WO2022063098A1 - 心脏消融***和方法 - Google Patents

心脏消融***和方法 Download PDF

Info

Publication number
WO2022063098A1
WO2022063098A1 PCT/CN2021/119476 CN2021119476W WO2022063098A1 WO 2022063098 A1 WO2022063098 A1 WO 2022063098A1 CN 2021119476 W CN2021119476 W CN 2021119476W WO 2022063098 A1 WO2022063098 A1 WO 2022063098A1
Authority
WO
WIPO (PCT)
Prior art keywords
ablation
head
balloon
tissue
ablation element
Prior art date
Application number
PCT/CN2021/119476
Other languages
English (en)
French (fr)
Inventor
黄煦雯
孙英贤
胡铁锋
Original Assignee
苏州华凡创硕医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州华凡创硕医疗科技有限公司 filed Critical 苏州华凡创硕医疗科技有限公司
Priority to US18/027,697 priority Critical patent/US20230372005A1/en
Publication of WO2022063098A1 publication Critical patent/WO2022063098A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1492Probes or electrodes therefor having a flexible, catheter-like structure, e.g. for heart ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00214Expandable means emitting energy, e.g. by elements carried thereon
    • A61B2018/0022Balloons
    • A61B2018/0025Multiple balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00053Mechanical features of the instrument of device
    • A61B2018/00273Anchoring means for temporary attachment of a device to tissue
    • A61B2018/00279Anchoring means for temporary attachment of a device to tissue deployable
    • A61B2018/00285Balloons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00345Vascular system
    • A61B2018/00351Heart
    • A61B2018/00375Ostium, e.g. ostium of pulmonary vein or artery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00613Irreversible electroporation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0212Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques using an instrument inserted into a body lumen, e.g. catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0262Characteristics of handpieces or probes using a circulating cryogenic fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B2018/1405Electrodes having a specific shape
    • A61B2018/1417Ball

