WO2022064661A1 - Converter - Google Patents

Converter Download PDF

Info

Publication number
WO2022064661A1
WO2022064661A1 PCT/JP2020/036458 JP2020036458W WO2022064661A1 WO 2022064661 A1 WO2022064661 A1 WO 2022064661A1 JP 2020036458 W JP2020036458 W JP 2020036458W WO 2022064661 A1 WO2022064661 A1 WO 2022064661A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
multilayer board
conductive line
converter
transformer
Prior art date
Application number
PCT/JP2020/036458
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 國井
成治 高橋
真輔 立崎
幸伯 山田
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to JP2021507717A priority Critical patent/JP6962498B1/en
Priority to PCT/JP2020/036458 priority patent/WO2022064661A1/en
Publication of WO2022064661A1 publication Critical patent/WO2022064661A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac

Definitions

  • This disclosure relates to converters.
  • Patent Document 1 discloses a DC / DC converter.
  • the converter of Patent Document 1 includes a first circuit including a switching circuit and a second circuit including a rectifier circuit.
  • the converters of the present disclosure are The first circuit with an input terminal and The second circuit with an output terminal and A converter including a transformer that electromagnetically couples the first circuit and the second circuit.
  • a multilayer board on which the second circuit is provided and It is arranged in the region of the multilayer board where the second circuit is provided, and includes a penetrating member that penetrates the multilayer board in the thickness direction.
  • the second circuit is The first conductive line from the transformer to the output terminal, It is provided with a second conductive line from the transformer to the output terminal by a route different from the first conductive line.
  • the second conductive line is A first conductor pattern provided on the multilayer board and connected to the transformer, A second conductor pattern provided on the multilayer board and connected to the output terminal, A bridge conductor connected in series with the first conductor pattern and the second conductor pattern is provided.
  • the intermediate portion of the bridge conductor is arranged outside the multilayer substrate and overlaps with at least one of the first conductive line and the penetrating member when the region is viewed in a plan view.
  • FIG. 1 is a circuit diagram of the converter shown in the first embodiment.
  • FIG. 2 is a schematic plan view of a multilayer board provided in the converter shown in the first embodiment.
  • FIG. 3 is a schematic cross-sectional view of a multilayer board provided in the converter shown in the first embodiment.
  • FIG. 4 is a schematic cross-sectional view of a multilayer board provided in the converter shown in the second embodiment.
  • FIG. 5 is a schematic partial cross-sectional view of a multilayer board provided in the converter shown in the third embodiment.
  • FIG. 6 is a schematic partial cross-sectional view of a multilayer board provided in the converter shown in the fourth embodiment.
  • the converter is miniaturized by providing a part of the converter, for example, a second circuit on a multilayer board.
  • the conductive line of the second circuit is composed of a plurality of conductor patterns provided on the multilayer board.
  • the width of each conductor pattern tends to increase according to the magnitude of the current flowing through the transformer.
  • the plane area when the multilayer board is viewed from above tends to be large.
  • a penetrating member that penetrates in the thickness direction of the multi-layer board may be provided.
  • the penetrating member include a screw for fixing a multilayer board to a housing and the like, a thermal via for cooling a device constituting a second circuit, and the like.
  • the conductor pattern that needs to be arranged so as to avoid the penetrating member increases the planar area of the multilayer board. Therefore, the plane area of the multilayer board having the penetrating member tends to be large.
  • One of the purposes of the present disclosure is to provide a converter having a small plane area when viewed from above.
  • the converter according to the embodiment is The first circuit with an input terminal and The second circuit with an output terminal and A converter including a transformer that electromagnetically couples the first circuit and the second circuit.
  • a multilayer board on which the second circuit is provided and It is arranged in the region of the multilayer board where the second circuit is provided, and includes a penetrating member that penetrates the multilayer board in the thickness direction.
  • the second circuit is The first conductive line from the transformer to the output terminal, It is provided with a second conductive line from the transformer to the output terminal by a route different from the first conductive line.
  • the second conductive line is A first conductor pattern provided on the multilayer board and connected to the transformer, A second conductor pattern provided on the multilayer board and connected to the output terminal, A bridge conductor connected in series with the first conductor pattern and the second conductor pattern is provided.
  • the intermediate portion of the bridge conductor is arranged outside the multilayer substrate and overlaps with at least one of the first conductive line and the penetrating member when the region is viewed in a plan view.
  • the converter according to the embodiment has a smaller plane area than the conventional one.
  • the bridge conductor forming a part of the second conductive line is arranged outside the multilayer board and overlaps with at least one of the first conductive line and the penetrating member. That is, the first conductive line of the second circuit and a part of the second conductive line are three-dimensionally arranged in the multilayer board and the space outside the multilayer board. Therefore, even if the through member is present in the multilayer board, the plane area of the multilayer board does not increase.
  • the bridge conductor may overlap with at least one of the plurality of penetrating members and may not overlap with the remaining penetrating members.
  • the penetrating member In the converter according to the embodiment, various effects can be obtained by the penetrating member. For example, if the penetrating member is a screw, it is easy to fix the multilayer board to the housing. In addition, if the penetrating member is a heat radiating member, the heat radiating property of the multilayer board is improved.
  • the second circuit comprises a device mounted on the multilayer board.
  • the penetrating member may include a thermal via or an inlay for cooling the device.
  • the converter By providing the converter with a thermal via or inlay that cools the device, it is possible to prevent the device from becoming hot during the operation of the converter. Therefore, the operation of the device is improved, and the operation of the converter provided with the device is stable.
  • the penetrating member may include a ground screw for grounding the second circuit.
  • the ground screw is a screw that grounds a part of the conductive line of the second circuit.
  • the ground screw is screwed to the multilayer board.
  • This ground screw may be used to fix a multilayer board to a housing or the like. In this case, the fixing of the multilayer board and the grounding of the second circuit are performed at the same time.
  • the transformer may be a center tap type transformer including a first secondary coil and a second secondary coil.
  • the second circuit connected to the center tap type transformer is, for example, a full-wave rectifier type rectifier circuit.
  • a converter equipped with a full-wave rectified second circuit can reduce the ripple of the rectified output.
  • the full-wave rectification type second circuit connected to the center tap type transformer requires a smaller number of rectifying elements than the full-wave rectification type rectifier circuit including the bridge circuit. Therefore, the plane area of the multilayer board can be small.
  • the second circuit may include a filter circuit.
  • the noise on the output side is reduced by including the filter circuit in the second circuit.
  • the filter circuit reduces the ripple of the rectified output.
  • the filter circuit is With a cylindrical filter core, Examples thereof include a form including the bridge conductor penetrating the filter core.
  • the above configuration is such that the bridge conductor also serves as the conductive part of the filter circuit.
  • a part of the conductive portion of the filter circuit is arranged outside the multilayer board as a bridge conductor. Therefore, since the size of the conductive portion of the filter circuit in the multilayer board is reduced, the plane area of the multilayer board is reduced.
  • the bridge conductor may include a positioning portion that abuts on the surface of the multilayer substrate.
  • the bridge conductor Since the bridge conductor has a positioning part, the position of the bridge conductor with respect to the multilayer board is uniquely determined. Therefore, the mountability of the bridge conductor is improved. Further, the connectivity between the bridge conductor in the multilayer board and the first conductor pattern and the second conductor pattern is improved. Since the fixed state of the bridge conductor to the multilayer board is stable, the bridge conductor does not easily come off the multilayer board.
  • a full-wave rectification type DC / DC converter using a center tap will be described as the converter.
  • the electrical circuit configuration of the converter 100 of this example will be described with reference to the circuit diagram of FIG.
  • the structural configuration of the converter 100 of this example will be described with reference to FIGS. 2 and 3.
  • the converter 100 of this example is characterized by its structure.
  • the converter 100 of this example includes a first circuit 1, a second circuit 2, and a transformer 3. Direct current is input to the first circuit 1 of this example.
  • the first circuit 1 of this example includes a low-voltage side conductive line 11 connected to the ground potential input terminal 1A and a high-voltage side conductive line 12 connected to the positive potential input terminal 1B.
  • the low voltage side conductive line 11 extends from the input terminal 1A to one end of the primary coil 31 of the transformer 3.
  • the high voltage side conductive line 12 extends from the input terminal 1B to the other end of the primary coil 31 of the transformer 3.
  • the first circuit 1 of this example includes a capacitor 1C on the input side and a switching circuit 1D.
  • the capacitor 1C on the input side is a device provided between the low voltage side conductive line 11 and the high voltage side conductive line 12, and reduces feedback noise.
  • the switching circuit 1D of this example provided between the low-voltage side conductive line 11 and the high-voltage side conductive line 12 is a conversion circuit that converts direct current into alternating current.
  • a known configuration can be used for the switching circuit 1D.
  • the switching circuit 1D of this example is composed of four rectifying elements 13 connected by a bridge.
  • the rectifying element 13 is a device that constitutes a part of the first circuit 1.
  • the rectifying element 13 of this example is a field effect transistor.
  • the rectifying element 13 may be a diode.
  • the transformer 3 converts the AC voltage.
  • the transformer 3 includes a primary coil 31, a secondary coil 32, and a core 33.
  • the primary coil 31 is connected to the first circuit 1.
  • the secondary coil 32 is connected to the second circuit 2 described later.
  • the core 33 is penetrated by the primary coil 31 and the secondary coil 32.
  • the transformer 3 in this example is a center tap type.
  • the secondary coil 32 includes a first secondary coil 321 and a second secondary coil 322.
  • the second conductive line 22 of the second circuit 2 which will be described later, is connected between the first secondary coil 321 and the second secondary coil 322.
  • the second conductive line 22 functions as a center tap.
  • the second circuit 2 of this example includes a first conductive line 21 and a second conductive line 22.
  • the first conductive line 21 is connected from both ends of the secondary coil 32 of the transformer 3 to the output terminal 2A which is the ground potential. More specifically, there is a first conductive line 21 from the first secondary coil 321 to the output terminal 2A and a first conductive line 21 from the second secondary coil 322 to the output terminal 2A. Both conductive lines 21 are connected at a contact 21b. The first conductive line 21 is grounded by the ground 29.
  • the second conductive line 22 that functions as a center tap reaches the output terminal 2B, which has a positive potential, from the secondary coil 32 of the transformer 3 by a path different from that of the first conductive line 21.
  • the first conductive line 21 and the second conductive line 22 are not connected from the secondary coil 32 to the output terminals 2A and 2B.
  • a rectifier circuit 2C and a filter circuit 2D are provided between the first conductive line 21 and the second conductive line 22.
  • the rectifier circuit 2C of this example a known conversion circuit that converts alternating current into direct current can be used.
  • the rectifier circuit 2C of this example includes two rectifier elements 211 and 212.
  • the rectifying elements 211 and 212 are devices included in the first conductive line 21.
  • the rectifying element 211 is provided between the first secondary coil 321 and the contact 21b.
  • the rectifying element 212 is provided between the second secondary coil 322 and the contact 21b.
  • the rectifying elements 211 and 212 of this example are field effect transistors. Unlike this example, the rectifying elements 211 and 212 may be diodes.
  • the filter circuit 2D of this example is a low-pass filter.
