ja)
Inventor
修 後藤
公亮 土屋
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Priority to JP2022551846A priority Critical patent/JPWO2022065022A1/ja
Publication of WO2022065022A1 publication Critical patent/WO2022065022A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition and a polishing method using the polishing composition.
  • the surface of a silicon wafer used as a component of a semiconductor product is generally finished into a high-quality mirror surface through a wrapping step (rough polishing step) and a polishing step (precision polishing step).
  • the polishing step typically includes a pre-polishing step (pre-polishing step) and a finishing polishing step (final polishing step).
  • Patent Documents 1 and 2 Examples of documents disclosing the polishing composition include Patent Documents 1 and 2.
  • Patent Document 1 discloses a polishing slurry composition used for polishing an ITO film transparent substrate or the like.
  • Patent Document 2 discloses that a thermoplastic silicon, a silicon nitride film, and a silicon oxide film are polished by using a polishing composition.
  • an object of the present invention is to provide a polishing composition capable of reducing the haze of the substrate after polishing.
  • a polishing composition contains abrasive grains, a basic compound, water, and a compound represented by the following formula (I) (hereinafter, also referred to as a "urea-based compound” for convenience). According to such a polishing composition, haze on the surface of the substrate after polishing can be reduced.
  • R 1 , R 2 , R 3 and R 4 in the formula (I) are each independently selected from the group consisting of hydrogen, an alkyl group, a hydroxyl group, and a hydroxyalkyl group. (I) If there is no hydroxyl group in (I), the total number of carbon atoms of R 1 , R 2 , R 3 and R 4 is 1 or more.)
  • the content of the urea compound is 0.001% by weight or more and 0.1% by weight or less.
  • the haze reducing effect can be preferably exhibited.
  • the polishing composition further comprises a water-soluble polymer.
  • the haze reducing effect of the technique disclosed herein can be preferably exhibited in a composition containing a urea-based compound and a water-soluble polymer.
  • the pH of the polishing composition is 8.0 or more and 12.0 or less. In a composition having a pH in the above range, the effects of the techniques disclosed herein can be preferably exerted.
  • the polishing composition disclosed here is suitable for polishing a silicon wafer. By performing polishing on a silicon wafer using the above-mentioned polishing composition, haze can be reduced and a high-quality silicon wafer surface can be suitably realized.
  • the polishing composition disclosed herein can be preferably used in the finishing polishing step of a silicon wafer.
  • the polishing method includes a polishing step.
  • the substrate is polished using a polishing composition containing abrasive grains, a basic compound, water, and a urea-based compound represented by the above formula (I).
  • the polishing method provided herein is, in some embodiments, a method for polishing a silicon wafer. That is, the haze reduction effect of the technique disclosed herein is suitably realized in polishing a silicon wafer.
  • the polishing method comprises a pre-polishing step and a finishing polishing step.
  • polishing using the polishing composition disclosed herein is carried out.
  • polishing method in the finish polishing step, it is possible to obtain a higher quality silicon wafer surface in which the haze of the wafer surface after polishing is reduced.
  • the polishing composition disclosed herein comprises abrasive grains.
  • Abrasive grains serve to mechanically polish the surface of the substrate.
  • the material and properties of the abrasive grains are not particularly limited, and can be appropriately selected depending on the purpose and mode of use of the polishing composition.
  • Examples of abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and oxide particles such as red iron oxide particles; Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate can be mentioned.
  • the organic particles include polymethylmethacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid means to comprehensively refer to acrylic acid and methacrylic acid). , Polyacrylonitrile particles and the like. Such abrasive grains may be used alone or in combination of two or more.
  • abrasive grains inorganic particles are preferable, particles made of a metal or metalloid oxide are preferable, and silica particles are particularly preferable.
  • a polishing composition that can be used for polishing a substrate having a surface made of silicon (for example, finish polishing) such as a silicon wafer described later, it is particularly meaningful to use silica particles as abrasive grains.
  • the technique disclosed herein can be preferably carried out, for example, in an embodiment in which the abrasive grains are substantially composed of silica particles.
  • substantially means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and may be 100% by weight) of the particles constituting the abrasive grains. It means that it is a silica particle.
  • silica particles include colloidal silica, fumed silica, and precipitated silica.
  • the silica particles may be used alone or in combination of two or more.
  • the use of colloidal silica is particularly preferable because it is easy to obtain a polished surface having excellent surface quality after polishing.
  • colloidal silica for example, colloidal silica produced from water glass (Na silicate) by an ion exchange method or colloidal silica produced by an alkoxide method (coroidal silica produced by a hydrolysis condensation reaction of alkoxysilane) is preferably adopted. be able to.
  • Colloidal silica can be used alone or in combination of two or more.
  • the true specific gravity of the abrasive grain constituent material is preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more.
  • the upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, preferably 2.2 or less, still more preferably 2.0 or less, and for example, 1.9 or less.
  • a measured value by a liquid replacement method using ethanol as a replacement liquid can be adopted.
  • the average primary particle diameter of the abrasive grains is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as reduction of haze and removal of defects), the average primary particle diameter is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). Further, from the viewpoint of scratch prevention and the like, the average primary particle diameter of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 45 nm or less.
  • the average primary particle size of the abrasive grains may be 43 nm or less, less than 40 nm, less than 38 nm, less than 35 nm, less than 32 nm, from the viewpoint of facilitating a lower haze surface. It may be less than 30 nm.
  • the specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex, trade name "Flow Sorb II 2300".
  • the average secondary particle diameter of the abrasive grains is not particularly limited, and can be appropriately selected from the range of, for example, about 15 nm to 300 nm. From the viewpoint of improving the polishing efficiency, the average secondary particle diameter is preferably 30 nm or more, and more preferably 35 nm or more. In some embodiments, the average secondary particle size may be, for example, 40 nm or more, 42 nm or more, and preferably 44 nm or more. Further, the average secondary particle diameter is usually preferably 250 nm or less, preferably 200 nm or less, and more preferably 150 nm or less. In some preferred embodiments, the average secondary particle diameter is 120 nm or less, more preferably 100 nm or less, still more preferably 70 nm or less, for example 60 nm or less, or 50 nm or less.
  • the average secondary particle diameter means the particle diameter (volume average particle diameter) measured by the dynamic light scattering method.
  • the average secondary particle diameter of the abrasive grains can be measured, for example, by a dynamic light scattering method using "Nanotrack (registered trademark) UPA-UT151” manufactured by Nikkiso Co., Ltd.
  • the shape (outer shape) of the abrasive grains may be spherical or non-spherical.
  • the non-spherical particles include a peanut shape (that is, a peanut shell shape), a cocoon shape, a konpeito shape, a rugby ball shape, and the like.
  • abrasive grains in which many of the particles are peanut-shaped or cocoon-shaped can be preferably adopted.
  • the average value (average aspect ratio) of the major axis / minor axis ratio of the abrasive grains is, in principle, 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more. Is. Higher polishing efficiency can be achieved by increasing the average aspect ratio.
  • the average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.5 or less, from the viewpoint of scratch reduction and the like.
  • the shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observing with an electron microscope.
  • a specific procedure for grasping the average aspect ratio for example, for a predetermined number (for example, 200) of abrasive particles that can recognize the shape of independent particles using a scanning electron microscope (SEM), each particle is used.
  • the value obtained by dividing the length of the long side (value of the major axis) by the length of the short side (value of the minor axis) is the major axis / minor axis ratio (aspect ratio).
  • the average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
  • the content of the abrasive grains in the polishing composition is not particularly limited, and is, for example, 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.10% by weight or more, still more preferably. Is 0.15% by weight or more. Higher polishing efficiency can be achieved by increasing the abrasive grain content.
  • the content is preferably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, still more preferably 2% by weight or less, and may be, for example, 1% by weight or less. It may be 0.5% by weight or less, or 0.4% by weight or less. This makes it possible to realize a surface with a lower haze.
  • the above-mentioned abrasive grain content can be preferably adopted in an embodiment in which the polishing composition is used in the form of a polishing liquid (working slurry).
  • the polishing composition disclosed herein contains a basic compound.
  • the term "basic compound” refers to a compound having a function of dissolving in water and raising the pH of an aqueous solution.
  • the basic compound include organic or inorganic basic compounds containing nitrogen, basic compounds containing phosphorus, alkali metal hydroxides, alkaline earth metal hydroxides, various carbonates and hydrogen carbonates, and the like. Can be used.
  • nitrogen-containing basic compounds include quaternary ammonium compounds, ammonia, amines (preferably water-soluble amines) and the like.
  • phosphorus-containing basic compounds include quaternary phosphonium compounds. Such basic compounds may be used alone or in combination of two or more.
  • alkali metal hydroxides include potassium hydroxide, sodium hydroxide and the like.
  • specific examples of the carbonate or hydrogen carbonate include ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, sodium carbonate and the like.
  • Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- ( ⁇ -aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, and anhydrous piperazine.
  • quaternary phosphonium compound include quaternary phosphonium hydroxides such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
  • quaternary ammonium salt typically a strong base
  • a quaternary ammonium salt such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt
  • the anionic component in such a quaternary ammonium salt can be, for example, OH ⁇ , F ⁇ , Cl ⁇ , Br ⁇ , I ⁇ , ClO 4- , BH 4- and the like.
  • examples of the quaternary ammonium compound include a quaternary ammonium salt having an anion of OH ⁇ , that is, a quaternary ammonium hydroxide.
  • quaternary ammonium hydroxide examples include hydroxylation of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide and tetrahexylammonium hydroxide.
  • At least one basic compound selected from alkali metal hydroxides, quaternary ammonium hydroxides and ammonia can be preferably used.
  • tetraalkylammonium hydroxide for example, tetramethylammonium hydroxide
  • ammonia is particularly preferable.
  • the content of the basic compound with respect to the total amount of the polishing composition is not particularly limited. From the viewpoint of improving polishing efficiency, it is usually appropriate to set the above content to 0.0005% by weight or more, preferably 0.001% by weight or more, and 0.003% by weight or more. Is even more preferable. Further, from the viewpoint of haze reduction and the like, the content is preferably less than 0.1% by weight, preferably less than 0.05% by weight, and less than 0.03% by weight (for example, 0. It is more preferably less than 025% by weight, more preferably less than 0.01% by weight). When two or more kinds are used in combination, the above-mentioned content refers to the total content of two or more kinds of basic compounds. These contents can be preferably applied to the content in the polishing liquid (working slurry) supplied to the substrate, for example.
  • ion-exchanged water deionized water
  • pure water ultrapure water
  • distilled water distilled water
  • the water used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid hindering the action of other components contained in the polishing composition as much as possible.
  • the purity of water can be increased by operations such as removal of impurity ions by an ion exchange resin, removal of foreign substances by a filter, and distillation.
  • the polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. It is preferable that 90% by volume or more of the solvent contained in the polishing composition is water, and more preferably 95% by volume or more (for example, 99 to 100% by volume) is water.
  • the polishing composition disclosed herein contains a compound represented by the following formula (I) (a compound containing a urea structure, that is, a urea-based compound).
  • R 1 , R 2 , R 3 and R 4 in the following formula (I) are independently selected from the group consisting of hydrogen, an alkyl group, a hydroxyl group, and a hydroxyalkyl group. be.
  • the hydroxyl group is not present in the following formula (I)
  • the total carbon number of R 1 , R 2 , R 3 and R 4 is 1 or more.
  • the total carbon number of R1 , R2 , R3 and R4 may be 1 or more and less than 1 (that is, the total carbon number). May be 0).
  • one kind of urea-based compound represented by the following formula (I) may be used alone, or two or more kinds may be used in combination.
  • the total carbon number of R 1 , R 2 , R 3 and R 4 in the above formula (I) is 1 or more (for example, 1 to 10). ), For example, 2 or more, preferably 3 or more (for example, 3 to 10), more preferably 4 or more (for example, 4 to 8, preferably 4 to 6).
  • R 1 , R 2 , R 3 and R 4 in the above formula (I) contain 1 or 2 or more alkyl groups, the carbon number of each alkyl group is not particularly limited, and is preferably 1 to 10, for example. Is 1 to 4 (eg 1, 2, or 3).
  • the number of alkyl groups in the urea compound is selected from the range of 1 to 4 (eg, 2, 3 or 4).
  • R 1 , R 2 , R 3 and R 4 in the above formula (I) may or may not contain hydrogen.
  • the number of hydrogen is 1 to 3, for example 1 or 2.
  • Examples of such urea-based compounds include 1-methylurea, 1-ethylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1-propylurea, 1,1,3-trimethylurea and 1-butyl.
  • Examples thereof include urea, 1,1-diethyl urea, 1,3-diethyl urea, tetramethylurea and tetraethylurea.
  • 1-propylurea, 1,1,3-trimethylurea, 1-butylurea, 1,1-diethylurea, 1,3-diethylurea, tetramethylurea, tetraethylurea and the like can be preferably used.
  • R 1 , R 2 , R 3 and R 4 in the above formula (I) have one or more hydroxyl groups or hydroxyalkyl groups (1 or more). For example, 1 to 4, preferably 2 or 3) are included. From the viewpoint of effectively reducing haze, a urea-based compound containing a hydroxyl group is preferable.
  • all of R 1 , R 2 , R 3 and R 4 may be a hydroxyl group or a hydroxyalkyl group, and 1 or 2 of the above R 1 , R 2 , R 3 and R 4 may be used.
  • 3 has a group selected from a hydroxyl group and a hydroxyalkyl group.
  • the total carbon number of R 1 , R 2 , R 3 and R 4 may be 1 or more (for example, 1 to 10) and less than 1 (for example, 1 to 10). That is, the total number of carbon atoms may be 0).
  • the hydroxyalkyl group has, for example, 1 to 10 carbon atoms, preferably 1 to 4 (more preferably 1 or 2).
  • R 1 , R 2 , R 3 and R 4 in the above formula (I) may or may not contain an alkyl group.
  • the carbon number of each alkyl group is not particularly limited, and is, for example, 1 to 10, preferably 1 to 4 (for example, 1 to 4). 1, 2, or 3).
  • the number of alkyl groups in the urea compound is selected from the range of 0 to 3 (eg, 0, 1 or 2).
  • R 1 , R 2 , R 3 and R 4 in the above formula (I) do not have to be hydrogen, and at least one of R 1 , R 2 , R 3 and R 4 may be hydrogen.
  • R 1 , R 2 , R 3 and R 4 in the above formula (I) contain hydrogen
  • the number of hydrogen is 1 to 3, for example, 1 or 2.
  • urea-based compounds include hydroxyurea, 2-hydroxymethylurea, 2-hydroxyethylurea, 2-hydroxypropylurea, 2-hydroxybutylurea, 1,3- (hydroxymethyl) urea, and 1,3-. (Hydroxyethyl) urea and the like can be mentioned. Among them, 1,3- (hydroxymethyl) urea can be preferably used.
  • the molecular weight of the urea compound may be 74 or more, may be 76 or more, preferably 90 or more, more preferably 100 or more, and may be 110 or more.
  • the upper limit of the molecular weight is not limited to a specific range, and is, for example, 300 or less, and may be 200 or less or 150 or less from the viewpoint of solubility in a polishing composition or the like.
  • the molecular weight of the urea compound the molecular weight calculated from the chemical formula is adopted.
  • the content of the urea-based compound in the polishing composition is not particularly limited as long as the effect of the technique disclosed herein is exhibited, and from the viewpoint of exhibiting the effect of adding the urea-based compound (that is, the haze reducing effect). It can be 0.0001% by weight or more, preferably 0.001% by weight or more, and may be 0.002% by weight or more, or 0.003% by weight or more. In some preferred embodiments, the content of the urea compound in the polishing composition is 0.005% by weight or more, more preferably 0.01% by weight or more, still more preferably 0.03% by weight or more. ..
  • the upper limit of the content of the urea compound is not particularly limited, and is, for example, 1% by weight or less, preferably 0.1% by weight or less (less than 0.1% by weight), and more preferably 0. It is 08% by weight or less, and may be 0.06% by weight or less.
  • the content is the total content (weight-based content) of all the urea compounds contained in the polishing composition. To say.
  • the polishing composition disclosed herein may contain a water-soluble polymer.
  • the water-soluble polymer can be useful for protecting the surface of the substrate, improving the wettability of the surface of the substrate after polishing, and the like.
  • the water-soluble polymer is a compound containing a hydroxyl group, a carboxy group, an acyloxy group, a sulfo group, an amide structure, an imide structure, a quaternary ammonium structure, a heterocyclic structure, a vinyl structure, or the like. Can be mentioned.
  • the water-soluble polymer for example, a cellulose derivative, a starch derivative, a polymer containing an oxyalkylene unit, a polyvinyl alcohol-based polymer, a polymer containing a nitrogen atom, or the like is used, and as one embodiment of the polymer containing a nitrogen atom, N- Vinyl type polymers, N- (meth) acryloyl type polymers and the like can be used.
  • the water-soluble polymer may be a polymer derived from a natural product or a synthetic polymer. As the water-soluble polymer, one type may be used alone, or two or more types may be used in combination.
  • a polymer derived from a natural product is used as the water-soluble polymer.
  • examples of polymers derived from natural products include cellulose derivatives and starch derivatives.
  • the polymer derived from a natural product one kind may be used alone, or two or more kinds may be used in combination.
  • a cellulose derivative is used as the water-soluble polymer.
  • the cellulose derivative is a polymer containing ⁇ -glucose unit as a main repeating unit.
  • Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Among them, HEC is preferable.
  • HEC hydroxyethyl cellulose
  • one type may be used alone, or two or more types may be used in combination.
  • the starch derivative is used as the water-soluble polymer.
  • the starch derivative is a polymer containing an ⁇ -glucose unit as a main repeating unit, and examples thereof include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin.
  • pregelatinized starch pullulan
  • carboxymethyl starch and cyclodextrin.
  • the starch derivative one type may be used alone, or two or more types may be used in combination.
  • synthetic polymers are used as water-soluble polymers.
  • the haze improving effect disclosed herein is preferably exhibited in an embodiment in which a synthetic polymer is used as the water-soluble polymer.
  • a synthetic polymer is used as the water-soluble polymer.
  • the synthetic polymer one kind may be used alone, or two or more kinds may be used in combination.
  • a polymer containing an oxyalkylene unit is used as the water-soluble polymer.
  • Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymers of EO and PO or BO. Etc. are exemplified. Among them, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable.
  • the block copolymer of EO and PO can be a diblock copolymer containing a PEO block and a polypropylene oxide (PPO) block, a triblock copolymer, or the like.
  • Examples of the above-mentioned triblock copolymers include PEO-PPO-PEO type triblock copolymers and PPO-PEO-PPO type triblock copolymers. Usually, PEO-PPO-PEO type triblock copolymer is more preferable.
  • copolymer in the present specification comprehensively refers to various copolymers such as random copolymers, alternate copolymers, block copolymers, and graft copolymers. be.
  • the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, cleanability, and the like. It is preferably larger than 1, more preferably 2 or more, and even more preferably 3 or more (for example, 5 or more).
  • a polyvinyl alcohol-based polymer is used as the water-soluble polymer.
  • the effects of the techniques disclosed herein are more preferably realized in compositions containing polyvinyl alcohol polymers.
  • the polyvinyl alcohol-based polymer refers to a polymer containing a vinyl alcohol unit (hereinafter, also referred to as “VA unit”) as a repeating unit thereof.
  • VA unit vinyl alcohol unit
  • the polyvinyl alcohol-based polymer may contain only VA units as repeating units, and may contain repeating units other than VA units (hereinafter, also referred to as “non-VA units”) in addition to VA units.
  • the polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, may be a block copolymer, or may be an alternating copolymer or a graft copolymer.
  • the polyvinyl alcohol-based polymer may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
  • the polyvinyl alcohol-based polymer may be unmodified polyvinyl alcohol (non-modified PVA) or modified polyvinyl alcohol (modified PVA).
  • the non-modified PVA is produced by hydrolyzing (saponifying) polyvinyl acetate, and is other than the repeating unit (-CH 2 -CH (OCOCH 3 )-) and the VA unit of the structure in which vinyl acetate is polymerized with vinyl.
  • the saponification degree of the non-modified PVA may be, for example, 60% or more, 70% or more, 80% or more, or 90% or more from the viewpoint of water solubility.
  • the polyvinyl alcohol-based polymer has a VA unit and at least one selected from an oxyalkylene group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, an amide group, an imide group, a nitrile group, an ether group, an ester group, and salts thereof. It may be a modified PVA containing a non-VA unit having a structure.
  • the non-VA unit that can be contained in the modified PVA is, for example, a repeating unit derived from an N-vinyl type monomer or an N- (meth) acryloyl type monomer, which will be described later, a repeating unit derived from ethylene, or an alkyl vinyl ether.
  • N-vinyl type monomer N-vinylpyrrolidone.
  • N- (meth) acryloyl type monomer N- (meth) acryloyl morpholine.
  • the alkyl vinyl ether may be a vinyl ether having an alkyl group having 1 or more and 10 or less carbon atoms, such as propyl vinyl ether, butyl vinyl ether, and 2-ethylhexyl vinyl ether.
  • the vinyl ester of a monocarboxylic acid having 3 or more carbon atoms is a vinyl ester of a monocarboxylic acid having 3 or more carbon atoms and 7 or less carbon atoms, such as vinyl propanoate, vinyl butanoate, vinyl pentanate, vinyl hexanoate and the like.
  • the polyvinyl alcohol-based polymer may be a modified PVA in which a part of the VA unit contained in the polyvinyl alcohol-based polymer is acetalized with an aldehyde.
  • an alkyl aldehyde for example, an alkyl aldehyde can be preferably used, and an alkyl aldehyde having an alkyl group having 1 or more and 7 or less carbon atoms is preferable, and acetaldehyde, n-propyl aldehyde, n-butyl aldehyde, and n-pentyl aldehyde are particularly preferable. Is preferable.
  • a polyvinyl alcohol-based polymer a cationically modified polyvinyl alcohol having a cationic group such as a quaternary ammonium structure introduced may be used.
  • a cationic group derived from a monomer having a cationic group such as a diallyldialkylammonium salt or an N- (meth) acryloylaminoalkyl-N, N, N-trialkylammonium salt is introduced. The ones that have been done are listed.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more. ..
  • the proportion of the number of moles of the VA unit may be 50% or more, 65% or more, 75% or more, or 80% or more. It may be 90% or more (for example, 95% or more, or 98% or more).
  • Substantially 100% of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units.
  • substantially 100% means that the polyvinyl alcohol-based polymer does not contain non-VA units at least intentionally, and typically the number of moles of non-VA units in the number of moles of all repeating units.
  • the ratio of is less than 2% (for example, less than 1%), and includes the case where it is 0%.
  • the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 95% or less, 90% or less, or 80% or less. However, it may be 70% or less.
  • the content of VA units (content based on weight) in the polyvinyl alcohol-based polymer may be, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, or 30% by weight or more.
  • the content of the VA unit may be 50% by weight or more (for example, more than 50% by weight), 70% by weight or more, or 80% by weight or more (for example, more than 50% by weight).
  • 90% by weight or more, 95% by weight or more, or 98% by weight or more) may be used.
  • Substantially 100% by weight of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units.
  • substantially 100% by weight means that the non-VA unit is not contained as a repeating unit constituting the polyvinyl alcohol-based polymer at least intentionally, and typically, the non-VA unit in the polyvinyl alcohol-based polymer is not contained. It means that the content of is less than 2% by weight (for example, less than 1% by weight). In some other embodiments, the content of VA units in the polyvinyl alcohol-based polymer may be, for example, 95% by weight or less, 90% by weight or less, 80% by weight or less, or 70% by weight or less. ..
  • the polyvinyl alcohol-based polymer may contain a plurality of polymer chains having different contents of VA units in the same molecule.
  • the polymer chain refers to a portion (segment) constituting a part of a single molecule polymer.
  • polyvinyl alcohol-based polymers have a polymer chain A with a VA unit content of more than 50% by weight and a VA unit content of less than 50% by weight (ie, a non-VA unit content of more than 50% by weight).
  • Polymer chain B may be contained in the same molecule.
  • the polymer chain A may contain only VA units as repeating units, and may contain non-VA units in addition to VA units.
  • the content of VA units in the polymer chain A may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of VA units in the polymer chain A may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain A may be VA units.
  • the polymer chain B may contain only non-VA units as repeating units, and may contain VA units in addition to non-VA units.
  • the content of the non-VA unit in the polymer chain B may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of non-VA units in the polymer chain B may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain B may be non-VA units.
  • polyvinyl alcohol-based polymers containing the polymer chains A and the polymer chains B in the same molecule include block copolymers and graft copolymers containing these polymer chains.
  • the graft copolymer may be a graft copolymer having a structure in which the polymer chain B (side chain) is grafted to the polymer chain A (main chain), or the polymer chain A (side chain) may be attached to the polymer chain B (main chain). It may be a graft copolymer having a structure in which the chain) is grafted.
  • a polyvinyl alcohol-based polymer having a structure in which the polymer chain B is grafted to the polymer chain A can be used.
  • polymer chain B examples include a polymer chain having a repeating unit derived from an N-vinyl type monomer as a main repeating unit, and a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit.
  • the main repeating unit means a repeating unit contained in excess of 50% by weight, unless otherwise specified.
  • a preferred example of the polymer chain B is a polymer chain having an N-vinyl type monomer as a main repeating unit, that is, an N-vinyl-based polymer chain.
  • the content of the repeating unit derived from the N-vinyl type monomer in the N-vinyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and may be 85% by weight or more. It may be 95% by weight or more.
  • Substantially all of the polymer chain B may be a repeating unit derived from an N-vinyl type monomer.
  • examples of N-vinyl type monomers include monomers having a nitrogen-containing heterocycle (for example, a lactam ring) and N-vinyl chain amides.
  • Specific examples of the N-vinyllactam type monomer include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylmorpholinone, N-vinylcaprolactam, N-vinyl-1,3-oxadin-2-one, and N-vinyl-. Examples thereof include 3,5-morpholindione.
  • Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • the polymer chain B is, for example, an N-vinyl-based polymer chain in which more than 50% by weight (for example, 70% by weight or more, 85% by weight or more, or 95% by weight or more) of the repeating unit is an N-vinylpyrrolidone unit. obtain. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
  • polymer chain B is a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit, that is, an N- (meth) acryloyl-based polymer chain.
  • the content of the repeating unit derived from the N- (meth) acryloyl type monomer in the N- (meth) acryloyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and may be 85% by weight. It may be 5% by weight or more, or 95% by weight or more.
  • Substantially all of the polymer chain B may be a repeating unit derived from an N- (meth) acryloyl type monomer.
  • examples of the N- (meth) acryloyl type monomer include a chain amide having an N- (meth) acryloyl group and a cyclic amide having an N- (meth) acryloyl group.
  • Examples of chain amides having an N- (meth) acryloyl group are (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamide such as meta) acrylamide, Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) ) N, N-dialkyl (meth) acrylamide such as acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di (n-butyl) (meth) acrylamide; and the like.
  • Examples of cyclic amides having an N- (meth) acryloyl group include N- (meth) acryloy
  • polymer chain B is a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene polymer chain.
  • the content of the oxyalkylene unit in the oxyalkylene polymer chain is typically more than 50% by weight, may be 70% by weight or more, may be 85% by weight or more, and may be 95% by weight or more. There may be. Substantially all of the repeating units contained in the polymer chain B may be oxyalkylene units.
  • the oxyalkylene unit examples include an oxyethylene unit, an oxypropylene unit, an oxybutylene unit and the like. Each such oxyalkylene unit can be a repeating unit derived from the corresponding alkylene oxide.
  • the oxyalkylene unit contained in the oxyalkylene polymer chain may be one kind or two or more kinds. For example, it may be an oxyalkylene polymer chain containing an oxyethylene unit and an oxypropylene unit in combination. In an oxyalkylene polymer chain containing two or more kinds of oxyalkylene units, the oxyalkylene units may be random copolymers of corresponding alkylene oxides, block copolymers, or alternating copolymers. It may be a polymer or a graft copolymer.
  • a polymer chain containing a repeating unit derived from an alkyl vinyl ether for example, a vinyl ether having an alkyl group having 1 or more and 10 or less carbon atoms
  • a monocarboxylic acid vinyl ester for example, the number of carbon atoms
  • examples thereof include a polymer chain containing a repeating unit derived from (vinyl ester of 3 or more monocarboxylic acids), a polymer chain into which a cationic group (for example, a cationic group having a quaternary ammonium structure) is introduced, and the like.
  • the polyvinyl alcohol-based polymer as the water-soluble polymer in the technique disclosed herein is preferably a modified polyvinyl alcohol which is a copolymer containing VA units and non-VA units.
  • the saponification degree of the polyvinyl alcohol-based polymer as the water-soluble polymer is usually 50 mol% or more, preferably 65 mol% or more, more preferably 70 mol% or more, for example, 75 mol% or more. In principle, the saponification degree of the polyvinyl alcohol-based polymer is 100 mol% or less.
  • the N-vinyl type polymer may be used as the water-soluble polymer.
  • N-vinyl type polymers include polymers containing repeating units derived from monomers having a nitrogen-containing heterocycle (eg, a lactam ring).
  • examples of such polymers include homopolymers and copolymers of N-vinyl lactam type monomers (for example, copolymers in which the copolymerization ratio of N-vinyl lactam type monomers exceeds 50% by weight), N-vinyl.
  • the homopolymer and the copolymer of the chain amide for example, the copolymer in which the copolymerization ratio of the N-vinyl chain amide exceeds 50% by weight) and the like are included.
  • N-vinyllactam type monomer that is, a compound having a lactam structure and an N-vinyl group in one molecule
  • N-vinylpyrrolidone VP
  • N-vinylpiperidone N-vinylmorpholinone
  • N. -Vinyl caprolactam VC
  • N-vinyl-1,3-oxadin-2-one N-vinyl-3,5-morpholindione and the like can be mentioned.
  • polymers containing N-vinyl lactam type monomer units include polyvinylpyrrolidone, polyvinylcaprolactam, random copolymers of VP and VC, one or both of VP and VC and other vinyl monomers (eg, acrylics). Examples include a random copolymer with (monomer, vinyl ester-based monomer, etc.), a block copolymer containing a polymer chain containing one or both of VP and VC, an alternate copolymer, a graft copolymer, and the like.
  • Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
  • an N- (meth) acryloyl type polymer may be used as the water-soluble polymer.
  • N- (meth) acryloyl-type polymers include homopolymers and copolymers of N- (meth) acryloyl-type monomers (typically, the copolymerization ratio of N- (meth) acryloyl-type monomers is 50 weight by weight. % (Copolymer) is included.
  • Examples of N- (meth) acryloyl-type monomers include chain amides having an N- (meth) acryloyl group and cyclic amides having an N- (meth) acryloyl group.
  • Examples of chain amides having an N- (meth) acryloyl group are (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamide such as meta) acrylamide, Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) ) N, N-dialkyl (meth) acrylamide such as acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di (n-butyl) (meth) acrylamide; and the like.
  • a copolymer of N-isopropylacrylamide and a copolymer of N-isopropylacrylamide for example, a copolymerization ratio of N-isopropylacrylamide Is a copolymer in excess of 50% by weight.
  • Examples of cyclic amides having an N- (meth) acryloyl group are N-acryloylmorpholine, N-acryloylthiomorpholine, N-acryloylpiperidin, N-acryloylpyridine, N-methacryloylmorpholine, N-methacryloylpiperidin, N-methacryloyl.
  • Examples include pyrrolidine.
  • An example of a polymer containing a cyclic amide having an N- (meth) acryloyl group as a monomer unit is an acryloyl morpholine polymer (PACMO).
  • acryloylmorpholine-based polymers include homopolymers of N-acryloylmorpholine (ACMO) and copolymers of ACMO (for example, copolymers in which the copolymerization ratio of ACMO exceeds 50% by weight).
  • ACMO N-acryloylmorpholine
  • the ratio of the number of moles of ACMO units to the number of moles of all repeating units is usually 50% or more, and 80% or more (for example, 90% or more, typically 95% or more). Is appropriate.
  • All repeating units of the water-soluble polymer may be composed of substantially ACMO units.
  • the weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited.
  • the Mw of the water-soluble polymer may be, for example, about 200 ⁇ 104 or less, and about 150 ⁇ 10 4 or less is appropriate, and from the viewpoint of detergency and the like, it is preferably about 100 ⁇ 104 or less, which is about 100 ⁇ 104 or less. It may be 50 ⁇ 10 4 or less.
  • the Mw of the water-soluble polymer may be, for example, 0.2 ⁇ 104 or more, preferably 0.5 ⁇ 104 or more.
  • the Mw of 1.0 ⁇ 10 4 or more is suitable, and may be 2 ⁇ 10 4 or more, for example, 5 ⁇ 10 4 or more.
  • the range of molecular weights of preferred water-soluble polymeric compounds may vary depending on the type of polymer used.
  • the Mw of the cellulose derivative and the starch derivative can be approximately 200 ⁇ 104 or less, respectively , and 150 ⁇ 104 or less is appropriate.
  • the Mw may be about 100 ⁇ 10 4 or less, or about 50 ⁇ 10 4 or less (for example, about 30 ⁇ 10 4 or less).
  • the Mw is, for example, about 0.2 ⁇ 104 or more, about 0.5 ⁇ 104 or more, and preferably about 1.0 ⁇ . It may be 104 or more, more preferably about 3.0 ⁇ 10 4 or more, still more preferably about 10 ⁇ 10 4 or more, and more preferably about 20 ⁇ 10 4 or more.
  • the Mw of the polyvinyl alcohol-based polymer and the polymer containing a nitrogen atom can be 100 ⁇ 10 4 or less, respectively, and 60 ⁇ 10 4 or less is appropriate.
  • the Mw may be 30 ⁇ 10 4 or less, preferably 20 ⁇ 10 4 or less, for example, 10 ⁇ 10 4 or less, typically 8 ⁇ 10 4 or less. good.
  • Mw may be, for example, 0.2 ⁇ 104 or more, and usually 0.5 ⁇ 104 or more is preferable.
  • Mw of 1.0 ⁇ 104 or more is suitable, preferably 1.5 ⁇ 10 4 or more, more preferably 2 ⁇ 10 4 or more, still more preferably 3 ⁇ 10 4 or more.
  • it may be 4 ⁇ 10 4 or more, or 5 ⁇ 10 4 or more.
  • the Mw of the water-soluble polymer a molecular weight calculated from a value (water-based, in terms of polyethylene oxide) based on water-based gel permeation chromatography (GPC) can be adopted.
  • GPC gel permeation chromatography
  • the GPC measuring device it is preferable to use the model name "HLC-8320GPC" manufactured by Tosoh Corporation. The measurement can be performed under the following conditions, for example. The same method is adopted for the examples described later.
  • a nonionic polymer can be preferably adopted as the water-soluble polymer.
  • a synthetic polymer can be preferably adopted as the water-soluble polymer.
  • the polishing composition is one in which the polymer derived from a natural product is substantially not used as the water-soluble polymer. possible.
  • substantially not used means that the amount of the polymer derived from a natural product used is typically 3 parts by weight or less, preferably 1 part by weight or less, based on 100 parts by weight of the total content of the water-soluble polymer. This means 0 parts by weight or below the detection limit.
  • the content of the water-soluble polymer (content on a weight basis) in the polishing composition is not particularly limited. For example, it can be 1.0 ⁇ 10 -4 % by weight or more. From the viewpoint of haze reduction and the like, the preferable content is 5.0 ⁇ 10 -4 % by weight or more, more preferably 1.0 ⁇ 10 -3 % by weight or more, and further preferably 2.0 ⁇ 10 -3 % by weight. The above is, for example, 5.0 ⁇ 10 -3 % by weight or more. Further, from the viewpoint of polishing removal speed and the like, the content is preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and 0.05% by weight or less (for example, 0.02).
  • the polishing composition contains two or more kinds of water-soluble polymers
  • the above-mentioned content is the total content (weight-based content) of all the water-soluble polymers contained in the polishing composition. It means that.
  • These contents can be preferably applied to the content in the polishing liquid (working slurry) supplied to the substrate, for example.
  • the content of the water-soluble polymer (the total amount of two or more kinds of water-soluble polymers when they are contained) can also be specified by the relative relationship with the abrasive grains.
  • the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains can be, for example, 0.01 part by weight or more, and is 0. It is appropriate that the amount is 1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight or more, still more preferably 3 parts by weight or more, and for example, 4 parts by weight or more.
  • the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains may be, for example, 50 parts by weight or less, or 30 parts by weight or less.
  • the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains is preferably 15 parts by weight or less, preferably 10 parts by weight. It may be 8 parts by weight or less, and may be 7 parts by weight or less.
  • the polishing compositions disclosed herein are, for example, surfactants, organic acids, organic acid salts, inorganic acids, inorganic acid salts, chelating agents, preservatives, antifungal agents, to the extent that the effects of the present invention are not significantly impaired.
  • a known additive that can be used in a polishing composition for example, a polishing composition used in a finishing polishing step of a silicon wafer
  • an agent may be further contained.
  • the polishing composition disclosed herein may contain a surfactant, if necessary.
  • a surfactant any of anionic, cationic, nonionic and amphoteric ones can be used.
  • anionic or nonionic surfactants may be preferably employed.
  • Nonionic surfactants are more preferable from the viewpoint of low foaming property and ease of pH adjustment.
  • oxyalkylene polymers such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid.
  • Polyoxyalkylene derivatives such as esters and polyoxyethylene sorbitan fatty acid esters (eg, polyoxyalkylene adducts); copolymers of multiple oxyalkylenes (eg, diblock type copolymers, triblock type copolymers, etc.) Random type copolymers, alternate copolymers); and the like are nonionic surfactants.
  • the surfactant preferably contains a surfactant containing a polyoxyalkylene structure. The surfactant may be used alone or in combination of two or more.
  • nonionic surfactant containing a polyoxyalkylene structure examples include a block copolymer of ethylene oxide (EO) and propylene oxide (PO) (diblock type copolymer, PEO (polyethylene oxide) -PPO).
  • EO ethylene oxide
  • PO propylene oxide
  • PEO polyethylene oxide
  • block copolymers of EO and PO are preferable surfactants.
  • polyoxyethylene decyl ether are preferable surfactants.
  • the weight average molecular weight (Mws) of the surfactant is typically less than 2000, and is preferably 1900 or less (for example, less than 1800) from the viewpoint of filterability, detergency and the like. Further, the Mws of the surfactant is usually preferably 200 or more from the viewpoint of surface activity ability and the like, and preferably 250 or more (for example, 300 or more) from the viewpoint of haze reducing effect and the like. A more preferred range of Mws of the surfactant may also vary depending on the type of the surfactant. For example, when polyoxyethylene alkyl ether is used as the surfactant, its Mws is preferably 1500 or less, and may be 1000 or less (for example, 500 or less).
  • the Mws thereof may be, for example, 500 or more, 1000 or more, and further 1200 or more. May be good.
  • the molecular weight of the surfactant the weight average molecular weight (Mw) obtained by the above GPC or the molecular weight calculated from the chemical formula can be adopted.
  • the content of the surfactant in the polishing composition can be, for example, 1.0 ⁇ 10 -6 % by weight or more, and from the viewpoint of haze reduction, the above content can be 5.0 ⁇ 10 -6 % by weight or more. It is appropriate, preferably 1.0 ⁇ 10-5 % by weight or more, and more preferably 5.0 ⁇ 10-5 % by weight or more. Further, the content of the surfactant can be 0.5% by weight or less, and it is appropriate to set it to 0.25% by weight or less from the viewpoint of polishing efficiency, detergency and the like, and 0.1. It is preferably not more than the weight, more preferably 0.05% by weight or less.
  • the above-mentioned surfactant content can be preferably adopted in an embodiment in which the polishing composition is used in the form of a polishing liquid.
  • the content of the surfactant can also be specified by the relative relationship with the abrasive grains. Usually, from the viewpoint of detergency and the like, it is appropriate that the content of the surfactant with respect to 100 parts by weight of the abrasive grains is 20 parts by weight or less, preferably 15 parts by weight or less, and 10 parts by weight or less (for example, 6 parts by weight). (Parts or less) is more preferable. From the viewpoint of better exerting the effect of using the surfactant, the content of the surfactant with respect to 100 parts by weight of the abrasive grains is preferably 0.001 part by weight or more, preferably 0.005 part by weight or more, preferably 0.01. It may be more than 0.05 parts by weight or more than 0.05 parts by weight.
  • organic acid and its salt, and the inorganic acid and its salt can be used alone or in combination of two or more.
  • organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, itaconic acid, citric acid, oxalic acid, tartrate acid, malic acid, maleic acid, fumaric acid and succinic acid.
  • Organic sulfonic acids such as acid, glycolic acid, malonic acid, gluconic acid, alanine, glycine, lactic acid, hydroxyethylidene diphosphate (HEDP), methanesulfonic acid, nitrilotris (methylenephosphate) (NTMP), phosphonobustan tricarbonate.
  • organic phosphonic acids such as acid (PBTC).
  • the organic acid salt include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of organic acids.
  • inorganic acids include hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid, carbonic acid and the like.
  • inorganic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of inorganic acids.
  • the above chelating agent may be used alone or in combination of two or more.
  • the chelating agent include an aminocarboxylic acid-based chelating agent and an organic phosphonic acid-based chelating agent.
  • Preferable examples of the chelating agent include, for example, ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid.
  • the preservatives and fungicides include isothiazolinone compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
  • the polishing composition disclosed herein preferably contains substantially no oxidant.
  • the polishing composition contains an oxidizing agent
  • the polishing composition is supplied to a substrate (for example, a silicon wafer) to oxidize the surface of the substrate to form an oxide film, which causes a polishing rate. This is because it may decrease.
  • a substrate for example, a silicon wafer
  • the oxidizing agent include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like.
  • the fact that the polishing composition does not substantially contain an oxidizing agent means that it does not contain an oxidizing agent at least intentionally.
  • a trace amount for example, the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol / L or less, more preferably 0.00001
  • the polishing composition inevitably containing an oxidizing agent of mol / L or less, particularly preferably 0.000001 mol / L or less, is the concept of the polishing composition substantially free of the oxidizing agent. Can be included in.
  • the pH of the polishing composition disclosed herein is not particularly limited, and an appropriate pH may be adopted depending on the substrate, abrasive grain type, and the like.
  • the pH of the polishing composition is preferably 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher.
  • the pH of the polishing composition increases, the polishing efficiency tends to improve.
  • the pH of the polishing composition is 12.0 or less. It is preferably 0.0 or less, more preferably 10.8 or less, and even more preferably 10.5 or less.
  • the pH of the polishing composition is a standard buffer solution (for example, a glass electrode type hydrogen ion concentration indicator (model number F-72) manufactured by Horiba Seisakusho). Phphthalate pH buffer pH: 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), carbonate pH buffer pH: 10.01 (25 ° C)) It can be grasped by calibrating at three points using the pH, placing the glass electrode in the composition to be measured, and measuring the value after it has stabilized after 2 minutes or more.
  • a standard buffer solution for example, a glass electrode type hydrogen ion concentration indicator (model number F-72) manufactured by Horiba Seisakusho.
  • the polishing composition disclosed herein is typically supplied onto the surface of a substrate in the form of a polishing liquid containing the polishing composition and used for polishing the substrate.
  • the polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein.
  • the polishing composition may be used as it is as a polishing liquid. That is, the concept of the polishing composition in the technique disclosed herein includes a polishing liquid (working slurry) supplied to a substrate and used for polishing the substrate, and a concentrated liquid (polishing) diluted and used as the polishing liquid. Both with the undiluted solution of the solution) are included.
  • the polishing liquid containing the polishing composition disclosed herein there is a polishing liquid obtained by adjusting the pH of the composition.
  • the polishing composition disclosed herein may be in a concentrated form (ie, in the form of a concentrated solution of the polishing solution) before being supplied to the substrate.
  • the polishing composition in such a concentrated form is advantageous from the viewpoint of convenience and cost reduction in manufacturing, distribution, storage and the like.
  • the concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times (for example, about 10 to 40 times) is appropriate.
  • Such a concentrated liquid can be diluted at a desired timing to prepare a polishing liquid (working slurry), and the polishing liquid can be used in a mode of supplying the polishing liquid to the substrate.
  • the dilution can be performed, for example, by adding water to the concentrate and mixing.
  • the content of abrasive grains in the concentrated solution can be, for example, 25% by weight or less.
  • the content is usually preferably 20% by weight or less, more preferably 15% by weight or less.
  • the content of the abrasive grains may be 10% by weight or less, or 5% by weight or less.
  • the content of abrasive grains in the concentrate can be, for example, 0.1% by weight or more, preferably 0.5% by weight. % Or more, more preferably 0.7% by weight or more, still more preferably 1% by weight or more.
  • the polishing composition used in the technique disclosed herein may be a one-dosage form or a multi-dosage form including a two-dosage form.
  • part A containing at least abrasive grains among the constituents of the polishing composition and part B containing at least a part of the remaining components are mixed, and these are mixed and diluted at appropriate timings as necessary. This may be configured to prepare the polishing liquid.
  • the method for preparing the polishing composition is not particularly limited.
  • the mode in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
  • the polishing composition disclosed herein can be applied to the polishing of substrates having various materials and shapes.
  • the material of the substrate is, for example, a metal or semi-metal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; a glassy substance such as quartz glass, aluminosilicate glass, and glassy carbon. It can be a ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, gallium arsenide; a resin material such as a polyimide resin; and the like.
  • a substrate made of a plurality of materials may be used.
  • the shape of the substrate is not particularly limited.
  • the polishing composition disclosed herein may be applied, for example, to polishing a substrate having a flat surface such as a plate or a polyhedron, or polishing an end portion of the substrate (for example, polishing a wafer edge).
  • the polishing composition disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer).
  • a typical example of the silicon wafer referred to here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
  • the polishing composition disclosed herein can be preferably applied to a polishing process of a substrate (for example, a silicon wafer).
  • the substrate may be subjected to general treatments such as wrapping and etching that may be applied to the substrate in a process upstream of the polishing process prior to the polishing step with the polishing composition disclosed herein.
  • the polishing composition disclosed herein is effective for use in the finishing step of a substrate (for example, a silicon wafer) or the polishing step immediately before the substrate (for example, silicon wafer), and is particularly preferably used in the finishing polishing step.
  • the finish polishing step refers to the final polishing step in the manufacturing process of the target product (that is, a step in which further polishing is not performed after the step).
  • the polishing composition disclosed herein also refers to a pre-polishing step upstream of finish polishing (a pre-polishing step between the rough polishing step and the final polishing step, typically comprising at least a primary polishing step. , Further may include polishing steps such as secondary, tertiary, etc.), for example, may be used in a polishing step performed immediately before finish polishing.
  • the polishing composition disclosed herein is, for example, to policing a silicon wafer (typically finish policing or immediately preceding policing) prepared by an upstream process to have a surface condition with a surface roughness of 0.01 nm to 100 nm. Is effective. Application to finish polishing is particularly preferred.
  • the surface roughness Ra of the substrate can be measured, for example, by using a laser scan type surface roughness meter "TMS-3000WRC" manufactured by Schmitt Measurement System Inc.
  • the polishing composition disclosed herein can be used for polishing a substrate, for example, in an embodiment including the following operations.
  • a preferred embodiment of a method of polishing a silicon wafer as a substrate by using the polishing composition disclosed herein will be described. That is, a polishing liquid containing any of the polishing compositions disclosed herein is prepared.
  • Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition.
  • concentration adjustment for example, dilution
  • pH adjustment for example, a polishing liquid
  • the polishing composition may be used as it is as a polishing liquid.
  • the polishing liquid is supplied to the substrate and polished by a conventional method.
  • the silicon wafer that has undergone the wrapping process is set in a general polishing device, and a polishing liquid is applied to the surface to be polished of the silicon wafer through the polishing pad of the polishing device.
  • Supply typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the surface to be polished of the silicon wafer to relatively move (for example, rotationally move) the two.
  • the polishing of the substrate is completed through such a polishing step.
  • the polishing pad used in the above polishing process is not particularly limited.
  • a polishing pad such as a polyurethane foam type, a non-woven fabric type, or a suede type can be used.
  • Each polishing pad may or may not contain abrasive grains.
  • a polishing pad containing no abrasive grains is preferably used.
  • Substrates polished with the polishing composition disclosed herein are typically washed. Cleaning can be performed using a suitable cleaning solution.
  • the cleaning liquid used is not particularly limited, and for example, SC-1 cleaning liquid (ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and water (H 2 O), which are common in the field of semiconductors and the like. (Mixed solution of HCl), SC-2 cleaning solution (mixed solution of HCl, H 2 O 2 and H 2 O) and the like can be used.
  • the temperature of the cleaning liquid can be, for example, in the range of room temperature (typically about 15 ° C to 25 ° C) or higher and up to about 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning liquid having a temperature of about 50 ° C. to 85 ° C. can be preferably used.
  • the technique disclosed herein includes a method for producing a polished product (for example, a method for producing a silicon wafer) including a polishing step (preferably finish polishing) by any of the above-mentioned polishing methods, and the method thereof.
  • a polishing step preferably finish polishing
  • the provision of manufactured abrasives may be included.
  • Example 1 Abrasive grains, a water-soluble polymer, a basic compound, a urea compound, a surfactant and deionized water were mixed to prepare a concentrated solution of the polishing composition according to this example.
  • Colloidal silica (average primary particle size: 27 nm) is used as the abrasive grains, and polyvinyl alcohol (hereinafter referred to as “PVA”) having a weight average molecular weight of about 7.0 ⁇ 104 is used as the water-soluble polymer.
  • PVA polyvinyl alcohol
  • Ammonia was used as the basic compound, hydroxyurea was used as the urea compound, and polyoxyethylene decyl ether (C10EO5) having 5 moles of ethylene oxide was used as the surfactant.
  • DIW deionized water
  • the concentration of the abrasive grains was 0.175%
  • the concentration of the water-soluble polymer was 0.00875%
  • the concentration was 0.00875%.
  • a polishing composition according to this example was obtained, wherein the concentration of the basic compound was 0.005%
  • the concentration of the urea compound was 0.030%
  • the concentration of the surfactant was 0.00015%.
  • Example 5 As the urea-based compound, the compound shown in the corresponding column of Table 1 was used, and the polishing composition according to each example was prepared in the same manner as in Example 1 except that the concentration shown in the corresponding column of Table 1 was used.
  • Example 6 As the water-soluble polymer, hydroxyethyl cellulose having a weight average molecular weight of about 2.8 ⁇ 105 (hereinafter referred to as “HEC”) was used, and as the urea-based compound, the compounds shown in the corresponding columns of Table 2 were used.
  • the polishing composition according to each example was prepared in the same manner as in Example 1 except that the concentrations shown in the corresponding columns of Table 2 were used.
  • a commercially available silicon single crystal wafer (conduction type: P type, crystal orientation: ⁇ 100>, COP (Crystal Organized Particle: crystal defect) free) having a diameter of 200 mm that has been wrapped and etched is prepared under the following polishing condition 1.
  • a polished silicon wafer was prepared.
  • Preliminary polishing was performed using a polishing solution containing 1.0% of abrasive grains (coloidal silica having an average primary particle diameter of 42 nm) and 0.068% of potassium hydroxide in deionized water.
  • Polishing device Single-wafer polishing device model "PNX-322" manufactured by Okamoto Machine Tool Mfg. Co., Ltd. Polishing load: 15kPa Surface plate rotation speed: 30 rpm Head (carrier) rotation speed: 30 rpm Polishing pad: Made by Fujibo Ehime Co., Ltd. Product name "FP55” Pre-polishing liquid supply rate: 550 mL / min Pre-polishing liquid temperature: 20 ° C Surface plate cooling water temperature: 20 ° C Polishing time: 3 min
  • polishing composition according to each example prepared above was used as a polishing liquid, and the silicon wafer after the pre-polishing was polished under the following polishing condition 2.
  • Polishing device Single-wafer polishing device model "PNX-322" manufactured by Okamoto Machine Tool Mfg. Co., Ltd. Polishing load: 15kPa Surface plate rotation speed: 30 rpm Head (carrier) rotation speed: 30 rpm Polishing pad: Made by Fujibo Ehime Co., Ltd. Product name "POLYPAS275NX” Abrasive liquid supply rate: 400 mL / min Abrasive liquid temperature: 20 ° C Surface plate cooling water temperature: 20 ° C Polishing time: 4min
  • SC-1 cleaning Specifically, two first and second washing tanks were prepared, and the washing liquid was contained in each of the washing tanks and kept at 60 ° C.
  • the polished silicon wafer is immersed in the first cleaning tank for 5 minutes, then immersed in ultrapure water to apply ultrasonic waves, and then immersed in the second cleaning tank for 5 minutes and then ultrapure water. It was dried using a spin dryer through a rinsing tank that was immersed in a silicon wafer and subjected to ultrasonic waves.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