Definitions

  • the present invention relates to the treatment of abnormal cardiac diseases such as atrial fibrillation.
  • the present invention relates to cardiac ablation systems for use in a procedure that causes abnormal heart rhythms by injuring or destroying heart tissue that produces incorrect electrical signals.
  • Treatments for abnormal heart conditions such as atrial fibrillation include "cardiac ablation" - a procedure that damages or destroys the heart tissue that produces incorrect electrical signals that cause abnormal heart rhythms.
  • the catheter is advanced through the patient's blood vessels toward the heart and is then positioned near the pulmonary vein (PV) ostium. Electrical pulses are triggered and directed to tissue through electrodes at the distal end of the catheter to electrically isolate the pulmonary veins by creating peripheral lesions.
  • PV pulmonary vein
  • Current delivery systems fail to take into account the actual anatomy and are designed with the assumption that the vessels are uniform tubes with uniform circular openings.
  • the present invention provides a cardiac ablation system for treating cardiac tissue
  • a cardiac ablation system for treating cardiac tissue comprising a catheter and a head, the head being the end of the cardiac ablation system for ablation of the cardiac tissue, the catheter being a flexible tubular connection used by the cardiac ablation system to connect the head body, its innovative points are:
  • the head has a plurality of mutually independent ablation elements
  • Each ablation element is provided with a contact surface for contacting the cardiac tissue and a flexible support for supporting the contact surface, wherein the contact surface is provided with an energy acting portion;
  • the ablation element has two working states, retracted and extended, at the head position of the cardiac ablation system, wherein in the retracted state a plurality of mutually independent ablation elements are mutually aggregated and present a minimum volume, and in the extended state one or more The independent ablation elements are expanded and adapted to conform to the various shape changes where the cardiac tissue is contacted by the contact surfaces on each ablation element.
  • the present invention provides an ablation head for delivering electrodes to tissue having individually operable ablation elements. Furthermore, the ablation element is arranged for elastic engagement to apply a preload to the tissue in excess of that provided by the operator.
  • the energy applicator may be arranged to provide electrical pulses, radio frequency (RF) energy or cryogenic energy.
  • RF radio frequency
  • the present invention provides several advantages over the prior art, including:
  • the device may be able to address the unique asymmetric anatomy of PV ostia and vessels, and accommodate circumferential oval and circular anatomy. Therefore, the present invention aims to take into account unique anatomical structures to deliver energy to achieve optimal results.
  • the present invention can provide pulsed electric field (PEF) ablation and point ablation (as needed) in the circumferential direction through flexible positioning of electrodes based on ablation needs.
  • PEF pulsed electric field
  • the treatment in the prior art uses a "point-by-point” method to ablate the lesions.
  • This method requires EP skills to precisely control the tool to ensure a continuous "ablation path” for complete electrical isolation.
  • the present invention allows an Electrophysiologist (EP) to perform support and assisted isolation independent of EP skills.
  • the present invention also allows for continuous lesion ablation, which does not require point-by-point ablation.
  • FIG. 1A to 1G are various views of a first embodiment according to the present invention.
  • FIGS. 2A to 2C are various views of a second embodiment according to the present invention.
  • 3A to 3G are various views of a third embodiment according to the present invention.
  • 4A to 4G are various views of a fourth embodiment according to the present invention.
  • 5A to 5H are various views of a fifth embodiment according to the present invention.
  • 6A to 6E are various views of a sixth embodiment according to the present invention.
  • FIG. 7A to 7F are various views of a seventh embodiment according to the present invention.
  • 8A to 8B are various views of an eighth embodiment according to the present invention.
  • 8C to 8D are various views of a ninth embodiment according to the present invention.
  • 8E to 8F are various views of a tenth embodiment according to the present invention.
  • 8G to 8H are various views of an eleventh embodiment according to the present invention.
  • 8I to 8K are various views of a twelfth embodiment according to the present invention.
  • 9A to 9B are various views of a thirteenth embodiment according to the present invention.
  • 9C to 9D are various views of a fourteenth embodiment according to the present invention.
  • 10A to 10D are various views of a fifteenth embodiment according to the present invention.
  • 11A to 11H are various views of a sixteenth embodiment according to the present invention.
  • 12A to 12F are various views of a seventeenth embodiment according to the present invention.
  • FIGS. 13A to 13B are various views of an eighteenth embodiment according to the present invention.
  • 13C to 13D are various views of a nineteenth embodiment according to the present invention.
  • 13E is an isometric view of a twentieth embodiment in accordance with the present invention.
  • 13F is an isometric view of a twenty-first embodiment in accordance with the present invention.
  • 14A to 14K are various views of a twenty-second embodiment according to the present invention.
  • 15A to 15C are various views of a twenty-third embodiment according to the present invention.
  • 16A to 16O are various views of a twenty-fourth embodiment according to the present invention.
  • 17A-17J are various views of a twenty-fifth embodiment according to the present invention.
  • 18A to 18D are various views of a twenty-sixth embodiment according to the present invention.
  • 19A to 19F are various views of a twenty-seventh embodiment according to the present invention.
  • 20A is a schematic diagram of electroporation voltage delivery (PV cross-section) following application of a pulsed energy ablation device
  • 20B is a schematic diagram of ablation energy (PV cross-section) following application of a pulsed energy ablation device
  • Figure 20C is a schematic illustration of an ablation pattern using conventional RF treatment (left) and a pulsed ablation using the device of the present invention
  • Figures 21A-21G are various views according to various embodiments of the present invention.
  • 22A-22F are various flowcharts of processes in accordance with various embodiments of the present invention.
  • the present invention aims to deliver pulsed energy to destroy tissue within the heart that produces incorrect electrical signals.
  • the tip of the present invention is delivered via a catheter into the left atrium (LA) of the heart.
  • LA left atrium
  • the device may be deployed to the pulmonary vein (PV) ostium or via a catheter system into the PV to treat patients with atrial fibrillation.
  • PV pulmonary vein
  • the pulsed energy can take different forms including cryogenic energy, radio frequency (RF) or electrical pulses, and thus the energy applicator can be arranged to provide electrical pulses, radio frequency (RF) energy or cryogenic energy where the RF energy can be generated by a radio frequency generator
  • the energy acting part can use electrodes; the pulse energy can be a DC generator, and the energy acting part can use electrodes; the low temperature energy can be provided by an argon gas generator, and the energy acting part can be arranged in a manner similar to a cryogenic probe.
  • the energy acting portion is located on each element corresponding to the type of energy to be utilized. Accordingly, it should be understood that although the following embodiments generally relate to the delivery of electrical pulses, these arrangements may instead be equally adapted for use in the context of delivering other forms of energy, including but not limited to cryogenic energy and RF pulse systems.
  • the ablation element provides effective pressure on the tissue for better coaptation, shaping (elastic deformation) or positioning (elastic displacement) of the tissue.
  • the ablation elements act individually by deforming or displacing to find an equilibrium position for better contact. This is particularly advantageous when considering the variability in the shape of the tissue and the need for better engagement for more effective treatment. Because of the elastic engagement, the operator does not need to make small and/or repeated position changes to achieve the optimum position. When the elastic equilibrium position is found, the ablation element is automatically positioned around the tissue.
  • various embodiments of the present invention include:
  • various embodiments of the present invention include:
  • FIGS. 1A-1G A specific embodiment of the present invention is considered, and a first embodiment is shown in FIGS. 1A-1G .
  • the ablation device 5 includes an ablation head 10 mounted to a catheter 15 .
  • the catheter 15 is used to insert the ablation head 10 into position within the heart 45, and in particular around the tissue 60 of the pulmonary vein 55, where the cross-sectional tissue 50 to the cross-sectional tissue 60 is the area of tissue treatment.
  • the head 10 is inserted uninflated until in place, whereby the ablation element 20 is inflated by passing a fluid such as air (or other gas) or water (or other liquid) through the catheter 15 .
  • a fluid such as air (or other gas) or water (or other liquid)
  • the head 10 includes a plurality of ablation elements 20 , and in one of these embodiments, six ablation elements 20 are positioned around the periphery of the center 12 of the head 10 .
  • Ablation element 20 includes electrodes on contact surface 22 of ablation element 20 . Upon expansion, the ablation element 20 provides elastic engagement with the tissue intended to be destroyed by elastic deformation of the element, causing the tissue to be destroyed as part of the intended treatment.
  • Each ablation element 20 includes electrodes 30 embedded in contact surfaces 22 for delivering electrical pulses to electrodes 30 .
  • electrical pulses are directed through the electrodes according to the methods described above and also referring to the methods defined in Figures 22A-22F.
  • a force sensor 35 is also included which is arranged to feedback to the operator the degree of contact and elastic engagement that has been applied to the tissue, the arrows in Figures ID and IF indicate the ablation element 20
  • the elasticity of the combined force direction 40 can help ensure complete contact of the ablation element 20 with the tissue, and thus facilitate faster and more effective treatment.
  • Data from the sensors can help determine the location and fit of the electrodes. It should be understood that, although optional, sensors may be included but not limited to within the network for temperature monitoring, contact force monitoring, impedance monitoring, and haptic feedback.
  • FIG. 2C illustrate an alternative embodiment to the embodiment of Figures 1A-1G, a second embodiment.
  • the arrows in FIG. 2C indicate the direction 62 of the elastic deformation of the expanded ablation element 70 .
  • the other ablation elements 75 remain unexpanded, thus providing the head 65 with an irregular shape to accommodate the anatomical irregularities of the ostium 60 tissue of the pulmonary veins.
  • the selective expansion of ablation element 70 provides ablation head 65 with a variety of shapes to fit, compared to the uniform shape employed by prior art devices capabilities, thereby extending its applicability.
  • Figures 3A to 3G show a further device 80 according to an embodiment of the present invention, a third embodiment.
  • An important difference between this device 80 and the devices of the first two embodiments is that the expanded ablation element is replaced with a relatively rigid elongated ablation element 105 .
  • These elements are not exactly "rigid” and may have elastic properties such that they can "bend” when a force is applied, in which case they may return to their original shape once the force is removed. These elements can be made of elastomer/silicone.
  • the head 95 of the device 80 includes a plurality of elongate ablation elements 105 mounted to the catheter 90 .
  • the elongate ablation element 105 is elastically loaded in flexure to project radially from the center 102 of the head 95 and thus elastically displace around the tissue 60, the arrows in Figure 3B indicate the direction of the elastic displacement of the ablation element 105 70.
  • the arrows in Figure 3G indicate that the moving side of the housing 160 to deliver to the heart when performing actions 1120, 130 requires confinement of the elongated ablation element 105, so a selectively movable housing 100 is used.
  • act 120 is performed by the operator, the housing 100 is arranged to control movement of the elongate ablation element 105 from the first position 115 to the intermediate position 125, and then act 130 is performed to move the housing 100 proximally of the fully deployed arrangement Location 135,.
  • performing the action involves retracting the housing 100 from the distal position toward the proximal position of the catheter 90 .
  • electrodes 110 in the contact surface of elongate ablation element 105 direct electrical pulses, as already described.
  • FIGS. 4A-4G illustrate an embodiment similar to that of FIGS. 3A-3G , a fourth embodiment of the present invention, wherein the device 145 has a head 150 mounted to a catheter 155 .
  • the head 150 includes an elongated ablation element 165, however the elongated ablation element 165 does not generally project forwardly towards the distal end of the device, in this embodiment the elongated ablation element 165 projects proximally .
  • the elongated ablation element 165 is flexibly spring loaded to extend radially for elastic displacement around the tissue 60 .
  • the housing of the restraining element moves toward the distal end of the device to release the elongate ablation element 165 .
  • the operator pushes the release mechanism forward to perform actions 185, 195 to move the housing 160 and, once in place, move the housing 160 to the proximal position 180, the intermediate position 190 and the distal position 200 to fully deploy the head 150 in place.
  • the arrows in FIGS. 4B and 4G indicate the elastic displacement force direction 175 of the ablation element 165
  • the arrows in FIG. 4E indicate the moving direction of the housing 160 when actions 185 and 195 are performed.
  • the device 215 includes a flower-shaped head 220 having petal-shaped ablation elements 235 extending radially from the center of the head 220.
  • the petal-shaped ablation element 235 is bent to form a flexural elastomer and thus elastically deforms against the tissue 230 in this manner, the arrows in FIGS. 5G and 5H indicating the direction 280 of elastic displacement of the ablation element 235 .
  • a housing 242 similar to Figure 2 is used to confine the petal element until it is properly positioned. Once in place, move the housing 242 and perform actions 240, 250, 260 to gradually remove restraints into the first position 245, the second position 255, and the third position 265 to allow the head 220 fully deployed.
  • the flat shape of the petaloid ablation elements 235 allows for various styles of electrodes, such as the first style 270, the second style 275.
  • the flat shape allows the use of strain gauges for the force sensor.
  • contact with the tissue involves bending of the ablation element 235, thus triggering a response to action by the operator through the strain gauge.
  • the second style 275 shows the use of a thin film force sensor as an alternative. It should be understood that several different methods of providing force detection are possible, with the scope of the present invention not being limited by any one method.
  • FIGS. 6A to 6E is a sixth embodiment of the present invention.
  • the device 285 includes a head 290 having an ablation element 300 in the form of a link.
  • Ablation element 300 includes a series of segments 335 pivotally connected in series, allowing articulation between segments 335 and thus in-plane flexure of ablation element 300 .
  • ablation element 300 When inserted, ablation element 300 is externally parallel to catheter 295. Once in place, deployment is performed using force applied to the end of the link coupled to catheter 295 . As the force increases to perform action 315, action 320, action 325, action 330, the link element is gradually expanded to adopt an arc-like curved arrangement up to 180°, mimicking a "scorpion tail" shape. There may be electrodes 305 attached along a section 330 of the rod (though not necessarily all sections), and thus the element can apply electrical pulses along the curved surface of the rod. The pivotal connection between the segments also allows for elastic displacement when in contact with tissue.
  • the oblique arrows in FIGS. 6B and 6D indicate the elastic displacement force direction 310 of the ablation element 165
  • the vertically downward arrows in FIG. 6D indicate the action directions of actions 315 , 320 , 325 , 330 .
  • the head 290 can provide a very wide curved surface to contact tissue.
  • an advantage of this arrangement is the ability to allow significant variability in the width of the tissue to be treated.
  • the span covered by ablation element 300 depends only on the number of segments 335 added to the length of rod-form ablation element 300 .
  • the retracted position of the ablation element 300 upon insertion, theoretically parallel to the catheter 295, means that the rod-type ablation element 300 can be very long, and thus have a substantial ablation width once deployed.
  • FIGS. 7A to 7F show an embodiment similar to that of FIGS. 3 and 4 , which is a seventh embodiment of the present invention.
  • the respective ablation heads 360, 358, 380, 405 are formed using elongated ablation elements.
  • the inflatable balloon is included centrally to the elongate ablation element.
  • the housing Upon deployment, the housing is retracted and the elongated ablation elements protrude outwardly, aided by inflation of the balloons 350, 370, 390, 415.
  • these embodiments illustrate two elastic combinations of displacement by ablation and deformation by the balloon.
  • a three-step process is deployed.
  • the housing is retracted, then the elongated element is radially expanded, and the balloon is changed from the uninflated state 345 , 365 to the inflated state 350 , 370 .
  • the arrows in Figures 7A and 7B indicate the directions 355, 375 of the elastic bonding force of the ablation element, respectively.
  • the balloon may be a single ring (not shown), or may be multiple balloons placed around the center.
  • Figures 8A-8G and 9A-9D illustrate various embodiments similar to the flower-shaped embodiment of Figure 5 .
  • the embodiment generally differs from FIG. 5 in the ablation element.
  • the ablation elements in these embodiments are more elongated, similar to tentacles.
  • FIGS. 8A-8B are various views according to an eighth embodiment of the present invention, FIGS. 8A and 8B show an ablation element 426 with electrodes 432 and sensors located within the tip of the catheter and mounted on a pneumatic layer 430.
  • Figures 8C-8D are various views of a ninth embodiment according to the present invention, Figures 8C and 8D show ablation elements 435 without electrodes and sensors, wherein within each ablation element 435 there are multiple Channels, a plurality of said channels interconnected, and having a rigid material at the base layer 440 of the ablation element 435, on top of the ablation element 435 is provided a pneumatic layer with a plurality of channels.
