WO2022062699A1 - 有机电致发光器件、显示面板及显示装置 - Google Patents

有机电致发光器件、显示面板及显示装置 Download PDF

Info

Publication number
WO2022062699A1
WO2022062699A1 PCT/CN2021/110673 CN2021110673W WO2022062699A1 WO 2022062699 A1 WO2022062699 A1 WO 2022062699A1 CN 2021110673 W CN2021110673 W CN 2021110673W WO 2022062699 A1 WO2022062699 A1 WO 2022062699A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
exciton
light
organic electroluminescent
emitting layer
Prior art date
Application number
PCT/CN2021/110673
Other languages
English (en)
French (fr)
Inventor
吴勇
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/789,700 priority Critical patent/US20230092444A1/en
Publication of WO2022062699A1 publication Critical patent/WO2022062699A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/40Interrelation of parameters between multiple constituent active layers or sublayers, e.g. HOMO values in adjacent layers

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to an organic electroluminescence device, a display panel and a display device.
  • OLEDs organic electroluminescent displays Due to its characteristics of active light emission, high light-emitting brightness, high resolution, wide viewing angle, fast response speed, saturated color, thin and light, low energy consumption and flexibility, it is known as a dream display and has become a hot mainstream display product on the market. .
  • embodiments of the present disclosure provide an organic electroluminescence device, comprising: an anode and a cathode that are opposite to each other, a light-emitting layer located between the anode and the cathode, and an organic electroluminescence device directed from the anode to the cathode an exciton layer adjacent to the light-emitting layer in the direction of the cathode; wherein,
  • the excitonic layer contains at least one compound, the excitonic layer has the property that triplet excitons formed therein form singlet excitons through inverse intersystem crossing, and the singlet energy of the excitonic layer is The level is higher than the singlet energy level of the host material in the light-emitting layer, and the overlapping area between the emission spectrum of the exciton layer and the absorption spectrum of the host material in the light-emitting layer is greater than a set value.
  • the overlapping area between the emission spectrum of the exciton layer and the absorption spectrum of the host material in the light-emitting layer is greater than 5 %.
  • the exciton layer includes a compound, and the compound has the property of emitting thermally activated delayed fluorescence.
  • the exciton layer includes an exciplex formed by mixing a first compound and a second compound, and the exciton The exciton yield of the complex is greater than 50%.
  • the mass ratio of the first compound and the second compound is 1:9 to 9:1.
  • the electron mobility of the host material in the light-emitting layer is greater than the hole mobility, and the exciton layer is located in the light-emitting layer. the side of the layer facing the anode; or,
  • the electron mobility of the host material in the light-emitting layer is smaller than the hole mobility, and the exciton layer is located on the side of the light-emitting layer facing the cathode.
  • the organic electroluminescent device provided in the embodiment of the present disclosure further includes: at least one auxiliary functional layer on the side of the exciton layer away from the light-emitting layer;
  • the singlet energy level of the excitonic layer is smaller than the singlet energy level of the adjacent auxiliary functional layer.
  • the organic electroluminescent device provided in the embodiment of the present disclosure further includes: at least one auxiliary functional layer on the side of the exciton layer away from the light-emitting layer;
  • the LUMO value of the compound in the excitonic layer is greater than the LUMO value of the adjacent auxiliary functional layer.
  • the absolute value of the difference between the LUMO value of the compound in the exciton layer and the LUMO value of the adjacent auxiliary functional layer is greater than 0.3eV;
  • the absolute value of the difference between the HOMO value of the compound in the exciton layer and the HOMO value of the adjacent auxiliary functional layer is less than 0.5 eV.
  • the auxiliary functional layer when the exciton layer is located on the side of the light-emitting layer facing the anode, includes at least One of the following: hole injection layer, hole transport layer, electron blocking layer;
  • the auxiliary functional layer includes at least one of the following: an electron injection layer, an electron transport layer, and a hole blocking layer.
  • the thickness of the exciton layer is less than or equal to 20 nm.
  • an embodiment of the present disclosure further provides a display panel including a plurality of the above-mentioned organic electroluminescent devices provided by the embodiment of the present disclosure.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned display panel provided by an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of an organic electroluminescence device provided in an embodiment of the present disclosure
  • FIG. 2 is another schematic structural diagram of the organic electroluminescence device provided by the embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of an energy level relationship of an organic electroluminescent device according to an embodiment of the present disclosure
  • FIG. 4 is an absorption-emission relationship diagram of each embodiment in the experimental data provided by the embodiments of the present disclosure
  • FIG. 5 is an absorption-emission relationship diagram of each embodiment in the experimental data provided by the embodiments of the present disclosure.
  • OLEDs Organic Light Emitting Diodes
  • OLEDs have the advantages of autonomous light emission, flexibility, energy saving, ultra-thinness and light weight.
  • a voltage is applied to an OLED, holes are injected from the anode, and electrons are injected from the cathode, and the electrons and holes recombine in the light-emitting layer to form excitons.
  • spin a singlet state is generated in a ratio of 25%: 75%. excitons and triplet excitons.
  • conventional fluorescent organic light-emitting diodes have many advantages over phosphorescent OLEDs and thermally activated delayed fluorescence (TADF) OLEDs.
  • TADF thermally activated delayed fluorescence
  • the emission spectrum of conventional FOLEDs is narrower, which is beneficial to obtain better color purity; and the short lifetime of the emitted excitons is also an important advantage, which can increase the working life of OLEDs and reduce Roll. off, but the theoretical limit of efficiency of fluorescent OLEDs is relatively low and unsatisfactory. Therefore, for OLED, how to improve its device efficiency is one of the key issues to improve device performance.
  • An organic electroluminescent device provided by an embodiment of the present disclosure, as shown in FIG. 1 and FIG. 2 , includes: an anode 100 and a cathode 200 opposite to each other, a light-emitting layer 300 located between the anode 100 and the cathode 200 , and a The exciton layer 400 adjacent to the light-emitting layer 300 in the direction from the anode 100 to the cathode 200; wherein,
  • the excitonic layer 400 includes at least one compound, the excitonic layer 400 has the property that triplet excitons formed therein form singlet excitons through inverse intersystem crossing, and the singlet energy level of the excitonic layer 400 is higher than The singlet energy level of the host material in the light-emitting layer 300 , the overlapping area between the emission spectrum PL of the exciton layer 400 and the absorption spectrum Abs of the host material in the light-emitting layer 300 is greater than a set value.
  • an exciton layer 400 adjacent to the light-emitting layer 300 is added.
  • the area of the light-emitting layer 300 may be the same or different, that is, the area of the exciton layer 400 may be larger than the light-emitting layer 300, smaller than the light-emitting layer 300, or equal to the light-emitting layer, and the exciton layer 400 can be used as an exciton recombination area to achieve an increase in the area.
  • the singlet energy level S1 of the exciton layer 400 is higher than the singlet energy level S1 of the host material in the light-emitting layer 300
  • the emission spectrum PL of the exciton layer 400 is related to the luminescence
  • the absorption spectrum Abs of the host material in the layer 300 has an overlapping area, so that the excitons formed in the exciton layer 400 can effectively transfer the energy to the host material and the guest material of the light-emitting layer 300 , thereby improving the light-emitting efficiency of the light-emitting layer 300 .