Provided is a polishing composition capable of reducing post-polishing haze on the surface of a substrate. This polishing composition contains abrasive grains, a basic compound, water, and a compound represented by formula (I). R1, R2, R3, and R4 in formula (I) are respectively independently hydrogen, an alkyl group, a hydroxyl group, and a group selected from the group consisting of hydroxyalkyl groups. If the hydroxyl group does not exist in formula (I), the total number of carbon atoms in R1, R2, R3, and R4 is 1 or more. 

Description

研磨用組成物およびその利用Polishing composition and its use
 本発明は、研磨用組成物および該研磨用組成物を用いた研磨方法に関する。
 本出願は、2020年9月24日に出願された日本国特許出願2020-159302に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a polishing composition and a polishing method using the polishing composition.
This application claims priority under Japanese patent application 2020-159302 filed on September 24, 2020, the entire contents of which are incorporated herein by reference.
 従来、金属や半金属、非金属、その酸化物等の材料表面に対して研磨用組成物を用いた精密研磨が行われている。例えば、半導体製品の構成要素等として用いられるシリコンウェーハの表面は、一般に、ラッピング工程(粗研磨工程)とポリシング工程(精密研磨工程)とを経て高品位の鏡面に仕上げられる。上記ポリシング工程は、典型的には、予備ポリシング工程(予備研磨工程)と仕上げポリシング工程(最終研磨工程)とを含む。 Conventionally, precision polishing using a polishing composition has been performed on the surface of materials such as metals, metalloids, non-metals, and oxides thereof. For example, the surface of a silicon wafer used as a component of a semiconductor product is generally finished into a high-quality mirror surface through a wrapping step (rough polishing step) and a polishing step (precision polishing step). The polishing step typically includes a pre-polishing step (pre-polishing step) and a finishing polishing step (final polishing step).
 研磨用組成物を開示する文献として、例えば特許文献1および2が挙げられる。特許文献1には、ITO膜透明基板等の研磨に用いられる研磨用スラリー組成物が開示されている。また、特許文献2には、研磨用組成物を用いて多結晶シリコン、シリコン窒化膜、酸化ケイ素膜を研磨することが開示されている。 Examples of documents disclosing the polishing composition include Patent Documents 1 and 2. Patent Document 1 discloses a polishing slurry composition used for polishing an ITO film transparent substrate or the like. Further, Patent Document 2 discloses that a thermoplastic silicon, a silicon nitride film, and a silicon oxide film are polished by using a polishing composition.
日本国特許出願公開2020-002356号公報Japanese Patent Application Publication No. 2020-002356 国際公開第2018/131341号International Publication No. 2018/131341
 シリコンウェーハ等の半導体基板その他の基板の研磨に用いられる研磨用組成物には、研磨後において、より高品質の表面を実現する性能が求められている。かかる研磨において、研磨後の基板表面のヘイズを低減することができる研磨用組成物が提供されれば実用上有益である。そこで本発明は、研磨後の基板のヘイズを低減することができる研磨用組成物を提供することを目的とする。 The polishing composition used for polishing semiconductor substrates such as silicon wafers and other substrates is required to have the ability to realize a higher quality surface after polishing. In such polishing, it is practically beneficial to provide a polishing composition capable of reducing the haze of the surface of the substrate after polishing. Therefore, an object of the present invention is to provide a polishing composition capable of reducing the haze of the substrate after polishing.
 本明細書によると、研磨用組成物が提供される。この研磨用組成物は、砥粒と、塩基性化合物と、水と、下記式(I)で表される化合物(以下、便宜上「尿素系化合物」ともいう。)とを含む。かかる研磨用組成物によると、研磨後の基板表面のヘイズを低減することができる。 According to the present specification, a polishing composition is provided. This polishing composition contains abrasive grains, a basic compound, water, and a compound represented by the following formula (I) (hereinafter, also referred to as a "urea-based compound" for convenience). According to such a polishing composition, haze on the surface of the substrate after polishing can be reduced.
Figure JPOXMLDOC01-appb-C000002
(式(I)中のR、R、RおよびRは、それぞれ独立して、水素、アルキル基、ヒドロキシル基、および、ヒドロキシアルキル基からなる群から選択される基である。式(I)中にヒドロキシル基が存在しない場合は、R、R、RおよびRの合計炭素数は1以上である。)
Figure JPOXMLDOC01-appb-C000002
(R 1 , R 2 , R 3 and R 4 in the formula (I) are each independently selected from the group consisting of hydrogen, an alkyl group, a hydroxyl group, and a hydroxyalkyl group. (I) If there is no hydroxyl group in (I), the total number of carbon atoms of R 1 , R 2 , R 3 and R 4 is 1 or more.)
 いくつかの好ましい態様において、上記尿素系化合物の含有量は0.001重量%以上0.1重量%以下である。かかる組成において、ヘイズ低減効果は好ましく発揮され得る。 In some preferred embodiments, the content of the urea compound is 0.001% by weight or more and 0.1% by weight or less. In such a composition, the haze reducing effect can be preferably exhibited.
 いくつかの好ましい態様において、上記研磨用組成物はさらに水溶性高分子を含む。ここに開示される技術によるヘイズ低減効果は、尿素系化合物と水溶性高分子とを含む組成において好ましく発揮され得る。 In some preferred embodiments, the polishing composition further comprises a water-soluble polymer. The haze reducing effect of the technique disclosed herein can be preferably exhibited in a composition containing a urea-based compound and a water-soluble polymer.
 いくつかの好ましい態様において、上記研磨用組成物のpHは8.0以上12.0以下である。上記範囲のpHを有する組成において、ここに開示される技術による効果は好ましく発揮され得る。 In some preferred embodiments, the pH of the polishing composition is 8.0 or more and 12.0 or less. In a composition having a pH in the above range, the effects of the techniques disclosed herein can be preferably exerted.
 ここに開示される研磨用組成物は、シリコンウェーハの研磨に好適である。上記研磨用組成物を用いてシリコンウェーハに対しポリシングを行うことにより、ヘイズを低減し、高品質のシリコンウェーハ表面を好適に実現することができる。特に、ここに開示される研磨用組成物は、シリコンウェーハの仕上げポリシング工程に好ましく用いられ得る。 The polishing composition disclosed here is suitable for polishing a silicon wafer. By performing polishing on a silicon wafer using the above-mentioned polishing composition, haze can be reduced and a high-quality silicon wafer surface can be suitably realized. In particular, the polishing composition disclosed herein can be preferably used in the finishing polishing step of a silicon wafer.
 また、本明細書によると、ここに開示されるいずれかの研磨用組成物を用いた基板の研磨方法が提供される。上記研磨方法はポリシング工程を含む。上記ポリシング工程において、砥粒と、塩基性化合物と、水と、上記式(I)で表される尿素系化合物と、を含む研磨用組成物を用いて基板を研磨する。
 本明細書によって提供される研磨方法は、いくつかの態様において、シリコンウェーハの研磨方法である。すなわち、ここに開示される技術によるヘイズ低減効果は、シリコンウェーハの研磨において好適に実現される。いくつかの好ましい態様では、上記研磨方法は、予備ポリシング工程と仕上げポリシング工程とを含む。そして、上記仕上げポリシング工程において、ここに開示される研磨用組成物を用いた研磨が実施される。かかる研磨方法によると、上記仕上げポリシング工程において、研磨後のウェーハ表面のヘイズが低減された、より高品位なシリコンウェーハ表面を得ることができる。
Further, according to the present specification, there is provided a method for polishing a substrate using any of the polishing compositions disclosed herein. The polishing method includes a polishing step. In the polishing step, the substrate is polished using a polishing composition containing abrasive grains, a basic compound, water, and a urea-based compound represented by the above formula (I).
The polishing method provided herein is, in some embodiments, a method for polishing a silicon wafer. That is, the haze reduction effect of the technique disclosed herein is suitably realized in polishing a silicon wafer. In some preferred embodiments, the polishing method comprises a pre-polishing step and a finishing polishing step. Then, in the finish polishing step, polishing using the polishing composition disclosed herein is carried out. According to such a polishing method, in the finish polishing step, it is possible to obtain a higher quality silicon wafer surface in which the haze of the wafer surface after polishing is reduced.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって本発明の実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. Matters other than those specifically mentioned in the present specification and necessary for carrying out the present invention can be grasped as design matters of those skilled in the art based on the prior art in the art. The present invention can be carried out based on the contents disclosed in the present specification and the common general technical knowledge in the art.
 <砥粒>
 ここに開示される研磨用組成物は、砥粒を含む。砥粒は、基板の表面を機械的に研磨する働きをする。砥粒の材質や性状は特に制限されず、研磨用組成物の使用目的や使用態様等に応じて適宜選択することができる。砥粒の例としては、無機粒子、有機粒子、および有機無機複合粒子が挙げられる。無機粒子の具体例としては、シリカ粒子、アルミナ粒子、酸化セリウム粒子、酸化クロム粒子、二酸化チタン粒子、酸化ジルコニウム粒子、酸化マグネシウム粒子、二酸化マンガン粒子、酸化亜鉛粒子、ベンガラ粒子等の酸化物粒子;窒化ケイ素粒子、窒化ホウ素粒子等の窒化物粒子;炭化ケイ素粒子、炭化ホウ素粒子等の炭化物粒子;ダイヤモンド粒子;炭酸カルシウムや炭酸バリウム等の炭酸塩等が挙げられる。有機粒子の具体例としては、ポリメタクリル酸メチル(PMMA)粒子やポリ(メタ)アクリル酸粒子(ここで(メタ)アクリル酸とは、アクリル酸およびメタクリル酸を包括的に指す意味である。)、ポリアクリロニトリル粒子等が挙げられる。このような砥粒は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Abrasion grain>
The polishing composition disclosed herein comprises abrasive grains. Abrasive grains serve to mechanically polish the surface of the substrate. The material and properties of the abrasive grains are not particularly limited, and can be appropriately selected depending on the purpose and mode of use of the polishing composition. Examples of abrasive grains include inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include silica particles, alumina particles, cerium oxide particles, chromium oxide particles, titanium dioxide particles, zirconium oxide particles, magnesium oxide particles, manganese dioxide particles, zinc oxide particles, and oxide particles such as red iron oxide particles; Nitride particles such as silicon nitride particles and boron nitride particles; carbide particles such as silicon carbide particles and boron carbide particles; diamond particles; carbonates such as calcium carbonate and barium carbonate can be mentioned. Specific examples of the organic particles include polymethylmethacrylate (PMMA) particles and poly (meth) acrylic acid particles (here, (meth) acrylic acid means to comprehensively refer to acrylic acid and methacrylic acid). , Polyacrylonitrile particles and the like. Such abrasive grains may be used alone or in combination of two or more.
 上記砥粒としては、無機粒子が好ましく、なかでも金属または半金属の酸化物からなる粒子が好ましく、シリカ粒子が特に好ましい。後述するシリコンウェーハ等のようにシリコンからなる表面を有する基板の研磨(例えば仕上げポリシング)に用いられ得る研磨用組成物では、砥粒としてシリカ粒子を採用することが特に有意義である。ここに開示される技術は、例えば、上記砥粒が実質的にシリカ粒子からなる態様で好ましく実施され得る。ここで「実質的に」とは、砥粒を構成する粒子の95重量%以上(好ましくは98重量%以上、より好ましくは99重量%以上であり、100重量%であってもよい。)がシリカ粒子であることをいう。 As the abrasive grains, inorganic particles are preferable, particles made of a metal or metalloid oxide are preferable, and silica particles are particularly preferable. In a polishing composition that can be used for polishing a substrate having a surface made of silicon (for example, finish polishing) such as a silicon wafer described later, it is particularly meaningful to use silica particles as abrasive grains. The technique disclosed herein can be preferably carried out, for example, in an embodiment in which the abrasive grains are substantially composed of silica particles. Here, "substantially" means 95% by weight or more (preferably 98% by weight or more, more preferably 99% by weight or more, and may be 100% by weight) of the particles constituting the abrasive grains. It means that it is a silica particle.
 シリカ粒子の具体例としては、コロイダルシリカ、フュームドシリカ、沈降シリカ等が挙げられる。シリカ粒子は、一種を単独でまたは二種以上を組み合わせて用いることができる。研磨後において表面品位に優れた研磨面が得られやすいことから、コロイダルシリカの使用が特に好ましい。コロイダルシリカとしては、例えば、イオン交換法により水ガラス(珪酸Na)を原料として作製されたコロイダルシリカや、アルコキシド法コロイダルシリカ(アルコキシシランの加水分解縮合反応により製造されたコロイダルシリカ)を好ましく採用することができる。コロイダルシリカは、一種を単独でまたは二種以上を組み合わせて用いることができる。 Specific examples of silica particles include colloidal silica, fumed silica, and precipitated silica. The silica particles may be used alone or in combination of two or more. The use of colloidal silica is particularly preferable because it is easy to obtain a polished surface having excellent surface quality after polishing. As the colloidal silica, for example, colloidal silica produced from water glass (Na silicate) by an ion exchange method or colloidal silica produced by an alkoxide method (coroidal silica produced by a hydrolysis condensation reaction of alkoxysilane) is preferably adopted. be able to. Colloidal silica can be used alone or in combination of two or more.
 砥粒構成材料(例えば、シリカ粒子を構成するシリカ)の真比重は、1.5以上であることが好ましく、より好ましくは1.6以上、さらに好ましくは1.7以上である。シリカの真比重の上限は特に限定されないが、典型的には2.3以下であり、2.2以下が好ましく、2.0以下がさらに好ましく、例えば1.9以下である。砥粒(例えばシリカ粒子)の真比重としては、置換液としてエタノールを用いた液体置換法による測定値を採用し得る。 The true specific gravity of the abrasive grain constituent material (for example, silica constituting the silica particles) is preferably 1.5 or more, more preferably 1.6 or more, still more preferably 1.7 or more. The upper limit of the true specific gravity of silica is not particularly limited, but is typically 2.3 or less, preferably 2.2 or less, still more preferably 2.0 or less, and for example, 1.9 or less. As the true specific gravity of the abrasive grains (for example, silica particles), a measured value by a liquid replacement method using ethanol as a replacement liquid can be adopted.
 砥粒(典型的にはシリカ粒子)の平均一次粒子径は特に限定されないが、研磨能率等の観点から、好ましくは5nm以上、より好ましくは10nm以上である。より高い研磨効果(例えば、ヘイズの低減、欠陥の除去等の効果)を得る観点から、上記平均一次粒子径は、15nm以上が好ましく、20nm以上(例えば20nm超)がより好ましい。また、スクラッチ防止等の観点から、砥粒の平均一次粒子径は、好ましくは100nm以下、より好ましくは50nm以下、さらに好ましくは45nm以下である。より低ヘイズの表面を得やすくする観点から、いくつかの態様において、砥粒の平均一次粒子径は、43nm以下でもよく、40nm未満でもよく、38nm未満でもよく、35nm未満でもよく、32nm未満でもよく、30nm未満でもよい。 The average primary particle diameter of the abrasive grains (typically silica particles) is not particularly limited, but is preferably 5 nm or more, more preferably 10 nm or more from the viewpoint of polishing efficiency and the like. From the viewpoint of obtaining a higher polishing effect (for example, effects such as reduction of haze and removal of defects), the average primary particle diameter is preferably 15 nm or more, and more preferably 20 nm or more (for example, more than 20 nm). Further, from the viewpoint of scratch prevention and the like, the average primary particle diameter of the abrasive grains is preferably 100 nm or less, more preferably 50 nm or less, still more preferably 45 nm or less. In some embodiments, the average primary particle size of the abrasive grains may be 43 nm or less, less than 40 nm, less than 38 nm, less than 35 nm, less than 32 nm, from the viewpoint of facilitating a lower haze surface. It may be less than 30 nm.
 なお、本明細書において平均一次粒子径とは、BET法により測定される比表面積(BET値)から、平均一次粒子径(nm)=6000/(真密度(g/cm)×BET値(m/g))の式により算出される粒子径(BET粒子径)をいう。上記比表面積は、例えば、マイクロメリテックス社製の表面積測定装置、商品名「Flow Sorb II 2300」を用いて測定することができる。 In the present specification, the average primary particle diameter is the average primary particle diameter (nm) = 6000 / (true density (g / cm 3 ) × BET value (BET value) from the specific surface area (BET value) measured by the BET method. It means the particle diameter (BET particle diameter) calculated by the formula of m 2 / g)). The specific surface area can be measured using, for example, a surface area measuring device manufactured by Micromeritex, trade name "Flow Sorb II 2300".
 砥粒(例えばシリカ粒子)の平均二次粒子径は特に限定されず、例えば15nm~300nm程度の範囲から適宜選択し得る。研磨能率向上の観点から、上記平均二次粒子径は30nm以上であることが好ましく、35nm以上であることがより好ましい。いくつかの態様において、上記平均二次粒子径は、例えば40nm以上であってもよく、42nm以上でもよく、好ましくは44nm以上でもよい。また、上記平均二次粒子径は、通常、250nm以下であることが有利であり、200nm以下であることが好ましく、150nm以下であることがより好ましい。いくつかの好ましい態様において、上記平均二次粒子径は120nm以下であり、より好ましくは100nm以下、さらに好ましくは70nm以下、例えば60nm以下であってもよく、50nm以下であってもよい。 The average secondary particle diameter of the abrasive grains (for example, silica particles) is not particularly limited, and can be appropriately selected from the range of, for example, about 15 nm to 300 nm. From the viewpoint of improving the polishing efficiency, the average secondary particle diameter is preferably 30 nm or more, and more preferably 35 nm or more. In some embodiments, the average secondary particle size may be, for example, 40 nm or more, 42 nm or more, and preferably 44 nm or more. Further, the average secondary particle diameter is usually preferably 250 nm or less, preferably 200 nm or less, and more preferably 150 nm or less. In some preferred embodiments, the average secondary particle diameter is 120 nm or less, more preferably 100 nm or less, still more preferably 70 nm or less, for example 60 nm or less, or 50 nm or less.
 なお、本明細書において平均二次粒子径とは、動的光散乱法により測定される粒子径(体積平均粒子径)をいう。砥粒の平均二次粒子径は、例えば、日機装株式会社製の「ナノトラック(登録商標)UPA-UT151」を用いた動的光散乱法により測定することができる。 In the present specification, the average secondary particle diameter means the particle diameter (volume average particle diameter) measured by the dynamic light scattering method. The average secondary particle diameter of the abrasive grains can be measured, for example, by a dynamic light scattering method using "Nanotrack (registered trademark) UPA-UT151" manufactured by Nikkiso Co., Ltd.
 砥粒の形状(外形)は、球形であってもよく、非球形であってもよい。非球形をなす粒子の具体例としては、ピーナッツ形状(すなわち、落花生の殻の形状)、繭型形状、金平糖形状、ラグビーボール形状等が挙げられる。例えば、粒子の多くがピーナッツ形状または繭型形状をした砥粒を好ましく採用し得る。 The shape (outer shape) of the abrasive grains may be spherical or non-spherical. Specific examples of the non-spherical particles include a peanut shape (that is, a peanut shell shape), a cocoon shape, a konpeito shape, a rugby ball shape, and the like. For example, abrasive grains in which many of the particles are peanut-shaped or cocoon-shaped can be preferably adopted.
 特に限定するものではないが、砥粒の長径/短径比の平均値(平均アスペクト比)は、原理的に1.0以上であり、好ましくは1.05以上、さらに好ましくは1.1以上である。平均アスペクト比の増大によって、より高い研磨能率が実現され得る。また、砥粒の平均アスペクト比は、スクラッチ低減等の観点から、好ましくは3.0以下であり、より好ましくは2.0以下、さらに好ましくは1.5以下である。 Although not particularly limited, the average value (average aspect ratio) of the major axis / minor axis ratio of the abrasive grains is, in principle, 1.0 or more, preferably 1.05 or more, and more preferably 1.1 or more. Is. Higher polishing efficiency can be achieved by increasing the average aspect ratio. The average aspect ratio of the abrasive grains is preferably 3.0 or less, more preferably 2.0 or less, still more preferably 1.5 or less, from the viewpoint of scratch reduction and the like.
 砥粒の形状(外形)や平均アスペクト比は、例えば、電子顕微鏡観察により把握することができる。平均アスペクト比を把握する具体的な手順としては、例えば、走査型電子顕微鏡(SEM)を用いて、独立した粒子の形状を認識できる所定個数(例えば200個)の砥粒粒子について、各々の粒子画像に外接する最小の長方形を描く。そして、各粒子画像に対して描かれた長方形について、その長辺の長さ(長径の値)を短辺の長さ(短径の値)で除した値を長径/短径比(アスペクト比)として算出する。上記所定個数の粒子のアスペクト比を算術平均することにより、平均アスペクト比を求めることができる。 The shape (outer shape) and average aspect ratio of the abrasive grains can be grasped by, for example, observing with an electron microscope. As a specific procedure for grasping the average aspect ratio, for example, for a predetermined number (for example, 200) of abrasive particles that can recognize the shape of independent particles using a scanning electron microscope (SEM), each particle is used. Draw the smallest rectangle circumscribing the image. Then, for the rectangle drawn for each particle image, the value obtained by dividing the length of the long side (value of the major axis) by the length of the short side (value of the minor axis) is the major axis / minor axis ratio (aspect ratio). ). The average aspect ratio can be obtained by arithmetically averaging the aspect ratios of the predetermined number of particles.
 研磨用組成物における砥粒の含有量は特に制限されず、例えば0.01重量%以上であり、0.05重量%以上であることが好ましく、より好ましくは0.10重量%以上、さらに好ましくは0.15重量%以上である。砥粒含有量の増大によって、より高い研磨能率が実現され得る。上記含有量は、10重量%以下が適当であり、好ましくは7重量%以下、より好ましくは5重量%以下、さらに好ましくは2重量%以下であり、例えば1重量%以下であってもよく、0.5重量%以下でもよく、0.4重量%以下でもよい。これにより、よりヘイズの低い表面を実現することができる。上記の砥粒含有量は、研磨用組成物が研磨液(ワーキングスラリー)の形態で用いられる態様において好ましく採用され得る。 The content of the abrasive grains in the polishing composition is not particularly limited, and is, for example, 0.01% by weight or more, preferably 0.05% by weight or more, more preferably 0.10% by weight or more, still more preferably. Is 0.15% by weight or more. Higher polishing efficiency can be achieved by increasing the abrasive grain content. The content is preferably 10% by weight or less, preferably 7% by weight or less, more preferably 5% by weight or less, still more preferably 2% by weight or less, and may be, for example, 1% by weight or less. It may be 0.5% by weight or less, or 0.4% by weight or less. This makes it possible to realize a surface with a lower haze. The above-mentioned abrasive grain content can be preferably adopted in an embodiment in which the polishing composition is used in the form of a polishing liquid (working slurry).
 <塩基性化合物>
 ここに開示される研磨用組成物は、塩基性化合物を含有する。本明細書において塩基性化合物とは、水に溶解して水溶液のpHを上昇させる機能を有する化合物を指す。塩基性化合物としては、窒素を含む有機または無機の塩基性化合物、リンを含む塩基性化合物、アルカリ金属の水酸化物、アルカリ土類金属の水酸化物、各種の炭酸塩や炭酸水素塩等を用いることができる。窒素を含む塩基性化合物の例としては、第四級アンモニウム化合物、アンモニア、アミン(好ましくは水溶性アミン)等が挙げられる。リンを含む塩基性化合物の例としては、第四級ホスホニウム化合物が挙げられる。このような塩基性化合物は、一種を単独でまたは二種以上を組み合わせて用いることができる。
<Basic compound>
The polishing composition disclosed herein contains a basic compound. As used herein, the term "basic compound" refers to a compound having a function of dissolving in water and raising the pH of an aqueous solution. Examples of the basic compound include organic or inorganic basic compounds containing nitrogen, basic compounds containing phosphorus, alkali metal hydroxides, alkaline earth metal hydroxides, various carbonates and hydrogen carbonates, and the like. Can be used. Examples of nitrogen-containing basic compounds include quaternary ammonium compounds, ammonia, amines (preferably water-soluble amines) and the like. Examples of phosphorus-containing basic compounds include quaternary phosphonium compounds. Such basic compounds may be used alone or in combination of two or more.
 アルカリ金属の水酸化物の具体例としては、水酸化カリウム、水酸化ナトリウム等が挙げられる。炭酸塩または炭酸水素塩の具体例としては、炭酸水素アンモニウム、炭酸アンモニウム、炭酸水素カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸ナトリウム等が挙げられる。アミンの具体例としては、メチルアミン、ジメチルアミン、トリメチルアミン、エチルアミン、ジエチルアミン、トリエチルアミン、エチレンジアミン、モノエタノールアミン、N-(β-アミノエチル)エタノールアミン、ヘキサメチレンジアミン、ジエチレントリアミン、トリエチレンテトラミン、無水ピペラジン、ピペラジン六水和物、1-(2-アミノエチル)ピペラジン、N-メチルピペラジン、グアニジン、イミダゾールやトリアゾール等のアゾール類等が挙げられる。第四級ホスホニウム化合物の具体例としては、水酸化テトラメチルホスホニウム、水酸化テトラエチルホスホニウム等の水酸化第四級ホスホニウムが挙げられる。 Specific examples of alkali metal hydroxides include potassium hydroxide, sodium hydroxide and the like. Specific examples of the carbonate or hydrogen carbonate include ammonium hydrogen carbonate, ammonium carbonate, potassium hydrogen carbonate, potassium carbonate, sodium hydrogen carbonate, sodium carbonate and the like. Specific examples of amines include methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, ethylenediamine, monoethanolamine, N- (β-aminoethyl) ethanolamine, hexamethylenediamine, diethylenetriamine, triethylenetetramine, and anhydrous piperazine. , Piperazine hexahydrate, 1- (2-aminoethyl) piperazine, N-methylpiperazine, guanidine, azoles such as imidazole and triazole, and the like. Specific examples of the quaternary phosphonium compound include quaternary phosphonium hydroxides such as tetramethylphosphonium hydroxide and tetraethylphosphonium hydroxide.
