WO2022061794A1 - Techniques for wake-up signaling in sidelink communications - Google Patents

Techniques for wake-up signaling in sidelink communications Download PDF

Info

Publication number
WO2022061794A1
WO2022061794A1 PCT/CN2020/118015 CN2020118015W WO2022061794A1 WO 2022061794 A1 WO2022061794 A1 WO 2022061794A1 CN 2020118015 W CN2020118015 W CN 2020118015W WO 2022061794 A1 WO2022061794 A1 WO 2022061794A1
Authority
WO
WIPO (PCT)
Prior art keywords
wake
signal
paging cycle
discontinuous reception
data packets
Prior art date
Application number
PCT/CN2020/118015
Other languages
French (fr)
Inventor
Nan Zhang
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2020/118015 priority Critical patent/WO2022061794A1/en
Publication of WO2022061794A1 publication Critical patent/WO2022061794A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0219Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave where the power saving management affects multiple terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the following relates to wireless communications, including techniques for wake-up signaling in sidelink communications.
  • Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) .
  • Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems.
  • 4G systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems
  • 5G systems which may be referred to as New Radio (NR) systems.
  • a wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
  • UE user equipment
  • Base stations may communicate with UEs in a discontinuous reception (DRX) operation mode.
  • a base station may transmit a wake-up signal to the UE before transmitting data.
  • the UE may remain in a low-power mode, monitoring for the wake-up signal according to a DRX paging cycle.
  • the UE may wake up to receive a data transmission from the base station.
  • a method for wireless communications at a first user equipment is described.
  • the method may include identifying a set of data packets for transmission to a second UE, transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to identify a set of data packets for transmission to a second UE, transmit a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and transmit the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  • the apparatus may include means for identifying a set of data packets for transmission to a second UE, means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  • a non-transitory computer-readable medium storing code for wireless communications at a first UE is described.
  • the code may include instructions executable by a processor to identify a set of data packets for transmission to a second UE, transmit a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and transmit the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second UE, an indication of the discontinuous reception paging cycle and the time offset value.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for entering an idle state after transmitting the set of data packets to the second UE and monitoring for a second wake-up signal to trigger a data communication.
  • the discontinuous reception paging cycle may be associated with a radio resource control (RRC) connected state of the first UE.
  • RRC radio resource control
  • the wake-up signal may be transmitted using a beam sweeping procedure in one or more transmission beam directions.
  • a method for wireless communications at a second UE may include monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, receiving the wake-up signal from a first UE based at least in part on the monitoring, and receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  • the apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory.
  • the instructions may be executable by the processor to cause the apparatus to monitor for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, receive the wake-up signal from a first UE based at least in part on the monitoring, and receive a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  • the apparatus may include means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, means for receiving the wake-up signal from a first UE based at least in part on the monitoring, and means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  • a non-transitory computer-readable medium storing code for wireless communications at a second UE is described.
  • the code may include instructions executable by a processor to monitor for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, receive the wake-up signal from a first UE based at least in part on the monitoring, and receive a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, an indication of the discontinuous reception paging cycle and the time offset value, wherein monitoring for the wake-up signal may be based at least in part on receiving the indication.
  • Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for entering an idle state after receiving the set of data packets from the second UE and monitoring for a second wake-up signal to trigger a data communication.
  • the discontinuous reception paging cycle may be associated with an RRC connected state of the second UE.
  • FIG. FIG. 1 illustrates an example of a wireless communications system that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • FIG. 2 illustrates an example of a wireless communications system that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • FIG. 3 illustrates an example of a process flow that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • FIGs. 4 and 5 show block diagrams of devices that support techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • FIG. 6 shows a block diagram of a communications manager that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • FIG. 7 shows a diagram of a system including a device that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • FIGs. 8 and 9 show flowcharts illustrating methods that support techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • Some wireless communication systems may include one or more user equipments (UEs) and one or more base stations, such as next-generation NodeBs or giga-NodeBs (either of which may be referred to as a gNB) that may support one or more multiple radio access technologies (RATs) including 4G systems such as Long Term Evolution (LTE) systems, fifth generation (5G) systems which may be referred to as New Radio (NR) systems, and Wi-Fi systems (e.g., wireless local area network (WLAN) systems) .
  • RATs radio access technologies
  • 4G systems such as Long Term Evolution (LTE) systems
  • 5G systems which may be referred to as New Radio (NR) systems
  • Wi-Fi systems e.g., wireless local area network (WLAN) systems
  • base stations may communicate with UEs in a discontinuous reception (DRX) operation mode, such as a connected mode DRX (C-DRX) , which may correspond to a Radio Resource Control (RRC) connected state of a UE.
  • DRX discontinuous reception
  • C-DRX connected mode DRX
  • RRC Radio Resource Control
  • a base station may transmit a wake-up signal to the UE before transmitting data.
  • the UE may remain in a low-power mode, monitoring for the wake-up signal according to a DRX paging cycle.
  • the UE may wake up (e.g., activate additional communications resources, such as antennas) to receive a data transmission from the base station.
  • one or more UEs may communicate directly with one another in sidelink communication channels without transmitting through a base station or through a relay point.
  • a sidelink communication may be an example of device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, or another example of sidelink communication in a wireless communications system. It may be beneficial to use wake-up signal techniques in sidelink D2D communications to reduce UE power consumption and latency.
  • a DRX paging cycle may be configured for sidelink communications between a first UE and a second UE.
  • the first UE may indicate the DRX paging cycle and a wake-up signal time offset value to the second UE prior to data transmission.
  • the first UE may transmit a wake-up signal to the second UE.
  • the second UE may monitor for and detect the wake-up signal according to the indicated DRX paging cycle and wake-up signal time offset value.
  • the second UE may wake up to receive the data packets upon detection.
  • the first and second UEs may return to an idle state until a subsequent wake-up signal is detected.
  • the first UE may transmit the wake-up signal using a beam sweeping procedure.
  • aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to techniques for wake-up signaling in sidelink communications.
  • FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130.
  • the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-A Pro LTE-A Pro
  • NR New Radio
  • the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
  • ultra-reliable e.g., mission critical
  • the base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities.
  • the base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125.
  • Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more communication links 125.
  • the coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
  • the UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times.
  • the UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1.
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
  • network equipment e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment
  • the base stations 105 may communicate with the core network 130, or with one another, or both.
  • the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) .
  • the base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both.
  • the backhaul links 120 may be or include one or more wireless links.
  • One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
  • a base transceiver station a radio base station
  • an access point a radio transceiver
  • a NodeB an eNodeB (eNB)
  • eNB eNodeB
  • a next-generation NodeB or a giga-NodeB either of which may be referred to as a gNB
  • gNB giga-NodeB
  • a UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples.
  • a UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer.
  • PDA personal digital assistant
  • a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC) device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
  • WLL wireless local loop
  • IoT Internet of Things
  • IoE Internet of Everything
  • MTC machine type communications
  • the UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • devices such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
  • the UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers.
  • the term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125.
  • a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) .
  • BWP bandwidth part
  • Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling.
  • the wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation.
  • a UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration.
  • Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) .
  • MCM multi-carrier modulation
  • OFDM orthogonal frequency division multiplexing
  • DFT-S-OFDM discrete Fourier transform spread OFDM
  • a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related.
  • the number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) .
  • a wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
  • Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) .
  • Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
  • SFN system frame number
  • Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration.
  • a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots.
  • each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing.
  • Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) .
  • a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f ) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
  • a subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) .
  • TTI duration e.g., the number of symbol periods in a TTI
  • the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
  • Physical channels may be multiplexed on a carrier according to various techniques.
  • a physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques.
  • a control region e.g., a control resource set (CORESET)
  • CORESET control resource set
  • a control region for a physical control channel may be defined by a number of symbol periods and may extend across the system bandwidth or a subset of the system bandwidth of the carrier.
  • One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115.
  • one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner.
  • An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size.
  • Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
  • a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
  • protocol types e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB)
  • NB-IoT narrowband IoT
  • eMBB enhanced mobile broadband
  • a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110.
  • different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105.
  • the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105.
  • the wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
  • Some UEs 115 may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) .
  • M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention.
  • M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program.
  • Some UEs 115 may be designed to collect information or enable automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
  • Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) .
  • half-duplex communications may be performed at a reduced peak rate.
  • Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques.
  • some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
  • the wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof.
  • the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications.
  • the UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) .
  • Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) .
  • MCPTT mission critical push-to-talk
  • MCVideo mission critical video
  • MCData mission critical data
  • Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications.
  • the terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
  • a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) .
  • D2D device-to-device
  • P2P peer-to-peer
  • One or more UEs 115 utilizing D2D communications may be within the geographic coverage area 110 of a base station 105.
  • Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105.
  • groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group.
  • a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
  • the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) .
  • vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these.
  • V2X vehicle-to-everything
  • V2V vehicle-to-vehicle
  • a vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system.
  • vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
  • V2N vehicle-to-network
  • the core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions.
  • the core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) .
  • EPC evolved packet core
  • 5GC 5G core
  • MME mobility management entity
  • AMF access and mobility management function
  • S-GW serving gateway
  • PDN Packet Data Network gateway
  • UPF user plane function
  • the control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130.
  • NAS non-access stratum
  • User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions.
  • the user plane entity may be coupled to IP services 150 for one or more network operators.
  • the IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
  • Some of the network devices may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) .
  • Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) .
  • Each access network transmission entity 145 may include one or more antenna panels.
  • various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
  • the wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) .
  • the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length.
  • UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors.
  • the transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
  • HF high frequency
  • VHF very high frequency
  • the wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands.
  • the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • LAA License Assisted Access
  • LTE-U LTE-Unlicensed
  • NR NR technology
  • an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band.
  • devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance.
  • operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) .
  • Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
  • a base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming.
  • the antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming.
  • one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower.
  • antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations.
  • a base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115.
  • a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations.
  • an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
  • Beamforming which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device.
  • Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference.
  • the adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device.
  • the adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
  • a base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations.
  • a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115.
  • Some signals e.g., synchronization signals, reference signals, beam selection signals, or other control signals
  • the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission.
  • Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
  • a transmitting device such as a base station 105
  • a receiving device such as a UE 115
  • Some signals may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) .
  • the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions.
  • a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
  • transmissions by a device may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) .
  • the UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands.
  • the base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded.
  • a reference signal e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS)
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • the UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) .
  • PMI precoding matrix indicator
  • codebook-based feedback e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook
  • a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
  • a receiving device may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as synchronization signals, reference signals, beam selection signals, or other control signals.
  • receive configurations e.g., directional listening
  • a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions.
  • receive beamforming weight sets e.g., different directional listening weight sets
  • a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) .
  • the single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
  • SNR signal-to-noise ratio
  • the wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack.
  • communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based.
  • a Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels.
  • RLC Radio Link Control
  • a Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels.
  • the MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency.
  • the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data.
  • RRC Radio Resource Control
  • transport channels may be mapped to physical channels.
  • the UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully.
  • Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125.
  • HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) .
  • FEC forward error correction
  • ARQ automatic repeat request
  • HARQ may improve throughput at the MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) .
  • a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
  • a DRX paging cycle may be configured for sidelink communications between a first UE 115 and a second UE 115.
  • the first UE 115 may indicate the DRX paging cycle and a wake-up signal time offset value to the second UE 115 prior to a data transmission.
  • the first UE 115 may transmit a wake-up signal to the second UE 115.
  • the second UE 115 may monitor for and detect the wake-up signal according to the indicated DRX paging cycle and wake-up signal time offset value.
  • the second UE 115 may wake up to receive the data packets upon detection.
  • the first and second UEs 115 may return to an idle state until a subsequent wake-up signal is detected.
  • the first UE 115 may transmit the wake-up signal using a beam sweeping procedure.
  • FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the wireless communications system 200 may implement aspects of the wireless communications system 100.
  • the wireless communications system 200 may include UEs 215, which may be examples of the corresponding devices described with reference to FIG. 1.
  • the wireless communications system 200 may include features for improved sidelink communication operations, among other benefits.
  • a UE 215-a may communicate with a UE 215-b via a sidelink channel 210.
  • the UE 215-a may assign a C-DRX paging cycle and a wake-up signal time-offset value to the UE 215-b, such as in a DRX indication 230.
  • the UE 215-a may wake up and determine to transmit data packets to the UE 215-b in a data transmission 220.
  • the UE 215-a may transmit a wake-up signal 225 to the UE 215-b, for example using beam sweeping in one or more directions.
  • the UE 215-b may monitor for the wake-up signal 225.
  • the UE 215-b may wake up to receive the data packets in the data transmission 220.
  • the UEs 215-a and 215-b may enter an idle state to wait for a next wake-up signal 225 to trigger a next data transmission 220.
  • the wake-up signal techniques in sidelink D2D communications described herein may reduce UE power consumption and latency.
  • FIG. 3 illustrates an example of a process flow 300 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the process flow 300 may be implemented by or may implement aspects of wireless communications systems 100 and 200.
  • the process flow 300 may include example operations associated with a set of UEs 315, which may be examples of the corresponding devices described with reference to FIGs. 1 and 2.
  • the operations between the UEs 315 may be performed in a different order than the example order shown, or the operations performed by the UEs 315 may be performed in different orders or at different times. Some operations may also be omitted from the process flow 300, and other operations may be added to the process flow 300.
  • the operations performed by the UEs 315 may promote improvements to efficiency and reliability for sidelink communications between the UEs 315, among other benefits.
  • the UE 315-a may identify a set of data packets for transmission to a UE 215-b.
  • the UE 315-a may transmit an indication of a DRX (e.g., C-DRX) paging cycle and a time offset value (e.g., a wake-up signal time offset value) to the UE 215-b.
  • a DRX e.g., C-DRX
  • a time offset value e.g., a wake-up signal time offset value
  • the DRX paging cycle may be associated with an RRC connected state of the UE 215-a or the UE 215-b.
  • the UE 315-b may monitor for a wake-up signal from the UE 315-a, for example based on the indication from the UE 315-a.
  • the UE 315-a may transmit the wake-up signal to the UE 315-b.
  • the UE 315-b may receive the wake-up signal.
  • the UE 315-a may transmit the wake-up signal using a beam sweeping procedure in one or more transmission beam directions.
  • the UE 315-a may transmit the set of data packets according to the DRX paging cycle based on transmitting the wake-up signal.
  • the UEs 315-a and 315-b may enter an idle state after the UE 315-b receives the set of data packets. In some examples, at 350 the UEs 315-a and 315-b may monitor for a next wake-up signal to trigger data transmission or reception. The operations performed by the UEs 315 may promote improvements to efficiency and reliability for sidelink communications between the UEs 315, among other benefits.
  • FIG. 4 shows a block diagram 400 of a device 405 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the device 405 may be an example of aspects of a user equipment (UE) 115 as described herein.
  • the device 405 may include a receiver 410, a transmitter 415, and a communications manager 420.
  • the device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 410 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to techniques for wake-up signaling in sidelink communications) . Information may be passed on to other components of the device 405.
  • the receiver 410 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 415 may provide a means for transmitting signals generated by other components of the device 405.
  • the transmitter 415 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to size-based neural network selection for autoencoder-based communication) .
  • the transmitter 415 may be co-located with a receiver 410 in a transceiver module.
  • the transmitter 415 may utilize a single antenna or a set of multiple antennas.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof may be examples of means for performing various aspects of techniques for wake-up signaling in sidelink communications as described herein.
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof may be implemented in hardware (e.g., in communications management circuitry) .
  • the circuitry may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
  • DSP digital signal processor
  • ASIC application-specific integrated circuit
  • FPGA field-programmable gate array
  • the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be executed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices.
  • code e.g., as communications management software or firmware
  • the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof may be executed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices.
  • the communications manager 420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both.
  • the communications manager 420 may receive information from the receiver 410, send information to the transmitter 415, or be integrated in combination with the receiver 410, the transmitter 415, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 420 may support wireless communications at a first UE in accordance with examples as disclosed herein.
  • the communications manager 420 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE.
  • the communications manager 420 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets.
  • the communications manager 420 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
  • the communications manager 420 may support wireless communications at a second UE in accordance with examples as disclosed herein.
  • the communications manager 420 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value.
  • the communications manager 420 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring.
  • the communications manager 420 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
  • the device 405 may support techniques for reducing power consumption and increasing sidelink transmission reliability.
  • the processor of the device 405 may adjust sidelink communications based on receiving or transmitting a wake-up signal. For example, the processor of the device 405 may turn on one or more processing units for processing wake-up signals, increase a processing clock, or a similar mechanism within the device 405. As such, when subsequent wake-up signals are detected, the processor may more accurately communicate data packets. Improvements in scheduling may result in improvements in power saving and sidelink communications reliability, which may further increase power efficiency at the device 405 (e.g., by eliminating unnecessary repeated sidelink communications) .
  • FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the device 505 may be an example of aspects of a device 405 or a UE 115 as described herein.
  • the device 505 may include a receiver 510, a transmitter 515, and a communications manager 520.
  • the device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
  • the receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to techniques for wake-up signaling in sidelink communications) . Information may be passed on to other components of the device 505.
  • the receiver 510 may utilize a single antenna or a set of multiple antennas.
  • the transmitter 515 may provide a means for transmitting signals generated by other components of the device 505.
  • the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to size-based neural network selection for autoencoder-based communication) .
  • the transmitter 515 may be co-located with a receiver 510 in a transceiver module.
  • the transmitter 515 may utilize a single antenna or a set of multiple antennas.
  • the device 505, or various components thereof may be an example of means for performing various aspects of techniques for wake-up signaling in sidelink communications as described herein.
  • the communications manager 520 may include a data packet identification manager 525, a wake-up signal manager 530, a data packet transmission manager 535, a monitoring manager 540, a data packet reception manager 545, or any combination thereof.
  • the communications manager 520 may be an example of aspects of a communications manager 420 as described herein.
  • the communications manager 520, or various components thereof may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both.
  • the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
  • the communications manager 520 may support wireless communications at a first UE in accordance with examples as disclosed herein.
  • the data packet identification manager 525 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE.
  • the wake-up signal manager 530 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets.
  • the data packet transmission manager 535 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
  • the communications manager 520 may support wireless communications at a second UE in accordance with examples as disclosed herein.
  • the monitoring manager 540 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value.
  • the wake-up signal manager 530 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring.
  • the data packet reception manager 545 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
  • FIG. 6 shows a block diagram 600 of a communications manager 620 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the communications manager 620 may be an example of aspects of a communications manager 420, a communications manager 520, or both, as described herein.
  • the communications manager 620, or various components thereof, may be an example of means for performing various aspects of techniques for wake-up signaling in sidelink communications as described herein.
  • the communications manager 620 may include a data packet identification manager 625, a wake-up signal manager 630, a data packet transmission manager 635, a monitoring manager 640, a data packet reception manager 645, an indication manager 650, a transmission state manager 655, or any combination thereof.
  • Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
  • the communications manager 620 may support wireless communications at a first UE in accordance with examples as disclosed herein.
  • the data packet identification manager 625 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE.
  • the wake-up signal manager 630 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets.
  • the data packet transmission manager 635 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
  • the indication manager 650 may be configured to provide or support a means for transmitting, to the second UE, an indication of the discontinuous reception paging cycle and the time offset value.
  • the transmission state manager 655 may be configured to provide or support a means for entering an idle state after transmitting the set of data packets to the second UE.
  • the monitoring manager 640 may be configured to provide or support a means for monitoring for a second wake-up signal to trigger a data communication.
  • the discontinuous reception paging cycle is associated with a radio resource control (RRC) connected state of the first UE.
  • RRC radio resource control
  • the wake-up signal is transmitted using a beam sweeping procedure in one or more transmission beam directions.
  • the communications manager 620 may support wireless communications at a second UE in accordance with examples as disclosed herein.
  • the monitoring manager 640 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value.
  • the wake-up signal manager 630 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring.
  • the data packet reception manager 645 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
  • the indication manager 650 may be configured to provide or support a means for receiving, from the first UE, an indication of the discontinuous reception paging cycle and the time offset value, where monitoring for the wake-up signal is based on receiving the indication.
  • the transmission state manager 655 may be configured to provide or support a means for entering an idle state after receiving the set of data packets from the second UE.
  • the monitoring manager 640 may be configured to provide or support a means for monitoring for a second wake-up signal to trigger a data communication.
  • the discontinuous reception paging cycle is associated with an RRC connected state of the second UE.
  • FIG. 7 shows a diagram of a system 700 including a device 705 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the device 705 may be an example of or include the components of a device 405, a device 505, or a UE 115 as described herein.
  • the device 705 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof.
  • the device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, a memory 730, code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 745) .
  • buses e.g., a bus 745
  • the I/O controller 715 may manage input and output signals for the device 705.
  • the I/O controller 715 may also manage peripherals not integrated into the device 705.
  • the I/O controller 715 may represent a physical connection or port to an external peripheral.
  • the I/O controller 715 may utilize an operating system such as or another known operating system.
  • the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device.
  • the I/O controller 715 may be implemented as part of a processor, such as the processor 740.
  • a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
  • the device 705 may include a single antenna 725. However, in some other cases the device 705 may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions.
  • the transceiver 720 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein.
  • the transceiver 720 may represent a wireless transceiver and may communicate bi-directionally with another wireless transceiver.
  • the transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725.
  • the transceiver 720 may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
  • the memory 730 may include random access memory (RAM) and read-only memory (ROM) .
  • the memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein.
  • the code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory.
  • the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein.
  • the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
  • BIOS basic I/O system
  • the processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) .
  • the processor 740 may be configured to operate a memory array using a memory controller.
  • a memory controller may be integrated into the processor 740.
  • the processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting techniques for wake-up signaling in sidelink communications) .
  • the device 705 or a component of the device 705 may include a processor 740 and memory 730 coupled to the processor 740, the processor 740 and memory 730 configured to perform various functions described herein.
  • the communications manager 710 may support wireless communications at a first UE in accordance with examples as disclosed herein.
  • the communications manager 710 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE.
  • the communications manager 710 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets.
  • the communications manager 710 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
  • the communications manager 710 may support wireless communications at a second UE in accordance with examples as disclosed herein.
  • the communications manager 710 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value.
  • the communications manager 710 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring.
  • the communications manager 710 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
  • the device 705 may support techniques for saving power by communicating with UEs 115 (as shown in FIG. 1) in sidelink communications more efficiently. For example, the device 705 may improve reliability in communications with UEs 115, as the device 705 may be able to determine, based on receiving or transmitting a wake-up signal, whether a sidelink transmission is likely to be successful. Using the techniques described herein, the device 705 may more accurately communicate with other UEs 115, which may improve power efficiency at the device 705.
  • the communications manager 710 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 720, the one or more antennas 725, or any combination thereof.
  • the communications manager 710 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 710 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof.
  • the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of techniques for wake-up signaling in sidelink communications as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
  • FIG. 8 shows a flowchart illustrating a method 800 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the operations of the method 800 may be implemented by a UE or its components as described herein.
  • the operations of the method 800 may be performed by a first UE (e.g., a UE 115) as described with reference to FIGs. FIG. 1 through 7.
  • a first UE may execute a set of instructions to control the functional elements of the first UE to perform the described functions.
  • the first UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include identifying a set of data packets for transmission to a second UE.
  • the operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a data packet identification manager 625 as described with reference to FIG. 6.
  • the method may include transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets.
  • the operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a wake-up signal manager 630 as described with reference to FIG. 6.
  • the method may include transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
  • the operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a data packet transmission manager 635 as described with reference to FIG. 6.
  • FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
  • the operations of the method 900 may be implemented by a UE or its components as described herein.
  • the operations of the method 900 may be performed by a second UE (e.g., a UE 115) as described with reference to FIGs. FIG. 1 through 7.
  • a second UE may execute a set of instructions to control the functional elements of the second UE to perform the described functions.
  • the second UE may perform aspects of the described functions using special-purpose hardware.
  • the method may include monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value.
  • the operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a monitoring manager 640 as described with reference to FIG. 6.
  • the method may include receiving the wake-up signal from a first UE based on the monitoring.
  • the operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a wake-up signal manager 630 as described with reference to FIG. 6.
  • the method may include receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
  • the operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a data packet reception manager 645 as described with reference to FIG. 6.
  • LTE, LTE-A, LTE-A Pro, or NR may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks.
  • the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
  • UMB Ultra Mobile Broadband
  • IEEE Institute of Electrical and Electronics Engineers
  • Wi-Fi Institute of Electrical and Electronics Engineers
  • WiMAX IEEE 802.16
  • IEEE 802.20 Flash-OFDM
  • Information and signals described herein may be represented using any of a variety of different technologies and techniques.
  • data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
  • a general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine.
  • a processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
  • the functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
  • Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another.
  • a non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer.
  • non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor.
  • any connection is properly termed a computer-readable medium.
  • the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave
  • the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium.
  • Disk and disc include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