  • Figures 8E to 8F are various views of a tenth embodiment according to the present invention, Figures 8E and 8F showing an ablation element 445 having a raised portion with a "mini muscle" shape 455 - the raised portion has a corrugated shape running along the contact surface - and the contoured contact surface enables the mounted electrode 450 and sensor to be attached to the tip of the catheter and mounted on the pneumatic layer.
  • Figures 8G and 8H illustrate the protrusion structure of the "little muscles” in ablation element 460, where multiple channels within each "little muscle” segment are interconnected to other "little muscle” segments and whose surfaces are not Includes electrodes and sensors.
  • the "little muscle” segment structure includes a rigid material at the base layer 465 and a multi-channel aerodynamic layer on top.
  • FIGS. 8I-8K are various views according to a twelfth embodiment of the present invention, and FIGS. 8I-8K illustrate various ways of a pneumatic system 485 including a pneumatic layout 470 of internal multiple channels, multiple internal Pneumatic layout 475 of channel and external electrode arrangement and aerodynamic layout 480 of external electrode arrangement.
  • Figures 9A-9B are various views of a thirteenth embodiment in accordance with the present invention, Figures 9A-9B showing a single "tentacle" structure, Figure 9A showing a pneumatic system 495 with attached pneumatic system 495 prior to deployment Structure 490 of the electrode 500 attached to the housing, Figure 9B shows the structure 505 with the internal pneumatic system 510 and the electrode 500 attached to the housing after deployment.
  • Figures 9C to 9D are various views of a fourteenth embodiment in accordance with the present invention, Figures 9C to 9D showing a single "tentacle" structure, Figure 9C showing an internal pneumatic system 520 and Structure 515 of the housing, Figure 9D shows structure 525 with internal pneumatic system 530 and housing structure after deployment.
  • Figures 10A-10D are various views of a fifteenth embodiment according to the present invention, and Figures 10A-10D show apparatus 535.
  • This embodiment uses a combination of a non-compliant balloon (with a pressure-expandable polyester/nylon material as a candidate) and a compliant balloon (with a volume-expanded polyurethane/silicone material as a candidate) as ablation elements to achieve Better contact of the tissue, arrows in Figure 10D show the direction 555 of the elastic binding of the ablation element to the tissue.
  • the head 540 includes an element ring with alternating inflatable non-compliant balloon elements 545 and compliant balloon elements 550 .
  • the differential element expands the ring to match the shape of the port, whether it is round tissue 60 or oval tissue 62 .
  • variable expansion causes a combination of elastic displacement of the compliant balloon element 550 by the rigid element and elastic deformation of the non-compliant balloon element 545 by the expandable element.
  • FIGS. 11A-11H are various views of a sixteenth embodiment in accordance with the present invention, and FIGS. 11A-11H illustrate several embodiments and additional features for use with other embodiments.
  • cardiac ablation device 575 includes a head 580 having an expandable array of ablation elements 585 having electrodes and sensors (electrodes and sensors not labeled, see ablation element 605 in 1 ID).
  • Ablation element 595 can be seen before inflation in Figure 11C and ablation element 600 after inflation can be seen in Figure 11E.
  • Figures 11C and 11E also show the effect of selective expansion, in this case selective expansion is used to shape the head 580 according to the shape of the PV port and thus be able to accommodate the shape of the circular port.
  • This selective expansion means that the ablation element can remain in an unexpanded state 620, a partially expanded state 630, or a fully expanded state 625 to achieve the desired shape and corresponding elastic engagement, shown in Figures 11C, 11E, and 11F, respectively
  • FIG. 11D and 11G Another embodiment, shown in Figures 11D and 11G, has an anchor 590 in the form of a balloon at the distal end of the catheter and positioned by selectively moving the anchor 590 further away in the pulmonary veins The location of the mouth expands, wedging the device 575 into place.
  • the balloon is annular to provide an annular elastic engagement with the vein wall, but allow blood to flow through the annulus. It will be understood and described later that a complete balloon that can seal the vein can also be used. This may have the advantage that a greater spring force is applied, and thus may provide a greater anchoring force.
  • Each of these anchor embodiments may be used with any or most of the embodiments described herein, and are not limited to the embodiment shown in FIG. 11 .
  • the device 635 includes ablation elements 640 located in the head, some or each of which have rigid portions 650, 665 and expandable portions 645, 655, 660, 670.
  • the ablation element 640 expands, the rigid portion prevents uniform expansion and thus deforms the ablation element.
  • the elements may include separate lumens in each ablation element, which may provide portions of, for example, expandable portions 645, 660 when the lumens are selectively inflated (partially or fully or not at all) Deformation or more severe, eg, larger deformation of the expandable portions 655, 670.
  • this adaptability allows the head 640 to fit the circular port tissue 60 or the oval port tissue 62 and to vary the elastic deformation, the elasticity of the ablation element to fit the different tissues is shown in Figure 12F Deformation force directions 580 and 685.
  • Figures 13A-13F illustrate various combinations of previously described anchoring balloon embodiments used with other device embodiments
  • Figures 13A-13B are various views of an eighteenth embodiment in accordance with the present invention
  • Figures 13C-13C- 13D is various views of the nineteenth embodiment according to the present invention
  • FIG. 13E is an isometric view of the twentieth embodiment according to the present invention
  • FIG. 13F is an isometric view of the twenty-first embodiment according to the present invention ,include:
  • Annular anchoring balloons 695, 725, 732 which provide holes to allow blood flow to pass through, see Figures 13A, 13B, 13E;
  • FIG. 13A There is a balloon 700 and a balloon 705 in the device 690 of FIG. 13A, and a balloon 715 and a balloon 720 in the device 710 of FIG. 13C, the functions of which are described with reference to the seventh embodiment.
  • FIGS. 13E and 13F In the apparatus 730 in FIGS. 13E and 13F, reference may be made to the description of the sixth embodiment.
  • FIGS. 14A-14K are various views of a twenty-second embodiment in accordance with the present invention, and FIGS. 14A-14J illustrate yet another embodiment of a device 740 having an elongated head 745 .
  • ablation element 755 may extend laterally and connect to head 745 on branch 760 .
  • Pipeline for data transfer is used to provide a resilient engagement, and through which energy pulses can be delivered, and also serve as a sensor if used.
  • these ablation elements 755 are in a flush state 770 with the head, thereby forming the distal cover of the elongated head 745 .
  • these ablation elements 755 extend and simultaneously open the distal aperture of head 745 .
  • the anchoring balloon 765 can be deployed from a collapsed state 775 within the head to an expanded position state 785 extending distally from the head. Once the balloon is fully deployed and the element is fully extended to the expanded position state 785, ablation can begin.
  • This embodiment also shows the process of anchoring balloon deployment, in this case for a complete anchoring balloon 750, but can also be used for annular anchoring balloons.
  • the balloon 765 is not inflated within the head 745 and is in a flush state 770 . As the ablation element 755 is deployed laterally from the head 745, this opens the housing forming the head 745 to allow advancement of the balloon 765, in the advanced state 775, through the transition state 780 to the expanded position states 785, 790, to complete Fully deployed.
  • the anchoring balloon 750 anchors the device 740 such that the lateral deployment of the ablation element 755 is aligned with the tissue 60 to initiate treatment.
  • FIG. 14K shows yet another embodiment of an anchoring balloon 754.
  • the actual balloon 754 is similar to that described with respect to other embodiments. It will be appreciated that it is highly desirable to maintain blood flow through the vein during the ablation procedure.
  • the catheter 756 has been adjusted distally to allow blood to flow through the catheter, thereby preventing obstruction by the balloon 754.
  • catheter 756 at the distal end includes an aperture 758 for receiving blood flow through the catheter and exits through aperture 762 to form a bypass through which blood can flow, arrow 764 in Figure 14K indicating the blood flow inlet
  • the direction, arrow 766 indicates the blood flow exit direction.
  • this arrangement of bypassing balloon 754 is used for limited blood flow interruptions once appropriate.
  • Figures 15A-15C are various views of a twenty-third embodiment in accordance with the present invention including an ablation element 805 and a balloon 810 in a device 800, the ablation element 805 being yet another embodiment of a rigid element having articulations, these rigid The elements are pivotally deployed laterally, then released and deployed to states 815 , 820 , 825 , 830 , 835 .
  • Figures 16A-16O are various views of a twenty-fourth embodiment in accordance with the present invention, and Figures 16A-16O illustrate yet another embodiment of a device 840 also showing the balloon anchor 845 intact. In this embodiment of lateral deployment of ablation element 850 , the connection to the catheter is via expansion assembly 855 .
  • the expansion assembly 855 includes a sliding connection and a fixed connection, the sliding connection portion is composed of the end assembly 860, the spline assembly 865, the spacer assembly 870, the spline assembly 875 and the fixed assembly 880, such that the assembly laterally deploys the ablation element 850 in a triangulation mechanism , where end assembly 860 is used to hold spline assembly 865, spline assembly 875 together in place, spline assembly 865, spline assembly 875 are connected to electrode 852 to allow the motor to slide (to achieve folding/expansion), and spacer assembly 870 is used for A securing assembly 880 secures the spline assembly and end assembly 860 in place due to the separation between the two spline assemblies supporting the electrode 852 .
  • the extension assembly 855 provides electrical connections to the electrodes 852 (plus sensors if desired) through each portion of the electrical isolation assembly.
  • the ablation element can take several different shapes and orientations, including: a quarter-circle semi-disk 890 with adjacent polarities; a wheel-shaped ring 895; various groove structures 930 with sensor placement; 935, 940 semi-cylindrical 900, 905, 915 and semi-circular block 910.
  • the laterally deployed elements are used for localized treatment of tissue 925.
  • FIGS. 17A-17J are various views of a twenty-fifth embodiment in accordance with the present invention, wherein the head 945 includes a plurality of elongate inflatable ablation elements 950 aligned parallel to the catheter 955 .
  • the position of the expandable ablation element 950 can be moved by elastic engagement between insertions on the circular port tissue 60 or the oval port tissue 62 .
  • Two different embodiments are shown, wherein the first embodiment has a catheter with a single conduit for uniform expansion of the ablation element (FIG. 17C); and the second embodiment of device 975, wherein the catheter includes multiple Conduit 985 to selectively inflate the elongated balloon ablation element 980 and thus further enhance the ability to deform the head for better contact with differently shaped tissue.
  • FIG. 17G shows balloon ablation element 1005 before inflation and balloon ablation element 1010 after inflation.
  • Figure 17H shows a balloon ablation element 1015 with an alternate inlet structure and a balloon ablation element 1020 with a single inlet structure.
  • Figure 17I shows balloon ablation element 1035 with electrodes 1040, 1045 embedded on the surface of the balloon and balloon ablation element 1050 with electrodes 1060, 1055 embedded in the mesh.
  • FIG. 17J shows the prescribed electric field for a device with electrodes mounted on the balloon ablation element surfaces of the PV vessels facing the circular 60 and oval 62 vasculatures.
  • Figures 18A-18D are various views of a twenty-sixth embodiment in accordance with the present invention
  • Figures 18A-18D show yet another embodiment of a laterally deployed ablation element, device 1064 comprising an ablation element and a housing 1075, The housing 1075 in which the ablation element is coupled to the catheter.
  • the ablation element has jaws 1065 shaped like a crane grapple such that upon insertion, the jaws 1065 are closed and opened to pivotally deploy the ablation element laterally.
  • the jaws 1065 each have a surface that is arranged to face tissue when opened, where the surface carries an electrode.
  • the jaws 1065 can be sized to expand the size of the vein to improve access. To this end, the degree of opening of the jaws 1065 can be selectively controllable, and thus the partial opening of the jaws 1065 can provide sufficient elastic engagement with the tissue to be treated.
  • the jaws are flexible between the pivots and thus can bend the entire surface to produce elastic deformation.
  • Opening of the jaws 1065 may be accomplished by a pull rod 1070 such that when the pull rod 1070 is pulled by performing action 1080, the jaws 1065 will open against the tendency of elastic deformation to keep the jaws 1065 closed.
  • FIGS. 19A-19F are various views of a twenty-seventh embodiment of the present invention, showing a device 1085 with a head 1095 of an ablation element 1100 .
  • Ablation element 1100 is fixed relative to head 1100 , but can extend from head 1095 with lever arms 1099 .
  • the head 1130 and ablation element 1135 may also be shaped to better fit the oval port tissue 62 .
  • Adjacent ablation element elements have opposite polarities 1105, and thus upon insertion, the head 1095 steps through the different positional states 1110, 1115, 1120 around the oval port tissue 62 for application of electricity following sequential positioning of the device. Pulse and effect electroporation voltage delivery 1125.
  • the thickness of the head and the length of the lever arm can be designed and will determine the degree of elastic deformation that the element can achieve.
  • Figure 20A shows electroporation voltage delivery 1140 (PV cross-section tissue 62) after application of a pulsed energy ablation device.
  • Figure 20B shows ablation energy 1142 (PV cross-section tissue 62) after application of the pulsed energy ablation device.
  • 20C shows a heart 1145 indicating both an ablation pattern 1150 using conventional RF treatment and an ablation pattern 1152 for pulsed ablation using a device according to the present invention.
  • Figure 21A is a side view of a deployment feature 1155 that enables a user to control, with one hand, distally positioned electrodes and the manner in which the user operates a device according to an embodiment of the present invention 1160.
  • 21B is a front view of a deployment feature 1170 that enables a user to control electrode angles within the PV port/vascular space and a side view of a device 1165 according to one embodiment of the present invention.
  • Figure 21C shows a marker 1170 on the device user interface that enables the user to control the angle (illustration of a 15° step angle control, labeled as follows 0°, 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°, 135°, 150° and 165°).
  • Figure 21D shows angle markers on the device user interface that enable the user to control the angles 1190, 1195, 1200, 1205 and the rotation of the device at the distal end by pushing a "button/switch" at a predetermined marker.
  • Figure 21E shows a front view deployment 1185, a side view deployment 1180, and a perspective view deployment 1175 of deployment features that enable the user to control the electrode angle within the lumen.
  • Figure 21F shows the angle markings of the device user interface that enables the user to control the electrode angle at the distal end of the device by rotating the knob/dial on the handle portion of the device, in this case 30° steps
  • Advance angle controls 1220, marked 1225 are as follows 0°, 30°, 60°, 90°, 120° and 150°.
  • Figure 21G shows the design of the handle component of the device, which includes deployments 1210, 1215 for inflating the balloon structure, deploying the electrodes and controlling the position of the electrodes.
  • 22A is a flow chart illustrating a method of deploying a device for tissue ablation in a PV ostium/vessel, for a device with multiple electrodes (with or without force sensors), including the following steps:
  • the device is repositioned (eg, sequential angular changes that can be adjusted at the operator handle or expansion-collapse of the expandable member or deployment-collapse feature of the device);
  • Figure 22B is a flow chart illustrating a method of deploying a device for tissue ablation in a PV ostium/vessel for a device with multiple electrodes and features that facilitate better alignment of the electrodes with the vessel wall
  • the device includes the following steps:
  • the device is repositioned (eg, sequential angular changes that can be adjusted at the operator handle or expansion-collapse of the expandable member or deployment-collapse feature of the device);
  • Figure 22C is a flow chart illustrating a method of deploying a device for tissue ablation in a PV ostium/vessel for having independent anchoring features, multiple electrodes, to facilitate better bonding of electrodes to vessel walls
  • An apparatus for aligning features comprising the steps of:
  • the device into the left atrium (eg, right femoral vein/right internal jugular vein);
  • the device is repositioned (eg, sequential angular changes that can be adjusted at the operator handle or expansion-collapse of the expandable member or deployment-collapse feature of the device);
  • 22D is a flow diagram illustrating a method of deploying a device for tissue ablation in a PV vessel for a device with multiple electrodes (with or without force sensors) and separate anchoring features, including the following Each step:
  • verification of placement of the device is performed (eg, fluoroscopy);
  • the device is repositioned (eg, sequential angular changes that can be adjusted at the operator handle or expansion-collapse of the expandable member or deployment-collapse feature of the device);
  • 22E is a flow diagram illustrating a method of deploying a device for tissue ablation in a PV vessel for a device with multiple electrodes (with or without force sensors) and simultaneous anchoring features, including the following step:
  • the device is repositioned (eg, sequential angular changes that can be adjusted at the operator handle or expansion-collapse of the expandable member or deployment-collapse feature of the device);
  • 22F is a flow chart illustrating a method of deploying a device for tissue ablation in a PV vessel for a device having electrodes designed to achieve good adhesion to the vessel wall when the operator manipulates it, It includes the following steps:
  • the device is placed with electrode tips that touch the PV port or PV vessel;