  • the exciton layer 400 has the property of forming a singlet exciton through the inverse intersystem crossing of the triplet excitons T1 formed therein, so that the exciton layer 400 can transfer the Forrest energy with a small energy loss through the exciton layer 400 .
  • FET transfers the exciton energy to the S1 energy level of the host material, suppressing the Dexter energy transfer (DET) with large energy loss, which can effectively improve the exciton energy transfer, thereby enhancing the efficiency of organic electroluminescent devices and reducing the device's performance. Roll off.
  • the overlapping area between the emission spectrum PL of the exciton layer 400 and the absorption spectrum Abs of the host material in the light emitting layer 300 is generally greater than 5%.
  • the exciton layer 400 may include a compound having the property of emitting thermally activated delayed fluorescence, so as to realize the formation of the exciton layer 400 .
  • the triplet excitons form singlet excitons through inverse intersystem crossing, so that the excitonic layer 400 transfers the exciton energy to the S1 energy level of the host material through the Forrest energy transfer (FET) with small energy loss, and suppresses the large energy loss.
  • FET Forrest energy transfer
  • the Dexter energy transfer (DET) can effectively improve exciton energy transfer, thereby enhancing the efficiency of organic electroluminescent devices.
  • the exciton layer may also include an exciton complex formed by mixing the first compound and the second compound, and the exciton yield of the exciton complex is PLQY is greater than 50%.
  • the higher the exciton yield of the exciton complex the higher the ratio of excitons formed by the recombination of holes and electrons in the exciton layer 400 , so as to increase the exciton density in the exciton layer 400 .
  • the singlet energy level S1 of the excimer complex is higher than the singlet energy level S1 of the host material in the light-emitting layer 300 , which can effectively transfer excitons to the host material and the guest material of the light-emitting layer 300 , and improve the efficiency of the light-emitting layer 300 .
  • Luminous efficiency is higher than the singlet energy level S1 of the host material in the light-emitting layer 300 , which can effectively transfer excitons to the host material and the guest material of the light-emitting layer 300 , and improve the efficiency of the light-emitting layer 300 .
  • the compounds contained in the exciton layer 400 include but are not limited to the following materials:
  • the mass ratio of the first compound and the second compound is generally controlled at 1:9 to 9:1, and the two can be determined according to the selected specific materials. The proportion of those who are not described in detail here.
  • the host material in the light-emitting layer 300 when the electron mobility of the host material in the light-emitting layer 300 is greater than the hole mobility, that is, the host material in the light-emitting layer 300 is selected as an electron-type host.
  • the electron mobility of the general electron-type host material > 1*10 -6 cm 2 /V*S> hole mobility, indicating that electrons are easily transported from the cathode 200 side through the light-emitting layer 300 to the anode 100 side, so 1, the exciton layer 400 should be disposed on the side of the light-emitting layer 300 facing the anode 100, which is conducive to the recombination of electrons and holes in the exciton layer 400 to achieve the desired exciton density, so that the exciton The excitons formed in the layer 400 efficiently transfer energy to the host material and the guest material of the light-emitting layer 300 , thereby improving the light-emitting efficiency of the light-emitting layer 300 .
  • the electron mobility of the host material in the light-emitting layer 300 is selected to be less than the hole mobility, that is, the host material in the light-emitting layer 300 is selected from the hole type.
  • the electron mobility of the general electron-type host material is ⁇ 1*10 -6 cm 2 /V*S ⁇ hole mobility, indicating that holes are easily transported from the anode 100 side through the light-emitting layer 300 to the cathode 200 side , therefore, as shown in FIG.
  • the exciton layer 400 should be disposed on the side of the light-emitting layer 300 facing the cathode 200, which is beneficial to the recombination of electrons and holes in the exciton layer 400 to achieve the required exciton density, so that the The excitons formed in the exciton layer 400 efficiently transfer energy to the host material and the guest material of the light-emitting layer 300 , thereby improving the light-emitting efficiency of the light-emitting layer 300 .
  • the organic electroluminescent device may further include: at least one auxiliary functional layer on the side of the exciton layer 400 away from the light-emitting layer 300 500.
  • the auxiliary functional layer 500 may include at least the following One: hole injection layer 501 , hole transport layer 502 , and electron blocking layer 503 .
  • the auxiliary functional layer 500 may include at least the following One: electron injection layer 510 , electron transport layer 520 , hole blocking layer 530 .
  • the auxiliary function layer 500 including the hole injection layer 501 , the hole transport layer 502 , the electron blocking layer 503 , the electron injection layer 510 , the electron transport layer 520 and the hole blocking layer 530 are taken as examples.
  • the auxiliary functional layer 500 may be selected as required, for example, the auxiliary functional layer 500 only selects the electron blocking layer 503 and the hole blocking layer 530, etc., which will not be described in detail here.
  • an anode 100 , a hole injection layer 501 , a hole transport layer 502 , and electrons may be sequentially formed on the base substrate.
  • the cathode 200 As shown in FIG.
  • the anode 100 , the hole injection layer 501 , the hole transport layer 502 , the electron blocking layer 503 , the light-emitting layer 300 containing the hole-type host material, and the exciton layer may be sequentially formed on the base substrate.
  • the hole blocking layer 530 , the electron transport layer 520 , the electron injection layer 510 , and the cathode 200 may be sequentially formed on the base substrate.
  • the base substrate can be selected from any transparent substrate material, such as glass, polyimide, and the like.
  • the anode 100 is selected as a high work function electrode material.
  • transparent oxide ITO, IZO and other materials can be used, and the thickness is 80nm-200nm;
  • the above organic electroluminescent device provided in the examples is used in a top emission structure, it can be prepared by a composite structure, such as "Ag/ITO” or "Ag/IZO", the thickness of the metal layer is 80nm-100nm, and the thickness of the metal oxide is 5nm ⁇ 10nm.
  • the reference value of the average reflectance in the visible light region of the anode is 85% to 95%.
  • transparent oxides ITO and IZO can also be composite electrodes formed by Ag/ITO, Ag/IZO, CNT/ITO, CNT/IZO, GO/ITO, GO/IZO, etc.
  • the main function of the hole injection layer 501 is to reduce the hole injection barrier and improve the hole injection efficiency.
  • Materials such as HATCN and CuPc can be used to prepare a single-layer film; the hole transport material can also be prepared by p-type doping. , such as NPB:F4TCNQ, TAPC:MnO3, etc.
  • the thickness of the hole injection layer is 5 nm to 20 nm, and the p-doping concentration is 0.5% to 10%.
  • the hole transport layer 502 can be prepared by vapor deposition using carbazole-based materials with higher hole mobility.
  • the highest occupied molecular orbital (HOMO) energy level of the layer material needs to be between -5.2eV and -5.6eV, and the reference thickness is between 100nm and 140nm.
  • the hole mobility of the electron blocking layer 503 is 1 to 2 orders of magnitude higher than the electron mobility, and its main function is to transfer holes, and effectively block the transmission of electrons and the excitons generated in the light-emitting layer, and its thickness is selected to be 1 nm ⁇ 10nm.
  • the electron mobility of the hole blocking layer 530 is 1-2 orders of magnitude higher than the hole mobility, which can effectively block the transport of holes.
  • the electron transport layer 520 has good electron transport properties, and can be selected from materials such as TmPyPB, B4PyPPM, and the like, and its thickness is selected from 20 nm to 100 nm.
  • the electron injection layer 510 can be selected from materials such as LiF, Yb, LiQ, and the like, and its thickness is selected from 1 nm to 10 nm.