Methods, systems, and devices for wireless communications are described. A discontinuous reception (DRX) paging cycle may be configured for sidelink communications between a first user equipment (UE) and a second UE. The first UE may indicate the DRX paging cycle and a wake-up signal time offset value to the second UE prior to data transmission. When the first UE identifies a set of data packets for transmission to the second UE, the first UE may transmit a wake-up signal to the second UE. The second UE may monitor for and detect the wake-up signal according to the indicated DRX paging cycle and wake-up signal time offset value. The second UE may wake up to receive the data packets upon detection. After the transmission is completed, the first and second UEs may return to an idle state until a subsequent wake-up signal is detected.

Description

TECHNIQUES FOR WAKE-UP SIGNALING IN SIDELINK COMMUNICATIONS
FIELD OF TECHNOLOGY
The following relates to wireless communications, including techniques for wake-up signaling in sidelink communications.
BACKGROUND
Wireless communications systems are widely deployed to provide various types of communication content such as voice, video, packet data, messaging, broadcast, and so on. These systems may be capable of supporting communication with multiple users by sharing the available system resources (e.g., time, frequency, and power) . Examples of such multiple-access systems include fourth generation (4G) systems such as Long Term Evolution (LTE) systems, LTE-Advanced (LTE-A) systems, or LTE-A Pro systems, and fifth generation (5G) systems which may be referred to as New Radio (NR) systems. These systems may employ technologies such as code division multiple access (CDMA) , time division multiple access (TDMA) , frequency division multiple access (FDMA) , orthogonal frequency division multiple access (OFDMA) , or discrete Fourier transform spread orthogonal frequency division multiplexing (DFT-S-OFDM) . A wireless multiple-access communications system may include one or more base stations or one or more network access nodes, each simultaneously supporting communication for multiple communication devices, which may be otherwise known as user equipment (UE) .
Base stations may communicate with UEs in a discontinuous reception (DRX) operation mode. To reduce power consumption at a UE, a base station may transmit a wake-up signal to the UE before transmitting data. The UE may remain in a low-power mode, monitoring for the wake-up signal according to a DRX paging cycle. When the UE detects the wake-up signal, the UE may wake up to receive a data transmission from the base station.
SUMMARY
A method for wireless communications at a first user equipment (UE) is described. The method may include identifying a set of data packets for transmission to a second UE, transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted  based at least in part on identifying the set of data packets, and transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
An apparatus for wireless communications at a first UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to identify a set of data packets for transmission to a second UE, transmit a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and transmit the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
Another apparatus for wireless communications at a first UE is described. The apparatus may include means for identifying a set of data packets for transmission to a second UE, means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
A non-transitory computer-readable medium storing code for wireless communications at a first UE is described. The code may include instructions executable by a processor to identify a set of data packets for transmission to a second UE, transmit a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets, and transmit the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for transmitting, to the second UE, an indication of the discontinuous reception paging cycle and the time offset value.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for entering an idle state after transmitting the set of data packets to the second UE and monitoring for a second wake-up signal to trigger a data communication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the discontinuous reception paging cycle may be associated with a radio resource control (RRC) connected state of the first UE.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the wake-up signal may be transmitted using a beam sweeping procedure in one or more transmission beam directions.
A method for wireless communications at a second UE is described. The method may include monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, receiving the wake-up signal from a first UE based at least in part on the monitoring, and receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
An apparatus for wireless communications at a second UE is described. The apparatus may include a processor, memory in electronic communication with the processor, and instructions stored in the memory. The instructions may be executable by the processor to cause the apparatus to monitor for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, receive the wake-up signal from a first UE based at least in part on the monitoring, and receive a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
Another apparatus for wireless communications at a second UE is described. The apparatus may include means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, means for receiving the wake-up signal from a first UE based at least in part on the monitoring, and means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
A non-transitory computer-readable medium storing code for wireless communications at a second UE is described. The code may include instructions executable  by a processor to monitor for a wake-up signal according to a discontinuous reception paging cycle and a time offset value, receive the wake-up signal from a first UE based at least in part on the monitoring, and receive a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for receiving, from the first UE, an indication of the discontinuous reception paging cycle and the time offset value, wherein monitoring for the wake-up signal may be based at least in part on receiving the indication.
Some examples of the method, apparatuses, and non-transitory computer-readable medium described herein may further include operations, features, means, or instructions for entering an idle state after receiving the set of data packets from the second UE and monitoring for a second wake-up signal to trigger a data communication.
In some examples of the method, apparatuses, and non-transitory computer-readable medium described herein, the discontinuous reception paging cycle may be associated with an RRC connected state of the second UE.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. FIG. 1 illustrates an example of a wireless communications system that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
FIG. 2 illustrates an example of a wireless communications system that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
FIG. 3 illustrates an example of a process flow that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
FIGs. 4 and 5 show block diagrams of devices that support techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
FIG. 6 shows a block diagram of a communications manager that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
FIG. 7 shows a diagram of a system including a device that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
FIGs. 8 and 9 show flowcharts illustrating methods that support techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure.
DETAILED DESCRIPTION
Some wireless communication systems may include one or more user equipments (UEs) and one or more base stations, such as next-generation NodeBs or giga-NodeBs (either of which may be referred to as a gNB) that may support one or more multiple radio access technologies (RATs) including 4G systems such as Long Term Evolution (LTE) systems, fifth generation (5G) systems which may be referred to as New Radio (NR) systems, and Wi-Fi systems (e.g., wireless local area network (WLAN) systems) .
In some cases, base stations may communicate with UEs in a discontinuous reception (DRX) operation mode, such as a connected mode DRX (C-DRX) , which may correspond to a Radio Resource Control (RRC) connected state of a UE. To reduce power consumption at a UE, a base station may transmit a wake-up signal to the UE before transmitting data. The UE may remain in a low-power mode, monitoring for the wake-up signal according to a DRX paging cycle. When the UE detects the wake-up signal, the UE may wake up (e.g., activate additional communications resources, such as antennas) to receive a data transmission from the base station.
In some cases, one or more UEs may communicate directly with one another in sidelink communication channels without transmitting through a base station or through a relay point. A sidelink communication may be an example of device-to-device (D2D) communication, vehicle-to-everything (V2X) communication, or another example of sidelink communication in a wireless communications system. It may be beneficial to use wake-up  signal techniques in sidelink D2D communications to reduce UE power consumption and latency.
According to the techniques described herein, a DRX paging cycle may be configured for sidelink communications between a first UE and a second UE. The first UE may indicate the DRX paging cycle and a wake-up signal time offset value to the second UE prior to data transmission. When the first UE identifies a set of data packets for transmission to the second UE, the first UE may transmit a wake-up signal to the second UE. The second UE may monitor for and detect the wake-up signal according to the indicated DRX paging cycle and wake-up signal time offset value. The second UE may wake up to receive the data packets upon detection. After the transmission is completed, the first and second UEs may return to an idle state until a subsequent wake-up signal is detected. In some examples, the first UE may transmit the wake-up signal using a beam sweeping procedure.
Aspects of the disclosure are initially described in the context of wireless communications systems. Aspects of the disclosure are further illustrated by and described with reference to a process flow, apparatus diagrams, system diagrams, and flowcharts that relate to techniques for wake-up signaling in sidelink communications.
FIG. 1 illustrates an example of a wireless communications system 100 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The wireless communications system 100 may include one or more base stations 105, one or more UEs 115, and a core network 130. In some examples, the wireless communications system 100 may be a Long Term Evolution (LTE) network, an LTE-Advanced (LTE-A) network, an LTE-A Pro network, or a New Radio (NR) network. In some examples, the wireless communications system 100 may support enhanced broadband communications, ultra-reliable (e.g., mission critical) communications, low latency communications, communications with low-cost and low-complexity devices, or any combination thereof.
The base stations 105 may be dispersed throughout a geographic area to form the wireless communications system 100 and may be devices in different forms or having different capabilities. The base stations 105 and the UEs 115 may wirelessly communicate via one or more communication links 125. Each base station 105 may provide a coverage area 110 over which the UEs 115 and the base station 105 may establish one or more  communication links 125. The coverage area 110 may be an example of a geographic area over which a base station 105 and a UE 115 may support the communication of signals according to one or more radio access technologies.
The UEs 115 may be dispersed throughout a coverage area 110 of the wireless communications system 100, and each UE 115 may be stationary, or mobile, or both at different times. The UEs 115 may be devices in different forms or having different capabilities. Some example UEs 115 are illustrated in FIG. 1. The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115, the base stations 105, or network equipment (e.g., core network nodes, relay devices, integrated access and backhaul (IAB) nodes, or other network equipment) , as shown in FIG. 1.
The base stations 105 may communicate with the core network 130, or with one another, or both. For example, the base stations 105 may interface with the core network 130 through one or more backhaul links 120 (e.g., via an S1, N2, N3, or other interface) . The base stations 105 may communicate with one another over the backhaul links 120 (e.g., via an X2, Xn, or other interface) either directly (e.g., directly between base stations 105) , or indirectly (e.g., via core network 130) , or both. In some examples, the backhaul links 120 may be or include one or more wireless links.
One or more of the base stations 105 described herein may include or may be referred to by a person having ordinary skill in the art as a base transceiver station, a radio base station, an access point, a radio transceiver, a NodeB, an eNodeB (eNB) , a next-generation NodeB or a giga-NodeB (either of which may be referred to as a gNB) , a Home NodeB, a Home eNodeB, or other suitable terminology.
UE 115 may include or may be referred to as a mobile device, a wireless device, a remote device, a handheld device, or a subscriber device, or some other suitable terminology, where the “device” may also be referred to as a unit, a station, a terminal, or a client, among other examples. A UE 115 may also include or may be referred to as a personal electronic device such as a cellular phone, a personal digital assistant (PDA) , a tablet computer, a laptop computer, or a personal computer. In some examples, a UE 115 may include or be referred to as a wireless local loop (WLL) station, an Internet of Things (IoT) device, an Internet of Everything (IoE) device, or a machine type communications (MTC)  device, among other examples, which may be implemented in various objects such as appliances, or vehicles, meters, among other examples.
The UEs 115 described herein may be able to communicate with various types of devices, such as other UEs 115 that may sometimes act as relays as well as the base stations 105 and the network equipment including macro eNBs or gNBs, small cell eNBs or gNBs, or relay base stations, among other examples, as shown in FIG. 1.
The UEs 115 and the base stations 105 may wirelessly communicate with one another via one or more communication links 125 over one or more carriers. The term “carrier” may refer to a set of radio frequency spectrum resources having a defined physical layer structure for supporting the communication links 125. For example, a carrier used for a communication link 125 may include a portion of a radio frequency spectrum band (e.g., a bandwidth part (BWP) ) that is operated according to one or more physical layer channels for a given radio access technology (e.g., LTE, LTE-A, LTE-A Pro, NR) . Each physical layer channel may carry acquisition signaling (e.g., synchronization signals, system information) , control signaling that coordinates operation for the carrier, user data, or other signaling. The wireless communications system 100 may support communication with a UE 115 using carrier aggregation or multi-carrier operation. A UE 115 may be configured with multiple downlink component carriers and one or more uplink component carriers according to a carrier aggregation configuration. Carrier aggregation may be used with both frequency division duplexing (FDD) and time division duplexing (TDD) component carriers.
Signal waveforms transmitted over a carrier may be made up of multiple subcarriers (e.g., using multi-carrier modulation (MCM) techniques such as orthogonal frequency division multiplexing (OFDM) or discrete Fourier transform spread OFDM (DFT-S-OFDM) ) . In a system employing MCM techniques, a resource element may consist of one symbol period (e.g., a duration of one modulation symbol) and one subcarrier, where the symbol period and subcarrier spacing are inversely related. The number of bits carried by each resource element may depend on the modulation scheme (e.g., the order of the modulation scheme, the coding rate of the modulation scheme, or both) . Thus, the more resource elements that a UE 115 receives and the higher the order of the modulation scheme, the higher the data rate may be for the UE 115. A wireless communications resource may refer to a combination of a radio frequency spectrum resource, a time resource, and a spatial  resource (e.g., spatial layers or beams) , and the use of multiple spatial layers may further increase the data rate or data integrity for communications with a UE 115.
The time intervals for the base stations 105 or the UEs 115 may be expressed in multiples of a basic time unit which may, for example, refer to a sampling period of T s= 1/ (Δf max·N f) seconds, where Δf max may represent the maximum supported subcarrier spacing, and N f may represent the maximum supported discrete Fourier transform (DFT) size. Time intervals of a communications resource may be organized according to radio frames each having a specified duration (e.g., 10 milliseconds (ms) ) . Each radio frame may be identified by a system frame number (SFN) (e.g., ranging from 0 to 1023) .