  • the filter circuit 2D includes an inductor 23 and a capacitor 24 on the output side as devices.
  • the inductor 23 is provided on the second conductive line 22.
  • the output-side capacitor 24 is provided between a portion of the first conductive line 21 downstream of the contact 21b and a portion of the second conductive line 22 downstream of the inductor 23.
  • the filter circuit 2D of this example is an L-type filter, but may be a ⁇ -type filter or a T-type filter.
  • the second circuit 2 is provided on a multilayer board.
  • the second circuit 2 and the transformer 3 are provided on the multilayer board 4.
  • the region in which the second circuit 2 is provided in the multilayer board 4 is referred to as a first region 4A
  • the region in which the transformer 3 is provided is referred to as a second region 4B.
  • the first circuit 1 may also be provided on the multilayer board 4.
  • the multilayer board 4 includes a plurality of conductor patterns 41 laminated inside the insulating member 40 (see particularly FIG. 3).
  • the conductor pattern 41 is composed of a thin film.
  • a metal such as copper, which has excellent conductivity, is suitable for the thin film.
  • some conductor patterns 41 may be arranged on the surface of the multilayer substrate 4.
  • Each conductor pattern 41 constitutes a part of the primary coil 31 of the transformer 3, the secondary coil 32 of the transformer 3, the first conductive line 21 of the second circuit 2, and the second conductive line 22 of the second circuit 2.
  • the multilayer board 4 of this example is provided with two through holes 42 and 43.
  • the core 33 of the transformer 3 is penetrated through the through hole 42 on the left side of the paper.
  • the core 33 of this example is an annular magnetic material.
  • the annular magnetic material also includes a magnetic material in which a part of the ring shape is not connected. Examples of such a magnetic material include a magnetic material having a substantially C-shape.
  • the shape of the core 33 of this example seen from the axial direction is a rectangular ring. Of course, the shape of the core 33 when viewed from the axial direction may be annular.
  • the core 33 is a sintered body such as a ferrite core.
  • the core 33 may be a powder compact, a composite material molded body, or a laminated steel plate.
  • the compaction compact is a magnetic member obtained by compression molding soft magnetic powder.
  • the composite material is a material obtained by curing a fluid resin in which soft magnetic powder is dispersed.
  • the laminated steel sheet is a laminated body in which electromagnetic steel sheets are laminated.
  • the core 33 of this example is an assembly of the first core member 331 and the second core member 332 (FIG. 3).
  • the first core member 331 is a magnetic material having a substantially C-shape.
  • One leg piece of the first core member 331 is arranged inside the through hole 42.
  • the second core member 332 is a magnetic material having a substantially I-shape.
  • the second core member 332 is arranged so as to connect both leg pieces of the first core member 331.
  • the primary coil 31 and the secondary coil 32 are provided on the multilayer substrate 4 as a conductor pattern 41.
  • the primary coil 31 and the secondary coil 32 are arranged so as to surround the through hole 42.
  • the primary coil 31 and the secondary coil 32 are laminated in the thickness direction of the multilayer board 4.
  • An insulating member 40 is interposed between the primary coil 31 and the secondary coil 32.
  • it is preferable that the primary coil 31 and the secondary coil 32 are not exposed on the surface of the multilayer substrate 4. This is to ensure the insulation between both coils 31 and 32 and the core 33.
  • the multilayer board 4 includes at least one penetrating member 5 that penetrates the multilayer board 4 in the thickness direction, as shown in FIG.
  • the penetrating member 5 is arranged in the first region 4A where the second circuit 2 in the multilayer board 4 is provided.
  • the penetrating member 5 of this example includes a thermal via 50 (FIG. 3) for cooling the rectifying elements 211 and 212 of FIG. 1 and a ground screw 51 constituting the ground of FIG.
  • the thermal via 50 is composed of a through hole provided in the multilayer substrate 4 and a plating layer provided on the inner peripheral surface of the through hole.
  • the through hole extends in the thickness direction of the multilayer board 4 from the portion of the multilayer board 4 that contacts the rectifying element 212.
  • the plating layer is made of a material having excellent thermal conductivity, for example, copper.
  • the thermal via 50 is not electrically connected to the conductor pattern 41 of the multilayer board 4. Unlike this example, the thermal via 50 may be electrically connected to the conductor pattern 41. The heat generated by the rectifying element 212 is released to the outside of the multilayer board 4 by the thermal via 50. As a result, the rectifying element 212 is effectively cooled.
  • an inlay that is fitted into the through hole may be provided.
  • the inlay is made of a material having excellent thermal conductivity, such as copper.
  • the inlay also effectively cools the rectifying element 212.
  • the ground screw 51 is a member that grounds the first conductive line 21 of the second circuit 2. Therefore, the ground screw 51 can also be regarded as a part of the second circuit 2.
  • the ground screw 51 can also be used as a member for fixing the multilayer board 4 to a housing (not shown) or the like. In this case, the ground screw 51 fixes the multilayer board 4 to the housing and grounds the first conductive line 21 of the second circuit 2 at the same time.
  • the second circuit 2 is provided in the first region 4A of the multilayer board 4 as shown in FIG.
  • the first region 4A is a region excluding the second region 4B in which the transformer 3 is provided in the multilayer board 4.
  • the first conductive line 21 provided in the second circuit 2 is arranged inside the multilayer board 4 in the first region 4A of the multilayer board 4.
  • the rectifying elements 211 and 212 provided in the first conductive line 21 are mounted on the multilayer board 4.
  • the second conductive line 22 of this example includes a first conductor pattern 221 and a second conductor pattern 222 provided inside the multilayer board 4, and a bridge conductor 6 that is retrofitted to the multilayer board 4.
  • the first conductor pattern 221 is a conductor pattern 41 connected to the secondary coil 32 of the transformer 3. More specifically, the first conductor pattern 221 is connected between the first secondary coil 321 and the second secondary coil 322 in FIG. 1.
  • the second conductor pattern 222 is connected to the output terminal 2B in FIG.
  • the second conductor pattern 222 is arranged so as to surround the through hole 43.
  • a cylindrical filter core 230 is penetrated through the through hole 43.
  • the filter core 230 constitutes a part of the inductor 23 of the filter circuit 2D of FIG.
  • the filter core 230 is an assembly of the third core member 231 and the fourth core member 232 (see particularly FIG. 3).
  • the third core member 231 is a magnetic material having a substantially C-shape.
  • One leg piece of the third core member 231 is placed inside the through hole 43.
  • the fourth core member 232 is a magnetic material having a substantially I-shape.
  • the fourth core member 232 is arranged so as to connect both leg pieces of the third core member 231.
  • the bridge conductor 6 is connected in series with the first conductor pattern 221 and the second conductor pattern 222.
  • the bridge conductor 6 includes an intermediate portion 60, a first leg portion 61, and a second leg portion 62.
  • the intermediate portion 60 of this example is arranged outside the multilayer board 4, and extends substantially parallel to the multilayer board 4.
  • the first leg portion 61 extends from the end portion of the intermediate portion 60 toward the multilayer substrate 4, and is electrically connected to the first conductor pattern 221.
  • the second leg portion 62 extends from another end of the intermediate portion 60 toward the multilayer substrate 4 and is electrically connected to the second conductor pattern 222.
  • the electrical connection consists of solder and the like.
  • the intermediate portion 60 of the bridge conductor 6 overlaps the first conductive line 21 and the rectifying element 211 when the first region 4A of the multilayer board 4 is viewed in a plan view.
  • a thermal via 50 is provided below the rectifying element 211 as shown in FIG. Therefore, the intermediate portion 60 also overlaps with the thermal via 50 when the first region 4A of the multilayer board 4 is viewed in a plan view. Further, the intermediate portion 60 also overlaps with the ground screw 51 when the first region 4A of the multilayer board 4 is viewed in a plan view. That is, the bridge conductor 6 straddles at least a part of one or both of the first conductive line 21 and the penetrating member 5, and connects the first conductor pattern 221 and the second conductor pattern 222.
  • the planar area of the converter 100 of this example shown in FIGS. 2 and 3 when viewed in a plan view is smaller than that of a converter in which the entire second conductive line is provided on a multilayer substrate by a conductor pattern.
  • the bridge conductor 6 forming a part of the second conductive line 22 is arranged outside the multilayer substrate 4 and overlaps with at least one of the first conductive line 21 and the through member 5. .. That is, the first conductive line 21 and a part of the second conductive line 22 of the second circuit 2 are three-dimensionally arranged in the multilayer board 4 and the space outside the multilayer board 4. Therefore, even if the through member 5 is present in the multilayer board 4, the plane area of the first region 4A of the multilayer board 4 does not increase.
  • the penetrating member 5 various effects can be obtained by the penetrating member 5. Specifically, the first conductive line 21 (FIG. 1) is surely grounded by the ground screw 51, which is a kind of the penetrating member 5. Further, the thermal via 50, which is a kind of the penetrating member 5, improves the heat dissipation of the rectifying elements 211 and 212 of the second circuit 2.
  • the second leg portion 62 of the bridge conductor 6 penetrates the inside of the tubular filter core 230. That is, in this example, the bridge conductor 6 also serves as the conductive portion of the filter circuit 2D (FIG. 1).
  • the conductive portion of the filter circuit 2D is arranged outside the multilayer board 4, the conductive portion of the filter circuit 2D in the multilayer board 4 becomes smaller. As a result, the plane area of the multilayer board 4 becomes smaller.
  • FIG. 5 shows only a part of the bridge conductor 6 on the side of the first leg portion 61.
  • the second leg portion 62 (FIGS. 3 and 4) (not shown) also has the same configuration as the first leg portion 61 of FIG.
  • leg pieces 611, 612, 613 protruding from the end surface 610 of the first leg portion 61 are provided.
  • the leg pieces 611 and 612 are longer than the leg pieces 613.
  • the tip ends of the leg pieces 611 and 612 are arranged inside the multilayer board 4 and connected to the secondary coil 32.
  • the tip of the leg piece 613 abuts on the surface of the multilayer substrate 4 and supports the bridge conductor 6. That is, the leg piece 613 functions as a positioning portion 63 that determines the position of the bridge conductor 6 with respect to the multilayer board 4.
  • a space is formed between the end surface 610 of the first leg portion 61 and the surface of the multilayer substrate 4.
  • the length of the interval is equal to the length of the leg piece 613.
  • the spacing improves the heat dissipation of the bridge conductor 6. Therefore, the heat dissipation of the bridge conductor 6 is adjusted by changing the length of the leg piece 613.
  • the number of leg pieces 611, 612, 613 is not particularly limited.
  • the bridge conductor 6 includes the positioning portion 63, the position of the bridge conductor 6 in the thickness direction of the multilayer board 4 is uniquely determined. Therefore, the mountability of the bridge conductor 6 is improved. Further, the connectivity between the bridge conductor 6 in the multilayer board 4 and the first conductor pattern 221 and the second conductor pattern 222 (see FIG. 3) is improved. Further, since the fixed state of the bridge conductor 6 with respect to the multilayer board 4 is stable, the bridge conductor 6 makes it difficult for the multilayer board 4 to come off.
  • the first leg portion 61 of the bridge conductor 6 of this example includes leg pieces 611,612 protruding from the end surface 610 of the first leg portion 61.
  • the leg pieces 611 and 612 are arranged inside the multilayer board 4 and connected to the secondary coil 32.
  • the end surface 610 of the first leg portion 61 abuts on the surface of the multilayer substrate 4 and supports the bridge conductor 6. That is, in this example, the end face 610 functions as the positioning portion 63.
  • the same effect as that of the third embodiment can be obtained by the configuration of this example. Further, according to the configuration of this example, the height of the bridge conductor 6 in the thickness direction of the multilayer board 4 is lower than that of the configuration of the third embodiment. Therefore, the converter 100 of this example is more compact in the thickness direction of the multilayer board 4 than the converter 100 of the third embodiment.
  • the converter 100 according to the embodiment may be an AC / DC converter or an AC / AC converter.
  • the configurations of the first circuit 1 and the second circuit 2 provided in the converter 100 are different from those of the first embodiment to the fourth embodiment.
  • the converter 100 according to the embodiment may be a full-wave rectification type converter including a bridge circuit. Further, the converter 100 according to the embodiment may be a half-wave rectification type converter.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