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Otolaryngology (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Cardiology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种心脏消融***,包括导管(15,90,155,295,756,955)和头部(10,65,95,150,220,290,358,360,380,405,540,580,745,945,1095,1130),头部(10,65,95,150,220,290,358,360,380,405,540,580,745,945,1095,1130)具有多个相互独立的消融元件(20,70,75,105,165,235,300,426,435,445,460,585,595,600,605,640,755,805,850,950,980,1005,1010,1015,1020,1035,1050,1100,1135);每个消融元件(20,70,75,105,165,235,300,426,435,445,460,585,595,600,605,640,755,805,850,950,980,1005,1010,1015,1020,1035,1050,1100,1135)均设有用来接触心脏组织(50,60,62,230,925)的接触表面(22)以及用来支撑接触表面(22)的柔性支撑体,接触表面(22)上设有能量作用部;消融元件(20,70,75,105,165,235,300,426,435,445,460,585,595,600,605,640,755,805,850,950,980,1005,1010,1015,1020,1035,1050,1100,1135)在心脏消融***的头部(10,65,95,150,220,290,358,360,380,405,540,580,745,945,1095,1130)位置处具有收缩和伸展两种工作状态,在收缩状态下多个相互独立的消融元件(20,70,75,105,165,235,300,426,435,445,460,585,595,600,605,640,755,805,850,950,980,1005,1010,1015,1020,1035,1050,1100,1135)相互聚集并呈现最小体积,在伸展状态下一个或多个相互独立的消融元件(20,70,75,105,165,235,300,426,435,445,460,585,595,600,605,640,755,805,850,950,980,1005,1010,1015,1020,1035,1050,1100,1135)张开,并通过接触表面(22)以适应方式来贴合心脏组织(50,60,62,230,925)被接触处的各种形状变化。