Each frame may include multiple consecutively numbered subframes or slots, and each subframe or slot may have the same duration. In some examples, a frame may be divided (e.g., in the time domain) into subframes, and each subframe may be further divided into a number of slots. Alternatively, each frame may include a variable number of slots, and the number of slots may depend on subcarrier spacing. Each slot may include a number of symbol periods (e.g., depending on the length of the cyclic prefix prepended to each symbol period) . In some wireless communications systems 100, a slot may further be divided into multiple mini-slots containing one or more symbols. Excluding the cyclic prefix, each symbol period may contain one or more (e.g., N f) sampling periods. The duration of a symbol period may depend on the subcarrier spacing or frequency band of operation.
A subframe, a slot, a mini-slot, or a symbol may be the smallest scheduling unit (e.g., in the time domain) of the wireless communications system 100 and may be referred to as a transmission time interval (TTI) . In some examples, the TTI duration (e.g., the number of symbol periods in a TTI) may be variable. Additionally or alternatively, the smallest scheduling unit of the wireless communications system 100 may be dynamically selected (e.g., in bursts of shortened TTIs (sTTIs) ) .
Physical channels may be multiplexed on a carrier according to various techniques. A physical control channel and a physical data channel may be multiplexed on a downlink carrier, for example, using one or more of time division multiplexing (TDM) techniques, frequency division multiplexing (FDM) techniques, or hybrid TDM-FDM techniques. A control region (e.g., a control resource set (CORESET) ) for a physical control channel may be defined by a number of symbol periods and may extend across the system  bandwidth or a subset of the system bandwidth of the carrier. One or more control regions (e.g., CORESETs) may be configured for a set of the UEs 115. For example, one or more of the UEs 115 may monitor or search control regions for control information according to one or more search space sets, and each search space set may include one or multiple control channel candidates in one or more aggregation levels arranged in a cascaded manner. An aggregation level for a control channel candidate may refer to a number of control channel resources (e.g., control channel elements (CCEs) ) associated with encoded information for a control information format having a given payload size. Search space sets may include common search space sets configured for sending control information to multiple UEs 115 and UE-specific search space sets for sending control information to a specific UE 115.
In some examples, a carrier may support multiple cells, and different cells may be configured according to different protocol types (e.g., MTC, narrowband IoT (NB-IoT) , enhanced mobile broadband (eMBB) ) that may provide access for different types of devices.
In some examples, a base station 105 may be movable and therefore provide communication coverage for a moving geographic coverage area 110. In some examples, different geographic coverage areas 110 associated with different technologies may overlap, but the different geographic coverage areas 110 may be supported by the same base station 105. In other examples, the overlapping geographic coverage areas 110 associated with different technologies may be supported by different base stations 105. The wireless communications system 100 may include, for example, a heterogeneous network in which different types of the base stations 105 provide coverage for various geographic coverage areas 110 using the same or different radio access technologies.
Some UEs 115, such as MTC or IoT devices, may be low cost or low complexity devices and may provide for automated communication between machines (e.g., via Machine-to-Machine (M2M) communication) . M2M communication or MTC may refer to data communication technologies that allow devices to communicate with one another or a base station 105 without human intervention. In some examples, M2M communication or MTC may include communications from devices that integrate sensors or meters to measure or capture information and relay such information to a central server or application program that makes use of the information or presents the information to humans interacting with the application program. Some UEs 115 may be designed to collect information or enable  automated behavior of machines or other devices. Examples of applications for MTC devices include smart metering, inventory monitoring, water level monitoring, equipment monitoring, healthcare monitoring, wildlife monitoring, weather and geological event monitoring, fleet management and tracking, remote security sensing, physical access control, and transaction-based business charging.
Some UEs 115 may be configured to employ operating modes that reduce power consumption, such as half-duplex communications (e.g., a mode that supports one-way communication via transmission or reception, but not transmission and reception simultaneously) . In some examples, half-duplex communications may be performed at a reduced peak rate. Other power conservation techniques for the UEs 115 include entering a power saving deep sleep mode when not engaging in active communications, operating over a limited bandwidth (e.g., according to narrowband communications) , or a combination of these techniques. For example, some UEs 115 may be configured for operation using a narrowband protocol type that is associated with a defined portion or range (e.g., set of subcarriers or resource blocks (RBs) ) within a carrier, within a guard-band of a carrier, or outside of a carrier.
The wireless communications system 100 may be configured to support ultra-reliable communications or low-latency communications, or various combinations thereof. For example, the wireless communications system 100 may be configured to support ultra-reliable low-latency communications (URLLC) or mission critical communications. The UEs 115 may be designed to support ultra-reliable, low-latency, or critical functions (e.g., mission critical functions) . Ultra-reliable communications may include private communication or group communication and may be supported by one or more mission critical services such as mission critical push-to-talk (MCPTT) , mission critical video (MCVideo) , or mission critical data (MCData) . Support for mission critical functions may include prioritization of services, and mission critical services may be used for public safety or general commercial applications. The terms ultra-reliable, low-latency, mission critical, and ultra-reliable low-latency may be used interchangeably herein.
In some examples, a UE 115 may also be able to communicate directly with other UEs 115 over a device-to-device (D2D) communication link 135 (e.g., using a peer-to-peer (P2P) or D2D protocol) . One or more UEs 115 utilizing D2D communications may be within  the geographic coverage area 110 of a base station 105. Other UEs 115 in such a group may be outside the geographic coverage area 110 of a base station 105 or be otherwise unable to receive transmissions from a base station 105. In some examples, groups of the UEs 115 communicating via D2D communications may utilize a one-to-many (1: M) system in which each UE 115 transmits to every other UE 115 in the group. In some examples, a base station 105 facilitates the scheduling of resources for D2D communications. In other cases, D2D communications are carried out between the UEs 115 without the involvement of a base station 105.
In some systems, the D2D communication link 135 may be an example of a communication channel, such as a sidelink communication channel, between vehicles (e.g., UEs 115) . In some examples, vehicles may communicate using vehicle-to-everything (V2X) communications, vehicle-to-vehicle (V2V) communications, or some combination of these. A vehicle may signal information related to traffic conditions, signal scheduling, weather, safety, emergencies, or any other information relevant to a V2X system. In some examples, vehicles in a V2X system may communicate with roadside infrastructure, such as roadside units, or with the network via one or more network nodes (e.g., base stations 105) using vehicle-to-network (V2N) communications, or with both.
The core network 130 may provide user authentication, access authorization, tracking, Internet Protocol (IP) connectivity, and other access, routing, or mobility functions. The core network 130 may be an evolved packet core (EPC) or 5G core (5GC) , which may include at least one control plane entity that manages access and mobility (e.g., a mobility management entity (MME) , an access and mobility management function (AMF) ) and at least one user plane entity that routes packets or interconnects to external networks (e.g., a serving gateway (S-GW) , a Packet Data Network (PDN) gateway (P-GW) , or a user plane function (UPF) ) . The control plane entity may manage non-access stratum (NAS) functions such as mobility, authentication, and bearer management for the UEs 115 served by the base stations 105 associated with the core network 130. User IP packets may be transferred through the user plane entity, which may provide IP address allocation as well as other functions. The user plane entity may be coupled to IP services 150 for one or more network operators. The IP services 150 may include access to the Internet, Intranet (s) , an IP Multimedia Subsystem (IMS) , or a Packet-Switched Streaming Service.
Some of the network devices, such as a base station 105, may include subcomponents such as an access network entity 140, which may be an example of an access node controller (ANC) . Each access network entity 140 may communicate with the UEs 115 through one or more other access network transmission entities 145, which may be referred to as radio heads, smart radio heads, or transmission/reception points (TRPs) . Each access network transmission entity 145 may include one or more antenna panels. In some configurations, various functions of each access network entity 140 or base station 105 may be distributed across various network devices (e.g., radio heads and ANCs) or consolidated into a single network device (e.g., a base station 105) .
The wireless communications system 100 may operate using one or more frequency bands, typically in the range of 300 megahertz (MHz) to 300 gigahertz (GHz) . Generally, the region from 300 MHz to 3 GHz is known as the ultra-high frequency (UHF) region or decimeter band because the wavelengths range from approximately one decimeter to one meter in length. The UHF waves may be blocked or redirected by buildings and environmental features, but the waves may penetrate structures sufficiently for a macro cell to provide service to the UEs 115 located indoors. The transmission of UHF waves may be associated with smaller antennas and shorter ranges (e.g., less than 100 kilometers) compared to transmission using the smaller frequencies and longer waves of the high frequency (HF) or very high frequency (VHF) portion of the spectrum below 300 MHz.
The wireless communications system 100 may utilize both licensed and unlicensed radio frequency spectrum bands. For example, the wireless communications system 100 may employ License Assisted Access (LAA) , LTE-Unlicensed (LTE-U) radio access technology, or NR technology in an unlicensed band such as the 5 GHz industrial, scientific, and medical (ISM) band. When operating in unlicensed radio frequency spectrum bands, devices such as the base stations 105 and the UEs 115 may employ carrier sensing for collision detection and avoidance. In some examples, operations in unlicensed bands may be based on a carrier aggregation configuration in conjunction with component carriers operating in a licensed band (e.g., LAA) . Operations in unlicensed spectrum may include downlink transmissions, uplink transmissions, P2P transmissions, or D2D transmissions, among other examples.
base station 105 or a UE 115 may be equipped with multiple antennas, which may be used to employ techniques such as transmit diversity, receive diversity, multiple-input multiple-output (MIMO) communications, or beamforming. The antennas of a base station 105 or a UE 115 may be located within one or more antenna arrays or antenna panels, which may support MIMO operations or transmit or receive beamforming. For example, one or more base station antennas or antenna arrays may be co-located at an antenna assembly, such as an antenna tower. In some examples, antennas or antenna arrays associated with a base station 105 may be located in diverse geographic locations. A base station 105 may have an antenna array with a number of rows and columns of antenna ports that the base station 105 may use to support beamforming of communications with a UE 115. Likewise, a UE 115 may have one or more antenna arrays that may support various MIMO or beamforming operations. Additionally or alternatively, an antenna panel may support radio frequency beamforming for a signal transmitted via an antenna port.
Beamforming, which may also be referred to as spatial filtering, directional transmission, or directional reception, is a signal processing technique that may be used at a transmitting device or a receiving device (e.g., a base station 105, a UE 115) to shape or steer an antenna beam (e.g., a transmit beam, a receive beam) along a spatial path between the transmitting device and the receiving device. Beamforming may be achieved by combining the signals communicated via antenna elements of an antenna array such that some signals propagating at particular orientations with respect to an antenna array experience constructive interference while others experience destructive interference. The adjustment of signals communicated via the antenna elements may include a transmitting device or a receiving device applying amplitude offsets, phase offsets, or both to signals carried via the antenna elements associated with the device. The adjustments associated with each of the antenna elements may be defined by a beamforming weight set associated with a particular orientation (e.g., with respect to the antenna array of the transmitting device or receiving device, or with respect to some other orientation) .
base station 105 or a UE 115 may use beam sweeping techniques as part of beam forming operations. For example, a base station 105 may use multiple antennas or antenna arrays (e.g., antenna panels) to conduct beamforming operations for directional communications with a UE 115. Some signals (e.g., synchronization signals, reference signals, beam selection signals, or other control signals) may be transmitted by a base station  105 multiple times in different directions. For example, the base station 105 may transmit a signal according to different beamforming weight sets associated with different directions of transmission. Transmissions in different beam directions may be used to identify (e.g., by a transmitting device, such as a base station 105, or by a receiving device, such as a UE 115) a beam direction for later transmission or reception by the base station 105.
Some signals, such as data signals associated with a particular receiving device, may be transmitted by a base station 105 in a single beam direction (e.g., a direction associated with the receiving device, such as a UE 115) . In some examples, the beam direction associated with transmissions along a single beam direction may be determined based on a signal that was transmitted in one or more beam directions. For example, a UE 115 may receive one or more of the signals transmitted by the base station 105 in different directions and may report to the base station 105 an indication of the signal that the UE 115 received with a highest signal quality or an otherwise acceptable signal quality.
In some examples, transmissions by a device (e.g., by a base station 105 or a UE 115) may be performed using multiple beam directions, and the device may use a combination of digital precoding or radio frequency beamforming to generate a combined beam for transmission (e.g., from a base station 105 to a UE 115) . The UE 115 may report feedback that indicates precoding weights for one or more beam directions, and the feedback may correspond to a configured number of beams across a system bandwidth or one or more sub-bands. The base station 105 may transmit a reference signal (e.g., a cell-specific reference signal (CRS) , a channel state information reference signal (CSI-RS) ) , which may be precoded or unprecoded. The UE 115 may provide feedback for beam selection, which may be a precoding matrix indicator (PMI) or codebook-based feedback (e.g., a multi-panel type codebook, a linear combination type codebook, a port selection type codebook) . Although these techniques are described with reference to signals transmitted in one or more directions by a base station 105, a UE 115 may employ similar techniques for transmitting signals multiple times in different directions (e.g., for identifying a beam direction for subsequent transmission or reception by the UE 115) or for transmitting a signal in a single direction (e.g., for transmitting data to a receiving device) .