This converter comprises a transformer that electromagnetically couples a first circuit and a second circuit. The converter further comprises a multilayer substrate on which the second circuit is provided, and a penetrating member disposed in a region of the multilayer substrate where the second circuit is provided and penetrating the multilayer substrate in the thickness direction. The second circuit comprises: a first electroconductive line; and a second electroconductive line which is different from the first electroconductive line. The second electroconductive line comprises a first conductor pattern provided on the multilayer substrate, a second conductor pattern provided on the multilayer substrate, and a bridge conductor connected in series with the first conductor pattern and the second conductor pattern. An intermediate section of the bridge conductor is disposed outside the multilayer substrate and, when observed in a planar view, overlaps with at least one of the first electroconductive line and the penetrating member.

Description

コンバータconverter
 本開示は、コンバータに関する。 This disclosure relates to converters.
 コンバータとして、交流を直流に変換するAC/DCコンバータ、直流の電圧を変換するDC/DCコンバータなどが知られている。コンバータは、入力端子を有する第一回路と、出力端子を有する第二回路と、両回路を電磁気的に結合するトランスとを備える。例えば、特許文献1には、DC/DCコンバータが開示されている。特許文献1のコンバータは、スイッチング回路を含む第一回路と、整流回路を含む第二回路とを備える。 As converters, AC / DC converters that convert alternating current to direct current, DC / DC converters that convert direct current voltage, and the like are known. The converter includes a first circuit having an input terminal, a second circuit having an output terminal, and a transformer that electromagnetically couples both circuits. For example, Patent Document 1 discloses a DC / DC converter. The converter of Patent Document 1 includes a first circuit including a switching circuit and a second circuit including a rectifier circuit.
特開2010-153722号公報Japanese Unexamined Patent Publication No. 2010-153722
 本開示のコンバータは、
 入力端子を有する第一回路と、
 出力端子を有する第二回路と、
 前記第一回路と前記第二回路とを電磁気的に結合するトランスとを備えるコンバータであって、
 前記第二回路が設けられる多層基板と、
 前記多層基板における前記第二回路が設けられる領域に配置され、前記多層基板を厚み方向に貫通する貫通部材とを備え、
 前記第二回路は、
  前記トランスから前記出力端子に至る第一導電ラインと、
  前記第一導電ラインとは異なる経路で、前記トランスから前記出力端子に至る第二導電ラインとを備え、
  前記第二導電ラインは、
   前記多層基板に設けられ、前記トランスに接続される第一導体パターンと、
   前記多層基板に設けられ、前記出力端子に接続される第二導体パターンと、
   前記第一導体パターンと前記第二導体パターンとに直列に接続されるブリッジ導体とを備え、
   前記ブリッジ導体の中間部が、前記多層基板の外部に配置され、かつ前記領域を平面視したとき、前記第一導電ライン及び前記貫通部材の少なくとも一方に重複する。
The converters of the present disclosure are
The first circuit with an input terminal and
The second circuit with an output terminal and
A converter including a transformer that electromagnetically couples the first circuit and the second circuit.
A multilayer board on which the second circuit is provided and
It is arranged in the region of the multilayer board where the second circuit is provided, and includes a penetrating member that penetrates the multilayer board in the thickness direction.
The second circuit is
The first conductive line from the transformer to the output terminal,
It is provided with a second conductive line from the transformer to the output terminal by a route different from the first conductive line.
The second conductive line is
A first conductor pattern provided on the multilayer board and connected to the transformer,
A second conductor pattern provided on the multilayer board and connected to the output terminal,
A bridge conductor connected in series with the first conductor pattern and the second conductor pattern is provided.
The intermediate portion of the bridge conductor is arranged outside the multilayer substrate and overlaps with at least one of the first conductive line and the penetrating member when the region is viewed in a plan view.
図1は、実施形態1に示されるコンバータの回路図である。FIG. 1 is a circuit diagram of the converter shown in the first embodiment. 図2は、実施形態1に示されるコンバータに備わる多層基板の概略平面図である。FIG. 2 is a schematic plan view of a multilayer board provided in the converter shown in the first embodiment. 図3は、実施形態1に示されるコンバータに備わる多層基板の概略断面図である。FIG. 3 is a schematic cross-sectional view of a multilayer board provided in the converter shown in the first embodiment. 図4は、実施形態2に示されるコンバータに備わる多層基板の概略断面図である。FIG. 4 is a schematic cross-sectional view of a multilayer board provided in the converter shown in the second embodiment. 図5は、実施形態3に示されるコンバータに備わる多層基板の概略部分断面図である。FIG. 5 is a schematic partial cross-sectional view of a multilayer board provided in the converter shown in the third embodiment. 図6は、実施形態4に示されるコンバータに備わる多層基板の概略部分断面図である。FIG. 6 is a schematic partial cross-sectional view of a multilayer board provided in the converter shown in the fourth embodiment.
[本開示が解決しようとする課題]
 コンバータの小型化が求められている。コンバータの一部、例えば第二回路が多層基板上に設けられることで、コンバータが小型化される。この場合、第二回路の導電ラインは、多層基板に設けられる複数の導体パターンによって構成される。しかし、トランスに流れる電流の大きさに応じて各導体パターンの幅が大きくなり易い。その結果、多層基板を上面視したときの平面面積が大きくなり易い。
[Problems to be solved by this disclosure]
There is a demand for miniaturization of converters. The converter is miniaturized by providing a part of the converter, for example, a second circuit on a multilayer board. In this case, the conductive line of the second circuit is composed of a plurality of conductor patterns provided on the multilayer board. However, the width of each conductor pattern tends to increase according to the magnitude of the current flowing through the transformer. As a result, the plane area when the multilayer board is viewed from above tends to be large.
 多層基板において多層基板の厚み方向に貫通する貫通部材が設けられる場合がある。貫通部材としては、例えば多層基板を筐体などに固定するネジ、及び第二回路を構成するデバイスを冷却するサーマルビアなどが挙げられる。複数の導体パターンのうち、この貫通部材を避けるように配置される必要がある導体パターンは、多層基板の平面面積を大きくする。従って、貫通部材を有する多層基板の平面面積は大きくなり易い。 In a multi-layer board, a penetrating member that penetrates in the thickness direction of the multi-layer board may be provided. Examples of the penetrating member include a screw for fixing a multilayer board to a housing and the like, a thermal via for cooling a device constituting a second circuit, and the like. Of the plurality of conductor patterns, the conductor pattern that needs to be arranged so as to avoid the penetrating member increases the planar area of the multilayer board. Therefore, the plane area of the multilayer board having the penetrating member tends to be large.
 本開示は、上面視したときの平面面積が小さいコンバータを提供することを目的の一つとする。 One of the purposes of the present disclosure is to provide a converter having a small plane area when viewed from above.
[本開示の実施形態の説明]
 以下、本開示の実施態様を列記して説明する。
[Explanation of Embodiments of the present disclosure]
Hereinafter, embodiments of the present disclosure will be described in a list.
<1>実施形態に係るコンバータは、
 入力端子を有する第一回路と、
 出力端子を有する第二回路と、
 前記第一回路と前記第二回路とを電磁気的に結合するトランスとを備えるコンバータであって、
 前記第二回路が設けられる多層基板と、
 前記多層基板における前記第二回路が設けられる領域に配置され、前記多層基板を厚み方向に貫通する貫通部材とを備え、
 前記第二回路は、
  前記トランスから前記出力端子に至る第一導電ラインと、
  前記第一導電ラインとは異なる経路で、前記トランスから前記出力端子に至る第二導電ラインとを備え、
  前記第二導電ラインは、
   前記多層基板に設けられ、前記トランスに接続される第一導体パターンと、
   前記多層基板に設けられ、前記出力端子に接続される第二導体パターンと、
   前記第一導体パターンと前記第二導体パターンとに直列に接続されるブリッジ導体とを備え、
   前記ブリッジ導体の中間部が、前記多層基板の外部に配置され、かつ前記領域を平面視したとき、前記第一導電ライン及び前記貫通部材の少なくとも一方に重複する。
<1> The converter according to the embodiment is
The first circuit with an input terminal and
The second circuit with an output terminal and
A converter including a transformer that electromagnetically couples the first circuit and the second circuit.
A multilayer board on which the second circuit is provided and
It is arranged in the region of the multilayer board where the second circuit is provided, and includes a penetrating member that penetrates the multilayer board in the thickness direction.
The second circuit is
The first conductive line from the transformer to the output terminal,
It is provided with a second conductive line from the transformer to the output terminal by a route different from the first conductive line.
The second conductive line is
A first conductor pattern provided on the multilayer board and connected to the transformer,
A second conductor pattern provided on the multilayer board and connected to the output terminal,
A bridge conductor connected in series with the first conductor pattern and the second conductor pattern is provided.
The intermediate portion of the bridge conductor is arranged outside the multilayer substrate and overlaps with at least one of the first conductive line and the penetrating member when the region is viewed in a plan view.
 実施形態に係るコンバータは、従来よりも小さい平面面積を有する。
 実施形態に係るコンバータでは、第二導電ラインの一部を構成するブリッジ導体が、多層基板の外部に配置され、かつ第一導電ライン及び貫通部材の少なくとも一方に重複している。つまり、第二回路の第一導電ラインと第二導電ラインの一部とが、多層基板と多層基板の外部の空間とに立体的に配置されている。そのため、多層基板に貫通部材が存在しても、多層基板の平面面積が大きくならない。ここで、コンバータが複数の貫通部材を備える場合、ブリッジ導体は、複数の貫通部材の少なくとも一つに重複し、残りの貫通部材に重複していなくてもよい。
The converter according to the embodiment has a smaller plane area than the conventional one.
In the converter according to the embodiment, the bridge conductor forming a part of the second conductive line is arranged outside the multilayer board and overlaps with at least one of the first conductive line and the penetrating member. That is, the first conductive line of the second circuit and a part of the second conductive line are three-dimensionally arranged in the multilayer board and the space outside the multilayer board. Therefore, even if the through member is present in the multilayer board, the plane area of the multilayer board does not increase. Here, when the converter includes a plurality of penetrating members, the bridge conductor may overlap with at least one of the plurality of penetrating members and may not overlap with the remaining penetrating members.
 実施形態に係るコンバータでは、貫通部材によって種々の効果が得られる。例えば、貫通部材がネジであれば、多層基板を筐体に固定し易い。その他、貫通部材が放熱部材であれば、多層基板の放熱性が向上する。 In the converter according to the embodiment, various effects can be obtained by the penetrating member. For example, if the penetrating member is a screw, it is easy to fix the multilayer board to the housing. In addition, if the penetrating member is a heat radiating member, the heat radiating property of the multilayer board is improved.
<2>実施形態に係るコンバータの一形態として、
 前記第二回路は、前記多層基板に実装されるデバイスを備え、
 前記貫通部材は、前記デバイスを冷却するためのサーマルビア又はインレイを含む形態が挙げられる。
<2> As one form of the converter according to the embodiment,
The second circuit comprises a device mounted on the multilayer board.
The penetrating member may include a thermal via or an inlay for cooling the device.
 コンバータが、デバイスを冷却するサーマルビア又はインレイを備えることで、コンバータの動作時においてデバイスが高温になることが抑制される。そのため、デバイスの動作が向上するので、デバイスを備えるコンバータの動作が安定する。 By providing the converter with a thermal via or inlay that cools the device, it is possible to prevent the device from becoming hot during the operation of the converter. Therefore, the operation of the device is improved, and the operation of the converter provided with the device is stable.
<3>実施形態に係るコンバータの一形態として、
 前記貫通部材は、前記第二回路を接地するグランドネジを含む形態が挙げられる。
<3> As one form of the converter according to the embodiment,
The penetrating member may include a ground screw for grounding the second circuit.