 第四級アンモニウム化合物としては、テトラアルキルアンモニウム塩、ヒドロキシアルキルトリアルキルアンモニウム塩等の第四級アンモニウム塩(典型的には強塩基)を用いることができる。かかる第四級アンモニウム塩におけるアニオン成分は、例えば、OH、F、Cl、Br、I、ClO 、BH 等であり得る。上記第四級アンモニウム化合物の例として、アニオンがOHである第四級アンモニウム塩、すなわち水酸化第四級アンモニウムが挙げられる。水酸化第四級アンモニウムの具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラプロピルアンモニウム、水酸化テトラブチルアンモニウム、水酸化テトラペンチルアンモニウムおよび水酸化テトラヘキシルアンモニウム等の水酸化テトラアルキルアンモニウム;水酸化2-ヒドロキシエチルトリメチルアンモニウム(コリンともいう。)等の水酸化ヒドロキシアルキルトリアルキルアンモニウム;等が挙げられる。 As the quaternary ammonium compound, a quaternary ammonium salt (typically a strong base) such as a tetraalkylammonium salt or a hydroxyalkyltrialkylammonium salt can be used. The anionic component in such a quaternary ammonium salt can be, for example, OH , F , Cl , Br , I , ClO 4- , BH 4- and the like. Examples of the quaternary ammonium compound include a quaternary ammonium salt having an anion of OH , that is, a quaternary ammonium hydroxide. Specific examples of the quaternary ammonium hydroxide include hydroxylation of tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide, tetrabutylammonium hydroxide, tetrapentylammonium hydroxide and tetrahexylammonium hydroxide. Tetraalkylammonium; hydroxyalkyltrialkylammonium hydroxide such as 2-hydroxyethyltrimethylammonium (also referred to as choline); and the like.
 これらの塩基性化合物のうち、例えば、アルカリ金属水酸化物、水酸化第四級アンモニウムおよびアンモニアから選択される少なくとも一種の塩基性化合物を好ましく使用し得る。なかでも水酸化テトラアルキルアンモニウム(例えば、水酸化テトラメチルアンモニウム)およびアンモニアがより好ましく、アンモニアが特に好ましい。 Among these basic compounds, for example, at least one basic compound selected from alkali metal hydroxides, quaternary ammonium hydroxides and ammonia can be preferably used. Among them, tetraalkylammonium hydroxide (for example, tetramethylammonium hydroxide) and ammonia are more preferable, and ammonia is particularly preferable.
 研磨用組成物全量に対する塩基性化合物の含有量は、特に制限されない。研磨能率向上等の観点から、通常は、上記含有量を0.0005重量%以上とすることが適当であり、0.001重量%以上とすることが好ましく、0.003重量%以上とすることがさらに好ましい。また、ヘイズ低減等の観点から、上記含有量は、0.1重量%未満とすることが適当であり、0.05重量%未満とすることが好ましく、0.03重量%未満(例えば0.025重量%未満、さらには0.01重量%未満)とすることがより好ましい。なお、二種以上を組み合わせて用いる場合は、上記含有量は二種以上の塩基性化合物の合計含有量を指す。これらの含有量は、例えば、基板に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the basic compound with respect to the total amount of the polishing composition is not particularly limited. From the viewpoint of improving polishing efficiency, it is usually appropriate to set the above content to 0.0005% by weight or more, preferably 0.001% by weight or more, and 0.003% by weight or more. Is even more preferable. Further, from the viewpoint of haze reduction and the like, the content is preferably less than 0.1% by weight, preferably less than 0.05% by weight, and less than 0.03% by weight (for example, 0. It is more preferably less than 025% by weight, more preferably less than 0.01% by weight). When two or more kinds are used in combination, the above-mentioned content refers to the total content of two or more kinds of basic compounds. These contents can be preferably applied to the content in the polishing liquid (working slurry) supplied to the substrate, for example.
 <水>
 ここに開示される研磨用組成物に含まれる水としては、イオン交換水(脱イオン水)、純水、超純水、蒸留水等を好ましく用いることができる。使用する水は、研磨用組成物に含有される他の成分の働きが阻害されることを極力回避するため、例えば遷移金属イオンの合計含有量が100ppb以下であることが好ましい。例えば、イオン交換樹脂による不純物イオンの除去、フィルタによる異物の除去、蒸留等の操作によって水の純度を高めることができる。なお、ここに開示される研磨用組成物は、必要に応じて、水と均一に混合し得る有機溶剤(低級アルコール、低級ケトン等)をさらに含有してもよい。研磨用組成物に含まれる溶媒の90体積%以上が水であることが好ましく、95体積%以上(例えば99~100体積%)が水であることがより好ましい。
<Water>
As the water contained in the polishing composition disclosed herein, ion-exchanged water (deionized water), pure water, ultrapure water, distilled water and the like can be preferably used. The water used preferably has, for example, a total content of transition metal ions of 100 ppb or less in order to avoid hindering the action of other components contained in the polishing composition as much as possible. For example, the purity of water can be increased by operations such as removal of impurity ions by an ion exchange resin, removal of foreign substances by a filter, and distillation. The polishing composition disclosed herein may further contain an organic solvent (lower alcohol, lower ketone, etc.) that can be uniformly mixed with water, if necessary. It is preferable that 90% by volume or more of the solvent contained in the polishing composition is water, and more preferably 95% by volume or more (for example, 99 to 100% by volume) is water.
 <尿素系化合物>
 ここに開示される研磨用組成物は、下記式(I)で表される化合物(尿素構造を含む化合物、即ち、尿素系化合物)を含む。ここで、下記式(I)中のR、R、RおよびRは、それぞれ独立して、水素、アルキル基、ヒドロキシル基、および、ヒドロキシアルキル基からなる群から選択される基である。そして、下記式(I)中にヒドロキシル基が存在しない場合は、R、R、RおよびRの合計炭素数は1以上である。換言すると、下記式(I)中にヒドロキシル基が存在する場合は、R、R、RおよびRの合計炭素数は1以上であってもよく、1未満(すなわち、合計炭素数が0)であってもよい。ここに開示される研磨用組成物は、下記式(I)で表される尿素系化合物の一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Urea compound>
The polishing composition disclosed herein contains a compound represented by the following formula (I) (a compound containing a urea structure, that is, a urea-based compound). Here, R 1 , R 2 , R 3 and R 4 in the following formula (I) are independently selected from the group consisting of hydrogen, an alkyl group, a hydroxyl group, and a hydroxyalkyl group. be. When the hydroxyl group is not present in the following formula (I), the total carbon number of R 1 , R 2 , R 3 and R 4 is 1 or more. In other words, if a hydroxyl group is present in the following formula (I), the total carbon number of R1 , R2 , R3 and R4 may be 1 or more and less than 1 (that is, the total carbon number). May be 0). In the polishing composition disclosed herein, one kind of urea-based compound represented by the following formula (I) may be used alone, or two or more kinds may be used in combination.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記式(I)で表される尿素系化合物がヒドロキシル基を含まない場合、上記式(I)中のR、R、RおよびRの合計炭素数は1以上(例えば1~10)であり、例えば2以上であってもよく、好ましくは3以上(例えば3~10)、より好ましくは4以上(例えば4~8、好適には4~6)である。上記式(I)中のR、R、RおよびRが1または2以上のアルキル基を含む場合、各アルキル基の炭素数は特に限定されず、例えば1~10であり、好ましくは1~4(例えば1,2または3)である。尿素系化合物中のアルキル基の数は1~4(例えば2,3または4)の範囲から選択される。上記式(I)中のR、R、RおよびRは水素を含んでもよく、含まなくてもよい。上記式(I)中のR、R、RおよびRの少なくとも1つが水素である場合、水素の数は1~3であり、例えば1または2である。かかる尿素系化合物としては、例えば、1-メチル尿素、1-エチル尿素、1,1-ジメチル尿素、1,3-ジメチル尿素、1-プロピル尿素、1,1,3-トリメチル尿素、1-ブチル尿素、1,1-ジエチル尿素、1,3-ジエチル尿素、テトラメチル尿素、テトラエチル尿素等が挙げられる。なかでも、1-プロピル尿素、1,1,3-トリメチル尿素、1-ブチル尿素、1,1-ジエチル尿素、1,3-ジエチル尿素、テトラメチル尿素、テトラエチル尿素等が好ましく用いられ得る。 When the urea compound represented by the above formula (I) does not contain a hydroxyl group, the total carbon number of R 1 , R 2 , R 3 and R 4 in the above formula (I) is 1 or more (for example, 1 to 10). ), For example, 2 or more, preferably 3 or more (for example, 3 to 10), more preferably 4 or more (for example, 4 to 8, preferably 4 to 6). When R 1 , R 2 , R 3 and R 4 in the above formula (I) contain 1 or 2 or more alkyl groups, the carbon number of each alkyl group is not particularly limited, and is preferably 1 to 10, for example. Is 1 to 4 (eg 1, 2, or 3). The number of alkyl groups in the urea compound is selected from the range of 1 to 4 (eg, 2, 3 or 4). R 1 , R 2 , R 3 and R 4 in the above formula (I) may or may not contain hydrogen. When at least one of R 1 , R 2 , R 3 and R 4 in the above formula (I) is hydrogen, the number of hydrogen is 1 to 3, for example 1 or 2. Examples of such urea-based compounds include 1-methylurea, 1-ethylurea, 1,1-dimethylurea, 1,3-dimethylurea, 1-propylurea, 1,1,3-trimethylurea and 1-butyl. Examples thereof include urea, 1,1-diethyl urea, 1,3-diethyl urea, tetramethylurea and tetraethylurea. Among them, 1-propylurea, 1,1,3-trimethylurea, 1-butylurea, 1,1-diethylurea, 1,3-diethylurea, tetramethylurea, tetraethylurea and the like can be preferably used.
 上記式(I)で表される尿素系化合物がヒドロキシル基を含む場合、上記式(I)中のR、R、RおよびRには、ヒドロキシル基またはヒドロキシアルキル基が1以上(例えば1~4、好ましくは2または3)含まれる。ヘイズを効果的に低減する観点から、ヒドロキシル基を含む尿素系化合物が好ましい。上記式(I)中、R、R、RおよびRのすべてがヒドロキシル基またはヒドロキシアルキル基であってもよく、上記R、R、RおよびRのうち1、2または3がヒドロキシル基およびヒドロキシアルキル基から選択される基を有する。また、上記式(I)中にヒドロキシル基が存在する場合は、R、R、RおよびRの合計炭素数は1以上(例えば1~10)であってもよく、1未満(すなわち、合計炭素数が0)であってもよい。上記R、R、RおよびRの少なくとも1つがヒドロキシアルキル基である場合、ヒドロキシアルキル基の炭素数は、例えば1~10であり、好ましくは1~4(より好ましくは1または2)である。上記式(I)中のR、R、RおよびRはアルキル基を含んでもよく、含まなくてもよい。上記R、R、RおよびRが1または2以上のアルキル基を含む場合、各アルキル基の炭素数は特に限定されず、例えば1~10であり、好ましくは1~4(例えば1,2または3)である。尿素系化合物中のアルキル基の数は0~3(例えば0,1または2)の範囲から選択される。上記式(I)中のR、R、RおよびRは水素でなくてもよく、R、R、RおよびRのうち少なくとも1つが水素であってもよい。上記式(I)中のR、R、RおよびRが水素を含む場合、水素の数は1~3であり、例えば1または2である。かかる尿素系化合物としては、例えば、ヒドロキシ尿素、2-ヒドロキシメチル尿素、2-ヒドロキシエチル尿素、2-ヒドロキシプロピル尿素、2-ヒドロキシブチル尿素、1,3-(ヒドロキシメチル)尿素、1,3-(ヒドロキシエチル)尿素等が挙げられる。なかでも、1,3-(ヒドロキシメチル)尿素が好ましく用いられ得る。 When the urea compound represented by the above formula (I) contains a hydroxyl group, R 1 , R 2 , R 3 and R 4 in the above formula (I) have one or more hydroxyl groups or hydroxyalkyl groups (1 or more). For example, 1 to 4, preferably 2 or 3) are included. From the viewpoint of effectively reducing haze, a urea-based compound containing a hydroxyl group is preferable. In the above formula (I), all of R 1 , R 2 , R 3 and R 4 may be a hydroxyl group or a hydroxyalkyl group, and 1 or 2 of the above R 1 , R 2 , R 3 and R 4 may be used. Alternatively, 3 has a group selected from a hydroxyl group and a hydroxyalkyl group. When a hydroxyl group is present in the above formula (I), the total carbon number of R 1 , R 2 , R 3 and R 4 may be 1 or more (for example, 1 to 10) and less than 1 (for example, 1 to 10). That is, the total number of carbon atoms may be 0). When at least one of the above R 1 , R 2 , R 3 and R 4 is a hydroxyalkyl group, the hydroxyalkyl group has, for example, 1 to 10 carbon atoms, preferably 1 to 4 (more preferably 1 or 2). ). R 1 , R 2 , R 3 and R 4 in the above formula (I) may or may not contain an alkyl group. When the above R 1 , R 2 , R 3 and R 4 contain 1 or 2 or more alkyl groups, the carbon number of each alkyl group is not particularly limited, and is, for example, 1 to 10, preferably 1 to 4 (for example, 1 to 4). 1, 2, or 3). The number of alkyl groups in the urea compound is selected from the range of 0 to 3 (eg, 0, 1 or 2). R 1 , R 2 , R 3 and R 4 in the above formula (I) do not have to be hydrogen, and at least one of R 1 , R 2 , R 3 and R 4 may be hydrogen. When R 1 , R 2 , R 3 and R 4 in the above formula (I) contain hydrogen, the number of hydrogen is 1 to 3, for example, 1 or 2. Examples of such urea-based compounds include hydroxyurea, 2-hydroxymethylurea, 2-hydroxyethylurea, 2-hydroxypropylurea, 2-hydroxybutylurea, 1,3- (hydroxymethyl) urea, and 1,3-. (Hydroxyethyl) urea and the like can be mentioned. Among them, 1,3- (hydroxymethyl) urea can be preferably used.
 上記尿素系化合物の分子量は、74以上であり、76以上であってもよく、好ましくは90以上、より好ましくは100以上であり、110以上であってもよい。上記分子量の上限は、特定の範囲に限定されず、例えば300以下であり、研磨用組成物への溶解性等の観点から、200以下であってもよく、150以下でもよい。尿素系化合物の分子量としては、化学式から算出される分子量が採用される。 The molecular weight of the urea compound may be 74 or more, may be 76 or more, preferably 90 or more, more preferably 100 or more, and may be 110 or more. The upper limit of the molecular weight is not limited to a specific range, and is, for example, 300 or less, and may be 200 or less or 150 or less from the viewpoint of solubility in a polishing composition or the like. As the molecular weight of the urea compound, the molecular weight calculated from the chemical formula is adopted.
 研磨用組成物における尿素系化合物の含有量は、ここに開示される技術による効果が発揮される限りにおいて特に制限されず、尿素系化合物の添加効果(すなわちヘイズ低減効果)を発揮する観点から、0.0001重量%以上とすることができ、0.001重量%以上であることが好ましく、0.002重量%以上であってもよく、0.003重量%以上でもよい。いくつかの好ましい態様において、研磨用組成物における尿素系化合物の含有量は、0.005重量%以上であり、より好ましくは0.01重量%以上、さらに好ましくは0.03重量%以上である。また、上記尿素系化合物の含有量の上限は特に限定されず、例えば1重量%以下であり、0.1重量%以下(0.1重量%未満)であることが好ましく、より好ましくは0.08重量%以下であり、0.06重量%以下であってもよい。なお、上記研磨用組成物が二種類以上の尿素系化合物を含む場合、上記含有量とは該研磨用組成物に含まれる全ての尿素系化合物の合計含有量(重量基準の含有量)のことをいう。 The content of the urea-based compound in the polishing composition is not particularly limited as long as the effect of the technique disclosed herein is exhibited, and from the viewpoint of exhibiting the effect of adding the urea-based compound (that is, the haze reducing effect). It can be 0.0001% by weight or more, preferably 0.001% by weight or more, and may be 0.002% by weight or more, or 0.003% by weight or more. In some preferred embodiments, the content of the urea compound in the polishing composition is 0.005% by weight or more, more preferably 0.01% by weight or more, still more preferably 0.03% by weight or more. .. The upper limit of the content of the urea compound is not particularly limited, and is, for example, 1% by weight or less, preferably 0.1% by weight or less (less than 0.1% by weight), and more preferably 0. It is 08% by weight or less, and may be 0.06% by weight or less. When the polishing composition contains two or more kinds of urea compounds, the content is the total content (weight-based content) of all the urea compounds contained in the polishing composition. To say.
 <水溶性高分子>
 ここに開示される研磨用組成物は、水溶性高分子を含んでいてもよい。水溶性高分子は、基板表面の保護や、研磨後の基板表面の濡れ性向上等に役立ち得る。いくつかの態様において、水溶性高分子としては、分子中に、水酸基、カルボキシ基、アシルオキシ基、スルホ基、アミド構造、イミド構造、第四級アンモニウム構造、複素環構造、ビニル構造等を含む化合物が挙げられる。水溶性高分子としては、例えばセルロース誘導体、デンプン誘導体、オキシアルキレン単位を含むポリマー、ポリビニルアルコール系ポリマー、窒素原子を含有するポリマー等が用いられ、窒素原子を含有するポリマーの一態様として、N-ビニル型ポリマー、N-(メタ)アクリロイル型ポリマー等が用いられ得る。水溶性高分子は、天然物由来のポリマーであってもよく、合成ポリマーであってもよい。水溶性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。
<Water-soluble polymer>
The polishing composition disclosed herein may contain a water-soluble polymer. The water-soluble polymer can be useful for protecting the surface of the substrate, improving the wettability of the surface of the substrate after polishing, and the like. In some embodiments, the water-soluble polymer is a compound containing a hydroxyl group, a carboxy group, an acyloxy group, a sulfo group, an amide structure, an imide structure, a quaternary ammonium structure, a heterocyclic structure, a vinyl structure, or the like. Can be mentioned. As the water-soluble polymer, for example, a cellulose derivative, a starch derivative, a polymer containing an oxyalkylene unit, a polyvinyl alcohol-based polymer, a polymer containing a nitrogen atom, or the like is used, and as one embodiment of the polymer containing a nitrogen atom, N- Vinyl type polymers, N- (meth) acryloyl type polymers and the like can be used. The water-soluble polymer may be a polymer derived from a natural product or a synthetic polymer. As the water-soluble polymer, one type may be used alone, or two or more types may be used in combination.
 いくつかの態様では、水溶性高分子として天然物由来のポリマーが用いられる。天然物由来のポリマーとしては、セルロース誘導体やデンプン誘導体が挙げられる。天然物由来のポリマーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 In some embodiments, a polymer derived from a natural product is used as the water-soluble polymer. Examples of polymers derived from natural products include cellulose derivatives and starch derivatives. As the polymer derived from a natural product, one kind may be used alone, or two or more kinds may be used in combination.
 いくつかの好ましい態様では、水溶性高分子としてセルロース誘導体が用いられる。ここで、セルロース誘導体は、主たる繰返し単位としてβ-グルコース単位を含むポリマーである。セルロース誘導体の具体例としては、ヒドロキシエチルセルロース(HEC)、ヒドロキシプロピルセルロース、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、メチルセルロース、エチルセルロース、エチルヒドロキシエチルセルロース、カルボキシメチルセルロース等が挙げられる。なかでもHECが好ましい。セルロース誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 In some preferred embodiments, a cellulose derivative is used as the water-soluble polymer. Here, the cellulose derivative is a polymer containing β-glucose unit as a main repeating unit. Specific examples of the cellulose derivative include hydroxyethyl cellulose (HEC), hydroxypropyl cellulose, hydroxyethyl methyl cellulose, hydroxypropylmethyl cellulose, methyl cellulose, ethyl cellulose, ethyl hydroxyethyl cellulose, carboxymethyl cellulose and the like. Among them, HEC is preferable. As the cellulose derivative, one type may be used alone, or two or more types may be used in combination.
 他のいくつかの態様では、水溶性高分子としてデンプン誘導体が用いられる。デンプン誘導体は、主繰返し単位としてα-グルコース単位を含むポリマーであり、例えばアルファ化デンプン、プルラン、カルボキシメチルデンプン、シクロデキストリン等が挙げられる。デンプン誘導体は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 In some other embodiments, the starch derivative is used as the water-soluble polymer. The starch derivative is a polymer containing an α-glucose unit as a main repeating unit, and examples thereof include pregelatinized starch, pullulan, carboxymethyl starch, and cyclodextrin. As the starch derivative, one type may be used alone, or two or more types may be used in combination.
 他のいくつかの態様では、水溶性高分子として合成ポリマーが用いられる。ここに開示されるヘイズ改善効果は、水溶性高分子として合成ポリマーを用いる態様において好ましく発揮される。合成ポリマーは、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 In some other embodiments, synthetic polymers are used as water-soluble polymers. The haze improving effect disclosed herein is preferably exhibited in an embodiment in which a synthetic polymer is used as the water-soluble polymer. As the synthetic polymer, one kind may be used alone, or two or more kinds may be used in combination.
 いくつかの好ましい態様では、水溶性高分子としてオキシアルキレン単位を含むポリマーが用いられる。オキシアルキレン単位を含むポリマーとしては、ポリエチレンオキシド(PEO)や、エチレンオキシド(EO)とプロピレンオキシド(PO)またはブチレンオキシド(BO)とのブロック共重合体、EOとPOまたはBOとのランダム共重合体等が例示される。そのなかでも、EOとPOのブロック共重合体またはEOとPOのランダム共重合体が好ましい。EOとPOとのブロック共重合体は、PEOブロックとポリプロピレンオキシド(PPO)ブロックとを含むジブロック共重合体、またはトリブロック共重合体等であり得る。上記トリブロック共重合体の例には、PEO-PPO-PEO型トリブロック共重合体およびPPO-PEO-PPO型トリブロック共重合体が含まれる。通常は、PEO-PPO-PEO型トリブロック共重合体がより好ましい。 In some preferred embodiments, a polymer containing an oxyalkylene unit is used as the water-soluble polymer. Polymers containing oxyalkylene units include polyethylene oxide (PEO), block copolymers of ethylene oxide (EO) and propylene oxide (PO) or butylene oxide (BO), and random copolymers of EO and PO or BO. Etc. are exemplified. Among them, a block copolymer of EO and PO or a random copolymer of EO and PO is preferable. The block copolymer of EO and PO can be a diblock copolymer containing a PEO block and a polypropylene oxide (PPO) block, a triblock copolymer, or the like. Examples of the above-mentioned triblock copolymers include PEO-PPO-PEO type triblock copolymers and PPO-PEO-PPO type triblock copolymers. Usually, PEO-PPO-PEO type triblock copolymer is more preferable.
 なお、本明細書中において共重合体とは、特記しない場合、ランダム共重合体、交互共重合体、ブロック共重合体、グラフト共重合体等の各種の共重合体を包括的に指す意味である。 Unless otherwise specified, the term copolymer in the present specification comprehensively refers to various copolymers such as random copolymers, alternate copolymers, block copolymers, and graft copolymers. be.
 EOとPOとのブロック共重合体またはランダム共重合体において、該共重合体を構成するEOとPOとのモル比(EO/PO)は、水への溶解性や洗浄性等の観点から、1より大きいことが好ましく、2以上であることがより好ましく、3以上(例えば5以上)であることがさらに好ましい。 In a block copolymer or random copolymer of EO and PO, the molar ratio (EO / PO) of EO and PO constituting the copolymer is determined from the viewpoint of solubility in water, cleanability, and the like. It is preferably larger than 1, more preferably 2 or more, and even more preferably 3 or more (for example, 5 or more).
 いくつかの好ましい態様では、水溶性高分子としてポリビニルアルコール系ポリマーが用いられる。ここに開示される技術による効果は、ポリビニルアルコール系ポリマーを含む組成で、より好ましく実現される。ポリビニルアルコール系ポリマーとは、その繰返し単位としてビニルアルコール単位(以下「VA単位」ともいう。)を含むポリマーを指す。ポリビニルアルコール系ポリマーは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えてVA単位以外の繰返し単位(以下「非VA単位」ともいう。)を含んでいてもよい。ポリビニルアルコール系ポリマーは、VA単位と非VA単位とを含むランダム共重合体であってもよく、ブロック共重合体であってもよく、交互共重合体やグラフト共重合体であってもよい。ポリビニルアルコール系ポリマーは、一種類の非VA単位のみを含んでもよく、二種類以上の非VA単位を含んでもよい。 In some preferred embodiments, a polyvinyl alcohol-based polymer is used as the water-soluble polymer. The effects of the techniques disclosed herein are more preferably realized in compositions containing polyvinyl alcohol polymers. The polyvinyl alcohol-based polymer refers to a polymer containing a vinyl alcohol unit (hereinafter, also referred to as “VA unit”) as a repeating unit thereof. The polyvinyl alcohol-based polymer may contain only VA units as repeating units, and may contain repeating units other than VA units (hereinafter, also referred to as “non-VA units”) in addition to VA units. The polyvinyl alcohol-based polymer may be a random copolymer containing VA units and non-VA units, may be a block copolymer, or may be an alternating copolymer or a graft copolymer. The polyvinyl alcohol-based polymer may contain only one type of non-VA unit, or may contain two or more types of non-VA units.
 上記ポリビニルアルコール系ポリマーは、変性されていないポリビニルアルコール(非変性PVA)であってもよく、変性ポリビニルアルコール(変性PVA)であってもよい。ここで非変性PVAとは、ポリ酢酸ビニルを加水分解(けん化)することにより生成し、酢酸ビニルがビニル重合した構造の繰返し単位(-CH-CH(OCOCH)-)およびVA単位以外の繰返し単位を実質的に含まないポリビニルアルコール系ポリマーをいう。上記非変性PVAのけん化度は、例えば60%以上であってよく、水溶性の観点から70%以上でもよく、80%以上でもよく、90%以上でもよい。 The polyvinyl alcohol-based polymer may be unmodified polyvinyl alcohol (non-modified PVA) or modified polyvinyl alcohol (modified PVA). Here, the non-modified PVA is produced by hydrolyzing (saponifying) polyvinyl acetate, and is other than the repeating unit (-CH 2 -CH (OCOCH 3 )-) and the VA unit of the structure in which vinyl acetate is polymerized with vinyl. A polyvinyl alcohol-based polymer that contains substantially no repeating unit. The saponification degree of the non-modified PVA may be, for example, 60% or more, 70% or more, 80% or more, or 90% or more from the viewpoint of water solubility.
 ポリビニルアルコール系ポリマーは、VA単位と、オキシアルキレン基、カルボキシ基、スルホ基、アミノ基、水酸基、アミド基、イミド基、ニトリル基、エーテル基、エステル基、およびこれらの塩から選ばれる少なくとも1つの構造を有する非VA単位とを含む変性PVAであってもよい。また、変性PVAに含まれ得る非VA単位としては、例えば後述するN-ビニル型のモノマーやN-(メタ)アクリロイル型のモノマーに由来する繰返し単位、エチレンに由来する繰返し単位、アルキルビニルエーテルに由来する繰返し単位、炭素原子数3以上のモノカルボン酸のビニルエステルに由来する繰返し単位、等であってもよいが、これらに限定されない。上記N-ビニル型のモノマーの一好適例として、N-ビニルピロリドンが挙げられる。上記N-(メタ)アクリロイル型のモノマーの一好適例として、N-(メタ)アクリロイルモルホリンが挙げられる。上記アルキルビニルエーテルは、例えばプロピルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル等の、炭素原子数1以上10以下のアルキル基を有するビニルエーテルであり得る。上記炭素原子数3以上のモノカルボン酸のビニルエステルは、例えばプロパン酸ビニル、ブタン酸ビニル、ペンタン酸ビニル、ヘキサン酸ビニル等の、炭素原子数3以上7以下のモノカルボン酸のビニルエステルであり得る。また、ポリビニルアルコール系ポリマーは、ポリビニルアルコール系ポリマーに含まれるVA単位の一部がアルデヒドでアセタール化された変性PVAであってもよい。上記アルデヒドとしては、例えばアルキルアルデヒドを好ましく用いることができ、炭素原子数1以上7以下のアルキル基を有するアルキルアルデヒドが好ましく、なかでもアセトアルデヒド、n-プロピルアルデヒド、n-ブチルアルデヒド、n-ペンチルアルデヒドが好ましい。ポリビニルアルコール系ポリマーとして、第四級アンモニウム構造等のカチオン性基が導入されたカチオン変性ポリビニルアルコールを使用してもよい。上記カチオン変性ポリビニルアルコールとしては、例えば、ジアリルジアルキルアンモニウム塩、N-(メタ)アクリロイルアミノアルキル-N,N,N-トリアルキルアンモニウム塩等のカチオン性基を有するモノマーに由来するカチオン性基が導入されたものが挙げられる。 The polyvinyl alcohol-based polymer has a VA unit and at least one selected from an oxyalkylene group, a carboxy group, a sulfo group, an amino group, a hydroxyl group, an amide group, an imide group, a nitrile group, an ether group, an ester group, and salts thereof. It may be a modified PVA containing a non-VA unit having a structure. The non-VA unit that can be contained in the modified PVA is, for example, a repeating unit derived from an N-vinyl type monomer or an N- (meth) acryloyl type monomer, which will be described later, a repeating unit derived from ethylene, or an alkyl vinyl ether. It may be a repeating unit, a repeating unit derived from a vinyl ester of a monocarboxylic acid having 3 or more carbon atoms, or the like, but is not limited thereto. A preferable example of the above-mentioned N-vinyl type monomer is N-vinylpyrrolidone. A preferable example of the N- (meth) acryloyl type monomer is N- (meth) acryloyl morpholine. The alkyl vinyl ether may be a vinyl ether having an alkyl group having 1 or more and 10 or less carbon atoms, such as propyl vinyl ether, butyl vinyl ether, and 2-ethylhexyl vinyl ether. The vinyl ester of a monocarboxylic acid having 3 or more carbon atoms is a vinyl ester of a monocarboxylic acid having 3 or more carbon atoms and 7 or less carbon atoms, such as vinyl propanoate, vinyl butanoate, vinyl pentanate, vinyl hexanoate and the like. obtain. Further, the polyvinyl alcohol-based polymer may be a modified PVA in which a part of the VA unit contained in the polyvinyl alcohol-based polymer is acetalized with an aldehyde. As the aldehyde, for example, an alkyl aldehyde can be preferably used, and an alkyl aldehyde having an alkyl group having 1 or more and 7 or less carbon atoms is preferable, and acetaldehyde, n-propyl aldehyde, n-butyl aldehyde, and n-pentyl aldehyde are particularly preferable. Is preferable. As the polyvinyl alcohol-based polymer, a cationically modified polyvinyl alcohol having a cationic group such as a quaternary ammonium structure introduced may be used. As the cationically modified polyvinyl alcohol, for example, a cationic group derived from a monomer having a cationic group such as a diallyldialkylammonium salt or an N- (meth) acryloylaminoalkyl-N, N, N-trialkylammonium salt is introduced. The ones that have been done are listed.
 ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば5%以上であってよく、10%以上でもよく、20%以上でもよく、30%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位のモル数の割合は、50%以上であってよく、65%以上でもよく、75%以上でもよく、80%以上でもよく、90%以上(例えば95%以上、または98%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100%がVA単位であってもよい。ここで「実質的に100%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーに非VA単位を含有させないことをいい、典型的には全繰返し単位のモル数に占める非VA単位のモル数の割合が2%未満(例えば1%未満)であり、0%である場合を包含する。他のいくつかの態様において、ポリビニルアルコール系ポリマーを構成する全繰返し単位のモル数に占めるVA単位のモル数の割合は、例えば95%以下であってよく、90%以下でもよく、80%以下でもよく、70%以下でもよい。 The ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 5% or more, 10% or more, 20% or more, or 30% or more. .. Although not particularly limited, in some embodiments, the proportion of the number of moles of the VA unit may be 50% or more, 65% or more, 75% or more, or 80% or more. It may be 90% or more (for example, 95% or more, or 98% or more). Substantially 100% of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units. Here, "substantially 100%" means that the polyvinyl alcohol-based polymer does not contain non-VA units at least intentionally, and typically the number of moles of non-VA units in the number of moles of all repeating units. The ratio of is less than 2% (for example, less than 1%), and includes the case where it is 0%. In some other embodiments, the ratio of the number of moles of VA units to the number of moles of all repeating units constituting the polyvinyl alcohol polymer may be, for example, 95% or less, 90% or less, or 80% or less. However, it may be 70% or less.
 ポリビニルアルコール系ポリマーにおけるVA単位の含有量(重量基準の含有量)は、例えば5重量%以上であってよく、10重量%以上でもよく、20重量%以上でもよく、30重量%以上でもよい。特に限定するものではないが、いくつかの態様において、上記VA単位の含有量は、50重量%以上(例えば50重量%超)であってよく、70重量%以上でもよく、80重量%以上(例えば90重量%以上、または95重量%以上、または98重量%以上)でもよい。ポリビニルアルコール系ポリマーを構成する繰返し単位の実質的に100重量%がVA単位であってもよい。ここで「実質的に100重量%」とは、少なくとも意図的にはポリビニルアルコール系ポリマーを構成する繰返し単位として非VA単位を含有させないことをいい、典型的にはポリビニルアルコール系ポリマーにおける非VA単位の含有量が2重量%未満(例えば1重量%未満)であることをいう。他のいくつかの態様において、ポリビニルアルコール系ポリマーにおけるVA単位の含有量は、例えば95重量%以下であってよく、90重量%以下でもよく、80重量%以下でもよく、70重量%以下でもよい。 The content of VA units (content based on weight) in the polyvinyl alcohol-based polymer may be, for example, 5% by weight or more, 10% by weight or more, 20% by weight or more, or 30% by weight or more. Although not particularly limited, in some embodiments, the content of the VA unit may be 50% by weight or more (for example, more than 50% by weight), 70% by weight or more, or 80% by weight or more (for example, more than 50% by weight). For example, 90% by weight or more, 95% by weight or more, or 98% by weight or more) may be used. Substantially 100% by weight of the repeating units constituting the polyvinyl alcohol-based polymer may be VA units. Here, "substantially 100% by weight" means that the non-VA unit is not contained as a repeating unit constituting the polyvinyl alcohol-based polymer at least intentionally, and typically, the non-VA unit in the polyvinyl alcohol-based polymer is not contained. It means that the content of is less than 2% by weight (for example, less than 1% by weight). In some other embodiments, the content of VA units in the polyvinyl alcohol-based polymer may be, for example, 95% by weight or less, 90% by weight or less, 80% by weight or less, or 70% by weight or less. ..
 ポリビニルアルコール系ポリマーは、VA単位の含有量の異なる複数のポリマー鎖を同一分子内に含んでいてもよい。ここでポリマー鎖とは、一分子のポリマーの一部を構成する部分(セグメント)を指す。例えば、ポリビニルアルコール系ポリマーは、VA単位の含有量が50重量%より高いポリマー鎖Aと、VA単位の含有量が50重量%より低い(すなわち、非VA単位の含有量が50重量%より多い)ポリマー鎖Bとを、同一分子内に含んでいてもよい。 The polyvinyl alcohol-based polymer may contain a plurality of polymer chains having different contents of VA units in the same molecule. Here, the polymer chain refers to a portion (segment) constituting a part of a single molecule polymer. For example, polyvinyl alcohol-based polymers have a polymer chain A with a VA unit content of more than 50% by weight and a VA unit content of less than 50% by weight (ie, a non-VA unit content of more than 50% by weight). ) Polymer chain B may be contained in the same molecule.
 ポリマー鎖Aは、繰返し単位としてVA単位のみを含んでいてもよく、VA単位に加えて非VA単位を含んでいてもよい。ポリマー鎖AにおけるVA単位の含有量は、60重量%以上でもよく、70重量%以上でもよく、80重量%以上でもよく、90重量%以上でもよい。いくつかの態様において、ポリマー鎖AにおけるVA単位の含有量は、95重量%以上でもよく、98重量%以上でもよい。ポリマー鎖Aを構成する繰返し単位の実質的に100重量%がVA単位であってもよい。 The polymer chain A may contain only VA units as repeating units, and may contain non-VA units in addition to VA units. The content of VA units in the polymer chain A may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of VA units in the polymer chain A may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain A may be VA units.
 ポリマー鎖Bは、繰返し単位として非VA単位のみを含んでいてもよく、非VA単位に加えてVA単位を含んでいてもよい。ポリマー鎖Bにおける非VA単位の含有量は、60重量%以上でもよく、70重量%以上でもよく、80重量%以上でもよく、90重量%以上でもよい。いくつかの態様において、ポリマー鎖Bにおける非VA単位の含有量は、95重量%以上でもよく、98重量%以上でもよい。ポリマー鎖Bを構成する繰返し単位の実質的に100重量%が非VA単位であってもよい。 The polymer chain B may contain only non-VA units as repeating units, and may contain VA units in addition to non-VA units. The content of the non-VA unit in the polymer chain B may be 60% by weight or more, 70% by weight or more, 80% by weight or more, or 90% by weight or more. In some embodiments, the content of non-VA units in the polymer chain B may be 95% by weight or more, or 98% by weight or more. Substantially 100% by weight of the repeating units constituting the polymer chain B may be non-VA units.
 ポリマー鎖Aとポリマー鎖Bとを同一分子中に含むポリビニルアルコール系ポリマーの例として、これらのポリマー鎖を含むブロック共重合体やグラフト共重合体が挙げられる。上記グラフト共重合体は、ポリマー鎖A(主鎖)にポリマー鎖B(側鎖)がグラフトした構造のグラフト共重合体であってもよく、ポリマー鎖B(主鎖)にポリマー鎖A(側鎖)がグラフトした構造のグラフト共重合体であってもよい。一態様において、ポリマー鎖Aにポリマー鎖Bがグラフトした構造のポリビニルアルコール系ポリマーを用いることができる。 Examples of polyvinyl alcohol-based polymers containing the polymer chains A and the polymer chains B in the same molecule include block copolymers and graft copolymers containing these polymer chains. The graft copolymer may be a graft copolymer having a structure in which the polymer chain B (side chain) is grafted to the polymer chain A (main chain), or the polymer chain A (side chain) may be attached to the polymer chain B (main chain). It may be a graft copolymer having a structure in which the chain) is grafted. In one embodiment, a polyvinyl alcohol-based polymer having a structure in which the polymer chain B is grafted to the polymer chain A can be used.
 ポリマー鎖Bの例としては、N-ビニル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、オキシアルキレン単位を主繰返し単位とするポリマー鎖等が挙げられる。なお、本明細書において主繰返し単位とは、特記しない場合、50重量%を超えて含まれる繰返し単位をいう。 Examples of the polymer chain B include a polymer chain having a repeating unit derived from an N-vinyl type monomer as a main repeating unit, and a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit. , Polymer chains and the like having an oxyalkylene unit as a main repeating unit. In the present specification, the main repeating unit means a repeating unit contained in excess of 50% by weight, unless otherwise specified.
 ポリマー鎖Bの一好適例として、N-ビニル型のモノマーを主繰返し単位とするポリマー鎖、すなわちN-ビニル系ポリマー鎖が挙げられる。N-ビニル系ポリマー鎖におけるN-ビニル型モノマーに由来する繰返し単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-ビニル型モノマーに由来する繰返し単位であってもよい。 A preferred example of the polymer chain B is a polymer chain having an N-vinyl type monomer as a main repeating unit, that is, an N-vinyl-based polymer chain. The content of the repeating unit derived from the N-vinyl type monomer in the N-vinyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and may be 85% by weight or more. It may be 95% by weight or more. Substantially all of the polymer chain B may be a repeating unit derived from an N-vinyl type monomer.
 この明細書において、N-ビニル型のモノマーの例には、窒素を含有する複素環(例えばラクタム環)を有するモノマーおよびN-ビニル鎖状アミドが含まれる。N-ビニルラクタム型モノマーの具体例としては、N-ビニルピロリドン、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。ポリマー鎖Bは、例えば、その繰返し単位の50重量%超(例えば70重量%以上、または85重量%以上、または95重量%以上)がN-ビニルピロリドン単位であるN-ビニル系ポリマー鎖であり得る。ポリマー鎖Bを構成する繰返し単位の実質的に全部がN-ビニルピロリドン単位であってもよい。 In this specification, examples of N-vinyl type monomers include monomers having a nitrogen-containing heterocycle (for example, a lactam ring) and N-vinyl chain amides. Specific examples of the N-vinyllactam type monomer include N-vinylpyrrolidone, N-vinylpiperidone, N-vinylmorpholinone, N-vinylcaprolactam, N-vinyl-1,3-oxadin-2-one, and N-vinyl-. Examples thereof include 3,5-morpholindione. Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like. The polymer chain B is, for example, an N-vinyl-based polymer chain in which more than 50% by weight (for example, 70% by weight or more, 85% by weight or more, or 95% by weight or more) of the repeating unit is an N-vinylpyrrolidone unit. obtain. Substantially all of the repeating units constituting the polymer chain B may be N-vinylpyrrolidone units.
 ポリマー鎖Bの他の例として、N-(メタ)アクリロイル型のモノマーに由来する繰返し単位を主繰返し単位とするポリマー鎖、すなわち、N-(メタ)アクリロイル系ポリマー鎖が挙げられる。N-(メタ)アクリロイル系ポリマー鎖におけるN-(メタ)アクリロイル型モノマーに由来する繰返し単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bの実質的に全部がN-(メタ)アクリロイル型モノマーに由来する繰返し単位であってもよい。 Another example of the polymer chain B is a polymer chain having a repeating unit derived from an N- (meth) acryloyl type monomer as a main repeating unit, that is, an N- (meth) acryloyl-based polymer chain. The content of the repeating unit derived from the N- (meth) acryloyl type monomer in the N- (meth) acryloyl polymer chain is typically more than 50% by weight, may be 70% by weight or more, and may be 85% by weight. It may be 5% by weight or more, or 95% by weight or more. Substantially all of the polymer chain B may be a repeating unit derived from an N- (meth) acryloyl type monomer.
 この明細書において、N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。N-(メタ)アクリロイル基を有する鎖状アミドの例としては、(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドの例としては、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン等が挙げられる。 In this specification, examples of the N- (meth) acryloyl type monomer include a chain amide having an N- (meth) acryloyl group and a cyclic amide having an N- (meth) acryloyl group. Examples of chain amides having an N- (meth) acryloyl group are (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamide such as meta) acrylamide, Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) ) N, N-dialkyl (meth) acrylamide such as acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di (n-butyl) (meth) acrylamide; and the like. Examples of cyclic amides having an N- (meth) acryloyl group include N- (meth) acryloylmorpholine, N- (meth) acryloylpyrrolidine and the like.
 ポリマー鎖Bの他の例として、オキシアルキレン単位を主繰返し単位として含むポリマー鎖、すなわちオキシアルキレン系ポリマー鎖が挙げられる。オキシアルキレン系ポリマー鎖におけるオキシアルキレン単位の含有量は、典型的には50重量%超であり、70重量%以上であってもよく、85重量%以上であってもよく、95重量%以上であってもよい。ポリマー鎖Bに含まれる繰返し単位の実質的に全部がオキシアルキレン単位であってもよい。 Another example of the polymer chain B is a polymer chain containing an oxyalkylene unit as a main repeating unit, that is, an oxyalkylene polymer chain. The content of the oxyalkylene unit in the oxyalkylene polymer chain is typically more than 50% by weight, may be 70% by weight or more, may be 85% by weight or more, and may be 95% by weight or more. There may be. Substantially all of the repeating units contained in the polymer chain B may be oxyalkylene units.
 オキシアルキレン単位の例としては、オキシエチレン単位、オキシプロピレン単位、オキシブチレン単位等が挙げられる。このようなオキシアルキレン単位は、それぞれ、対応するアルキレンオキシドに由来する繰返し単位であり得る。オキシアルキレン系ポリマー鎖に含まれるオキシアルキレン単位は、一種類であってもよく、二種類以上であってもよい。例えば、オキシエチレン単位とオキシプロピレン単位とを組合せで含むオキシアルキレン系ポリマー鎖であってもよい。二種類以上のオキシアルキレン単位を含むオキシアルキレン系ポリマー鎖において、それらのオキシアルキレン単位は、対応するアルキレンオキシドのランダム共重合体であってもよく、ブロック共重合体であってもよく、交互共重合体やグラフト共重合体であってもよい。 Examples of the oxyalkylene unit include an oxyethylene unit, an oxypropylene unit, an oxybutylene unit and the like. Each such oxyalkylene unit can be a repeating unit derived from the corresponding alkylene oxide. The oxyalkylene unit contained in the oxyalkylene polymer chain may be one kind or two or more kinds. For example, it may be an oxyalkylene polymer chain containing an oxyethylene unit and an oxypropylene unit in combination. In an oxyalkylene polymer chain containing two or more kinds of oxyalkylene units, the oxyalkylene units may be random copolymers of corresponding alkylene oxides, block copolymers, or alternating copolymers. It may be a polymer or a graft copolymer.
 ポリマー鎖Bのさらに他の例として、アルキルビニルエーテル(例えば、炭素原子数1以上10以下のアルキル基を有するビニルエーテル)に由来する繰返し単位を含むポリマー鎖、モノカルボン酸ビニルエステル(例えば、炭素原子数3以上のモノカルボン酸のビニルエステル)に由来する繰返し単位を含むポリマー鎖、カチオン性基(例えば、第四級アンモニウム構造を有するカチオン性基)が導入されたポリマー鎖、等が挙げられる。 As yet another example of the polymer chain B, a polymer chain containing a repeating unit derived from an alkyl vinyl ether (for example, a vinyl ether having an alkyl group having 1 or more and 10 or less carbon atoms), a monocarboxylic acid vinyl ester (for example, the number of carbon atoms). Examples thereof include a polymer chain containing a repeating unit derived from (vinyl ester of 3 or more monocarboxylic acids), a polymer chain into which a cationic group (for example, a cationic group having a quaternary ammonium structure) is introduced, and the like.
 ヘイズ低減性能向上の観点から、ここに開示される技術における水溶性高分子としてのポリビニルアルコール系ポリマーは、VA単位および非VA単位を含む共重合体である変性ポリビニルアルコールであることが好ましい。また、水溶性高分子としてのポリビニルアルコール系ポリマーのけん化度は、通常は50モル%以上であり、好ましくは65モル%以上、より好ましくは70モル%以上、例えば75モル%以上である。なお、ポリビニルアルコール系ポリマーのけん化度は、原理上、100モル%以下である。 From the viewpoint of improving the haze reduction performance, the polyvinyl alcohol-based polymer as the water-soluble polymer in the technique disclosed herein is preferably a modified polyvinyl alcohol which is a copolymer containing VA units and non-VA units. The saponification degree of the polyvinyl alcohol-based polymer as the water-soluble polymer is usually 50 mol% or more, preferably 65 mol% or more, more preferably 70 mol% or more, for example, 75 mol% or more. In principle, the saponification degree of the polyvinyl alcohol-based polymer is 100 mol% or less.
 他のいくつかの態様においては、水溶性高分子としてN-ビニル型ポリマーが用いられ得る。N-ビニル型ポリマーの例には、窒素を含有する複素環(例えばラクタム環)を有するモノマーに由来する繰返し単位を含むポリマーが含まれる。このようなポリマーの例には、N-ビニルラクタム型モノマーの単独重合体および共重合体(例えば、N-ビニルラクタム型モノマーの共重合割合が50重量%を超える共重合体)、N-ビニル鎖状アミドの単独重合体および共重合体(例えば、N-ビニル鎖状アミドの共重合割合が50重量%を超える共重合体)等が含まれる。 In some other embodiments, the N-vinyl type polymer may be used as the water-soluble polymer. Examples of N-vinyl type polymers include polymers containing repeating units derived from monomers having a nitrogen-containing heterocycle (eg, a lactam ring). Examples of such polymers include homopolymers and copolymers of N-vinyl lactam type monomers (for example, copolymers in which the copolymerization ratio of N-vinyl lactam type monomers exceeds 50% by weight), N-vinyl. The homopolymer and the copolymer of the chain amide (for example, the copolymer in which the copolymerization ratio of the N-vinyl chain amide exceeds 50% by weight) and the like are included.
 N-ビニルラクタム型モノマー(すなわち、一分子内にラクタム構造とN-ビニル基とを有する化合物)の具体例としては、N-ビニルピロリドン(VP)、N-ビニルピペリドン、N-ビニルモルホリノン、N-ビニルカプロラクタム(VC)、N-ビニル-1,3-オキサジン-2-オン、N-ビニル-3,5-モルホリンジオン等が挙げられる。N-ビニルラクタム型のモノマー単位を含むポリマーの具体例としては、ポリビニルピロリドン、ポリビニルカプロラクタム、VPとVCとのランダム共重合体、VPおよびVCの一方または両方と他のビニルモノマー(例えば、アクリル系モノマー、ビニルエステル系モノマー等)とのランダム共重合体、VPおよびVCの一方または両方を含むポリマー鎖を含むブロック共重合体、交互共重合体やグラフト共重合体等が挙げられる。
 N-ビニル鎖状アミドの具体例としては、N-ビニルアセトアミド、N-ビニルプロピオン酸アミド、N-ビニル酪酸アミド等が挙げられる。
Specific examples of the N-vinyllactam type monomer (that is, a compound having a lactam structure and an N-vinyl group in one molecule) include N-vinylpyrrolidone (VP), N-vinylpiperidone, N-vinylmorpholinone, and N. -Vinyl caprolactam (VC), N-vinyl-1,3-oxadin-2-one, N-vinyl-3,5-morpholindione and the like can be mentioned. Specific examples of polymers containing N-vinyl lactam type monomer units include polyvinylpyrrolidone, polyvinylcaprolactam, random copolymers of VP and VC, one or both of VP and VC and other vinyl monomers (eg, acrylics). Examples include a random copolymer with (monomer, vinyl ester-based monomer, etc.), a block copolymer containing a polymer chain containing one or both of VP and VC, an alternate copolymer, a graft copolymer, and the like.
Specific examples of the N-vinyl chain amide include N-vinylacetamide, N-vinylpropionic acid amide, N-vinylbutyric acid amide and the like.
 他のいくつかの態様においては、水溶性高分子としてN-(メタ)アクリロイル型ポリマーが用いられ得る。N-(メタ)アクリロイル型ポリマーの例には、N-(メタ)アクリロイル型モノマーの単独重合体および共重合体(典型的には、N-(メタ)アクリロイル型モノマーの共重合割合が50重量%を超える共重合体)が含まれる。N-(メタ)アクリロイル型モノマーの例には、N-(メタ)アクリロイル基を有する鎖状アミドおよびN-(メタ)アクリロイル基を有する環状アミドが含まれる。 In some other embodiments, an N- (meth) acryloyl type polymer may be used as the water-soluble polymer. Examples of N- (meth) acryloyl-type polymers include homopolymers and copolymers of N- (meth) acryloyl-type monomers (typically, the copolymerization ratio of N- (meth) acryloyl-type monomers is 50 weight by weight. % (Copolymer) is included. Examples of N- (meth) acryloyl-type monomers include chain amides having an N- (meth) acryloyl group and cyclic amides having an N- (meth) acryloyl group.
 N-(メタ)アクリロイル基を有する鎖状アミドの例としては、(メタ)アクリルアミド;N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N-プロピル(メタ)アクリルアミド、N-イソプロピル(メタ)アクリルアミド、N-n-ブチル(メタ)アクリルアミド等のN-アルキル(メタ)アクリルアミド;N,N-ジメチル(メタ)アクリルアミド、N,N-ジエチル(メタ)アクリルアミド、N,N-ジプロピル(メタ)アクリルアミド、N,N-ジイソプロピル(メタ)アクリルアミド、N,N-ジ(n-ブチル)(メタ)アクリルアミド等のN,N-ジアルキル(メタ)アクリルアミド;等が挙げられる。N-(メタ)アクリロイル基を有する鎖状アミドをモノマー単位として含むポリマーの例として、N-イソプロピルアクリルアミドの単独重合体およびN-イソプロピルアクリルアミドの共重合体(例えば、N-イソプロピルアクリルアミドの共重合割合が50重量%を超える共重合体)が挙げられる。 Examples of chain amides having an N- (meth) acryloyl group are (meth) acrylamide; N-methyl (meth) acrylamide, N-ethyl (meth) acrylamide, N-propyl (meth) acrylamide, N-isopropyl ( N-alkyl (meth) acrylamide such as meta) acrylamide, Nn-butyl (meth) acrylamide; N, N-dimethyl (meth) acrylamide, N, N-diethyl (meth) acrylamide, N, N-dipropyl (meth) ) N, N-dialkyl (meth) acrylamide such as acrylamide, N, N-diisopropyl (meth) acrylamide, N, N-di (n-butyl) (meth) acrylamide; and the like. As an example of a polymer containing a chain amide having an N- (meth) acryloyl group as a monomer unit, a copolymer of N-isopropylacrylamide and a copolymer of N-isopropylacrylamide (for example, a copolymerization ratio of N-isopropylacrylamide) Is a copolymer in excess of 50% by weight).
 N-(メタ)アクリロイル基を有する環状アミドの例としては、N-アクリロイルモルホリン、N-アクリロイルチオモルホリン、N-アクリロイルピペリジン、N-アクリロイルピロリジン、N-メタクリロイルモルホリン、N-メタクリロイルピペリジン、N-メタクリロイルピロリジン等が挙げられる。N-(メタ)アクリロイル基を有する環状アミドをモノマー単位として含むポリマーの例として、アクリロイルモルホリン系ポリマー(PACMO)が挙げられる。アクリロイルモルホリン系ポリマーの典型例として、N-アクリロイルモルホリン(ACMO)の単独重合体およびACMOの共重合体(例えば、ACMOの共重合割合が50重量%を超える共重合体)が挙げられる。アクリロイルモルホリン系ポリマーにおいて、全繰返し単位のモル数に占めるACMO単位のモル数の割合は、通常は50%以上であり、80%以上(例えば90%以上、典型的には95%以上)であることが適当である。水溶性高分子の全繰返し単位が実質的にACMO単位から構成されていてもよい。 Examples of cyclic amides having an N- (meth) acryloyl group are N-acryloylmorpholine, N-acryloylthiomorpholine, N-acryloylpiperidin, N-acryloylpyridine, N-methacryloylmorpholine, N-methacryloylpiperidin, N-methacryloyl. Examples include pyrrolidine. An example of a polymer containing a cyclic amide having an N- (meth) acryloyl group as a monomer unit is an acryloyl morpholine polymer (PACMO). Typical examples of acryloylmorpholine-based polymers include homopolymers of N-acryloylmorpholine (ACMO) and copolymers of ACMO (for example, copolymers in which the copolymerization ratio of ACMO exceeds 50% by weight). In acryloyl morpholine-based polymers, the ratio of the number of moles of ACMO units to the number of moles of all repeating units is usually 50% or more, and 80% or more (for example, 90% or more, typically 95% or more). Is appropriate. All repeating units of the water-soluble polymer may be composed of substantially ACMO units.
 ここに開示される技術において、水溶性高分子の重量平均分子量(Mw)は特に限定されない。水溶性高分子のMwは、例えば凡そ200×10以下であってよく、凡そ150×10以下が適当であり、洗浄性等の観点から、好ましくは凡そ100×10以下であり、凡そ50×10以下であってもよい。また、研磨表面の保護性の観点から、水溶性高分子のMwは、例えば0.2×10以上であってもよく、0.5×10以上であることが好ましい。いくつかの態様において、上記Mwは1.0×10以上が適当であり、2×10以上であってもよく、例えば5×10以上でもよい。 In the technique disclosed herein, the weight average molecular weight (Mw) of the water-soluble polymer is not particularly limited. The Mw of the water-soluble polymer may be, for example, about 200 × 104 or less, and about 150 × 10 4 or less is appropriate, and from the viewpoint of detergency and the like, it is preferably about 100 × 104 or less, which is about 100 × 104 or less. It may be 50 × 10 4 or less. Further, from the viewpoint of protecting the polished surface, the Mw of the water-soluble polymer may be, for example, 0.2 × 104 or more, preferably 0.5 × 104 or more. In some embodiments, the Mw of 1.0 × 10 4 or more is suitable, and may be 2 × 10 4 or more, for example, 5 × 10 4 or more.
 ここに開示される技術において、好ましい水溶性高分子化合物の分子量の範囲は、使用するポリマーの種類によって異なり得る。例えば、セルロース誘導体およびデンプン誘導体のMwは、それぞれ凡そ200×10以下とすることができ、150×10以下が適当である。上記Mwは、凡そ100×10以下であってもよく、凡そ50×10以下(例えば凡そ30×10以下)でもよい。また、研磨表面の保護性の観点から、上記Mwは、例えば凡そ0.2×10以上であり、凡そ0.5×10以上であることが適当であり、好ましくは凡そ1.0×10以上、より好ましくは凡そ3.0×10以上、さらに好ましくは凡そ10×10以上であり、凡そ20×10以上であってもよい。 In the techniques disclosed herein, the range of molecular weights of preferred water-soluble polymeric compounds may vary depending on the type of polymer used. For example, the Mw of the cellulose derivative and the starch derivative can be approximately 200 × 104 or less, respectively , and 150 × 104 or less is appropriate. The Mw may be about 100 × 10 4 or less, or about 50 × 10 4 or less (for example, about 30 × 10 4 or less). Further, from the viewpoint of the protective property of the polished surface, it is appropriate that the Mw is, for example, about 0.2 × 104 or more, about 0.5 × 104 or more, and preferably about 1.0 ×. It may be 104 or more, more preferably about 3.0 × 10 4 or more, still more preferably about 10 × 10 4 or more, and more preferably about 20 × 10 4 or more.