Description

心脏消融***和方法 技术领域
本发明涉及诸如房颤的异常心脏疾病的治疗。具体地,本发明涉及心脏消融***——用于一种通过伤害或破坏如下的心脏组织的手术,该心脏组织产生不正确的电信号而引起异常的心脏节律。
背景技术
诸如房颤的异常心脏疾病的治疗包括“心脏消融”——一种对产生不正确的电信号而引起异常心脏节律的心脏组织进行伤害或破坏的手术。
导管通过患者的血管朝向心脏前进,并且随后定位在肺静脉(PV)口附近。电脉冲被触发并通过导管远端处的电极被引导至组织,以通过创建外周病灶将肺静脉电隔离。当脉管表面具有曲率时,出现以下困难:开口是不均匀的圆形开口。当前的输送***未能考虑到实际解剖结构,都是在脉管是具有均匀的圆形开口的均匀管的假设的情况下被设计的。
此外,由于非特异性和热能源,当前涉及射频(RF)能量的方法会导致组织损伤。此外,当前的方法是耗时的,并且需要高技术的EP来执行该手术。
最后,如果当前装置定位不当,则存在永久损伤的风险,因此部署的准确性非常重要。
发明内容
在第一方面中,本发明提供了一种用于治疗心脏组织的心脏消融***,
一种用于治疗心脏组织的心脏消融***,包括导管和头部,所述头部是心脏消融***对心脏组织的消融作用端,所述导管是心脏消融***用来连接头部的柔性管状连接体,其创新点在于:
所述头部具有多个相互独立的消融元件;
每个消融元件均设有用来接触心脏组织的接触表面以及用来支撑接触表面的柔性支撑体,其中,接触表面上设有能量作用部;
所述消融元件在心脏消融***的头部位置处具有收缩和伸展两种工作状态,其中,在收缩状态下多个相互独立的消融元件相互聚集并呈现最小体积,在伸展状态下一个或多个相互独立的消融元件张开,并通过各个消融元件上的接触表面以适应方式来贴合心脏组织被接触处的各种形状变化。
因此,本发明提供了一种将电极输送至组织的消融头部,该头部具有能够单独地操作的消融元件。此外,所述消融元件被布置成用于弹性接合,以向组织施加超过由操作员所提供的预载荷。
能量作用部可以被布置成提供电脉冲、射频(RF)能量或低温能量。
本发明提供了优于现有技术的若干优点,所述若干优点包括:
1、在一些实施方式中,该装置可能能够处理PV口和脉管的独特不对称的解剖结构,并且适应周向卵形和圆形解剖结构。因此,本发明旨在考虑独特的解剖结构来输送能量以达到最佳结果。
2、在一些实施方式中,本发明可以基于消融需要,通过电极的灵活定位来在周向上提供脉冲电场(Pulsed electric field,简称PEF)消融和提供点消融(根据需要)。
3、现有技术的治疗以“逐点”方法进行病灶的消融。该方法需要EP技能来精确地控制工具,以确保形成连续的“消融路径”以实现完全的电隔离。本发明允许电生理学家(Electro physiologist,简称EP)执行独立于EP技能的支持和辅助隔离。本发明还允许连续的病灶消融,该连续的病灶消融无需逐点消融。
4、现有技术的治疗方法需要大量的时间进行定位和输送射频(RF)或其他热消融能量。由于上述原因,本发明只需要花费一小部分时间用于执行治疗动作。
附图说明
将方便的是,关于示出本发明的可能布置的附图进一步描述本发明。本发明的其他布置是可行的,并且因此,附图的特殊性不应被理解为取代本发明的前面描述的一般性。
图1A至图1G是根据本发明的第一实施方式的各个视图;
图2A至图2C是根据本发明的第二实施方式的各个视图;
图3A至图3G是根据本发明的第三实施方式的各个视图;
图4A至图4G是根据本发明的第四实施方式的各个视图;
图5A至图5H是根据本发明的第五实施方式的各个视图;
图6A至图6E是根据本发明的第六实施方式的各个视图;
图7A至图7F是根据本发明的第七实施方式的各个视图;
图8A至图8B是根据本发明的第八实施方式的各个视图;
图8C至图8D是根据本发明的第九实施方式的各个视图;
图8E至图8F是根据本发明的第十实施方式的各个视图;
图8G至图8H是根据本发明的第十一实施方式的各个视图;
图8I至图8K是根据本发明的第十二实施方式的各个视图;
图9A至图9B是根据本发明的第十三实施方式的各个视图;
图9C至图9D是根据本发明的第十四实施方式的各个视图;
图10A至图10D是根据本发明的第十五实施方式的各个视图;
图11A至图11H是根据本发明的第十六实施方式的各个视图;
图12A至图12F是根据本发明的第十七实施方式的各个视图;
图13A至图13B是根据本发明的第十八实施方式的各个视图;
图13C至图13D是根据本发明的第十九实施方式的各个视图;
图13E是根据本发明的第二十实施方式的等距视图;
图13F是根据本发明的第二十一实施方式的等距视图;
图14A至图14K是根据本发明的第二十二实施方式的各个视图;
图15A至图15C是根据本发明的第二十三实施方式的各个视图;
图16A至图16O是根据本发明的第二十四实施方式的各个视图;
图17A至图17J是根据本发明的第二十五实施方式的各个视图;
图18A至图18D是根据本发明的第二十六实施方式的各个视图;
图19A至图19F是根据本发明的第二十七实施方式的各个视图;
图20A是在施加脉冲能量消融装置之后的电穿孔电压输送(PV截面)的示意图;
图20B是在施加脉冲能量消融装置之后的消融能量(PV截面)的示意图;
图20C是使用传统RF治疗的消融图案(左)和使用本发明装置的脉冲消融的消融图案的示意图;
图21A至图21G是根据本发明的各个实施方式的各个视图;以及
图22A至图22F是根据本发明的各个实施方式的过程的各个流程图。
具体实施方式
下面结合附图及实施例对本发明作进一步描述:
本发明旨在输送脉冲能量以破坏心脏内产生不正确电信号的组织。例如,本发明的尖端经由导管被输送至心脏的左心房(LA)中。根据解剖学规范或操作者的喜好,可以将装置部署至肺静脉(PV)口或经由导管***部署至PV中,以治疗具有房颤的患者。
脉冲能量可以呈现包括低温能量、射频(RF)或电脉冲的不同形式,因此能量作用部可以被布置成提供电脉冲、射频(RF)能量或低温能量的部位,其中射频能量可以由射频发生器提供,能量作用部可采用电极;脉冲能量可以由直流发生器,能量作用部可采用电极;低温能量可以由氩气发生器提供,可采用类似于低温探头的方式布置能量作用部。其中能量作用部位于与将利用的能量的类型相对应的各个元件上。因此,应当理解的是,尽管以下实施方式通常涉及传输电脉冲,但是代替地,这些布置可以同样适于在传输其他形式的能量的情况下使用,所述其他形式的能量包括但不限于低温能量和RF脉冲***。
本发明的重要特征是其提供与组织的弹性接合的能力。本质上是,消融元件对组织提供有效压力,从而获得更好的接合,对组织进行塑形(弹性变形)或对组织进行定位(弹性移位)。在任一种情况下,消融元件都通过变形或移位来单独起作用,以找到以实现更好的接触的平衡位置。这在考虑到组织的形状的可变性以及对更好地接合以进行更有效的治 疗的需要时是特别有利的。由于是弹性接合,操作员不需要进行较小和/或重复的位置变化来获得最佳位置。在找到弹性平衡位置时,消融元件会自动地围绕组织定位。
以能量作用部采用电极为例,参考以下实施方式所述,为了将装置部署至PV口,本发明的各种实施方式包括:
1、具有多个电极(带有或不带有力传感器)的装置;
2、具有多个电极+有助于更好地将电极与脉管壁对准的特征的装置;
3、具有多个电极+有助于更好地将电极与脉管壁对准的特征+锚固特征的装置。
为了将装置部署至PV脉管中,本发明的各种实施方式包括:
4、具有多个电极(带有或不带有力传感器)+单独的锚固特征的装置;
5、具有多个电极同时部署有锚固件的装置;
6、具有在操作员操纵其时实现对脉管壁的良好附着的电极设计的装置。
一旦将装置的尖端(带有电极和/或传感器)定位至PV口或PV脉管上,就经由发生器施加直接脉冲能量,继续重复该步骤,直到完全隔离不正确的电信号。
考虑到本发明的特定实施方式,并且第一实施方式在图1A至图1G中示出。
在此,消融装置5包括安装至导管15的消融头部10。导管15用于将消融头部10***至心脏45内的位置中,并且具体围绕肺静脉55的组织60***,其中截面组织50到截面组织60之间是组织治疗的区域。
头部10未膨胀地被***,直到在适当的位置处,由此消融元件20通过使诸如空气(或其他气体)或水(或其他液体)的流体通过导管15而膨胀。
应当注意的是,头部10包括多个消融元件20,并且在这种实施方式中的其中一种情况下,六个消融元件20围绕头部10的中心12外周进行定位。消融元件20包括在消融元件20的接触表面22上的电极。在膨胀时,消融元件20通过元件的弹性变形提供与预期要破坏的组织的弹性接合,使组织作为预期治疗的一部分被破坏。
每个消融元件20包括嵌入在接触表面22中的电极30,以用于将电脉冲传递至电极30。当与组织接触时,根据上述方法以及还涉及图22A至图22F中定义的方法,电脉冲通过电极被引导。在该实施方式中,还包括力传感器35,所述力传感器35被布置成向操作员反馈已经与组织接触以及施加至组织的弹性接合的程度,图1D和图1F中的箭头指示消融元件20的弹性结合受力方向40,这可以帮助确保消融元件20与组织的完全接触,并且因此促进更快和更有效的治疗。来自传感器的数据可以帮助确定电极的位置和贴靠度。应当理解,尽管是可选的,传感器可以被包括但不限于在网络内以用于温度监测、接触力监测、阻抗监测和触觉反馈。
图2A至图2C示出了图1A至图1G的实施方式的替选实施方式,为第二实施方式。 在此,仅有部分消融元件70已经膨胀,并且因此只有膨胀的一侧提供了抵靠组织的弹性变形,图2C中的箭头指示膨胀的消融元件70的弹性变形受力方向62。其他消融元件75保持未膨胀,因此为头部65提供不规则形状以适合肺静脉的口60组织的解剖结构的不规则。因此,对于该实施方式,与由现有技术的装置采用的均匀形状相比,消融元件70的选择性膨胀以及因此保持一些消融元件75未膨胀的能力为消融头部65提供了配合各种形状的能力,从而扩展了其适用性。
图3A至图3G示出了根据本发明的一个实施方式的另外的装置80,为第三实施方式。该装置80与前两个实施方式的装置的重要区别在于,膨胀的消融元件用相对硬的长形消融元件105替换。这些元件并不完全是“刚性的”,并且可以具有弹性特性以使得当力被施加时它们能够“弯曲”,在这种情况下,一旦力被去除,它们可能会恢复至其初始形状。这些元件可以由弹性体/硅树脂制成。装置80的头部95包括安装至导管90的多个长形消融元件105。长形消融元件105挠曲地被弹性加载以从头部95的中心102径向地伸出,并且因此在组织60周围弹性地位移,图3B中的箭头指示消融元件105的弹性位移受力方向70,图3G中的箭头指示执行动作1120、动作130时壳体160的移动方输送至心脏需要对长形消融元件105的限制,因此使用了选择性地可移动的壳体100。在由操作员执行动作120时,壳体100被布置成控制长形消融元件105从第一位置115移动至中间位置125,并且随后执行动作130,使壳体100移动至完全部署布置的近侧位置135,。在该实施方式中,执行动作涉及将壳体100从远侧位置朝向导管90的近侧位置收回。
一旦在合适的位置处,如已经描述的,在长形消融元件105的接触表面中的电极110引导电脉冲。
图4A至图4G示出了与图3A至图3G的实施方式类似的实施方式,为本发明的第四实施方式,其中装置145具有安装至导管155的头部150。该头部150包括长形的消融元件165,然而该长形的消融元件165不是通常朝向装置的远端向前伸出,在该实施方式中,该长形的消融元件165朝向近端伸出。再次的,在从壳体160释放至远侧位置200时,长形的消融元件165挠曲地被弹性加载以便径向地伸出,以便在组织60周围弹性地移位。由于该长形的消融元件165在与先前实施方式的方向相反的方向上伸出,限制元件的壳体朝向装置的远端移动以释放长形的消融元件165。在这种情况下,操作员向前推动释放机构执行动作185、动作195以移动壳体160,一旦在合适的位置,就使壳体160移动,使壳***于近侧位置180、中间位置190以及远侧位置200,以使头部150完全部署到位。图4B和图4G中的箭头指示消融元件165的弹性位移受力方向175,图4E中的箭头指示执行动作185、动作195时壳体160的移动方向。