 グランドネジは、第二回路の一部の導電ラインを接地するネジである。グランドネジは多層基板にネジ結合される。このグランドネジは、多層基板を筐体などに固定することに利用される場合もある。この場合、多層基板の固定と、第二回路の接地とが同時に行われる。 The ground screw is a screw that grounds a part of the conductive line of the second circuit. The ground screw is screwed to the multilayer board. This ground screw may be used to fix a multilayer board to a housing or the like. In this case, the fixing of the multilayer board and the grounding of the second circuit are performed at the same time.
<4>実施形態に係るコンバータの一形態として、
 前記トランスは、第一の二次コイルと第二の二次コイルとを備えるセンタータップ型である形態が挙げられる。
<4> As one form of the converter according to the embodiment,
The transformer may be a center tap type transformer including a first secondary coil and a second secondary coil.
 センタータップ型のトランスに接続される第二回路は、例えば全波整流型の整流回路である。全波整流型の第二回路を備えるコンバータは、整流出力のリップルを小さくできる。また、センタータップ型のトランスに接続される全波整流型の第二回路は、ブリッジ回路を含む全波整流型の整流回路に比べて、整流素子の数が少なくて済む。従って、多層基板の平面面積が小さくて済む。 The second circuit connected to the center tap type transformer is, for example, a full-wave rectifier type rectifier circuit. A converter equipped with a full-wave rectified second circuit can reduce the ripple of the rectified output. Further, the full-wave rectification type second circuit connected to the center tap type transformer requires a smaller number of rectifying elements than the full-wave rectification type rectifier circuit including the bridge circuit. Therefore, the plane area of the multilayer board can be small.
<5>実施形態に係るコンバータの一形態として、
 前記第二回路は、フィルタ回路を含む形態が挙げられる。
<5> As one form of the converter according to the embodiment,
The second circuit may include a filter circuit.
 第二回路がフィルタ回路を含むことで、出力側のノイズが低減される。フィルタ回路によって、整流出力のリップルが小さくなる。 The noise on the output side is reduced by including the filter circuit in the second circuit. The filter circuit reduces the ripple of the rectified output.
<6>上記<5>のコンバータの一形態として、
 前記フィルタ回路は、
  筒状のフィルタコアと、
  前記フィルタコアを貫通する前記ブリッジ導体とを含む形態が挙げられる。
<6> As one form of the converter of <5> above,
The filter circuit is
With a cylindrical filter core,
Examples thereof include a form including the bridge conductor penetrating the filter core.
 上記構成は、ブリッジ導体がフィルタ回路の導電部分を兼ねる構成である。この構成では、フィルタ回路の導電部分の一部が、ブリッジ導体として多層基板の外部に配置される。従って、多層基板におけるフィルタ回路の導電部分の大きさが小さくなるので、多層基板の平面面積が小さくなる。 The above configuration is such that the bridge conductor also serves as the conductive part of the filter circuit. In this configuration, a part of the conductive portion of the filter circuit is arranged outside the multilayer board as a bridge conductor. Therefore, since the size of the conductive portion of the filter circuit in the multilayer board is reduced, the plane area of the multilayer board is reduced.
<7>実施形態に係るコンバータの一形態として、
 前記ブリッジ導体は、前記多層基板の表面に当接する位置決め部を備える形態が挙げられる。
<7> As one form of the converter according to the embodiment,
The bridge conductor may include a positioning portion that abuts on the surface of the multilayer substrate.
 ブリッジ導体が位置決め部を備えることで、多層基板に対するブリッジ導体の位置が一義的に決まる。そのため、ブリッジ導体の取付け性が向上する。また、多層基板におけるブリッジ導体と、第一導体パターン及び第二導体パターンとの接続性が向上する。多層基板に対するブリッジ導体の固定状態が安定するので、ブリッジ導体が多層基板が外れ難くなる。 Since the bridge conductor has a positioning part, the position of the bridge conductor with respect to the multilayer board is uniquely determined. Therefore, the mountability of the bridge conductor is improved. Further, the connectivity between the bridge conductor in the multilayer board and the first conductor pattern and the second conductor pattern is improved. Since the fixed state of the bridge conductor to the multilayer board is stable, the bridge conductor does not easily come off the multilayer board.
[本開示の実施形態の詳細]
 以下、本開示の実施形態に係るコンバータの具体例を図面に基づいて説明する。図中の同一符号は同一又は相当部分を示す。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Details of Embodiments of the present disclosure]
Hereinafter, specific examples of the converter according to the embodiment of the present disclosure will be described with reference to the drawings. The same reference numerals in the figure indicate the same or corresponding parts. It should be noted that the present invention is not limited to these examples, and is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
<実施形態1>
 実施形態1では、コンバータとして、センタータップを用いた全波整流型のDC/DCコンバータを説明する。本例のコンバータ100の電気的な回路構成を図1の回路図に基づいて説明する。次いで、本例のコンバータ100の構造的な構成を図2,3に基づいて説明する。本例のコンバータ100は、その構造に特徴がある。
<Embodiment 1>
In the first embodiment, a full-wave rectification type DC / DC converter using a center tap will be described as the converter. The electrical circuit configuration of the converter 100 of this example will be described with reference to the circuit diagram of FIG. Next, the structural configuration of the converter 100 of this example will be described with reference to FIGS. 2 and 3. The converter 100 of this example is characterized by its structure.
 ≪回路構成≫
 本例のコンバータ100は、第一回路1と第二回路2とトランス3とを備える。本例の第一回路1には直流が入力される。本例の第一回路1は、接地電位の入力端子1Aにつながる低圧側導電ライン11と、正電位の入力端子1Bにつながる高圧側導電ライン12とを備える。低圧側導電ライン11は、入力端子1Aからトランス3の一次コイル31の一方の端部に至る。高圧側導電ライン12は、入力端子1Bからトランス3の一次コイル31の他方の端部に至る。
≪Circuit configuration≫
The converter 100 of this example includes a first circuit 1, a second circuit 2, and a transformer 3. Direct current is input to the first circuit 1 of this example. The first circuit 1 of this example includes a low-voltage side conductive line 11 connected to the ground potential input terminal 1A and a high-voltage side conductive line 12 connected to the positive potential input terminal 1B. The low voltage side conductive line 11 extends from the input terminal 1A to one end of the primary coil 31 of the transformer 3. The high voltage side conductive line 12 extends from the input terminal 1B to the other end of the primary coil 31 of the transformer 3.
 本例の第一回路1は、入力側のコンデンサ1Cと、スイッチング回路1Dとを備える。入力側のコンデンサ1Cは、低圧側導電ライン11と高圧側導電ライン12との間に設けられるデバイスであって、帰還ノイズを低減する。 The first circuit 1 of this example includes a capacitor 1C on the input side and a switching circuit 1D. The capacitor 1C on the input side is a device provided between the low voltage side conductive line 11 and the high voltage side conductive line 12, and reduces feedback noise.
 低圧側導電ライン11と高圧側導電ライン12との間に設けられる本例のスイッチング回路1Dは、直流を交流に変換する変換回路である。スイッチング回路1Dには公知の構成が利用できる。本例のスイッチング回路1Dは、ブリッジ接続される4つの整流素子13によって構成される。整流素子13は、第一回路1の一部を構成するデバイスである。本例の整流素子13は、電界効果トランジスタ(Field Effect Transistor)である。整流素子13はダイオードであっても良い。 The switching circuit 1D of this example provided between the low-voltage side conductive line 11 and the high-voltage side conductive line 12 is a conversion circuit that converts direct current into alternating current. A known configuration can be used for the switching circuit 1D. The switching circuit 1D of this example is composed of four rectifying elements 13 connected by a bridge. The rectifying element 13 is a device that constitutes a part of the first circuit 1. The rectifying element 13 of this example is a field effect transistor. The rectifying element 13 may be a diode.
 トランス3は、交流の電圧を変換する。トランス3は、一次コイル31と二次コイル32とコア33とを備える。一次コイル31は、第一回路1に接続される。二次コイル32は、後述する第二回路2に接続される。コア33は、一次コイル31と二次コイル32とに貫通される。 The transformer 3 converts the AC voltage. The transformer 3 includes a primary coil 31, a secondary coil 32, and a core 33. The primary coil 31 is connected to the first circuit 1. The secondary coil 32 is connected to the second circuit 2 described later. The core 33 is penetrated by the primary coil 31 and the secondary coil 32.
 本例のトランス3はセンタータップ型である。センタータップ型のトランス3では、二次コイル32が、第一の二次コイル321と、第二の二次コイル322とを備える。本例では、第一の二次コイル321と第二の二次コイル322との間に、後述する第二回路2の第二導電ライン22が接続されている。この第二導電ライン22がセンタータップとして機能する。 The transformer 3 in this example is a center tap type. In the center tap type transformer 3, the secondary coil 32 includes a first secondary coil 321 and a second secondary coil 322. In this example, the second conductive line 22 of the second circuit 2, which will be described later, is connected between the first secondary coil 321 and the second secondary coil 322. The second conductive line 22 functions as a center tap.
 本例の第二回路2は、第一導電ライン21と第二導電ライン22とを備える。第一導電ライン21は、トランス3の二次コイル32の両端から接地電位である出力端子2Aにつながる。より具体的には、第一の二次コイル321から出力端子2Aに至る第一導電ライン21と、第二の二次コイル322から出力端子2Aに至る第一の導電ライン21とがある。両導電ライン21は接点21bにおいてつながる。第一導電ライン21はアース29によって接地されている。一方、センタータップとして機能する第二導電ライン22は、第一導電ライン21とは異なる経路で、トランス3の二次コイル32から正電位である出力端子2Bに至る。二次コイル32から出力端子2A,2Bに至るまでの間、第一導電ライン21と第二導電ライン22とはつながっていない。 The second circuit 2 of this example includes a first conductive line 21 and a second conductive line 22. The first conductive line 21 is connected from both ends of the secondary coil 32 of the transformer 3 to the output terminal 2A which is the ground potential. More specifically, there is a first conductive line 21 from the first secondary coil 321 to the output terminal 2A and a first conductive line 21 from the second secondary coil 322 to the output terminal 2A. Both conductive lines 21 are connected at a contact 21b. The first conductive line 21 is grounded by the ground 29. On the other hand, the second conductive line 22 that functions as a center tap reaches the output terminal 2B, which has a positive potential, from the secondary coil 32 of the transformer 3 by a path different from that of the first conductive line 21. The first conductive line 21 and the second conductive line 22 are not connected from the secondary coil 32 to the output terminals 2A and 2B.
 本例の第二回路2では、第一導電ライン21と第二導電ライン22との間に整流回路2Cとフィルタ回路2Dとが設けられている。本例の整流回路2Cは、交流を直流に変換する公知の変換回路が利用できる。本例の整流回路2Cは、二つの整流素子211,212を備える。整流素子211,212は、第一導電ライン21に含まれるデバイスである。整流素子211は、第一の二次コイル321から接点21bの間に設けられている。整流素子212は、第二の二次コイル322から接点21bの間に設けられている。本例の整流素子211,212は、電界効果トランジスタである。本例とは異なり、整流素子211,212はダイオードでも良い。 In the second circuit 2 of this example, a rectifier circuit 2C and a filter circuit 2D are provided between the first conductive line 21 and the second conductive line 22. As the rectifier circuit 2C of this example, a known conversion circuit that converts alternating current into direct current can be used. The rectifier circuit 2C of this example includes two rectifier elements 211 and 212. The rectifying elements 211 and 212 are devices included in the first conductive line 21. The rectifying element 211 is provided between the first secondary coil 321 and the contact 21b. The rectifying element 212 is provided between the second secondary coil 322 and the contact 21b. The rectifying elements 211 and 212 of this example are field effect transistors. Unlike this example, the rectifying elements 211 and 212 may be diodes.
 本例のフィルタ回路2Dは、ローパスフィルタである。フィルタ回路2Dは、デバイスとしてインダクタ23と出力側のコンデンサ24とを備える。インダクタ23は、第二導電ライン22に設けられている。出力側のコンデンサ24は、第一導電ライン21における接点21bよりも下流側の部分と、第二導電ライン22におけるインダクタ23よりも下流側の部分との間に設けられている。本例のフィルタ回路2Dは、L形フィルタであるが、π形フィルタであっても良いし、T形フィルタであっても良い。 The filter circuit 2D of this example is a low-pass filter. The filter circuit 2D includes an inductor 23 and a capacitor 24 on the output side as devices. The inductor 23 is provided on the second conductive line 22. The output-side capacitor 24 is provided between a portion of the first conductive line 21 downstream of the contact 21b and a portion of the second conductive line 22 downstream of the inductor 23. The filter circuit 2D of this example is an L-type filter, but may be a π-type filter or a T-type filter.