  • the cathode 200 can be selected from Mg, Ag and other materials.
  • the singlet energy level S1 of the excitonic layer 400 is smaller than the singlet energy level S1 of the electron blocking layer 503 ; in the structure shown in FIG. 2 , the singlet energy level S1 of the excitonic layer 400 The state energy level S1 is smaller than the singlet state energy level S1 of the hole blocking layer 530 .
  • the singlet energy level S1 of the excitonic layer 400 is generally smaller than the singlet energy level S1 of the adjacent auxiliary functional layer 500 , which can prevent energy from being transferred from the excitonic layer 400 to the adjacent film layer, and can transfer the excitons to the adjacent film layers. It is effectively confined in the exciton layer 400 and then transferred to the light-emitting layer 300 to improve the light-emitting efficiency.
  • the LUMO value of the compound in the exciton layer 400 is generally greater than that of the adjacent auxiliary functional layer 500 .
  • the LUMO value of the compound in the exciton layer 400 is greater than the LUMO value of the electron blocking layer 503; in the structure shown in FIG. 2, the LUMO value of the compound in the exciton layer 400 is greater than that of the hole blocking layer LUMO value for layer 530.
  • the LUMO value refers to the absolute value of the LUMO energy level.
  • the LUMO value of the compound in the exciton layer 400 is greater than the LUMO value of the adjacent auxiliary functional layer 500, which can prevent the excitons from transitioning from the exciton layer 400 to the adjacent film layer, and can effectively confine the excitons in the excitons.
  • the layer 400 is then transferred to the light-emitting layer 300 to improve the light-emitting efficiency.
  • the LUMO value of each compound needs to be greater than the LUMO value of the adjacent auxiliary functional layer 500 .
  • the absolute value of the difference between the LUMO value of the compound in the exciton layer 400 and the LUMO value of the adjacent auxiliary functional layer 500 is greater than 0.3 eV.
  • the absolute value of the difference between the LUMO value of the compound in the exciton layer 400 and the LUMO value of the electron blocking layer 503 is greater than 0.3 eV, and when the exciton layer 400 contains two compounds, ⁇ LUMO first The compound ⁇ - ⁇ LUMO electron blocking layer ⁇ >0.3eV, the ⁇ LUMO second compound ⁇ - ⁇ LUMO electron blocking layer ⁇ >0.3eV; in the structure shown in FIG.
  • the LUMO value of the compound in the exciton layer 400 is related to the empty
  • the absolute value of the difference between the LUMO values of the hole blocking layer 530 is greater than 0.3 eV.
  • the exciton layer 400 contains two compounds, ⁇ LUMO first compound ⁇ - ⁇ LUMO hole blocking layer ⁇ >0.3eV, ⁇ LUMO second compound ⁇ - ⁇ LUMO hole blocking layer ⁇ >0.3eV.
  • the absolute value of the difference between the HOMO value of the compound in the exciton layer 400 and the HOMO value of the adjacent auxiliary function layer 500 is less than 0.5 eV.
  • the absolute value of the difference between the HOMO value of the compound in the exciton layer 400 and the HOMO value of the electron blocking layer 503 is less than 0.5 eV.
  • the HOMO value of the compound in the exciton layer 400 is related to the empty
  • the absolute value of the difference between the HOMO values of the hole blocking layer 503 is less than 0.5 eV.
  • the exciton layer 400 contains two compounds, ⁇ HOMO first compound ⁇ - ⁇ HOMO hole blocking layer ⁇ 0.5eV, ⁇ HOMO second compound ⁇ - ⁇ HOMO hole blocking layer ⁇ 0.5eV.
  • the thickness of the exciton layer 400 is generally less than or equal to 20 nm, and the thickness of the exciton layer 400 should not be too thick to prevent the excitons of the exciton layer 400 Energy cannot be sufficiently transferred to the light emitting layer 300 .
  • the comparative examples are the same as the hole injection layer HIL and hole transport layer HTL in each example.
  • the hole blocking layer HBL, the electron transport layer ETL and the cathode are made of the same material with slightly different thicknesses.
  • blue light-emitting materials are used in the light-emitting layer, that is, the light-emitting layer contains blue host material BH and 5 wt% blue guest material BD, and adjusts the exciton layer. material and thickness.
  • the light-emitting layer adopts green light-emitting material, that is, the light-emitting layer contains a green host material GH and 1.5wt% of a green guest material GD. thickness.
  • red light-emitting materials are used for the light-emitting layer, that is, the light-emitting layer contains red host material RH and 3wt% red guest material RD, and the thickness of the exciton layer is adjusted.
  • Table 1 The detailed parameters are shown in Table 1:
  • Example 1 Comparative Example 1 and Comparative Example 2 of the first group of examples
  • the device performance of Example 2 and Comparative Example 4 of the second group of examples shows that Example 3 of the third group of examples
  • the device performance with Comparative Example 7 shows that the presence of the exciton layer 400 improves the device efficiency because the exciton layer increases the density of singlet excitons, which emit light through energy transfer to the light-emitting layer.
  • Example 1 By comparing Example 1 and Comparative Example 3, it is found that the device performance of Example 1 is higher than that of Comparative Example 3, as shown in FIG. 5 , which may be due to the exciton layer emission (PL) spectrum of Example 1 and the luminescence The absorption (Abs) spectra of the layer host materials overlap more, making exciton energy transfer more easily induced.
  • PL exciton layer emission
  • Abs absorption
  • Example 2 From the data parameters shown in Table 2 and Table 3, it can be seen from the comparison of Example 2, Comparative Example 5 and Comparative Example 6 that the device performance of Example 2 is the best, which may be because the exciton layer in Example 2 has the best performance.
  • the highest PLQY of the complex results in the highest yield of excitons, thus the device efficiency of Example 2 is the highest.
  • an embodiment of the present disclosure further provides a display panel, which includes a plurality of the above-mentioned organic electroluminescence devices provided by the embodiment of the present disclosure. Since the principle of solving the problem of the display panel is similar to that of the aforementioned organic electroluminescent device, the implementation of the display panel may refer to the implementation of the organic electroluminescent device, and the repeated description will not be repeated.
  • an embodiment of the present disclosure further provides a display device, including the above-mentioned display panel provided by an embodiment of the present disclosure.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, a navigator, and the like.
  • Other essential components of the display device should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be regarded as a limitation of the present disclosure.
  • the above organic electroluminescent device, display panel and display device provided by the embodiments of the present disclosure add an exciton layer adjacent to the light-emitting layer, and the exciton layer acts as an exciton recombination region to increase the exciton density.
  • the singlet energy level is higher than the singlet energy level of the host material in the light-emitting layer, and there is an overlapping area between the emission spectrum of the exciton layer and the absorption spectrum of the host material in the light-emitting layer, so that the exciton layer can be converted into
  • the formed excitons perform efficient energy transfer to the host material and the guest material of the light-emitting layer, thereby improving the light-emitting efficiency of the light-emitting layer.
  • the exciton layer has the property of triplet excitons formed in it to form singlet excitons through inverse intersystem crossing, so that the exciton layer can transfer the exciton energy to the host material through Forrest energy transfer with small energy loss. energy level, inhibiting the Dexter energy transfer with large energy loss, which can effectively improve the exciton energy transfer, thereby enhancing the efficiency of organic electroluminescent devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本公开实施例提供的一种有机电致发光器件、显示面板及显示装置,增加了与发光层相邻的激子层,激子层作为激子复合区达到增加激子密度的作用,激子层的单重态能级高于发光层中主体材料的单重态能级,且激子层的发射光谱与发光层中主体材料的吸收光谱之间具有重叠面积,从而能将在激子层中形成的激子进行有效能量传递至发光层主体材料和客体材料,提高发光层的发光效率。并且,激子层具有在其内形成的三重态激子通过反系间穿越形成单重态激子的性能,使激子层通过能量损耗小的Forrest能量转移将激子能量转移至主体材料的能级,抑制能量损耗较大的Dexter能量转移,能有效提高激子能量传递,从而增强有机电致发光器件的效率。