A receiving device (e.g., a UE 115) may try multiple receive configurations (e.g., directional listening) when receiving various signals from the base station 105, such as  synchronization signals, reference signals, beam selection signals, or other control signals. For example, a receiving device may try multiple receive directions by receiving via different antenna subarrays, by processing received signals according to different antenna subarrays, by receiving according to different receive beamforming weight sets (e.g., different directional listening weight sets) applied to signals received at multiple antenna elements of an antenna array, or by processing received signals according to different receive beamforming weight sets applied to signals received at multiple antenna elements of an antenna array, any of which may be referred to as “listening” according to different receive configurations or receive directions. In some examples, a receiving device may use a single receive configuration to receive along a single beam direction (e.g., when receiving a data signal) . The single receive configuration may be aligned in a beam direction determined based on listening according to different receive configuration directions (e.g., a beam direction determined to have a highest signal strength, highest signal-to-noise ratio (SNR) , or otherwise acceptable signal quality based on listening according to multiple beam directions) .
The wireless communications system 100 may be a packet-based network that operates according to a layered protocol stack. In the user plane, communications at the bearer or Packet Data Convergence Protocol (PDCP) layer may be IP-based. A Radio Link Control (RLC) layer may perform packet segmentation and reassembly to communicate over logical channels. A Medium Access Control (MAC) layer may perform priority handling and multiplexing of logical channels into transport channels. The MAC layer may also use error detection techniques, error correction techniques, or both to support retransmissions at the MAC layer to improve link efficiency. In the control plane, the Radio Resource Control (RRC) protocol layer may provide establishment, configuration, and maintenance of an RRC connection between a UE 115 and a base station 105 or a core network 130 supporting radio bearers for user plane data. At the physical layer, transport channels may be mapped to physical channels.
The UEs 115 and the base stations 105 may support retransmissions of data to increase the likelihood that data is received successfully. Hybrid automatic repeat request (HARQ) feedback is one technique for increasing the likelihood that data is received correctly over a communication link 125. HARQ may include a combination of error detection (e.g., using a cyclic redundancy check (CRC) ) , forward error correction (FEC) , and retransmission (e.g., automatic repeat request (ARQ) ) . HARQ may improve throughput at the  MAC layer in poor radio conditions (e.g., low signal-to-noise conditions) . In some examples, a device may support same-slot HARQ feedback, where the device may provide HARQ feedback in a specific slot for data received in a previous symbol in the slot. In other cases, the device may provide HARQ feedback in a subsequent slot, or according to some other time interval.
According to the techniques described herein, a DRX paging cycle may be configured for sidelink communications between a first UE 115 and a second UE 115. The first UE 115 may indicate the DRX paging cycle and a wake-up signal time offset value to the second UE 115 prior to a data transmission. When the first UE 115 identifies a set of data packets for transmission to the second UE 115, the first UE 115 may transmit a wake-up signal to the second UE 115. The second UE 115 may monitor for and detect the wake-up signal according to the indicated DRX paging cycle and wake-up signal time offset value. The second UE 115 may wake up to receive the data packets upon detection. After the transmission is completed, the first and second UEs 115 may return to an idle state until a subsequent wake-up signal is detected. In some examples, the first UE 115 may transmit the wake-up signal using a beam sweeping procedure.
FIG. 2 illustrates an example of a wireless communications system 200 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. In some aspects, the wireless communications system 200 may implement aspects of the wireless communications system 100. The wireless communications system 200 may include UEs 215, which may be examples of the corresponding devices described with reference to FIG. 1. The wireless communications system 200 may include features for improved sidelink communication operations, among other benefits.
A UE 215-a may communicate with a UE 215-b via a sidelink channel 210. In some examples, the UE 215-a may assign a C-DRX paging cycle and a wake-up signal time-offset value to the UE 215-b, such as in a DRX indication 230. The UE 215-a may wake up and determine to transmit data packets to the UE 215-b in a data transmission 220. The UE 215-a may transmit a wake-up signal 225 to the UE 215-b, for example using beam sweeping in one or more directions. the UE 215-b may monitor for the wake-up signal 225. Upon  detecting the wake-up signal 225, the UE 215-b may wake up to receive the data packets in the data transmission 220.
After the UE 215-b receives the data transmission 220, the UEs 215-a and 215-b may enter an idle state to wait for a next wake-up signal 225 to trigger a next data transmission 220. The wake-up signal techniques in sidelink D2D communications described herein may reduce UE power consumption and latency.
FIG. 3 illustrates an example of a process flow 300 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. In some aspects, the process flow 300 may be implemented by or may implement aspects of  wireless communications systems  100 and 200. In one aspect, the process flow 300 may include example operations associated with a set of UEs 315, which may be examples of the corresponding devices described with reference to FIGs. 1 and 2. In the following description of the process flow 300, the operations between the UEs 315 may be performed in a different order than the example order shown, or the operations performed by the UEs 315 may be performed in different orders or at different times. Some operations may also be omitted from the process flow 300, and other operations may be added to the process flow 300. The operations performed by the UEs 315 may promote improvements to efficiency and reliability for sidelink communications between the UEs 315, among other benefits.
At 320, the UE 315-a may identify a set of data packets for transmission to a UE 215-b. In some examples, at 325 the UE 315-a may transmit an indication of a DRX (e.g., C-DRX) paging cycle and a time offset value (e.g., a wake-up signal time offset value) to the UE 215-b. In some examples, the DRX paging cycle may be associated with an RRC connected state of the UE 215-a or the UE 215-b.
At 330, the UE 315-b may monitor for a wake-up signal from the UE 315-a, for example based on the indication from the UE 315-a. At 335, the UE 315-a may transmit the wake-up signal to the UE 315-b. Based on monitoring for the wake-up signal, the UE 315-b may receive the wake-up signal. In some examples, the UE 315-a may transmit the wake-up signal using a beam sweeping procedure in one or more transmission beam directions. At 340, the UE 315-a may transmit the set of data packets according to the DRX paging cycle based on transmitting the wake-up signal.
In some examples, at 345 the UEs 315-a and 315-b may enter an idle state after the UE 315-b receives the set of data packets. In some examples, at 350 the UEs 315-a and 315-b may monitor for a next wake-up signal to trigger data transmission or reception. The operations performed by the UEs 315 may promote improvements to efficiency and reliability for sidelink communications between the UEs 315, among other benefits.
FIG. 4 shows a block diagram 400 of a device 405 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The device 405 may be an example of aspects of a user equipment (UE) 115 as described herein. The device 405 may include a receiver 410, a transmitter 415, and a communications manager 420. The device 405 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 410 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to techniques for wake-up signaling in sidelink communications) . Information may be passed on to other components of the device 405. The receiver 410 may utilize a single antenna or a set of multiple antennas.
The transmitter 415 may provide a means for transmitting signals generated by other components of the device 405. For example, the transmitter 415 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to size-based neural network selection for autoencoder-based communication) . In some examples, the transmitter 415 may be co-located with a receiver 410 in a transceiver module. The transmitter 415 may utilize a single antenna or a set of multiple antennas.
The communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or various components thereof may be examples of means for performing various aspects of techniques for wake-up signaling in sidelink communications as described herein.
In some examples, the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be implemented  in hardware (e.g., in communications management circuitry) . The circuitry may include a processor, a digital signal processor (DSP) , an application-specific integrated circuit (ASIC) , a field-programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described in the present disclosure.
Additionally or alternatively, in some examples, the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be implemented in code (e.g., as communications management software or firmware) executed by a processor. If implemented in code executed by a processor, the functions of the communications manager 420, the receiver 410, the transmitter 415, or various combinations thereof or components thereof, may be executed by a general-purpose processor, a DSP, a central processing unit (CPU) , an ASIC, an FPGA, or any combination of these or other programmable logic devices.
In some examples, the communications manager 420 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 410, the transmitter 415, or both. For example, the communications manager 420 may receive information from the receiver 410, send information to the transmitter 415, or be integrated in combination with the receiver 410, the transmitter 415, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 420 may support wireless communications at a first UE in accordance with examples as disclosed herein. For example, the communications manager 420 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE. The communications manager 420 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets. The communications manager 420 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
Additionally or alternatively, the communications manager 420 may support wireless communications at a second UE in accordance with examples as disclosed herein. For example, the communications manager 420 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value. The communications manager 420 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring. The communications manager 420 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
By including or configuring the communications manager 420 in accordance with examples as described herein, the device 405 (e.g., a processor controlling or otherwise coupled to the receiver 410, the transmitter 415, the communications manager 420, or a combination thereof) may support techniques for reducing power consumption and increasing sidelink transmission reliability. In some aspects, the processor of the device 405 may adjust sidelink communications based on receiving or transmitting a wake-up signal. For example, the processor of the device 405 may turn on one or more processing units for processing wake-up signals, increase a processing clock, or a similar mechanism within the device 405. As such, when subsequent wake-up signals are detected, the processor may more accurately communicate data packets. Improvements in scheduling may result in improvements in power saving and sidelink communications reliability, which may further increase power efficiency at the device 405 (e.g., by eliminating unnecessary repeated sidelink communications) .
FIG. 5 shows a block diagram 500 of a device 505 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The device 505 may be an example of aspects of a device 405 or a UE 115 as described herein. The device 505 may include a receiver 510, a transmitter 515, and a communications manager 520. The device 505 may also include a processor. Each of these components may be in communication with one another (e.g., via one or more buses) .
The receiver 510 may provide a means for receiving information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to  techniques for wake-up signaling in sidelink communications) . Information may be passed on to other components of the device 505. The receiver 510 may utilize a single antenna or a set of multiple antennas.
The transmitter 515 may provide a means for transmitting signals generated by other components of the device 505. For example, the transmitter 515 may transmit information such as packets, user data, control information, or any combination thereof associated with various information channels (e.g., control channels, data channels, information channels related to size-based neural network selection for autoencoder-based communication) . In some examples, the transmitter 515 may be co-located with a receiver 510 in a transceiver module. The transmitter 515 may utilize a single antenna or a set of multiple antennas.
The device 505, or various components thereof, may be an example of means for performing various aspects of techniques for wake-up signaling in sidelink communications as described herein. For example, the communications manager 520 may include a data packet identification manager 525, a wake-up signal manager 530, a data packet transmission manager 535, a monitoring manager 540, a data packet reception manager 545, or any combination thereof. The communications manager 520 may be an example of aspects of a communications manager 420 as described herein. In some examples, the communications manager 520, or various components thereof, may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the receiver 510, the transmitter 515, or both. For example, the communications manager 520 may receive information from the receiver 510, send information to the transmitter 515, or be integrated in combination with the receiver 510, the transmitter 515, or both to receive information, transmit information, or perform various other operations as described herein.
The communications manager 520 may support wireless communications at a first UE in accordance with examples as disclosed herein. The data packet identification manager 525 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE. The wake-up signal manager 530 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets. The data packet transmission  manager 535 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
Additionally or alternatively, the communications manager 520 may support wireless communications at a second UE in accordance with examples as disclosed herein. The monitoring manager 540 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value. The wake-up signal manager 530 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring. The data packet reception manager 545 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
FIG. 6 shows a block diagram 600 of a communications manager 620 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The communications manager 620 may be an example of aspects of a communications manager 420, a communications manager 520, or both, as described herein. The communications manager 620, or various components thereof, may be an example of means for performing various aspects of techniques for wake-up signaling in sidelink communications as described herein. For example, the communications manager 620 may include a data packet identification manager 625, a wake-up signal manager 630, a data packet transmission manager 635, a monitoring manager 640, a data packet reception manager 645, an indication manager 650, a transmission state manager 655, or any combination thereof. Each of these components may communicate, directly or indirectly, with one another (e.g., via one or more buses) .
The communications manager 620 may support wireless communications at a first UE in accordance with examples as disclosed herein. The data packet identification manager 625 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE. The wake-up signal manager 630 may be configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets. The data packet transmission  manager 635 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
In some examples, the indication manager 650 may be configured to provide or support a means for transmitting, to the second UE, an indication of the discontinuous reception paging cycle and the time offset value.
In some examples, the transmission state manager 655 may be configured to provide or support a means for entering an idle state after transmitting the set of data packets to the second UE. In some examples, the monitoring manager 640 may be configured to provide or support a means for monitoring for a second wake-up signal to trigger a data communication.
In some examples, the discontinuous reception paging cycle is associated with a radio resource control (RRC) connected state of the first UE.
In some examples, the wake-up signal is transmitted using a beam sweeping procedure in one or more transmission beam directions.
Additionally or alternatively, the communications manager 620 may support wireless communications at a second UE in accordance with examples as disclosed herein. The monitoring manager 640 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value. In some examples, the wake-up signal manager 630 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring. The data packet reception manager 645 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