 ≪構造的な構成≫
 図1に示されるコンバータ100のうち、少なくとも第二回路2は多層基板上に設けられている。本例では、図2,3に示されるように、第二回路2とトランス3とが多層基板4上に設けられている。本例では便宜上、多層基板4における第二回路2が設けられる領域を第一領域4A、トランス3が設けられる領域を第二領域4Bと呼ぶ。本例とは異なり、第一回路1(図1)も多層基板4上に設けられていても良い。
≪Structural structure≫
Of the converters 100 shown in FIG. 1, at least the second circuit 2 is provided on a multilayer board. In this example, as shown in FIGS. 2 and 3, the second circuit 2 and the transformer 3 are provided on the multilayer board 4. In this example, for convenience, the region in which the second circuit 2 is provided in the multilayer board 4 is referred to as a first region 4A, and the region in which the transformer 3 is provided is referred to as a second region 4B. Unlike this example, the first circuit 1 (FIG. 1) may also be provided on the multilayer board 4.
 多層基板4は、絶縁部材40の内部に積層される複数の導体パターン41を備える(特に図3を参照)。導体パターン41は薄膜によって構成される。薄膜には導電性に優れる銅などの金属が好適である。複数の導体パターン41のうち、一部の導体パターン41が、多層基板4の表面に配置されていても良い。各導体パターン41が、トランス3の一次コイル31、トランス3の二次コイル32、第二回路2の第一導電ライン21、第二回路2の第二導電ライン22の一部を構成する。 The multilayer board 4 includes a plurality of conductor patterns 41 laminated inside the insulating member 40 (see particularly FIG. 3). The conductor pattern 41 is composed of a thin film. A metal such as copper, which has excellent conductivity, is suitable for the thin film. Of the plurality of conductor patterns 41, some conductor patterns 41 may be arranged on the surface of the multilayer substrate 4. Each conductor pattern 41 constitutes a part of the primary coil 31 of the transformer 3, the secondary coil 32 of the transformer 3, the first conductive line 21 of the second circuit 2, and the second conductive line 22 of the second circuit 2.
  ・トランス
 本例の多層基板4には、二つの貫通孔42,43が設けられている。紙面左側の貫通孔42には、トランス3のコア33が貫通されている。本例のコア33は、環状の磁性体である。環状の磁性体には、環形状の一部が繋がっていない磁性体も含まれる。そのような磁性体として、例えば概略C字形状の磁性体が挙げられる。本例のコア33の軸方向から見た形状は矩形環状である。もちろん、コア33の軸方向から見た形状は円環状であっても良い。
Transformer The multilayer board 4 of this example is provided with two through holes 42 and 43. The core 33 of the transformer 3 is penetrated through the through hole 42 on the left side of the paper. The core 33 of this example is an annular magnetic material. The annular magnetic material also includes a magnetic material in which a part of the ring shape is not connected. Examples of such a magnetic material include a magnetic material having a substantially C-shape. The shape of the core 33 of this example seen from the axial direction is a rectangular ring. Of course, the shape of the core 33 when viewed from the axial direction may be annular.
 コア33は、例えばフェライトコアなどの焼結体である。その他、コア33は、圧粉成形体、複合材料の成形体、又は積層鋼板であっても良い。圧粉成形体は、軟磁性粉末が圧縮成形されてなる磁性部材である。複合材料は、軟磁性粉末が分散された流動性の樹脂を硬化させた材料である。積層鋼板は、電磁鋼板が積層された積層体である。 The core 33 is a sintered body such as a ferrite core. In addition, the core 33 may be a powder compact, a composite material molded body, or a laminated steel plate. The compaction compact is a magnetic member obtained by compression molding soft magnetic powder. The composite material is a material obtained by curing a fluid resin in which soft magnetic powder is dispersed. The laminated steel sheet is a laminated body in which electromagnetic steel sheets are laminated.
 本例のコア33は、第一コア部材331と第二コア部材332との組物である(図3)。第一コア部材331は、概略C字形状の磁性体である。第一コア部材331の一方の脚片が貫通孔42の内部に配置されている。第二コア部材332は、概略I字形状の磁性体である。第二コア部材332は、第一コア部材331の両脚片をつなぐように配置される。 The core 33 of this example is an assembly of the first core member 331 and the second core member 332 (FIG. 3). The first core member 331 is a magnetic material having a substantially C-shape. One leg piece of the first core member 331 is arranged inside the through hole 42. The second core member 332 is a magnetic material having a substantially I-shape. The second core member 332 is arranged so as to connect both leg pieces of the first core member 331.
 一次コイル31と二次コイル32は、図2,3に示されるように、導体パターン41として多層基板4に設けられている。これら一次コイル31と二次コイル32は、貫通孔42を取り囲むように配置される。一次コイル31と二次コイル32とは多層基板4の厚み方向に積層されている。一次コイル31と二次コイル32との間には絶縁部材40が介在されている。ここで、一次コイル31と二次コイル32は、多層基板4の表面に露出しないことが好ましい。これは、両コイル31,32とコア33との絶縁を確実にするためである。 As shown in FIGS. 2 and 3, the primary coil 31 and the secondary coil 32 are provided on the multilayer substrate 4 as a conductor pattern 41. The primary coil 31 and the secondary coil 32 are arranged so as to surround the through hole 42. The primary coil 31 and the secondary coil 32 are laminated in the thickness direction of the multilayer board 4. An insulating member 40 is interposed between the primary coil 31 and the secondary coil 32. Here, it is preferable that the primary coil 31 and the secondary coil 32 are not exposed on the surface of the multilayer substrate 4. This is to ensure the insulation between both coils 31 and 32 and the core 33.
  ・貫通部材
 多層基板4は、図3に示されるように、多層基板4を厚み方向に貫通する少なくとも一つの貫通部材5を備える。貫通部材5は、多層基板4における第二回路2が設けられる第一領域4Aに配置される。本例の貫通部材5は、図1の整流素子211,212を冷却するサーマルビア50(図3)と、図1のアースを構成するグランドネジ51を含む。
-Through member The multilayer board 4 includes at least one penetrating member 5 that penetrates the multilayer board 4 in the thickness direction, as shown in FIG. The penetrating member 5 is arranged in the first region 4A where the second circuit 2 in the multilayer board 4 is provided. The penetrating member 5 of this example includes a thermal via 50 (FIG. 3) for cooling the rectifying elements 211 and 212 of FIG. 1 and a ground screw 51 constituting the ground of FIG.
 サーマルビア50は、多層基板4に設けられる貫通孔と、貫通孔の内周面に設けられるめっき層とで構成される。貫通孔は、多層基板4における整流素子212に接触する部分から多層基板4の厚み方向に延びる。めっき層は熱伝導性に優れる材質、例えば銅などで構成される。本例では、このサーマルビア50は、多層基板4の導体パターン41に電気的に接続されていない。本例とは異なり、サーマルビア50は、導体パターン41に電気的に接続される場合もある。サーマルビア50によって、整流素子212で発生した熱が多層基板4の外部に放出される。その結果、整流素子212が効果的に冷却される。 The thermal via 50 is composed of a through hole provided in the multilayer substrate 4 and a plating layer provided on the inner peripheral surface of the through hole. The through hole extends in the thickness direction of the multilayer board 4 from the portion of the multilayer board 4 that contacts the rectifying element 212. The plating layer is made of a material having excellent thermal conductivity, for example, copper. In this example, the thermal via 50 is not electrically connected to the conductor pattern 41 of the multilayer board 4. Unlike this example, the thermal via 50 may be electrically connected to the conductor pattern 41. The heat generated by the rectifying element 212 is released to the outside of the multilayer board 4 by the thermal via 50. As a result, the rectifying element 212 is effectively cooled.
 めっき層の代わりに、貫通孔に嵌め込まれるインレイが設けられていても良い。インレイは熱伝導性に優れる材質、例えば銅などで構成される。インレイによっても、整流素子212が効果的に冷却される。 Instead of the plating layer, an inlay that is fitted into the through hole may be provided. The inlay is made of a material having excellent thermal conductivity, such as copper. The inlay also effectively cools the rectifying element 212.
 グランドネジ51は、第二回路2の第一導電ライン21を接地する部材である。従って、グランドネジ51は、第二回路2の一部とみなすこともできる。このグランドネジ51は、図示しない筐体などに多層基板4を固定する部材として利用することもできる。この場合、グランドネジ51によって、筐体への多層基板4の固定と、第二回路2の第一導電ライン21の接地とが同時に行われる。 The ground screw 51 is a member that grounds the first conductive line 21 of the second circuit 2. Therefore, the ground screw 51 can also be regarded as a part of the second circuit 2. The ground screw 51 can also be used as a member for fixing the multilayer board 4 to a housing (not shown) or the like. In this case, the ground screw 51 fixes the multilayer board 4 to the housing and grounds the first conductive line 21 of the second circuit 2 at the same time.
  ・第二回路
 第二回路2は、図2に示されるように、多層基板4の第一領域4Aに設けられる。本例では、第一領域4Aは、多層基板4におけるトランス3が設けられる第二領域4Bを除くの領域である。
-Second circuit The second circuit 2 is provided in the first region 4A of the multilayer board 4 as shown in FIG. In this example, the first region 4A is a region excluding the second region 4B in which the transformer 3 is provided in the multilayer board 4.
 第二回路2に備わる第一導電ライン21は、多層基板4の第一領域4Aにおける多層基板4の内部に配置される。この第一導電ライン21に備わる整流素子211,212は、多層基板4に実装されている。 The first conductive line 21 provided in the second circuit 2 is arranged inside the multilayer board 4 in the first region 4A of the multilayer board 4. The rectifying elements 211 and 212 provided in the first conductive line 21 are mounted on the multilayer board 4.
 本例の第二導電ライン22は、多層基板4の内部に設けられる第一導体パターン221及び第二導体パターン222と、多層基板4に後付けされるブリッジ導体6とを備える。第一導体パターン221は、トランス3の二次コイル32に接続される導体パターン41である。より具体的には、第一導体パターン221は、図1における第一の二次コイル321と第二の二次コイル322との間に接続される。 The second conductive line 22 of this example includes a first conductor pattern 221 and a second conductor pattern 222 provided inside the multilayer board 4, and a bridge conductor 6 that is retrofitted to the multilayer board 4. The first conductor pattern 221 is a conductor pattern 41 connected to the secondary coil 32 of the transformer 3. More specifically, the first conductor pattern 221 is connected between the first secondary coil 321 and the second secondary coil 322 in FIG. 1.
 第二導体パターン222は、図1における出力端子2Bに接続される。本例では、第二導体パターン222が貫通孔43を取り囲むように配置されている。貫通孔43には、筒状のフィルタコア230が貫通されている。フィルタコア230は、図1のフィルタ回路2Dのインダクタ23の一部を構成する。フィルタコア230は、第三コア部材231と第四コア部材232との組物である(特に図3参照)。第三コア部材231は、概略C字形状の磁性体である。第三コア部材231の一方の脚片が貫通孔43の内部にはいちされている。第四コア部材232は、概略I字形状の磁性体である。第四コア部材232は、第三コア部材231の両脚片をつなぐように配置される。 The second conductor pattern 222 is connected to the output terminal 2B in FIG. In this example, the second conductor pattern 222 is arranged so as to surround the through hole 43. A cylindrical filter core 230 is penetrated through the through hole 43. The filter core 230 constitutes a part of the inductor 23 of the filter circuit 2D of FIG. The filter core 230 is an assembly of the third core member 231 and the fourth core member 232 (see particularly FIG. 3). The third core member 231 is a magnetic material having a substantially C-shape. One leg piece of the third core member 231 is placed inside the through hole 43. The fourth core member 232 is a magnetic material having a substantially I-shape. The fourth core member 232 is arranged so as to connect both leg pieces of the third core member 231.
 ブリッジ導体6は、第一導体パターン221と第二導体パターン222とに直列に接続される。ブリッジ導体6は、中間部60と第一脚部61と第二脚部62とを備える。本例の中間部60は、多層基板4の外部に配置され、多層基板4にほぼ平行に延びている。第一脚部61は、中間部60の端部から多層基板4に向かって延び、第一導体パターン221に電気的に接続されている。第二脚部62は、中間部60の別の端部から多層基板4に向かって延び、第二導体パターン222に電気的に接続されている。電気的な接続はハンダなどで構成される。 The bridge conductor 6 is connected in series with the first conductor pattern 221 and the second conductor pattern 222. The bridge conductor 6 includes an intermediate portion 60, a first leg portion 61, and a second leg portion 62. The intermediate portion 60 of this example is arranged outside the multilayer board 4, and extends substantially parallel to the multilayer board 4. The first leg portion 61 extends from the end portion of the intermediate portion 60 toward the multilayer substrate 4, and is electrically connected to the first conductor pattern 221. The second leg portion 62 extends from another end of the intermediate portion 60 toward the multilayer substrate 4 and is electrically connected to the second conductor pattern 222. The electrical connection consists of solder and the like.