 また例えば、ポリビニルアルコール系ポリマーおよび窒素原子を含有するポリマーのMwは、それぞれ、100×10以下とすることができ、60×10以下が適当である。濃縮能率等の観点から、上記Mwは、30×10以下であってもよく、好ましくは20×10以下、例えば10×10以下、典型的には8×10以下であってもよい。また、研磨表面を好適に保護してヘイズを低減するという観点から、Mwは例えば0.2×10以上であってもよく、通常は0.5×10以上であることが好ましい。いくつかの態様において、Mwは1.0×10以上が適当であり、好ましくは1.5×10以上、より好ましくは2×10以上、さらに好ましくは3×10以上であり、例えば4×10以上であってもよく、5×10以上でもよい。 Further, for example, the Mw of the polyvinyl alcohol-based polymer and the polymer containing a nitrogen atom can be 100 × 10 4 or less, respectively, and 60 × 10 4 or less is appropriate. From the viewpoint of concentration efficiency and the like, the Mw may be 30 × 10 4 or less, preferably 20 × 10 4 or less, for example, 10 × 10 4 or less, typically 8 × 10 4 or less. good. Further, from the viewpoint of suitably protecting the polished surface and reducing haze, Mw may be, for example, 0.2 × 104 or more, and usually 0.5 × 104 or more is preferable. In some embodiments, Mw of 1.0 × 104 or more is suitable, preferably 1.5 × 10 4 or more, more preferably 2 × 10 4 or more, still more preferably 3 × 10 4 or more. For example, it may be 4 × 10 4 or more, or 5 × 10 4 or more.
 水溶性高分子のMwとしては、水系のゲルパーミエーションクロマトグラフィ(GPC)に基づく値(水系、ポリエチレンオキシド換算)から算出される分子量を採用することができる。GPC測定装置としては、東ソー株式会社製の機種名「HLC-8320GPC」を用いるとよい。測定は、例えば下記の条件で行うことができる。後述の実施例についても同様の方法が採用される。
  [GPC測定条件]
  サンプル濃度:0.1重量%
  カラム:TSKgel GMPWXL
  検出器:示差屈折計
  溶離液:100mM 硝酸ナトリウム水溶液/アセトニトリル=10~8/0~2
  流速:1mL/分
  測定温度:40℃
  サンプル注入量:200μL
As the Mw of the water-soluble polymer, a molecular weight calculated from a value (water-based, in terms of polyethylene oxide) based on water-based gel permeation chromatography (GPC) can be adopted. As the GPC measuring device, it is preferable to use the model name "HLC-8320GPC" manufactured by Tosoh Corporation. The measurement can be performed under the following conditions, for example. The same method is adopted for the examples described later.
[GPC measurement conditions]
Sample concentration: 0.1% by weight
Column: TSKgel GMPWXL
Detector: Differential refractometer Eluent: 100 mM sodium nitrate aqueous solution / acetonitrile = 10-8 / 0-2
Flow velocity: 1 mL / min Measurement temperature: 40 ° C
Sample injection volume: 200 μL
 凝集物の低減や洗浄性向上等の観点から、水溶性高分子としてはノニオン性のポリマーを好ましく採用し得る。また、化学構造や純度の制御容易性の観点から、水溶性高分子として合成ポリマーを好ましく採用し得る。例えば、ここに開示される技術が、水溶性高分子として合成ポリマーを含む態様で実施される場合、研磨用組成物は、水溶性高分子として天然物由来のポリマーを実質的に使用しないものであり得る。ここで、実質的に使用しないとは、水溶性高分子の合計含有量100重量部に対する天然物由来のポリマーの使用量が、典型的には3重量部以下、好ましくは1重量部以下であることをいい、0重量部または検出限界以下であることを包含する。 From the viewpoint of reducing aggregates and improving detergency, a nonionic polymer can be preferably adopted as the water-soluble polymer. Further, from the viewpoint of easy control of the chemical structure and purity, a synthetic polymer can be preferably adopted as the water-soluble polymer. For example, when the technique disclosed herein is carried out in a manner comprising a synthetic polymer as a water-soluble polymer, the polishing composition is one in which the polymer derived from a natural product is substantially not used as the water-soluble polymer. possible. Here, "substantially not used" means that the amount of the polymer derived from a natural product used is typically 3 parts by weight or less, preferably 1 part by weight or less, based on 100 parts by weight of the total content of the water-soluble polymer. This means 0 parts by weight or below the detection limit.
 研磨用組成物における水溶性高分子の含有量(重量基準の含有量)は、特に限定されない。例えば1.0×10-4重量%以上とすることができる。ヘイズ低減等の観点から、好ましい含有量は5.0×10-4重量%以上であり、より好ましくは1.0×10-3重量%以上、さらに好ましくは2.0×10-3重量%以上、例えば5.0×10-3重量%以上である。また、研磨除去速度等の観点から、上記含有量を0.2重量%以下とすることが好ましく、0.1重量%以下とすることがより好ましく、0.05重量%以下(例えば0.02重量%以下、さらには0.015重量%以下)とすることがさらに好ましい。なお、上記研磨用組成物が二種以上の水溶性高分子を含む場合、上記含有量とは該研磨用組成物に含まれる全ての水溶性高分子の合計含有量(重量基準の含有量)のことをいう。これらの含有量は、例えば、基板に供給される研磨液(ワーキングスラリー)における含有量に好ましく適用され得る。 The content of the water-soluble polymer (content on a weight basis) in the polishing composition is not particularly limited. For example, it can be 1.0 × 10 -4 % by weight or more. From the viewpoint of haze reduction and the like, the preferable content is 5.0 × 10 -4 % by weight or more, more preferably 1.0 × 10 -3 % by weight or more, and further preferably 2.0 × 10 -3 % by weight. The above is, for example, 5.0 × 10 -3 % by weight or more. Further, from the viewpoint of polishing removal speed and the like, the content is preferably 0.2% by weight or less, more preferably 0.1% by weight or less, and 0.05% by weight or less (for example, 0.02). It is more preferably 0% by weight or less, more preferably 0.015% by weight or less). When the polishing composition contains two or more kinds of water-soluble polymers, the above-mentioned content is the total content (weight-based content) of all the water-soluble polymers contained in the polishing composition. It means that. These contents can be preferably applied to the content in the polishing liquid (working slurry) supplied to the substrate, for example.
 水溶性高分子の含有量(二種以上の水溶性高分子を含む場合にはそれらの合計量)は、砥粒との相対的関係によっても特定され得る。特に限定するものではないが、いくつかの態様において、砥粒100重量部に対する水溶性高分子の含有量は、例えば0.01重量部以上とすることができ、ヘイズ低減等の観点から0.1重量部以上とすることが適当であり、好ましくは0.5重量部以上、より好ましくは1重量部以上、さらに好ましくは3重量部以上であり、例えば4重量部以上であってもよい。また、砥粒100重量部に対する水溶性高分子の含有量は、例えば50重量部以下であってもよく、30重量部以下でもよい。研磨用組成物の分散安定性等の観点から、いくつかの態様において、砥粒100重量部に対する水溶性高分子の含有量は、15重量部以下とすることが適当であり、好ましくは10重量部以下であり、8重量部以下としてもよく、7重量部以下でもよい。 The content of the water-soluble polymer (the total amount of two or more kinds of water-soluble polymers when they are contained) can also be specified by the relative relationship with the abrasive grains. Although not particularly limited, in some embodiments, the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains can be, for example, 0.01 part by weight or more, and is 0. It is appropriate that the amount is 1 part by weight or more, preferably 0.5 part by weight or more, more preferably 1 part by weight or more, still more preferably 3 parts by weight or more, and for example, 4 parts by weight or more. Further, the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains may be, for example, 50 parts by weight or less, or 30 parts by weight or less. From the viewpoint of dispersion stability of the polishing composition and the like, in some embodiments, the content of the water-soluble polymer with respect to 100 parts by weight of the abrasive grains is preferably 15 parts by weight or less, preferably 10 parts by weight. It may be 8 parts by weight or less, and may be 7 parts by weight or less.
 <その他の成分>
 ここに開示される研磨用組成物は、本発明の効果が著しく妨げられない範囲で、例えば界面活性剤、有機酸、有機酸塩、無機酸、無機酸塩、キレート剤、防腐剤、防カビ剤等の、研磨用組成物(例えばシリコンウェーハの仕上げポリシング工程に用いられる研磨用組成物)に用いられ得る公知の添加剤を、必要に応じてさらに含有してもよい。
<Other ingredients>
The polishing compositions disclosed herein are, for example, surfactants, organic acids, organic acid salts, inorganic acids, inorganic acid salts, chelating agents, preservatives, antifungal agents, to the extent that the effects of the present invention are not significantly impaired. If necessary, a known additive that can be used in a polishing composition (for example, a polishing composition used in a finishing polishing step of a silicon wafer) such as an agent may be further contained.
 ここに開示される研磨用組成物には、必要に応じて、界面活性剤を含有させることができる。研磨用組成物に界面活性剤を含有させることにより、研磨後の研磨対象物表面のヘイズをよりよく低減し得る。界面活性剤としては、アニオン性、カチオン性、ノニオン性、両性のいずれのものも使用可能である。通常は、アニオン性またはノニオン性の界面活性剤を好ましく採用し得る。低起泡性やpH調整の容易性の観点から、ノニオン性の界面活性剤がより好ましい。例えば、ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコール等のオキシアルキレン重合体;ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ポリオキシエチレンアルキルアミン、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリルエーテル脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル等のポリオキシアルキレン誘導体(例えば、ポリオキシアルキレン付加物);複数種のオキシアルキレンの共重合体(例えば、ジブロック型共重合体、トリブロック型共重合体、ランダム型共重合体、交互共重合体);等のノニオン性界面活性剤が挙げられる。上記界面活性剤としては、ポリオキシアルキレン構造を含有する界面活性剤を含むことが好ましい。界面活性剤は、一種を単独でまたは二種以上を組み合わせて用いることができる。 The polishing composition disclosed herein may contain a surfactant, if necessary. By including the surfactant in the polishing composition, the haze on the surface of the object to be polished after polishing can be better reduced. As the surfactant, any of anionic, cationic, nonionic and amphoteric ones can be used. Usually, anionic or nonionic surfactants may be preferably employed. Nonionic surfactants are more preferable from the viewpoint of low foaming property and ease of pH adjustment. For example, oxyalkylene polymers such as polyethylene glycol, polypropylene glycol and polytetramethylene glycol; polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene alkyl amine, polyoxyethylene fatty acid ester, polyoxyethylene glyceryl ether fatty acid. Polyoxyalkylene derivatives such as esters and polyoxyethylene sorbitan fatty acid esters (eg, polyoxyalkylene adducts); copolymers of multiple oxyalkylenes (eg, diblock type copolymers, triblock type copolymers, etc.) Random type copolymers, alternate copolymers); and the like are nonionic surfactants. The surfactant preferably contains a surfactant containing a polyoxyalkylene structure. The surfactant may be used alone or in combination of two or more.
 ポリオキシアルキレン構造を含有するノニオン性界面活性剤の具体例としては、エチレンオキサイド(EO)とプロピレンオキサイド(PO)とのブロック共重合体(ジブロック型共重合体、PEO(ポリエチレンオキサイド)-PPO(ポリプロピレンオキサイド)-PEO型トリブロック体、PPO-PEO-PPO型のトリブロック共重合体等)、EOとPOとのランダム共重合体、ポリオキシエチレングリコール、ポリオキシエチレンプロピルエーテル、ポリオキシエチレンブチルエーテル、ポリオキシエチレンペンチルエーテル、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレン-2-エチルヘキシルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンデシルエーテル、ポリオキシエチレンイソデシルエーテル、ポリオキシエチレントリデシルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンセチルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンイソステアリルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンフェニルエーテル、ポリオキシエチレンオクチルフェニルエーテル、ポリオキシエチレンノニルフェニルエーテル、ポリオキシエチレンドデシルフェニルエーテル、ポリオキシエチレンスチレン化フェニルエーテル、ポリオキシエチレンラウリルアミン、ポリオキシエチレンステアリルアミン、ポリオキシエチレンオレイルアミン、ポリオキシエチレンモノラウリン酸エステル、ポリオキシエチレンモノステアリン酸エステル、ポリオキシエチレンジステアリン酸エステル、ポリオキシエチレンモノオレイン酸エステル、ポリオキシエチレンジオレイン酸エステル、モノラウリン酸ポリオキシエチレンソルビタン、モノパルチミン酸ポリオキシエチレンソルビタン、モノステアリン酸ポリオキシエチレンソルビタン、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、テトラオレイン酸ポリオキシエチレンソルビット、ポリオキシエチレンヒマシ油、ポリオキシエチレン硬化ヒマシ油等が挙げられる。なかでも好ましい界面活性剤として、EOとPOとのブロック共重合体(特に、PEO-PPO-PEO型のトリブロック共重合体)、EOとPOとのランダム共重合体およびポリオキシエチレンアルキルエーテル(例えばポリオキシエチレンデシルエーテル)が挙げられる。 Specific examples of the nonionic surfactant containing a polyoxyalkylene structure include a block copolymer of ethylene oxide (EO) and propylene oxide (PO) (diblock type copolymer, PEO (polyethylene oxide) -PPO). (Polypropylene oxide) -PEO type triblock, PPO-PEO-PPO type triblock copolymer, etc.), random copolymer of EO and PO, polyoxyethylene glycol, polyoxyethylene propyl ether, polyoxyethylene Butyl ether, polyoxyethylene pentyl ether, polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene-2-ethylhexyl ether, polyoxyethylene nonyl ether, polyoxyethylene decyl ether, polyoxyethylene isodecyl ether, polyoxy Ethethylenetridecyl ether, polyoxyethylene lauryl ether, polyoxyethylene cetyl ether, polyoxyethylene stearyl ether, polyoxyethylene isostearyl ether, polyoxyethylene oleyl ether, polyoxyethylene phenyl ether, polyoxyethylene octylphenyl ether, poly Oxyethylene nonylphenyl ether, polyoxyethylene dodecylphenyl ether, polyoxyethylene styrene phenyl ether, polyoxyethylene laurylamine, polyoxyethylene stearylamine, polyoxyethylene oleylamine, polyoxyethylene monolauric acid ester, polyoxyethylene monosteare Acid ester, polyoxyethylene distearate, polyoxyethylene monooleic acid ester, polyoxyethylene dioleic acid ester, monolauric acid polyoxyethylene sorbitan, monopartimate polyoxyethylene sorbitan, monostearate polyoxyethylene sorbitan, mono Examples thereof include polyoxyethylene sorbitan oleate, polyoxyethylene sorbitan trioleate, polyoxyethylene sorbit tetraoleate, polyoxyethylene glycol oil, and polyoxyethylene hydrogenated castor oil. Among them, block copolymers of EO and PO (particularly, PEO-PPO-PEO type triblock copolymers), random copolymers of EO and PO, and polyoxyethylene alkyl ethers (particularly, PEO-PPO-PEO type triblock copolymers) are preferable surfactants. For example, polyoxyethylene decyl ether).
 界面活性剤の重量平均分子量(Mws)は、典型的には2000未満であり、濾過性や洗浄性等の観点から1900以下(例えば1800未満)であることが好ましい。また、界面活性剤のMwsは、界面活性能等の観点から、通常、200以上であることが適当であり、ヘイズ低減効果等の観点から250以上(例えば300以上)であることが好ましい。界面活性剤のMwsのより好ましい範囲は、該界面活性剤の種類によっても異なり得る。例えば、界面活性剤としてポリオキシエチレンアルキルエーテルを用いる場合、そのMwsは、1500以下であることが好ましく、1000以下(例えば500以下)であってもよい。また、例えば界面活性剤としてPEO-PPO-PEO型のトリブロック共重合体を用いる場合、そのMwsは、例えば500以上であってよく、1000以上であってもよく、さらには1200以上であってもよい。界面活性剤の分子量としては、上記GPCにより求められる重量平均分子量(Mw)または化学式から算出される分子量を採用することができる。 The weight average molecular weight (Mws) of the surfactant is typically less than 2000, and is preferably 1900 or less (for example, less than 1800) from the viewpoint of filterability, detergency and the like. Further, the Mws of the surfactant is usually preferably 200 or more from the viewpoint of surface activity ability and the like, and preferably 250 or more (for example, 300 or more) from the viewpoint of haze reducing effect and the like. A more preferred range of Mws of the surfactant may also vary depending on the type of the surfactant. For example, when polyoxyethylene alkyl ether is used as the surfactant, its Mws is preferably 1500 or less, and may be 1000 or less (for example, 500 or less). Further, for example, when a PEO-PPO-PEO type triblock copolymer is used as a surfactant, the Mws thereof may be, for example, 500 or more, 1000 or more, and further 1200 or more. May be good. As the molecular weight of the surfactant, the weight average molecular weight (Mw) obtained by the above GPC or the molecular weight calculated from the chemical formula can be adopted.
 ここに開示される研磨用組成物が界面活性剤を含む場合、その含有量は、本発明の効果を著しく阻害しない範囲であれば特に制限はない。研磨用組成物における界面活性剤の含有量は、例えば1.0×10-6重量%以上とすることができ、ヘイズ低減の観点から、上記含有量を5.0×10-6重量%以上とすることが適当であり、1.0×10-5重量%以上とすることが好ましく、5.0×10-5重量%以上とすることがさらに好ましい。また、上記界面活性剤の含有量は、0.5重量%以下とすることができ、研磨能率や洗浄性等の観点から、0.25重量%以下とすることが適当であり、0.1重量以下とすることが好ましく、0.05重量%以下とすることがより好ましい。上記の界面活性剤含有量は、研磨用組成物が研磨液の形態で用いられる態様において好ましく採用され得る。 When the polishing composition disclosed herein contains a surfactant, the content thereof is not particularly limited as long as it does not significantly impair the effects of the present invention. The content of the surfactant in the polishing composition can be, for example, 1.0 × 10 -6 % by weight or more, and from the viewpoint of haze reduction, the above content can be 5.0 × 10 -6 % by weight or more. It is appropriate, preferably 1.0 × 10-5 % by weight or more, and more preferably 5.0 × 10-5 % by weight or more. Further, the content of the surfactant can be 0.5% by weight or less, and it is appropriate to set it to 0.25% by weight or less from the viewpoint of polishing efficiency, detergency and the like, and 0.1. It is preferably not more than the weight, more preferably 0.05% by weight or less. The above-mentioned surfactant content can be preferably adopted in an embodiment in which the polishing composition is used in the form of a polishing liquid.
 また、界面活性剤の含有量は砥粒との相対関係によっても特定され得る。通常は、洗浄性等の観点から、砥粒100重量部に対する界面活性剤の含有量を20重量部以下とすることが適当であり、15重量部以下が好ましく、10重量部以下(例えば6重量部以下)がより好ましい。界面活性剤の使用効果をよりよく発揮させる観点から、砥粒100重量部に対する界面活性剤含有量は、0.001重量部以上が適当であり、0.005重量部以上が好ましく、0.01重量部以上でもよく0.05重量部以上でもよい。 The content of the surfactant can also be specified by the relative relationship with the abrasive grains. Usually, from the viewpoint of detergency and the like, it is appropriate that the content of the surfactant with respect to 100 parts by weight of the abrasive grains is 20 parts by weight or less, preferably 15 parts by weight or less, and 10 parts by weight or less (for example, 6 parts by weight). (Parts or less) is more preferable. From the viewpoint of better exerting the effect of using the surfactant, the content of the surfactant with respect to 100 parts by weight of the abrasive grains is preferably 0.001 part by weight or more, preferably 0.005 part by weight or more, preferably 0.01. It may be more than 0.05 parts by weight or more than 0.05 parts by weight.
 有機酸およびその塩、ならびに無機酸およびその塩は、一種を単独でまたは二種以上を組み合わせて用いることができる。有機酸の例としては、ギ酸、酢酸、プロピオン酸等の脂肪酸、安息香酸、フタル酸等の芳香族カルボン酸、イタコン酸、クエン酸、シュウ酸、酒石酸、リンゴ酸、マレイン酸、フマル酸、コハク酸、グリコール酸、マロン酸、グルコン酸、アラニン、グリシン、乳酸、ヒドロキシエチリデン二リン酸(HEDP)、メタンスルホン酸等の有機スルホン酸、ニトリロトリス(メチレンリン酸)(NTMP)、ホスホノブタントリカルボン酸(PBTC)等の有機ホスホン酸等が挙げられる。有機酸塩の例としては、有機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩等が挙げられる。無機酸の例としては、塩酸、リン酸、硫酸、ホスホン酸、硝酸、ホスフィン酸、ホウ酸、炭酸等が挙げられる。無機酸塩の例としては、無機酸のアルカリ金属塩(ナトリウム塩、カリウム塩等)やアンモニウム塩が挙げられる。 The organic acid and its salt, and the inorganic acid and its salt can be used alone or in combination of two or more. Examples of organic acids include fatty acids such as formic acid, acetic acid and propionic acid, aromatic carboxylic acids such as benzoic acid and phthalic acid, itaconic acid, citric acid, oxalic acid, tartrate acid, malic acid, maleic acid, fumaric acid and succinic acid. Organic sulfonic acids such as acid, glycolic acid, malonic acid, gluconic acid, alanine, glycine, lactic acid, hydroxyethylidene diphosphate (HEDP), methanesulfonic acid, nitrilotris (methylenephosphate) (NTMP), phosphonobustan tricarbonate. Examples thereof include organic phosphonic acids such as acid (PBTC). Examples of the organic acid salt include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of organic acids. Examples of inorganic acids include hydrochloric acid, phosphoric acid, sulfuric acid, phosphonic acid, nitric acid, phosphinic acid, boric acid, carbonic acid and the like. Examples of inorganic acid salts include alkali metal salts (sodium salt, potassium salt, etc.) and ammonium salts of inorganic acids.
 上記キレート剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。上記キレート剤の例としては、アミノカルボン酸系キレート剤および有機ホスホン酸系キレート剤が挙げられる。キレート剤の好適例としては、例えばエチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)およびジエチレントリアミン五酢酸が挙げられる。上記防腐剤および防カビ剤の例としては、イソチアゾリン系化合物、パラオキシ安息香酸エステル類、フェノキシエタノール等が挙げられる。 The above chelating agent may be used alone or in combination of two or more. Examples of the chelating agent include an aminocarboxylic acid-based chelating agent and an organic phosphonic acid-based chelating agent. Preferable examples of the chelating agent include, for example, ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta (methylenephosphonic acid) and diethylenetriaminepentaacetic acid. Examples of the preservatives and fungicides include isothiazolinone compounds, paraoxybenzoic acid esters, phenoxyethanol and the like.
 ここに開示される研磨用組成物は、酸化剤を実質的に含まないことが好ましい。研磨用組成物中に酸化剤が含まれていると、当該研磨用組成物が基板(例えばシリコンウェーハ)に供給されることで該基板の表面が酸化されて酸化膜が生じ、これにより研磨レートが低下してしまうことがあり得るためである。ここでいう酸化剤の具体例としては、過酸化水素(H)、過硫酸ナトリウム、過硫酸アンモニウム、ジクロロイソシアヌル酸ナトリウム等が挙げられる。なお、研磨用組成物が酸化剤を実質的に含まないとは、少なくとも意図的には酸化剤を含有させないことをいう。したがって、原料や製法等に由来して微量(例えば、研磨用組成物中における酸化剤のモル濃度が0.0005モル/L以下、好ましくは0.0001モル/L以下、より好ましくは0.00001モル/L以下、特に好ましくは0.000001モル/L以下)の酸化剤が不可避的に含まれている研磨用組成物は、ここでいう酸化剤を実質的に含有しない研磨用組成物の概念に包含され得る。 The polishing composition disclosed herein preferably contains substantially no oxidant. When the polishing composition contains an oxidizing agent, the polishing composition is supplied to a substrate (for example, a silicon wafer) to oxidize the surface of the substrate to form an oxide film, which causes a polishing rate. This is because it may decrease. Specific examples of the oxidizing agent referred to here include hydrogen peroxide (H 2 O 2 ), sodium persulfate, ammonium persulfate, sodium dichloroisocyanurate, and the like. In addition, the fact that the polishing composition does not substantially contain an oxidizing agent means that it does not contain an oxidizing agent at least intentionally. Therefore, a trace amount (for example, the molar concentration of the oxidizing agent in the polishing composition is 0.0005 mol / L or less, preferably 0.0001 mol / L or less, more preferably 0.00001) derived from the raw material, the manufacturing method, or the like. The polishing composition inevitably containing an oxidizing agent of mol / L or less, particularly preferably 0.000001 mol / L or less, is the concept of the polishing composition substantially free of the oxidizing agent. Can be included in.
 <pH>
 ここに開示される研磨用組成物のpHは特に限定されず、基板や砥粒種等に応じて適当なpHが採用され得る。いくつかの態様において、研磨用組成物のpHは8.0以上が適当であり、好ましくは8.5以上、より好ましくは9.0以上である。研磨用組成物のpHが高くなると、研磨能率が向上する傾向にある。一方、砥粒(例えばシリカ粒子)の溶解を防いで機械的な研磨作用の低下を抑制する観点から、研磨用組成物のpHは、通常、12.0以下であることが適当であり、11.0以下であることが好ましく、10.8以下であることがより好ましく、10.5以下であることがさらに好ましい。
<pH>
The pH of the polishing composition disclosed herein is not particularly limited, and an appropriate pH may be adopted depending on the substrate, abrasive grain type, and the like. In some embodiments, the pH of the polishing composition is preferably 8.0 or higher, preferably 8.5 or higher, more preferably 9.0 or higher. As the pH of the polishing composition increases, the polishing efficiency tends to improve. On the other hand, from the viewpoint of preventing the dissolution of abrasive grains (for example, silica particles) and suppressing the deterioration of the mechanical polishing action, it is usually appropriate that the pH of the polishing composition is 12.0 or less. It is preferably 0.0 or less, more preferably 10.8 or less, and even more preferably 10.5 or less.
 なお、ここに開示される技術において、研磨用組成物のpHは、pHメーター(例えば、堀場製作所製のガラス電極式水素イオン濃度指示計(型番F-72))を使用し、標準緩衝液(フタル酸塩pH緩衝液 pH:4.01(25℃)、中性リン酸塩pH緩衝液 pH:6.86(25℃)、炭酸塩pH緩衝液 pH:10.01(25℃))を用いて3点校正した後で、ガラス電極を測定対象の組成物に入れて、2分以上経過して安定した後の値を測定することにより把握することができる。 In the technique disclosed herein, the pH of the polishing composition is a standard buffer solution (for example, a glass electrode type hydrogen ion concentration indicator (model number F-72) manufactured by Horiba Seisakusho). Phphthalate pH buffer pH: 4.01 (25 ° C), neutral phosphate pH buffer pH: 6.86 (25 ° C), carbonate pH buffer pH: 10.01 (25 ° C)) It can be grasped by calibrating at three points using the pH, placing the glass electrode in the composition to be measured, and measuring the value after it has stabilized after 2 minutes or more.
 <研磨液>