In some examples, the indication manager 650 may be configured to provide or support a means for receiving, from the first UE, an indication of the discontinuous reception paging cycle and the time offset value, where monitoring for the wake-up signal is based on receiving the indication.
In some examples, the transmission state manager 655 may be configured to provide or support a means for entering an idle state after receiving the set of data packets  from the second UE. In some examples, the monitoring manager 640 may be configured to provide or support a means for monitoring for a second wake-up signal to trigger a data communication.
In some examples, the discontinuous reception paging cycle is associated with an RRC connected state of the second UE.
FIG. 7 shows a diagram of a system 700 including a device 705 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The device 705 may be an example of or include the components of a device 405, a device 505, or a UE 115 as described herein. The device 705 may communicate wirelessly with one or more base stations 105, UEs 115, or any combination thereof. The device 705 may include components for bi-directional voice and data communications including components for transmitting and receiving communications, including a communications manager 710, an I/O controller 715, a transceiver 720, an antenna 725, a memory 730, code 735, and a processor 740. These components may be in electronic communication or otherwise coupled (e.g., operatively, communicatively, functionally, electronically, electrically) via one or more buses (e.g., a bus 745) .
The I/O controller 715 may manage input and output signals for the device 705. The I/O controller 715 may also manage peripherals not integrated into the device 705. In some cases, the I/O controller 715 may represent a physical connection or port to an external peripheral. In some cases, the I/O controller 715 may utilize an operating system such as
Figure PCTCN2020118015-appb-000001
or another known operating system. In some other cases, the I/O controller 715 may represent or interact with a modem, a keyboard, a mouse, a touchscreen, or a similar device. In some cases, the I/O controller 715 may be implemented as part of a processor, such as the processor 740. In some cases, a user may interact with the device 705 via the I/O controller 715 or via hardware components controlled by the I/O controller 715.
In some cases, the device 705 may include a single antenna 725. However, in some other cases the device 705 may have more than one antenna 725, which may be capable of concurrently transmitting or receiving multiple wireless transmissions. The transceiver 720 may communicate bi-directionally, via the one or more antennas 725, wired, or wireless links as described herein. For example, the transceiver 720 may represent a wireless transceiver  and may communicate bi-directionally with another wireless transceiver. The transceiver 720 may also include a modem to modulate the packets and provide the modulated packets to one or more antennas 725 for transmission, and to demodulate packets received from the one or more antennas 725. The transceiver 720, or the transceiver 720 and one or more antennas 725, may be an example of a transmitter 415, a transmitter 515, a receiver 410, a receiver 510, or any combination thereof or component thereof, as described herein.
The memory 730 may include random access memory (RAM) and read-only memory (ROM) . The memory 730 may store computer-readable, computer-executable code 735 including instructions that, when executed by the processor 740, cause the device 705 to perform various functions described herein. The code 735 may be stored in a non-transitory computer-readable medium such as system memory or other type of memory. In some cases, the code 735 may not be directly executable by the processor 740 but may cause a computer (e.g., when compiled and executed) to perform functions described herein. In some cases, the memory 730 may contain, among other things, a basic I/O system (BIOS) which may control basic hardware or software operation such as the interaction with peripheral components or devices.
The processor 740 may include an intelligent hardware device (e.g., a general-purpose processor, a DSP, a CPU, a microcontroller, an ASIC, an FPGA, a programmable logic device, a discrete gate or transistor logic component, a discrete hardware component, or any combination thereof) . In some cases, the processor 740 may be configured to operate a memory array using a memory controller. In some other cases, a memory controller may be integrated into the processor 740. The processor 740 may be configured to execute computer-readable instructions stored in a memory (e.g., the memory 730) to cause the device 705 to perform various functions (e.g., functions or tasks supporting techniques for wake-up signaling in sidelink communications) . For example, the device 705 or a component of the device 705 may include a processor 740 and memory 730 coupled to the processor 740, the processor 740 and memory 730 configured to perform various functions described herein.
The communications manager 710 may support wireless communications at a first UE in accordance with examples as disclosed herein. For example, the communications manager 710 may be configured to provide or support a means for identifying a set of data packets for transmission to a second UE. The communications manager 710 may be  configured to provide or support a means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets. The communications manager 710 may be configured to provide or support a means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal.
Additionally or alternatively, the communications manager 710 may support wireless communications at a second UE in accordance with examples as disclosed herein. For example, the communications manager 710 may be configured to provide or support a means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value. The communications manager 710 may be configured to provide or support a means for receiving the wake-up signal from a first UE based on the monitoring. The communications manager 710 may be configured to provide or support a means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal.
By including or configuring the communications manager 710 in accordance with examples as described herein, the device 705 may support techniques for saving power by communicating with UEs 115 (as shown in FIG. 1) in sidelink communications more efficiently. For example, the device 705 may improve reliability in communications with UEs 115, as the device 705 may be able to determine, based on receiving or transmitting a wake-up signal, whether a sidelink transmission is likely to be successful. Using the techniques described herein, the device 705 may more accurately communicate with other UEs 115, which may improve power efficiency at the device 705.
In some examples, the communications manager 710 may be configured to perform various operations (e.g., receiving, monitoring, transmitting) using or otherwise in cooperation with the transceiver 720, the one or more antennas 725, or any combination thereof. Although the communications manager 710 is illustrated as a separate component, in some examples, one or more functions described with reference to the communications manager 710 may be supported by or performed by the processor 740, the memory 730, the code 735, or any combination thereof. For example, the code 735 may include instructions executable by the processor 740 to cause the device 705 to perform various aspects of  techniques for wake-up signaling in sidelink communications as described herein, or the processor 740 and the memory 730 may be otherwise configured to perform or support such operations.
FIG. 8 shows a flowchart illustrating a method 800 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The operations of the method 800 may be implemented by a UE or its components as described herein. For example, the operations of the method 800 may be performed by a first UE (e.g., a UE 115) as described with reference to FIGs. FIG. 1 through 7. In some examples, a first UE may execute a set of instructions to control the functional elements of the first UE to perform the described functions. Additionally or alternatively, the first UE may perform aspects of the described functions using special-purpose hardware.
At 805, the method may include identifying a set of data packets for transmission to a second UE. The operations of 805 may be performed according to the methods described herein. In some examples, aspects of the operations of 805 may be performed by a data packet identification manager 625 as described with reference to FIG. 6.
At 810, the method may include transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, where the wake-up signal is transmitted based on identifying the set of data packets. The operations of 810 may be performed according to the methods described herein. In some examples, aspects of the operations of 810 may be performed by a wake-up signal manager 630 as described with reference to FIG. 6.
At 815, the method may include transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based on transmitting the wake-up signal. The operations of 815 may be performed according to the methods described herein. In some examples, aspects of the operations of 815 may be performed by a data packet transmission manager 635 as described with reference to FIG. 6.
FIG. 9 shows a flowchart illustrating a method 900 that supports techniques for wake-up signaling in sidelink communications in accordance with aspects of the present disclosure. The operations of the method 900 may be implemented by a UE or its components as described herein. For example, the operations of the method 900 may be performed by a second UE (e.g., a UE 115) as described with reference to FIGs. FIG. 1 through 7. In some  examples, a second UE may execute a set of instructions to control the functional elements of the second UE to perform the described functions. Additionally or alternatively, the second UE may perform aspects of the described functions using special-purpose hardware.
At 905, the method may include monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value. The operations of 905 may be performed according to the methods described herein. In some examples, aspects of the operations of 905 may be performed by a monitoring manager 640 as described with reference to FIG. 6.
At 910, the method may include receiving the wake-up signal from a first UE based on the monitoring. The operations of 910 may be performed according to the methods described herein. In some examples, aspects of the operations of 910 may be performed by a wake-up signal manager 630 as described with reference to FIG. 6.
At 915, the method may include receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based on receiving the wake-up signal. The operations of 915 may be performed according to the methods described herein. In some examples, aspects of the operations of 915 may be performed by a data packet reception manager 645 as described with reference to FIG. 6.
It should be noted that the methods described herein describe possible implementations, and that the operations and the steps may be rearranged or otherwise modified and that other implementations are possible. Further, aspects from two or more of the methods may be combined.
Although aspects of an LTE, LTE-A, LTE-A Pro, or NR system may be described for purposes of example, and LTE, LTE-A, LTE-A Pro, or NR terminology may be used in much of the description, the techniques described herein are applicable beyond LTE, LTE-A, LTE-A Pro, or NR networks. For example, the described techniques may be applicable to various other wireless communications systems such as Ultra Mobile Broadband (UMB) , Institute of Electrical and Electronics Engineers (IEEE) 802.11 (Wi-Fi) , IEEE 802.16 (WiMAX) , IEEE 802.20, Flash-OFDM, as well as other systems and radio technologies not explicitly mentioned herein.
Information and signals described herein may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referenced throughout the description may be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
The various illustrative blocks and components described in connection with the disclosure herein may be implemented or performed with a general-purpose processor, a DSP, an ASIC, a CPU, an FPGA or other programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof designed to perform the functions described herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices (e.g., a combination of a DSP and a microprocessor, multiple microprocessors, one or more microprocessors in conjunction with a DSP core, or any other such configuration) .
The functions described herein may be implemented in hardware, software executed by a processor, firmware, or any combination thereof. If implemented in software executed by a processor, the functions may be stored on or transmitted over as one or more instructions or code on a computer-readable medium. Other examples and implementations are within the scope of the disclosure and appended claims. For example, due to the nature of software, functions described herein may be implemented using software executed by a processor, hardware, firmware, hardwiring, or combinations of any of these. Features implementing functions may also be physically located at various positions, including being distributed such that portions of functions are implemented at different physical locations.
Computer-readable media includes both non-transitory computer storage media and communication media including any medium that facilitates transfer of a computer program from one place to another. A non-transitory storage medium may be any available medium that may be accessed by a general-purpose or special-purpose computer. By way of example, and not limitation, non-transitory computer-readable media may include RAM, ROM, electrically erasable programmable ROM (EEPROM) , flash memory, compact disk (CD) ROM or other optical disk storage, magnetic disk storage or other magnetic storage  devices, or any other non-transitory medium that may be used to carry or store desired program code means in the form of instructions or data structures and that may be accessed by a general-purpose or special-purpose computer, or a general-purpose or special-purpose processor. Also, any connection is properly termed a computer-readable medium. For example, if the software is transmitted from a website, server, or other remote source using a coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL) , or wireless technologies such as infrared, radio, and microwave, then the coaxial cable, fiber optic cable, twisted pair, DSL, or wireless technologies such as infrared, radio, and microwave are included in the definition of computer-readable medium. Disk and disc, as used herein, include CD, laser disc, optical disc, digital versatile disc (DVD) , floppy disk and Blu-ray disc where disks usually reproduce data magnetically, while discs reproduce data optically with lasers. Combinations of the above are also included within the scope of computer-readable media.
As used herein, including in the claims, “or” as used in a list of items (e.g., a list of items prefaced by a phrase such as “at least one of” or “one or more of” ) indicates an inclusive list such that, for example, a list of at least one of A, B, or C means A or B or C or AB or AC or BC or ABC (i.e., A and B and C) . Also, as used herein, the phrase “based on” shall not be construed as a reference to a closed set of conditions. For example, an example step that is described as “based on condition A” may be based on both a condition A and a condition B without departing from the scope of the present disclosure. In other words, as used herein, the phrase “based on” shall be construed in the same manner as the phrase “based at least in part on. ”
In the appended figures, similar components or features may have the same reference label. Further, various components of the same type may be distinguished by following the reference label by a dash and a second label that distinguishes among the similar components. If just the first reference label is used in the specification, the description is applicable to any one of the similar components having the same first reference label irrespective of the second reference label, or other subsequent reference label.
The description set forth herein, in connection with the appended drawings, describes example configurations and does not represent all the examples that may be implemented or that are within the scope of the claims. The term “example” used herein  means “serving as an example, instance, or illustration, ” and not “preferred” or “advantageous over other examples. ” The detailed description includes specific details for the purpose of providing an understanding of the described techniques. These techniques, however, may be practiced without these specific details. In some instances, known structures and devices are shown in block diagram form in order to avoid obscuring the concepts of the described examples.
The description herein is provided to enable a person having ordinary skill in the art to make or use the disclosure. Various modifications to the disclosure will be apparent to a person having ordinary skill in the art, and the generic principles defined herein may be applied to other variations without departing from the scope of the disclosure. Thus, the disclosure is not limited to the examples and designs described herein, but is to be accorded the broadest scope consistent with the principles and novel features disclosed herein.