 ブリッジ導体6の中間部60は、図2に示されるように、多層基板4の第一領域4Aを平面視したとき、第一導電ライン21及び整流素子211に重複している。整流素子211の下方には図3に示されるようにサーマルビア50が設けられている。従って、中間部60は、多層基板4の第一領域4Aを平面視したとき、サーマルビア50にも重複している。更に、中間部60は、多層基板4の第一領域4Aを平面視したとき、グランドネジ51にも重複している。つまり、ブリッジ導体6は、第一導電ライン21及び貫通部材5の一方又は双方の少なくとも一部をまたいで、第一導体パターン221と第二導体パターン222とをつないでいる。 As shown in FIG. 2, the intermediate portion 60 of the bridge conductor 6 overlaps the first conductive line 21 and the rectifying element 211 when the first region 4A of the multilayer board 4 is viewed in a plan view. A thermal via 50 is provided below the rectifying element 211 as shown in FIG. Therefore, the intermediate portion 60 also overlaps with the thermal via 50 when the first region 4A of the multilayer board 4 is viewed in a plan view. Further, the intermediate portion 60 also overlaps with the ground screw 51 when the first region 4A of the multilayer board 4 is viewed in a plan view. That is, the bridge conductor 6 straddles at least a part of one or both of the first conductive line 21 and the penetrating member 5, and connects the first conductor pattern 221 and the second conductor pattern 222.
 ≪実施形態の効果≫
 図2,3に示される本例のコンバータ100を平面視したときの平面面積は、第二導電ライン全体を多層基板に導体パターンによって設けたコンバータに比べて小さい。
 本例のコンバータ100では、第二導電ライン22の一部を構成するブリッジ導体6が、多層基板4の外部に配置され、かつ第一導電ライン21及び貫通部材5の少なくとも一方に重複している。つまり、第二回路2の第一導電ライン21と第二導電ライン22の一部とが、多層基板4と、多層基板4の外部の空間とに立体的に配置されている。そのため、多層基板4に貫通部材5が存在しても、多層基板4の第一領域4Aの平面面積が大きくならない。
<< Effect of the embodiment >>
The planar area of the converter 100 of this example shown in FIGS. 2 and 3 when viewed in a plan view is smaller than that of a converter in which the entire second conductive line is provided on a multilayer substrate by a conductor pattern.
In the converter 100 of this example, the bridge conductor 6 forming a part of the second conductive line 22 is arranged outside the multilayer substrate 4 and overlaps with at least one of the first conductive line 21 and the through member 5. .. That is, the first conductive line 21 and a part of the second conductive line 22 of the second circuit 2 are three-dimensionally arranged in the multilayer board 4 and the space outside the multilayer board 4. Therefore, even if the through member 5 is present in the multilayer board 4, the plane area of the first region 4A of the multilayer board 4 does not increase.
 本例のコンバータ100では、貫通部材5によって種々の効果が得られる。具体的には、貫通部材5の一種であるグランドネジ51によって、第一導電ライン21(図1)が確実に接地される。また、貫通部材5の一種であるサーマルビア50によって、第二回路2の整流素子211,212の放熱性が向上する。 In the converter 100 of this example, various effects can be obtained by the penetrating member 5. Specifically, the first conductive line 21 (FIG. 1) is surely grounded by the ground screw 51, which is a kind of the penetrating member 5. Further, the thermal via 50, which is a kind of the penetrating member 5, improves the heat dissipation of the rectifying elements 211 and 212 of the second circuit 2.
<実施形態2>
 実施形態2では、ブリッジ導体6の一部によってフィルタ回路2D(図1)の導電部分の一部が構成される例を図4に基づいて説明する。
<Embodiment 2>
In the second embodiment, an example in which a part of the conductive part of the filter circuit 2D (FIG. 1) is formed by a part of the bridge conductor 6 will be described with reference to FIG.
 図4に示されるように、本例のコンバータ100では、筒状のフィルタコア230の内部をブリッジ導体6の第二脚部62が貫通している。つまり、本例では、ブリッジ導体6がフィルタ回路2D(図1)の導電部分を兼ねる。この構成では、フィルタ回路2Dの導電部分が多層基板4の外部に配置されるので、多層基板4におけるフィルタ回路2Dの導電部分が小さくなる。その結果、多層基板4の平面面積が小さくなる。 As shown in FIG. 4, in the converter 100 of this example, the second leg portion 62 of the bridge conductor 6 penetrates the inside of the tubular filter core 230. That is, in this example, the bridge conductor 6 also serves as the conductive portion of the filter circuit 2D (FIG. 1). In this configuration, since the conductive portion of the filter circuit 2D is arranged outside the multilayer board 4, the conductive portion of the filter circuit 2D in the multilayer board 4 becomes smaller. As a result, the plane area of the multilayer board 4 becomes smaller.
<実施形態3>
 実施形態3では、ブリッジ導体6が、多層基板4に対するブリッジ導体6の位置を決める位置決め部63を備える例を図5に基づいて説明する。
<Embodiment 3>
In the third embodiment, an example in which the bridge conductor 6 includes a positioning portion 63 for determining the position of the bridge conductor 6 with respect to the multilayer substrate 4 will be described with reference to FIG.
 図5には、ブリッジ導体6のうち、第一脚部61側の一部のみが図示されている。図示しない第二脚部62(図3,4)も、図5の第一脚部61と同様の構成を備える。 FIG. 5 shows only a part of the bridge conductor 6 on the side of the first leg portion 61. The second leg portion 62 (FIGS. 3 and 4) (not shown) also has the same configuration as the first leg portion 61 of FIG.
 図5の例では、第一脚部61の端面610から突出する脚片611,612,613が設けられている。脚片611,612は、脚片613よりも長い。脚片611,612の先端側は、多層基板4の内部に配置され、二次コイル32に接続されている。一方、脚片613の先端は、多層基板4の表面に当接し、ブリッジ導体6を支えている。つまり、脚片613は、多層基板4に対するブリッジ導体6の位置を決める位置決め部63として機能している。脚片613がブリッジ導体6を支えることで、第一脚部61の端面610と、多層基板4の表面との間に間隔が形成される。前記間隔の長さは脚片613の長さに等しい。前記間隔によってブリッジ導体6の放熱性が向上する。従って、脚片613の長さが変化することで、ブリッジ導体6の放熱性が調整される。脚片611,612,613の数は特に限定されない。 In the example of FIG. 5, leg pieces 611, 612, 613 protruding from the end surface 610 of the first leg portion 61 are provided. The leg pieces 611 and 612 are longer than the leg pieces 613. The tip ends of the leg pieces 611 and 612 are arranged inside the multilayer board 4 and connected to the secondary coil 32. On the other hand, the tip of the leg piece 613 abuts on the surface of the multilayer substrate 4 and supports the bridge conductor 6. That is, the leg piece 613 functions as a positioning portion 63 that determines the position of the bridge conductor 6 with respect to the multilayer board 4. When the leg piece 613 supports the bridge conductor 6, a space is formed between the end surface 610 of the first leg portion 61 and the surface of the multilayer substrate 4. The length of the interval is equal to the length of the leg piece 613. The spacing improves the heat dissipation of the bridge conductor 6. Therefore, the heat dissipation of the bridge conductor 6 is adjusted by changing the length of the leg piece 613. The number of leg pieces 611, 612, 613 is not particularly limited.
 ブリッジ導体6が位置決め部63を備えることで、多層基板4の厚み方向におけるブリッジ導体6の位置が一義的に決まる。そのため、ブリッジ導体6の取付け性が向上する。また、多層基板4におけるブリッジ導体6と、第一導体パターン221及び第二導体パターン222(図3参照)との接続性が向上する。更に、多層基板4に対するブリッジ導体6の固定状態が安定するので、ブリッジ導体6が多層基板4が外れ難くなる。 Since the bridge conductor 6 includes the positioning portion 63, the position of the bridge conductor 6 in the thickness direction of the multilayer board 4 is uniquely determined. Therefore, the mountability of the bridge conductor 6 is improved. Further, the connectivity between the bridge conductor 6 in the multilayer board 4 and the first conductor pattern 221 and the second conductor pattern 222 (see FIG. 3) is improved. Further, since the fixed state of the bridge conductor 6 with respect to the multilayer board 4 is stable, the bridge conductor 6 makes it difficult for the multilayer board 4 to come off.
<実施形態4>
 実施形態4では、ブリッジ導体6の形状が実施形態3とは異なる例を図6に基づいて説明する。図6においても、ブリッジ導体6における第一脚部61側の一部のみが図示されている。
<Embodiment 4>
In the fourth embodiment, an example in which the shape of the bridge conductor 6 is different from that of the third embodiment will be described with reference to FIG. Also in FIG. 6, only a part of the bridge conductor 6 on the first leg 61 side is shown.
 図6に示されるように、本例のブリッジ導体6の第一脚部61は、第一脚部61の端面610から突出する脚片611,612を備える。脚片611,612は、多層基板4の内部に配置され、二次コイル32に接続されている。一方、第一脚部61の端面610は、多層基板4の表面に当接し、ブリッジ導体6を支えている。つまり本例では、端面610が位置決め部63として機能している。 As shown in FIG. 6, the first leg portion 61 of the bridge conductor 6 of this example includes leg pieces 611,612 protruding from the end surface 610 of the first leg portion 61. The leg pieces 611 and 612 are arranged inside the multilayer board 4 and connected to the secondary coil 32. On the other hand, the end surface 610 of the first leg portion 61 abuts on the surface of the multilayer substrate 4 and supports the bridge conductor 6. That is, in this example, the end face 610 functions as the positioning portion 63.
 本例の構成によっても、実施形態3と同様の効果が得られる。また、本例の構成によれば、多層基板4の厚み方向におけるブリッジ導体6の高さが、実施形態3の構成よりも低くなる。従って、本例のコンバータ100は、実施形態3のコンバータ100よりも多層基板4の厚み方向にコンパクトになる。 The same effect as that of the third embodiment can be obtained by the configuration of this example. Further, according to the configuration of this example, the height of the bridge conductor 6 in the thickness direction of the multilayer board 4 is lower than that of the configuration of the third embodiment. Therefore, the converter 100 of this example is more compact in the thickness direction of the multilayer board 4 than the converter 100 of the third embodiment.
<その他の実施形態>
 実施形態に係るコンバータ100は、AC/DCコンバータでも良いし、AC/ACコンバータでも良い。この場合、コンバータ100に備わる第一回路1と第二回路2の構成は、実施形態1から実施形態4とは異なる。
<Other embodiments>
The converter 100 according to the embodiment may be an AC / DC converter or an AC / AC converter. In this case, the configurations of the first circuit 1 and the second circuit 2 provided in the converter 100 are different from those of the first embodiment to the fourth embodiment.
 実施形態に係るコンバータ100は、ブリッジ回路を含む全波整流型のコンバータであっても良い。また、実施形態に係るコンバータ100は、半波整流型のコンバータであっても良い。 The converter 100 according to the embodiment may be a full-wave rectification type converter including a bridge circuit. Further, the converter 100 according to the embodiment may be a half-wave rectification type converter.
100 コンバータ
1 第一回路
 1A,1B 入力端子、1C 入力側のコンデンサ、1D スイッチング回路
 11 低圧側導電ライン、12 高圧側導電ライン
 13 整流素子
2 第二回路
 2A,2B 出力端子、2C 整流回路、2D フィルタ回路
 21 第一導電ライン、21b 接点、211,212 整流素子
 22 第二導電ライン、221 第一導体パターン、222 第二導体パターン
 23 インダクタ
  230 フィルタコア、231 第三コア部材、232 第四コア部材
 24 出力側のコンデンサ、29 アース
3 トランス
 31 一次コイル
 32 二次コイル、321 第一の二次コイル、322 第二の二次コイル
 33 コア、331 第一コア部材、332 第二コア部材
4 多層基板
 4A 第一領域、4B 第二領域
 40 絶縁部材、41 導体パターン、42,43 貫通孔
5 貫通部材
 50 サーマルビア、51 グランドネジ
6 ブリッジ導体
 60 中間部、61 第一脚部、62 第二脚部、63 位置決め部
 610 端面、611,612,613 脚片
100 Converter 1 1st circuit 1A, 1B input terminal, 1C input side capacitor, 1D switching circuit 11 Low pressure side conductive line, 12 High pressure side conductive line 13 Rectifier element 2 2nd circuit 2A, 2B output terminal, 2C rectifier circuit, 2D Filter circuit 21 1st conductive line, 21b contact, 211,212 Rectifier element 22 2nd conductive line, 221 1st conductor pattern, 222 2nd conductor pattern 23 Inductor 230 Filter core, 231 3rd core member, 232 4th core member 24 Output side capacitor, 29 Earth 3 Transformer 31 Primary coil 32 Secondary coil, 321 First secondary coil, 322 Second secondary coil 33 cores, 331 First core member, 332 Second core member 4 Multilayer board 4A 1st area, 4B 2nd area 40 Insulation member, 41 Conductor pattern, 42,43 Through hole 5 Through member 50 Thermal via, 51 Ground screw 6 Bridge conductor 60 Intermediate part, 61 First leg part, 62 Second leg part , 63 Positioning part 610 End face, 611, 612,613 Leg piece