图5A至图5H示出了又一实施方式,为本发明的第五实施方式。在此,装置215包 括花形头部220,该花形头部220具有从头部220的中心径向伸出的花瓣形消融元件235。花瓣形消融元件235被弯曲形成挠曲弹性体,并且因此以这种方式抵靠组织230形成弹性变形,图5G和图5H中的箭头指示消融元件235的弹性位移受力方向280。
鉴于较宽的头部,为了便于***,使用与图2类似的壳体242来限制花瓣形元件,直到正确定位。一旦在合适的位置处,就使壳体242移动并执行动作240、动作250、动作260,从而逐渐去除限制使其处于第一位置245、第二位置255和第三位置265,以使头部220完全部署。
花瓣形消融元件235的扁平形状允许用于电极的各种样式,比如第一样式270、第二样式275。具体地,在第一样式270中,该扁平形状允许对力传感器使用应变计。在这种布置中,与组织的接触涉及消融元件235的弯曲,因此通过应变仪触发对由操作者进行的动作的响应。第二样式275示出了使用薄膜力传感器作为替选方案。应当理解,提供力检测的若干不同方法是可行的,其中本发明的范围不受任何一种方法限制。
在图6A至图6E中示出了又一实施方式,为本发明的第六实施方式。在此,装置285包括头部290,该头部具有连杆形式的消融元件300。
消融元件300包括串联枢转地连接的一系列区段335,从而允许区段335之间的铰接并且因此使消融元件300在平面内挠曲。
在***时,消融元件300与导管295在外表面平行。一旦在合适的位置,利用施加至联接至导管295的连杆的端部的力来执行部署。随着力增加以执行动作315、动作320、动作325、动作330,连杆元件逐渐被扩展,以采用类似于圆弧的弯曲布置,直至180°,模仿“蝎尾”形状。沿连杆的区段330(虽然不一定是全部区段)可以附接有电极305,并且因此元件能够沿连杆的弯曲表面施加电脉冲。当与组织接触时,区段之间的枢轴连接还允许弹性移位。图6B和图6D中的斜向箭头指示消融元件165的弹性位移受力方向310,图6D中的竖直向下的箭头指示动作315、320、325、330的动作方向。
因此,头部290可以提供非常宽的弯曲表面以接触组织。因此,这种布置的优点是允许在要被治疗的组织的宽度上具备的显著可变性的能力。由消融元件300所覆盖的跨度仅取决于添加到连杆形式消融元件300长度的区段335数目。理论上平行于导管295的消融元件300在***时的收回位置意味着连杆式的消融元件300可以非常长,因此一旦部署就具有相当大的消融宽度。
图7A至图7F示出了与图3和图4的实施方式类似的实施方式,为本发明的第七实施方式。各自的消融头部360、358、380、405使用长形的消融元件形成。然而,在这些实施方式中,可膨胀球囊在中央被包括至长形消融元件。在部署时,壳体被收回,在由球囊350、370、390、415的膨胀辅助下,长形的消融元件向外伸出。因此,这些实施方式说明 了通过的消融的移位和由球囊的变形的两种弹性结合形式。
在这些实施方式中,部署有三个步骤的过程。在一个步骤中,壳体被收回,然后,长形元件径向地扩展,并且球囊从未膨胀状态345、365变化至膨胀状态350、370。图7A和图7B中的箭头分别指示了消融元件的弹性结合受力方向355、375。球囊可以是单个环(ring)(未示出),或者可以是围绕中心放置的多个球囊。
关于这些实施方式的一个有趣的方面是其中围绕中心放置不同的球囊。在某些情况下,在膨胀时,弹性接合会发生变化,其中较小的球囊会使长形的消融元件的较小膨胀,而较大的球囊会提供较大的膨胀。这又提供了有差别的弹性接合,其中较小的球囊具有较小的移位395、420,而较大的球囊具有较大的移位400、425,以适应口/PV的解剖角度。因此,这些实施方式还提供了用于要被治疗的组织的形状和尺寸的变化。
图8A至图8G以及图9A至图9D示出了与图5的花形实施方式类似的各种实施方式。实施方式总体上与图5的不同之处在于消融元件。虽然呈花瓣状,但是在这些实施方式中的消融元件更加细长,类似于触手。
图8A至图8B是根据本发明的第八实施方式的各个视图,图8A和图8B示出了消融元件426,其具有位于导管的尖端内并安装在气动层430上的电极432和传感器。
图8C至图8D是根据本发明的第九实施方式的各个视图,图8C和图8D示出了在不具有电极和传感器情况下的消融元件435,其中在每个消融元件435内存在多个通道,多个所述通道互连,并且在消融元件435的基层440处具有刚性材料,在消融元件435的顶部设置具有多个通道的气动层。
图8E至图8F是根据本发明的第十实施方式的各个视图,图8E和图8F示出了消融元件445,该消融元件445具有带有“小肌肉(mini muscle)”状的凸起部455——凸起部分具有沿接触表面行进的波纹形状——并且在轮廓化的接触表面使所安装的电极450和传感器附接至导管的尖端并安装在气动层上。
图8G和图8H示出了消融元件460中“小肌肉”的凸起部结构,其中每个“小肌肉”区段内的多个通道互连至其他“小肌肉”区段且其表面不包括电极和传感器。“小肌肉”区段结构包括基层465处的刚性材料和顶部上的多通道气动层。
图8I至图8K是根据本发明的第十二实施方式的各个视图,图8I至图8K示出了气动***485的各种方式,该气动***包括内部多个通道的气动布局470、内部多个通道和外部电极布置的气动布局475以及外部电极布置的气动布局480。
图9A至图9B是根据本发明的第十三实施方式的各个视图,图9A至图9B示出了一个单独的“触手”结构,图9A示出了在部署之前的具有气动***495以及附接至外壳的电极500的结构490,图9B示出在部署之后的具有内部气动***510以及附接至外壳的电 极500的结构505。
图9C至图9D是根据本发明的第十四实施方式的各个视图,图9C至图9D示出了一个单独的“触手”结构,图9C示出了在部署之前的具有内部气动***520和外壳的结构515,图9D示出了在部署之后具有内部气动***530和外壳结构的结构525。
图10A至图10D是根据本发明的第十五实施方式的各个视图,图10A至图10D示出了装置535。该实施方式使用非顺应性球囊(以压力膨胀的聚酯/尼龙材料作为候选物)和顺应性球囊(以体积膨胀的聚氨酯/硅酮材料作为候选物)的组合作为消融元件来实现与组织的更好接触,图10D中的箭头示出了消融元件与组织弹性结合受力方向555。
存在若干种不同类型的可膨胀阵列组合,其中以下三种类型为示例:
1)使用非顺应性球囊(以压力膨胀的聚酯/尼龙材料作为候选物);
2)顺应性球囊(以体积膨胀的聚氨酯/硅酮材料作为候选物);以及
3)顺应性球囊和非顺应性球囊两者的组合。
在这种布置中,头部540包括具有交替的可膨胀的非顺应性球囊元件545和顺应性球囊元件550的元件环。在膨胀时,有差别的元件扩展该环以匹配口的形状,无论其是圆形的组织60还是卵圆形的组织62。
当消融元件膨胀至状态560、565、570时,可变的扩展引起由刚性元件顺应性球囊元件550的弹性移位和由可膨胀元件非顺应性球囊元件545的弹性变形的组合。
图11A至图11H是根据本发明的第十六实施方式的各个视图,图11A至图11H示出了若干实施方式以及用于与其他实施方式一起使用的附加特征。
首先,心脏消融装置575包括具有可膨胀阵列消融元件585的头部580,消融元件585具有电极和传感器(未标出电极和传感器见图11D中的消融元件605)。在图11C中可以看到在膨胀之前的消融元件595,在图11E中可以看到在膨胀之后消融元件600。
值得注意的是,图11C和图11E还示出了选择性膨胀的效果,在这种情况下,选择性膨胀用于根据PV口的形状使头部580成形,并且因此能够适应圆形口的组织60和卵圆形口的组织62。这种选择性膨胀意味着消融元件可以保持未膨胀状态620、部分膨胀状态630或完全膨胀状态625,以获得期望的形状以及相应的弹性接合,在图11C、图11E和图11F中分别示出了消融元件与组织弹性结合受力方向610、615、628、632。
图11D和图11G中所示的另一个实施方式是具有锚固件590,该锚固件在导管的远端处呈球囊形式,并且被定位成通过选择性地使锚固件590在肺静脉中进一步远离口的位置膨胀,从而将装置575楔入合适的位置。在该实施方式中,球囊成环形以提供与静脉壁的环状的弹性接合,但是允许血液流过环孔。将可以理解并在后面描述的是,也可以使用可以密封静脉的完整的球囊。这可以具有更大的弹力被施加的优点,并且因此可能提供更 大的锚固力。这些锚固件实施方式中的每个均可以与本文中所述的实施方式中的任何一个或大多数一起使用,并且不限于图11中所示的实施方式。
图12A至图12F是根据本发明的第十七实施方式的各个视图,装置635包括位于头部的消融元件640,其中一些或每个消融元件640具有刚性部分650、665和可膨胀部分645、655、660、670。当该消融元件640膨胀时,刚性部分防止了均匀扩展并且因此使该消融元件变形。此外,这些元件可以在每个消融元件中包括单独的腔,当这些腔被选择性地膨胀(部分地或完全地或一点也不)时,这些腔可以提供例如可膨胀部分645、660的部分变形或更严重的例如可膨胀部分655、670的更大变形。与以前的实施方式一样,这种适应性允许头部640适配圆形口组织60或卵圆形口组织62,并且使弹性变形不同,图12F中示出了消融元件适配不同组织的弹性变形受力方向580和685。
图13A至图13F示出了先前描述的锚固球囊实施方式与其他装置实施方式一起使用的各种组合,图13A至图13B是根据本发明的第十八实施方式的各个视图,图13C至图13D是根据本发明的第十九实施方式的各个视图,图13E是根据本发明的第二十实施方式的等距视图,图13F是根据本发明的第二十一实施方式的等距视图,包括:
1)环状锚固球囊695、725、732其提供孔以允许血流穿过,参见图13A、图13B、图13E;
2)完整的锚固球囊725、735,参见图13C、图13D、图13F和图14K。
在图13A的装置690中具有球囊700和球囊705,在图13C的装置710中具有球囊715和球囊720,其作用参靠第七实施方式的描述。在图13E和图13F中的装置730,可以参考第六实施方式的描述。
图14A至图14K是根据本发明的第二十二实施方式的各个视图,图14A至图14J示出了具有长形头部745的装置740的又一实施方式。在该实施方式中,消融元件755可以侧向地延伸并且在分支760上连接至头部745。在这种情况下,存在两个在长形头部745的相反侧上侧向延伸的消融元件755,其中分支760用于提供弹性接合,以及通过其可以输送能量脉冲,如果使用传感器还可以作为数据传输的管道。
为了方便输送,当处于图14A中所示的收回位置时,参见图14E,这些消融元件755与头部处于齐平状态770,从而形成长形头部745的远侧盖。当处于适当的位置时,这些消融元件755延伸并同时打开头部745的远侧孔。从远侧孔处,可以将锚固球囊765从头部内的缩坍状态775部署至从头部向远侧伸出的膨胀位置状态785。一旦球囊被完全部署并且元件完全延伸至膨胀位置状态785,消融就可以开始。
该实施方式还示出了锚固球囊部署的过程,在这种情况下,该过程用于完整的锚固球囊750,但是也可以用于环状锚固球囊。