 ここに開示される研磨用組成物は、典型的には該研磨用組成物を含む研磨液の形態で基板の表面上に供給され、その基板の研磨に用いられる。上記研磨液は、例えば、ここに開示されるいずれかの研磨用組成物を希釈(典型的には、水により希釈)して調製されたものであり得る。あるいは、該研磨用組成物をそのまま研磨液として使用してもよい。すなわち、ここに開示される技術における研磨用組成物の概念には、基板に供給されて該基板の研磨に用いられる研磨液(ワーキングスラリー)と、希釈して研磨液として用いられる濃縮液(研磨液の原液)との双方が包含される。ここに開示される研磨用組成物を含む研磨液の他の例として、該組成物のpHを調整してなる研磨液が挙げられる。
<Abrasive liquid>
The polishing composition disclosed herein is typically supplied onto the surface of a substrate in the form of a polishing liquid containing the polishing composition and used for polishing the substrate. The polishing liquid may be prepared, for example, by diluting (typically diluting with water) any of the polishing compositions disclosed herein. Alternatively, the polishing composition may be used as it is as a polishing liquid. That is, the concept of the polishing composition in the technique disclosed herein includes a polishing liquid (working slurry) supplied to a substrate and used for polishing the substrate, and a concentrated liquid (polishing) diluted and used as the polishing liquid. Both with the undiluted solution of the solution) are included. As another example of the polishing liquid containing the polishing composition disclosed herein, there is a polishing liquid obtained by adjusting the pH of the composition.
 <濃縮液>
 ここに開示される研磨用組成物は、基板に供給される前には濃縮された形態(すなわち、研磨液の濃縮液の形態)であってもよい。このように濃縮された形態の研磨用組成物は、製造、流通、保存等の際における利便性やコスト低減等の観点から有利である。濃縮倍率は特に限定されず、例えば、体積換算で2倍~100倍程度とすることができ、通常は5倍~50倍程度(例えば10倍~40倍程度)が適当である。
 このような濃縮液は、所望のタイミングで希釈して研磨液(ワーキングスラリー)を調製し、該研磨液を基板に供給する態様で使用することができる。上記希釈は、例えば、上記濃縮液に水を加えて混合することにより行うことができる。
<Concentrate>
The polishing composition disclosed herein may be in a concentrated form (ie, in the form of a concentrated solution of the polishing solution) before being supplied to the substrate. The polishing composition in such a concentrated form is advantageous from the viewpoint of convenience and cost reduction in manufacturing, distribution, storage and the like. The concentration ratio is not particularly limited, and can be, for example, about 2 to 100 times in terms of volume, and usually about 5 to 50 times (for example, about 10 to 40 times) is appropriate.
Such a concentrated liquid can be diluted at a desired timing to prepare a polishing liquid (working slurry), and the polishing liquid can be used in a mode of supplying the polishing liquid to the substrate. The dilution can be performed, for example, by adding water to the concentrate and mixing.
 また、希釈して研磨に用いられる研磨用組成物(すなわち濃縮液)の場合、上記濃縮液における砥粒の含有量は、例えば25重量%以下とすることができる。研磨用組成物の分散安定性や濾過性等の観点から、通常、上記含有量は、好ましくは20重量%以下であり、より好ましくは15重量%以下である。好ましい一態様において、砥粒の含有量を10重量%以下としてもよく、5重量%以下としてもよい。また、製造、流通、保存等の際における利便性やコスト低減等の観点から、濃縮液における砥粒の含有量は、例えば0.1重量%以上とすることができ、好ましくは0.5重量%以上、より好ましくは0.7重量%以上、さらに好ましくは1重量%以上である。 Further, in the case of a polishing composition (that is, a concentrated solution) diluted and used for polishing, the content of abrasive grains in the concentrated solution can be, for example, 25% by weight or less. From the viewpoint of dispersion stability, filterability and the like of the polishing composition, the content is usually preferably 20% by weight or less, more preferably 15% by weight or less. In a preferred embodiment, the content of the abrasive grains may be 10% by weight or less, or 5% by weight or less. Further, from the viewpoint of convenience and cost reduction in manufacturing, distribution, storage, etc., the content of abrasive grains in the concentrate can be, for example, 0.1% by weight or more, preferably 0.5% by weight. % Or more, more preferably 0.7% by weight or more, still more preferably 1% by weight or more.
 <研磨用組成物の調製>
 ここに開示される技術において使用される研磨用組成物は、一剤型であってもよく、二剤型を始めとする多剤型であってもよい。例えば、研磨用組成物の構成成分のうち少なくとも砥粒を含むパートAと、残りの成分の少なくとも一部を含むパートBとを混合し、これらを必要に応じて適切なタイミングで混合および希釈することにより研磨液が調製されるように構成されていてもよい。
<Preparation of polishing composition>
The polishing composition used in the technique disclosed herein may be a one-dosage form or a multi-dosage form including a two-dosage form. For example, part A containing at least abrasive grains among the constituents of the polishing composition and part B containing at least a part of the remaining components are mixed, and these are mixed and diluted at appropriate timings as necessary. This may be configured to prepare the polishing liquid.
 研磨用組成物の調製方法は特に限定されない。例えば、翼式攪拌機、超音波分散機、ホモミキサー等の周知の混合装置を用いて、研磨用組成物を構成する各成分を混合するとよい。これらの成分を混合する態様は特に限定されず、例えば全成分を一度に混合してもよく、適宜設定した順序で混合してもよい。 The method for preparing the polishing composition is not particularly limited. For example, it is preferable to mix each component constituting the polishing composition by using a well-known mixing device such as a blade type stirrer, an ultrasonic disperser, and a homomixer. The mode in which these components are mixed is not particularly limited, and for example, all the components may be mixed at once, or may be mixed in an appropriately set order.
 <用途>
 ここに開示される研磨用組成物は、種々の材質および形状を有する基板の研磨に適用され得る。基板の材質は、例えば、シリコン、アルミニウム、ニッケル、タングステン、銅、タンタル、チタン、ステンレス鋼等の金属もしくは半金属、またはこれらの合金;石英ガラス、アルミノシリケートガラス、ガラス状カーボン等のガラス状物質;アルミナ、シリカ、サファイア、窒化ケイ素、窒化タンタル、炭化チタン等のセラミック材料;炭化ケイ素、窒化ガリウム、ヒ化ガリウム等の化合物半導体基板材料;ポリイミド樹脂等の樹脂材料;等であり得る。これらのうち複数の材質により構成された基板であってもよい。基板の形状は特に制限されない。ここに開示される研磨用組成物は、例えば、板状や多面体状等の、平面を有する基板の研磨、もしくは基板の端部の研磨(例えばウェーハエッジの研磨)に適用され得る。
<Use>
The polishing composition disclosed herein can be applied to the polishing of substrates having various materials and shapes. The material of the substrate is, for example, a metal or semi-metal such as silicon, aluminum, nickel, tungsten, copper, tantalum, titanium, stainless steel, or an alloy thereof; a glassy substance such as quartz glass, aluminosilicate glass, and glassy carbon. It can be a ceramic material such as alumina, silica, sapphire, silicon nitride, tantalum nitride, titanium carbide; a compound semiconductor substrate material such as silicon carbide, gallium nitride, gallium arsenide; a resin material such as a polyimide resin; and the like. Of these, a substrate made of a plurality of materials may be used. The shape of the substrate is not particularly limited. The polishing composition disclosed herein may be applied, for example, to polishing a substrate having a flat surface such as a plate or a polyhedron, or polishing an end portion of the substrate (for example, polishing a wafer edge).
 ここに開示される研磨用組成物は、シリコンからなる表面の研磨(典型的にはシリコンウェーハの研磨)に特に好ましく使用され得る。ここでいうシリコンウェーハの典型例はシリコン単結晶ウェーハであり、例えば、シリコン単結晶インゴットをスライスして得られたシリコン単結晶ウェーハである。 The polishing composition disclosed herein can be particularly preferably used for polishing a surface made of silicon (typically polishing a silicon wafer). A typical example of the silicon wafer referred to here is a silicon single crystal wafer, for example, a silicon single crystal wafer obtained by slicing a silicon single crystal ingot.
 ここに開示される研磨用組成物は、基板(例えばシリコンウェーハ)のポリシング工程に好ましく適用することができる。基板には、ここに開示される研磨用組成物によるポリシング工程の前に、ラッピングやエッチング等の、ポリシング工程より上流の工程において基板に適用され得る一般的な処理が施されていてもよい。 The polishing composition disclosed herein can be preferably applied to a polishing process of a substrate (for example, a silicon wafer). The substrate may be subjected to general treatments such as wrapping and etching that may be applied to the substrate in a process upstream of the polishing process prior to the polishing step with the polishing composition disclosed herein.
 ここに開示される研磨用組成物は、基板(例えばシリコンウェーハ)の仕上げ工程またはその直前のポリシング工程に用いることが効果的であり、仕上げポリシング工程における使用が特に好ましい。ここで、仕上げポリシング工程とは、目的物の製造プロセスにおける最後のポリシング工程(すなわち、その工程の後にはさらなるポリシングを行わない工程)を指す。ここに開示される研磨用組成物は、また、仕上げポリシングよりも上流のポリシング工程(粗研磨工程と最終研磨工程との間の予備研磨工程を指す。典型的には少なくとも1次ポリシング工程を含み、さらに2次、3次・・・等のポリシング工程を含み得る。)、例えば仕上げポリシングの直前に行われるポリシング工程に用いられてもよい。 The polishing composition disclosed herein is effective for use in the finishing step of a substrate (for example, a silicon wafer) or the polishing step immediately before the substrate (for example, silicon wafer), and is particularly preferably used in the finishing polishing step. Here, the finish polishing step refers to the final polishing step in the manufacturing process of the target product (that is, a step in which further polishing is not performed after the step). The polishing composition disclosed herein also refers to a pre-polishing step upstream of finish polishing (a pre-polishing step between the rough polishing step and the final polishing step, typically comprising at least a primary polishing step. , Further may include polishing steps such as secondary, tertiary, etc.), for example, may be used in a polishing step performed immediately before finish polishing.
 ここに開示される研磨用組成物は、例えば、上流の工程によって表面粗さ0.01nm~100nmの表面状態に調製されたシリコンウェーハのポリシング(典型的には仕上げポリシングまたはその直前のポリシング)への適用が効果的である。仕上げポリシングへの適用が特に好ましい。基板の表面粗さRaは、例えば、Schmitt Measurement System Inc.社製のレーザースキャン式表面粗さ計「TMS-3000WRC」を用いて測定することができる。 The polishing composition disclosed herein is, for example, to policing a silicon wafer (typically finish policing or immediately preceding policing) prepared by an upstream process to have a surface condition with a surface roughness of 0.01 nm to 100 nm. Is effective. Application to finish polishing is particularly preferred. The surface roughness Ra of the substrate can be measured, for example, by using a laser scan type surface roughness meter "TMS-3000WRC" manufactured by Schmitt Measurement System Inc.
 <研磨>
 ここに開示される研磨用組成物は、例えば以下の操作を含む態様で、基板の研磨に使用することができる。以下、ここに開示される研磨用組成物を用いて基板としてのシリコンウェーハを研磨する方法の好適な一態様につき説明する。
 すなわち、ここに開示されるいずれかの研磨用組成物を含む研磨液を用意する。上記研磨液を用意することには、研磨用組成物に濃度調整(例えば希釈)、pH調整等の操作を加えて研磨液を調製することが含まれ得る。あるいは、研磨用組成物をそのまま研磨液として使用してもよい。
<Polishing>
The polishing composition disclosed herein can be used for polishing a substrate, for example, in an embodiment including the following operations. Hereinafter, a preferred embodiment of a method of polishing a silicon wafer as a substrate by using the polishing composition disclosed herein will be described.
That is, a polishing liquid containing any of the polishing compositions disclosed herein is prepared. Preparing the polishing liquid may include preparing a polishing liquid by adding operations such as concentration adjustment (for example, dilution) and pH adjustment to the polishing composition. Alternatively, the polishing composition may be used as it is as a polishing liquid.
 次いで、その研磨液を基板に供給し、常法により研磨する。例えば、シリコンウェーハの仕上げ研磨を行う場合、典型的には、ラッピング工程を経たシリコンウェーハを一般的な研磨装置にセットし、該研磨装置の研磨パッドを通じて上記シリコンウェーハの研磨対象面に研磨液を供給する。典型的には、上記研磨液を連続的に供給しつつ、シリコンウェーハの研磨対象面に研磨パッドを押しつけて両者を相対的に移動(例えば回転移動)させる。かかる研磨工程を経て基板の研磨が完了する。 Next, the polishing liquid is supplied to the substrate and polished by a conventional method. For example, when performing finish polishing of a silicon wafer, typically, the silicon wafer that has undergone the wrapping process is set in a general polishing device, and a polishing liquid is applied to the surface to be polished of the silicon wafer through the polishing pad of the polishing device. Supply. Typically, while continuously supplying the polishing liquid, the polishing pad is pressed against the surface to be polished of the silicon wafer to relatively move (for example, rotationally move) the two. The polishing of the substrate is completed through such a polishing step.
 上記研磨工程に使用される研磨パッドは、特に限定されない。例えば、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ等の研磨パッドを用いることができる。各研磨パッドは、砥粒を含んでもよく、砥粒を含まなくてもよい。通常は、砥粒を含まない研磨パッドが好ましく用いられる。 The polishing pad used in the above polishing process is not particularly limited. For example, a polishing pad such as a polyurethane foam type, a non-woven fabric type, or a suede type can be used. Each polishing pad may or may not contain abrasive grains. Usually, a polishing pad containing no abrasive grains is preferably used.
 ここに開示される研磨用組成物を用いて研磨された基板は、典型的には洗浄される。洗浄は、適当な洗浄液を用いて行うことができる。使用する洗浄液は特に限定されず、例えば、半導体等の分野において一般的なSC-1洗浄液(水酸化アンモニウム(NHOH)と過酸化水素(H)と水(HO)との混合液)、SC-2洗浄液(HClとHとHOとの混合液)等を用いることができる。洗浄液の温度は、例えば室温(典型的には約15℃~25℃)以上、約90℃程度までの範囲とすることができる。洗浄効果を向上させる観点から、50℃~85℃程度の洗浄液を好ましく使用し得る。 Substrates polished with the polishing composition disclosed herein are typically washed. Cleaning can be performed using a suitable cleaning solution. The cleaning liquid used is not particularly limited, and for example, SC-1 cleaning liquid (ammonium hydroxide (NH 4 OH), hydrogen peroxide (H 2 O 2 ), and water (H 2 O), which are common in the field of semiconductors and the like. (Mixed solution of HCl), SC-2 cleaning solution (mixed solution of HCl, H 2 O 2 and H 2 O) and the like can be used. The temperature of the cleaning liquid can be, for example, in the range of room temperature (typically about 15 ° C to 25 ° C) or higher and up to about 90 ° C. From the viewpoint of improving the cleaning effect, a cleaning liquid having a temperature of about 50 ° C. to 85 ° C. can be preferably used.
 上述したように、ここに開示される技術には、上述したいずれかの研磨方法によるポリシング工程(好ましくは仕上げポリシング)を含む研磨物の製造方法(例えば、シリコンウェーハの製造方法)および該方法により製造された研磨物(例えばシリコンウェーハ)の提供が含まれ得る。 As described above, the technique disclosed herein includes a method for producing a polished product (for example, a method for producing a silicon wafer) including a polishing step (preferably finish polishing) by any of the above-mentioned polishing methods, and the method thereof. The provision of manufactured abrasives (eg silicon wafers) may be included.
 以下、本発明に関するいくつかの実施例を説明するが、本発明をかかる実施例に示すものに限定することを意図したものではない。なお、以下の説明において「%」は、特に断りがない限り重量基準である。 Hereinafter, some examples of the present invention will be described, but the present invention is not intended to be limited to those shown in such examples. In the following description, "%" is based on weight unless otherwise specified.
 <研磨用組成物の調製>
  (実施例1)
 砥粒、水溶性高分子、塩基性化合物、尿素系化合物、界面活性剤および脱イオン水を混合して、本例に係る研磨用組成物の濃縮液を調製した。砥粒としてはコロイダルシリカ(平均一次粒子径:27nm)を使用し、水溶性高分子としては重量平均分子量が約7.0×10のポリビニルアルコール(以下「PVA」と表記)を使用し、塩基性化合物としてはアンモニアを使用し、尿素系化合物としてはヒドロキシ尿素を使用し、界面活性剤としては、エチレンオキサイド付加モル数5のポリオキシエチレンデシルエーテル(C10EO5)を使用した。得られた研磨用組成物の濃縮液を脱イオン水(DIW)で体積比20倍に希釈することにより、砥粒の濃度を0.175%、水溶性高分子の濃度を0.00875%、塩基性化合物の濃度を0.005%、尿素系化合物の濃度を0.030%、界面活性剤の濃度を0.00015%とする、本例に係る研磨用組成物を得た。
<Preparation of polishing composition>
(Example 1)
Abrasive grains, a water-soluble polymer, a basic compound, a urea compound, a surfactant and deionized water were mixed to prepare a concentrated solution of the polishing composition according to this example. Colloidal silica (average primary particle size: 27 nm) is used as the abrasive grains, and polyvinyl alcohol (hereinafter referred to as “PVA”) having a weight average molecular weight of about 7.0 × 104 is used as the water-soluble polymer. Ammonia was used as the basic compound, hydroxyurea was used as the urea compound, and polyoxyethylene decyl ether (C10EO5) having 5 moles of ethylene oxide was used as the surfactant. By diluting the obtained concentrated solution of the polishing composition with deionized water (DIW) at a volume ratio of 20 times, the concentration of the abrasive grains was 0.175%, the concentration of the water-soluble polymer was 0.00875%, and the concentration was 0.00875%. A polishing composition according to this example was obtained, wherein the concentration of the basic compound was 0.005%, the concentration of the urea compound was 0.030%, and the concentration of the surfactant was 0.00015%.
  (実施例2~5)
 尿素系化合物として、表1の該当欄に示す化合物を使用し、表1の該当欄に示す濃度としたこと以外は実施例1と同様にして、各例に係る研磨用組成物を調製した。
(Examples 2 to 5)
As the urea-based compound, the compound shown in the corresponding column of Table 1 was used, and the polishing composition according to each example was prepared in the same manner as in Example 1 except that the concentration shown in the corresponding column of Table 1 was used.
  (比較例1)
 尿素系化合物を添加しなかったこと以外は実施例1と同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 1)
The polishing composition according to this example was prepared in the same manner as in Example 1 except that the urea compound was not added.
  (比較例2および3)
 尿素系化合物に代えて、表1に示す化合物を表1に示す濃度で使用した。このこと以外は実施例1と同様にして、各例に係る研磨用組成物を調製した。なお、各化合物の名称および含有量は、便宜上、尿素系化合物の欄に記載した。
(Comparative Examples 2 and 3)
Instead of the urea compound, the compound shown in Table 1 was used at the concentration shown in Table 1. Except for this, the polishing composition according to each example was prepared in the same manner as in Example 1. The name and content of each compound are described in the column of urea-based compounds for convenience.
  (実施例6~8)
 水溶性高分子として、重量平均分子量が約2.8×10のヒドロキシエチルセルロース(以下「HEC」と表記)を使用したことと、尿素系化合物として、表2の該当欄に示す化合物を使用し、表2の該当欄に示す濃度としたこと以外は実施例1と同様にして、各例に係る研磨用組成物を調製した。
(Examples 6 to 8)
As the water-soluble polymer, hydroxyethyl cellulose having a weight average molecular weight of about 2.8 × 105 (hereinafter referred to as “HEC”) was used, and as the urea-based compound, the compounds shown in the corresponding columns of Table 2 were used. , The polishing composition according to each example was prepared in the same manner as in Example 1 except that the concentrations shown in the corresponding columns of Table 2 were used.
  (比較例4)
 尿素系化合物を添加しなかったこと以外は実施例6と同様にして、本例に係る研磨用組成物を調製した。
(Comparative Example 4)
The polishing composition according to this example was prepared in the same manner as in Example 6 except that the urea compound was not added.
<シリコンウェーハの研磨>
 基板として、ラッピングおよびエッチングを終えた直径200mmの市販シリコン単結晶ウェーハ(伝導型:P型、結晶方位:<100>、COP(Crystal Originated Particle:結晶欠陥)フリー)を下記の研磨条件1により予備ポリシングしたシリコンウェーハを用意した。予備ポリシングは、脱イオン水中に砥粒(平均一次粒子径が42nmのコロイダルシリカ)1.0%および水酸化カリウム0.068%を含む研磨液を使用して行った。
<polishing of silicon wafer>
As a substrate, a commercially available silicon single crystal wafer (conduction type: P type, crystal orientation: <100>, COP (Crystal Organized Particle: crystal defect) free) having a diameter of 200 mm that has been wrapped and etched is prepared under the following polishing condition 1. A polished silicon wafer was prepared. Preliminary polishing was performed using a polishing solution containing 1.0% of abrasive grains (coloidal silica having an average primary particle diameter of 42 nm) and 0.068% of potassium hydroxide in deionized water.
  [研磨条件1]
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨装置 型式「PNX-322」
 研磨荷重:15kPa
 定盤の回転速度:30rpm
 ヘッド(キャリア)の回転速度:30rpm
 研磨パッド:フジボウ愛媛株式会社製 製品名「FP55」
 予備研磨液の供給レート:550mL/min
 予備研磨液の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:3min
[Polishing condition 1]
Polishing device: Single-wafer polishing device model "PNX-322" manufactured by Okamoto Machine Tool Mfg. Co., Ltd.
Polishing load: 15kPa
Surface plate rotation speed: 30 rpm
Head (carrier) rotation speed: 30 rpm
Polishing pad: Made by Fujibo Ehime Co., Ltd. Product name "FP55"
Pre-polishing liquid supply rate: 550 mL / min
Pre-polishing liquid temperature: 20 ° C
Surface plate cooling water temperature: 20 ° C
Polishing time: 3 min
 上記で調製した各例に係る研磨用組成物を研磨液として使用し、上記予備ポリシング後のシリコンウェーハを下記の研磨条件2により研磨した。 The polishing composition according to each example prepared above was used as a polishing liquid, and the silicon wafer after the pre-polishing was polished under the following polishing condition 2.
  [研磨条件2]
 研磨装置:株式会社岡本工作機械製作所製の枚葉研磨装置 型式「PNX-322」
 研磨荷重:15kPa
 定盤の回転速度:30rpm
 ヘッド(キャリア)の回転速度:30rpm
 研磨パッド:フジボウ愛媛株式会社製 製品名「POLYPAS275NX」
 研磨液の供給レート:400mL/min
 研磨液の温度:20℃
 定盤冷却水の温度:20℃
 研磨時間:4min
[Polishing condition 2]
Polishing device: Single-wafer polishing device model "PNX-322" manufactured by Okamoto Machine Tool Mfg. Co., Ltd.
Polishing load: 15kPa
Surface plate rotation speed: 30 rpm
Head (carrier) rotation speed: 30 rpm
Polishing pad: Made by Fujibo Ehime Co., Ltd. Product name "POLYPAS275NX"
Abrasive liquid supply rate: 400 mL / min
Abrasive liquid temperature: 20 ° C
Surface plate cooling water temperature: 20 ° C
Polishing time: 4min
 研磨後のシリコンウェーハを研磨装置から取り外し、NHOH(29%):H(31%):脱イオン水(DIW)=1:1:12(体積比)の洗浄液を用いて洗浄した(SC-1洗浄)。具体的には、第1および第2の2つの洗浄槽を用意し、それらの洗浄槽の各々に上記洗浄液を収容して60℃に保持した。研磨後のシリコンウェーハを第1の洗浄槽に5分浸漬し、その後超純水に浸漬して超音波を付与するリンス槽を経て、第2の洗浄槽に5分浸漬した後、超純水に浸漬して超音波を付与するリンス槽を経て、スピンドライヤーを用いて乾燥させた。 The silicon wafer after polishing is removed from the polishing device and cleaned with a cleaning solution of NH 4 OH (29%): H 2 O 2 (31%): deionized water (DIW) = 1: 1: 12 (volume ratio). (SC-1 cleaning). Specifically, two first and second washing tanks were prepared, and the washing liquid was contained in each of the washing tanks and kept at 60 ° C. The polished silicon wafer is immersed in the first cleaning tank for 5 minutes, then immersed in ultrapure water to apply ultrasonic waves, and then immersed in the second cleaning tank for 5 minutes and then ultrapure water. It was dried using a spin dryer through a rinsing tank that was immersed in a silicon wafer and subjected to ultrasonic waves.
<ヘイズ測定>
 洗浄後のシリコンウェーハ表面につき、ケーエルエー・テンコール社製のウェーハ検査装置、商品名「Surfscan SP2XP」を用いて、DWOモードでヘイズ(ppm)を測定した。得られた結果を、比較例1についてのヘイズ値を100%とする相対値(ヘイズ比)に換算して表1に、比較例4についてのヘイズ値を100%とする相対値(ヘイズ比)に換算して表2に、それぞれ示した。ヘイズの値が小さいほど、ヘイズ低減効果が高いことを示している。
<Haze measurement>
The haze (ppm) of the surface of the silicon wafer after cleaning was measured in DWO mode using a wafer inspection device manufactured by KLA Tencor Co., Ltd., trade name "Surfscan SP2 XP ". The obtained results are converted into a relative value (haze ratio) in which the haze value for Comparative Example 1 is 100%, and the relative value (haze ratio) in which the haze value for Comparative Example 4 is 100% is shown in Table 1. It is shown in Table 2 in terms of. The smaller the haze value, the higher the haze reduction effect.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表1および表2に示されるように、上記式(I)で表される尿素系化合物を使用した実施例1~8では、尿素系化合物を含まない比較例1および4と比べて、ヘイズ低減効果が認められた。一方、上記式(I)に該当しない化合物を使用した比較例2および3では、ヘイズ低減効果は認められないか、あるいはヘイズが上昇した。
 上記の結果から、砥粒、塩基性化合物および水を含む研磨用組成物に、上記式(I)で表される尿素系化合物をさらに含ませることで、研磨後の基板のヘイズを低減できることがわかる。
As shown in Tables 1 and 2, in Examples 1 to 8 using the urea-based compound represented by the above formula (I), the haze was reduced as compared with Comparative Examples 1 and 4 containing no urea-based compound. The effect was recognized. On the other hand, in Comparative Examples 2 and 3 using the compound not corresponding to the above formula (I), the haze reducing effect was not recognized or the haze was increased.
From the above results, it is possible to reduce the haze of the substrate after polishing by further adding the urea-based compound represented by the above formula (I) to the polishing composition containing the abrasive grains, the basic compound and water. Recognize.
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of claims. The techniques described in the claims include various modifications and modifications of the specific examples exemplified above.