Claims (7)

  1.  入力端子を有する第一回路と、
     出力端子を有する第二回路と、
     前記第一回路と前記第二回路とを電磁気的に結合するトランスとを備えるコンバータであって、
     前記第二回路が設けられる多層基板と、
     前記多層基板における前記第二回路が設けられる領域に配置され、前記多層基板を厚み方向に貫通する貫通部材とを備え、
     前記第二回路は、
      前記トランスから前記出力端子に至る第一導電ラインと、
      前記第一導電ラインとは異なる経路で、前記トランスから前記出力端子に至る第二導電ラインとを備え、
      前記第二導電ラインは、
       前記多層基板に設けられ、前記トランスに接続される第一導体パターンと、
       前記多層基板に設けられ、前記出力端子に接続される第二導体パターンと、
       前記第一導体パターンと前記第二導体パターンとに直列に接続されるブリッジ導体とを備え、
       前記ブリッジ導体の中間部が、前記多層基板の外部に配置され、かつ前記領域を平面視したとき、前記第一導電ライン及び前記貫通部材の少なくとも一方に重複する、
    コンバータ。
    The first circuit with an input terminal and
    The second circuit with an output terminal and
    A converter including a transformer that electromagnetically couples the first circuit and the second circuit.
    A multilayer board on which the second circuit is provided and
    It is arranged in the region of the multilayer board where the second circuit is provided, and includes a penetrating member that penetrates the multilayer board in the thickness direction.
    The second circuit is
    The first conductive line from the transformer to the output terminal,
    It is provided with a second conductive line from the transformer to the output terminal by a route different from the first conductive line.
    The second conductive line is
    A first conductor pattern provided on the multilayer board and connected to the transformer,
    A second conductor pattern provided on the multilayer board and connected to the output terminal,
    A bridge conductor connected in series with the first conductor pattern and the second conductor pattern is provided.
    When the intermediate portion of the bridge conductor is arranged outside the multilayer substrate and the region is viewed in a plan view, it overlaps with at least one of the first conductive line and the penetrating member.
    converter.
  2.  前記第二回路は、前記多層基板に実装されるデバイスを備え、
     前記貫通部材は、前記デバイスを冷却するためのサーマルビア又はインレイを含む請求項1に記載のコンバータ。
    The second circuit comprises a device mounted on the multilayer board.
    The converter according to claim 1, wherein the penetrating member includes a thermal via or an inlay for cooling the device.
  3.  前記貫通部材は、前記第二回路を接地するグランドネジを含む請求項1又は請求項2に記載のコンバータ。 The converter according to claim 1 or 2, wherein the penetrating member includes a ground screw for grounding the second circuit.
  4.  前記トランスは、センタータップ型である請求項1から請求項3のいずれか1項に記載のコンバータ。 The converter according to any one of claims 1 to 3, wherein the transformer is a center tap type.
  5.  前記第二回路は、フィルタ回路を含む請求項1から請求項4のいずれか1項に記載のコンバータ。 The converter according to any one of claims 1 to 4, wherein the second circuit includes a filter circuit.
  6.  前記フィルタ回路は、
      筒状のフィルタコアと、
      前記フィルタコアを貫通する前記ブリッジ導体とを含む請求項5に記載のコンバータ。
    The filter circuit is
    With a cylindrical filter core,
    The converter according to claim 5, further comprising the bridge conductor penetrating the filter core.
  7.  前記ブリッジ導体は、前記多層基板の表面に当接する位置決め部を備える請求項1から請求項6のいずれか1項に記載のコンバータ。 The converter according to any one of claims 1 to 6, wherein the bridge conductor includes a positioning portion that abuts on the surface of the multilayer substrate.
PCT/JP2020/036458 2020-09-25 2020-09-25 Converter WO2022064661A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021507717A JP6962498B1 (en) 2020-09-25 2020-09-25 converter
PCT/JP2020/036458 WO2022064661A1 (en) 2020-09-25 2020-09-25 Converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/036458 WO2022064661A1 (en) 2020-09-25 2020-09-25 Converter