Description

有机电致发光器件、显示面板及显示装置
相关申请的交叉引用
本公开要求在2020年09月23日提交中国专利局、申请号为202011012901.4、申请名称为“有机电致发光器件、显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤指一种有机电致发光器件、显示面板及显示装置。
背景技术
近年来,有机电致发光显示器(OLED)作为一种新型的平板显示逐渐受到更多的关注。由于其具有主动发光、发光亮度高、分辨率高、宽视角、响应速度快、色彩饱和、轻薄、低能耗以及可柔性化等特点,被誉为梦幻显示,成为目前市场上炙手可热的主流显示产品。
发明内容
一方面,本公开实施例提供了一种有机电致发光器件,包括:相对而置的阳极和阴极,位于所述阳极和所述阴极之间的发光层,以及在从所述阳极指向所述阴极的方向上与所述发光层相邻的激子层;其中,
所述激子层包含至少一种化合物,所述激子层具有在其内形成的三重态激子通过反系间穿越形成单重态激子的性能,所述激子层的单重态能级高于所述发光层中主体材料的单重态能级,所述激子层的发射光谱与所述发光层中主体材料的吸收光谱之间的重叠面积大于设定值。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述激子层的发射光谱与所述发光层中主体材料的吸收光谱之间的重 叠面积大于5%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述激子层包含一种化合物,所述化合物具有发射热活化延迟荧光特性。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述激子层包含由第一化合物和第二化合物混合形成的激基复合物,所述激基复合物的激子产率大于50%。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述第一化合物和第二化合物的质量比为1:9~9:1。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述发光层中主体材料的电子迁移率大于空穴迁移率,所述激子层位于所述发光层面向所述阳极的一侧;或,
所述发光层中主体材料的电子迁移率小于空穴迁移率,所述激子层位于所述发光层面向所述阴极的一侧。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,还包括:位于所述激子层远离所述发光层一侧的至少一层辅助功能层;
所述激子层的单重态能级小于相邻的辅助功能层的单重态能级。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,还包括:位于所述激子层远离所述发光层一侧的至少一层辅助功能层;
所述激子层中化合物的LUMO值大于相邻的辅助功能层的LUMO值。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述激子层中化合物的LUMO值与相邻的辅助功能层的LUMO值之差的绝对值大于0.3eV;
所述激子层中化合物的HOMO值与相邻的辅助功能层的HOMO值之差的绝对值小于0.5eV。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述激子层位于所述发光层面向所述阳极的一侧时,所述辅助功能层 包括至少以下之一:空穴注入层、空穴传输层、电子阻挡层;
所述激子层位于所述发光层面向所述阴极的一侧时,所述辅助功能层包括至少以下之一:电子注入层、电子传输层、空穴阻挡层。
在一种可能的实现方式中,在本公开实施例提供的上述有机电致发光器件中,所述激子层的厚度小于或等于20nm。
另一方面,本公开实施例还提供了一种显示面板,包括多个本公开实施例提供的上述有机电致发光器件。
另一方面,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示面板。
附图说明
图1为本公开实施例提供的有机电致发光器件的一种结构示意图;
图2为本公开实施例提供的有机电致发光器件的另一种结构示意图;
图3为本公开实施例提供的有机电致发光器件的能级关系示意图;
图4为本公开实施例提供的实验数据中各实施例的吸收-发射关系图;
图5为本公开实施例提供的实验数据中各实施例的吸收-发射关系图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。需要注意的是,附图中各图形的尺寸和形状不反映真实比例,目的只是示意说明本公开内容。并且自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其它实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领 域内具有一般技能的人士所理解的通常意义。本公开说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“内”、“外”、“上”、“下”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
有机发光二极管(OLED)具有自主发光、柔性、节能、超薄和重量轻的优点。通常,OLED施加电压时,从阳极注入空穴,阴极注入电子,电子和空穴在发光层中进行复合形成激子,根据自旋的统计规律,以25%:75%的比例生成单重态激子和三重态激子。常规的荧光OLED仅使用单重态激子进行发光,因此对其内量子效率IQE来说25%是理论极限,这大大限制了荧光OLED的效率,而磷光OLED由于能级匹配、载流子平衡、器件结构、出光效率等等限制也使得磷光OLED性能不尽人意。
在有机发光领域中,常规的荧光有机发光二极管(FOLED)相比磷光OLED和热激活延迟荧光(TADF)OLED具有更多的优点。与磷光和TADF发光器件相比,常规的FOLED的发射光谱更窄,有利于获得更好的色纯度;而且其发射的激子寿命短也是一个重要的优势,可以增加OLED的工作寿命和降低Roll off,但荧光OLED的效率理论极限比较低难以令人满意。因此对于OLED来说,如何提高其器件效率是改善器件性能的关键问题之一。
本公开实施例提供的一种有机电致发光器件,如图1和图2所示,包括:相对而置的阳极100和阴极200,位于阳极100和阴极200之间的发光层300,以及在从阳极100指向阴极200的方向上与发光层300相邻的激子层400;其中,