Claims (6)

  1.  砥粒と、塩基性化合物と、水と、下記式(I)で表される化合物と、を含む、研磨用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(I)中のR、R、RおよびRは、それぞれ独立して、水素、アルキル基、ヒドロキシル基、および、ヒドロキシアルキル基からなる群から選択される基である。式(I)中にヒドロキシル基が存在しない場合は、R、R、RおよびRの合計炭素数は1以上である。)
    A polishing composition containing abrasive grains, a basic compound, water, and a compound represented by the following formula (I).
    Figure JPOXMLDOC01-appb-C000001
    (R 1 , R 2 , R 3 and R 4 in the formula (I) are each independently selected from the group consisting of hydrogen, an alkyl group, a hydroxyl group, and a hydroxyalkyl group. (I) If there is no hydroxyl group in (I), the total number of carbon atoms of R 1 , R 2 , R 3 and R 4 is 1 or more.)
  2.  前記式(I)で表される化合物の含有量は、0.001重量%以上0.1重量%以下である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the content of the compound represented by the formula (I) is 0.001% by weight or more and 0.1% by weight or less.
  3.  さらに水溶性高分子を含む、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, further comprising a water-soluble polymer.
  4.  前記研磨用組成物のpHは8.0以上12.0以下である、請求項1から3のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 3, wherein the pH of the polishing composition is 8.0 or more and 12.0 or less.
  5.  シリコンウェーハの研磨に用いられる、請求項1から4のいずれか一項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 4, which is used for polishing a silicon wafer.
  6.  請求項1から5のいずれか一項に記載の研磨用組成物を用いて、研磨対象物を研磨する工程を含む、研磨対象物の研磨方法。 A method for polishing an object to be polished, which comprises a step of polishing the object to be polished using the polishing composition according to any one of claims 1 to 5.
PCT/JP2021/032805 2020-09-24 2021-09-07 Polishing composition and use therefor WO2022065022A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022551846A JPWO2022065022A1 (en) 2020-09-24 2021-09-07