球囊765在头部745内未膨胀,呈齐平状态770。随着消融元件755从头部745侧 向部署,这会打开形成头部745的外壳以允许球囊765的前进,呈前进状态775,经过过渡状态780后直到膨胀位置状态785、790,以完成完全部署到位。
因此,在心脏795的操作中,锚固球囊750将装置740锚定使得消融元件755的侧向部署与组织60对准以开始治疗。
图14K示出了锚固球囊754的又一实施方式。在该实施方式中,实际的球囊754与关于其他实施方式所描述的球囊类似。应当理解的是,在消融过程期间,保持血液流过静脉是非常期望的。作为图13E或其他实施方式中的环状锚固球囊735的替选方案,导管756已经在远端调整以允许血液流过导管,从而防止了由球囊754引起的阻塞。具体地,在远端的导管756包括用于接收血流的孔758,血流穿过导管并通过孔762离开,以形成可以让血液流过的旁路,图14K中箭头764指示血流入口方向、箭头766指示血流出口方向。因此,这种设置旁路球囊754的布置的使用一旦适当就用于有限的血流中断。
图15A至图15C是根据本发明的第二十三实施方式的各个视图,装置800中包括消融元件805和球囊810,其消融元件805为具有铰接的刚性元件的又一实施方式,这些刚性元件以枢转的方式侧向部署,然后释放并部署至状态815、820、825、830、835。
图16A至图16O是根据本发明的第二十四实施方式的各个视图,图16A至图16O示出了又一实施方式的装置840,其也显示了完整的球囊锚固件845。在消融元件850的侧向部署的该实施方式中,到导管的连接经由扩展组件855。扩展组件855包括滑动连接和固定连接,滑动连接部分由端部组件860、花键组件865、分隔组件870、花键组件875和固定组件880组成,使得组件以成三角机构侧向展开消融元件850,其中端部组件860用于将花键组件865、花键组件875一起固定到位,花键组件865、花键组件875连接到电极852使电机滑动(以实现折叠/膨胀),分隔组件870用于支撑电极852的两个花键组件之间的分隔,固定组件880将花键组件与端部组件860固定到位。该扩展组件855通过电隔离组件的每个部分为电极852(如果需要则加上传感器)提供电连接。
消融元件可以采取若干不同的形状和取向,包括:具有相邻的极性的四分之一圆的半圆盘890;轮状环895;具有用于放置传感器的的各种凹槽结构930、935、940的半圆柱900、905、915以及半圆形块910。侧向部署的元件用于对组织925进行局部治疗。
图17A至图17J是根据本发明的第二十五实施方式的各个视图,其中头部945包括与导管955平行地对准的多个长形可膨胀的消融元件950。可膨胀的消融元件950的位置能够通过在圆形口组织60或卵圆形口组织62上的***之间的弹性接合而移动。示出了两个不同的实施方式,其中,第一个实施方式具有带有单个管道以使消融元件均匀膨胀(图17C)的导管;以及第二个实施方式的装置975,其中导管包括多个管道985,以选择性地使长形球囊的消融元件980膨胀,并且因此进一步增强使头部变形的能力,以更好地与不同形状 的组织接触。
图17G示出了的在膨胀之前的球囊状消融元件1005和在膨胀之后的球囊状消融元件1010。图17H示出了具有替代入口结构的球囊状消融元件1015和具有单个入口结构的球囊状消融元件1020。图17I示出了具有嵌入在球囊的表面上的电极1040、1045的球囊状消融元件1035和嵌入在网上的电极1060、1055的球囊状消融元件1050。图17J示出了具有如下电极的装置的规定电场,所述电极安装在面向圆形脉管组织60和卵圆形脉管组织62的PV脉管的球囊状消融元件表面上。
图18A至图18D是根据本发明的第二十六实施方式的各个视图,图18A至图18D示出了侧向部署的消融元件的又一实施方式,装置1064包括消融元件和壳体1075,其中消融元件联接至导管的壳体1075。消融元件具有类似于起重机抓斗的钳口1065成形,使得在***时,钳口1065被关闭,并且被打开以侧向枢转地部署消融元件。钳口1065各自具有被布置成在打开时面对组织的表面,其中该表面带有电极。钳口1065可以被设定尺寸成扩展静脉的尺寸以改善接触。为此,钳口1065的打开程度可以选择性地可控制,并且因此钳口1065的部分打开可以提供与待治疗组织的足够的弹性接合。
替选地,钳口在枢轴之间是柔性的,并且因此可以弯曲整个表面以产生弹性变形。
可以通过拉杆1070来实现打开钳口1065,使得在执行动作1080拉动所述拉杆1070时,钳口1065会在抵抗弹性变形以保持钳口1065闭合趋势的情况下打开。
图19A至图19F是根据本发明的第二十七实施方式的各个视图,示出了装置1085,具有消融元件1100的头部1095。消融元件1100相对于头部1100固定,但是可以从具有杠杆臂1099的头部1095伸出。如图19F所示,头部1130和消融元件1135也可以被成形以更好地适合卵圆形口组织62。
相邻的消融元件元件具有相反的极性1105,并且因此在***时,头部1095围绕卵圆形口组织62逐步地经过不同位置状态1110、1115、1120,以便在装置的顺序定位之后施加电脉冲并实现电穿孔电压输送1125。
应当理解,头部的厚度和杠杆臂的长度可以被设计,并且将确定元件能够实现的弹性变形的程度。
图20A示出了在施加脉冲能量消融装置之后的电穿孔电压输送1140(PV截面组织62)。图20B示出了在施加脉冲能量消融装置之后的消融能量1142(PV截面组织62)。图20C示出了指示了使用传统RF治疗的消融图案1150和使用根据本发明的装置的脉冲消融的消融图案1152的两者的心脏1145。
图21A是部署特征1155的侧视图,该部署特征使用户能够用一只手控制在远侧定位的电极和用户对根据本发明的一个实施方式的装置的操作方式1160。
图21B是使用户能够控制PV口/脉管空间内的电极角度的部署特征1170的前视图以及根据本发明的一个实施方式的装置1165的侧视图。
图21C示出了在装置用户界面上的标记1170,该标记1170使用户能够控制角度(15°步进角度控制的图示,标记如下0°、15°、30°、45°、60°、75°、90°、105°、120°、135°、150°和165°)。
图21D示出了在装置用户界面上的角度标记,该标记使用户能够通过在预定标记处将“按钮/开关”推动来控制角度1190、1195、1200、1205和装置在远端的旋转。
图21E示出了使用户能够控制内腔内的电极角度的部署特征的前视图部署1185、侧视图部署1180和透视图部署1175。
图21F示出了装置用户界面的角度标记,该装置用户界面使用户能够通过旋转装置的手柄部分上的旋钮/刻度盘来控制装置的远端的电极角度,在这种情况下为30°步进角度控制1220,标记1225如下0°、30°、60°、90°、120°和150°。
图21G示出了装置的手柄部件的设计,其包括部署1210、1215,用于使球囊结构膨胀,对电极进行部署和对电极的位置进行控制。
图22A是示出了在PV口/脉管中部署用于组织消融的装置的方法的流程图,用于具有多个电极(带有或不带有力传感器)的装置,其包括以下各步骤:
1230、将装置引入至左心房(例如右股静脉/右颈内静脉)中;
1235、基于可见标记将装置部署至期望的位置(例如,PV口);
1240、装置的放置的证实被执行(例如荧光透视);
1245、电极的良好附着的证实(例如,可荧光透视或力传感器或阻抗读数);
1250、脉冲能量消融被施加;
1255、装置被重新定位(例如,可以在操作员手柄处调整的顺序角度变化或可膨胀构件的膨胀-缩坍或装置的部署-塌缩特征);
1260、执行脉冲消融的重新施加直到肺静脉被成功地隔离为止。
图22B是示出了在PV口/脉管中部署用于组织消融的装置的方法的流程图,用于具有多个电极和有助于更好地将电极与脉管壁对准的特征的装置,其包括以下各步骤:
1265、将装置引入至左心房(例如右股静脉/右颈内静脉)中;
1270、基于可见标记将装置部署至期望的位置(例如,PV口);
1275、装置的放置的证实被执行(例如荧光透视);
1280、部署特征(可膨胀或启动或物理特征)以有助于将电极附着至壁;
1285、电极的良好附着的证实(例如,可荧光透视或力传感器或阻抗读数);
1290、脉冲能量消融被施加;
1295、装置被重新定位(例如,可以在操作员手柄处调整的顺序角度变化或可膨胀构件的膨胀-缩坍或装置的部署-塌缩特征);
1300、执行脉冲消融的重新施加直到肺静脉被成功地隔离为止。
图22C是示出了在PV口/脉管中部署用于组织消融的装置的方法的流程图,用于具有独立的锚固特征、多个电极、有助于更好地将电极与脉管壁对准的特征的装置,其包括以下各步骤:
1305、将装置引入至左心房(例如右股静脉/右颈内静脉)中;
1310、基于可见标记将装置部署至期望的位置(例如,PV口);
1315、装置的放置的证实被执行(例如荧光透视);
1320、使用部署特征来锚定装置并且放置被重新证实;
1325、部署特征(可膨胀或启动或物理特征)以有助于将电极附着至壁;
1330、电极的良好附着的证实(例如,可荧光透视或力传感器或阻抗读数);
1335、脉冲能量消融被施加;
1340、装置被重新定位(例如,可以在操作员手柄处调整的顺序角度变化或可膨胀构件的膨胀-缩坍或装置的部署-塌缩特征);
1345、执行脉冲消融的重新施加直到肺静脉被成功地隔离为止。
图22D是示出了在PV脉管中部署用于组织消融的装置的方法的流程图,用于具有多个电极(带有或不带有力传感器)和独立的锚固特征的装置,其包括以下各步骤:
1350、将装置引入至左心房(例如右股静脉/右颈内静脉)中;
1355、基于可见标记将装置部署至期望的位置(例如,PV口);
1360、装置的放置的证实被执行(例如荧光透视);
1365、使用部署特征来锚定装置并且放置被重新证实;
1370、电极的良好附着的证实(例如,可荧光透视或力传感器或阻抗读数);
1375、脉冲能量消融被施加;
1380、装置被重新定位(例如,可以在操作员手柄处调整的顺序角度变化或可膨胀构件的膨胀-缩坍或装置的部署-塌缩特征);
1385、执行脉冲消融的重新施加直到肺静脉被成功地隔离为止。
图22E是示出了在PV脉管中部署用于组织消融的装置的方法的流程图,用于具有多个电极(带有或不带有力传感器)和同时锚固特征的装置,其包括以下各步骤:
1390、将装置引入至左心房(例如右股静脉/右颈内静脉)中;
1395、基于可见标记将装置部署至期望的位置(例如,PV口);
1400、装置的放置的证实被执行(例如荧光透视);
1405、部署可膨胀特征以有推动电极附着至壁;
1410、电极的良好附着的证实(例如,可荧光透视或力传感器或阻抗读数);
1415、脉冲能量消融被施加;
1420、装置被重新定位(例如,可以在操作员手柄处调整的顺序角度变化或可膨胀构件的膨胀-缩坍或装置的部署-塌缩特征);
1425、执行脉冲消融的重新施加直到肺静脉被成功地隔离为止。
图22F是示出了在PV脉管中部署用于组织消融的装置的方法的流程图,用于具有被设计成当操作员操纵其时实现对脉管壁的良好的附着的电极的装置,其包括以下各步骤:
1430、将装置引入至左心房(例如右股静脉/右颈内静脉)中;
1435、基于可见标记将装置部署至期望的位置(例如,PV口);
1440、装置的放置的证实被执行(例如荧光透视);
1445、装置被放置有触摸PV口或PV脉管的电极尖端;
1450、脉冲能量消融被施加;
1455、以预定角度来旋转装置远端(带有电极);
1460、执行脉冲消融的重新施加直到肺静脉被成功地隔离为止。
上述实施例只为说明本发明的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修饰,都应涵盖在本发明的保护范围之内。