激子层400包含至少一种化合物,激子层400具有在其内形成的三重态激子通过反系间穿越形成单重态激子的性能,激子层400的单重态能级高于发光层300中主体材料的单重态能级,激子层400的发射光谱PL与发光层 300中主体材料的吸收光谱Abs之间的重叠面积大于设定值。
具体地,在本公开实施例提供的上述有机电致发光器件中,增加了与发光层300相邻的激子层400,可以认为激子层400与发光层300层叠设置,且激子层400与所述发光层300的面积可以相同也可以不同,即激子层400的面积可以大于发光层300、小于发光层300或等于发光层,均可以实现激子层400作为激子复合区达到增加激子密度的作用,如图3所示,激子层400的单重态能级S1高于发光层300中主体材料的单重态能级S1,且激子层400的发射光谱PL与发光层300中主体材料的吸收光谱Abs之间具有重叠面积,从而能将在激子层400中形成的激子进行有效能量传递至发光层300主体材料和客体材料,提高发光层300的发光效率。并且,如图3所示,激子层400具有在其内形成的三重态激子T1通过反系间穿越形成单重态激子的性能,使激子层400通过能量损耗小的Forrest能量转移(FET)将激子能量转移至主体材料的S1能级,抑制能量损耗较大的Dexter能量转移(DET),能有效提高激子能量传递,从而增强有机电致发光器件的效率,降低器件的Roll off。
可选地,在本公开实施例提供的上述有机电致发光器件中,激子层400的发射光谱PL与发光层300中主体材料的吸收光谱Abs之间的重叠面积一般大于5%。
具体地,激子层400的发射光谱PL与发光层300中主体材料的吸收光谱Abs之间的重叠面积越大(重叠性越高),越有利于激子能量从激子层400传输至发光层300,实现高效的能量传递。
可选地,在本公开实施例提供的上述有机电致发光器件中,激子层400可以包含一种化合物,该化合物具有发射热活化延迟荧光特性,以实现在激子层400内将形成的三重态激子通过反系间穿越形成单重态激子,使激子层400通过能量损耗小的Forrest能量转移(FET)将激子能量转移至主体材料的S1能级,抑制能量损耗较大的Dexter能量转移(DET),能有效提高激子能量传递,从而增强有机电致发光器件的效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,激子层也可 以包含由第一化合物和第二化合物混合形成的激基复合物,激基复合物的激子产率PLQY大于50%。
具体地,激基复合物的激子产率越高,说明在激子层400中,空穴和电子复合而成的激子比例越高,以提高激子层400中的激子密度。激基复合物的单重态能级S1高于发光层300中主体材料的单重态能级S1,可以将激子进行有效能量传递至发光层300主体材料和客体材料,提高发光层300的发光效率。
具体地,激子层400包含的化合物包括但不限于以下所列材料:
Figure PCTCN2021110673-appb-000001
Figure PCTCN2021110673-appb-000002
可选地,在本公开实施例提供的上述有机电致发光器件中,第一化合物和第二化合物的质量比一般控制在1:9~9:1,具体可以根据所选用的具体材料确定两者的比例,在此不作详述。
可选地,在本公开实施例提供的上述有机电致发光器件中,当选用发光层300中主体材料的电子迁移率大于空穴迁移率时,即发光层300中的主体材料选用电子型主体材料时,一般电子型主体材料的电子迁移率>1*10 -6cm 2/V*S>空穴迁移率,说明电子容易从阴极200一侧通过发光层300向阳极100一侧传输,因此,如图1所示,激子层400应设置在位于发光层300面向阳极100的一侧,有利于电子和空穴在激子层400复合达到所需的激子密度,从而将在激子层400中形成的激子进行有效能量传递至发光层300主体材料和客体材料,提高发光层300的发光效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,当选用发光层300中主体材料的电子迁移率小于空穴迁移率时,即发光层300中的主体材料选用空穴型主体材料时,一般电子型主体材料的电子迁移率<1*10 -6cm 2/V*S<空穴迁移率,说明空穴容易从阳极100一侧通过发光层300向阴极200一侧传输,因此,如图2所示,激子层400应设置在位于发光层 300面向阴极200的一侧,有利于电子和空穴在激子层400复合达到所需的激子密度,从而将在激子层400中形成的激子进行有效能量传递至发光层300主体材料和客体材料,提高发光层300的发光效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图1和图2所示,还可以包括:位于激子层400远离发光层300一侧的至少一层辅助功能层500。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图1所示,激子层400位于发光层300面向阳极100的一侧时,辅助功能层500可以包括至少以下之一:空穴注入层501、空穴传输层502、电子阻挡层503。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图2所示,激子层400位于发光层300面向阴极200的一侧时,辅助功能层500可以包括至少以下之一:电子注入层510、电子传输层520、空穴阻挡层530。
具体地,图1和图2中是以辅助功能层500包含空穴注入层501、空穴传输层502、电子阻挡层503、电子注入层510、电子传输层520、空穴阻挡层530为例进行说明的,具体膜层之间的层叠关系参见图1和图2。在实际应用时,可以根据需要选取所需的辅助功能层,例如辅助功能层500仅选取电子阻挡层503和空穴阻挡层530等,在此不作详述。
具体地,本公开实施例提供的上述有机电致发光器件在实际制作时,如图1所示,可以在衬底基板上依次形成阳极100、空穴注入层501、空穴传输层502、电子阻挡层503、激子层400、包含电子型主体材料的发光层300、空穴阻挡层530、电子传输层520、电子注入层510、阴极200。或者,如图2所示,可以在衬底基板上依次形成阳极100、空穴注入层501、空穴传输层502、电子阻挡层503、包含空穴型主体材料的发光层300、激子层400、空穴阻挡层530、电子传输层520、电子注入层510、阴极200。
具体地,衬底基板可以选为任意透明衬底材料,如玻璃、聚酰亚胺等。