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020159302 2020-09-24
JP2020-159302 2020-09-24

Publications (1)

Publication Number Publication Date
WO2022065022A1 true WO2022065022A1 (en) 2022-03-31

Family

ID=80845288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/032805 WO2022065022A1 (en) 2020-09-24 2021-09-07 Polishing composition and use therefor

Country Status (3)

Country Link
JP (1) JPWO2022065022A1 (en)
TW (1) TW202219234A (en)
WO (1) WO2022065022A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025231A (en) * 2015-07-24 2017-02-02 株式会社Adeka Polishing liquid composition and polishing method
WO2018131341A1 (en) * 2017-01-11 2018-07-19 株式会社フジミインコーポレーテッド Polishing composition
JP2018532828A (en) * 2015-09-03 2018-11-08 キャボット マイクロエレクトロニクス コーポレイション Method and composition for processing a dielectric substrate
JP2019119782A (en) * 2017-12-28 2019-07-22 花王株式会社 Polishing solution composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017025231A (en) * 2015-07-24 2017-02-02 株式会社Adeka Polishing liquid composition and polishing method
JP2018532828A (en) * 2015-09-03 2018-11-08 キャボット マイクロエレクトロニクス コーポレイション Method and composition for processing a dielectric substrate
WO2018131341A1 (en) * 2017-01-11 2018-07-19 株式会社フジミインコーポレーテッド Polishing composition
JP2019119782A (en) * 2017-12-28 2019-07-22 花王株式会社 Polishing solution composition

Also Published As

Publication number Publication date
JPWO2022065022A1 (en) 2022-03-31
TW202219234A (en) 2022-05-16

Similar Documents

Publication Publication Date Title
CN106663619B (en) Composition for polishing silicon wafer
JP6259723B2 (en) Silicon wafer polishing method, polishing composition, and polishing composition set
EP3053977B1 (en) Polishing composition and method for producing same
JP7353051B2 (en) Composition for polishing silicon wafers
WO2021182155A1 (en) Polishing composition and polishing method
KR102565682B1 (en) Silicon substrate intermediate polishing composition and silicon substrate polishing composition set
WO2020196645A1 (en) Polishing composition
JP7330676B2 (en) Silicon wafer polishing composition
WO2020196370A1 (en) Polishing composition
WO2022070801A1 (en) Grinding composition and use thereof
KR102517629B1 (en) polishing composition
WO2021182276A1 (en) Polishing composition
WO2022065022A1 (en) Polishing composition and use therefor
WO2020196369A1 (en) Polishing composition
WO2022113986A1 (en) Polishing composition for silicon wafers and use thereof
WO2021199723A1 (en) Polishing composition
WO2023063027A1 (en) Polishing composition
WO2023181929A1 (en) Polishing composition
WO2024070831A1 (en) Polishing composition
WO2023181928A1 (en) Polishing composition
WO2024029457A1 (en) Polishing composition
WO2024070832A1 (en) Composition for finish polishing
WO2023189812A1 (en) Polishing composition
WO2021182278A1 (en) Polishing composition and polishing method
JP2023149877A (en) polishing composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872153

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022551846

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872153

Country of ref document: EP

Kind code of ref document: A1