Publications (1)

Publication Number Publication Date
WO2022064661A1 true WO2022064661A1 (en) 2022-03-31

Family

ID=78409836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/036458 WO2022064661A1 (en) 2020-09-25 2020-09-25 Converter

Country Status (2)

Country Link
JP (1) JP6962498B1 (en)
WO (1) WO2022064661A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153724A (en) * 2008-12-26 2010-07-08 Tdk Corp Coil substrate structure, and switching power supply device
WO2015053139A1 (en) * 2013-10-07 2015-04-16 日立オートモティブシステムズ株式会社 Power conversion device
JP2016031963A (en) * 2014-07-28 2016-03-07 Tdk株式会社 Coil component, coil component composite and transformer, and power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010153724A (en) * 2008-12-26 2010-07-08 Tdk Corp Coil substrate structure, and switching power supply device
WO2015053139A1 (en) * 2013-10-07 2015-04-16 日立オートモティブシステムズ株式会社 Power conversion device
JP2016031963A (en) * 2014-07-28 2016-03-07 Tdk株式会社 Coil component, coil component composite and transformer, and power supply device

Also Published As

Publication number Publication date
JPWO2022064661A1 (en) 2022-03-31
JP6962498B1 (en) 2021-11-05

Similar Documents

Publication Publication Date Title
US8362867B2 (en) Multi-turn inductors
JP5304231B2 (en) Coil substrate structure and switching power supply device
US8416043B2 (en) Powder core material coupled inductors and associated methods
US10916367B2 (en) Circuit device and power conversion device
WO2010089921A1 (en) Method for manufacturing module with planar coil, and module with planar coil
EP2559039B1 (en) Integral planar transformer and busbar
CN105706196B (en) Electromagnetic induction device
JP6938911B2 (en) Device
JP5939274B2 (en) Power supply
US9013259B2 (en) Powder core material coupled inductors and associated methods
JP2010258395A (en) Pfc choke coil for interleaving
JP2014056868A (en) Printed coil transformer and power supply device
JP2018093009A (en) Coil device and power converter
CN110970210A (en) Transformer device
KR20230142677A (en) Magnetic coupling device and flat panel display device including the same
WO2022064661A1 (en) Converter
US20210185817A1 (en) Circuit device and power conversion apparatus
CN113544958A (en) Coil device and power conversion device
US10660193B2 (en) Multilayer substrate
JP2015079778A (en) Coil-integrated printed circuit board and magnetic device
JP2018148058A (en) Circuit arrangement and electric power conversion apparatus
US11239021B2 (en) Isolated converter
US10404178B2 (en) Insulation type step-up converter
WO2022064662A1 (en) Transformer and converter
US20230057462A1 (en) Magnetic device, power conversion module and manufacturing method of magnetic device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021507717

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20955255

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20955255

Country of ref document: EP

Kind code of ref document: A1