阳极100选为高功函数电极材料,当本公开实施例提供的上述有机电致发光器件用于底发射结构时,可采用透明氧化物ITO、IZO等材料,厚度在 80nm~200nm;当本公开实施例提供的上述有机电致发光器件用于顶发射结构时,可采用复合结构制备,如“Ag/ITO”或“Ag/IZO”等,金属层厚度在80nm~100nm,金属氧化物厚度在5nm~10nm。阳极可见光区平均反射率参考值为85%~95%。如透明氧化物ITO、IZO,也可为Ag/ITO、Ag/IZO、CNT/ITO、CNT/IZO、GO/ITO、GO/IZO等形成的复合电极。
空穴注入层501的主要作用为降低空穴注入势垒,提高空穴注入效率,可以选用如HATCN,CuPc等材料制备单层膜;也可对空穴传输材料进行p型掺杂的方式制备,如NPB:F4TCNQ,TAPC:MnO3等。一般的空穴注入层厚度在5nm~20nm,p掺杂浓度0.5%~10%。
空穴传输层502可选用空穴迁移率较高的咔唑类材料通过蒸镀制备。该层材料的分子最高被占据轨道(HOMO)能级需在-5.2eV~-5.6eV之间,参考厚度在100nm~140nm。
电子阻挡层503其空穴迁移率高出电子迁移率1~2个数量级,主要做用是传递空穴,且有效的阻挡电子的传输以及发光层内产生的激子,其厚度选为1nm~10nm。
空穴阻挡层530其电子迁移率高出空穴迁移率1~2个数量级,可以有效的阻挡空穴的传输,可以选为CBP,Bphen,TPBI等材料,其厚度选为5nm~100nm。
电子传输层520具有良好的电子传输特性,可以选为TmPyPB,B4PyPPM等材料,其厚度选为20nm~100nm。
电子注入层510可以选为LiF,Yb,LiQ等材料,其厚度选为1nm~10nm。
阴极200可以选为Mg,Ag等材料。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图1和图2所示,激子层400的单重态能级S1一般小于相邻的辅助功能层500的单重态能级S1。例如在图1所示的结构中,激子层400的单重态能级S1小于电子阻挡层503的单重态能级S1;在图2所示的结构中,激子层400的单重态能级S1小于空穴阻挡层530的单重态能级S1。
具体地,激子层400的单重态能级S1一般小于相邻的辅助功能层500的单重态能级S1,可以防止能量从激子层400传递至相邻膜层,可以将激子有效的限定在激子层400内后传递至发光层300,提高发光效率。
可选地,在本公开实施例提供的上述有机电致发光器件中,如图1和图2所示,激子层400中化合物的LUMO值一般大于相邻的辅助功能层500的LUMO值。例如在图1所示的结构中,激子层400中化合物的LUMO值大于电子阻挡层503的LUMO值;在图2所示的结构中,激子层400中化合物的LUMO值大于空穴阻挡层530的LUMO值。值得注意的是,LUMO值指的是LUMO能级的绝对值。
具体地,激子层400中化合物的LUMO值大于相邻的辅助功能层500的LUMO值,可以防止激子从激子层400跃迁至相邻膜层,可以将激子有效的限定在激子层400内后传递至发光层300,提高发光效率。并且,当激子层400包含多个化合物时,每个化合物的LUMO值均需大于相邻的辅助功能层500的LUMO值。
可选地,在本公开实施例提供的上述有机电致发光器件中,激子层400中化合物的LUMO值与相邻的辅助功能层500的LUMO值之差的绝对值大于0.3eV。在图1所示的结构中,激子层400中化合物的LUMO值与电子阻挡层503的LUMO值之差的绝对值大于0.3eV,当激子层400包含两种化合物时,∣LUMO第一化合物∣-∣LUMO电子阻挡层∣>0.3eV,∣LUMO第二化合物∣-∣LUMO电子阻挡层∣>0.3eV;在图2所示的结构中,激子层400中化合物的LUMO值与空穴阻挡层530的LUMO值之差的绝对值大于0.3eV,当激子层400包含两种化合物时,∣LUMO第一化合物∣-∣LUMO空穴阻挡层∣>0.3eV,∣LUMO第二化合物∣-∣LUMO空穴阻挡层∣>0.3eV。
激子层400中化合物的HOMO值与相邻的辅助功能层500的HOMO值之差的绝对值小于0.5eV。在图1所示的结构中,激子层400中化合物的HOMO值与电子阻挡层503的HOMO值之差的绝对值小于0.5eV,当激子层400包含两种化合物时,∣HOMO第一化合物∣-∣HOMO电子阻挡层∣<0.5eV, ∣HOMO第二化合物∣-∣HOMO电子阻挡层∣<0.5eV;在图2所示的结构中,激子层400中化合物的HOMO值与空穴阻挡层503的HOMO值之差的绝对值小于0.5eV,当激子层400包含两种化合物时,∣HOMO第一化合物∣-∣HOMO空穴阻挡层∣<0.5eV,∣HOMO第二化合物∣-∣HOMO空穴阻挡层∣<0.5eV。
可选地,在本公开实施例提供的上述有机电致发光器件中,激子层400的厚度一般小于或等于20nm,激子层400的厚度不宜过厚,以防止激子层400的激子能量不能充分转移至发光层300。
具体地,采用本公开实施例提供的上述有机电致发光器件的结构制作三组实施例和对应的比较例,其中,对比例与各实施例中的空穴注入层HIL、空穴传输层HTL、空穴阻挡层HBL、电子传输层ETL和阴极的材料相同,厚度略有不同。在第一组实施例1和对应的比较例1~3中,发光层均采用蓝色发光材料,即发光层包含蓝色主体材料BH和5wt%的蓝色客体材料BD,调整激子层的材料和厚度。在第二组实施例2和对应的比较例4~6中,发光层均采用绿色发光材料,即发光层包含绿色主体材料GH和1.5wt%的绿色客体材料GD,调整激子层的材料和厚度。在第三组实施例3和对应的比较例7中,发光层均采用红色发光材料,即发光层包含红色主体材料RH和3wt%的红色客体材料RD,调整激子层的厚度。详细参数如表1所示:
Figure PCTCN2021110673-appb-000003
Figure PCTCN2021110673-appb-000004
表1
上述三组实施例的器件性能从以下数据进行比较:开启电压Von,电流效率CE、发光波长λ EL,具体测量得到的数据如表2所示:
  开启电压(V) CE(cd/A) λ EL(nm)
实施例1 3.7 9.0 468
比较例1 3.6 6.8 468
比较例2 3.8 8.4 469
比较例3 3.8 6.0 468
实施例2 3.0 63.8 536
比较例4 2.8 50.0 536
比较例5 2.9 45.1 537
比较例6 3.0 68.4 538
实施例3 4.6 21.8 618
比较例7 4.5 19.5 618
表2
从第一组实施例的实施例1、比较例1和比较例2的器件性能表明,第二 组实施例的实施例2和比较例4的器件性能表明,第三组实施例的实施例3和比较例7的器件性能表明,激子层400的存在提高了器件效率,这是因为激子层使得单重态激子密度增加,激子通过能量转移至发光层进行发光。