Claims (25)

  1. 一种用于治疗心脏组织的心脏消融***,包括导管和头部,所述头部是心脏消融***对心脏组织的消融作用端,所述导管是心脏消融***用来连接头部的柔性管状连接体,其特征在于:
    所述头部具有多个相互独立的消融元件;
    每个消融元件均设有用来接触心脏组织的接触表面以及用来支撑接触表面的柔性支撑体,其中,接触表面上设有能量作用部;
    所述消融元件在心脏消融***的头部位置处具有收缩和伸展两种工作状态,其中,在收缩状态下多个相互独立的消融元件相互聚集并呈现最小体积,在伸展状态下一个或多个相互独立的消融元件张开,并通过各个消融元件上的接触表面以适应方式来贴合心脏组织被接触处的各种形状变化。
  2. 根据权利要求1所述的***,其中,所述消融元件中的至少一些被布置成用于与所述组织弹性结合
  3. 根据权利要求2所述的***,其中,所有所述消融元件均被布置成用于与所述组织弹性接合。
  4. 根据权利要求2或3所述的***,其中,所述弹性接合包括弹性变形和弹性移位中的一者或两者。
  5. 根据权利要求4所述的***,其中,消融元件的弹性变形包括所述消融元件的膨胀。
  6. 根据权利要求5所述的***,其中,所述消融元件能够选择性膨胀。
  7. 根据权利要求6所述的***,其中,所述选择性膨胀包括使所述消融元件的膨胀体积不同,使得所述头部包括不同膨胀体积的消融元件。
  8. 根据权利要求5至7中任一项所述的***,其中,每个消融元件包括刚性部分,使得在膨胀时所述消融元件被布置成通过有差别的膨胀围绕所述刚性部分变形。
  9. 根据权利要求5至8中任一项所述的***,其中,每个头部包括至少一个顺应性球囊元件和至少一个非顺应性球囊元件,所述非顺应性球囊元件和所述顺应性球囊元件被布置形成与所述组织接触的环。
  10. 根据权利要求1至4中任一项所述的***,其中,所述头部包括多个长形消融元件。
  11. 根据权利要求10所述的***,其中,长形的所述消融元件能够单独地移动并且基本上是刚性的,所述弹性接合包括弹性移位。
  12. 根据权利要求10或11所述的***,其中,所述头部包括能够选择性地移动的壳体,所述壳体被布置成选择性地控制所述消融元件从远侧或近侧位置移动至与远侧或近侧位置相反的位置,使得长形的所述消融元件被布置成从所述头部的中心径向地弹性地伸出。
  13. 根据权利要求10至12中任一项所述的***,其中,所述头部包括至少一个可膨胀球囊,所述球囊联接至所述头部,并且所述消融元件围绕所述球囊的***边缘布置,其中,在膨胀时所述球囊被布置成使所述长形消融元件偏置而被移位,以便所述消融元件从所述头部的中心径向地向外伸出。
  14. 根据权利要求13所述的***,其中,存在多个联接至所述头部的球囊,所述球囊能够选择性地膨胀,所述球囊被布置成具有不同的膨胀,以使所述消融元件被布置成被不同地移位。
  15. 根据权利要求13或14所述的***,其中,所述球囊是环状的。
  16. 根据权利要求1至4中任一项所述的***,其中,所述头部包括一对为长形连杆状的消融元件,所述消融元件包括枢转地连接并呈线性布置的区段,所述消融元件被布置成从所述头部的中心径向地伸出。
  17. 根据权利要求16所述的***,其中,所述消融元件各自在其端部处连接至所述头部,并且被布置成在施加至其端部处的拉力时从平行于导管的位置移动至径向伸出的位置。
  18. 根据权利要求1至4中任一项所述的***,其中,所述头部包括多个弯曲的消融元件,所述消融元件是弯曲的并且被布置成从所述头部的中心径向地伸出,所述弹性接合包括所述消融元件的弹性变形。
  19. 根据权利要求18所述的***,所述消融元件还包括气动部分,所述接触表面位于所述气动部分上。
  20. 根据权利要求18或19所述的***,其中,所述接触表面具有凸起的轮廓。
  21. 根据权利要求1至4中任一项所述的***,其中,所述消融元件被布置成从与所述头部齐平的收回位置移动至侧向延伸的位置,所述消融元件经由分支附接至所述头部。
  22. 根据权利要求21所述的***,还包括锚固球囊,所述锚固球囊被布置成从所述头部内的缩坍位置移动至从所述头部在远侧方向上延伸的部署位置。
  23. 根据权利要求1至22中任一项所述的***,还包括用于将所述头部相对于所述组织固定的锚固件。
  24. 根据权利要求23所述的***,其中,所述锚固件包括联接至所述导管的可膨胀的锚固球囊,可膨胀的所述锚固球囊被布置成与所述组织相邻的静脉的壁接合。
  25. 根据权利要求24所述的***,其中,所述锚固球囊是环状的,具有被布置成允许血流通过的孔。
PCT/CN2021/119476 2020-09-22 2021-09-20 心脏消融***和方法 WO2022063098A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/027,697 US20230372005A1 (en) 2020-09-22 2021-09-20 Cardiac ablation system and method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011005029.0 2020-09-22
CN202011005029.0A CN114246662A (zh) 2020-09-22 2020-09-22 心脏消融***和方法

Publications (1)

Publication Number Publication Date
WO2022063098A1 true WO2022063098A1 (zh) 2022-03-31

Family

ID=80789687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119476 WO2022063098A1 (zh) 2020-09-22 2021-09-20 心脏消融***和方法

Country Status (3)

Country Link
US (1) US20230372005A1 (zh)
CN (1) CN114246662A (zh)
WO (1) WO2022063098A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309651A (zh) * 2005-06-20 2008-11-19 消融前沿公司 消融导管
US20110082450A1 (en) * 2009-10-02 2011-04-07 Cardiofocus, Inc. Cardiac ablation system with inflatable member having multiple inflation settings
CN109717943A (zh) * 2017-10-31 2019-05-07 四川锦江电子科技有限公司 具有标测功能的冷冻消融导管以及消融装置
CN109965973A (zh) * 2017-12-28 2019-07-05 上海微创电生理医疗科技股份有限公司 消融导管和消融***
CN110575243A (zh) * 2019-09-30 2019-12-17 科塞尔医疗科技(苏州)有限公司 一种球囊导管及冷冻消融仪

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101309651A (zh) * 2005-06-20 2008-11-19 消融前沿公司 消融导管
US20110082450A1 (en) * 2009-10-02 2011-04-07 Cardiofocus, Inc. Cardiac ablation system with inflatable member having multiple inflation settings
CN109717943A (zh) * 2017-10-31 2019-05-07 四川锦江电子科技有限公司 具有标测功能的冷冻消融导管以及消融装置
CN109965973A (zh) * 2017-12-28 2019-07-05 上海微创电生理医疗科技股份有限公司 消融导管和消融***
CN110575243A (zh) * 2019-09-30 2019-12-17 科塞尔医疗科技(苏州)有限公司 一种球囊导管及冷冻消融仪

Also Published As

Publication number Publication date
CN114246662A (zh) 2022-03-29
US20230372005A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
US11911061B2 (en) Systems and methods for endoluminal valve creation
US6142993A (en) Collapsible spline structure using a balloon as an expanding actuator
AU768103B2 (en) Methods and devices for vascular surgery
EP1042990B1 (en) Ablation catheter for isolating a pulmonary vein
ES2725467T3 (es) Globo cargado a resorte
ES2940658T3 (es) Catéter de ablación cardíaca anclado
EP1814485B1 (en) Atrial ablation catheter
EP0856291B1 (en) System for tissue mapping and ablation
US10603022B2 (en) Closing openings in anatomical tissue
JP2005052630A (ja) 凍結融解壊死療法システムおよび方法
EP2818129A1 (en) Apparatuses and methods for affixing electrodes to an intravascular balloon
AU3824102A (en) Selective ablation system
WO2005120377A1 (en) Clamping ablation tool
CN106264712B (zh) 造口器械
US20110092789A1 (en) Miniature circular mapping catheter
US20210401494A1 (en) Pulmonary arterial hypertension catheters
WO2022063098A1 (zh) 心脏消融***和方法
EP3841998A1 (en) Lasso catheter with balloon
US20240206902A1 (en) Pulmonary arterial hypertension catheters
WO2024129360A1 (en) Soft tissue anchors and method
AU2004200872A1 (en) Methods and devices for vascular surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871468

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871468

Country of ref document: EP

Kind code of ref document: A1