Claims (22)

  1. A method for wireless communications at a first user equipment (UE) , comprising:
    identifying a set of data packets for transmission to a second UE;
    transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets;
    transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  2. The method of claim 1, further comprising:
    transmitting, to the second UE, an indication of the discontinuous reception paging cycle and the time offset value.
  3. The method of claim 1, further comprising:
    entering an idle state after transmitting the set of data packets to the second UE; and
    monitoring for a second wake-up signal to trigger a data communication.
  4. The method of claim 1, wherein the discontinuous reception paging cycle is associated with a radio resource control (RRC) connected state of the first UE.
  5. The method of claim 1, wherein the wake-up signal is transmitted using a beam sweeping procedure in one or more transmission beam directions.
  6. A method for wireless communications at a second user equipment (UE) , comprising:
    monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value;
    receiving the wake-up signal from a first UE based at least in part on the monitoring; and
    receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  7. The method of claim 6, further comprising:
    receiving, from the first UE, an indication of the discontinuous reception paging cycle and the time offset value, wherein monitoring for the wake-up signal is based at least in part on receiving the indication.
  8. The method of claim 6, further comprising:
    entering an idle state after receiving the set of data packets from the second UE; and
    monitoring for a second wake-up signal to trigger a data communication.
  9. The method of claim 6, wherein the discontinuous reception paging cycle is associated with a radio resource control (RRC) connected state of the second UE.
  10. An apparatus for wireless communications at a first user equipment (UE) , comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    identify a set of data packets for transmission to a second UE;
    transmit a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets;
    transmit the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  11. The apparatus of claim 10, wherein the instructions are further executable by the processor to cause the apparatus to:
    transmit, to the second UE, an indication of the discontinuous reception paging cycle and the time offset value.
  12. The apparatus of claim 10, wherein the instructions are further executable by the processor to cause the apparatus to:
    enter an idle state after transmitting the set of data packets to the second UE; and
    monitor for a second wake-up signal to trigger a data communication.
  13. The apparatus of claim 10, wherein the discontinuous reception paging cycle is associated with a radio resource control (RRC) connected state of the first UE.
  14. The apparatus of claim 10, wherein the wake-up signal is transmitted using a beam sweeping procedure in one or more transmission beam directions.
  15. An apparatus for wireless communications at a first user equipment (UE) , comprising:
    means for identifying a set of data packets for transmission to a second UE;
    means for transmitting a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets;
    means for transmitting the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  16. A non-transitory computer-readable medium storing code for wireless communications at a first user equipment (UE) , the code comprising instructions executable by a processor to:
    identify a set of data packets for transmission to a second UE;
    transmit a wake-up signal to the second UE according to a discontinuous reception paging cycle and a time offset value, wherein the wake-up signal is transmitted based at least in part on identifying the set of data packets;
    transmit the set of data packets to the second UE according to the discontinuous reception paging cycle based at least in part on transmitting the wake-up signal.
  17. An apparatus for wireless communications at a second user equipment (UE) , comprising:
    a processor;
    memory coupled with the processor; and
    instructions stored in the memory and executable by the processor to cause the apparatus to:
    monitor for a wake-up signal according to a discontinuous reception paging cycle and a time offset value;
    receive the wake-up signal from a first UE based at least in part on the monitoring; and
    receive a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  18. The apparatus of claim 17, wherein the instructions are further executable by the processor to cause the apparatus to:
    receive, from the first UE, an indication of the discontinuous reception paging cycle and the time offset value, wherein monitoring for the wake-up signal is based at least in part on receiving the indication.
  19. The apparatus of claim 17, wherein the instructions are further executable by the processor to cause the apparatus to:
    enter an idle state after receiving the set of data packets from the second UE; and
    monitor for a second wake-up signal to trigger a data communication.
  20. The apparatus of claim 17, wherein the discontinuous reception paging cycle is associated with a radio resource control (RRC) connected state of the second UE.
  21. An apparatus for wireless communications at a second user equipment (UE) , comprising:
    means for monitoring for a wake-up signal according to a discontinuous reception paging cycle and a time offset value;
    means for receiving the wake-up signal from a first UE based at least in part on the monitoring; and
    means for receiving a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
  22. A non-transitory computer-readable medium storing code for wireless communications at a second user equipment (UE) , the code comprising instructions executable by a processor to:
    monitor for a wake-up signal according to a discontinuous reception paging cycle and a time offset value;
    receive the wake-up signal from a first UE based at least in part on the monitoring; and
    receive a set of data packets from the first UE according to the discontinuous reception paging cycle based at least in part on receiving the wake-up signal.
PCT/CN2020/118015 2020-09-27 2020-09-27 Techniques for wake-up signaling in sidelink communications WO2022061794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118015 WO2022061794A1 (en) 2020-09-27 2020-09-27 Techniques for wake-up signaling in sidelink communications