从图4所示光谱图可以看出,实施例1的激子层400厚度为3nm时,其器件的发射光谱与比较例1的发射光谱重合,表明激子层400没有发射。比较例2中的激子层厚度为10nm时,其器件的发射光谱存在微弱的激子层400发射,表明激子层400的激子能量转移不充分,这可能是激子层400厚度增加引起的。
通过比较实施例1和比较例3发现,实施例1的器件性能高于比较例3的器件性能,如图5所示,这可能是因为实施例1的激子层发射(PL)光谱与发光层主体材料的吸收(Abs)光谱重叠更大,使得激子能量转移更容易导致的。
从表2和表3所示的数据参数可知,对比实施例2、比较例5和比较例6发现,实施例2的器件性能最好,这可能是因为实施例2的激子层中激基复合物的PLQY最高导致激子的产率最高,因此实施例2的器件效率最高。
  激子层的材料3nm 激子层-PL 主体材料-Abs ΔPeak 激子层-PLQY
实施例1 化合物A:化合物B 409nm 373nm 36nm 68%
比较例3 化合物C:化合物D 440nm 373nm 67nm 71%
实施例2 化合物E:化合物F 520nm 492nm 28nm 64%
比较例5 化合物F:化合物G 515nm 492nm 23nm 43%
比较例6 化合物H:化合物I 510nm 492nm 18nm 54%
实施例3 化合物J:化合物K 550nm 576nm 26nm 79%
表3
基于同一发明构思,本公开实施例还提供了一种显示面板,包括多个本公开实施例提供的上述有机电致发光器件。由于该显示面板解决问题的原理与前述一种有机电致发光器件相似,因此该显示面板的实施可以参见有机电致发光器件的实施,重复之处不再赘述。
基于同一发明构思,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示面板。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该显示装置的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示装置的实施可以参见上述有机电致发光器件的实施例,重复之处不再赘述。
本公开实施例提供的上述有机电致发光器件、显示面板及显示装置,增加了与发光层相邻的激子层,激子层作为激子复合区达到增加激子密度的作用,激子层的单重态能级高于发光层中主体材料的单重态能级,且激子层的发射光谱与发光层中主体材料的吸收光谱之间具有重叠面积,从而能将在激子层中形成的激子进行有效能量传递至发光层主体材料和客体材料,提高发光层的发光效率。并且,激子层具有在其内形成的三重态激子通过反系间穿越形成单重态激子的性能,使激子层通过能量损耗小的Forrest能量转移将激子能量转移至主体材料的能级,抑制能量损耗较大的Dexter能量转移,能有效提高激子能量传递,从而增强有机电致发光器件的效率。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种有机电致发光器件,其中,包括:相对而置的阳极和阴极,位于所述阳极和所述阴极之间的发光层,以及在从所述阳极指向所述阴极的方向上与所述发光层相邻的激子层;其中,
    所述激子层包含至少一种化合物,所述激子层具有在其内形成的三重态激子通过反系间穿越形成单重态激子的性能,所述激子层的单重态能级高于所述发光层中主体材料的单重态能级,所述激子层的发射光谱与所述发光层中主体材料的吸收光谱之间的重叠面积大于设定值。
  2. 如权利要求1所述的有机电致发光器件,其中,所述激子层的发射光谱与所述发光层中主体材料的吸收光谱之间的重叠面积大于5%。
  3. 如权利要求1所述的有机电致发光器件,其中,所述激子层包含一种化合物,所述化合物具有发射热活化延迟荧光特性。
  4. 如权利要求1所述的有机电致发光器件,其中,所述激子层包含由第一化合物和第二化合物混合形成的激基复合物,所述激基复合物的激子产率大于50%。
  5. 如权利要求4所述的有机电致发光器件,其中,所述第一化合物和第二化合物的质量比为1:9~9:1。
  6. 如权利要求1所述的有机电致发光器件,其中,所述发光层中主体材料的电子迁移率大于空穴迁移率,所述激子层位于所述发光层面向所述阳极的一侧;或,
    所述发光层中主体材料的电子迁移率小于空穴迁移率,所述激子层位于所述发光层面向所述阴极的一侧。
  7. 如权利要求6所述的有机电致发光器件,其中,还包括:位于所述激子层远离所述发光层一侧的至少一层辅助功能层;
    所述激子层的单重态能级小于相邻的辅助功能层的单重态能级。
  8. 如权利要求1所述的有机电致发光器件,其中,还包括:位于所述激 子层远离所述发光层一侧的至少一层辅助功能层;
    所述激子层中化合物的LUMO值大于相邻的辅助功能层的LUMO值。
  9. 如权利要求8所述的有机电致发光器件,其中,所述激子层中化合物的LUMO值与相邻的辅助功能层的LUMO值之差的绝对值大于0.3eV;
    所述激子层中化合物的HOMO值与相邻的辅助功能层的HOMO值之差的绝对值小于0.5eV。
  10. 如权利要求7-8任一项所述的有机电致发光器件,其中,所述激子层位于所述发光层面向所述阳极的一侧时,所述辅助功能层包括至少以下之一:空穴注入层、空穴传输层、电子阻挡层;
    所述激子层位于所述发光层面向所述阴极的一侧时,所述辅助功能层包括至少以下之一:电子注入层、电子传输层、空穴阻挡层。
  11. 如权利要求1所述的有机电致发光器件,其中,所述激子层的厚度小于或等于20nm。
  12. 一种显示面板,其中,包括多个如权利要求1~11任一项所述的有机电致发光器件。
  13. 一种显示装置,其中,包括:如权利要求12所述的显示面板。
PCT/CN2021/110673 2020-09-23 2021-08-04 有机电致发光器件、显示面板及显示装置 WO2022062699A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/789,700 US20230092444A1 (en) 2020-09-23 2021-08-04 Organic electroluminescent device, display panel, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011012901.4A CN112117388B (zh) 2020-09-23 2020-09-23 有机电致发光器件、显示面板及显示装置
CN202011012901.4 2020-09-23

Publications (1)

Publication Number Publication Date
WO2022062699A1 true WO2022062699A1 (zh) 2022-03-31

Family

ID=73801243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/110673 WO2022062699A1 (zh) 2020-09-23 2021-08-04 有机电致发光器件、显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN112117388B (zh)
WO (1) WO2022062699A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112117388B (zh) * 2020-09-23 2023-10-24 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置
CN113321677B (zh) * 2021-06-30 2023-05-05 京东方科技集团股份有限公司 一种热活化延迟荧光材料、有机发光器件及显示装置
CN113506855A (zh) * 2021-07-20 2021-10-15 京东方科技集团股份有限公司 有机电致发光器件及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870347A (zh) * 2016-04-15 2016-08-17 京东方科技集团股份有限公司 量子点发光器件及其制备方法、显示基板和显示装置
CN107808931A (zh) * 2017-09-21 2018-03-16 华南师范大学 Tadf材料敏化的多层结构量子点发光二极管及其制法
CN108039417A (zh) * 2017-12-15 2018-05-15 京东方科技集团股份有限公司 一种电致发光器件及其制备方法、显示面板、显示装置
CN109817836A (zh) * 2017-11-18 2019-05-28 昆山国显光电有限公司 有机电致发光器件
JP2020140956A (ja) * 2019-02-22 2020-09-03 株式会社クオルテック El表示パネルおよびel表示パネルの製造方法。
CN112117388A (zh) * 2020-09-23 2020-12-22 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835916B (zh) * 2015-04-11 2017-03-08 吉林大学 一种基于荧光掺杂发光层的有机电致发光器件
CN106997927B (zh) * 2016-01-26 2019-06-07 昆山工研院新型平板显示技术中心有限公司 一种量子点电致发光器件
CN109904332B (zh) * 2017-12-08 2020-04-10 昆山国显光电有限公司 有机电致发光器件
CN109994628B (zh) * 2017-12-29 2021-05-04 昆山国显光电有限公司 有机电致发光器件及有机电致发光器件的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870347A (zh) * 2016-04-15 2016-08-17 京东方科技集团股份有限公司 量子点发光器件及其制备方法、显示基板和显示装置
CN107808931A (zh) * 2017-09-21 2018-03-16 华南师范大学 Tadf材料敏化的多层结构量子点发光二极管及其制法
CN109817836A (zh) * 2017-11-18 2019-05-28 昆山国显光电有限公司 有机电致发光器件
CN108039417A (zh) * 2017-12-15 2018-05-15 京东方科技集团股份有限公司 一种电致发光器件及其制备方法、显示面板、显示装置
JP2020140956A (ja) * 2019-02-22 2020-09-03 株式会社クオルテック El表示パネルおよびel表示パネルの製造方法。
CN112117388A (zh) * 2020-09-23 2020-12-22 京东方科技集团股份有限公司 有机电致发光器件、显示面板及显示装置

Also Published As

Publication number Publication date
CN112117388A (zh) 2020-12-22
CN112117388B (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US11139445B2 (en) Light-emitting element, light-emitting device, electronic device, and lighting device
WO2021254051A1 (zh) 有机发光器件及其制备方法、显示面板和显示装置
TWI673894B (zh) 有機電致發光器件
WO2022062699A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2022042037A1 (zh) 有机电致发光器件、显示面板及显示装置
US20180358414A1 (en) Organic electroluminescent device
WO2018232947A1 (zh) Woled器件
WO2022062700A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2023000961A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2021227719A1 (zh) 有机电致发光器件、显示面板及显示装置
CN101807671A (zh) 有机发光二极管及其制造方法
WO2017000635A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
WO2017000634A1 (zh) 一种串联式有机发光二极管、阵列基板及显示装置
US20180226603A1 (en) Organic light-emitting element
CN102157703B (zh) 一种提高亮度的oled器件
WO2014187084A1 (zh) 一种有机电致发光器件及显示装置
WO2022062705A1 (zh) Oled器件及其制备方法、显示基板及显示装置
WO2022062702A1 (zh) 有机电致发光器件、显示面板及显示装置
WO2024022202A1 (zh) 发光器件、显示基板及显示装置
US20230092444A1 (en) Organic electroluminescent device, display panel, and display apparatus
WO2015192591A1 (zh) 一种有机电致发光器件、有机电致发光显示装置
WO2022217600A1 (zh) 有机电致发光器件和显示装置
WO2017201776A1 (zh) 三原色白光oled器件结构及其电致发光器件和显示器件
WO2023201651A1 (zh) 有机发光器件、显示装置
WO2019095501A1 (zh) 一种oled器件及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21871076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21871076

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21871076

Country of ref document: EP

Kind code of ref document: A1