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/118015 WO2022061794A1 (en) 2020-09-27 2020-09-27 Techniques for wake-up signaling in sidelink communications

Publications (1)

Publication Number Publication Date
WO2022061794A1 true WO2022061794A1 (en) 2022-03-31

Family

ID=80844794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118015 WO2022061794A1 (en) 2020-09-27 2020-09-27 Techniques for wake-up signaling in sidelink communications

Country Status (1)

Country Link
WO (1) WO2022061794A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149666A1 (en) * 2012-04-05 2013-10-10 Telefonaktiebolaget L M Ericsson (Publ) Advanced wakeup for reception of paging configuration information
CN104012155A (en) * 2012-11-06 2014-08-27 华为技术有限公司 Method for paging UE, base station and UE
CN110915267A (en) * 2017-05-12 2020-03-24 索尼公司 Wake signal transmission on relay link

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013149666A1 (en) * 2012-04-05 2013-10-10 Telefonaktiebolaget L M Ericsson (Publ) Advanced wakeup for reception of paging configuration information
CN104012155A (en) * 2012-11-06 2014-08-27 华为技术有限公司 Method for paging UE, base station and UE
CN110915267A (en) * 2017-05-12 2020-03-24 索尼公司 Wake signal transmission on relay link

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Power saving techniques for sidelink", 3GPP DRAFT; R1-2005642, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917618 *

Similar Documents

Publication Publication Date Title
US11910416B2 (en) Default quasi-colocation for single downlink control information-based multiple transmission reception points
US11452043B2 (en) Power enhancement techniques for vehicle-to-pedestrian wireless communication systems
US20210400709A1 (en) Uplink traffic prioritization across multiple links
US20230224960A1 (en) Techniques for adapting resource sensing in sidelink communications system
US11671956B2 (en) Beam measurement on sidelink
US11671940B2 (en) Sidelink communication during a downlink slot
US20220345286A1 (en) Uplink transmission timing patterns
US20230164819A1 (en) Uplink control information multiplexing rule for simultaneous uplink control channel and uplink shared channel transmission
US11902865B2 (en) Vehicle based wireless communications
US20230199649A1 (en) Signaling to wake up a cell
US11758592B2 (en) Implicit beam indication
WO2021259159A1 (en) Support of flexible sounding reference signal switching capability
US20220393808A1 (en) Hybrid automatic repeat request feedback for sidelink
US20220232474A1 (en) Ue idle and inactive mode enhancement with sidelink
WO2022000484A1 (en) Wake-up signal design for multiple multicast sessions
EP4285626A1 (en) Methods and apparatuses for transferring of shared radio frequency band access indications
WO2022061794A1 (en) Techniques for wake-up signaling in sidelink communications
WO2022077416A1 (en) Device-to-device discontinuous reception latency enhancement
US12015579B2 (en) Techniques for enhancing user equipment performance for multiple subscriber identification module operation
US20240098694A1 (en) Paging occasion update using a registration request
WO2022170556A1 (en) Additional user equipment identifier for paging response
WO2023150934A1 (en) Timing advance group indication based on unified transmission configuration indication
WO2022036586A1 (en) Adaptive discontinuous reception cycle configuration for active flows
WO2022170573A1 (en) A rapid signaling release solution after paging response
WO2021223135A1 (en) Sharing bar cell information in dual new radio user equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20954646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20954646

Country of ref document: EP

Kind code of ref document: A1